Maliborski, Artur; Różycki, Radosław
2014-04-17
Excessive watering of the eye is a common condition in ophthalmological practice. It may be the result of excessive production of tear fluid or obstruction and insufficiency of efferent tear pathways. The differentiation between obstruction and insufficiency of the lacrimal pathways is still clinically questionable. In the diagnostic process it is necessary to perform clinical tests and additional diagnostic imaging is often needed. Dacryocystography, with or without the extension of the dynamic phase or subtraction option, still remains the criterion standard for diagnostic imaging of the lacrimal obstruction. It may help to clarify the cause and exact place of the obstruction and provide information for further management, especially surgical treatment. Increasingly, new techniques are used in diagnostic imaging of the lacrimal tract, such as computed tomography, magnetic resonance, and isotopic methods. Adequate knowledge of the anatomy and physiology of the lacrimal system and the secretion and outflow of tears is the basis for proper diagnostic imaging. The purpose of this paper is to present the exact anatomy of the lacrimal system, with particular emphasis on the radiological anatomy and the current state of knowledge about the physiology of tear secretion and drainage.
Diagnostic imaging for acute appendicitis: interfacility differences in practice patterns.
Michailidou, Maria; Sacco Casamassima, Maria G; Karim, Omar; Gause, Colin; Salazar, Jose H; Goldstein, Seth D; Abdullah, Fizan
2015-04-01
To evaluate trends and factors associated with interfacility differences in imaging modality selection in the diagnosis and management of children with suspected acute appendicitis. We conducted a retrospective review of diagnostic imaging selection and outcomes in patients <20 years of age who underwent appendectomy at a single Children's Hospital from June 2008 to June 2013. These results were then compared with those of referring hospitals. A total of 232 children underwent appendectomy during the study period. Imaging results contributed to diagnostic and management decisions in 95.3 % of cases. CT scan was utilized as first-line imaging in 50 % of cases. CTs were preferentially performed at referring institutions (78 vs. 46 %, p < 0.001). Children were five times more likely to undergo CT at referring institutions (OR = 5.5, CI 3.0-10.2). Adjusting for demographics and Alvarado score, diagnostic imaging choice was independent of patient's clinical status. This study demonstrates that initial presentation to a referring hospital independently predicts the use of CT scan for suspected acute appendicitis. Further efforts should be undertaken to develop a clinical pathway that minimizes radiation exposure in the diagnosis of acute appendicitis, with focus on access to pediatric abdominal ultrasound.
Diagnosing acute pulmonary embolism with computed tomography: imaging update.
Devaraj, Anand; Sayer, Charlie; Sheard, Sarah; Grubnic, Sisa; Nair, Arjun; Vlahos, Ioannis
2015-05-01
Acute pulmonary embolism is recognized as a difficult diagnosis to make. It is potentially fatal if undiagnosed, yet increasing referral rates for imaging and falling diagnostic yields are topics which have attracted much attention. For patients in the emergency department with suspected pulmonary embolism, computed tomography pulmonary angiography (CTPA) is the test of choice for most physicians, and hence radiology has a key role to play in the patient pathway. This review will outline key aspects of the recent literature regarding the following issues: patient selection for imaging, the optimization of CTPA image quality and dose, preferred pathways for pregnant patients and other subgroups, and the role of CTPA beyond diagnosis. The role of newer techniques such as dual-energy CT and single-photon emission-CT will also be discussed.
Moura, Frederico Castelo; Lunardelli, Patrícia; Leite, Cláudia Costa; Monteiro, Mário Luiz Ribeiro
2005-01-01
Lesions of the lateral geniculate body (LGB) are the most unusual lesions of the visual pathways. Imaging studies are very important in establishing the correct diagnosis. However, due to its small size and particular location, the lateral geniculate body and its lesions are sometimes difficult to detect in imaging studies possibly causing diagnostic confusion. The purpose of this paper is to document an unusual case of a lesion of the lateral geniculate body for which an optical coherence tomography study was very important in confirming the anatomic diagnosis of a lateral geniculate body lesion. A 39-year-old woman with a previous diagnosis of uveitis and central nervous system vasculitis was referred for investigation of a right temporal quadrantanopia. She had already been submitted to a magnetic resonance imaging (MRI) that did not show any lesion along the visual pathway. Ophthalmoscopy revealed retinal nerve fiber layer (RNFL) loss that was confirmed by optical coherence tomography. Such finding associated with the observations on the neurological examination strongly suggested a lateral geniculate body lesion. The patient was submitted to another new magnetic resonance imaging obtained with especially oriented thin sections and an ischemic lesion of the lateral geniculate body was observed establishing the correct diagnosis. This case serves to confirm the importance of optical coherence tomography in determining the pattern of retinal nerve fiber layer loss in neuro-ophthalmic diseases and therefore to help in locating a lesion along the visual pathway.
Canal, Sara; Baroni, Massimo; Falzone, Cristian; De Benedictis, Giulia M.; Bernardini, Marco
2015-01-01
Two young dogs were evaluated for an acute onset of abnormal head posture and eye movement. Neurological examination was characterized mostly by permanent neck extension, abnormalities of pupils, and eye movement. A mesencephalic mass lesion was detected on magnetic resonance imaging in both cases. Neurophysiological pathways likely responsible for this peculiar clinical presentation are discussed. PMID:26663922
Healthcare provider and patient perspectives on diagnostic imaging investigations.
Makanjee, Chandra R; Bergh, Anne-Marie; Hoffmann, Willem A
2015-05-20
Much has been written about the patient-centred approach in doctor-patient consultations. Little is known about interactions and communication processes regarding healthcare providers' and patients' perspectives on expectations and experiences of diagnostic imaging investigations within the medical encounter. Patients journey through the health system from the point of referral to the imaging investigation itself and then to the post-imaging consultation. AIM AND SETTING: To explore healthcare provider and patient perspectives on interaction and communication processes during diagnostic imaging investigations as part of their clinical journey through a healthcare complex. A qualitative study was conducted, with two phases of data collection. Twenty-four patients were conveniently selected at a public district hospital complex and were followed throughout their journey in the hospital system, from admission to discharge. The second phase entailed focus group interviews conducted with providers in the district hospital and adjacent academic hospital (medical officers and family physicians, nurses, radiographers, radiology consultants and registrars). Two main themes guided our analysis: (1) provider perspectives; and (2) patient dispositions and reactions. Golden threads that cut across these themes are interactions and communication processes in the context of expectations, experiences of the imaging investigations and the outcomes thereof. Insights from this study provide a better understanding of the complexity of the processes and interactions between providers and patients during the imaging investigations conducted as part of their clinical pathway. The interactions and communication processes are provider-patient centred when a referral for a diagnostic imaging investigation is included.
Giant cell arteritis: a review.
Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar
2013-01-01
Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis.
Molecular diagnostics of neurodegenerative disorders.
Agrawal, Megha; Biswas, Abhijit
2015-01-01
Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.
Dolled-Filhart, Marisa P; Gustavson, Mark D
2012-11-01
Translational oncology has been improved by using tissue microarrays (TMAs), which facilitate biomarker analysis of large cohorts on a single slide. This has allowed for rapid analysis and validation of potential biomarkers for prognostic and predictive value, as well as for evaluation of biomarker prevalence. Coupled with quantitative analysis of immunohistochemical (IHC) staining, objective and standardized biomarker data from tumor samples can further advance companion diagnostic approaches for the identification of drug-responsive or resistant patient subpopulations. This review covers the advantages, disadvantages and applications of TMAs for biomarker research. Research literature and reviews of TMAs and quantitative image analysis methodology have been surveyed for this review (with an AQUA® analysis focus). Applications such as multi-marker diagnostic development and pathway-based biomarker subpopulation analyses are described. Tissue microarrays are a useful tool for biomarker analyses including prevalence surveys, disease progression assessment and addressing potential prognostic or predictive value. By combining quantitative image analysis with TMAs, analyses will be more objective and reproducible, allowing for more robust IHC-based diagnostic test development. Quantitative multi-biomarker IHC diagnostic tests that can predict drug response will allow for greater success of clinical trials for targeted therapies and provide more personalized clinical decision making.
Routine Ultrasound and Limited Computed Tomography for the Diagnosis of Acute Appendicitis
Wiersma, Fraukje; Bakker, Rutger F. R.; Merkus, Jos W. S.; Breslau, Paul J.; Hamming, Jaap F.
2010-01-01
Background Acute appendicitis continues to be a challenging diagnosis. Preoperative radiological imaging using ultrasound (US) or computed tomography (CT) has gained popularity as it may offer a more accurate diagnosis than classic clinical evaluation. The optimal implementation of these diagnostic modalities has yet to be established. The aim of the present study was to investigate a diagnostic pathway that uses routine US, limited CT, and clinical re-evaluation for patients with acute appendicitis. Methods A prospective analysis was performed of all patients presenting with acute abdominal pain at the emergency department from June 2005 until July 2006 using a structured diagnosis and management flowchart. Daily practice was mimicked, while ensuring a valid assessment of clinical and radiological diagnostic accuracies and the effect they had on patient management. Results A total of 802 patients were included in this analysis. Additional radiological imaging was performed in 96.3% of patients with suspected appendicitis (n = 164). Use of CT was kept to a minimum (17.9%), with a US:CT ratio of approximately 6:1. Positive and negative predictive values for the clinical diagnosis of appendicitis were 63 and 98%, respectively; for US 94 and 97%, respectively; and for CT 100 and 100%, respectively. The negative appendicitis rate was 3.3%, the perforation rate was 23.5%, and the missed perforated appendicitis rate was 3.4%. No (diagnostic) laparoscopies were performed. Conclusions A diagnostic pathway using routine US, limited CT, and clinical re-evaluation for patients with acute abdominal pain can provide excellent results for the diagnosis and treatment of appendicitis. PMID:20582544
Giant cell arteritis: a review
Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar
2013-01-01
Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785
Role of electromagnetic navigational bronchoscopy in pulmonary nodule management
Dahagam, Chanukya; Breen, David P.; Sarkar, Saiyad
2016-01-01
The incidence of pulmonary nodules and lung cancer is rising. Some of this increase in incidence is due to improved pick up by newer imaging modalities. However, the goal is to diagnose these lesion, many of which are located in the periphery, by safe and relatively non-invasive methods. This has led to the emergence of numerous techniques such as electromagnetic navigational bronchoscopy (ENB). Current evidence supports a role for these techniques in the diagnostic pathway. However, numerous factor influence the diagnostic accuracy. Thus despite significant advances, more research needs to be undertaken to further improve the currently available diagnostic technologies. PMID:27606080
Distributed decision making in action: diagnostic imaging investigations within the bigger picture.
Makanjee, Chandra R; Bergh, Anne-Marie; Hoffmann, Willem A
2018-03-01
Decision making in the health care system - specifically with regard to diagnostic imaging investigations - occurs at multiple levels. Professional role players from various backgrounds are involved in making these decisions, from the point of referral to the outcomes of the imaging investigation. The aim of this study was to map the decision-making processes and pathways involved when patients are referred for diagnostic imaging investigations and to explore distributed decision-making events at the points of contact with patients within a health care system. A two-phased qualitative study was conducted in an academic public health complex with the district hospital as entry point. The first phase included case studies of 24 conveniently selected patients, and the second phase involved 12 focus group interviews with health care providers. Data analysis was based on Rapley's interpretation of decision making as being distributed across time, situations and actions, and including different role players and technologies. Clinical decisions incorporating imaging investigations are distributed across the three vital points of contact or decision-making events, namely the initial patient consultation, the diagnostic imaging investigation and the post-investigation consultation. Each of these decision-making events is made up of a sequence of discrete decision-making moments based on the transfer of retrospective, current and prospective information and its transformation into knowledge. This paper contributes to the understanding of the microstructural processes (the 'when' and 'where') involved in the distribution of decisions related to imaging investigations. It also highlights the interdependency in decision-making events of medical and non-medical providers within a single medical encounter. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Porpiglia, Francesco; Manfredi, Matteo; Mele, Fabrizio; Cossu, Marco; Bollito, Enrico; Veltri, Andrea; Cirillo, Stefano; Regge, Daniele; Faletti, Riccardo; Passera, Roberto; Fiori, Cristian; De Luca, Stefano
2017-08-01
An approach based on multiparametric magnetic resonance imaging (mpMRI) might increase the detection rate (DR) of clinically significant prostate cancer (csPCa). To compare an mpMRI-based pathway with the standard approach for the detection of prostate cancer (PCa) and csPCa. Between November 2014 and April 2016, 212 biopsy-naïve patients with suspected PCa (prostate specific antigen level ≤15 ng/ml and negative digital rectal examination results) were included in this randomized clinical trial. Patients were randomized into a prebiopsy mpMRI group (arm A, n=107) or a standard biopsy (SB) group (arm B, n=105). In arm A, patients with mpMRI evidence of lesions suspected for PCa underwent mpMRI/transrectal ultrasound fusion software-guided targeted biopsy (TB) (n=81). The remaining patients in arm A (n=26) with negative mpMRI results and patients in arm B underwent 12-core SB. The primary end point was comparison of the DR of PCa and csPCa between the two arms of the study; the secondary end point was comparison of the DR between TB and SB. The overall DRs were higher in arm A versus arm B for PCa (50.5% vs 29.5%, respectively; p=0.002) and csPCa (43.9% vs 18.1%, respectively; p<0.001). Concerning the biopsy approach, that is, TB in arm A, SB in arm A, and SB in arm B, the overall DRs were significantly different for PCa (60.5% vs 19.2% vs 29.5%, respectively; p<0.001) and for csPCa (56.8% vs 3.8% vs 18.1%, respectively; p<0.001). The reproducibility of the study could have been affected by the single-center nature. A diagnostic pathway based on mpMRI had a higher DR than the standard pathway in both PCa and csPCa. In this randomized trial, a pathway for the diagnosis of prostate cancer based on multiparametric magnetic resonance imaging (mpMRI) was compared with the standard pathway based on random biopsy. The mpMRI-based pathway had better performance than the standard pathway. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Neuroimaging in adult penetrating brain injury: a guide for radiographers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temple, Nikki; Donald, Cortny; Skora, Amanda
Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Basedmore » on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.« less
First-trimester emergencies: a radiologist's perspective.
Phillips, Catherine H; Wortman, Jeremy R; Ginsburg, Elizabeth S; Sodickson, Aaron D; Doubilet, Peter M; Khurana, Bharti
2018-02-01
The purpose of this article is to help the practitioner ensure early diagnosis and response to emergencies in the first trimester by reviewing anatomy of the developing embryo, highlighting the sonographic appearance of common first-trimester emergencies, and discussing key management pathways for treating emergent cases. First-trimester fetal development is a stepwise process that can be challenging to evaluate in the emergency department (ED) setting. This is due, in part, to the complex anatomy of early pregnancy, subtlety of the sonographic findings, and the fact that fewer than half of patients with ectopic pregnancy present with the classic clinical findings of a positive pregnancy test, vaginal bleeding, pelvic pain, and tender adnexa. Ultrasound (US) has been the primary approach to diagnostic imaging of first-trimester emergencies, with magnetic resonance imaging (MRI) and computed tomography (CT) playing a supportive role in a small minority of cases. Familiarity with the sonographic findings diagnostic of and suspicious for early pregnancy failure, ectopic pregnancy, retained products of conception, gestational trophoblastic disease, failed intrauterine devices, and complications associated with assisted reproductive technology (ART) is critical for any emergency radiologist. Evaluation of first-trimester emergencies is challenging, and knowledge of key imaging findings and familiarity with management pathways are needed to ensure early diagnosis and response.
Single-cell proteomics: potential implications for cancer diagnostics.
Gavasso, Sonia; Gullaksen, Stein-Erik; Skavland, Jørn; Gjertsen, Bjørn T
2016-01-01
Single-cell proteomics in cancer is evolving and promises to provide more accurate diagnoses based on detailed molecular features of cells within tumors. This review focuses on technologies that allow for collection of complex data from single cells, but also highlights methods that are adaptable to routine cancer diagnostics. Current diagnostics rely on histopathological analysis, complemented by mutational detection and clinical imaging. Though crucial, the information gained is often not directly transferable to defined therapeutic strategies, and predicting therapy response in a patient is difficult. In cancer, cellular states revealed through perturbed intracellular signaling pathways can identify functional mutations recurrent in cancer subsets. Single-cell proteomics remains to be validated in clinical trials where serial samples before and during treatment can reveal excessive clonal evolution and therapy failure; its use in clinical trials is anticipated to ignite a diagnostic revolution that will better align diagnostics with the current biological understanding of cancer.
Acoustic Sensing and Ultrasonic Drug Delivery in Multimodal Theranostic Capsule Endoscopy
Stewart, Fraser R.; Qiu, Yongqiang; Newton, Ian P.; Cox, Benjamin F.; Al-Rawhani, Mohammed A.; Beeley, James; Liu, Yangminghao; Huang, Zhihong; Cumming, David R. S.; Näthke, Inke
2017-01-01
Video capsule endoscopy (VCE) is now a clinically accepted diagnostic modality in which miniaturized technology, an on-board power supply and wireless telemetry stand as technological foundations for other capsule endoscopy (CE) devices. However, VCE does not provide therapeutic functionality, and research towards therapeutic CE (TCE) has been limited. In this paper, a route towards viable TCE is proposed, based on multiple CE devices including important acoustic sensing and drug delivery components. In this approach, an initial multimodal diagnostic device with high-frequency quantitative microultrasound that complements video imaging allows surface and subsurface visualization and computer-assisted diagnosis. Using focused ultrasound (US) to mark sites of pathology with exogenous fluorescent agents permits follow-up with another device to provide therapy. This is based on an US-mediated targeted drug delivery system with fluorescence imaging guidance. An additional device may then be utilized for treatment verification and monitoring, exploiting the minimally invasive nature of CE. While such a theranostic patient pathway for gastrointestinal treatment is presently incomplete, the description in this paper of previous research and work under way to realize further components for the proposed pathway suggests it is feasible and provides a framework around which to structure further work. PMID:28671642
MARIA M4: clinical evaluation of a prototype ultrawideband radar scanner for breast cancer detection
Preece, Alan W.; Craddock, Ian; Shere, Mike; Jones, Lyn; Winton, Helen L.
2016-01-01
Abstract. A microwave imaging system has been developed as a clinical diagnostic tool operating in the 3- to 8-GHz region using multistatic data collection. A total of 86 patients recruited from a symptomatic breast care clinic were scanned with a prototype design. The resultant three-dimensional images have been compared “blind” with available ultrasound and mammogram images to determine the detection rate. Images show the location of the strongest signal, and this corresponded in both older and younger women, with sensitivity of >74%, which was found to be maintained in dense breasts. The pathway from clinical prototype to clinical evaluation is outlined. PMID:27446970
White matter damage in primary progressive aphasias: a diffusion tensor tractography study.
Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M; Henry, Maya L; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F; Henry, Roland G; Ogar, Jennifer M; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2011-10-01
Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts' mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.
NASA Astrophysics Data System (ADS)
Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.
2015-03-01
Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.
Computer-assisted diagnosis of melanoma.
Fuller, Collin; Cellura, A Paul; Hibler, Brian P; Burris, Katy
2016-03-01
The computer-assisted diagnosis of melanoma is an exciting area of research where imaging techniques are combined with diagnostic algorithms in an attempt to improve detection and outcomes for patients with skin lesions suspicious for malignancy. Once an image has been acquired, it undergoes a processing pathway which includes preprocessing, enhancement, segmentation, feature extraction, feature selection, change detection, and ultimately classification. Practicality for everyday clinical use remains a vital question. A successful model must obtain results that are on par or outperform experienced dermatologists, keep costs at a minimum, be user-friendly, and be time efficient with high sensitivity and specificity. ©2015 Frontline Medical Communications.
Braun, M; Ploner, C J; Lindner, T; Möckel, M; Schmidt, W U
2017-06-01
Coma of unknown origin (CUO) is a frequent unspecific emergency symptom associated with a high mortality. A fast diagnostic work-up is essential given the wide spectrum of underlying diagnoses that are made up of approximately 50% primary central nervous system (CNS) pathologies and approximately 50% extracerebral, almost exclusively internal medical causes. Despite the high mortality associated with this symptom, there are currently no generally accepted management guidelines for adult patients presenting with CUO. We propose an interdisciplinary standard operating procedure (SOP) for patients with acute CUO as has been established in our maximum care hospital. The SOP is triggered by simple triage criteria that are sufficient to identify CUO patients before arrival in hospital. The in-hospital response team is led by a neurologist. Collaboration with nursing staff, internal medicine, anesthesiology, neurosurgery and trauma surgery is organized along structured pathways that include standardized laboratory tests, including cerebrospinal fluid (CSF), toxicology, computed tomography (CT) and CT angiography imaging (CTA). Our data suggest that neurologists and internists need to be placed at the beginning of the diagnostic work-up. Imaging should not just be carried out depending on the clinical syndrome because sensitivity, specificity and inter-rater reliability of the latter are not sufficient and because in many cases, multiple pathologies can be detected that could each explain CUO alone. Clinical examination, imaging and laboratory testing should be regarded as components of an integrative diagnostic approach and the final aetiological classification should only be made after the diagnostic work-up is complete.
VEGF in nuclear medicine: Clinical application in cancer and future perspectives (Review).
Taurone, Samanta; Galli, Filippo; Signore, Alberto; Agostinelli, Enzo; Dierckx, Rudi A J O; Minni, Antonio; Pucci, Marcella; Artico, Marco
2016-08-01
Clinical trials using antiangiogenic drugs revealed their potential against cancer. Unfortunately, a large percentage of patients does not yet benefit from this therapeutic approach highlighting the need of diagnostic tools to non-invasively evaluate and monitor response to therapy. It would also allow to predict which kind of patient will likely benefit of antiangiogenic therapy. Reasons for treatment failure might be due to a low expression of the drug targets or prevalence of other pathways. Molecular imaging has been therefore explored as a diagnostic technique of choice. Since the vascular endothelial growth factor (VEGF/VEGFR) pathway is the main responsible of tumor angiogenesis, several new drugs targeting either the soluble ligand or its receptor to inhibit signaling leading to tumor regression could be involved. Up today, it is difficult to determine VEGF or VEGFR local levels and their non-invasive measurement in tumors might give insight into the available target for VEGF/VEGFR-dependent antiangiogenic therapies, allowing therapy decision making and monitoring of response.
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
Careers in Medical Physics and the American Association of Physicists in Medicine
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
Ga-68-DOTA-TATE PET/CT for discrimination of tumors of the optic pathway.
Klingenstein, Annemarie; Haug, Alexander R; Miller, Christina; Hintschich, Christoph
2015-02-01
Symptomatic tumors of the optic nerve pathway may endanger vision. They are difficult to classify by imaging alone and biopsy may damage visual function. Tumor pathology influences treatment decision and a diagnostic tool with a high sensitivity and specificity would therefore be invaluable. We hypothesized that Ga-68-DOTA-TATE PET/CT may help in discriminating optic nerve tumors as uptake of somatostatin is elevated in meningiomas. Ga-68-DOTA-TATE PET/CT was used to examine 13 patients with ambiguous, symptomatic lesions of the optic pathway for treatment planning. The presence or absence of meningioma was validated by histopathology or supplementary diagnostic work-up. Ga-68-DOTA-TATE PET/CT identified 10 meningiomas (en plaque = 1, optic nerve sheath = 4, sphenoidal = 5) correctly via increased SSTR (somatostatin receptor) expression (mean SUVmax (maximum standardized uptake value) = 14.3 ± 15.4). 3 tumors did not show elevated Ga-68-DOTA-TATE uptake (SUVmax = 2.1 ± 1.0). Subsumizing all clinical-radiological follow-up tools available, these lesions were classified as an intracerebral metastasis of an advanced gastric carcinoma, histologically proven inflammatory collagenous connective tissue and presumed leukemic infiltration of a newly diagnosed chronic lymphocytic leukemia. In this case series, Ga-68-DOTA-TATE PET/CT demonstrated both a sensitivity and specificity of 100%. Yet, the golden standard of histopathology was only available in a subset of patients included. Ga-68-DOTA-TATE PET/CT proved to be a valuable diagnostic tool for the correct classification of equivocal, symptomatic tumors of the anterior optic pathway requiring therapy. PET/CT results influenced therapy decision essentially in all cases.
White matter damage in primary progressive aphasias: a diffusion tensor tractography study
Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M.; Henry, Maya L.; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F.; Henry, Roland G.; Ogar, Jennifer M.; Miller, Bruce L.
2011-01-01
Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts’ mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia. PMID:21666264
NASA Astrophysics Data System (ADS)
Litorja, Maritoni; DeRose, Paul
2018-02-01
Fluorescence measurements are a staple in biomedicine, from research and discovery to more recently, for fluorescenceguided imaging systems for diagnostics and surgery. Measurement validation for clinical imagers is a challenge as it is applied to many different optical systems and probe through matrices with different optical properties in a demanding field environment. In this paper we will present approaches to fluorescence calibration for a field system, in comparison to those used in laboratory instruments for cell measurements or benchtop fluorometers. We will present the common challenges and differences, and lessons from the standardization effort of laboratory fluorescence measurements. We will discuss the conceptually different pathways to measurement traceability, between counting moles of substance and measuring light.
Molecular aspects of magnetic resonance imaging and spectroscopy.
Boesch, C
1999-01-01
Magnetic resonance imaging (MRI) is a well known diagnostic tool in radiology that produces unsurpassed images of the human body, in particular of soft tissue. However, the medical community is often not aware that MRI is an important yet limited segment of magnetic resonance (MR) or nuclear magnetic resonance (NMR) as this method is called in basic science. The tremendous morphological information of MR images sometimes conceal the fact that MR signals in general contain much more information, especially on processes on the molecular level. NMR is successfully used in physics, chemistry, and biology to explore and characterize chemical reactions, molecular conformations, biochemical pathways, solid state material, and many other applications that elucidate invisible characteristics of matter and tissue. In medical applications, knowledge of the molecular background of MRI and in particular MR spectroscopy (MRS) is an inevitable basis to understand molecular phenomenon leading to macroscopic effects visible in diagnostic images or spectra. This review shall provide the necessary background to comprehend molecular aspects of magnetic resonance applications in medicine. An introduction into the physical basics aims at an understanding of some of the molecular mechanisms without extended mathematical treatment. The MR typical terminology is explained such that reading of original MR publications could be facilitated for non-MR experts. Applications in MRI and MRS are intended to illustrate the consequences of molecular effects on images and spectra.
Seruca, Cristina; Ródenas, Sergio; Leiva, Marta; Peña, Teresa; Añor, Sònia
2010-09-01
To describe the ophthalmologic, neurologic, and magnetic resonance imaging (MRI) findings of seven animals with acute postretinal blindness as sole neurologic deficit. Medical records were reviewed to identify dogs and cats with postretinal blindness of acute presentation, that had a cranial MRI performed as part of the diagnostic workup. Only animals lacking other neurologic signs at presentation were included. Complete physical, ophthalmic, and neurologic examinations, routine laboratory evaluations, thoracic radiographs, abdominal ultrasound, electroretinography, and brain MRI were performed in all animals. Cerebrospinal fluid analysis and postmortem histopathologic results were recorded when available. Four dogs and three cats met the inclusion criteria. Lesions affecting the visual pathways were observed on magnetic resonance (MR) images in six cases. Location, extension, and MRI features were described. Neuroanatomic localization included: olfactory region with involvement of the optic chiasm (n = 4), pituitary fossa with involvement of the optic chiasm and optic tracts (n = 1), and optic nerves (n = 1). Of all lesions detected, five were consistent with intracranial tumors (two meningiomas, one pituitary tumor, two nasal tumors with intracranial extension), and one with bilateral optic neuritis that was confirmed by cerebrospinal fluid analysis. Histologic diagnosis was obtained in four cases and included one meningioma, one pituitary carcinoma, one nasal osteosarcoma, and one nasal carcinoma. Central nervous system (CNS) disease should be considered in dogs and cats with acute blindness, even when other neurologic deficits are absent. This study emphasizes the relevance of MRI as a diagnostic tool for detection and characterization of CNS lesions affecting the visual pathways.
Aquaro, Giovanni Donato; Di Bella, Gianluca; Castelletti, Silvia; Maestrini, Viviana; Festa, Pierluigi; Ait-Ali, Lamia; Masci, Pier Giorgio; Monti, Lorenzo; di Giovine, Gabriella; De Lazzari, Manuel; Cipriani, Alberto; Guaricci, Andrea I; Dellegrottaglie, Santo; Pepe, Alessia; Marra, Martina Perazzolo; Pontone, Gianluca
2017-04-01
Cardiac magnetic resonance (CMR) has emerged as a reliable and accurate diagnostic tool for the evaluation of patients with cardiac disease in several clinical settings and with proven additional diagnostic and prognostic value compared with other imaging modalities. This document has been developed by the working group on the 'application of CMR' of the Italian Society of Cardiology to provide a perspective on the current state of technical advances and clinical applications of CMR and to inform cardiologists on how to implement their clinical and diagnostic pathways with the inclusion of this technique in clinical practice. The writing committee consisted of members of the working group of the Italian Society of Cardiology and two external peer reviewers with acknowledged experience in the field of CMR.
Rankin, Nicole M; York, Sarah; Stone, Emily; Barnes, David; McGregor, Deborah; Lai, Michelle; Shaw, Tim; Butow, Phyllis N
2017-05-01
Pathways to lung cancer diagnosis and treatment are complex. International evidence shows significant variations in pathways. Qualitative research investigating pathways to lung cancer diagnosis rarely considers both patient and general practitioner views simultaneously. To describe the lung cancer diagnostic pathway, focusing on the perspective of patients and general practitioners about diagnostic and pretreatment intervals. This qualitative study of patients with lung cancer and general practitioners in Australia used qualitative interviews or a focus group in which participants responded to a semistructured questionnaire designed to explore experiences of the diagnostic pathway. The Model of Pathways to Treatment (the Model) was used as a framework for analysis, with data organized into (1) events, (2) processes, and (3) contributing factors for variations in diagnostic and pretreatment intervals. Thirty participants (19 patients with lung cancer and 11 general practitioners) took part. Nine themes were identified during analysis. For the diagnostic interval, these were: (1) taking patient concerns seriously, (2) a sense of urgency, (3) advocacy that is doctor-driven or self-motivated, and (4) referral: "knowing who to refer to." For the pretreatment interval, themes were: (5) uncertainty, (6) psychosocial support for the patient and family before treatment, and (7) communication among the multidisciplinary team and general practitioners. Two cross-cutting themes were: (8) coordination of care and "handing over" the patient, and (9) general practitioner knowledge about lung cancer. Events were perceived as complex, with diagnosis often being revealed over time, rather than as a single event. Contributing factors at patient, system, and disease levels are described for both intervals. Patients and general practitioners expressed similar themes across the diagnostic and pretreatment intervals. Significant improvements could be made to health systems to facilitate better patient and general practitioner experiences of the diagnostic pathway. This novel presentation of patient and general practitioner perspectives indicates that systemic interventions have a role in timely and appropriate referrals to specialist care and coordination of investigations. Systemic interventions may alleviate concerns about urgency of diagnostic workup, communication, and coordination of care as patients transition from primary to specialist care.
Secondary prevention at 360°: the important role of diagnostic imaging.
Ciarrapico, Anna Micaela; Manenti, Guglielmo; Pistolese, Chiara; Fabiano, Sebastiano; Fiori, Roberto; Romagnoli, Andrea; Sergiacomi, Gianluigi; Stefanini, Matteo; Simonetti, Giovanni
2015-06-01
The aim of this paper is to underline the importance of the role of general practitioners (GPs) in distributing vital information about prevention to citizens, to highlight the importance of the so-called voluntary prevention programmes, both for conditions for which no organised screening programmes exist and for those for which they do exist but may well be obsolete or inefficient. Nowadays, voluntary prevention is made more effective thanks to the new sophisticated diagnostic technologies applied worldwide by diagnostic imaging. Epidemiological data about the incidence and causes of death among the Italian population have shown that screening programmes should be aimed first at fighting the following diseases: prostatic carcinoma, lung cancer, colorectal carcinoma, breast cancer, cardiovascular disease, cerebrovascular disease, aortic and peripheral vascular disease. GPs do not generally give good or adequate instructions concerning voluntary prevention programmes; GPs may not even be aware of this type of prevention which could represent a valuable option together with the existing mass screening programmes. Therefore, in the following analysis, we aim to outline the correct diagnostic pathway for the prevention of diseases having the highest incidence in our country and which represent the most frequent causes of death. If used correctly, these screening programmes may contribute to the success of secondary prevention, limiting the use of tertiary prevention and thus producing savings for the Italian National Health System.
Investigation of cAMP microdomains as a path to novel cancer diagnostics.
Desman, Garrett; Waintraub, Caren; Zippin, Jonathan H
2014-12-01
Understanding of cAMP signaling has greatly improved over the past decade. The advent of live cell imaging techniques and more specific pharmacologic modulators has led to an improved understanding of the intricacies by which cAMP is able to modulate such a wide variety of cellular pathways. It is now appreciated that cAMP is able to activate multiple effector proteins at distinct areas in the cell leading to the activation of very different downstream targets. The investigation of signaling proteins in cancer is a common route to the development of diagnostic tools, prognostic tools, and/or therapeutic targets, and in this review we highlight how investigation of cAMP signaling microdomains driven by the soluble adenylyl cyclase in different cancers has led to the development of a novel cancer biomarker. Antibodies directed against the soluble adenylyl cyclase (sAC) are highly specific markers for melanoma especially for lentigo maligna melanoma and are being described as "second generation" cancer diagnostics, which are diagnostics that determine the 'state' of a cell and not just identify the cell type. Due to the wide presence of cAMP signaling pathways in cancer, we predict that further investigation of both sAC and other cAMP microdomains will lead to additional cancer biomarkers. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Sabbatini, Amber K; Merck, Lisa H; Froemming, Adam T; Vaughan, William; Brown, Michael D; Hess, Erik P; Applegate, Kimberly E; Comfere, Nneka I
2015-12-01
Patient-centered emergency diagnostic imaging relies on efficient communication and multispecialty care coordination to ensure optimal imaging utilization. The construct of the emergency diagnostic imaging care coordination cycle with three main phases (pretest, test, and posttest) provides a useful framework to evaluate care coordination in patient-centered emergency diagnostic imaging. This article summarizes findings reached during the patient-centered outcomes session of the 2015 Academic Emergency Medicine consensus conference "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The primary objective was to develop a research agenda focused on 1) defining component parts of the emergency diagnostic imaging care coordination process, 2) identifying gaps in communication that affect emergency diagnostic imaging, and 3) defining optimal methods of communication and multidisciplinary care coordination that ensure patient-centered emergency diagnostic imaging. Prioritized research questions provided the framework to define a research agenda for multidisciplinary care coordination in emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Vissers, Lisenka E L M; van Nimwegen, Kirsten J M; Schieving, Jolanda H; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A; Willemsen, Michèl A A P
2017-09-01
Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene-based testing) and WES simultaneously. Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin.Genet Med advance online publication 23 March 2017.
Vissers, Lisenka E.L.M.; van Nimwegen, Kirsten J.M.; Schieving, Jolanda H.; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G.; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G.; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A.; Willemsen, Michèl A.A.P.
2017-01-01
Purpose: Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. Methods: We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene–based testing) and WES simultaneously. Results: Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Conclusion: Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin. Genet Med advance online publication 23 March 2017 PMID:28333917
Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron
2018-01-01
As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products. PMID:29619278
Thrall, James H; Li, Xiang; Li, Quanzheng; Cruz, Cinthia; Do, Synho; Dreyer, Keith; Brink, James
2018-03-01
Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large datasets ("big data"), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature, better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can be used to extract "radiomic" information from images not discernible by visual inspection, potentially increasing the diagnostic and prognostic value derived from image datasets. Predictions have been made that suggest AI will put radiologists out of business. This issue has been overstated, and it is much more likely that radiologists will beneficially incorporate AI methods into their practices. Current limitations in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access solutions. Success for AI in imaging will be measured by value created: increased diagnostic certainty, faster turnaround, better outcomes for patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists will explore these new pathways and are likely to play a leading role in medical applications of AI. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Theranostics and metabolotheranostics for precision medicine in oncology
NASA Astrophysics Data System (ADS)
Bhujwalla, Zaver M.; Kakkad, Samata; Chen, Zhihang; Jin, Jiefu; Hapuarachchige, Sudath; Artemov, Dmitri; Penet, Marie-France
2018-06-01
Most diseases, especially cancer, would significantly benefit from precision medicine where treatment is shaped for the individual. The concept of theragnostics or theranostics emerged around 2002 to describe the incorporation of diagnostic assays into the selection of therapy for this purpose. Increasingly, theranostics has been used for strategies that combine noninvasive imaging-based diagnostics with therapy. Within the past decade theranostic imaging has transformed into a rapidly expanding field that is located at the interface of diagnosis and therapy. A critical need in cancer treatment is to minimize damage to normal tissue. Molecular imaging can be applied to identify targets specific to cancer with imaging, design agents against these targets to visualize their delivery, and monitor response to treatment, with the overall purpose of minimizing collateral damage. Genomic and proteomic profiling can provide an extensive 'fingerprint' of each tumor. With this cancer fingerprint, theranostic agents can be designed to personalize treatment for precision medicine of cancer, and minimize damage to normal tissue. Here, for the first time, we have introduced the term 'metabolotheranostics' to describe strategies where disease-based alterations in metabolic pathways detected by MRS are specifically targeted with image-guided delivery platforms to achieve disease-specific therapy. The versatility of MRI and MRS in molecular and functional imaging makes these technologies especially important in theranostic MRI and 'metabolotheranostics'. Our purpose here is to provide insights into the capabilities and applications of this exciting new field in cancer treatment with a focus on MRI and MRS.
Lee, Jeong-Min; Kim, Myeong-Jin; Phongkitkarun, Sith; Sobhonslidsuk, Abhasnee; Holtorf, Anke-Peggy; Rinde, Harald; Bergmann, Karsten
2016-08-01
The effectiveness of treatment decisions and economic outcomes of using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) were compared with extracellular contrast media-enhanced MRI (ECCM-MRI) and multi-detector computed tomography (MDCT) as initial procedures in patients with suspected hepatocellular carcinoma (HCC) in South Korea and Thailand. A decision-tree model simulated the clinical pathway for patients with suspected HCC from the first imaging procedure to a confirmed treatment decision. Input data (probabilities and resource consumptions) were estimated and validated by clinical experts. Costs for diagnostic alternatives and related treatment options were derived from published sources, taking into account both payer's and hospital's perspectives. All experts from Korea and Thailand agreed that Gd-EOB-DTPA-MRI yields the highest diagnostic certainty and minimizes the need for additional confirmatory diagnostic procedures in HCC. In Korea, from the payer's perspective, total cost was USD $3087/patient to reach a confirmed treatment decision using Gd-EOB-DTPA-MRI (vs $3205/patient for MDCT and $3403/patient for ECCM-MRI). From the hospital's perspective, Gd-EOB-DTPA-MRI incurred the lowest cost ($2289/patient vs $2320/patient and $2528/patient, respectively). In Thailand, Gd-EOB-DTPA-MRI was the least costly alternative for the payer ($702/patient vs $931/patient for MDCT and $873/patient for ECCM-MRI). From the hospital's perspective, costs were $1106/patient, $1178/patient, and $1087/patient for Gd-EOB-DTPA-MRI, MDCT, and ECCM-MRI, respectively. Gd-EOB-DTPA-MRI as an initial imaging procedure in patients with suspected HCC provides better diagnostic certainty and relevant statutory health insurance cost savings in Thailand and Korea, compared with ECCM-MRI and MDCT.
Role of PET in medullary thyroid carcinoma.
Rufini, V; Treglia, G; Perotti, G; Leccisotti, L; Calcagni, M L; Rubello, D
2008-06-01
In the diagnostic assessment of medullary thyroid carcinoma (MTC), nuclear medicine imaging provides its contribution mainly in the postoperative work-up to detect residual or recurrent tumor. With respect to scintigraphy with gamma-emitter radiopharmaceuticals, positron emission tomography (PET) offers interesting perspectives owing to its higher image quality, spatial resolution and speed. Moreover, the recent developments of hybrid machines allow to obtain images that simultaneously hold both anatomic (computed tomography) and functional (PET) information with great impact on diagnostic efficacy. (18)F-fluoro-deoxyglucose ((18)F-FDG) is the most frequently used PET tracer in oncology. Preliminary reports of FDG-PET in MTC patients show encouraging results with a higher sensitivity in detecting local recurrent and metastatic disease when compared with single photon emission tracers. However, (18)F-FDG uptake depends on lesion size and to some extent on the grade of differentiation and biologic aggressiveness of the tumor; so FDG-PET seems useful mainly in patients with very high calcitonin levels and high progression rate. Like other neuroendocrine tumors, MTC is characterized by the presence of amine uptake mechanism and/or peptide receptors at the cell membrane allowing the clinical use of specific radiopharmaceuticals that reflect the different metabolic pathways of MTC, and in particular the synthesis, storage and release of hormones ((18)F-dihydroxyphenilalanine, (18)F-DOPA and (18)F-fluorodopamine, (18)F-FDA) and the expression of receptors ((68)Ga-labeled somatostatin analogs). These tracers are currently under investigation and will further improve the diagnostic approach of MTC.
New targeted therapies and diagnostic methods for iron overload diseases.
Kolnagou, Annita; Kontoghiorghe, Christina N; Kontoghiorghes, George John
2018-01-01
Millions of people worldwide suffer from iron overload toxicity diseases such as transfusional iron overload in thalassaemia and hereditary haemochromatosis. The accumulation and presence of toxic focal iron deposits causing tissue damage can also be identified in Friedreich's ataxia, Alzheimer's, Parkinson's, renal and other diseases. Different diagnostic criteria of toxicity and therapeutic interventions apply to each disease of excess or misplaced iron. Magnetic resonance imaging relaxation times T2 and T2* for monitoring iron deposits in organs and iron biomarkers such as serum ferritin and transferrin iron saturation have contributed in the elucidation of iron toxicity mechanisms and pathways, and also the evaluation of the efficacy and mode of action of chelating drugs in the treatment of diseases related to iron overload, toxicity and metabolism. Similarly, histopathological and electron microscopy diagnostic methods have revealed mechanisms of iron overload toxicity at cellular and sub-cellular levels. These new diagnostic criteria and chelator dose adjustments could apply in different or special patient categories e.g. thalassaemia patients with normal iron stores, where iron deficiency and over-chelation toxicity should be avoided.
Lilja, Ylva; Gustafsson, Oscar; Ljungberg, Maria; Starck, Göran; Lindblom, Bertil; Skoglund, Thomas; Bergquist, Henrik; Jakobsson, Karl-Erik; Nilsson, Daniel
2017-09-01
OBJECTIVE Despite ample experience in surgical treatment of pituitary adenomas, little is known about objective indices that may reveal risk of visual impairment caused by tumor growth that leads to compression of the anterior visual pathways. This study aimed to explore diffusion tensor imaging (DTI) as a means for objective assessment of injury to the anterior visual pathways caused by pituitary adenomas. METHODS Twenty-three patients with pituitary adenomas, scheduled for transsphenoidal tumor resection, and 20 healthy control subjects were included in the study. A minimum suprasellar tumor extension of Grade 2-4, according to the SIPAP (suprasellar, infrasellar, parasellar, anterior, and posterior) scale, was required for inclusion. Neuroophthalmological examinations, conventional MRI, and DTI were completed in all subjects and were repeated 6 months after surgery. Quantitative assessment of chiasmal lift, visual field defect (VFD), and DTI parameters from the optic tracts was performed. Linear correlations, group comparisons, and prediction models were done in controls and patients. RESULTS Both the degree of VFD and chiasmal lift were significantly correlated with the radial diffusivity (r = 0.55, p < 0.05 and r = 0.48, p < 0.05, respectively) and the fractional anisotropy (r = -0.58, p < 0.05 and r = -0.47, p < 0.05, respectively) but not with the axial diffusivity. The axial diffusivity differed significantly between controls and patients with VFD, both before and after surgery (p < 0.05); however, no difference was found between patients with and without VFD. Based on the axial diffusivity and fractional anisotropy, a prediction model classified all patients with VFD correctly (sensitivity 1.0), 9 of 12 patients without VFD correctly (sensitivity 0.75), and 17 of 20 controls as controls (specificity 0.85). CONCLUSIONS DTI could detect pathology and degree of injury in the anterior visual pathways that were compressed by pituitary adenomas. The correlation between radial diffusivity and visual impairment may reflect a gradual demyelination in the visual pathways caused by an increased tumor effect. The low level of axial diffusivity found in the patient group may represent early atrophy in the visual pathways, detectable on DTI but not by conventional methods. DTI may provide objective data, detect early signs of injury, and be an additional diagnostic tool for determining indication for surgery in cases of pituitary adenomas.
NASA Astrophysics Data System (ADS)
Izadyyazdanabadi, Mohammadhassan; Belykh, Evgenii; Martirosyan, Nikolay; Eschbacher, Jennifer; Nakaji, Peter; Yang, Yezhou; Preul, Mark C.
2017-03-01
Confocal laser endomicroscopy (CLE), although capable of obtaining images at cellular resolution during surgery of brain tumors in real time, creates as many non-diagnostic as diagnostic images. Non-useful images are often distorted due to relative motion between probe and brain or blood artifacts. Many images, however, simply lack diagnostic features immediately informative to the physician. Examining all the hundreds or thousands of images from a single case to discriminate diagnostic images from nondiagnostic ones can be tedious. Providing a real time diagnostic value assessment of images (fast enough to be used during the surgical acquisition process and accurate enough for the pathologist to rely on) to automatically detect diagnostic frames would streamline the analysis of images and filter useful images for the pathologist/surgeon. We sought to automatically classify images as diagnostic or non-diagnostic. AlexNet, a deep-learning architecture, was used in a 4-fold cross validation manner. Our dataset includes 16,795 images (8572 nondiagnostic and 8223 diagnostic) from 74 CLE-aided brain tumor surgery patients. The ground truth for all the images is provided by the pathologist. Average model accuracy on test data was 91% overall (90.79 % accuracy, 90.94 % sensitivity and 90.87 % specificity). To evaluate the model reliability we also performed receiver operating characteristic (ROC) analysis yielding 0.958 average for area under ROC curve (AUC). These results demonstrate that a deeply trained AlexNet network can achieve a model that reliably and quickly recognizes diagnostic CLE images.
Multiparametric prostate MRI: technical conduct, standardized report and clinical use.
Manfredi, Matteo; Mele, Fabrizio; Garrou, Diletta; Walz, Jochen; Fütterer, Jurgen J; Russo, Filippo; Vassallo, Lorenzo; Villers, Arnauld; Emberton, Mark; Valerio, Massimo
2018-02-01
Multiparametric prostate MRI (mp-MRI) is an emerging imaging modality for diagnosis, characterization, staging, and treatment planning of prostate cancer (PCa). The technique, results reporting, and its role in clinical practice have been the subject of significant development over the last decade. Although mp-MRI is not yet routinely used in the diagnostic pathway, almost all urological guidelines have emphasized the potential role of mp-MRI in several aspects of PCa management. Moreover, new MRI sequences and scanning techniques are currently under evaluation to improve the diagnostic accuracy of mp-MRI. This review presents an overview of mp-MRI, summarizing the technical applications, the standardized reporting systems used, and their current roles in various stages of PCa management. Finally, this critical review also reports the main limitations and future perspectives of the technique.
Woznitza, Nick; Steele, Rebecca; Piper, Keith; Burke, Stephen; Rowe, Susan; Bhowmik, Angshu; Maughn, Sue; Springett, Kate
2018-05-27
Diagnostic capacity and time to diagnosis are frequently identified as a barrier to improving cancer patient outcomes. Maximising the contribution of the medical imaging workforce, including reporting radiographers, is one way to improve service delivery. An efficient and effective centralised model of workplace training support was designed for a cohort of trainee chest X-ray (CXR) reporting radiographers. A comprehensive schedule of tutorials was planned and aligned with the curriculum of a post-graduate certificate in CXR reporting. Trainees were supported via a hub and spoke model (centralised training model), with the majority of education provided by a core group of experienced CXR reporting radiographers. Trainee and departmental feedback on the model was obtained using an online survey. Fourteen trainees were recruited from eight National Health Service Trusts across London. Significant efficiencies of scale were possible with centralised support (48 h) compared to traditional workplace support (348 h). Trainee and manager feedback overall was positive. Trainees and managers both reported good trainee support, translation of learning to practice and increased confidence. Logistics, including trainee travel and release, were identified as areas for improvement. Centralised workplace training support is an effective and efficient method to create sustainable diagnostic capacity and support improvements in the lung cancer pathway. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.
Objective pain diagnostics: clinical neurophysiology.
Garcia-Larrea, L
2012-06-01
Neurophysiological techniques help in diagnosis, prognosis and treatment of chronic pain, and are particularly useful to determine its neuropathic origin. According to current standards, the diagnosis of definite neuropathic pain (NP) needs objective confirmation of a lesion or disease of somatosensory systems, which can be provided by neurophysiological testing. Lesions causing NP mostly concern the pain-temperature pathways, and therefore neurophysiological procedures allowing the specific testing of these pathways (i.e., A-delta and C-fibres, spino-thalamo-cortical tracts) are essential for objective diagnosis. Different techniques to stimulate selectively pain-temperature pathways are discussed. Of these, laser-evoked potentials (LEPs) appear as the easiest and most reliable neurophysiological method of assessing nociceptive function, and their coupling with autonomic responses (e.g., galvanic skin response) and psychophysics (quantitative sensory testing - QST) can still enhance their diagnostic yield. Neurophysiological techniques not exploring specifically nociception, such as standard nerve conduction velocities (NCV) and SEPs to non-noxious stimulation, should be associated to the exploration of nociceptive systems, not only because both may be simultaneously affected to different degrees, but also because some specific painful symptoms, such as paroxysmal discharges, may depend on specific alteration of highly myelinated A-beta fibres. The choice of techniques is determined after anamnesis and clinical exam, and tries to answer a number of questions: (a) is the pain-related to injury of somatosensory pathways?; (b) to what extent are different subsystems affected?; (c) are mechanisms and lesion site in accordance with imaging data?; (d) are results of use for diagnostic or therapeutic follow-up? Neuropathic pain (NP) affects more than 15 million people in Western countries, and its belated diagnosis leads to insufficient or delayed therapy. The use of neurofunctional approaches to obtain a "physiological photograph" of somatosensory function is therefore highly relevant, as it yields significant clues about the type and mechanisms of pain, thus prompting rapid and optimised therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine
2016-11-01
To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.
Orbital complications:diagnosis of different rhinological causes.
Matsuba, Yumiko; Strassen, Ulrich; Hofauer, Benedikt; Bas, Murat; Knopf, Andreas
2015-09-01
To evaluate the clinical course of orbital complication using a standardised diagnostic pathway. Seventy-three patients with orbital complications underwent a multimodal diagnostic pathway comprising ENT examination, leucocytes/CRP, CT-/MRI-scanning and disease-related data. Twenty-nine patients suffered from rhinosinusitis, 28 from mucoceles, 13 patients from neoplasms and three patients from rheumatic disorders. Clinical examination diagnosed 60 patients with eyelid swelling, 55 patients with ocular pain, 14 patients with diplopia, 4 patients with exophthalmus, 29 patients with visual field defect and 4 patients with visual loss. The diagnostic pathway identified acute rhinosinusitis with a sensitivity/specificity of 90 %/90 %, mucoceles with 79 %/100 %, neoplasms with 100 %/96 % and granulomatosis with polyangiitis with 100 %/100 %, respectively. All patients left the hospital in good general condition and with regular ocular motility; two patients suffered persistent visual loss. The standardised application of a widely accepted diagnostic pathway reliably distinguishes different causes of orbital complication.
Eadie, Leila; Mulhern, John; Regan, Luke; Mort, Alasdair; Shannon, Helen; Macaden, Ashish; Wilson, Philip
2017-01-01
Introduction Our aim is to expedite prehospital assessment of remote and rural patients using remotely-supported ultrasound and satellite/cellular communications. In this paradigm, paramedics are remotely-supported ultrasound operators, guided by hospital-based specialists, to record images before receiving diagnostic advice. Technology can support users in areas with little access to medical imaging and suboptimal communications coverage by connecting to multiple cellular networks and/or satellites to stream live ultrasound and audio-video. Methods An ambulance-based demonstrator system captured standard trauma and novel transcranial ultrasound scans from 10 healthy volunteers at 16 locations across the Scottish Highlands. Volunteers underwent brief scanning training before receiving expert guidance via the communications link. Ultrasound images were streamed with an audio/video feed to reviewers for interpretation. Two sessions were transmitted via satellite and 21 used cellular networks. Reviewers rated image and communication quality, and their utility for diagnosis. Transmission latency and bandwidth were recorded, and effects of scanner and reviewer experience were assessed. Results Appropriate views were provided in 94% of the simulated trauma scans. The mean upload rate was 835/150 kbps and mean latency was 114/2072 ms for cellular and satellite networks, respectively. Scanning experience had a significant impact on time to achieve a diagnostic image, and review of offline scans required significantly less time than live-streamed scans. Discussion This prehospital ultrasound system could facilitate early diagnosis and streamlining of treatment pathways for remote emergency patients, being particularly applicable in rural areas worldwide with poor communications infrastructure and extensive transport times.
Barriers and incentives for choosing to specialise in mammography: Qualitative analysis.
Warren-Forward, H M; Taylor, J
2017-02-01
There is a projected shortage of radiographers working in breast screening and this study aimed to examine comments from open response questions from a mixed methods survey of current diagnostic radiography students on their perceptions of working in mammography. The survey asked three open ended questions: Justification of choice of modality in which they would want to specialise, why they believed there was a shortage of radiographers working in breast screening and any other comment about mammography. Reasons given for specialising in any modality was interest, feature of a modality, amount of clinical exposure during the degree program, personal issues and career prospects. Few current diagnostic radiography students indicated that they would be interested in specialising in breast imaging. They considered there to be a shortage of radiographers as breast imaging was seen to be repetitive, high pressure, intimate and gender biased. Lack of education, clinical exposure, limited career prospects and low pay were also discussed. Increasing education to the modality during the degree, allowing males to be involved in breast imaging and promoting part-time work in mammography while also working in other modalities may alter the perception that mammography offers a limited career pathway. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Circulating Tumor Cells: What Is in It for the Patient? A Vision towards the Future
van de Stolpe, Anja; den Toonder, Jaap M. J.
2014-01-01
Knowledge on cellular signal transduction pathways as drivers of cancer growth and metastasis has fuelled development of “targeted therapy” which “targets” aberrant oncogenic signal transduction pathways. These drugs require nearly invariably companion diagnostic tests to identify the tumor-driving pathway and the cause of the abnormal pathway activity in a tumor sample, both for therapy response prediction as well as for monitoring of therapy response and emerging secondary drug resistance. Obtaining sufficient tumor material for this analysis in the metastatic setting is a challenge, and circulating tumor cells (CTCs) may provide an attractive alternative to biopsy on the premise that they can be captured from blood and the companion diagnostic test results are correctly interpreted. We discuss novel companion diagnostic directions, including the challenges, to identify the tumor driving pathway in CTCs, which in combination with a digital pathology platform and algorithms to quantitatively interpret complex CTC diagnostic results may enable optimized therapy response prediction and monitoring. In contrast to CTC-based companion diagnostics, CTC enumeration is envisioned to be largely replaced by cell free tumor DNA measurements in blood for therapy response and recurrence monitoring. The recent emergence of novel in vitro human model systems in the form of cancer-on-a-chip may enable elucidation of some of the so far elusive characteristics of CTCs, and is expected to contribute to more efficient CTC capture and CTC-based diagnostics. PMID:24879438
Gill, Thomas J; Safran, Marc; Mandelbaum, Bert; Huber, Bryan; Gambardella, Ralph; Xerogeanes, John
2018-05-24
The purpose of this study was to compare the efficacy, accuracy, and safety of in-office diagnostic arthroscopy with magnetic resonance imaging (MRI) and surgical diagnostic arthroscopy. A prospective, blinded, multicenter, clinical trial was performed on 110 patients, ages 18 to 75 years, who presented with knee pain. The study period was April 2012 to April 2013. Each patient underwent a physical examination, an MRI, in-office diagnostic imaging, and a diagnostic arthroscopic examination in the operating room. The attending physician completed clinical report forms comparing the in-office arthroscopic examination and surgical diagnostic arthroscopy findings on each patient. Two blinded experts, unaffiliated with the clinical care of the study's subjects, reviewed the in-office arthroscopic images and MRI images using the surgical diagnostic arthroscopy images as the "control" group comparison. Patients were consecutive, and no patients were excluded from the study. In this study, the accuracy, sensitivity, and specificity of in-office arthroscopy was equivalent to surgical diagnostic arthroscopy and more accurate than MRI. When comparing in-office arthroscopy with surgical diagnostic arthroscopy, all kappa statistics were between 0.766 and 0.902. For MRI compared with surgical diagnostic arthroscopy, kappa values ranged from a low of 0.130 (considered "slight" agreement) to a high of 0.535 (considered "moderate" agreement). The comparison of MRI to in-office arthroscopy showed very similar results as the comparison of MRI with surgical diagnostic arthroscopy, ranging from a low kappa of 0.112 (slight agreement) to a high of 0.546 (moderate agreement). There were no patient-related or device-related complications related to the use of in-office arthroscopy. Needle-based diagnostic imaging that can be used in the office setting is statistically equivalent to surgical diagnostic arthroscopy with regard to the diagnosis of intra-articular, nonligamentous knee joint pathology. In-office diagnostic imaging can provide a more detailed and accurate diagnostic assessment of intra-articular knee pathology than MRI. Based on the study results, in-office diagnostic imaging provides a safe, accurate, real-time, minimally invasive diagnostic modality to evaluate intra-articular pathology without the need for surgical diagnostic arthroscopy or high-cost imaging. Level II, comparative prospective trial. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Martens, Leon; Goode, Grahame; Wold, Johan F H; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas
2014-01-01
To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield.
Martens, Leon; Goode, Grahame; Wold, Johan F. H.; Beck, Lionel; Martin, Georgina; Perings, Christian; Stolt, Pelle; Baggerman, Lucas
2014-01-01
Aims To conduct a pilot study on the potential to optimise care pathways in syncope/Transient Loss of Consciousness management by using Lean Six Sigma methodology while maintaining compliance with ESC and/or NICE guidelines. Methods Five hospitals in four European countries took part. The Lean Six Sigma methodology consisted of 3 phases: 1) Assessment phase, in which baseline performance was mapped in each centre, processes were evaluated and a new operational model was developed with an improvement plan that included best practices and change management; 2) Improvement phase, in which optimisation pathways and standardised best practice tools and forms were developed and implemented. Staff were trained on new processes and change-management support provided; 3) Sustaining phase, which included support, refinement of tools and metrics. The impact of the implementation of new pathways was evaluated on number of tests performed, diagnostic yield, time to diagnosis and compliance with guidelines. One hospital with focus on geriatric populations was analysed separately from the other four. Results With the new pathways, there was a 59% reduction in the average time to diagnosis (p = 0.048) and a 75% increase in diagnostic yield (p = 0.007). There was a marked reduction in repetitions of diagnostic tests and improved prioritisation of indicated tests. Conclusions Applying a structured Lean Six Sigma based methodology to pathways for syncope management has the potential to improve time to diagnosis and diagnostic yield. PMID:24927475
Value of diagnostic imaging for the symptomatic male breast: Can we avoid unnecessary biopsies?
Foo, Eric T; Lee, Amie Y; Ray, Kimberly M; Woodard, Genevieve A; Freimanis, Rita I; Joe, Bonnie N
To review the use of diagnostic breast imaging and outcomes for symptomatic male patients. We retrospectively evaluated 122 males who underwent diagnostic imaging for breast symptoms at our academic center. The majority (94%) of cases had negative or benign imaging, with gynecomastia being the most common diagnosis (78%). There were two malignancies, both of which had positive imaging. Fifteen patients underwent percutaneous biopsy, and over half (53%) were palpation-guided biopsies initiated by the referring clinician despite negative imaging. Diagnostic imaging demonstrated 100% sensitivity and 96% specificity for identifying cancer. Malignancy is rarely a cause of male breast symptoms. Diagnostic breast imaging is useful to establish benignity and avert unnecessary biopsies. Copyright © 2017 Elsevier Inc. All rights reserved.
TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, E
2014-06-15
Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T usingmore » a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in significant IINU differences compared to diagnostic MR images. The MNI N3 algorithm reduced MR simulation IINU to levels observed in diagnostic MR images. Funding provided by Advancing a Healthier Wisconsin.« less
Ng, Michael F Y; Stevenson, J Howard
2011-04-01
The aim of this study was to investigate the outcome and cost-effectiveness of good and poor quality photographs accompanying the electronic referrals for suspected skin malignancies. A retrospective study of 100 patients, divided into 2 groups, 50 with good quality photographs and 50 with poor quality photographs. Patients with no digital images, or who failed to attend, or patients with incomplete notes were excluded from the study. The treatment pathway, waiting times, and estimated cost between the 2 groups were compared. Good photographs were more likely to be treated at the 1-Stop Clinic (P = 0.05). Good images had a better positive predictive value than poor quality images (62.55% vs. 42.86%). Good quality images are more accurate than poor quality images in triaging of patients, and thus more effective in facilitating the treatment of malignant lesions timely. Good quality photographs allow a delayed appropriate treatment of benign lesions. This increases the safety for patients in a queue in a rationed health care system, and improves patient flow.
Creation of a diagnostic wait times measurement framework based on evidence and consensus.
Gilbert, Julie E; Dobrow, Mark J; Kaan, Melissa; Dobranowski, Julian; Srigley, John R; Jusko Friedman, Audrey; Irish, Jonathan C
2014-09-01
Public reporting of wait times worldwide has to date focused largely on treatment wait times and is limited in its ability to capture earlier parts of the patient journey. The interval between suspicion and diagnosis or ruling out of cancer is a complex phase of the cancer journey. Diagnostic delays and inefficient use of diagnostic imaging procedures can result in poor patient outcomes, both physical and psychosocial. This study was designed to develop a framework that could be adopted for multiple disease sites across different jurisdictions to enable the measurement of diagnostic wait times and diagnostic delay. Diagnostic benchmarks and targets in cancer systems were explored through a targeted literature review and jurisdictional scan. Cancer system leaders and clinicians were interviewed to validate the information found in the jurisdictional scan. An expert panel was assembled to review and, through a modified Delphi consensus process, provide feedback on a diagnostic wait times framework. The consensus process resulted in agreement on a measurement framework that identified suspicion, referral, diagnosis, and treatment as the main time points for measuring this critical phase of the patient journey. This work will help guide initiatives designed to improve patient access to health services by developing an evidence-based approach to standardization of the various waypoints during the diagnostic pathway. The diagnostic wait times measurement framework provides a yardstick to measure the performance of programs that are designed to manage and expedite care processes between referral and diagnosis or ruling out of cancer. Copyright © 2014 by American Society of Clinical Oncology.
Magnetic resonance imaging of the preterm infant brain.
Doria, Valentina; Arichi, Tomoki; Edwards, David A
2014-01-01
Despite improvements in neonatal care, survivors of preterm birth are still at a significantly increased risk of developing life-long neurological difficulties including cerebral palsy and cognitive difficulties. Cranial ultrasound is routinely used in neonatal practice, but has a low sensitivity for identifying later neurodevelopmental difficulties. Magnetic Resonance Imaging (MRI) can be used to identify intracranial abnormalities with greater diagnostic accuracy in preterm infants, and theoretically might improve the planning and targeting of long-term neurodevelopmental care; reducing parental stress and unplanned healthcare utilisation; and ultimately may improve healthcare cost effectiveness. Furthermore, MR imaging offers the advantage of allowing the quantitative assessment of the integrity, growth and function of intracranial structures, thereby providing the means to develop sensitive biomarkers which may be predictive of later neurological impairment. However further work is needed to define the accuracy and value of diagnosis by MR and the techniques's precise role in care pathways for preterm infants.
Cone beam tomographic imaging anatomy of the maxillofacial region.
Angelopoulos, Christos
2008-10-01
Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.
Luo, Dee; Smith, James A.; Meadows, Nick A.; Schuh, A.; Manescu, Katie E.; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L.; Brindley, David A.
2016-01-01
Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics. PMID:26858745
Luo, Dee; Smith, James A; Meadows, Nick A; Schuh, A; Manescu, Katie E; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L; Brindley, David A
2015-01-01
Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics.
Device for wavelength-selective imaging
Frangioni, John V.
2010-09-14
An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.
Reductions in Diagnostic Imaging With High Deductible Health Plans.
Zheng, Sarah; Ren, Zhong Justin; Heineke, Janelle; Geissler, Kimberley H
2016-02-01
Diagnostic imaging utilization grew rapidly over the past 2 decades. It remains unclear whether patient cost-sharing is an effective policy lever to reduce imaging utilization and spending. Using 2010 commercial insurance claims data of >21 million individuals, we compared diagnostic imaging utilization and standardized payments between High Deductible Health Plan (HDHP) and non-HDHP enrollees. Negative binomial models were used to estimate associations between HDHP enrollment and utilization, and were repeated for standardized payments. A Hurdle model were used to estimate associations between HDHP enrollment and whether an enrollee had diagnostic imaging, and then the magnitude of associations for enrollees with imaging. Models with interaction terms were used to estimate associations between HDHP enrollment and imaging by risk score tercile. All models included controls for patient age, sex, geographic location, and health status. HDHP enrollment was associated with a 7.5% decrease in the number of imaging studies and a 10.2% decrease in standardized imaging payments. HDHP enrollees were 1.8% points less likely to use imaging; once an enrollee had at least 1 imaging study, differences in utilization and associated payments were small. Associations between HDHP and utilization were largest in the lowest (least sick) risk score tercile. Increased patient cost-sharing may contribute to reductions in diagnostic imaging utilization and spending. However, increased cost-sharing may not encourage patients to differentiate between high-value and low-value diagnostic imaging services; better patient awareness and education may be a crucial part of any reductions in diagnostic imaging utilization.
Lewiss, Resa E; Chan, Wilma; Sheng, Alexander Y; Soto, Jorge; Castro, Alexandra; Meltzer, Andrew C; Cherney, Alan; Kumaravel, Manickam; Cody, Dianna; Chen, Esther H
2015-12-01
The appropriate selection and accurate interpretation of diagnostic imaging is a crucial skill for emergency practitioners. To date, the majority of the published literature and research on competency assessment comes from the subspecialty of point-of-care ultrasound. A group of radiologists, physicists, and emergency physicians convened at the 2015 Academic Emergency Medicine consensus conference to discuss and prioritize a research agenda related to education, assessment, and competency in ordering and interpreting diagnostic imaging. A set of questions for the continued development of an educational curriculum on diagnostic imaging for trainees and competency assessment using specific assessment methods based on current best practices was delineated. The research priorities were developed through an iterative consensus-driven process using a modified nominal group technique that culminated in an in-person breakout session. The four recommendations are: 1) develop a diagnostic imaging curriculum for emergency medicine (EM) residency training; 2) develop, study, and validate tools to assess competency in diagnostic imaging interpretation; 3) evaluate the role of simulation in education, assessment, and competency measures for diagnostic imaging; 4) study is needed regarding the American College of Radiology Appropriateness Criteria, an evidence-based peer-reviewed resource in determining the use of diagnostic imaging, to maximize its value in EM. In this article, the authors review the supporting reliability and validity evidence and make specific recommendations for future research on the education, competency, and assessment of learning diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.
Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael
2015-01-01
In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.
[Possibilities of sonographic image fusion: Current developments].
Jung, E M; Clevert, D-A
2015-11-01
For diagnostic and interventional procedures ultrasound (US) image fusion can be used as a complementary imaging technique. Image fusion has the advantage of real time imaging and can be combined with other cross-sectional imaging techniques. With the introduction of US contrast agents sonography and image fusion have gained more importance in the detection and characterization of liver lesions. Fusion of US images with computed tomography (CT) or magnetic resonance imaging (MRI) facilitates the diagnostics and postinterventional therapy control. In addition to the primary application of image fusion in the diagnosis and treatment of liver lesions, there are more useful indications for contrast-enhanced US (CEUS) in routine clinical diagnostic procedures, such as intraoperative US (IOUS), vascular imaging and diagnostics of other organs, such as the kidneys and prostate gland.
Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.
Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P
2015-12-01
Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
The Quantitative Science of Evaluating Imaging Evidence.
Genders, Tessa S S; Ferket, Bart S; Hunink, M G Myriam
2017-03-01
Cardiovascular diagnostic imaging tests are increasingly used in everyday clinical practice, but are often imperfect, just like any other diagnostic test. The performance of a cardiovascular diagnostic imaging test is usually expressed in terms of sensitivity and specificity compared with the reference standard (gold standard) for diagnosing the disease. However, evidence-based application of a diagnostic test also requires knowledge about the pre-test probability of disease, the benefit of making a correct diagnosis, the harm caused by false-positive imaging test results, and potential adverse effects of performing the test itself. To assist in clinical decision making regarding appropriate use of cardiovascular diagnostic imaging tests, we reviewed quantitative concepts related to diagnostic performance (e.g., sensitivity, specificity, predictive values, likelihood ratios), as well as possible biases and solutions in diagnostic performance studies, Bayesian principles, and the threshold approach to decision making. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer
Kothari, Sonal; Phan, John H.; Young, Andrew N.; Wang, May D.
2016-01-01
Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis PMID:28163980
Special Issue: "Molecules against Alzheimer".
Decker, Michael; Muñoz-Torrero, Diego
2016-12-16
This Special Issue, entitled "Molecules against Alzheimer", gathers a number of original articles, short communications, and review articles on recent research efforts toward the development of novel drug candidates, diagnostic agents and therapeutic approaches for Alzheimer's disease (AD), the most prevalent neurodegenerative disorder and a leading cause of death worldwide. This Special Issue contains many interesting examples describing the design, synthesis, and pharmacological profiling of novel compounds that hit one or several key biological targets, such as cholinesterases, β-amyloid formation or aggregation, monoamine oxidase B, oxidative stress, biometal dyshomeostasis, mitochondrial dysfunction, serotonin and/or melatonin systems, the Wnt/β-catenin pathway, sigma receptors, nicotinamide phosphoribosyltransferase, or nuclear erythroid 2-related factor. The development of novel AD diagnostic agents based on tau protein imaging and the use of lithium or intranasal insulin for the prevention or the symptomatic treatment of AD is also covered in some articles of the Special Issue.
Marciniak-Emmons, Marta Barbara; Sterliński, Maciej; Syska, Paweł; Maciąg, Aleksander; Farkowski, Michał Mirosław; Firek, Bohdan; Dziuk, Mirosław; Zając, Dariusz; Pytkowski, Mariusz; Szwed, Hanna
2016-01-01
Cardiovascular implantable electronic device (CIED) infection is a complication of increasing incidence. We present a protocol of an observational case control clinical trial "Positron Emission Tomography Combined With Computed Tomography (PET CT) in Suspected Cardiac Implantable Electronic Device Infection, a Pilot Study - PET Guidance I" (NCT02196753). The aim of this observational clinical trial is to assess and standardise diagnostic algorithms for CIED infections (lead-dependent infective endocarditis, generator pocket infection, fever of unknown origin) with PET CT in Poland. Study group will consist of 20 patients with initial diagnosis of CIED-related infection paired with a control group of 20 patients with implanted CIEDs, who underwent PET CT due to other non-infectious indications and have no data for infectious process in follow-up. All patients included in the study will undergo standard diagnostic pro-cess. Conventional/standard diagnostic and therapeutic process will consist of: medical interview, physical examination, laboratory tests, blood cultures; imaging studies: echocardiography: transthoracic (TTE), and, if there are no contraindications transoesophageal, computed tomography scan for pulmonary embolism if indicated; if there are abnormalities in other systems, decisions concerning further diagnostics will be made at the physician's discretion. As well as standard diagnostic procedures, patients will undergo whole body PET CT scan to localise infection or inflammation. Diagnosis and therapeutic decision will be obtained from the Study Committee. Follow-up will be held within six months with control visits at three and six months. During each follow-up visit, all patients will undergo laboratory tests, two blood cultures collected 1 h apart, and TTE. In case of actual clinical suspicion of infective endocarditis or local generator pocket infection, patients will be referred for further diagnostics. Endpoints for the results assessment - primary endpoints are to standardise PET CT in the diagnostic process: sensitivity, specificity, positive predictive value, and negative predictive value of the diagnosis made by PET CT; secondary endpoints are: assessment of usefulness of PET CT for detection of remote infective complications (metastatic abscesses, infected pulmonary emboli), incidence of particular localisations of infection, influence of PET CT on therapeutic decision: confirmation or change of decision based on PET CT, safety and complications of diagnostic process of CIED-related infections with PET CT. Evaluation of PET CT use for device-related infections in a case control study may be conclusive and improve diagnostic pathway.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.
Resource utilization in lung cancer diagnostic procedures: Current use and budget consequences.
Brinkhof, Sander; Groen, Harry J M; Siesling, Sabine S; IJzerman, Maarten J
2017-01-01
The main objective of this study is to determine the current use of lung cancer diagnostic procedures in two large hospitals in the Netherlands, to explore deviations in guideline adherence between the hospitals, and to estimate the budget impact of the diagnostic work-up as well as the over- and underutilization. A state transition model for the diagnostic pathway for lung cancer patients was developed using existing clinical practice guidelines (CPG) combined with a systematic literature. In addition to the CPGs depicting current practice, diagnostic utilization was gathered in two large hospitals representing an academic tertiary care hospital and a large regional teaching hospital for patients, who were selected from the Netherlands cancer registry. The total population consisted of 376 patients with lung cancer. Not in all cases the guideline was followed, for instance in the usage of MR brain with stage III lung cancer patients (n = 70). The state-transition model predicts an average budget impact for the diagnostic pathway per patient estimated of € 2496 in the academic tertiary care hospital and € 2191 in the large regional teaching hospital. The adherence to the CPG's differed between hospitals, which questions the adherence to CPG's in general. Adherence to CPG's could lead to less costs in the diagnostic pathway for lung cancer patients.
Suh, Young Joo; Kim, Young Jin; Kim, Jin Young; Chang, Suyon; Im, Dong Jin; Hong, Yoo Jin; Choi, Byoung Wook
2017-11-01
We aimed to determine the effect of a whole-heart motion-correction algorithm (new-generation snapshot freeze, NG SSF) on the image quality of cardiac computed tomography (CT) images in patients with mechanical valve prostheses compared to standard images without motion correction and to compare the diagnostic accuracy of NG SSF and standard CT image sets for the detection of prosthetic valve abnormalities. A total of 20 patients with 32 mechanical valves who underwent wide-coverage detector cardiac CT with single-heartbeat acquisition were included. The CT image quality for subvalvular (below the prosthesis) and valvular regions (valve leaflets) of mechanical valves was assessed by two observers on a four-point scale (1 = poor, 2 = fair, 3 = good, and 4 = excellent). Paired t-tests or Wilcoxon signed rank tests were used to compare image quality scores and the number of diagnostic phases (image quality score≥3) between the standard image sets and NG SSF image sets. Diagnostic performance for detection of prosthetic valve abnormalities was compared between two image sets with the final diagnosis set by re-operation or clinical findings as the standard reference. NG SSF image sets had better image quality scores than standard image sets for both valvular and subvalvular regions (P < 0.05 for both). The number of phases that were of diagnostic image quality per patient was significantly greater in the NG SSF image set than standard image set for both valvular and subvalvular regions (P < 0.0001). Diagnostic performance of NG SSF image sets for the detection of prosthetic abnormalities (20 pannus and two paravalvular leaks) was greater than that of standard image sets (P < 0.05). Application of NG SSF can improve CT image quality and diagnostic accuracy in patients with mechanical valves compared to standard images. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Overuse of Diagnostic Imaging for Work-Related Injuries.
Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace
2017-02-01
Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.
[Diagnostic imaging of changes of the canine intervertebral disc].
Harder, Lisa K
2016-10-12
Intervertebral disc degeneration can cause intervertebral disc herniation. Diagnostic imaging, including radiography, computed tomography and magnetic resonance imaging, is the most important tool in diagnosis. Firstly, an overview of macroscopic and biochemical physiology and pathology of the intervertebral disc will be given. Subsequently, the physics of diagnostic imaging and the appearance of intervertebral disc degeneration and displacement in several imaging methods are described.
Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...
Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan
2014-03-01
This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.
Systems heterogeneity: An integrative way to understand cancer heterogeneity.
Wang, Diane Catherine; Wang, Xiangdong
2017-04-01
The concept of systems heterogeneity was firstly coined and explained in the Special Issue, as a new alternative to understand the importance and complexity of heterogeneity in cancer. Systems heterogeneity can offer a full image of heterogeneity at multi-dimensional functions and multi-omics by integrating gene or protein expression, epigenetics, sequencing, phosphorylation, transcription, pathway, or interaction. The Special Issue starts with the roles of epigenetics in the initiation and development of cancer heterogeneity through the interaction between permanent genetic mutations and dynamic epigenetic alterations. Cell heterogeneity was defined as the difference in biological function and phenotypes between cells in the same organ/tissue or in different organs, as well as various challenges, as exampled in telocytes. The single cell heterogeneity has the value of identifying diagnostic biomarkers and therapeutic targets and clinical potential of single cell systems heterogeneity in clinical oncology. A number of signaling pathways and factors contribute to the development of systems heterogeneity. Proteomic heterogeneity can change the strategy and thinking of drug discovery and development by understanding the interactions between proteins or proteins with drugs in order to optimize drug efficacy and safety. The association of cancer heterogeneity with cancer cell evolution and metastasis was also overviewed as a new alternative for diagnostic biomarkers and therapeutic targets in clinical application. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gunn, Martin L; Marin, Jennifer R; Mills, Angela M; Chong, Suzanne T; Froemming, Adam T; Johnson, Jamlik O; Kumaravel, Manickam; Sodickson, Aaron D
2016-08-01
In May 2015, the Academic Emergency Medicine consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization" was held. The goal of the conference was to develop a high-priority research agenda regarding emergency diagnostic imaging on which to base future research. In addition to representatives from the Society of Academic Emergency Medicine, the multidisciplinary conference included members of several radiology organizations: American Society for Emergency Radiology, Radiological Society of North America, the American College of Radiology, and the American Association of Physicists in Medicine. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Through a multistep consensus process, participants developed targeted research questions for future research in six content areas within emergency diagnostic imaging: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use.
Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C
2013-01-01
Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less
Cellucci, Tania; Tyrrell, Pascal N; Twilt, Marinka; Sheikh, Shehla; Benseler, Susanne M
2014-03-01
To identify distinct clusters of children with inflammatory brain diseases based on clinical, laboratory, and imaging features at presentation, to assess which features contribute strongly to the development of clusters, and to compare additional features between the identified clusters. A single-center cohort study was performed with children who had been diagnosed as having an inflammatory brain disease between June 1, 1989 and December 31, 2010. Demographic, clinical, laboratory, neuroimaging, and histologic data at diagnosis were collected. K-means cluster analysis was performed to identify clusters of patients based on their presenting features. Associations between the clusters and patient variables, such as diagnoses, were determined. A total of 147 children (50% female; median age 8.8 years) were identified: 105 with primary central nervous system (CNS) vasculitis, 11 with secondary CNS vasculitis, 8 with neuronal antibody syndromes, 6 with postinfectious syndromes, and 17 with other inflammatory brain diseases. Three distinct clusters were identified. Paresis and speech deficits were the most common presenting features in cluster 1. Children in cluster 2 were likely to present with behavior changes, cognitive dysfunction, and seizures, while those in cluster 3 experienced ataxia, vision abnormalities, and seizures. Lesions seen on T2/fluid-attenuated inversion recovery sequences of magnetic resonance imaging were common in all clusters, but unilateral ischemic lesions were more prominent in cluster 1. The clusters were associated with specific diagnoses and diagnostic test results. Children with inflammatory brain diseases presented with distinct phenotypical patterns that are associated with specific diagnoses. This information may inform the development of a diagnostic classification of childhood inflammatory brain diseases and suggest that specific pathways of diagnostic evaluation are warranted. Copyright © 2014 by the American College of Rheumatology.
Guldbrandt, Louise Mahncke; Fenger-Grøn, Morten; Rasmussen, Torben Riis; Jensen, Henry; Vedsted, Peter
2015-01-22
Lung cancer stage at diagnosis predicts possible curative treatment. In Denmark and the UK, lung cancer patients have lower survival rates than citizens in most other European countries, which may partly be explained by a comparatively longer diagnostic interval in these two countries. In Denmark, a pathway was introduced in 2008 allowing general practitioners (GPs) to refer patients suspected of having lung cancer directly to fast-track diagnostics. However, symptom presentation of lung cancer in general practice is known to be diverse and complex, and systematic knowledge of the routes to diagnosis is needed to enable earlier lung cancer diagnosis in Denmark. This study aims to describe the routes to diagnosis, the diagnostic activity preceding diagnosis and the diagnostic intervals for lung cancer in the Danish setting. We conducted a national registry-based cohort study on 971 consecutive incident lung cancer patients in 2010 using data from national registries and GP questionnaires. GPs were involved in 68.3% of cancer patients' diagnostic pathways, and 27.4% of lung cancer patients were referred from the GP to fast-track diagnostic work-up. A minimum of one X-ray was performed in 85.6% of all cases before diagnosis. Patients referred through a fast-track route more often had diagnostic X-rays (66.0%) than patients who did not go through fast-track (49.4%). Overall, 33.6% of all patients had two or more X-rays performed during the 90 days before diagnosis. Patients whose symptoms were interpreted as non-alarm symptoms or who were not referred to fast-track were more likely to experience a long diagnostic interval than patients whose symptoms were interpreted as alarm symptoms or who were referred to fast-track. Lung cancer patients followed several diagnostic pathways. The existing fast-track pathway must be supplemented to ensure earlier detection of lung cancer. The high incidence of multiple X-rays warrants a continued effort to develop more accurate lung cancer tests for use in primary care.
Ghobadi, Comeron W; Hayman, Emily L; Finkle, Joshua H; Walter, Jessica R; Xu, Shuai
2017-01-01
The aim of this study was to critically assess the clinical evidence leading to radiologic medical device approvals via the premarket approval pathway from 2000 to 2015. This study used the publically available FDA premarket database for radiologic device approvals over the past 15 years (September 1, 2000, to August 31, 2015). Approval characteristics were collected for each device, and statistical analysis was performed on the data for each pivotal trial. Additionally, methodological quality of the pivotal trial was determined using the Quality Assessment of Diagnostic Accuracy Studies tool. Twenty-three class III radiologic device approvals were identified, with breast imaging accounting for 16 (70%) and computer-aided detection software accounting for 9 (39%) approvals. The median premarket approval time was 475 days (range, 180-1,116). Twenty-one devices were approved on the basis of multireader, multicenter studies, one on the basis of a randomized controlled trial, and one on the basis of a preclinical technical equivalence trial. The median number of patients per pivotal trial was 201 (range, 25-3,946). Twenty-six of the 34 pivotal trials (76%) had at least one methodologic bias. Breast imaging devices had a greater number of patients per pivotal trial (P = .009) and more prospective studies. With regard to all modalities, increased time to device approval correlated with weaker trial quality (r = 0.600, P < .001). Radiologic devices are largely approved by multireader, multicenter studies, the recommended standard for assessing diagnostic technologies. Given that radiologic devices play a key role in modern medicine, further efforts should be made to increase transparency of clinical data leading to approval. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Fimognari, Nicholas; Hollings, Ashley; Lam, Virginie; Tidy, Rebecca J; Kewish, Cameron M; Albrecht, Matthew A; Takechi, Ryu; Mamo, John C L; Hackett, Mark J
2018-06-14
Western society is facing a health epidemic due to the increasing incidence of dementia in ageing populations, and there are still few effective diagnostic methods, minimal treatment options, and no cure. Ageing is the greatest risk factor for memory loss that occurs during the natural ageing process, as well as being the greatest risk factor for neurodegenerative disease such as Alzheimer's disease. Therefore, greater understanding of the biochemical pathways that drive a healthy ageing brain towards dementia (pathological ageing or Alzheimer's disease), is required to accelerate the development of improved diagnostics and therapies. Unfortunately, many animal models of dementia model chronic amyloid precursor protein over-expression, which although highly relevant to mechanisms of amyloidosis and familial Alzheimer's disease, does not model well dementia during the natural ageing process. A promising animal model reported to model mechanisms of accelerated natural ageing and memory impairments, is the senescence accelerated murine prone strain 8 (SAMP8), which has been adopted by many research group to study the biochemical transitions that occur during brain ageing. A limitation to traditional methods of biochemical characterisation is that many important biochemical and elemental markers (lipid saturation, lactate, transition metals) cannot be imaged at meso- or micro-spatial resolution. Therefore, in this investigation we report the first multi-modal biospectroscopic characterisation of the SAMP8 model, and have identified important biochemical and elemental alterations, and co-localisations, between 4 month old SAMP8 mice and the relevant control (SAMR1) mice. Specifically, we demonstrate direct evidence of altered metabolism and disturbed lipid homeostasis within corpus callosum white matter, in addition to localised hippocampal metal deficiencies, in the accelerated ageing phenotype. Such findings have important implication for future research aimed at elucidating specific biochemical pathways for therapeutic intervention.
Are all after-hours diagnostic imaging appropriate? An Australian Emergency Department pilot study.
Gardiner, Fergus William; Zhai, Shaun
2016-12-01
This study was aimed at determining the extent to which after-hours diagnostic imaging is appropriate within the case hospital's Emergency Department. This was amid growing concerns of the inappropriateness of some medical investigations within the Australian health-care system. After-hours referral data and patient notes were used in reviewing the clinical case. Diagnostic imaging was deemed appropriate if reflective of clinical guidelines, and if not reflective, whether the investigation changed the patient's ongoing management. Results indicated that 96.37% of after-hours diagnostic imaging adhered to clinical guidelines and was appropriately requested, with 95.85% changing the ongoing management of the patient. The most sought after diagnostic imaging procedures were Chest X-Ray (30.83%), and CT Brain (16.58%), with 99.16% and 98.44 appropriateness respectively. Chest pain (14.49%) and motor vehicle accidents (8.12%) were the leading reason for ordering after-hours imaging. This study provided an Emergency Department example as it relates to after-hours diagnostic imaging appropriateness. This study found that most after-hours referrals were appropriate.
Optimizing Diagnostic Imaging in the Emergency Department
Mills, Angela M.; Raja, Ali S.; Marin, Jennifer R.
2015-01-01
While emergency diagnostic imaging use has increased significantly, there is a lack of evidence for corresponding improvements in patient outcomes. Optimizing emergency department (ED) diagnostic imaging has the potential to improve the quality, safety, and outcomes of ED patients, but to date, there have not been any coordinated efforts to further our evidence-based knowledge in this area. The objective of this article is to discuss six aspects of diagnostic imaging in order to provide background information on the underlying framework for the 2015 Academic Emergency Medicine consensus conference, “Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization.” The consensus conference aims to generate a high priority research agenda for emergency diagnostic imaging that will inform the design of future investigations. The six components herein will serve as the group topics for the conference: 1) patient-centered outcomes research; 2) clinical decision rules; 3) training, education, and competency; 4) knowledge translation and barriers to image optimization; 5) use of administrative data; and 6) comparative effectiveness research: alternatives to traditional CT use. PMID:25731864
Optimizing diagnostic imaging in the emergency department.
Mills, Angela M; Raja, Ali S; Marin, Jennifer R
2015-05-01
While emergency diagnostic imaging use has increased significantly, there is a lack of evidence for corresponding improvements in patient outcomes. Optimizing emergency department (ED) diagnostic imaging has the potential to improve the quality, safety, and outcomes of ED patients, but to date, there have not been any coordinated efforts to further our evidence-based knowledge in this area. The objective of this article is to discuss six aspects of diagnostic imaging to provide background information on the underlying framework for the 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The consensus conference aims to generate a high priority research agenda for emergency diagnostic imaging that will inform the design of future investigations. The six components herein will serve as the group topics for the conference: 1) patient-centered outcomes research; 2) clinical decision rules; 3) training, education, and competency; 4) knowledge translation and barriers to image optimization; 5) use of administrative data; and 6) comparative effectiveness research: alternatives to traditional CT use. © 2015 by the Society for Academic Emergency Medicine.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
Objective To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. Conclusion The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution. PMID:28298730
Beaver, Julia A.; Tzou, Abraham; Blumenthal, Gideon M.; McKee, Amy E.; Kim, Geoffrey; Pazdur, Richard; Philip, Reena
2016-01-01
As technologies evolve, and diagnostics move from detection of single biomarkers toward complex signatures, an increase in the clinical use and regulatory submission of complex signatures is anticipated. However, to date, no complex signatures have been approved as companion diagnostics. In this article, we will describe the potential benefit of complex signatures and their unique regulatory challenges including analytical performance validation, complex signature simulation, and clinical performance evaluation. We also will review the potential regulatory pathways for clearance, approval, or acceptance of complex signatures by the U.S. Food and Drug Administration (FDA). These regulatory pathways include regulations applicable to in vitro diagnostic devices, including companion diagnostic devices, the potential for labeling as a complementary diagnostic, and the biomarker qualification program. PMID:27993967
Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell
2014-01-01
Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more aggressive disease course. When a secondary malignancy has already been established or is strongly suspected, combining molecular imaging techniques (e.g. (18)F-FDG PET and (68)Ga-DOTA PET) takes advantage of the diverse avidities of different tumor types to differentiate lesions of different origins. All the above-mentioned molecular imaging studies should always be reviewed and interpreted in a multidisciplinary (tumor board) meeting in combination with the conventional cross-sectional imaging, as the latter remains the imaging of choice for the evaluation of treatment response and disease follow-up. © 2014 S. Karger AG, Basel
Mortezavi, Ashkan; Märzendorfer, Olivia; Donati, Olivio F; Rizzi, Gianluca; Rupp, Niels J; Wettstein, Marian S; Gross, Oliver; Sulser, Tullio; Hermanns, Thomas; Eberli, Daniel
2018-02-21
We evaluated the diagnostic accuracy of multiparametric magnetic resonance imaging and multiparametric magnetic resonance imaging/transrectal ultrasound fusion guided targeted biopsy against that of transperineal template saturation prostate biopsy to detect prostate cancer. We retrospectively analyzed the records of 415 men who consecutively presented for prostate biopsy between November 2014 and September 2016 at our tertiary care center. Multiparametric magnetic resonance imaging was performed using a 3 Tesla device without an endorectal coil, followed by transperineal template saturation prostate biopsy with the BiopSee® fusion system. Additional fusion guided targeted biopsy was done in men with a suspicious lesion on multiparametric magnetic resonance imaging, defined as Likert score 3 to 5. Any Gleason pattern 4 or greater was defined as clinically significant prostate cancer. The detection rates of multiparametric magnetic resonance imaging and fusion guided targeted biopsy were compared with the detection rate of transperineal template saturation prostate biopsy using the McNemar test. We obtained a median of 40 (range 30 to 55) and 3 (range 2 to 4) transperineal template saturation prostate biopsy and fusion guided targeted biopsy cores, respectively. Of the 124 patients (29.9%) without a suspicious lesion on multiparametric magnetic resonance imaging 32 (25.8%) were found to have clinically significant prostate cancer on transperineal template saturation prostate biopsy. Of the 291 patients (70.1%) with a Likert score of 3 to 5 clinically significant prostate cancer was detected in 129 (44.3%) by multiparametric magnetic resonance imaging fusion guided targeted biopsy, in 176 (60.5%) by transperineal template saturation prostate biopsy and in 187 (64.3%) by the combined approach. Overall 58 cases (19.9%) of clinically significant prostate cancer would have been missed if fusion guided targeted biopsy had been performed exclusively. The sensitivity of multiparametric magnetic resonance imaging and fusion guided targeted biopsy for clinically significant prostate cancer was 84.6% and 56.7% with a negative likelihood ratio of 0.35 and 0.46, respectively. Multiparametric magnetic resonance imaging alone should not be performed as a triage test due to a substantial number of false-negative cases with clinically significant prostate cancer. Systematic biopsy outperformed fusion guided targeted biopsy. Therefore, it will remain crucial in the diagnostic pathway of prostate cancer. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Murukeshan, Vadakke M.; Hoong Ta, Lim
2014-11-01
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
Going the Distance: Taking a Diagnostic Imaging Program to Frontier and Rural Oregon
ERIC Educational Resources Information Center
Malosh, Ann; Mallory, Stacy; Olson, Marcene
2009-01-01
The Grow Your Own diagnostic imaging program is a public/private collaborative venture involving the efforts of an array of community colleges, employers, workforce, and educational partners throughout Oregon. This statewide Community College Partnership delivers diagnostic imaging education to Oregon's rural communities via distributed learning…
[Diagnostic imaging of urolithiais. Current recommendations and new developments].
Thalgott, M; Kurtz, F; Gschwend, J E; Straub, M
2015-07-01
Prevalence of urolithiasis is increasing in industrialized countries--in both adults and children, representing a unique diagnostic and therapeutic challenge. Risk-adapted diagnostic imaging currently means assessment with maximized sensitivity and specificity together with minimal radiation exposure. In clinical routine, imaging is performed by sonography, unenhanced computed tomography (NCCT) or intravenous urography (IVU) as well as plain kidney-ureter-bladder (KUB) radiographs. The aim of the present review is a critical guideline-based and therapy-aligned presentation of diagnostic imaging procedures for optimized treatment of urolithiasis considering the specifics in children and pregnant women.
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
Using Fault Trees to Advance Understanding of Diagnostic Errors.
Rogith, Deevakar; Iyengar, M Sriram; Singh, Hardeep
2017-11-01
Diagnostic errors annually affect at least 5% of adults in the outpatient setting in the United States. Formal analytic techniques are only infrequently used to understand them, in part because of the complexity of diagnostic processes and clinical work flows involved. In this article, diagnostic errors were modeled using fault tree analysis (FTA), a form of root cause analysis that has been successfully used in other high-complexity, high-risk contexts. How factors contributing to diagnostic errors can be systematically modeled by FTA to inform error understanding and error prevention is demonstrated. A team of three experts reviewed 10 published cases of diagnostic error and constructed fault trees. The fault trees were modeled according to currently available conceptual frameworks characterizing diagnostic error. The 10 trees were then synthesized into a single fault tree to identify common contributing factors and pathways leading to diagnostic error. FTA is a visual, structured, deductive approach that depicts the temporal sequence of events and their interactions in a formal logical hierarchy. The visual FTA enables easier understanding of causative processes and cognitive and system factors, as well as rapid identification of common pathways and interactions in a unified fashion. In addition, it enables calculation of empirical estimates for causative pathways. Thus, fault trees might provide a useful framework for both quantitative and qualitative analysis of diagnostic errors. Future directions include establishing validity and reliability by modeling a wider range of error cases, conducting quantitative evaluations, and undertaking deeper exploration of other FTA capabilities. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagzebski, J.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Diagnostic imaging in ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, C.F.; Becker, M.H.; Flanagan, J.C.
There are three sections in the book. The first section is a discussion of imaging techniques, which includes plain film radiography and multidirectional tomography of the orbit, computed tomography (CT) of the orbit and its use in the evaluation of ocular motility disorders, ultrasonography of the eye and orbit, investigation of the orbit by contrast techniques (which includes a brief review of angiography), the lachrimal drainage system, foreign body localization, and magnetic resonance imaging of the eye and orbit. There is extensive discussion of CT throughout the book. The second section is devoted to the role of these imaging methodsmore » in the evaluation of ophthalmic disorders. A discussion of congenital anomalies is useful for those centers that are exposed to unusual congenital anomalies and syndromes. Also included is evaluation of exophthalmous and thyroid ophthamalopathy, orbital tumors, lesions involving the visual pathways, CT assessment of paraorbital pathology (including basal and squamous cell tumors of the face), infection of the orbit, and orbital trauma. The third section is an overview of radiation therapy and malignant intraoccular tumors.« less
Barrio, Jorge R; Marcus, Carol S; Hung, Joseph C; Keppler, Jennifer S
2004-01-01
We propose a new regulatory approach for positron emission tomography (PET) molecular imaging probes, essential tools in today's medicine. Even though the focus of this paper is on positron-emitting labeled probes, it is also justified to extend this proposed regulatory approach to other diagnostic nuclear medicine radiopharmaceuticals. Key aspects of this proposal include: (1) PET molecular imaging probes would be placed in a "no significant risk" category, similar to that category for devices in current Food and Drug Administration (FDA) regulations, based on overwhelming scientific evidence that demonstrates their faultless safety profile; (2) the FDA-sanctioned Radioactive Drug Research Committee (RDRC) will oversee all diagnostic research with these probes. The newly defined RDRC should approve "first in man" use; supervise a broader spectrum of diagnostic research protocols, including those looking to demonstrate initial efficacy, as well as multicenter clinical trials and the use of molecular imaging probes as a screening tool in drug discovery. The current investigational new drug (IND) mechanism is thus eliminated for these diagnostic probes; (3) when a molecular imaging probe has demonstrated diagnostic efficacy, FDA approval (i.e., NDA) will be sought. The review will be done by a newly constituted Radioactive Drug Advisory Committee (RDAC) composed of experts chosen by the professional societies, who would provide a binding assessment of the adequacy of the safety and efficacy data. When the RDAC recommends its diagnostic use on scientific and medical grounds, the molecular imaging probe becomes FDA approved. After a molecular imaging probe is approved for a diagnostic indication, the existing mechanism to seek reimbursement will be utilized; and (4) the FDA would retain its direct oversight function for traditional manufacturers engaged in commercial distribution of the approved diagnostic molecular imaging probes (i.e., under NDA) to monitor compliance with existing US Pharmacopeia (USP) requirements. With abbreviated and more appropriate regulations, new PET molecular imaging probes for diagnostic use would be then rapidly incorporated into the mainstream diagnostic medicine. Equally importantly, this approach would facilitate the use of molecular imaging in drug discovery and development, which would substantially reduce the costs and time required to bring new therapeutic drugs to market.
Daly, Corinne; Urbach, David R; Stukel, Thérèse A; Nathan, Paul C; Deitel, Wayne; Paszat, Lawrence F; Wilton, Andrew S; Baxter, Nancy N
2015-09-03
Survivors of young adult malignancies are at risk of accumulated exposures to radiation from repetitive diagnostic imaging. We designed a population-based cohort study to describe patterns of diagnostic imaging and cumulative diagnostic radiation exposure among survivors of young adult cancer during a survivorship time period where surveillance imaging is not typically warranted. Young adults aged 20-44 diagnosed with invasive malignancy in Ontario from 1992-1999 who lived at least 5 years from diagnosis were identified using the Ontario Cancer Registry and matched 5 to 1 to randomly selected cancer-free persons. We determined receipt of 5 modalities of diagnostic imaging and associated radiation dose received by survivors and controls from years 5-15 after diagnosis or matched referent date through administrative data. Matched pairs were censored six months prior to evidence of recurrence. 20,911 survivors and 104,524 controls had a median of 13.5 years observation. Survivors received all modalities of diagnostic imaging at significantly higher rates than controls. Survivors received CT at a 3.49-fold higher rate (95% Confidence Interval [CI]:3.37, 3.62) than controls in years 5 to 15 after diagnosis. Survivors received a mean radiation dose of 26 miliSieverts solely from diagnostic imaging in the same time period, a 4.57-fold higher dose than matched controls (95% CI: 4.39, 4.81). Long-term survivors of young adult cancer have a markedly higher rate of diagnostic imaging over time than matched controls, imaging associated with substantial radiation exposure, during a time period when surveillance is not routinely recommended.
Vázquez-Costa, J F; Martínez-Molina, M; Fernández-Polo, M; Fornés-Ferrer, V; Frasquet-Carrera, M; Sevilla-Mantecón, T
2018-06-11
Amyotrophic lateral sclerosis (ALS) is an insidious, clinically heterogeneous neurodegenerative disease associated with a diagnostic delay of approximately 12 months. No study conducted to date has analysed the diagnostic pathway in Spain. We gathered data on variables related to the diagnostic pathway and delay for patients diagnosed with ALS between October 2013 and July 2017. The study included 143 patients with ALS (57% men; 68% spinal onset). Patients were diagnosed in public centres in 86% of cases and in private centres in 14%.The mean diagnostic delay was 13.1 months (median 11.7). Patients were examined by neurologists a mean time of 7.9 months after symptom onset, with diagnosis being made 5.2 months later. Half of all patients underwent unnecessary diagnostic tests and multiple electrophysiological studies before diagnosis was established. Diagnostic delay was longer in cases of spinal onset (P = .008) due to onset of the disease in the lower limbs. No differences were found between the public and private healthcare systems (P = .897). The diagnostic delay in ALS in Spain is similar to that of neighboring countries and seems to depend on disease-related factors, not on the healthcare system. Patients with lower-limb onset ALS constitute the greatest diagnostic challenge. Misdiagnosis is frequent, and partly attributable to an incorrect approach or erroneous interpretation of electrophysiological studies. Specific training programmes for neurologists and general neurophysiologists and early referral to reference centers may help to reduce diagnostic delay. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures
Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington
2012-01-01
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864
Effect of routine diagnostic imaging for patients with musculoskeletal disorders: A meta-analysis.
Karel, Yasmaine H J M; Verkerk, Karin; Endenburg, Silvio; Metselaar, Sven; Verhagen, Arianne P
2015-10-01
The increasing use of diagnostic imaging has led to high expenditures, unnecessary invasive procedures and/or false-positive diagnoses, without certainty that the patients actually benefit from these imaging procedures. This review explores whether diagnostic imaging leads to better patient-reported outcomes in individuals with musculoskeletal disorders. Databases were searched from inception to September 2013, together with scrutiny of selected bibliographies. Trials were eligible when: 1) a diagnostic imaging procedure was compared with any control group not getting or not receiving the results of imaging; 2) the population included individuals suffering from musculoskeletal disorders, and 3) if patient-reported outcomes were available. Primary outcome measures were pain and function. Secondary outcome measures were satisfaction and quality of life. Subgroup analysis was done for different musculoskeletal complaints and high technological medical imaging (MRI/CT). Eleven trials were eligible. The effects of diagnostic imaging were only evaluated in patients with low back pain (n=7) and knee complaints (n=4). Overall, there was a moderate level of evidence for no benefit of diagnostic imaging on all outcomes compared with controls. A significant but clinically irrelevant effect was found in favor of no (routine) imaging in low back pain patients in terms of pain severity at short [SMD 0.17 (0.04-0.31)] and long-term follow-up [SMD 0.13 (0.02-0.24)], and for overall improvement [RR 1.15 (1.03-1.28)]. Subgroup analysis did not significantly change these results. These results strengthen the available evidence that routine referral to diagnostic imaging by general practitioners for patients with knee and low back pain yields little to no benefit. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
The neutron imaging diagnostic at NIF (invited).
Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C
2012-10-01
A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.
Cost-effective handling of digital medical images in the telemedicine environment.
Choong, Miew Keen; Logeswaran, Rajasvaran; Bister, Michel
2007-09-01
This paper concentrates on strategies for less costly handling of medical images. Aspects of digitization using conventional digital cameras, lossy compression with good diagnostic quality, and visualization through less costly monitors are discussed. For digitization of film-based media, subjective evaluation of the suitability of digital cameras as an alternative to the digitizer was undertaken. To save on storage, bandwidth and transmission time, the acceptable degree of compression with diagnostically no loss of important data was studied through randomized double-blind tests of the subjective image quality when compression noise was kept lower than the inherent noise. A diagnostic experiment was undertaken to evaluate normal low cost computer monitors as viable viewing displays for clinicians. The results show that conventional digital camera images of X-ray images were diagnostically similar to the expensive digitizer. Lossy compression, when used moderately with the imaging noise to compression noise ratio (ICR) greater than four, can bring about image improvement with better diagnostic quality than the original image. Statistical analysis shows that there is no diagnostic difference between expensive high quality monitors and conventional computer monitors. The results presented show good potential in implementing the proposed strategies to promote widespread cost-effective telemedicine and digital medical environments. 2006 Elsevier Ireland Ltd
Secrets to effective imaging services marketing.
Leepson, Evan
2005-01-01
Marketing outpatient diagnostic imaging services is similar to marketing professional services. However, the definition of marketing outpatient diagnostic imaging goes far beyond textbook and traditional meanings of marketing. There are 5 major trends that are forcing hospitals to market their diagnostic imaging services: demographics, competition, non-radiologist expansion, self-protective practice, and evolving technologies. Before thinking about identifying whom to target to develop a strategic relationship, it is necessary to get a sense of what is going on in the local area in terms of demographic trends. Much of this information can be obtained from the hospital's planning department. Local and state health planning organizations have some of the data and information. It is most critical for imaging departments to manage strategic relationships because they do not have direct access to patients. The department is solely dependent on cultivating relationships if it is to thrive. Diagnostic imaging centers have more freedom than hospitals when considering with whom to develop relationships. There are 5 essential components to any diagnostic imaging services marketing plan: be on top of referral patterns; brag about the organization's service; know the customer; keep communication channels open; and understand that marketing is a family affair. Successful diagnostic imaging marketing is key to an organization's long-term health. Developing and implementing a comprehensive, targeted, and sustained plan is crucial.
Vlahiotis, Anna; Griffin, Brian; Stavros, A Thomas; Margolis, Jay
2018-01-01
Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam. To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures. Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy) other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event), with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes. The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients), 6,987,399 breast ultrasounds (42.4% of patients), and 1,585,856 biopsies (10.3% of patients). Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD) costs for diagnostic mammograms of US$349 ($493), ultrasounds US$132 ($134), and biopsies US$1,938 ($2,343) contributed US$3.05 billion, US$0.92 billion, and US$3.07 billion, respectively, to annual diagnostic breast expenditures estimated at US$7.91 billion. The volume and expense of additional breast diagnostic testing, estimated at US$7.91 billion annually, underscores the need for technological improvements in the breast diagnostic landscape.
Relyea-Chew, Annemarie
2013-09-01
Federal regulation of diagnostic imaging in the United States has increased dramatically in recent years. The primary statutes aimed at curbing escalating costs and reorienting the national priorities of health care have a direct effect on the specialty of diagnostic imaging. This paper surveys the major regulations and current issues that pose challenges to the practice of diagnostic imaging in the United States, from the Deficit Reduction Act of 2005 through the American Taxpayer Relief Act of 2012. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina
2018-01-01
The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.
The essence of the Japan Radiological Society/Japanese College of Radiology Imaging Guideline.
Yamashita, Yasuyuki; Murayama, Sadayuki; Okada, Masahiro; Watanabe, Yoshiyuki; Kataoka, Masako; Kaji, Yasushi; Imamura, Keiko; Takehara, Yasuo; Hayashi, Hiromitsu; Ohno, Kazuko; Awai, Kazuo; Hirai, Toshinori; Kojima, Kazuyuki; Sakai, Shuji; Matsunaga, Naofumi; Murakami, Takamichi; Yoshimitsu, Kengo; Gabata, Toshifumi; Matsuzaki, Kenji; Tohno, Eriko; Kawahara, Yasuhiro; Nakayama, Takeo; Monzawa, Shuichi; Takahashi, Satoru
2016-01-01
Diagnostic imaging is undoubtedly important in modern medicine, and final clinical decisions are often made based on it. Fortunately, Japan has the highest numbers of diagnostic imaging instruments, such as CT and MRI devices, and boasts easy access to them as well as a high level of diagnostic accuracy. In consequence, a very large number of imaging examinations are performed, but diagnostic instruments are installed in so many medical facilities that expert management of these examinations tends to be insufficient. Particularly, in order to avoid risks, clinicians have recently become indifferent to indications of imaging modalities and tend to rely on CT or MRI resulting in increasing the number of imaging examinations in Japan. This is a serious problem from the viewpoints of avoidance of unnecessary exposure and medical economy. Under these circumstances, the Japan Radiological Society and Japanese College of Radiology jointly initiated the preparation of new guidelines for diagnostic imaging. However, the field of diagnostic imaging is extremely wide, and it is impossible to cover all diseases. Therefore, in drafting the guidelines, we selected important diseases and focused on "showing evidence and suggestions in the form of clinical questions (CQs)" concerning clinically encountered questions and "describing routine imaging techniques presently considered to be standards to guarantee the quality of imaging examinations". In so doing, we adhered to the basic principles of assuming the readers to be "radiologists specializing in diagnostic imaging", "simultaneously respecting the global standards and attending to the situation in Japan", and "making the guidelines consistent with those of other scientific societies related to imaging". As a result, the guidelines became the largest ever, consisting of 152 CQs, nine areas of imaging techniques, and seven reviews, but no other guidelines in the world summarize problems concerning diagnostic imaging in the form of CQs. In this sense, the guidelines are considered to reflect the abilities of diagnostic radiologists in Japan. The contents of the guidelines are essential knowledge for radiologists, but we believe that they are also of use to general clinicians and clinical radiological technicians. While the number and contents of CQs are still insufficient, and while chapters such as those on imaging in children and emergency imaging need to be supplemented, the guidelines will be serially improved through future revisions. Lastly, we would like to extend our sincere thanks to the 153 members of the drafting committee who authored the guidelines, 12 committee chairpersons who coordinated their efforts, six members of the secretariat, and affiliates of related scientific societies who performed external evaluation.
Age and Pathway Diagnostics for a Stratospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Douglass, Anne R.; Polansky, Brian
2004-01-01
Using a variety of age diagnostic experiments we examine the stratospheric age spectrum of the Goddard Finite Volume Generd Circulation Model. Pulse tracer release age-of-air computations are compared to forward and backward trajectory computations. These comparisons show good agreement, and the age-of-air also compares well with observed long lived tracers. Pathway diagnostics show how air arrives in the lowermost stratosphere and the age structure of that region. Using tracers with different lifetimes we can estimate the age spectrum - this technique should be useful in diagnosing transport from various trace gas observations.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Big data in oncologic imaging.
Regge, Daniele; Mazzetti, Simone; Giannini, Valentina; Bracco, Christian; Stasi, Michele
2017-06-01
Cancer is a complex disease and unfortunately understanding how the components of the cancer system work does not help understand the behavior of the system as a whole. In the words of the Greek philosopher Aristotle "the whole is greater than the sum of parts." To date, thanks to improved information technology infrastructures, it is possible to store data from each single cancer patient, including clinical data, medical images, laboratory tests, and pathological and genomic information. Indeed, medical archive storage constitutes approximately one-third of total global storage demand and a large part of the data are in the form of medical images. The opportunity is now to draw insight on the whole to the benefit of each individual patient. In the oncologic patient, big data analysis is at the beginning but several useful applications can be envisaged including development of imaging biomarkers to predict disease outcome, assessing the risk of X-ray dose exposure or of renal damage following the administration of contrast agents, and tracking and optimizing patient workflow. The aim of this review is to present current evidence of how big data derived from medical images may impact on the diagnostic pathway of the oncologic patient.
Donovan, Michael S; Kassop, David; Liotta, Robert A; Hulten, Edward A
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction.
Donovan, Michael S.; Kassop, David; Liotta, Robert A.; Hulten, Edward A.
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction. PMID:25705227
Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir
2014-01-01
Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318
Flaherty, Stephen; Mortele, Koenraad J; Young, Gary J
2018-06-01
To report utilization trends in diagnostic imaging among commercially insured Massachusetts residents from 2009 to 2013. Current Procedural Terminology codes were used to identify diagnostic imaging claims in the Massachusetts All-Payer Claims Database for the years 2009 to 2013. We reported utilization and spending annually by imaging modality using total claims, claims per 1,000 individuals, total expenditures, and average per claim payments. The number of diagnostic imaging claims per insured MA resident increased only 0.6% from 2009 to 2013, whereas nonradiology claims increased by 6% annually. Overall diagnostic imaging expenditures, adjusted for inflation, were 27% lower in 2009 than 2013, compared with an 18% increase in nonimaging expenditures. Average payments per claim were lower in 2013 than 2009 for all modalities except nuclear medicine. Imaging procedure claims per 1,000 MA residents increased from 2009 to 2013 by 13% in MRI, from 147 to 166; by 17% in ultrasound, from 453 to 530; and by 12% in radiography (x-ray), from 985 to 1,100. However, CT claims per 1,000 fell by 37%, from 341 to 213, and nuclear medicine declined 57%, from 89 claims per 1,000 to 38. Diagnostic imaging utilization exhibited negligible growth over the study period. Diagnostic imaging expenditures declined, largely the result of falling payments per claim in most imaging modalities, in contrast with increased utilization and spending on nonimaging services. Utilization of MRI, ultrasound, and x-ray increased from 2009 to 2013, whereas CT and nuclear medicine use decreased sharply, although CT was heavily impacted by billing code changes. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
The use of echocardiography in Wolff-Parkinson-White syndrome.
Cai, Qiangjun; Shuraih, Mossaab; Nagueh, Sherif F
2012-04-01
Endocardial mapping and radiofrequency catheter ablation are well established modalities for the diagnosis and treatment of patients with Wolff-Parkinson-White (WPW) syndrome associated with tachyarrhythmias. However, the electrophysiologic techniques are invasive, require radiation exposure, and lack spatial resolution of cardiac structures. A variety of echocardiographic techniques have been investigated as a non-invasive alternative for accessory pathway localization. Conventional M-mode echocardiography can detect the fine premature wall motion abnormalities associated with WPW syndrome. However, it is unable to identify the exact site of accessory pathway with sufficient accuracy. 2D, 2D-guided M-mode, and 2D phase analysis techniques are limited by image quality and endocardial border definition. Various modalities of tissue Doppler echocardiography significantly increase the accuracy of left-sided accessory pathway localization to 80-90% even in patients with poor acoustic window. However, right-sided pathways remain a diagnostic challenge. Strain echocardiography by speckle tracking has recently been evaluated and appears promising. Different cardiac abnormalities have been detected by echocardiography in WPW patients. Patients with WPW syndrome and tachyarrhythmias have impaired systolic and diastolic function which improves after radiofrequency ablation. Echocardiography is useful in identifying patient with accessory pathway-associated left ventricular dyssynchrony and dysfunction who may benefit from ablation therapy. Transesophageal and intracardiac echocardiography have been used to guide ablation procedure. Ablation-related complications detected by routine echocardiography are infrequent, rarely clinically relevant, and of limited value.
Health information exchange reduces repeated diagnostic imaging for back pain.
Bailey, James E; Pope, Rebecca A; Elliott, Elizabeth C; Wan, Jim Y; Waters, Teresa M; Frisse, Mark E
2013-07-01
This study seeks to determine whether health information exchange reduces repeated diagnostic imaging and related costs in emergency back pain evaluation. This was a longitudinal data analysis of health information exchange patient-visit data. All repeated emergency department (ED) patient visits for back pain with previous ED diagnostic imaging to a Memphis metropolitan area ED between August 1, 2007, and July 31, 2009, were included. Use of a regional health information exchange by ED personnel to access the patient's record during the emergency visit was the primary independent variable. Main outcomes included repeated lumbar or thoracic diagnostic imaging (radiograph, computed tomography [CT], or magnetic resonance imaging [MRI]) and total patient-visit estimated cost. One hundred seventy-nine (22.4%) of the 800 qualifying repeated back pain visits resulted in repeated diagnostic imaging (radiograph 84.9%, CT 6.1%, and MRI 9.5%). Health information exchange use in the study population was low, at 12.5%, and health care providers as opposed to administrative/nursing staff accounted for 80% of the total health information exchange use. Health information exchange use by any ED personnel was associated with reduced repeated diagnostic imaging (odds ratio 0.36; 95% confidence interval 0.18 to 0.71), as was physician or nurse practitioner health information exchange use (odds ratio 0.47; 95% confidence interval 0.23 to 0.96). No cost savings were associated with health information exchange use because of increased CT imaging when health care providers used health information exchange. Health information exchange use is associated with 64% lower odds of repeated diagnostic imaging in the emergency evaluation of back pain. Health information exchange effect on estimated costs was negligible. More studies are needed to evaluate specific strategies to increase health information exchange use and further decrease potentially unnecessary diagnostic imaging and associated costs of care. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
A multispectral imaging approach for diagnostics of skin pathologies
NASA Astrophysics Data System (ADS)
Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis
2013-06-01
Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.
Diagnostic imaging and radiation exposure in inflammatory bowel disease.
Zakeri, Nekisa; Pollok, Richard C G
2016-02-21
Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.
Diagnostic imaging and radiation exposure in inflammatory bowel disease
Zakeri, Nekisa; Pollok, Richard CG
2016-01-01
Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
Diagnostic imaging lets doctors look inside your body for clues about a medical condition. A variety of machines and ... and activities inside your body. The type of imaging your doctor uses depends on your symptoms and ...
Sources of Delay in the Acute Limb Ischemia Patient Pathway.
Normahani, Pasha; Standfield, Nigel J; Jaffer, Usman
2017-01-01
Acute limb ischemia (ALI) continues to pose a significant challenge to clinicians and is associated with an unacceptably high rate of morbidity and mortality. Despite its time critical nature, little is known regarding the delays encountered during the patient pathway. The aim of this study was to identify sources of delay in the patient pathway at our institution. Sixty-seven cases of ALI of the lower extremities from 66 patients, who had presented to our center between May 2003 and April 2014, were identified for retrospective analysis. Data were retrieved from the patient records, discharge summaries and hospital laboratory, emergency department and radiology databases. Median time from onset of symptom to arrival at our institution was 11.35 hr (interquartile range [IQR] 6.27-72). Median cumulative time taken from arrival to vascular team review was 40 min (22.5-120), to imaging being performed was 4.75 hr (2.42-17.25), and to intervention being performed was 10.2 hr (4-31). There were significantly longer delays to presentation in those transferred from inpatient beds as compared with those transferred from the emergency department of other hospitals (66 hr [10.3-98] vs. 8 hr [5.6-14.9], P = 0.007). In total, 84.6% of patients underwent preoperative arterial imaging. Time taken from arrival to diagnostic arterial imaging was significantly longer in patients presenting out-of-ours (15 hr [6.5-20.75]) as compared with patients presenting in-hours (3.5 hr [2-6.5], P = 0.014) or during the weekend (2 hr [2-3], P = 0.022). Time from presentation to intervention was significantly shorter in patients presenting over the weekend (3.9 hr [2.6-5.1]) as compared with those presenting in-hours (14.2 hr [6.2-29], P = 0.006) and out-of-hours (16 hr [10-33], P = 0.021). Out-of-hours, a significant portion of the delay, was attributable to imaging (median time to imaging 15 hr). This study demonstrates the systematic nature of delays in the patient pathway from onset of symptoms to treatment. Several factors including time to patient presentation and time to imaging and delays in timely transfer to an appropriate facility contribute to this. Strategies need to be deployed to reduce time to revascularization. Copyright © 2016 Elsevier Inc. All rights reserved.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Image quality enhancement for skin cancer optical diagnostics
NASA Astrophysics Data System (ADS)
Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey
2017-12-01
The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.
Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.
Gray, J E; Orton, C G
2000-12-01
Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff.
de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva
2015-01-01
Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282
Baer, F M
2007-09-01
The stress-ECG is the most often adopted and most cost effective initial diagnostic test for the assessment of myocardial ischemia in patients with suspected coronary artery disease (CAD). Prerequisites for the diagnostic usefullness of stress-ECG are a clearly interpretable ST-segment, ability to reach the predicted work load, an intermediate pretest probability for CAD ranging between 10% and 90% and the absence of any contraindications for dynamic exercise. Because of the limited diagnostic sensitivity of about 70%, and a high percentage of patients, who are unable to exercise, a negative stress ECG can definitely not exclude hemodynamically significant CAD. Therefore, stress imaging techniques like myocardial scintigraphy, stress-echocardiography and stress magnetic resonance imaging play a major role in the stepwise diagnostic work-up of patients with suspected CAD. These stress imaging techniques are basically interchangeable since no method is definitely superior to one of the others. However, each method has its specific pros and cons and inherent contraindications. Therefore the choice of the stress imaging method and the form of stress applied should be based on the individual patients characteristics to gain optimal image quality and diagnostic accuracy. Moreover, the decision for one method should take the local availability and institutional expertise of diagnostic centers into account. Although partly substituted by stress imaging techniques the stress-ECG still remains the workhorse for a stepwise diagnostic work-up of patients with suspected CAD.
Rosman, David A; Duszak, Richard; Wang, Wenyi; Hughes, Danny R; Rosenkrantz, Andrew B
2018-02-01
The objective of our study was to use a new modality and body region categorization system to assess changing utilization of noninvasive diagnostic imaging in the Medicare fee-for-service population over a recent 20-year period (1994-2013). All Medicare Part B Physician Fee Schedule services billed between 1994 and 2013 were identified using Physician/Supplier Procedure Summary master files. Billed codes for diagnostic imaging were classified using the Neiman Imaging Types of Service (NITOS) coding system by both modality and body region. Utilization rates per 1000 beneficiaries were calculated for families of services. Among all diagnostic imaging modalities, growth was greatest for MRI (+312%) and CT (+151%) and was lower for ultrasound, nuclear medicine, and radiography and fluoroscopy (range, +1% to +31%). Among body regions, service growth was greatest for brain (+126%) and spine (+74%) imaging; showed milder growth (range, +18% to +67%) for imaging of the head and neck, breast, abdomen and pelvis, and extremity; and showed slight declines (range, -2% to -7%) for cardiac and chest imaging overall. The following specific imaging service families showed massive (> +100%) growth: cardiac CT, cardiac MRI, and breast MRI. NITOS categorization permits identification of temporal shifts in noninvasive diagnostic imaging by specific modality- and region-focused families, providing a granular understanding and reproducible analysis of global changes in imaging overall. Service family-level perspectives may help inform ongoing policy efforts to optimize imaging utilization and appropriateness.
Modifications to the synthetic aperture microwave imaging diagnostic.
Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L
2016-11-01
The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.
Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia
2017-07-01
Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod
Matz, Samantha; Connell, Mary; Sinha, Madhumita; Goettl, Christopher S; Patel, Palak C; Drachman, David
2013-09-01
The presence of free intraperitoneal fluid on diagnostic imaging (sonography or computed tomography [CT]) may indicate an acute inflammatory process in children with abdominal pain in a nontraumatic setting. Although clinical outcomes of pediatric trauma patients with free fluid on diagnostic examinations without evidence of solid-organ injury have been studied, similar studies in the absence of trauma are rare. Our objective was to study clinical outcomes of children with acute abdominal pain of nontraumatic etiology and free intraperitoneal fluid on diagnostic imaging (abdominal/pelvic sonography, CT, or both). We conducted a retrospective review of medical records of children aged 0 to 18 years presenting to a pediatric emergency department with acute abdominal pain (nontraumatic) between April 2008 and March 2009. Patients with intraperitoneal free fluid on imaging were divided into 2 groups: group I, imaging suggestive of an intra-abdominal surgical condition such as appendicitis; and group II, no evidence of an acute surgical condition on imaging, including patients with equivocal studies. Computed tomograms and sonograms were reviewed by a board-certified radiologist, and the free fluid volume was quantitated. Of 1613 patients who underwent diagnostic imaging, 407 were eligible for the study; 134 (33%) had free fluid detected on diagnostic imaging. In patients with both sonography and CT, there was a significant correlation in the free fluid volume (r = 0.79; P < .0005). A significantly greater number of male patients with free fluid had a surgical condition identified on imaging (57.4% versus 25%; P < .001). Children with free fluid and an associated condition on imaging were more likely to have surgery (94.4% versus 6.3%; P < .001). We found clinical outcomes (surgical versus nonsurgical) to be most correlated with a surgical diagnosis on diagnostic imaging and not with the amount of fluid present.
Muhit, A; Zbijewski, W; Stayman, J; Thawait, G; Yorkston, J; Foos, D; Packard, N; Yang, D; Senn, R; Carrino, J; Siewerdsen, J
2012-06-01
To assess the diagnostic performance of a prototype cone-beam CT (CBCT) scanner developed for musculoskeletal extremity imaging. Studies involved controlled observer studies conducted subsequent to rigorous technical assessment as well as patient images from the first clinical trial in imaging the hand and knee. Performance assessment included: 1.) rigorous technical assessment; 2.) controlled observer studies using CBCT images of cadaveric specimens; and 3.) first clinical images. Technical assessment included measurement of spatial resolution (MTF), constrast, and noise (SDNR) versus kVp and dose using standard CT phantoms. Diagnostic performance in comparison to multi- detector CT (MDCT) was assessed in controlled observer studies involving 12 cadaveric hands and knees scanned with and without abnormality (fracture). Observer studies involved five radiologists rating pertinent diagnostics tasks in 9-point preference and 10-point diagnostic satisfaction scales. Finally, the first clinical images from an ongoing pilot study were assessed in terms of diagnostic utility in disease assessment and overall workflow in patient setup. Quantitative assessment demonstrated sub-mm spatial resolution (MTF exceeding 10% out to 15-20 cm-1) and SDNR sufficient for relevant soft-tissue visualization tasks at dose <10 mGy. Observer studies confirmed optimal acquisition techniques and demonstrated superior utility of combined soft-tissue visualization and isotropic spatial resolution in diagnostic tasks. Images from the patient trial demonstrate exquisite contrast and detail and the ability to detect tissue impingement in weight-bearing exams. The prototype CBCT scanner provides isotropic spatial resolution superior to standard-protocol MDCT with soft-tissue visibility sufficient for a broad range of diagnostic tasks in musculoskeletal radiology. Dosimetry and workflow were advantageous in comparison to whole-body MDCT. Multi-mode and weight-bearing capabilities add valuable functionality. An ongoing clinical study further assesses diagnostic utility and defines the role of such technology in the diagnostic arsenal. - Research Grant, Carestream Health - Research Grant, National Institutes of Health 2R01-CA-112163. © 2012 American Association of Physicists in Medicine.
The Downside of Diagnostic Imaging
An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.
Biological imaging in radiation therapy: role of positron emission tomography.
Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia
2009-01-07
In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.
TOPICAL REVIEW: Biological imaging in radiation therapy: role of positron emission tomography
NASA Astrophysics Data System (ADS)
Nestle, Ursula; Weber, Wolfgang; Hentschel, Michael; Grosu, Anca-Ligia
2009-01-01
In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.
Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive
2009-06-01
time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast
Reflectometric measurement of plasma imaging and applications
NASA Astrophysics Data System (ADS)
Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.
2012-01-01
Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.
Hwang, Shin Hye; You, Je Sung; Song, Mi Kyong; Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun
2015-04-01
To evaluate feasibility of radiation dose reduction by optimal phase selection of computed tomography (CT) in patients who visited the emergency department (ED) for abdominal pain. We included 253 patients who visited the ED for abdominal pain. They underwent multiphasic CT including precontrast, late arterial phase (LAP), and hepatic venous phase (HVP). Three image sets (HVP, precontrast + HVP, and precontrast + LAP + HVP) were reviewed. Two reviewers determined the most appropriate diagnosis with five-point confidence scale. Diagnostic performances were compared among image sets by weighted-least-squares method or DeLong's method. Linear mixed model was used to assess changes of diagnostic confidence and radiation dose. There was no difference in diagnostic performance among three image sets, although diagnostic confidence level was significantly improved after review of triphasic images compared with both HVP images only or HVP with precontrast images (confidence scale, 4.64 ± 0.05, 4.66 ± 0.05, and 4.76 ± 0.04 in the order of the sets; overall P = 0.0008). Similar trends were observed in the subgroup analysis for diagnosis of pelvic inflammatory disease and cholecystitis. There is no difference between HVP-CT alone and multiphasic CT for the diagnosis of causes of abdominal pain in patients admitted to the ED without prior chronic disease or neoplasia. • There was no difference in diagnostic performance of HVP CT and multiphasic CT. • The diagnostic confidence level was improved after review of the LAP images. • HVP CT can achieve diagnostic performance similar to that of multiphasic CT, while minimizing radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less
Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...
2017-04-27
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweben, S. J.; Terry, J. L.; Stotler, D. P.
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
Pimentel, Mark; Purdy, Chris; Magar, Raf; Rezaie, Ali
2016-07-01
A high incidence of irritable bowel syndrome (IBS) is associated with significant medical costs. Diarrhea-predominant IBS (IBS-D) is diagnosed on the basis of clinical presentation and diagnostic test results and procedures that exclude other conditions. This study was conducted to estimate the potential cost savings of a novel IBS diagnostic blood panel that tests for the presence of antibodies to cytolethal distending toxin B and anti-vinculin associated with IBS-D. A cost-minimization (CM) decision tree model was used to compare the costs of a novel IBS diagnostic blood panel pathway versus an exclusionary diagnostic pathway (ie, standard of care). The probability that patients proceed to treatment was modeled as a function of sensitivity, specificity, and likelihood ratios of the individual biomarker tests. One-way sensitivity analyses were performed for key variables, and a break-even analysis was performed for the pretest probability of IBS-D. Budget impact analysis of the CM model was extrapolated to a health plan with 1 million covered lives. The CM model (base-case) predicted $509 cost savings for the novel IBS diagnostic blood panel versus the exclusionary diagnostic pathway because of the avoidance of downstream testing (eg, colonoscopy, computed tomography scans). Sensitivity analysis indicated that an increase in both positive likelihood ratios modestly increased cost savings. Break-even analysis estimated that the pretest probability of disease would be 0.451 to attain cost neutrality. The budget impact analysis predicted a cost savings of $3,634,006 ($0.30 per member per month). The novel IBS diagnostic blood panel may yield significant cost savings by allowing patients to proceed to treatment earlier, thereby avoiding unnecessary testing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong
2018-01-04
This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.
Wade, Ryckie G; Itte, Vinay; Rankine, James J; Ridgway, John P; Bourke, Grainne
2018-03-01
Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. III.
Design and development of a simple UV fluorescence multi-spectral imaging system
NASA Astrophysics Data System (ADS)
Tovar, Carlos; Coker, Zachary; Yakovlev, Vladislav V.
2018-02-01
Healthcare access in low-resource settings is compromised by the availability of affordable and accurate diagnostic equipment. The four primary poverty-related diseases - AIDS, pneumonia, malaria, and tuberculosis - account for approximately 400 million annual deaths worldwide as of 2016 estimates. Current diagnostic procedures for these diseases are prolonged and can become unreliable under various conditions. We present the development of a simple low-cost UV fluorescence multi-spectral imaging system geared towards low resource settings for a variety of biological and in-vitro applications. Fluorescence microscopy serves as a useful diagnostic indicator and imaging tool. The addition of a multi-spectral imaging modality allows for the detection of fluorophores within specific wavelength bands, as well as the distinction between fluorophores possessing overlapping spectra. The developed instrument has the potential for a very diverse range of diagnostic applications in basic biomedical science and biomedical diagnostics and imaging. Performance assessment of the microscope will be validated with a variety of samples ranging from organic compounds to biological samples.
Marin, Jennifer R; Mills, Angela M
2015-12-01
The 2015 Academic Emergency Medicine (AEM) consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization," was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to: 1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; 2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and 3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified prior to the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were 164 individuals involved in the conference spanning various specialties, including emergency medicine (EM), radiology, surgery, medical physics, and the decision sciences. This issue of AEM is dedicated to the proceedings of the 16th annual AEM consensus conference as well as original research related to emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Clinical Decision Rules for Diagnostic Imaging in the Emergency Department: A Research Agenda.
Finnerty, Nathan M; Rodriguez, Robert M; Carpenter, Christopher R; Sun, Benjamin C; Theyyunni, Nik; Ohle, Robert; Dodd, Kenneth W; Schoenfeld, Elizabeth M; Elm, Kendra D; Kline, Jeffrey A; Holmes, James F; Kuppermann, Nathan
2015-12-01
Major gaps persist in the development, validation, and implementation of clinical decision rules (CDRs) for diagnostic imaging. The objective of this working group and article was to generate a consensus-based research agenda for the development and implementation of CDRs for diagnostic imaging in the emergency department (ED). The authors followed consensus methodology, as outlined by the journal Academic Emergency Medicine (AEM), combining literature review, electronic surveys, telephonic communications, and a modified nominal group technique. Final discussions occurred in person at the 2015 AEM consensus conference. A research agenda was developed, prioritizing the following questions: 1) what are the optimal methods to justify the derivation and validation of diagnostic imaging CDRs, 2) what level of evidence is required before disseminating CDRs for widespread implementation, 3) what defines a successful CDR, 4) how should investigators best compare CDRs to clinical judgment, and 5) what disease states are amenable (and highest priority) to development of CDRs for diagnostic imaging in the ED? The concepts discussed herein demonstrate the need for further research on CDR development and implementation regarding diagnostic imaging in the ED. Addressing this research agenda should have direct applicability to patients, clinicians, and health care systems. © 2015 by the Society for Academic Emergency Medicine.
Modifications to the synthetic aperture microwave imaging diagnostic
Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...
2016-09-02
The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less
Thomas, Christoph; Brodoefel, Harald; Tsiflikas, Ilias; Bruckner, Friederike; Reimann, Anja; Ketelsen, Dominik; Drosch, Tanja; Claussen, Claus D; Kopp, Andreas; Heuschmid, Martin; Burgstahler, Christof
2010-02-01
To prospectively evaluate the influence of the clinical pretest probability assessed by the Morise score onto image quality and diagnostic accuracy in coronary dual-source computed tomography angiography (DSCTA). In 61 patients, DSCTA and invasive coronary angiography were performed. Subjective image quality and accuracy for stenosis detection (>50%) of DSCTA with invasive coronary angiography as gold standard were evaluated. The influence of pretest probability onto image quality and accuracy was assessed by logistic regression and chi-square testing. Correlations of image quality and accuracy with the Morise score were determined using linear regression. Thirty-eight patients were categorized into the high, 21 into the intermediate, and 2 into the low probability group. Accuracies for the detection of significant stenoses were 0.94, 0.97, and 1.00, respectively. Logistic regressions and chi-square tests showed statistically significant correlations between Morise score and image quality (P < .0001 and P < .001) and accuracy (P = .0049 and P = .027). Linear regression revealed a cutoff Morise score for a good image quality of 16 and a cutoff for a barely diagnostic image quality beyond the upper Morise scale. Pretest probability is a weak predictor of image quality and diagnostic accuracy in coronary DSCTA. A sufficient image quality for diagnostic images can be reached with all pretest probabilities. Therefore, coronary DSCTA might be suitable also for patients with a high pretest probability. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Doctoral theses in diagnostic imaging: a study of Spanish production between 1976 and 2011.
Machan, K; Sendra Portero, F
2018-05-15
To analyze the production of doctoral theses in diagnostic imaging in Spain in the period comprising 1976 through 2011 with the aim of a) determining the number of theses and their distribution over time, b) describing the production in terms of universities and directors, and c) analyzing the content of the theses according to the imaging technique, anatomic site, and type of research used. The TESEO database was searched for "radiología" and/or "diagnóstico por imagen" and for terms related to diagnostic imaging in the title of the thesis. A total of 1036 theses related to diagnostic imaging were produced in 37 Spanish universities (mean, 29.6 theses/year; range, 4-59). A total of 963 thesis directors were identified; 10 of these supervised 10 or more theses. Most candidates and directors were men, although since the 2000-2001 academic year the number of male and female candidates has been similar. The anatomic regions most often included in diagnostic imaging theses were the abdomen (22.5%), musculoskeletal system (21.8%), central nervous system (16.4%), and neck and face (15.6%). The imaging techniques most often included were ultrasonography in the entire period (25.5%) and magnetic resonance imaging in the last 5 years. Most theses (63.8%) were related to clinical research. Despite certain limitations, the TESEO database makes it possible to analyze the production of doctoral theses in Spain effectively. The annual mean production of theses in diagnostic imaging is higher than in other medical specialties. This analysis reflects the historic evolution of imaging techniques and research in radiology as well as the development of Spanish universities. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter
2017-02-01
The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.
Cancer in the crosshairs: targeting cancer metabolism with hyperpolarized carbon-13 MRI technology.
von Morze, Cornelius; Merritt, Matthew E
2018-06-05
Magnetic resonance (MR)-based hyperpolarized (HP) 13 C metabolic imaging is under active pursuit as a new clinical diagnostic method for cancer detection, grading, and monitoring of therapeutic response. Following the tremendous success of metabolic imaging by positron emission tomography, which already plays major roles in clinical oncology, the added value of HP 13 C MRI is emerging. Aberrant glycolysis and central carbon metabolism is a hallmark of many forms of cancer. The chemical transformations associated with these pathways produce metabolites ranging in general from three to six carbons, and are dependent on the redox state and energy charge of the tissue. The significant changes in chemistry associated with flux through these pathways imply that HP imaging can take advantage of the underlying chemical shift information encoded into an MR experiment to produce images of the injected substrate as well as its metabolites. However, imaging of HP metabolites poses unique constraints on pulse sequence design related to detection of X-nuclei, decay of the HP magnetization due to T 1 , and the consumption of HP signal by the inspection pulses. Advancements in the field continue to depend critically on customization of MRI systems and pulse sequences for optimized detection of HP 13 C signals, focused largely on extracting the maximum amount of information during the short lifetime of the HP magnetization. From a clinical perspective, the success of HP 13 C MRI of cancer will largely depend upon the utility of HP pyruvate for the detection of lactate pools associated with the Warburg effect, though several other agents are also under investigation, with novel agents continually being formulated. In this review, the salient aspects of HP 13 C imaging will be highlighted, with an emphasis on both technological challenges and the biochemical aspects of HP experimental design. Copyright © 2018 John Wiley & Sons, Ltd.
Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał
Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.
Ochs, Marco M; Siepen, Fabian Aus dem; Fritz, Thomas; Andre, Florian; Gitsioudis, Gitsios; Korosoglou, Grigorios; Seitz, Sebastian; Bogomazov, Yuriy; Schlett, Christopher L; Sokiranski, Roman; Sommer, Andre; Gückel, Friedemann; Brado, Matthias; Kauczor, Hans-Ulrich; Görich, Johannes; Friedrich, Matthias G W; Katus, Hugo A; Buss, Sebastian J
2017-07-01
The usage of coronary CT angiography (CTA) is appropriate in patients with acute or chronic chest pain; however the diagnostic accuracy may be challenged with increased Agatston score (AS), increased heart rate, arrhythmia and severe obesity. Thus, we aim to determine the potential of the recently introduced third-generation dual-source CT (DSCT) for CTA in a 'real-life' clinical setting. Two hundred and sixty-eight consecutive patients (age: 67 ± 10 years; BMI: 27 ± 5 kg/m²; 61% male) undergoing clinically indicated CTA with DSCT were included in the retrospective single-center analysis. A contrast-enhanced volume dataset was acquired in sequential (SSM) (n = 151) or helical scan mode (HSM) (n = 117). Coronary segments were classified in diagnostic or non-diagnostic image quality. A subset underwent invasive angiography to determine the diagnostic accuracy of CTA. SSM (96.8 ± 6%) and HSM (97.5 ± 8%) provided no significant differences in the overall diagnostic image quality. However, AS had significant influence on diagnostic image quality exclusively in SSM (B = 0.003; p = 0.0001), but not in HSM. Diagnostic image quality significantly decreased in SSM in patients with AS ≥2,000 (p = 0.03). SSM (sensitivity: 93.9%; specificity: 96.7%; PPV: 88.6%; NPV: 98.3%) and HSM (sensitivity: 97.4%; specificity: 94.3%; PPV: 86.0%; NPV: 99.0%) provided comparable diagnostic accuracy (p = n.s.). SSM yielded significantly lower radiation doses as compared to HSM (2.1 ± 2.0 vs. 5.1 ± 3.3 mSv; p = 0.0001) in age and BMI-matched cohorts. SSM in third-generation DSCT enables significant dose savings and provides robust diagnostic image quality in patients with AS ≤2000 independent of heart rate, heart rhythm or obesity.
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2010 CFR
2010-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2011 CFR
2011-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
Nishii, Ryuichi; Higashi, Tatsuya; Kagawa, Shinya; Okuyama, Chio; Kishibe, Yoshihiko; Takahashi, Masaaki; Okina, Tomoko; Suzuki, Norio; Hasegawa, Hiroshi; Nagahama, Yasuhiro; Ishizu, Koichi; Oishi, Naoya; Kimura, Hiroyuki; Watanabe, Hiroyuki; Ono, Masahiro; Saji, Hideo; Yamauchi, Hiroshi
2018-05-01
Recently, a benzofuran derivative for the imaging of β-amyloid plaques, 5-(5-(2-(2-(2- 18 F-fluoroethoxy)ethoxy)ethoxy)benzofuran-2-yl)- N-methylpyridin-2-amine ( 18 F-FPYBF-2) has been validated as a tracer for amyloid imaging and it was found that 18 F-FPYBF-2 PET/CT is a useful and reliable diagnostic tool for the evaluation of AD (Higashi et al. Ann Nucl Med, https://doi.org/10.1007/s12149-018-1236-1 , 2018). The aim of this study was to assess the biodistribution and radiation dosimetry of diagnostic dosages of 18 F-FPYBF-2 in normal healthy volunteers as a first-in-man study. Four normal healthy volunteers (male: 3, female: 1; mean age: 40 ± 17; age range 25-56) were included and underwent 18 F-FPYBF-2 PET/CT study for the evaluation of radiation exposure and pharmacokinetics. A 10-min dynamic PET/CT scan of the body (chest and abdomen) was performed at 0-10 min and a 15-min whole-body static scan was performed six times after the injection of 18 F-FPYBF-2. After reconstructing PET and CT image data, individual organ time-activity curves were estimated by fitting volume of interest data from the dynamic scan and whole-body scans. The OLINDA/EXM version 2.0 software was used to determine the whole-body effective doses. Dynamic PET imaging demonstrated that the hepatobiliary and renal systems were the principal pathways of clearance of 18 F-FPYBF-2. High uptake in the liver and the gall bladder, the stomach, and the kidneys were demonstrated, followed by the intestines and the urinary bladder. The ED for the adult dosimetric model was estimated to be 8.48 ± 1.25 µSv/MBq. The higher absorbed doses were estimated for the liver (28.98 ± 12.49 and 36.21 ± 15.64 µGy/MBq), the brain (20.93 ± 4.56 and 23.05 ± 5.03µ Gy/MBq), the osteogenic cells (9.67 ± 1.67 and 10.29 ± 1.70 µGy/MBq), the small intestines (9.12 ± 2.61 and 11.12 ± 3.15 µGy/MBq), and the kidneys (7.81 ± 2.62 and 8.71 ± 2.90 µGy/MBq) for male and female, respectively. The ED for the adult dosimetric model was similar to those of other agents used for amyloid PET imaging. The diagnostic dosage of 185-370 MBq of 18 F-FPYBF-2 was considered to be acceptable for administration in patients as a diagnostic tool for the evaluation of AD.
A fluorescence color-encoded lipid-supported polymeric particle.
Shin, Seung Won; Park, Kyung Soo; Baek, Changyoon; Min, Junhong; Cho, Seung-Woo; Choi, Jeong-Woo; Kim, Dong-Ik; Um, Soong Ho
2014-10-01
Several fluorescent or luminescent organisms with biological, chemical, and ecological diversity have been proposed as substitutes for use in new imaging and diagnostic technologies. Inspired by these trends, we designed a synthetic fluorescent light-encoding particulate to serve as a novel and prospective cancer-diagnostic imaging platform. The fluorescence-emitting particulate was used practically for both in vitro and in vivo selective cancer diagnostic imaging. Copyright © 2014 Elsevier B.V. All rights reserved.
Microdose acquisition in adolescent leg length discrepancy using a low-dose biplane imaging system.
Jensen, Janni; Mussmann, Bo R; Hjarbæk, John; Al-Aubaidi, Zaid; Pedersen, Niels W; Gerke, Oke; Torfing, Trine
2017-09-01
Background Children with leg length discrepancy often undergo repeat imaging. Therefore, every effort to reduce radiation dose is important. Using low dose preview images and noise reduction software rather than diagnostic images for length measurements might contribute to reducing dose. Purpose To compare leg length measurements performed on diagnostic images and low dose preview images both acquired using a low-dose bi-planar imaging system. Material and Methods Preview and diagnostic images from 22 patients were retrospectively collected (14 girls, 8 boys; mean age, 12.8 years; age range, 10-15 years). All images were anonymized and measured independently by two musculoskeletal radiologists. Three sets of measurements were performed on all images; the mechanical axis lines of the femur and the tibia as well as the anatomical line of the entire extremity. Statistical significance was tested with a paired t-test. Results No statistically significant difference was found between measurements performed on the preview and on the diagnostic image. The mean tibial length difference between the observers was -0.06 cm (95% confidence interval [CI], -0.12 to 0.01) and -0.08 cm (95% CI, -0.21 to 0.05), respectively; 0.10 cm (95% CI, 0.02-0.17) and 0.06 cm (95% CI, -0.02 to 0.14) for the femoral measurements and 0.12 cm (95% CI, -0.05 to 0.26) and 0.08 cm (95% CI, -0.02 to 0.19) for total leg length discrepancy. ICCs were >0.99 indicating excellent inter- and intra-rater reliability. Conclusion The data strongly imply that leg length measurements performed on preview images from a low-dose bi-planar imaging system are comparable to measurements performed on diagnostic images.
Collins, Sean P; Matheson, Jodi S; Hamor, Ralph E; Mitchell, Mark A; Labelle, Amber L; O'Brien, Robert T
2013-09-01
To compare the diagnostic quality of computed tomography (CT) images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Eleven privately owned cats with nasal disease presenting to a single referral hospital. All cats received a complete ophthalmic examination. A 16 multislice helical CT system was utilized to acquire images of the skull and neck with and without the use of general anesthesia. Images were acquired before and after the administration of intravenous iodinated contrast. Images of normal ocular and orbital structures were evaluated via consensus by two board-certified radiologists. Visibility of ocular and orbital structures, degree of motion, and streak artifact were assessed and scored for each image set in the transverse, dorsal, and sagittal planes. The use of general anesthesia did not significantly affect the diagnostic quality of images. No motion artifact was observed in any CT image. Streak artifact was significantly increased in scans performed in the transverse orientation but not in the dorsal orientation or sagittal orientation and did not affect the diagnostic quality of the images. Contrast enhancement did not significantly enhance the visibility of any ocular or orbital structures. Diagnostic CT images of normal ocular and orbital structures can be acquired without the use of general anesthesia in the cat. © 2012 American College of Veterinary Ophthalmologists.
Treglia, Giorgio; Trimboli, Pierpaolo; Huellner, Martin; Giovanella, Luca
2018-06-01
Primary hyperparathyroidism (PHPT) is a common endocrine disorder usually due to hyperfunctioning parathyroid glands (HP). Surgical removal of HP is the main treatment in PHPT, particularly in symptomatic patients. The correct detection and localization of HP is challenging and crucial as it may guide surgical treatment in patients with PHPT. To date, different imaging methods have been used to detect and localize HP in patients with PHPT including radiology, nuclear medicine and hybrid techniques. This review was focused to describe the diagnostic performance of several imaging methods used in detecting HP in patients with PHPT. We have summarized the diagnostic performance of different imaging methods used in detecting HP in patients with PHPT taking into account recent evidence-based articles published in the literature. To this regard, findings of recently published meta-analyses on the diagnostic accuracy of imaging methods in PHPT were reported. Furthermore, a suggested imaging strategy taking into account the diagnostic performance and further consideration has been described. Cervical ultrasound (US) and parathyroid scintigraphy using 99mTc-MIBI are the most commonly employed first-line investigations in patients with PHPT, with many institutions using both methods in combination. The diagnostic performance of US and planar 99mTc-MIBI scintigraphy seems to be similar. The use of tomographic imaging (SPECT and SPECT/CT) increases the detection rate of HP compared to planar 99mTc-MIBI scintigraphy. Whereas traditional computed tomography (CT) has limited usefulness in PHPT, four dimensional CT (4D-CT) has similar diagnostic performance compared to tomographic parathyroid scintigraphy but a higher radiation dose. Although initial encouraging results, to date there is insufficient evidence to recommend the routine use of MRI or positron emission tomography (PET) with several radiopharmaceuticals in patients with PHPT. However, they could be useful alternatives in cases with negative or discordant findings at first-line imaging methods. Patients with PHPT who are candidates for parathyroidectomy should be referred to an expert clinician to decide which imaging studies to perform based on regional imaging capabilities. The imaging techniques with higher diagnostic performance in detecting and localizing HP seems to be 99mTc-MIBI SPECT/CT and 4D-CT. Taking into account several data beyond the diagnostic performance, the combination of cervical US performed by an experienced parathyroid sonographer and 99mTc-MIBI SPECT or SPECT//CT seems to be an optimal first-line strategy in the preoperative planning of patients with PHPT.
Hao, Yongwei; Zheng, Cuixia; Wang, Lei; Zhang, Jinjie; Niu, Xiuxiu; Song, Qingling; Feng, Qianhua; Zhao, Hongjuan; Li, Li; Zhang, Hongling; Zhang, Zhenzhong; Zhang, Yun
2017-10-15
Amorphous biodegradable metal phosphate nanomaterials are considered to possess great potential in cancer theranostic application due to their promise in providing ultra-sensitive pH-responsive therapeutic benefits and diagnostic functions simultaneously. Here we report the synthesis of photosensitising and acriflavine-carrying amorphous porous manganese phosphate (PMP) nanoparticles with ultra-sensitive pH-responsive degradability and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Carboxymethyl dextran (CMD) is chemically anchored on the surface of porous manganese phosphate theranostic system through the pH-responsive boronate esters. Upon the stimulus of the tumor acid microenvironment, manganese phosphate disintegrates and releases Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. Meanwhile, the released photosensitizer chlorin e6 (Ce6) produces ROS under irradiation while acriflavine (ACF) inhibits the HIF-1α/VEGF pathway during the burst release of VEGF in tumour induced by photodynamic therapy (PDT), resulting in increased therapeutic efficacy. Considering the strong pH responsivity, MRI signal amplification and drug release profile, the PMP nanoparticles offer new prospects for tumor acidity-activatable theranostic application by amplifying the PDT through inhibiting the HIF-1α /VEGF pathway timely while enhancing the MRI effect. In this study, we report the synthesis of the tumor acidity-activatable amorphous porous manganese phosphate nanoparticles and their application for a photoactivable synergistic nanosystem that imparts reactive oxygen species (ROS) induced cytotoxicity in synchrony with hypoxia-inducible factor 1α/vascular endothelial growth factor (HIF-1α/VEGF) inhibitor that suppresses tumor growth and treatment escape signalling pathway. Besides, upon the stimulus of the tumor acid microenvironment, the manganese phosphate nanoparticles finally disintegrate and release Mn 2+ ions rapidly, which are responsible for the magnetic resonance imaging (MRI) effect. This nanoplatform is featured with distinctive advantages such as ultra pH-responsive drug release, MRI function and rational drug combination exploiting the blockage of the treatment escape signalling pathway. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fahey, Brian J.; Trahey, Gregg E.
2005-04-01
When performing radiofrequency ablation (RFA) procedures, physicians currently have little or no feedback concerning the success of the treatment until follow-up assessments are made days to weeks later. To be successful, RFA must induce a thermal lesion of sufficient volume to completely destroy a target tumor or completely isolate an aberrant cardiac pathway. Although ultrasound, computed tomography (CT), and CT-based fluoroscopy have found use in guiding RFA treatments, they are deficient in giving accurate assessments of lesion size or boundaries during procedures. As induced thermal lesion size can vary considerably from patient to patient, the current lack of real-time feedback during RFA procedures is troublesome. We have developed a technique for real-time monitoring of thermal lesion size during RFA procedures utilizing acoustic radiation force impulse (ARFI) imaging. In both ex vivo and in vivo tissues, ARFI imaging provided better thermal lesion contrast and better overall appreciation for lesion size and boundaries relative to conventional sonography. The thermal safety of ARFI imaging for use at clinically realistic depths was also verified through the use of finite element method models. As ARFI imaging is implemented entirely on a diagnostic ultrasound scanner, it is a convenient, inexpensive, and promising modality for monitoring RFA procedures in vivo.
Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma.
Olsen, J; Themstrup, L; De Carvalho, N; Mogensen, M; Pellacani, G; Jemec, G B E
2016-12-01
Early diagnosis of non-melanoma skin cancer (NMSC) is potentially possible using optical coherence tomography (OCT) which provides non-invasive, real-time images of skin with micrometre resolution and an imaging depth of up to 2mm. OCT technology for skin imaging has undergone significant developments, improving image quality substantially. The diagnostic accuracy of any method is influenced by continuous technological development making it necessary to regularly re-evaluate methods. The objective of this study is to estimate the diagnostic accuracy of OCT in basal cell carcinomas (BCC) and actinic keratosis (AK) as well as differentiating these lesions from normal skin. A study set consisting of 142 OCT images meeting selection criterea for image quality and diagnosis of AK, BCC and normal skin was presented uniformly to two groups of blinded observers: 5 dermatologists experienced in OCT-image interpretation and 5 dermatologists with no experience in OCT. During the presentation of the study set the observers filled out a standardized questionnaire regarding the OCT diagnosis. Images were captured using a commercially available OCT machine (Vivosight ® , Michelson Diagnostics, UK). Skilled OCT observers were able to diagnose BCC lesions with a sensitivity of 86% to 95% and a specificity of 81% to 98%. Skilled observers with at least one year of OCT-experience showed an overall higher diagnostic accuracy compared to inexperienced observers. The study shows an improved diagnostic accuracy of OCT in differentiating AK and BCC from healthy skin using state-of-the-art technology compared to earlier OCT technology, especially concerning BCC diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Marin, Jennifer R; Mills, Angela M
2015-12-01
The 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization" was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging use and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified before the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with the planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were a total of 164 individuals involved in the conference and spanned various specialties, including general emergency medicine, pediatric emergency medicine, radiology, surgery, medical physics, and the decision sciences.
Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations | Office of Cancer Genomics
The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway.
Digital Pathology: Data-Intensive Frontier in Medical Imaging
Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.
2013-01-01
Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166
Stationary intraoral tomosynthesis for dental imaging
NASA Astrophysics Data System (ADS)
Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto
2017-03-01
Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaf, S.; APS Engineering Support Division
A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.
Lee, Edward Y; Jenkins, Kathy J; Muneeb, Muhammad; Marshall, Audrey C; Tracy, Donald A; Zurakowski, David; Boiselle, Phillip M
2013-08-01
One of the important benefits of using multidetector computed tomography (MDCT) is its capability to generate high-quality two-dimensional (2-D) multiplanar (MPR) and three-dimensional (3-D) images from volumetric and isotropic axial CT data. However, to the best of our knowledge, no results have been published on the potential diagnostic role of multiplanar and 3-D volume-rendered (VR) images in detecting pulmonary vein stenosis, a condition in which MDCT has recently assumed a role as the initial noninvasive imaging modality of choice. The purpose of this study was to compare diagnostic accuracy and interpretation time of axial, multiplanar and 3-D VR images for detection of proximal pulmonary vein stenosis in children, and to assess the potential added diagnostic value of multiplanar and 3-D VR images. We used our hospital information system to identify all consecutive children (< 18 years of age) with proximal pulmonary vein stenosis who had both a thoracic MDCT angiography study and a catheter-based conventional angiography within 2 months from June 2005 to February 2012. Two experienced pediatric radiologists independently reviewed each MDCT study for the presence of proximal pulmonary vein stenosis defined as ≥ 50% of luminal narrowing on axial, multiplanar and 3-D VR images. Final diagnosis was confirmed by angiographic findings. Diagnostic accuracy was compared using the z-test. Confidence level of diagnosis (scale 1-5, 5 = highest), perceived added diagnostic value (scale 1-5, 5 = highest), and interpretation time of multiplanar or 3-D VR images were compared using paired t-tests. Interobserver agreement was measured using the chance-corrected kappa coefficient. The final study population consisted of 28 children (15 boys and 13 girls; mean age: 5.2 months). Diagnostic accuracy based on 116 individual pulmonary veins for detection of proximal pulmonary vein stenosis was 72.4% (84 of 116) for axial MDCT images, 77.5% (90 of 116 cases) for multiplanar MDCT images, and 93% (108 of 116 cases) for 3-D VR images with significantly higher accuracy with 3-D VR compared to axial (z = 4.17, P < 0.001) and multiplanar (z = 3.34, P < 0.001) images. Confidence levels for detection of proximal pulmonary vein stenosis were significantly higher with 3-D VR images (mean level: 4.6) compared to axial MDCT images (mean level: 1.7) and multiplanar MDCT images (mean level: 2.0) (paired t-tests, P < 0.001). Thus, 3-D VR images (mean added diagnostic value: 4.7) were found to provide added diagnostic value for detecting proximal pulmonary vein stenosis (paired t-test, P < 0.001); however, multiplanar MDCT images did not provide added value (paired t-test, P = 0.89). Interpretation time was significantly longer and interobserver agreement was higher when using 3-D VR images than using axial MDCT images or MPR MDCT images for diagnosing proximal pulmonary vein stenosis (paired t-tests, P < 0.001). Use of 3-D VR images in the diagnosis of proximal pulmonary vein stenosis in children significantly increases accuracy, confidence level, added diagnostic value and interobserver agreement. Thus, the routine use of this technique should be encouraged despite its increased interpretation time.
Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X
2014-01-01
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.
Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne
2016-06-01
The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen
2017-01-01
The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P < 0.05). Readers have higher diagnostic confidence based on the UHRCT images than of CHRCT images (P<0.05). The follow-up recommendations were significantly different between UHRCT and CHRCT images (P<0.05). Compared with the surgical pathological findings, UHRCT had a relative higher diagnostic accuracy than CHRCT (P > 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period. PMID:28231320
Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.
Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei
2011-02-01
The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.
Tontini, Gian Eugenio; Vecchi, Maurizio; Pastorelli, Luca; Neurath, Markus F; Neumann, Helmut
2015-01-01
Distinction between Crohn’s disease of the colon-rectum and ulcerative colitis or inflammatory bowel disease (IBD) type unclassified can be of pivotal importance for a tailored clinical management, as each entity often involves specific therapeutic strategies and prognosis. Nonetheless, no gold standard is available and the uncertainty of diagnosis may frequently lead to misclassification or repeated examinations. Hence, we have performed a literature search to address the problem of differential diagnosis in IBD colitis, revised current and emerging diagnostic tools and refined disease classification strategies. Nowadays, the differential diagnosis is an untangled issue, and the proper diagnosis cannot be reached in up to 10% of patients presenting with IBD colitis. This topic is receiving emerging attention, as medical therapies, surgical approaches and leading prognostic outcomes require more and more disease-specific strategies in IBD patients. The optimization of standard diagnostic approaches based on clinical features, biomarkers, radiology, endoscopy and histopathology appears to provide only marginal benefits. Conversely, emerging diagnostic techniques in the field of gastrointestinal endoscopy, molecular pathology, genetics, epigenetics, metabolomics and proteomics have already shown promising results. Novel advanced endoscopic imaging techniques and biomarkers can shed new light for the differential diagnosis of IBD, better reflecting diverse disease behaviors based on specific pathogenic pathways. PMID:25574078
Welk, Blayne; Liu, Kuan; Al-Jaishi, Ahmed; McArthur, Eric; Jain, Arsh K; Ordon, Michael
2016-01-01
Health information exchange systems can link the results of diagnostic imaging tests across hospitals and geographic areas. One of the potential benefits of these systems is a reduction in imaging studies ordered by physicians who do not know about or have access to the previous imaging results. We used administrative data from Ontario, Canada (from the year 2013), to measure how frequently the same cross-sectional imaging study is repeated in a patient. Overall, 12.8% of the specified imaging tests were repeated within 90 days. An area of Southwestern Ontario with a health information exchange system for diagnostic imaging tests had a 13% lower rate of repeat cross-sectional imaging compared with the rest of the province (11.2 vs 12.8%, p < 0.01). The use of linked radiology systems may be able to reduce the number of repeated imaging tests and improve patient safety and hospital efficiency.
The added clinical and economic value of diagnostic testing for epilepsy surgery.
Hinde, Sebastian; Soares, Marta; Burch, Jane; Marson, Anthony; Woolacott, Nerys; Palmer, Stephen
2014-05-01
The costs, benefits and risks associated with diagnostic imaging investigations for epilepsy surgery necessitate the identification of an optimal pathway in the pre-surgical workup. In order to assess the added value of additional investigations a full cost-effectiveness evaluation should be conducted, taking into account all of the life-time costs and benefits associated with undertaking additional investigations. This paper considers and applies the appropriate framework against which a full evaluation should be assessed. We conducted a systematic review to evaluate the progression of the literature through this framework, finding that only isolated elements of added value have been appropriately evaluated. The results from applying the full added value framework are also presented, identifying an optimal strategy for pre-surgical evaluation for temporal lobe epilepsy surgery. Our results suggest that additional FDG-PET and invasive EEG investigations after an initially discordant MRI and video-EEG appears cost-effective, and that the value of subsequent invasive-EEGs is closely linked to the maintenance of longer-term benefits after surgery. It is integral to the evaluation of imaging technologies in the work-up for epilepsy surgery that the impact of the use of these technologies on clinical decision-making, and on further treatment decisions, is considered fully when informing cost-effectiveness. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Hamad, Islam; Al-Hanbali, Othman; Hunter, A Christy; Rutt, Kenneth J; Andresen, Thomas L; Moghimi, S Moein
2010-11-23
Nanoparticles with surface projected polyethyleneoxide (PEO) chains in "mushroom-brush" and "brush" configurations display stealth properties in systemic circulation and have numerous applications in site-specific targeting for controlled drug delivery and release as well as diagnostic imaging. We report on the "structure-activity" relationship pertaining to surface-immobilized PEO of various configurations on model nanoparticles, and the initiation of complement cascade, which is the most ancient component of innate human immunity, and its activation may induce clinically significant adverse reactions in some individuals. Conformational states of surface-projected PEO chains, arising from the block copolymer poloxamine 908 adsorption, on polystyrene nanoparticles trigger complement activation differently. Alteration of copolymer architecture on nanospheres from mushroom to brush configuration not only switches complement activation from C1q-dependent classical to lectin pathway but also reduces the level of generated complement activation products C4d, Bb, C5a, and SC5b-9. Also, changes in adsorbed polymer configuration trigger alternative pathway activation differently and through different initiators. Notably, the role for properdin-mediated activation of alternative pathway was only restricted to particles displaying PEO chains in a transition mushroom-brush configuration. Since nanoparticle-mediated complement activation is of clinical concern, our findings provide a rational basis for improved surface engineering and design of immunologically safer stealth and targetable nanosystems with polymers for use in clinical medicine.
Varieties of preschool hyperactivity: multiple pathways from risk to disorder.
Sonuga-Barke, Edmund J S; Auerbach, Judith; Campbell, Susan B; Daley, David; Thompson, Margaret
2005-03-01
In this paper we examine the characteristics of preschool attention deficit hyperactivity disorder (ADHD) from both mental disorder and developmental psychopathology points of view. The equivalence of preschool and school-aged hyperactivity as a behavioral dimension is highlighted together with the potential value of extending the use of the ADHD diagnostic category to the preschool period where these behaviours take an extreme and impairing form (assuming age appropriate diagnostic items and thresholds can be developed). At the same time, the importance of identifying pathways between risk and later ADHD is emphasized. Developmental discontinuity and heterogeneity are identified as major characteristics of these pathways. We argue that models that distinguish among different developmental types of early-emerging problems are needed. An illustrative taxonomy of four developmental pathways implicating preschool hyperactivity is presented to provide a framework for future research.
Brizmohun Appayya, Mrishta; Adshead, Jim; Ahmed, Hashim U; Allen, Clare; Bainbridge, Alan; Barrett, Tristan; Giganti, Francesco; Graham, John; Haslam, Phil; Johnston, Edward W; Kastner, Christof; Kirkham, Alexander P S; Lipton, Alexandra; McNeill, Alan; Moniz, Larissa; Moore, Caroline M; Nabi, Ghulam; Padhani, Anwar R; Parker, Chris; Patel, Amit; Pursey, Jacqueline; Richenberg, Jonathan; Staffurth, John; van der Meulen, Jan; Walls, Darren; Punwani, Shonit
2018-07-01
To identify areas of agreement and disagreement in the implementation of multi-parametric magnetic resonance imaging (mpMRI) of the prostate in the diagnostic pathway. Fifteen UK experts in prostate mpMRI and/or prostate cancer management across the UK (involving nine NHS centres to provide for geographical spread) participated in a consensus meeting following the Research and Development Corporation and University of California-Los Angeles (UCLA-RAND) Appropriateness Method, and were moderated by an independent chair. The experts considered 354 items pertaining to who can request an mpMRI, prostate mpMRI protocol, reporting guidelines, training, quality assurance (QA) and patient management based on mpMRI levels of suspicion for cancer. Each item was rated for agreement on a 9-point scale. A panel median score of ≥7 constituted 'agreement' for an item; for an item to reach 'consensus', a panel majority scoring was required. Consensus was reached on 59% of items (208/354); these were used to provide recommendations for the implementation of prostate mpMRI in the UK. Key findings include prostate mpMRI requests should be made in consultation with the urological team; mpMRI scanners should undergo QA checks to guarantee consistently high diagnostic quality scans; scans should only be reported by trained and experienced radiologists to ensure that men with unsuspicious prostate mpMRI might consider avoiding an immediate biopsy. Our consensus statements demonstrate a set of criteria that are required for the practical dissemination of consistently high-quality prostate mpMRI as a diagnostic test before biopsy in men at risk. © 2018 The Authors BJU International published by John Wiley & Sons Ltd on behalf of BJU International.
Diagnostic value of imaging in infective endocarditis: a systematic review.
Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu
2017-01-01
Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studies on the foundation and development of diagnostic ultrasound
Wagai, Toshio
2007-01-01
In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150
Hanson, Christy; Osberg, Mike; Brown, Jessie; Durham, George; Chin, Daniel P
2017-11-06
Despite significant progress in diagnosis and treatment of tuberculosis over the past 2 decades, millions of patients with tuberculosis go unreported every year. The patient-pathway analysis (PPA) is designed to assess the alignment between tuberculosis care-seeking patterns and the availability of tuberculosis services. The PPA can help programs understand where they might find the missing patients with tuberculosis. This analysis aggregates and compares the PPAs from case studies in Kenya, Ethiopia, Indonesia, the Philippines, and Pakistan. Across the 5 countries, 24% of patients with tuberculosis initiated care seeking in a facility with tuberculosis diagnostic capacity. Forty-two percent of patients sought care at level 0 facilities, where there was generally no tuberculosis diagnostic capacity; another 42% of patients sought care at level 1 facilities, of which 39% had diagnostic capacity. Sixty-six percent of patients initially sought care in private facilities, which had considerably less tuberculosis diagnostic capacity than public facilities; only 7% of notified cases were from the private sector. The GeneXpert system was available in 14%-41% of level 2 facilities in the 3 countries for which there were data. Tuberculosis treatment capacity tracked closely with the availability of diagnostic capacity. There were substantial subnational differences in care-seeking patterns and service availability. The PPA can be a valuable planning and programming tool to ensure that diagnostic and treatment services are available to patients where they seek care. Patient-centered care will require closing the diagnostic gap and engaging the private sector. Extensive subnational differences in patient pathways to care call for differentiated approaches to patient-centered care. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Hanson, Christy; Osberg, Mike; Brown, Jessie; Durham, George; Chin, Daniel P
2017-01-01
Abstract Background Despite significant progress in diagnosis and treatment of tuberculosis over the past 2 decades, millions of patients with tuberculosis go unreported every year. The patient-pathway analysis (PPA) is designed to assess the alignment between tuberculosis care-seeking patterns and the availability of tuberculosis services. The PPA can help programs understand where they might find the missing patients with tuberculosis. Methods This analysis aggregates and compares the PPAs from case studies in Kenya, Ethiopia, Indonesia, the Philippines, and Pakistan. Results Across the 5 countries, 24% of patients with tuberculosis initiated care seeking in a facility with tuberculosis diagnostic capacity. Forty-two percent of patients sought care at level 0 facilities, where there was generally no tuberculosis diagnostic capacity; another 42% of patients sought care at level 1 facilities, of which 39% had diagnostic capacity. Sixty-six percent of patients initially sought care in private facilities, which had considerably less tuberculosis diagnostic capacity than public facilities; only 7% of notified cases were from the private sector. The GeneXpert system was available in 14%–41% of level 2 facilities in the 3 countries for which there were data. Tuberculosis treatment capacity tracked closely with the availability of diagnostic capacity. There were substantial subnational differences in care-seeking patterns and service availability. Discussion The PPA can be a valuable planning and programming tool to ensure that diagnostic and treatment services are available to patients where they seek care. Patient-centered care will require closing the diagnostic gap and engaging the private sector. Extensive subnational differences in patient pathways to care call for differentiated approaches to patient-centered care. PMID:29117351
Yeghiazaryan, Kristina; Schild, Hans H.; Golubnitschaja, Olga
2013-01-01
Aims Nephropathy is the leading secondary complication of metabolic syndrome. Nutritional supplement by chromium-picolinate is assumed to have renoprotective effects. However, potential toxic effects reported increase concerns about safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm individual oucomes through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. Methods The study was performed in a double-blind manner. Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium-picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using “Comet Assay”-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to get insights into central detoxification and cell-cycle regulating pathways under treatment conditions. Results Experimental data revealed highly individual reaction under treatment conditions. Highest variability of DNA-damage was monitored under prolonged treatment with high dosage of CrPic. Expression patterns demonstrated a correlation with subcellular imaging and dosage-dependent suppression under chromium-picolinate treatment. Interpretation and recommendations Population at-risk for diabetes is huge and increasing in pandemic scale. One of the reasons might be the failed attempt to prevent the disease by application of artificial supplements and drugs with hardly recognised individual risks. Consequently, a multimodal approach of integrative medicine by predictive diagnostics, targeted prevention and individually created treatment algorithms is highly desirable. PMID:23017160
Mass spectrometry-based metabolomics: applications to biomarker and metabolic pathway research.
Zhang, Aihua; Sun, Hui; Yan, Guangli; Wang, Ping; Wang, Xijun
2016-01-01
Mass spectrometry-based metabolomics has become increasingly popular in molecular medicine. High-definition mass spectrometry (MS), coupled with pattern recognition methods, have been carried out to obtain comprehensive metabolite profiling and metabolic pathway of large biological datasets. This sets the scene for a new and powerful diagnostic approach. Analysis of the key metabolites in body fluids has become an important part of improving disease diagnosis. With technological advances in analytical techniques, the ability to measure low-molecular-weight metabolites in bio-samples provides a powerful platform for identifying metabolites that are uniquely correlated with a specific human disease. MS-based metabolomics can lead to enhanced understanding of disease mechanisms and to new diagnostic markers and has a strong potential to contribute to improving early diagnosis of diseases. This review will highlight the importance and benefit with certain characteristic examples of MS-metabolomics for identifying metabolic pathways and metabolites that accurately screen for potential diagnostic biomarkers of diseases. Copyright © 2015 John Wiley & Sons, Ltd.
PROPELLER technique to improve image quality of MRI of the shoulder.
Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A
2011-12-01
The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.
Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S
2016-12-01
High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Fourier domain image fusion for differential X-ray phase-contrast breast imaging.
Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne
2017-04-01
X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.
O'Flynn, Elizabeth A M; Blackledge, Matthew; Collins, David; Downey, Katherine; Doran, Simon; Patel, Hardik; Dumonteil, Sam; Mok, Wing; Leach, Martin O; Koh, Dow-Mu
2016-07-01
To evaluate the diagnostic sensitivity of computed diffusion-weighted (DW)-MR imaging for the detection of breast cancer. Local research ethics approval was obtained. A total of 61 women (median 48 years) underwent dynamic contrast enhanced (DCE)- and DW-MR between January 2011 and March 2012, including 27 with breast cancer on core biopsy and 34 normal cases. Standard ADC maps using all four b values (0, 350, 700, 1150) were used to generate computed DW-MR images at b = 1500 s/mm(2) and b = 2000 s/mm(2) . Four image sets were read sequentially by two readers: acquired b = 1150 s/mm(2) , computed b = 1500 s/mm(2) and b = 2000 s/mm(2) , and DCE-MR at an early time point. Cancer detection was rated using a five-point scale; image quality and background suppression were rated using a four-point scale. The diagnostic sensitivity for breast cancer detection was compared using the McNemar test and inter-reader agreement with a Kappa value. Computed DW-MR resulted in higher overall diagnostic sensitivity with b = 2000 s/mm(2) having a mean diagnostic sensitivity of 76% (range 49.8-93.7%) and b = 1500 s/mm(2) having a mean diagnostic sensitivity of 70.3% (range 32-97.7%) compared with 44.4% (range 25.5-64.7%) for acquired b = 1150 s/mm(2) (both p = 0.0001). Computed DW-MR images produced better image quality and background suppression (mean scores for both readers: 2.55 and 2.9 for b 1500 s/mm(2) ; 2.55 and 3.15 for b 2000 s/mm(2) , respectively) than the acquired b value 1150 s/mm(2) images (mean scores for both readers: 2.4 and 2.45, respectively). Computed DW-MR imaging has the potential to improve the diagnostic sensitivity of breast cancer detection compared to acquired DW-MR. J. Magn. Reson. Imaging 2016;44:130-137. © 2016 Wiley Periodicals, Inc.
Development of companion diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; ...
2015-12-12
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of companion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of Companion Diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.
2016-01-01
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857
WE-AB-206-00: Diagnostic QA/QC Hands-On Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Application of content-based image compression to telepathology
NASA Astrophysics Data System (ADS)
Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace
2002-05-01
Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.
[Diagnostic imaging and acute abdominal pain].
Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob
2015-01-19
Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.
Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Hall, Elise Munz
2017-06-01
Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.
Method and apparatus for holographic wavefront diagnostics
Toeppen, J.S.
1995-04-25
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.
Method and apparatus for holographic wavefront diagnostics
Toeppen, John S.
1995-01-01
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.
Thermal image analysis using the serpentine method
NASA Astrophysics Data System (ADS)
Koprowski, Robert; Wilczyński, Sławomir
2018-03-01
Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.
Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert; Buonomo, Carlo; Taylor, George A
2016-05-01
Enteric contrast media are commonly administered for diagnostic cross-sectional imaging studies in the pediatric population. The purpose of this manuscript is to review the use of enteric contrast media for CT, MRI, and ultrasound in infants, children, and adolescents and to share our experiences at a large tertiary care pediatric teaching hospital. The use of enteric contrast material for diagnostic imaging in infants and children continues to evolve with advances in imaging technology and available enteric contrast media. Many principles of enteric contrast use in pediatric imaging are similar to those in adult imaging, but important differences must be kept in mind when imaging the gastrointestinal tract in infants and children, and practical ways to optimize the imaging examination and the patient experience should be employed where possible.
Morsbach, Fabian; Gordic, Sonja; Desbiolles, Lotus; Husarik, Daniela; Frauenfelder, Thomas; Schmidt, Bernhard; Allmendinger, Thomas; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian
2014-08-01
To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. • CCTA is feasible with the turbo high-pitch mode. • Turbo high-pitch CCTA provides diagnostic image quality up to 73 bpm. • The radiation dose of high-pitch CCTA is 0.6 mSv on average.
Advanced Imaging Utilization Trends in Privately Insured Patients From 2007 to 2013.
Horný, Michal; Burgess, James F; Cohen, Alan B
2015-12-01
The aim of the study was to investigate whether the increase in utilization of advanced diagnostic imaging for privately insured patients in 2011 was the beginning of a new trend in imaging utilization growth, or an isolated deviation from the declining trend that began in 2008. We extracted outpatient and inpatient CT, diagnostic ultrasound, MRI, and PET procedures from databases, for the years 2007 to 2013. This study extended previous work, covering 2012 to 2013, using the same methodology. For every year of the study period, we calculated the following: number of procedures per person-year covered by private health insurance; proportion of office and emergency visits that resulted in an imaging session; average payments per procedure; and total payments per person-year covered by private health insurance. Outpatient utilization of CT and PET decreased in both 2012 and 2013; outpatient utilization of MRI mildly increased in 2012, but then decreased in 2013. Outpatient utilization of diagnostic ultrasound showed a very different pattern, increasing throughout the study period. Inpatient utilization of all imaging modalities except PET decreased in both 2012 and 2013. Adjusted payments for all imaging modalities increased in 2012, and then dropped substantially in 2013, except the adjusted payments for diagnostic ultrasound that increased in 2013 again. The trend of increasing utilization of advanced diagnostic imaging seems to be over for some, but not all, imaging modalities. A combination of policy (eg, breast density notification laws), technologic advancement, and wider access seems to be responsible for at least part of an increasing utilization of diagnostic ultrasound. Copyright © 2015 American College of Radiology. All rights reserved.
Update in adrenocortical carcinoma.
Fassnacht, Martin; Kroiss, Matthias; Allolio, Bruno
2013-12-01
Adrenocortical carcinoma (ACC) is an orphan malignancy that has attracted increasing attention during the last decade. Here we provide an update on advances in the field since our last review published in this journal in 2006. The Wnt/β-catenin pathway and IGF-2 signaling have been confirmed as frequently altered signaling pathways in ACC, but recent data suggest that they are probably not sufficient for malignant transformation. Thus, major players in the pathogenesis are still unknown. For diagnostic workup, comprehensive hormonal assessment and detailed imaging are required because in most ACCs, evidence for autonomous steroid secretion can be found and computed tomography or magnetic resonance imaging (if necessary, combined with functional imaging) can differentiate benign from malignant adrenocortical tumors. Surgery is potentially curative in localized tumors. Thus, we recommend a complete resection including lymphadenectomy by an expert surgeon. The pathology report should demonstrate the adrenocortical origin of the lesion (eg, by steroidogenic factor 1 staining) and provide Weiss score, resection status, and quantitation of the proliferation marker Ki67 to guide further treatment. Even after complete surgery, recurrence is frequent and adjuvant mitotane treatment improves outcome, but uncertainty exists as to whether all patients benefit from this therapy. In advanced ACC, mitotane is still the standard of care. Based on the FIRM-ACT trial, mitotane plus etoposide, doxorubicin, and cisplatin is now the established first-line cytotoxic therapy. However, most patients will experience progress and require salvage therapies. Thus, new treatment concepts are urgently needed. The ongoing international efforts including comprehensive "-omic approaches" and next-generation sequencing will improve our understanding of the pathogenesis and hopefully lead to better therapies.
Azuara-Blanco, Augusto; Banister, Katie; Boachie, Charles; McMeekin, Peter; Gray, Joanne; Burr, Jennifer; Bourne, Rupert; Garway-Heath, David; Batterbury, Mark; Hernández, Rodolfo; McPherson, Gladys; Ramsay, Craig; Cook, Jonathan
2016-01-01
Many glaucoma referrals from the community to hospital eye services are unnecessary. Imaging technologies can potentially be useful to triage this population. To assess the diagnostic performance and cost-effectiveness of imaging technologies as triage tests for identifying people with glaucoma. Within-patient comparative diagnostic accuracy study. Markov economic model comparing the cost-effectiveness of a triage test with usual care. Secondary care. Adults referred from the community to hospital eye services for possible glaucoma. Heidelberg Retinal Tomography (HRT), including two diagnostic algorithms, glaucoma probability score (HRT-GPS) and Moorfields regression analysis (HRT-MRA); scanning laser polarimetry [glaucoma diagnostics (GDx)]; and optical coherence tomography (OCT). The reference standard was clinical examination by a consultant ophthalmologist with glaucoma expertise including visual field testing and intraocular pressure (IOP) measurement. (1) Diagnostic performance of imaging, using data from the eye with most severe disease. (2) Composite triage test performance (imaging test, IOP measurement and visual acuity measurement), using data from both eyes, in correctly identifying clinical management decisions, that is 'discharge' or 'do not discharge'. Outcome measures were sensitivity, specificity and incremental cost per quality-adjusted life-year (QALY). Data from 943 of 955 participants were included in the analysis. The average age was 60.5 years (standard deviation 13.8 years) and 51.1% were females. Glaucoma was diagnosed by the clinician in at least one eye in 16.8% of participants; 37.9% of participants were discharged after the first visit. Regarding diagnosing glaucoma, HRT-MRA had the highest sensitivity [87.0%, 95% confidence interval (CI) 80.2% to 92.1%] but the lowest specificity (63.9%, 95% CI 60.2% to 67.4%) and GDx had the lowest sensitivity (35.1%, 95% CI 27.0% to 43.8%) but the highest specificity (97.2%, 95% CI 95.6% to 98.3%). HRT-GPS had sensitivity of 81.5% (95% CI 73.9% to 87.6%) and specificity of 67.7% (95% CI 64.2% to 71.2%) and OCT had sensitivity of 76.9% (95% CI 69.2% to 83.4%) and specificity of 78.5% (95% CI 75.4% to 81.4%). Regarding triage accuracy, triage using HRT-GPS had the highest sensitivity (86.0%, 95% CI 82.8% to 88.7%) but the lowest specificity (39.1%, 95% CI 34.0% to 44.5%), GDx had the lowest sensitivity (64.7%, 95% CI 60.7% to 68.7%) but the highest specificity (53.6%, 95% CI 48.2% to 58.9%). Introducing a composite triage station into the referral pathway to identify appropriate referrals was cost-effective. All triage strategies resulted in a cost reduction compared with standard care (consultant-led diagnosis) but with an associated reduction in effectiveness. GDx was the least costly and least effective strategy. OCT and HRT-GPS were not cost-effective. Compared with GDx, the cost per QALY gained for HRT-MRA is £22,904. The cost per QALY gained with current practice is £156,985 compared with HRT-MRA. Large savings could be made by implementing HRT-MRA but some benefit to patients will be forgone. The results were sensitive to the triage costs. Automated imaging can be effective to aid glaucoma diagnosis among individuals referred from the community to hospital eye services. A model of care using a triage composite test appears to be cost-effective. There are uncertainties about glaucoma progression under routine care and the cost of providing health care. The acceptability of implementing a triage test needs to be explored. The National Institute for Health Research Health Technology Assessment programme.
NASA Astrophysics Data System (ADS)
Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.
1986-06-01
In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.
Crowell, Michael S; Dedekam, Erik A; Johnson, Michael R; Dembowski, Scott C; Westrick, Richard B; Goss, Donald L
2016-10-01
While advanced diagnostic imaging is a large contributor to the growth in health care costs, direct-access to physical therapy is associated with decreased rates of diagnostic imaging. No study has systematically evaluated with evidence-based criteria the appropriateness of advanced diagnostic imaging, including magnetic resonance imaging (MRI), when ordered by physical therapists. The primary purpose of this study was to describe the appropriateness of magnetic resonance imaging (MRI) or magnetic resonance arthrogram (MRA) exams ordered by physical therapists in a direct-access sports physical therapy clinic. Retrospective observational study of practice. Greater than 80% of advanced diagnostic imaging orders would have an American College of Radiology (ACR) Appropriateness Criteria rating of greater than 6, indicating an imaging order that is usually appropriate. A 2-year retrospective analysis identified 108 MRI/MRA examination orders from four physical therapists. A board-certified radiologist determined the appropriateness of each order based on ACR appropriateness criteria. The principal investigator and co-investigator radiologist assessed agreement between the clinical diagnosis and MRI/surgical findings. Knee (31%) and shoulder (25%) injuries were the most common. Overall, 55% of injuries were acute. The mean ACR rating was 7.7; scores from six to nine have been considered appropriate orders and higher ratings are better. The percentage of orders complying with ACR appropriateness criteria was 83.2%. Physical therapist's clinical diagnosis was confirmed by MRI/MRA findings in 64.8% of cases and was confirmed by surgical findings in 90% of cases. Physical therapists providing musculoskeletal primary care in a direct-access sports physical therapy clinic appropriately ordered advanced diagnostic imaging in over 80% of cases. Future research should prospectively compare physical therapist appropriateness and utilization to other groups of providers and explore the effects of physical therapist imaging privileging on outcomes. Diagnosis, Level 3.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki
2010-03-01
Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Ni, X-G; Zhang, Q-Q; Wang, G-Q
2016-11-01
This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.
Drowning stars: Reassessing the role of astrocytes in brain edema
Thrane, Alexander S.; Thrane, Vinita Rangroo; Nedergaard, Maiken
2014-01-01
Edema formation frequently complicates brain infarction, tumors and trauma. Despite the significant mortality of this condition, current treatment options are often ineffective or incompletely understood. Recent studies have revealed the existence of a brain-wide paravascular pathway for cerebrospinal (CSF) and interstitial fluid (ISF) exchange. The current review critically examines the contribution of this ‘glymphatic’ system to the main types of brain edema. We propose that in cytotoxic edema, energy depletion enhances glymphatic CSF influx, whilst suppressing ISF efflux. We also argue that paravascular inflammation or ‘paravasculitis’ plays a critical role in vasogenic edema. Finally, recent advances in diagnostic imaging of glymphatic function may hold the key to defining the edema profile of individual patients and thus enable more targeted therapy. PMID:25236348
Fitzgerald, Rebecca C
2015-06-01
Early diagnosis is an important strategy to improve outcomes from cancer. Oesophageal adenocarcinoma is an example of a cancer that presents late, with very poor outcomes, and for which the presence of the precursor lesion Barrett's oesophagus provides the opportunity to intervene at an early stage. In this review, I describe the challenges in the field and the work that we have done to devise a conceptually novel approach to early diagnosis, using a cell collection device (Cytosponge), coupled with molecular assays. This is a personal perspective in which I also describe the career pathway that led me into academic gastroenterology, and the rewards and challenges of translational research in molecular diagnostics. There are fantastic opportunities for clinicians wishing to pursue academic medicine, because it is a time when massive strides are being made in a whole number of areas; for example: imaging, sequencing technology and targeted therapies. Clinicians who can straddle the laboratory and the clinic are essential, to maximise the progress that can be made for the benefit of patients.
Adrenal Mass Causing Secondary Hypertension.
Robinson, Darlene Y
2015-11-01
Most hypertensive patients have essential (primary) hypertension; only 5% to 10% have a secondary cause. Two clinical characteristics suggestive of secondary hypertension are early onset (< 30 years of age) and severe hypertension (>180/110 mm Hg). When faced with these findings, clinicians should consider a secondary cause of hypertension. A 22-year-old woman being evaluated for asthma exacerbation in the emergency department was noted to have severe persistent hypertension. Additional evaluation revealed severe hypokalemia, metabolic alkalosis, and hypernatremia. The patient was admitted to the hospital for blood pressure management, electrolyte replacement, and further evaluation of presumed hyperaldosteronism. Diagnostic imaging revealed a large adrenal mass. Surgical resection was performed, leading to a diagnosis of hyperaldosteronism caused by adrenal carcinoma. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Secondary hypertension is far less common than essential hypertension; however, considering the large volume of patients seen in emergency departments, it is likely that some will have secondary hypertension. Emergency physicians should be aware of the clinical characteristics that suggest secondary hypertension so that the appropriate diagnostic and treatment pathways can be pursued. Copyright © 2015 Elsevier Inc. All rights reserved.
Thermal imaging diagnostics of high-current electron beams.
Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D
2012-10-01
The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.
Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics
Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Schiff, Steven J.; Boyden, Edward S.; Khademhosseini, Ali
2017-01-01
Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers. PMID:29062977
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions
NASA Technical Reports Server (NTRS)
Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina
2002-01-01
OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.
Clinical-Radiologic Correlation of Extraocular Eye Movement Disorders: Seeing beneath the Surface.
Thatcher, Joshua; Chang, Yu-Ming; Chapman, Margaret N; Hovis, Keegan; Fujita, Akifumi; Sobel, Rachel; Sakai, Osamu
2016-01-01
Extraocular eye movement disorders are relatively common and may be a significant source of discomfort and morbidity for patients. The presence of restricted eye movement can be detected clinically with quick, easily performed, noninvasive maneuvers that assess medial, lateral, upward, and downward gaze. However, detecting the presence of ocular dysmotility may not be sufficient to pinpoint the exact cause of eye restriction. Imaging plays an important role in excluding, in some cases, and detecting, in others, a specific cause responsible for the clinical presentation. However, the radiologist should be aware that the imaging findings in many of these conditions when taken in isolation from the clinical history and symptoms are often nonspecific. Normal eye movements are directly controlled by the ocular motor cranial nerves (CN III, IV, and VI) in coordination with indirect input or sensory stimuli derived from other cranial nerves. Specific causes of ocular dysmotility can be localized to the cranial nerve nuclei in the brainstem, the cranial nerve pathways in the peripheral nervous system, and the extraocular muscles in the orbit, with disease at any of these sites manifesting clinically as an eye movement disorder. A thorough understanding of central nervous system anatomy, cranial nerve pathways, and orbital anatomy, as well as familiarity with patterns of eye movement restriction, are necessary for accurate detection of radiologic abnormalities that support a diagnostic source of the suspected extraocular movement disorder. © RSNA, 2016.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Takx, Richard A P; Suchá, Dominika; Park, Jakob; Leiner, Tim; Hoffmann, Udo
2015-12-01
To systematically investigate the literature for the influence of sublingual nitroglycerin administration on coronary diameter, the number of evaluable segments, image quality, heart rate and blood pressure, and diagnostic accuracy of coronary computed tomography (CT) angiography. A systematic search was performed in PubMed, EMBASE and Web of Science. The studies were evaluated for the effect of sublingual nitroglycerin on coronary artery diameter, evaluable segments, objective and subjective image quality, systemic physiological effects and diagnostic accuracy. Due to the heterogeneous reporting of outcome measures, a narrative synthesis was applied. Of the 217 studies identified, nine met the inclusion criteria: seven reported on the effect of nitroglycerin on coronary artery diameter, six on evaluable segments, four on image quality, five on systemic physiological effects and two on diagnostic accuracy. Sublingual nitroglycerin administration resulted in an improved evaluation of more coronary segments, in particular, in smaller coronary branches, better image quality and improved diagnostic accuracy. Side effects were mild and were alleviated without medical intervention. Sublingual nitroglycerin improves the coronary diameter, the number of assessable segments, image quality and diagnostic accuracy of coronary CT angiography without major side effects or systemic physiological changes. • Sublingual nitroglycerin administration results in significant coronary artery dilatation. • Nitroglycerin increases the number of evaluable coronary branches. • Image quality is improved the most in smaller coronary branches. • Nitroglycerin increases the diagnostic accuracy of coronary CT angiography. • Most side effects are mild and do not require medical intervention.
Sajn, Luka; Kukar, Matjaž
2011-12-01
The paper presents results of our long-term study on using image processing and data mining methods in a medical imaging. Since evaluation of modern medical images is becoming increasingly complex, advanced analytical and decision support tools are involved in integration of partial diagnostic results. Such partial results, frequently obtained from tests with substantial imperfections, are integrated into ultimate diagnostic conclusion about the probability of disease for a given patient. We study various topics such as improving the predictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature construction and data mining algorithms that significantly outperform medical practice. Our long-term study reveals three significant milestones. The first improvement was achieved by significantly increasing post-test diagnostic probabilities with respect to expert physicians. The second, even more significant improvement utilizes multi-resolution image parametrization. Machine learning methods in conjunction with the feature subset selection on these parameters significantly improve diagnostic performance. However, further feature construction with the principle component analysis on these features elevates results to an even higher accuracy level that represents the third milestone. With the proposed approach clinical results are significantly improved throughout the study. The most significant result of our study is improvement in the diagnostic power of the whole diagnostic process. Our compound approach aids, but does not replace, the physician's judgment and may assist in decisions on cost effectiveness of tests. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
The role of modern diagnostic imaging in diagnosing and differentiating kidney diseases in children.
Maliborski, Artur; Zegadło, Arkadiusz; Placzyńska, Małgorzata; Sopińska, Małgorzata; Lichosik, Marianna; Jobs, Katarzyna
2018-01-01
Urinary tract diseases are in the group of the most commonly diagnosed medical conditions in pediatric patients. Many diseases with different etiologies are accompanied by pain, fever, hematuria, or urinary tract dysfunction. Those most common ones in children are urinary tract infections and congenital malformation. They can also represent tumors or changes caused by systemic diseases. Clinical tests and even more often additional imaging studies are required to make a proper diagnosis of urinary tract diseases. Just a few decades ago urography, cystography or voiding cystourethrography were the main methods in diagnostic imaging of the urinary tract. Today's imaging methods supported by digital radiographic and fluoroscopy systems, high sensitivity detectors with quantum detection, advanced algorithms eliminating motion artifacts, modern medical imaging monitors with a resolution of three or even eight megapixels significantly differ from conventional radiographic methods. The methods that are currently usually performed are: computed tomography, magnetic resonance imaging, isotopic methods and ultrasonography using elastography and new solutions in Doppler imaging. Modern techniques are currently focused on reducing radiation exposure with better imaging capabilities. The development of these techniques became an essential diagnostic aid in nephrological and urological practice. The aim of this paper is to present the latest solutions that are currently used in the diagnostic imaging of urinary tract diseases.
Mahler, Simon A; Burke, Gregory L; Duncan, Pamela W; Case, Larry D; Herrington, David M; Riley, Robert F; Wells, Brian J; Hiestand, Brian C; Miller, Chadwick D
2016-01-22
Most patients presenting to US Emergency Departments (ED) with chest pain are hospitalized for comprehensive testing. These evaluations cost the US health system >$10 billion annually, but have a diagnostic yield for acute coronary syndrome (ACS) of <10%. The history/ECG/age/risk factors/troponin (HEART) Pathway is an accelerated diagnostic protocol (ADP), designed to improve care for patients with acute chest pain by identifying patients for early ED discharge. Prior efficacy studies demonstrate that the HEART Pathway safely reduces cardiac testing, while maintaining an acceptably low adverse event rate. The purpose of this study is to determine the effectiveness of HEART Pathway ADP implementation within a health system. This controlled before-after study will accrue adult patients with acute chest pain, but without ST-segment elevation myocardial infarction on electrocardiogram for two years and is expected to include approximately 10,000 patients. Outcomes measures include hospitalization rate, objective cardiac testing rates (stress testing and angiography), length of stay, and rates of recurrent cardiac care for participants. In pilot data, the HEART Pathway decreased hospitalizations by 21%, decreased hospital length (median of 12 hour reduction), without increasing adverse events or recurrent care. At the writing of this paper, data has been collected on >5000 patient encounters. The HEART Pathway has been fully integrated into health system electronic medical records, providing real-time decision support to our providers. We hypothesize that the HEART Pathway will safely reduce healthcare utilization. This study could provide a model for delivering high-value care to the 8-10 million US ED patients with acute chest pain each year. Clinicaltrials.gov NCT02056964; https://clinicaltrials.gov/ct2/show/NCT02056964 (Archived by WebCite at http://www.webcitation.org/6ccajsgyu).
Vahidnezhad, Hassan; Youssefian, Leila; Uitto, Jouni
2016-01-01
A number of critical signaling pathways are required for homeostatic regulation of cell survival, differentiation, and proliferation during organogenesis. One of them is the PI3K-AKT-mTOR pathway consisting of a cascade of inhibitor/activator molecules. Recently, a number of heritable diseases with skin involvement, manifesting particularly with tissue overgrowth, have been shown to result from mutations in the genes in the PI3K-AKT-mTOR and interacting intracellular pathways. Many of these conditions represent an overlapping spectrum of phenotypic manifestations forming a basis for novel, unifying classifications. Identification of the mutant genes and specific mutations in these patients has implications for diagnostics and genetic counseling and provides a rational basis for the development of novel treatment modalities for this currently intractable group of disorders. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Body-wide anatomy recognition in PET/CT images
NASA Astrophysics Data System (ADS)
Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.
2015-03-01
With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.
Present Practice And Perceived Needs-Managing Diagnostic Images
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.
1982-01-01
With the advent of digital radiography and the installed base of CT, Nuclear Medicine and Ultrasound Scanners numbering in the thousands and the potential of NMR, the market potential for the electronic management of digital images is perhaps one of the most exciting, fastest growing (and most ill defined) fields in medicine today. New technology in optical data storage, electronic transmission, image reproduction, microprocessing, automation and software development provide the promise of a whole new generation of products which will simplify and enhance the diagnostic process (thereby hopefully improving diagnostic accuracy), enable implementation of archival review in a practical sense, expand the availability of diagnostic data and lower the cost/case by at least an order of magnitude.
Klink, Thorsten; Geiger, Julia; Both, Marcus; Ness, Thomas; Heinzelmann, Sonja; Reinhard, Matthias; Holl-Ulrich, Konstanze; Duwendag, Dirk; Vaith, Peter; Bley, Thorsten Alexander
2014-12-01
To assess the diagnostic accuracy of contrast material-enhanced magnetic resonance (MR) imaging of superficial cranial arteries in the initial diagnosis of giant cell arteritis ( GCA giant cell arteritis ). Following institutional review board approval and informed consent, 185 patients suspected of having GCA giant cell arteritis were included in a prospective three-university medical center trial. GCA giant cell arteritis was diagnosed or excluded clinically in all patients (reference standard [final clinical diagnosis]). In 53.0% of patients (98 of 185), temporal artery biopsy ( TAB temporal artery biopsy ) was performed (diagnostic standard [ TAB temporal artery biopsy ]). Two observers independently evaluated contrast-enhanced T1-weighted MR images of superficial cranial arteries by using a four-point scale. Diagnostic accuracy, involvement pattern, and systemic corticosteroid ( sCS systemic corticosteroid ) therapy effects were assessed in comparison with the reference standard (total study cohort) and separately in comparison with the diagnostic standard TAB temporal artery biopsy ( TAB temporal artery biopsy subcohort). Statistical analysis included diagnostic accuracy parameters, interobserver agreement, and receiver operating characteristic analysis. Sensitivity of MR imaging was 78.4% and specificity was 90.4% for the total study cohort, and sensitivity was 88.7% and specificity was 75.0% for the TAB temporal artery biopsy subcohort (first observer). Diagnostic accuracy was comparable for both observers, with good interobserver agreement ( TAB temporal artery biopsy subcohort, κ = 0.718; total study cohort, κ = 0.676). MR imaging scores were significantly higher in patients with GCA giant cell arteritis -positive results than in patients with GCA giant cell arteritis -negative results ( TAB temporal artery biopsy subcohort and total study cohort, P < .001). Diagnostic accuracy of MR imaging was high in patients without and with sCS systemic corticosteroid therapy for 5 days or fewer (area under the curve, ≥0.9) and was decreased in patients receiving sCS systemic corticosteroid therapy for 6-14 days. In 56.5% of patients with TAB temporal artery biopsy -positive results (35 of 62), MR imaging displayed symmetrical and simultaneous inflammation of arterial segments. MR imaging of superficial cranial arteries is accurate in the initial diagnosis of GCA giant cell arteritis . Sensitivity probably decreases after more than 5 days of sCS systemic corticosteroid therapy; thus, imaging should not be delayed. Clinical trial registration no. DRKS00000594 . © RSNA, 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Sophie; Pinto, Frank M; Morin-Ducote, Garnetta
2013-01-01
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADsmore » images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.« less
Vascular applications of contrast-enhanced ultrasound imaging.
Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A
2017-07-01
Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Diagnostic report acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Brooks, Everett G.; Rothman, Melvyn L.
1991-07-01
The Mayo Clinic and IBM Rochester have jointly developed a picture archive and control system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. One of the challenges of developing a useful PACS involves integrating the diagnostic reports with the electronic images so they can be displayed simultaneously. By the time a diagnostic report is generated for a particular case, its images have already been captured and archived by the PACS. To integrate the report with the images, the authors have developed an IBM Personal System/2 computer (PS/2) based diagnostic report acquisition unit (RAU). A typed copy of the report is transmitted via facsimile to the RAU where it is stacked electronically with other reports that have been sent previously but not yet processed. By processing these reports at the RAU, the information they contain is integrated with the image database and a copy of the report is archived electronically on an IBM Application System/400 computer (AS/400). When a user requests a set of images for viewing, the report is automatically integrated with the image data. By using a hot key, the user can toggle on/off the report on the display screen. This report describes process, hardware, and software employed to integrate the diagnostic report information into the PACS, including how the report images are captured, transmitted, and entered into the AS/400 database. Also described is how the archived reports and their associated medical images are located and merged for retrieval and display. The methods used to detect and process error conditions are also discussed.
The Diagnosticity of Color for Emotional Objects
McMenamin, Brenton W.; Radue, Jasmine; Trask, Joanna; Huskamp, Kristin; Kersten, Daniel; Marsolek, Chad J.
2012-01-01
Object classification can be facilitated if simple diagnostic features can be used to determine class membership. Previous studies have found that simple shapes may be diagnostic for emotional content and automatically alter the allocation of visual attention. In the present study, we analyzed whether color is diagnostic of emotional content and tested whether emotionally diagnostic hues alter the allocation of visual attention. Reddish-yellow hues are more common in (i.e., diagnostic of) emotional images, particularly images with positive emotional content. An exogenous cueing paradigm was employed to test whether these diagnostic hues orient attention differently from other hues due to the emotional diagnosticity. In two experiments, we found that participants allocated attention differently to diagnostic hues than to non-diagnostic hues, in a pattern indicating a broadening of spatial attention when cued with diagnostic hues. Moreover, the attentional broadening effect was predicted by self-reported measures of affective style, linking the behavioral effect to emotional processes. These results confirm the existence and use of diagnostic features for the rapid detection of emotional content. PMID:24659831
Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.
Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe
2016-07-01
To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Architecture for a PACS primary diagnosis workstation
NASA Astrophysics Data System (ADS)
Shastri, Kaushal; Moran, Byron
1990-08-01
A major factor in determining the overall utility of a medical Picture Archiving and Communications (PACS) system is the functionality of the diagnostic workstation. Meyer-Ebrecht and Wendler [1] have proposed a modular picture computer architecture with high throughput and Perry et.al [2] have defined performance requirements for radiology workstations. In order to be clinically useful, a primary diagnosis workstation must not only provide functions of current viewing systems (e.g. mechanical alternators [3,4]) such as acceptable image quality, simultaneous viewing of multiple images, and rapid switching of image banks; but must also provide a diagnostic advantage over the current systems. This includes window-level functions on any image, simultaneous display of multi-modality images, rapid image manipulation, image processing, dynamic image display (cine), electronic image archival, hardcopy generation, image acquisition, network support, and an easy user interface. Implementation of such a workstation requires an underlying hardware architecture which provides high speed image transfer channels, local storage facilities, and image processing functions. This paper describes the hardware architecture of the Siemens Diagnostic Reporting Console (DRC) which meets these requirements.
Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira
2016-01-01
Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776
Results From the New NIF Gated LEH imager
NASA Astrophysics Data System (ADS)
Chen, Hui; Amendt, P.; Barrios, M.; Bradley, D.; Casey, D.; Hinkel, D.; Berzak Hopkins, L.; Kilkenny, J.; Kritcher, A.; Landen, O.; Jones, O.; Ma, T.; Milovich, J.; Michel, P.; Moody, J.; Ralph, J.; Pak, A.; Palmer, N.; Schneider, M.
2016-10-01
A novel ns-gated Laser Entrance Hole (G-LEH) diagnostic has been successfully implemented at the National Ignition Facility (NIF). This diagnostic has successfully acquired images from various experimental campaigns, providing critical information for inertial confinement fusion experiments. The G-LEH diagnostic which takes time-resolved gated images along a single line-of-sight, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories into the existing Static X-ray Imager diagnostic at NIF. It is capable of capturing two laser-entrance-hole images per shot on its 1024x448 pixel photo-detector array, with integration times as short as 2 ns per frame. The results that will be presented include the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52- 07NA27344.
[Diagnostic imaging of breast cancer : An update].
Funke, M
2016-10-01
Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.
Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.
Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A
2009-07-01
An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.
Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph
2011-04-01
The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.
Diagnostic imaging advances in murine models of colitis.
Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik
2016-01-21
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong
2018-06-01
The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Genetics pathway-based imaging approaches in Chinese Han population with Alzheimer's disease risk.
Bai, Feng; Liao, Wei; Yue, Chunxian; Pu, Mengjia; Shi, Yongmei; Yu, Hui; Yuan, Yonggui; Geng, Leiyu; Zhang, Zhijun
2016-01-01
The tau hypothesis has been raised with regard to the pathophysiology of Alzheimer's disease (AD). Mild cognitive impairment (MCI) is associated with a high risk for developing AD. However, no study has directly examined the brain topological alterations based on combined effects of tau protein pathway genes in MCI population. Forty-three patients with MCI and 30 healthy controls underwent resting-state functional magnetic resonance imaging (fMRI) in Chinese Han, and a tau protein pathway-based imaging approaches (7 candidate genes: 17 SNPs) were used to investigate changes in the topological organisation of brain activation associated with MCI. Impaired regional activation is related to tau protein pathway genes (5/7 candidate genes) in patients with MCI and likely in topologically convergent and divergent functional alterations patterns associated with genes, and combined effects of tau protein pathway genes disrupt the topological architecture of cortico-cerebellar loops. The associations between the loops and behaviours further suggest that tau protein pathway genes do play a significant role in non-episodic memory impairment. Tau pathway-based imaging approaches might strengthen the credibility in imaging genetic associations and generate pathway frameworks that might provide powerful new insights into the neural mechanisms that underlie MCI.
Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E
2016-01-01
With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
WE-AB-206-02: ACR Ultrasound Accreditation: Requirements and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, J.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Lisi, Anthony J; Salsbury, Stacie A; Hawk, Cheryl; Vining, Robert D; Wallace, Robert B; Branson, Richard; Long, Cynthia R; Burgo-Black, A Lucille; Goertz, Christine M
2018-02-01
The purpose of this study was to develop an integrated care pathway for doctors of chiropractic, primary care providers, and mental health professionals who manage veterans with low back pain, with or without mental health comorbidity, within Department of Veterans Affairs health care facilities. The research method used was a consensus process. A multidisciplinary investigative team reviewed clinical guidelines and Veterans Affairs pain and mental health initiatives to develop seed statements and care algorithms to guide chiropractic management and collaborative care of veterans with low back pain. A 5-member advisory committee approved initial recommendations. Veterans Affairs-based panelists (n = 58) evaluated the pathway via e-mail using a modified RAND/UCLA methodology. Consensus was defined as agreement by 80% of panelists. The modified Delphi process was conducted in July to December 2016. Most (93%) seed statements achieved consensus during the first round, with all statements reaching consensus after 2 rounds. The final care pathway addressed the topics of informed consent, clinical evaluation including history and examination, screening for red flags, documentation, diagnostic imaging, patient-reported outcomes, adverse event reporting, chiropractic treatment frequency and duration standards, tailored approaches to chiropractic care in veteran populations, and clinical presentation of common mental health conditions. Care algorithms outlined chiropractic case management and interprofessional collaboration and referrals between doctors of chiropractic and primary care and mental health providers. This study offers an integrative care pathway that includes chiropractic care for veterans with low back pain. Copyright © 2018. Published by Elsevier Inc.
Black, Georgia; Sheringham, Jessica; Spencer-Hughes, Vicki; Ridge, Melanie; Lyons, Mairead; Williams, Charlotte; Fulop, Naomi; Pritchard-Jones, Kathy
2015-01-01
Cancers diagnosed following visits to emergency departments (ED) or emergency admissions (emergency presentations) are associated with poor survival and may result from preventable diagnostic delay. To improve outcomes for these patients, a better understanding is needed about how emergency presentations arise. This study sought to capture patients' experiences of this diagnostic pathway in the English NHS. Eligible patients were identified in a service evaluation of emergency presentations and invited to participate. Interviews, using an open-ended biographical structure, captured participants' experiences of healthcare services before diagnosis and were analysed thematically, informed by the Walter model of Pathways to Treatment and NICE guidance in an iterative process. Twenty-seven interviews were conducted. Three typologies were identified: A: Rapid investigation and diagnosis, and B: Repeated cycles of healthcare seeking and appraisal without resolution, with two variants where B1 appears consistent with guidance and B2 has evidence that management was not consistent with guidance. Most patients' (23/27) experiences fitted types B1 and B2. Potentially avoidable breakdowns in diagnostic pathways caused delays when patients were conflicted by escalating symptoms and a benign diagnosis given earlier by doctors. ED was sometimes used as a conduit to rapid testing by primary care clinicians, although this pathway was not always successful. This study draws on patients' experiences of their diagnosis to provide novel insights into how emergency presentations arise. Through these typologies, we show that the typical experience of patients diagnosed through an emergency presentation diverges significantly from normative pathways even when there is no evidence of serious service failures. Consultations were not a conduit to diagnosis when they inhibited patients' capacity to appraise their own symptoms appropriately and when they resulted in a reluctance to seek further healthcare. The findings also point to potentially avoidable breakdowns in the diagnostic process. In particular, to encourage patients to return to the GP if symptoms escalate, a stronger emphasis is needed on diagnostic uncertainty in discussions between patients and doctors in both primary and secondary care. To improve appropriate access to rapid investigations, systems are needed for primary care to communicate directly with secondary care at the time of referral.
Tufail, Adnan; Rudisill, Caroline; Egan, Catherine; Kapetanakis, Venediktos V; Salas-Vega, Sebastian; Owen, Christopher G; Lee, Aaron; Louw, Vern; Anderson, John; Liew, Gerald; Bolter, Louis; Srinivas, Sowmya; Nittala, Muneeswar; Sadda, SriniVas; Taylor, Paul; Rudnicka, Alicja R
2017-03-01
With the increasing prevalence of diabetes, annual screening for diabetic retinopathy (DR) by expert human grading of retinal images is challenging. Automated DR image assessment systems (ARIAS) may provide clinically effective and cost-effective detection of retinopathy. We aimed to determine whether ARIAS can be safely introduced into DR screening pathways to replace human graders. Observational measurement comparison study of human graders following a national screening program for DR versus ARIAS. Retinal images from 20 258 consecutive patients attending routine annual diabetic eye screening between June 1, 2012, and November 4, 2013. Retinal images were manually graded following a standard national protocol for DR screening and were processed by 3 ARIAS: iGradingM, Retmarker, and EyeArt. Discrepancies between manual grades and ARIAS results were sent to a reading center for arbitration. Screening performance (sensitivity, false-positive rate) and diagnostic accuracy (95% confidence intervals of screening-performance measures) were determined. Economic analysis estimated the cost per appropriate screening outcome. Sensitivity point estimates (95% confidence intervals) of the ARIAS were as follows: EyeArt 94.7% (94.2%-95.2%) for any retinopathy, 93.8% (92.9%-94.6%) for referable retinopathy (human graded as either ungradable, maculopathy, preproliferative, or proliferative), 99.6% (97.0%-99.9%) for proliferative retinopathy; Retmarker 73.0% (72.0 %-74.0%) for any retinopathy, 85.0% (83.6%-86.2%) for referable retinopathy, 97.9% (94.9%-99.1%) for proliferative retinopathy. iGradingM classified all images as either having disease or being ungradable. EyeArt and Retmarker saved costs compared with manual grading both as a replacement for initial human grading and as a filter prior to primary human grading, although the latter approach was less cost-effective. Retmarker and EyeArt systems achieved acceptable sensitivity for referable retinopathy when compared with that of human graders and had sufficient specificity to make them cost-effective alternatives to manual grading alone. ARIAS have the potential to reduce costs in developed-world health care economies and to aid delivery of DR screening in developing or remote health care settings. Copyright © 2016 American Academy of Ophthalmology. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, R.
The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC), Image Gently, and the Quantitative Imaging Biomarkers Alliance (QIBA) among others, to fulfill FDA’s mission will be discussed. Learning Objectives: Understand FDA’s pre-market and post-market review processes for medical devices Understand FDA’s current regulatory research activities in the areas of medical physics and imaging products Understand how being involved with AAPM and other organizations can also help to promote innovative, safe and effective medical devices J. Delfino, nothing to disclose.« less
Towards intelligent diagnostic system employing integration of mathematical and engineering model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isa, Nor Ashidi Mat
The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability ofmore » the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.« less
Towards intelligent diagnostic system employing integration of mathematical and engineering model
NASA Astrophysics Data System (ADS)
Isa, Nor Ashidi Mat
2015-05-01
The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well as mathematical model of clustering technique have been widely used in developing the medical diagnostic systems. The selected features will be classified using mathematical models that embedded engineering theory such as artificial intelligence, support vector machine, neural network and fuzzy-neuro system. These classifiers will provide the diagnostic results without human intervention. Among many publishable researches, several prototypes have been developed namely NeuralPap, Neural Mammo, and Cervix Kit. The former system (NeuralPap) is an automatic intelligent diagnostic system for classifying and distinguishing between the normal and cervical cancerous cells. Meanwhile, the Cervix Kit is a portable Field-programmable gate array (FPGA)-based cervical diagnostic kit that could automatically diagnose the cancerous cell based on the images obtained during sampling test. Besides the cervical diagnostic system, the Neural Mammo system is developed to specifically aid the diagnosis of breast cancer using a fine needle aspiration image.
Advanced Diagnostics for Reacting Flows
2006-06-01
TECHNICAL DISCUSSION: 1. Infrared-PLIF Imaging Diagnostics using Vibrational Transitions IR-PLIF allows for imaging a group of molecular species important...excitation of IR-active vibrational modes with imaging of the subsequent vibrational fluorescence. Quantitative interpretation requires knowledge of...the vibrational energy transfer processes, and hence in recent years we have been developing models for infrared fluorescence. During the past year
Radiological interpretation of images displayed on tablet computers: a systematic review.
Caffery, L J; Armfield, N R; Smith, A C
2015-06-01
To review the published evidence and to determine if radiological diagnostic accuracy is compromised when images are displayed on a tablet computer and thereby inform practice on using tablet computers for radiological interpretation by on-call radiologists. We searched the PubMed and EMBASE databases for studies on the diagnostic accuracy or diagnostic reliability of images interpreted on tablet computers. Studies were screened for inclusion based on pre-determined inclusion and exclusion criteria. Studies were assessed for quality and risk of bias using Quality Appraisal of Diagnostic Reliability Studies or the revised Quality Assessment of Diagnostic Accuracy Studies tool. Treatment of studies was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). 11 studies met the inclusion criteria. 10 of these studies tested the Apple iPad(®) (Apple, Cupertino, CA). The included studies reported high sensitivity (84-98%), specificity (74-100%) and accuracy rates (98-100%) for radiological diagnosis. There was no statistically significant difference in accuracy between a tablet computer and a digital imaging and communication in medicine-calibrated control display. There was a near complete consensus from authors on the non-inferiority of diagnostic accuracy of images displayed on a tablet computer. All of the included studies were judged to be at risk of bias. Our findings suggest that the diagnostic accuracy of radiological interpretation is not compromised by using a tablet computer. This result is only relevant to the Apple iPad and to the modalities of CT, MRI and plain radiography. The iPad may be appropriate for an on-call radiologist to use for radiological interpretation.
Ions doped melanin nanoparticle as a multiple imaging agent.
Ha, Shin-Woo; Cho, Hee-Sang; Yoon, Young Il; Jang, Moon-Sun; Hong, Kwan Soo; Hui, Emmanuel; Lee, Jung Hee; Yoon, Tae-Jong
2017-10-10
Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy. Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions. They are capable of specifically targeting epidermal growth factor receptor (EGFR)-expressing cancer cells by being anchored with a specific antibody. Ion-doped melanin nanoparticles were found to have high bioavailability with long-term stability in solution, without any cytotoxicity in both in vitro and in vivo systems. By combining different imaging modalities with melanin particles, we can use the complexes to obtain faster diagnoses by computed tomography deep-body imaging and greater detailed pathological diagnostic information by magnetic resonance imaging. The ion-doped melanin nanoparticles also have applications for radio-diagnostic treatment and radio imaging-guided surgery, warranting further proof of concept experimental.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheftman, D.; Shafer, D.; Efimov, S.
2012-10-15
A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.
Diagnosis demystified: CT as diagnostic tool in endodontics
Shruthi, Nagaraja; Sreenivasa Murthy, B V; Sundaresh, K J; Mallikarjuna, Rachappa
2013-01-01
Diagnosis in endodontics is usually based on clinical and radiographical presentations, which are only empirical methods. The role of healing profession is to apply knowledge and skills towards maintaining and restoring the patient's health. Recent advances in imaging technologies have added to correct interpretation and diagnosis. CT is proving to be an effective tool in solving endodontic mysteries through its three-dimensional visualisation. CT imaging offers many diagnostic advantages to produce reconstructed images in selected projection and low-contrast resolution far superior to that of all other X-ray imaging modalities. This case report is an endeavour towards effective treatment planning of cases with root fracture, root resorption using spiral CT as an adjuvant diagnostic tool. PMID:23814212
Expanding the PACS archive to support clinical review, research, and education missions
NASA Astrophysics Data System (ADS)
Honeyman-Buck, Janice C.; Frost, Meryll M.; Drane, Walter E.
1999-07-01
Designing an image archive and retrieval system that supports multiple users with many different requirements and patterns of use without compromising the performance and functionality required by diagnostic radiology is an intellectual and technical challenge. A diagnostic archive, optimized for performance when retrieving diagnostic images for radiologists needed to be expanded to support a growing clinical review network, the University of Florida Brain Institute's demands for neuro-imaging, Biomedical Engineering's imaging sciences, and an electronic teaching file. Each of the groups presented a different set of problems for the designers of the system. In addition, the radiologists did not want to see nay loss of performance as new users were added.
Sheftman, D; Shafer, D; Efimov, S; Gruzinsky, K; Gleizer, S; Krasik, Ya E
2012-10-01
A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A ~4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.
Choosing the right diagnostic imaging modality in musculoskeletal diagnosis.
Aagesen, Andrea L; Melek, Maged
2013-12-01
Radiological studies can confirm or rule out competing diagnoses for musculoskeletal injuries and pain. Obtaining a detailed history and physical examination is pivotal for localizing the pain generator and choosing the most appropriate imaging studies, based on the suspected injured tissue. Judicious use of imaging is important to avoid unnecessary radiation exposure, minimize cost, and avoid therapy targeting asymptomatic imaging abnormalities. This article compares and contrasts the diagnostic imaging commonly used for detecting musculoskeletal injuries. Copyright © 2013 Elsevier Inc. All rights reserved.
Advanced Imaging Adds Little Value in the Diagnosis of Femoroacetabular Impingement Syndrome.
Cunningham, Daniel J; Paranjape, Chinmay S; Harris, Joshua D; Nho, Shane J; Olson, Steven A; Mather, Richard C
2017-12-20
Femoroacetabular impingement (FAI) syndrome is an increasingly recognized source of hip pain and disability in young active adults. In order to confirm the diagnosis, providers often supplement physical examination maneuvers and radiographs with intra-articular hip injection, magnetic resonance imaging (MRI), or magnetic resonance arthrography (MRA). Since diagnostic imaging represents the fastest rising cost segment in U.S. health care, there is a need for value-driven diagnostic algorithms. The purpose of this study was to identify cost-effective diagnostic strategies for symptomatic FAI, comparing history and physical examination (H&P) alone (utilizing only radiographic imaging) with supplementation with injection, MRI, or MRA. A simple-chain decision model run as a cost-utility analysis was constructed to assess the diagnostic value of the MRI, MRA, and injection that are added to the H&P and radiographs in diagnosing symptomatic FAI. Strategies were compared using the incremental cost-utility ratio (ICUR) with a willingness to pay (WTP) of $100,000/QALY (quality-adjusted life year). Direct costs were measured using the Humana database (PearlDiver). Diagnostic test accuracy, treatment outcome probabilities, and utilities were extracted from the literature. H&P with and without supplemental diagnostic injection was the most cost-effective. Adjunct injection was preferred in situations with a WTP of >$60,000/QALY, low examination sensitivity, and high FAI prevalence. With low disease prevalence and low examination sensitivity, as may occur in a general practitioner's office, H&P with injection was the most cost-effective strategy, whereas in the reciprocal scenario, H&P with injection was only favored at exceptionally high WTP (∼$990,000). H&P and radiographs with supplemental diagnostic injection are preferred over advanced imaging, even with reasonable deviations from published values of disease prevalence, test sensitivity, and test specificity. Providers with low examination sensitivity in situations with low disease prevalence may benefit most from including injection in their diagnostic strategy. Providers with high examination sensitivity in situations with high disease prevalence may not benefit from including injection in their diagnostic strategy. Providers should not routinely rely on advanced imaging to diagnose FAI syndrome, although advanced imaging may have a role in challenging clinical scenarios. Economic and Decision Analysis Level IV. See Instructions for Authors for a complete description of levels of evidence.
Pierce, Mark C; Weigum, Shannon E; Jaslove, Jacob M; Richards-Kortum, Rebecca; Tkaczyk, Tomasz S
2014-01-01
One of the key elements in point-of-care (POC) diagnostic test instrumentation is the optical system required for signal detection and/or imaging. Many tests which use fluorescence, absorbance, or colorimetric optical signals are under development for management of infectious diseases in resource limited settings, where the overall size and cost of the device is of critical importance. At present, high-performance lenses are expensive to fabricate and difficult to obtain commercially, presenting barriers for developers of in vitro POC tests or microscopic image-based diagnostics. We recently described a compact "hybrid" objective lens incorporating both glass and plastic optical elements, with a numerical aperture of 1.0 and field-of-view of 250 μm. This design concept may potentially enable mass-production of high-performance, low-cost optical systems which can be easily incorporated in the readout path of existing and emerging POC diagnostic assays. In this paper, we evaluate the biological imaging performance of these lens systems in three broad POC diagnostic application areas; (1) bright field microscopy of histopathology slides, (2) cytologic examination of blood smears, and (3) immunofluorescence imaging. We also break down the fabrication costs and draw comparisons with other miniature optical systems. The hybrid lenses provided images with quality comparable to conventional microscopy, enabling examination of neoplastic pathology and infectious parasites including malaria and cryptosporidium. We describe how these components can be produced at below $10 per unit in full-scale production quantities, making these systems well suited for use within POC diagnostic instrumentation.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
NASA Astrophysics Data System (ADS)
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-06-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor quantum dots for bioimaging and biodiagnostic applications.
Kairdolf, Brad A; Smith, Andrew M; Stokes, Todd H; Wang, May D; Young, Andrew N; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future.
Semiconductor Quantum Dots for Bioimaging and Biodiagnostic Applications
Kairdolf, Brad A.; Smith, Andrew M.; Stokes, Todd H.; Wang, May D.; Young, Andrew N.; Nie, Shuming
2013-01-01
Semiconductor quantum dots (QDs) are light-emitting particles on the nanometer scale that have emerged as a new class of fluorescent labels for chemical analysis, molecular imaging, and biomedical diagnostics. Compared with traditional fluorescent probes, QDs have unique optical and electronic properties such as size-tunable light emission, narrow and symmetric emission spectra, and broad absorption spectra that enable the simultaneous excitation of multiple fluorescence colors. QDs are also considerably brighter and more resistant to photobleaching than are organic dyes and fluorescent proteins. These properties are well suited for dynamic imaging at the single-molecule level and for multiplexed biomedical diagnostics at ultrahigh sensitivity. Here, we discuss the fundamental properties of QDs; the development of next-generation QDs; and their applications in bioanalytical chemistry, dynamic cellular imaging, and medical diagnostics. For in vivo and clinical imaging, the potential toxicity of QDs remains a major concern. However, the toxic nature of cadmium-containing QDs is no longer a factor for in vitro diagnostics, so the use of multicolor QDs for molecular diagnostics and pathology is probably the most important and clinically relevant application for semiconductor QDs in the immediate future. PMID:23527547
NASA Astrophysics Data System (ADS)
Biss, Matthew; Murphy, Michael; Lieber, Mark
2017-06-01
Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.
Mercan, Ezgi; Aksoy, Selim; Shapiro, Linda G; Weaver, Donald L; Brunyé, Tad T; Elmore, Joann G
2016-08-01
Whole slide digital imaging technology enables researchers to study pathologists' interpretive behavior as they view digital slides and gain new understanding of the diagnostic medical decision-making process. In this study, we propose a simple yet important analysis to extract diagnostically relevant regions of interest (ROIs) from tracking records using only pathologists' actions as they viewed biopsy specimens in the whole slide digital imaging format (zooming, panning, and fixating). We use these extracted regions in a visual bag-of-words model based on color and texture features to predict diagnostically relevant ROIs on whole slide images. Using a logistic regression classifier in a cross-validation setting on 240 digital breast biopsy slides and viewport tracking logs of three expert pathologists, we produce probability maps that show 74 % overlap with the actual regions at which pathologists looked. We compare different bag-of-words models by changing dictionary size, visual word definition (patches vs. superpixels), and training data (automatically extracted ROIs vs. manually marked ROIs). This study is a first step in understanding the scanning behaviors of pathologists and the underlying reasons for diagnostic errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
Seymour, H R; Matson, M B; Belli, A M; Morgan, R; Kyriou, J; Patel, U
2001-02-01
Rotational digital subtraction angiography (RDSA) allows multidirectional angiographic acquisitions with a single injection of contrast medium. The role of RDSA was evaluated in 60 patients referred over a 7-month period for diagnostic renal angiography and 12 patients referred for renal transplant studies. All angiograms were assessed for their diagnostic value, the presence of anomalies and the quantity of contrast medium used. The effective dose for native renal RDSA was determined. 41 (68.3%) native renal RDSA images and 8 (66.7%) transplant renal RDSA images were of diagnostic quality. Multiple renal arteries were identified in 9/41 (22%) native renal RDSA diagnostic images. The mean volume of contrast medium in the RDSA runs was 51.2 ml and 50 ml for native and transplant renal studies, respectively. The mean effective dose for 120 degrees native renal RDSA was 2.36 mSv, equivalent to 1 year's mean background radiation. Those RDSA images that were non-diagnostic allowed accurate prediction of the optimal angle for further static angiographic series, which is of great value in transplant renal vessels.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei
2010-11-08
We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (p<0.001, paired 2-sided Student's t-test, n=48). NIR AF imaging under polarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.
Embedded importance watermarking for image verification in radiology
NASA Astrophysics Data System (ADS)
Osborne, Domininc; Rogers, D.; Sorell, M.; Abbott, Derek
2004-03-01
Digital medical images used in radiology are quite different to everyday continuous tone images. Radiology images require that all detailed diagnostic information can be extracted, which traditionally constrains digital medical images to be of large size and stored without loss of information. In order to transmit diagnostic images over a narrowband wireless communication link for remote diagnosis, lossy compression schemes must be used. This involves discarding detailed information and compressing the data, making it more susceptible to error. The loss of image detail and incidental degradation occurring during transmission have potential legal accountability issues, especially in the case of the null diagnosis of a tumor. The work proposed here investigates techniques for verifying the voracity of medical images - in particular, detailing the use of embedded watermarking as an objective means to ensure that important parts of the medical image can be verified. We propose a result to show how embedded watermarking can be used to differentiate contextual from detailed information. The type of images that will be used include spiral hairline fractures and small tumors, which contain the essential diagnostic high spatial frequency information.
A light sheet confocal microscope for image cytometry with a variable linear slit detector
NASA Astrophysics Data System (ADS)
Hutcheson, Joshua A.; Khan, Foysal Z.; Powless, Amy J.; Benson, Devin; Hunter, Courtney; Fritsch, Ingrid; Muldoon, Timothy J.
2016-03-01
We present a light sheet confocal microscope (LSCM) capable of high-resolution imaging of cell suspensions in a microfluidic environment. In lieu of conventional pressure-driven flow or mechanical translation of the samples, we have employed a novel method of fluid transport, redox-magnetohydrodynamics (redox-MHD). This method achieves fluid motion by inducing a small current into the suspension in the presence of a magnetic field via electrodes patterned onto a silicon chip. This on-chip transportation requires no moving parts, and is coupled to the remainder of the imaging system. The microscopy system comprises a 450 nm diode 20 mW laser coupled to a single mode fiber and a cylindrical lens that converges the light sheet into the back aperture of a 10x, 0.3 NA objective lens in an epi-illumination configuration. The emission pathway contains a 150 mm tube lens that focuses the light onto the linear sensor at the conjugate image plane. The linear sensor (ELiiXA+ 8k/4k) has three lateral binning modes which enables variable detection aperture widths between 5, 10, or 20 μm, which can be used to vary axial resolution. We have demonstrated redox-MHD-enabled light sheet microscopy in suspension of fluorescent polystyrene beads. This approach has potential as a high-throughput image cytometer with myriad cellular diagnostic applications.
The use of digital images in pathology.
Furness, P N
1997-11-01
Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.
Pickett, William; Kukaswadia, Atif; Thompson, Wendy; Frechette, Mylene; McFaull, Steven; Dowdall, Hilary; Brison, Robert J
2014-01-01
This study assessed the use and clinical yield of diagnostic imaging (radiography, computed tomography, and medical resonance imaging) ordered to assist in the diagnosis of acute neck injuries presenting to emergency departments (EDs) in Kingston, Ontario, from 2002-2003 to 2009-2010. Acute neck injury cases were identified using records from the Kingston sites of the Canadian National Ambulatory Care Reporting System. Use of radiography was analyzed over time and related to proportions of cases diagnosed with clinically significant cervical spine injuries. A total of 4,712 neck injury cases were identified. Proportions of cases referred for diagnostic imaging to the neck varied significantly over time, from 30.4% in 2002-2003 to 37.6% in 2009-2010 (ptrend = 0.02). The percentage of total cases that were positive for clinically significant cervical spine injury ("clinical yield") also varied from a low of 5.8% in 2005-2006 to 9.2% in 2008-2009 (ptrend = 0.04), although the clinical yield of neck-imaged cases did not increase across the study years (ptrend = 0.23). Increased clinical yield was not observed in association with higher neck imaging rates whether that yield was expressed as a percentage of total cases positive for clinically significant injury (p = 0.29) or as a percentage of neck-imaged cases that were positive (p = 0.77). We observed increases in the use of diagnostic images over time, reflecting a need to reinforce an existing clinical decision rule for cervical spine radiography. Temporal increases in the clinical yield for total cases may suggest a changing case mix or more judicious use of advanced types of diagnostic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less
Connectome imaging for mapping human brain pathways
Shi, Y; Toga, A W
2017-01-01
With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700
Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection.
Wang, Kun; Langevin, Stanley; O'Hern, Corey S; Shattuck, Mark D; Ogle, Serenity; Forero, Adriana; Morrison, Juliet; Slayden, Richard; Katze, Michael G; Kirby, Michael
2016-01-01
Clinical diagnosis of acute infectious diseases during the early stages of infection is critical to administering the appropriate treatment to improve the disease outcome. We present a data driven analysis of the human cellular response to respiratory viruses including influenza, respiratory syncytia virus, and human rhinovirus, and compared this with the response to the bacterial endotoxin, Lipopolysaccharides (LPS). Using an anomaly detection framework we identified pathways that clearly distinguish between asymptomatic and symptomatic patients infected with the four different respiratory viruses and that accurately diagnosed patients exposed to a bacterial infection. Connectivity pathway analysis comparing the viral and bacterial diagnostic signatures identified host cellular pathways that were unique to patients exposed to LPS endotoxin indicating this type of analysis could be used to identify host biomarkers that can differentiate clinical etiologies of acute infection. We applied the Multivariate State Estimation Technique (MSET) on two human influenza (H1N1 and H3N2) gene expression data sets to define host networks perturbed in the asymptomatic phase of infection. Our analysis identified pathways in the respiratory virus diagnostic signature as prognostic biomarkers that triggered prior to clinical presentation of acute symptoms. These early warning pathways correctly predicted that almost half of the subjects would become symptomatic in less than forty hours post-infection and that three of the 18 subjects would become symptomatic after only 8 hours. These results provide a proof-of-concept for utility of anomaly detection algorithms to classify host pathway signatures that can identify presymptomatic signatures of acute diseases and differentiate between etiologies of infection. On a global scale, acute respiratory infections cause a significant proportion of human co-morbidities and account for 4.25 million deaths annually. The development of clinical diagnostic tools to distinguish between acute viral and bacterial respiratory infections is critical to improve patient care and limit the overuse of antibiotics in the medical community. The identification of prognostic respiratory virus biomarkers provides an early warning system that is capable of predicting which subjects will become symptomatic to expand our medical diagnostic capabilities and treatment options for acute infectious diseases. The host response to acute infection may be viewed as a deterministic signaling network responsible for maintaining the health of the host organism. We identify pathway signatures that reflect the very earliest perturbations in the host response to acute infection. These pathways provide a monitor the health state of the host using anomaly detection to quantify and predict health outcomes to pathogens.
Anomaly Detection in Host Signaling Pathways for the Early Prognosis of Acute Infection
O’Hern, Corey S.; Shattuck, Mark D.; Ogle, Serenity; Forero, Adriana; Morrison, Juliet; Slayden, Richard; Katze, Michael G.
2016-01-01
Clinical diagnosis of acute infectious diseases during the early stages of infection is critical to administering the appropriate treatment to improve the disease outcome. We present a data driven analysis of the human cellular response to respiratory viruses including influenza, respiratory syncytia virus, and human rhinovirus, and compared this with the response to the bacterial endotoxin, Lipopolysaccharides (LPS). Using an anomaly detection framework we identified pathways that clearly distinguish between asymptomatic and symptomatic patients infected with the four different respiratory viruses and that accurately diagnosed patients exposed to a bacterial infection. Connectivity pathway analysis comparing the viral and bacterial diagnostic signatures identified host cellular pathways that were unique to patients exposed to LPS endotoxin indicating this type of analysis could be used to identify host biomarkers that can differentiate clinical etiologies of acute infection. We applied the Multivariate State Estimation Technique (MSET) on two human influenza (H1N1 and H3N2) gene expression data sets to define host networks perturbed in the asymptomatic phase of infection. Our analysis identified pathways in the respiratory virus diagnostic signature as prognostic biomarkers that triggered prior to clinical presentation of acute symptoms. These early warning pathways correctly predicted that almost half of the subjects would become symptomatic in less than forty hours post-infection and that three of the 18 subjects would become symptomatic after only 8 hours. These results provide a proof-of-concept for utility of anomaly detection algorithms to classify host pathway signatures that can identify presymptomatic signatures of acute diseases and differentiate between etiologies of infection. On a global scale, acute respiratory infections cause a significant proportion of human co-morbidities and account for 4.25 million deaths annually. The development of clinical diagnostic tools to distinguish between acute viral and bacterial respiratory infections is critical to improve patient care and limit the overuse of antibiotics in the medical community. The identification of prognostic respiratory virus biomarkers provides an early warning system that is capable of predicting which subjects will become symptomatic to expand our medical diagnostic capabilities and treatment options for acute infectious diseases. The host response to acute infection may be viewed as a deterministic signaling network responsible for maintaining the health of the host organism. We identify pathway signatures that reflect the very earliest perturbations in the host response to acute infection. These pathways provide a monitor the health state of the host using anomaly detection to quantify and predict health outcomes to pathogens. PMID:27532264
Distortion correction of echo-planar diffusion-weighted images of uterine cervix.
deSouza, Nandita M; Orton, Matthew; Downey, Kate; Morgan, Veronica A; Collins, David J; Giles, Sharon L; Payne, Geoffrey S
2016-05-01
To investigate the clinical utility of the reverse gradient algorithm in correcting distortions in diffusion-weighted images of the cervix and for increasing diagnostic performance. Forty-one patients ages 25-72 years (mean 40 ± 11 years) with suspected or early stage cervical cancer were imaged at 3T using an endovaginal coil. T2 -weighted (W) and diffusion-weighted images with right and left phase-encode gradient directions were obtained coronal to the cervix (b = 0, 100, 300, 500, 800 s mm(-2) ). Differences in angle of the endocervical canal to the x-axis between T2 W and right-gradient, left-gradient, and corrected images were measured. Uncorrected and corrected images were assessed for diagnostic performance when viewed together with T2 W images by two independent observers against subsequent histology. The angles of the endocervical canal relative to the x-axis were significantly different between the T2 W images and the right-gradient images (P = 0.007), approached significance for left-gradient images (P = 0.055), and were not significantly different after correction (P = 0.95). Corrected images enabled a definitive diagnosis in 34% (n = 14) of patients classified as equivocal on uncorrected images. Tumor volume in this subset was 0.18 ± 0.44 cm(3) (mean ± SD; sensitivity of detection 100% [8/8], specificity 50% [3/6] for an experienced observer). Correction did not improve diagnostic performance for the less-experienced observer. Distortion-corrected diffusion-weighted images improved correspondence with T2 W images and diagnostic performance in a third of cases. © 2015 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Infrared Imaging Tools for Diagnostic Applications in Dermatology.
Gurjarpadhye, Abhijit Achyut; Parekh, Mansi Bharat; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed
Infrared (IR) imaging is a collection of non-invasive imaging techniques that utilize the IR domain of the electromagnetic spectrum for tissue assessment. A subset of these techniques construct images using back-reflected light, while other techniques rely on detection of IR radiation emitted by the tissue as a result of its temperature. Modern IR detectors sense thermal emissions and produce a heat map of surface temperature distribution in tissues. Thus, the IR spectrum offers a variety of imaging applications particularly useful in clinical diagnostic area, ranging from high-resolution, depth-resolved visualization of tissue to temperature variation assessment. These techniques have been helpful in the diagnosis of many medical conditions including skin/breast cancer, arthritis, allergy, burns, and others. In this review, we discuss current roles of IR-imaging techniques for diagnostic applications in dermatology with an emphasis on skin cancer, allergies, blisters, burns and wounds.
Fimag: the United Kingdom disaster victim/forensic identification imaging system.
Rutty, Guy N; Robinson, Claire; Morgan, Bruno; Black, Sue; Adams, Catherine; Webster, Philip
2009-11-01
Imaging is an integral diagnostic tool in mass fatality investigations undertaken traditionally by plain X-rays, fluoroscopy, and dental radiography. However, little attention has been given to appropriate image reporting, secure data transfer and storage particularly in relation to the need to meet stringent judicial requirements. Notwithstanding these limitations, it is the risk associated with the safe handling and investigation of contaminated fatalities which is providing new challenges for mass fatality radiological imaging. Mobile multi-slice computed tomography is an alternative to these traditional modalities as it provides a greater diagnostic yield and an opportunity to address the requirements of the criminal justice system. We present a new national disaster victim/forensic identification imaging system--Fimag--which is applicable for both contaminated and non-contaminated mass fatality imaging and addresses the issues of judicial reporting. We suggest this system opens a new era in radiological diagnostics for mass fatalities.
Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H
2013-09-01
To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.
Veterinary diagnostic imaging: Probability, accuracy and impact.
Lamb, Christopher R
2016-09-01
Diagnostic imaging is essential for diagnosis and management of many common problems in veterinary medicine, but imaging is not 100% accurate and does not always benefit the animal in the way intended. When assessing the need for imaging, the probability that the animal has a morphological lesion, the accuracy of the imaging and the likelihood of a beneficial impact on the animal must all be considered. Few imaging tests are sufficiently accurate that they enable a diagnosis to be ruled in or out; instead, the results of imaging only modify the probability of a diagnosis. Potential problems with excessive use of imaging include false positive diagnoses, detection of incidental findings and over-diagnosis, all of which may contribute to a negative benefit to the animal. Veterinary clinicians must be selective in their use of imaging, use existing clinical information when interpreting images and sensibly apply the results of imaging in the context of the needs of individual animals. There is a need for more clinical research to assess the impact of diagnostic imaging for animals with common conditions to help clinicians make decisions conducive to optimal patient care. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mining and integration of pathway diagrams from imaging data.
Kozhenkov, Sergey; Baitaluk, Michael
2012-03-01
Pathway diagrams from PubMed and World Wide Web (WWW) contain valuable highly curated information difficult to reach without tools specifically designed and customized for the biological semantics and high-content density of the images. There is currently no search engine or tool that can analyze pathway images, extract their pathway components (molecules, genes, proteins, organelles, cells, organs, etc.) and indicate their relationships. Here, we describe a resource of pathway diagrams retrieved from article and web-page images through optical character recognition, in conjunction with data mining and data integration methods. The recognized pathways are integrated into the BiologicalNetworks research environment linking them to a wealth of data available in the BiologicalNetworks' knowledgebase, which integrates data from >100 public data sources and the biomedical literature. Multiple search and analytical tools are available that allow the recognized cellular pathways, molecular networks and cell/tissue/organ diagrams to be studied in the context of integrated knowledge, experimental data and the literature. BiologicalNetworks software and the pathway repository are freely available at www.biologicalnetworks.org. Supplementary data are available at Bioinformatics online.
On-Chip Imaging of Schistosoma haematobium Eggs in Urine for Diagnosis by Computer Vision
Linder, Ewert; Grote, Anne; Varjo, Sami; Linder, Nina; Lebbad, Marianne; Lundin, Mikael; Diwan, Vinod; Hannuksela, Jari; Lundin, Johan
2013-01-01
Background Microscopy, being relatively easy to perform at low cost, is the universal diagnostic method for detection of most globally important parasitic infections. As quality control is hard to maintain, misdiagnosis is common, which affects both estimates of parasite burdens and patient care. Novel techniques for high-resolution imaging and image transfer over data networks may offer solutions to these problems through provision of education, quality assurance and diagnostics. Imaging can be done directly on image sensor chips, a technique possible to exploit commercially for the development of inexpensive “mini-microscopes”. Images can be transferred for analysis both visually and by computer vision both at point-of-care and at remote locations. Methods/Principal Findings Here we describe imaging of helminth eggs using mini-microscopes constructed from webcams and mobile phone cameras. The results show that an inexpensive webcam, stripped off its optics to allow direct application of the test sample on the exposed surface of the sensor, yields images of Schistosoma haematobium eggs, which can be identified visually. Using a highly specific image pattern recognition algorithm, 4 out of 5 eggs observed visually could be identified. Conclusions/Significance As proof of concept we show that an inexpensive imaging device, such as a webcam, may be easily modified into a microscope, for the detection of helminth eggs based on on-chip imaging. Furthermore, algorithms for helminth egg detection by machine vision can be generated for automated diagnostics. The results can be exploited for constructing simple imaging devices for low-cost diagnostics of urogenital schistosomiasis and other neglected tropical infectious diseases. PMID:24340107
Ang, Dan B; Angelopoulos, Christos; Katz, Jerald O
2006-11-01
The goals of this in vitro study were to determine the effect of signal fading of DenOptix photo-stimulable storage phosphor imaging plates scanned with a delay and to determine the effect on the diagnostic quality of the image. In addition, we sought to correlate signal fading with image spatial resolution and average pixel intensity values. Forty-eight images were obtained of a test specimen apparatus and scanned at 6 delayed time intervals: immediately scanned, 1 hour, 8 hours, 24 hours, 72 hours, and 168 hours. Six general dentists using Vixwin2000 software performed a measuring task to determine the location of an endodontic file tip and root apex. One-way ANOVA with repeated measures was used to determine the effect of signal fading (delayed scan time) on diagnostic image quality and average pixel intensity value. There was no statistically significant difference in diagnostic image quality resulting from signal fading. No difference was observed in spatial resolution of the images. There was a statistically significant difference in the pixel intensity analysis of an 8-step aluminum wedge between immediate scanning and 24-hour delayed scan time. There was an effect of delayed scanning on the average pixel intensity value. However, there was no effect on image quality and raters' ability to perform a clinical identification task. Proprietary software of the DenOptix digital imaging system demonstrates an excellent ability to process a delayed scan time signal and create an image of diagnostic quality.
Vandervelde, C; Kamani, T; Varghese, A; Ramesar, K; Grace, R; Howlett, D C
2008-04-01
The reason for this study was to evaluate the ability of image-guided core biopsy to replace surgical excision by providing sufficient diagnostic and treatment information. All consecutive image-guided core biopsies in patients with a final diagnosis of lymphoma over a 6-year period at our institution were collected retrospectively. Case notes and pathology reports were reviewed and the diagnostic techniques used were recorded. Pathology reports were graded according to their diagnostic completeness and their ability to provide treatment information. Out of a total of 328 instances of lymphoma, 103 image-guided core biopsies were performed in 96 patients. In 78% of these, the diagnostic information obtained from the biopsy provided a fully graded and subtyped diagnosis of lymphoma with sufficient information to initiate therapy. In the head and neck 67% of core biopsies were fully diagnostic for treatment purposes compared to 91% in the thorax, abdomen and pelvis. Image-guided core biopsy has a number of cost and safety advantages over surgical excision biopsy and in suitable cases it can obviate the need for surgery in cases of suspected lymphoma. This is especially relevant for elderly patients and those with poor performance status.
The Missing Link in the Diagnostic Pathway of Prostate Cancer.
Wøyen, Arne Vidar Tind; Laczkó, Gergely; Høyer, Søren; Hegyi, Laszlo
2017-04-01
Prostate cancer is one of the most common cancers in the Western world. It is among the leading causes of cancer related death. While its incidence and survival increased significantly during the last few decades in Denmark, the mortality rate did not change for patients younger than 80 year old. Development of new techniques, such as multiparametric MRI, helps to increase the accuracy of diagnosis. However, a missing link in the diagnostic pathway may result in mistreatment if an acinar adenocarcinoma of prostate is transformed into a neuroendocrine phenotype such as small cell carcinoma.
Impact of voxel size variation on CBCT-based diagnostic outcome in dentistry: a systematic review.
Spin-Neto, Rubens; Gotfredsen, Erik; Wenzel, Ann
2013-08-01
The objective of this study was to make a systematic review on the impact of voxel size in cone beam computed tomography (CBCT)-based image acquisition, retrieving evidence regarding the diagnostic outcome of those images. The MEDLINE bibliographic database was searched from 1950 to June 2012 for reports comparing diverse CBCT voxel sizes. The search strategy was limited to English-language publications using the following combined terms in the search strategy: (voxel or FOV or field of view or resolution) and (CBCT or cone beam CT). The results from the review identified 20 publications that qualitatively or quantitatively assessed the influence of voxel size on CBCT-based diagnostic outcome, and in which the methodology/results comprised at least one of the expected parameters (image acquisition, reconstruction protocols, type of diagnostic task, and presence of a gold standard). The diagnostic task assessed in the studies was diverse, including the detection of root fractures, the detection of caries lesions, and accuracy of 3D surface reconstruction and of bony measurements, among others. From the studies assessed, it is clear that no general protocol can be yet defined for CBCT examination of specific diagnostic tasks in dentistry. Rationale in this direction is an important step to define the utility of CBCT imaging.
The impact of diagnostic imaging wait times on the prognosis of lung cancer.
Byrne, Suzanne C; Barrett, Brendan; Bhatia, Rick
2015-02-01
This study was performed to determine whether gaps in patient flow from initial lung imaging to computed tomography (CT) guided lung biopsy in patients with non-small cell lung cancer (NSCLC) was associated with a change in tumour size, stage, and thus prognosis. All patients who had a CT-guided lung biopsy in 2009 (phase I) and in 2011 (phase II) with a pathologic diagnosis of primary lung cancer (NSCLC) at Eastern Health, Newfoundland, were identified. Dates of initial abnormal imaging, confirmatory CT (if performed), and CT-guided biopsy were recorded, along with tumour size and resulting T stage at each time point. In 2010, wait times for diagnostic imaging at Eastern Health were reduced. The stage and prognosis of NSCLC in 2009 was compared with 2011. In phase 1, there was a statistically significant increase in tumour size (mean difference, 0.67 cm; P < .0001) and stage (P < .0001) from initial image to biopsy. There was a moderate correlation between the time (in days) between the images and change in size (r = 0.33, P = .008) or stage (r = 0.26, P = .036). In phase II, the median wait time from initial imaging to confirmatory CT was reduced to 7.5 days (from 19 days). At this reduced wait time, there was no statistically significant increase in tumour size (mean difference, 0.02; P > .05) or stage (P > .05) from initial imaging to confirmatory CT. Delays in patient flow through diagnostic imaging resulted in an increase in tumour size and stage, with a negative impact on prognosis of NSCLC. This information contributed to the hiring of additional CT technologists and extended CT hours to decrease the wait time for diagnostic imaging. With reduced wait times, the prognosis of NSCLC was not adversely impacted as patients navigated through diagnostic imaging. Copyright © 2015 Canadian Association of Radiologists. All rights reserved.
Yeghiazaryan, Kristina; Schild, Hans H; Golubnitschaja, Olga
2012-10-01
Nephropathy is the leading secondary complication of metabolic syndrome. Nutritional supplement by chromium-picolinate is assumed to have renoprotective effects. However, potential toxic effects reported increase the concerns about the safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm individual oucomes through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. The study was performed in a double-blind manner. Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium- picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using "Comet Assay"-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to get insights into central detoxification and cell-cycle regulating pathways under the treatment conditions. Experimental data revealed highly individual reaction towards the treatment conditions. The highest variability of DNA-damage was monitored under the prolonged treatment with high dosage of CrPic. Expression patterns demonstrated a correlation with the subcellular imaging and dosage-dependent suppression under the chromium-picolinate treatment. INTERPRETATION AND RECOMMENDATIONS: Population at-risk for diabetes is huge and increasing in pandemic scale. One of the reasons might be the failed attempt to prevent the disease by application of artificial supplements and drugs with hardly recognised individual risks. Consequently, a multimodal approach of integrative medicine by predictive diagnostics, targeted prevention and individually created treatment algorithms is highly desirable.
Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung
2016-09-01
Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Shintaku, Werner; Enciso, Reyes; Broussard, Jack; Clark, Glenn T
2006-08-01
Since dentists can be faced by unusual cases during their professional life, this article reviews the common orofacial disorders that are of concern to a dentist trying to diagnose the source of pain or dysfunction symptoms, providing an overview of the essential knowledge and usage of nowadays available advanced diagnostic imaging modalities. In addition to symptom-driven diagnostic dilemmas, where such imaging is utilized, occasionally there are asymptomatic anomalies discovered by routine clinical care and/or on dental or panoramic images that need more discussion. The correct selection criteria of an image exam should be based on the individual characteristics of the patient, and the type of imaging technique should be selected depending on the specific clinical problem, the kind of tissue to be visualized, the information obtained from the imaging modality, radiation exposure, and the cost of the examination. The usage of more specialized imaging modalities such as magnetic resonance imaging, computed tomography, ultrasound, as well as single photon computed tomography, positron electron tomography, and their hybrid machines, SPECT/ CT and PET/CT, are discussed.
Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young
2014-01-01
To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.
Ashurst, John V; Cherney, Alan R; Evans, Elizabeth M; Kennedy Hall, Michael; Hess, Erik P; Kline, Jeffrey A; Mitchell, Alice M; Mills, Angela M; Weigner, Michael B; Moore, Christopher L
2014-12-01
Diagnostic imaging is a cornerstone of patient evaluation in the acute care setting, but little effort has been devoted to understanding the appropriate influence of sex and gender on imaging choices. This article provides background on this issue and a description of the working group and consensus findings reached during the diagnostic imaging breakout session at the 2014 Academic Emergency Medicine consensus conference "Gender-specific Research in Emergency Care: Investigate, Understand, and Translate How Gender Affects Patient Outcomes." Our goal was to determine research priorities for how sex and gender may (or should) affect imaging choices in the acute care setting. Prior to the conference, the working group identified five areas for discussion regarding the research agenda in sex- and gender-based imaging using literature review and expert consensus. The nominal group technique was used to identify areas for discussion for common presenting complaints to the emergency department where ionizing radiation is often used for diagnosis: suspected pulmonary embolism, suspected kidney stone, lower abdominal pain with a concern for appendicitis, and chest pain concerning for coronary artery disease. The role of sex- and gender-based shared decision-making in diagnostic imaging decisions is also raised. © 2014 by the Society for Academic Emergency Medicine.
Sharma, Vishal; Sundar, Sudha S; Breheny, Katie; Monahan, Mark; Sutton, Andrew John
2016-06-01
There are multiple tests available that can help diagnose ovarian cancer, and the cost-effective analysis of these diagnostic interventions is essential for making well-informed decisions regarding resource allocation. There are multiple factors that can impact on the conclusions drawn from economic evaluations including test accuracy, the impact of the testing pathway on patient costs and outcomes, and delays along the ovarian cancer test-treat pathway. The objective of this study was to evaluate how test accuracy, the choice of perspective, and delays along the testing and diagnostic pathway have been incorporated in economic evaluations of testing for ovarian cancer. A systematic review of published literature was undertaken to identify economic evaluations (eg, cost-effectiveness, cost-utility analysis) focused on testing and diagnosis for ovarian cancer. Seven studies met the inclusion criteria. Six studies incorporated test accuracy and its impact on patients to some extent. Four studies adopted a societal perspective, but only one considered the costs incurred by patients on the testing and diagnosis pathway. Where delays on the testing pathway were incorporated into the analysis, these were frequently due to false-negative test results leading to delays in patients accessing treatment. Any anxiety that patients might experience as a result of a positive test was not considered in these studies. The impact on patients of receiving a positive test in terms of anxiety and the costs incurred by patients having to attend for testing and diagnosis are rarely considered. Delays along the testing and diagnosis pathway can have a major effect on patient outcomes, and it is important that these are acknowledged in economic evaluations focused on testing. Future economic analysis should incorporate these key determinants in order that diagnostic tests for ovarian cancer can be robustly evaluated.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging
NASA Astrophysics Data System (ADS)
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-12-01
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging.
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-12-02
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.
Using complex networks towards information retrieval and diagnostics in multidimensional imaging
Banerjee, Soumya Jyoti; Azharuddin, Mohammad; Sen, Debanjan; Savale, Smruti; Datta, Himadri; Dasgupta, Anjan Kr; Roy, Soumen
2015-01-01
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers. PMID:26626047
Wang, Lu; Mori, Wakana; Cheng, Ran; Yui, Joji; Hatori, Akiko; Ma, Longle; Zhang, Yiding; Rotstein, Benjamin H.; Fujinaga, Masayuki; Shimoda, Yoko; Yamasaki, Tomoteru; Xie, Lin; Nagai, Yuji; Minamimoto, Takafumi; Higuchi, Makoto; Vasdev, Neil; Zhang, Ming-Rong; Liang, Steven H.
2016-01-01
Monoacylglycerol lipase (MAGL) is a 33 kDa member of the serine hydrolase superfamily that preferentially degrades 2-arachidonoylglycerol (2-AG) to arachidonic acid in the endocannabinoid system. Inhibition of MAGL is not only of interest for probing the cannabinoid pathway but also as a therapeutic and diagnostic target for neuroinflammation. Limited attempts have been made to image MAGL in vivo and a suitable PET ligand for this target has yet to be identified and is urgently sought to guide small molecule drug development in this pathway. Herein we synthesized and evaluated the physiochemical properties of an array of eleven sulfonamido-based carbamates and ureas with a series of terminal aryl moieties, linkers and leaving groups. The most potent compounds were a novel MAGL inhibitor, N-((1-(1H-1,2,4-triazole-1-carbonyl)piperidin-4-yl) methyl)-4-chlorobenzenesulfonamide (TZPU; IC50 = 35.9 nM), and the known inhibitor 1,1,1,3,3,3-hexafluoropropan-2-yl 4-(((4-chlorophenyl)sulfonamido) methyl)piperidine-1-carboxylate (SAR127303; IC50 = 39.3 nM), which were also shown to be selective for MAGL over fatty acid amide hydrolase (FAAH), and cannabinoid receptors (CB1 & CB2). Both of these compounds were radiolabeled with carbon-11 via [11C]COCl2, followed by comprehensive ex vivo biodistribution and in vivo PET imaging studies in normal rats to determine their brain permeability, specificity, clearance and metabolism. Whereas TZPU did not show adequate specificity to warrant further evaluation, [11C]SAR127303 was advanced for preliminary PET neuroimaging studies in nonhuman primate. The tracer showed good brain permeability (ca. 1 SUV) and heterogeneous regional brain distribution which is consistent with the distribution of MAGL. PMID:27279908
WONOEP appraisal: Biomarkers of epilepsy-associated comorbidities.
Ravizza, Teresa; Onat, Filiz Y; Brooks-Kayal, Amy R; Depaulis, Antoine; Galanopoulou, Aristea S; Mazarati, Andrey; Numis, Adam L; Sankar, Raman; Friedman, Alon
2017-03-01
Neurologic and psychiatric comorbidities are common in patients with epilepsy. Diagnostic, predictive, and pharmacodynamic biomarkers of such comorbidities do not exist. They may share pathogenetic mechanisms with epileptogenesis/ictogenesis, and as such are an unmet clinical need. The objectives of the subgroup on biomarkers of comorbidities at the XIII Workshop on the Neurobiology of Epilepsy (WONOEP) were to present the state-of-the-art recent research findings in the field that highlighting potential biomarkers for comorbidities in epilepsy. We review recent progress in the field, including molecular, imaging, and genetic biomarkers of comorbidities as discussed during the WONOEP meeting on August 31-September 4, 2015, in Heybeliada Island (Istanbul, Turkey). We further highlight new directions and concepts from studies on comorbidities and potential new biomarkers for the prediction, diagnosis, and treatment of epilepsy-associated comorbidities. The activation of various molecular signaling pathways such as the "Janus Kinase/Signal Transducer and Activator of Transcription," "mammalian Target of Rapamycin," and oxidative stress have been shown to correlate with the presence and severity of subsequent cognitive abnormalities. Furthermore, dysfunction in serotonergic transmission, hyperactivity of the hypothalamic-pituitary-adrenocortical axis, the role of the inflammatory cytokines, and the contributions of genetic factors have all recently been regarded as relevant for understanding epilepsy-associated depression and cognitive deficits. Recent evidence supports the utility of imaging studies as potential biomarkers. The role of such biomarker may be far beyond the diagnosis of comorbidities, as accumulating clinical data indicate that comorbidities can predict epilepsy outcomes. Future research is required to reveal whether molecular changes in specific signaling pathways or advanced imaging techniques could be detected in the clinical settings and correlate with epilepsy-associated comorbidities. A reliable biomarker will allow a more accurate diagnosis and improved treatment of epilepsy-associated comorbidities. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Esmaeilzadeh, Maryam; Omran, Mohammad Taghi Salehi; Maleki, Majid; Haghjoo, Majid; Noohi, Feridoun; Haghighi, Zahra Ojaghi; Sadeghpour, Anita; Davari, Paridokht Nakhostin; Abkenar, Hooman Bakhshandeh
2013-01-01
Background: Noninvasive techniques for the localization of the accessory pathways (APs) might help guide mapping procedures and ablation techniques. We sought to examine the diagnostic accuracy of strain imaging for the localization of the APs in Wolff-Parkinson-White syndrome. Methods: We prospectively studied 25 patients (mean age = 32 ± 17 years, 58.3% men) with evidence of pre-excitation on electrocardiography (ECG). Electromechanical interval was defined as the time difference between the onset of delta wave and the onset of regional myocardial contraction. Time differences between the onset of delta wave (δ) and the onset of regional myocardial contraction (δ-So), peak systolic motion (δ-Sm), regional strain (δ-ε), peak strain (δ-εp), and peak strain rate (δ-SRp) were measured. Results: There was a significant difference between time to onset of delta wave to onset of peak systolic motion (mean ± SD) in the AP location (A) and normal segments (B) versus that in the normal volunteers (C) [A: (57.08 ± 23.88 msec) vs. B: (75.20 ± 14.75) vs. C: (72.9 0 ± 11.16); p value (A vs. B) = 0.004 and p value (A vs. C) = 0.18] and [A: (49.17 ± 35.79) vs. B: (67.60 ± 14.51) vs. C: (67.40 ± 6.06 msec); p value (A vs. B) < 0.001 and p value (A vs. C) = 0.12, respectively]. Conclusion: Our study showed that strain imaging parameters [(δ-So) and (δ-Strain)] are superior to the ECG in the localization of the APs (84% vs. 76%). PMID:23967027
Effect of data compression on diagnostic accuracy in digital hand and chest radiography
NASA Astrophysics Data System (ADS)
Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita
1992-05-01
Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.
Innovation in diagnostic imaging services: assessing the potential for value-based reimbursement.
Garrison, Louis P; Bresnahan, Brian W; Higashi, Mitchell K; Hollingworth, William; Jarvik, Jeffrey G
2011-09-01
Innovation in the field of diagnostic imaging is based primarily on the availability of new and improved equipment that opens the door for new clinical applications. Payments for these imaging procedures are subject to complex Medicare price control schemes, affecting incentives for appropriate use and innovation. Achieving a "dynamically efficient" health care system-one that elicits a socially optimal amount of innovation-requires that innovators be rewarded in relation to the value they add and can demonstrate with evidence. The authors examine how and whether value-based reimbursement for diagnostic imaging services might better reward innovation explicitly for expected improvements in health and economic outcomes. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Abdominal calcifications and diagnostic imaging decision making: a topic review
Bassano, John M.
2006-01-01
Abstract Objective To review commonly encountered calcifications found within the abdomen as seen on the lumbar spine radiograph and to determine which advanced imaging modality is best to thoroughly assess the patient. Methods Searches of electronic databases and textbooks were conducted to construct this narrative overview. Discussion By categorizing the type of calcification and localizing it anatomically, most often a definitive diagnosis can be reached. Two commonly encountered conditions, abdominal aortic aneurysms and urinary calculi, are used to compare the main advanced imaging modalities (diagnostic ultrasound and computed tomography) used to further assess abdominal calcifications. Conclusion In most circumstances, either diagnostic ultrasound or computed tomography will establish a definitive diagnosis and offer thorough imaging assessment for abdominal calcifications. PMID:19674671
Selberg, Kurt; Ross, Michael
2012-12-01
Nuclear scintigraphy is a mainstay of diagnostic imaging and has preserved its relevance in the imaging of acute and chronic trauma. It is particularly useful in the evaluation of athletic injuries. Pitfalls of interpretation, false negatives and false positives exist as with many imaging modalities. Synthesis of physical exam findings, lameness evaluation and, when possible, diagnostic analgesia in combination with nuclear scintigraphy imaging findings, will allow for the most information to be applied to the patient's clinical problem. Published by Elsevier Inc.
Bisenius, S; Neumann, J; Schroeter, M L
2016-04-01
Recently, diagnostic clinical and imaging criteria for primary progressive aphasia (PPA) have been revised by an international consortium (Gorno-Tempini et al. Neurology 2011;76:1006-14). The aim of this study was to validate the specificity of the new imaging criteria and investigate whether different imaging modalities [magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET)] require different diagnostic subtype-specific imaging criteria. Anatomical likelihood estimation meta-analyses were conducted for PPA subtypes across a large cohort of 396 patients: firstly, across MRI studies for each of the three PPA subtypes followed by conjunction and subtraction analyses to investigate the specificity, and, secondly, by comparing results across MRI vs. FDG-PET studies in semantic dementia and progressive nonfluent aphasia. Semantic dementia showed atrophy in temporal, fusiform, parahippocampal gyri, hippocampus, and amygdala, progressive nonfluent aphasia in left putamen, insula, middle/superior temporal, precentral, and frontal gyri, logopenic progressive aphasia in middle/superior temporal, supramarginal, and dorsal posterior cingulate gyri. Results of the disease-specific meta-analyses across MRI studies were disjunct. Similarly, atrophic and hypometabolic brain networks were regionally dissociated in both semantic dementia and progressive nonfluent aphasia. In conclusion, meta-analyses support the specificity of new diagnostic imaging criteria for PPA and suggest that they should be specified for each imaging modality separately. © 2016 EAN.
Sabbioni, Lorenzo; Zanetti, Isabella; Orlandini, Cinzia; Petraglia, Felice; Luisi, Stefano
2017-02-01
Abnormal uterine bleeding (AUB) is one of the commonest health problems encountered by women and a frequent phenomenon during menopausal transition. The clinical management of AUB must follow a standardized classification system to obtain the better diagnostic pathway and the optimal therapy. The PALM-COEIN classification system has been approved by the International Federation of Gynecology and Obstetrics (FIGO); it recognizes structural causes of AUB, which can be measured visually with imaging techniques or histopathology, and non-structural entities such as coagulopathies, ovulatory dysfunctions, endometrial and iatrogenic causes and disorders not yet classified. In this review we aim to evaluate the management of nonstructural causes of AUB during the menopausal transition, when commonly women experience changes in menstrual bleeding patterns and unexpected bleedings which affect their quality of life.
Drowning stars: reassessing the role of astrocytes in brain edema.
Thrane, Alexander S; Rangroo Thrane, Vinita; Nedergaard, Maiken
2014-11-01
Edema formation frequently complicates brain infarction, tumors, and trauma. Despite the significant mortality of this condition, current treatment options are often ineffective or incompletely understood. Recent studies have revealed the existence of a brain-wide paravascular pathway for cerebrospinal (CSF) and interstitial fluid (ISF) exchange. The current review critically examines the contribution of this 'glymphatic' system to the main types of brain edema. We propose that in cytotoxic edema, energy depletion enhances glymphatic CSF influx, whilst suppressing ISF efflux. We also argue that paravascular inflammation or 'paravasculitis' plays a critical role in vasogenic edema. Finally, recent advances in diagnostic imaging of glymphatic function may hold the key to defining the edema profile of individual patients, and thus enable more targeted therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Radiological interpretation of images displayed on tablet computers: a systematic review
Armfield, N R; Smith, A C
2015-01-01
Objective: To review the published evidence and to determine if radiological diagnostic accuracy is compromised when images are displayed on a tablet computer and thereby inform practice on using tablet computers for radiological interpretation by on-call radiologists. Methods: We searched the PubMed and EMBASE databases for studies on the diagnostic accuracy or diagnostic reliability of images interpreted on tablet computers. Studies were screened for inclusion based on pre-determined inclusion and exclusion criteria. Studies were assessed for quality and risk of bias using Quality Appraisal of Diagnostic Reliability Studies or the revised Quality Assessment of Diagnostic Accuracy Studies tool. Treatment of studies was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: 11 studies met the inclusion criteria. 10 of these studies tested the Apple iPad® (Apple, Cupertino, CA). The included studies reported high sensitivity (84–98%), specificity (74–100%) and accuracy rates (98–100%) for radiological diagnosis. There was no statistically significant difference in accuracy between a tablet computer and a digital imaging and communication in medicine-calibrated control display. There was a near complete consensus from authors on the non-inferiority of diagnostic accuracy of images displayed on a tablet computer. All of the included studies were judged to be at risk of bias. Conclusion: Our findings suggest that the diagnostic accuracy of radiological interpretation is not compromised by using a tablet computer. This result is only relevant to the Apple iPad and to the modalities of CT, MRI and plain radiography. Advances in knowledge: The iPad may be appropriate for an on-call radiologist to use for radiological interpretation. PMID:25882691
Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun
2016-01-01
Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Sophie; Tourassi, Georgia D.; Pinto, Frank
2013-10-15
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS imagesmore » features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.« less
Nanoparticles for multimodal in vivo imaging in nanomedicine
Key, Jaehong; Leary, James F
2014-01-01
While nanoparticles are usually designed for targeted drug delivery, they can also simultaneously provide diagnostic information by a variety of in vivo imaging methods. These diagnostic capabilities make use of specific properties of nanoparticle core materials. Near-infrared fluorescent probes provide optical detection of cells targeted by real-time nanoparticle-distribution studies within the organ compartments of live, anesthetized animals. By combining different imaging modalities, we can start with deep-body imaging by magnetic resonance imaging or computed tomography, and by using optical imaging, get down to the resolution required for real-time fluorescence-guided surgery. PMID:24511229
Shah, Amisha; Rees, Mitchell; Kar, Erica; Bolton, Kimberly; Lee, Vincent; Panigrahy, Ashok
2018-06-01
For the past several years, increased levels of imaging radiation and cumulative radiation to children has been a significant concern. Although several measures have been taken to reduce radiation dose during computed tomography (CT) scan, the newer dose reduction software adaptive statistical iterative reconstruction (ASIR) has been an effective technique in reducing radiation dose. To our knowledge, no studies are published that assess the effect of ASIR on extremity CT scans in children. To compare radiation dose, image noise, and subjective image quality in pediatric lower extremity CT scans acquired with and without ASIR. The study group consisted of 53 patients imaged on a CT scanner equipped with ASIR software. The control group consisted of 37 patients whose CT images were acquired without ASIR. Image noise, Computed Tomography Dose Index (CTDI) and dose length product (DLP) were measured. Two pediatric radiologists rated the studies in subjective categories: image sharpness, noise, diagnostic acceptability, and artifacts. The CTDI (p value = 0.0184) and DLP (p value <0.0002) were significantly decreased with the use of ASIR compared with non-ASIR studies. However, the subjective ratings for sharpness (p < 0.0001) and diagnostic acceptability of the ASIR images (p < 0.0128) were decreased compared with standard, non-ASIR CT studies. Adaptive statistical iterative reconstruction reduces radiation dose for lower extremity CTs in children, but at the expense of diagnostic imaging quality. Further studies are warranted to determine the specific utility of ASIR for pediatric musculoskeletal CT imaging.
Virtual guidance as a tool to obtain diagnostic ultrasound for spaceflight and remote environments.
Martin, David S; Caine, Timothy L; Matz, Timothy; Lee, Stuart M C; Stenger, Michael B; Sargsyan, Ashot E; Platts, Steven H
2012-10-01
With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.
Rosen, Eyal; Taschieri, Silvio; Del Fabbro, Massimo; Beitlitum, Ilan; Tsesis, Igor
2015-07-01
The aim of this study was to evaluate the diagnostic efficacy of cone-beam computed tomographic (CBCT) imaging in endodontics based on a systematic search and analysis of the literature using an efficacy model. A systematic search of the literature was performed to identify studies evaluating the use of CBCT imaging in endodontics. The identified studies were subjected to strict inclusion criteria followed by an analysis using a hierarchical model of efficacy (model) designed for appraisal of the literature on the levels of efficacy of a diagnostic imaging modality. Initially, 485 possible relevant articles were identified. After title and abstract screening and a full-text evaluation, 58 articles (12%) that met the inclusion criteria were analyzed and allocated to levels of efficacy. Most eligible articles (n = 52, 90%) evaluated technical characteristics or the accuracy of CBCT imaging, which was defined in this model as low levels of efficacy. Only 6 articles (10%) proclaimed to evaluate the efficacy of CBCT imaging to support the practitioner's decision making; treatment planning; and, ultimately, the treatment outcome, which was defined as higher levels of efficacy. The expected ultimate benefit of CBCT imaging to the endodontic patient as evaluated by its level of diagnostic efficacy is unclear and is mainly limited to its technical and diagnostic accuracy efficacies. Even for these low levels of efficacy, current knowledge is limited. Therefore, a cautious and rational approach is advised when considering CBCT imaging for endodontic purposes. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Severe oligohydramnios with intact membranes: an indication for diagnostic amnioinfusion.
Pryde, P G; Hallak, M; Lauria, M R; Littman, L; Bottoms, S F; Johnson, M P; Evans, M I
2000-01-01
To quantify the improvement in ultrasonographic fetal imaging following diagnostic amnioinfusion for the indication of unexplained midtrimester oligohydramnios. Patients referred for unexplained midtrimester oligohydramnios were retrospectively reviewed. Videotapes of those undergoing diagnostic antenatal amnioinfusion were analyzed for quality of visualization of routinely imaged structures before and after the infusion procedure. The overall rate of adequate visualization of fetal structures improved from 50.98 to 76.79% (p < 0.0001). In fetuses having preinfusion-identified obstructive uropathy, there was improvement in identification of associated anomalies from 11.8 to 31.3%. Several authors have suggested that diagnostic amnioinfusion can facilitate fetal imaging and increase diagnostic precision in the setting of unexplained severe oligohydramnios. We have quantified the improvement in the rate of optimal visualization of fetal structures which likely translates, in experienced hands, into this observed improved diagnostic precision. Of particular importance is the improvement in appreciation of associated anomalies in cases of obstructive uropathy in which such findings may determine whether or not invasive fetal therapy is indicated. Copyright 2000 S. Karger AG, Basel.
Campbell, Fiona; Thokala, Praveen; Uttley, Lesley C; Sutton, Anthea; Sutton, Alex J; Al-Mohammad, Abdallah; Thomas, Steven M
2014-09-01
Cardiac magnetic resonance imaging (CMR) is increasingly used to assess patients for myocardial viability prior to revascularisation. This is important to ensure that only those likely to benefit are subjected to the risk of revascularisation. To assess current evidence on the accuracy and cost-effectiveness of CMR to test patients prior to revascularisation in ischaemic cardiomyopathy; to develop an economic model to assess cost-effectiveness for different imaging strategies; and to identify areas for further primary research. Databases searched were: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations Initial searches were conducted in March 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to March 2011); Bioscience Information Service (BIOSIS) Previews via Web of Science (1969 to March 2011); EMBASE via Ovid (1974 to March 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to March 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library 1998 to March 2011; Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to March 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to March 2011); Health Technology Assessment Database via The Cochrane Library (1989 to March 2011); and the Science Citation Index via Web of Science (1900 to March 2011). Additional searches were conducted from October to November 2011 in the following databases with dates: MEDLINE including MEDLINE In-Process & Other Non-Indexed Citations via Ovid (1946 to November 2011); BIOSIS Previews via Web of Science (1969 to October 2011); EMBASE via Ovid (1974 to November 2011); Cochrane Database of Systematic Reviews via The Cochrane Library (1996 to November 2011); Cochrane Central Register of Controlled Trials via The Cochrane Library (1998 to November 2011); Database of Abstracts of Reviews of Effects via The Cochrane Library (1994 to November 2011); NHS Economic Evaluation Database via The Cochrane Library (1968 to November 2011); Health Technology Assessment Database via The Cochrane Library (1989 to November 2011); and the Science Citation Index via Web of Science (1900 to October 2011). Electronic databases were searched March-November 2011. The systematic review selected studies that assessed the clinical effectiveness and cost-effectiveness of CMR to establish the role of CMR in viability assessment compared with other imaging techniques: stress echocardiography, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). Studies had to have an appropriate reference standard and contain accuracy data or sufficient details so that accuracy data could be calculated. Data were extracted by two reviewers and discrepancies resolved by discussion. Quality of studies was assessed using the QUADAS II tool (University of Bristol, Bristol, UK). A rigorous diagnostic accuracy systematic review assessed clinical and cost-effectiveness of CMR in viability assessment. A health economic model estimated costs and quality-adjusted life-years (QALYs) accrued by diagnostic pathways for identifying patients with viable myocardium in ischaemic cardiomyopathy with a view to revascularisation. The pathways involved CMR, stress echocardiography, SPECT, PET alone or in combination. Strategies of no testing and revascularisation were included to determine the most cost-effective strategy. Twenty-four studies met the inclusion criteria. All were prospective. Participant numbers ranged from 8 to 52. The mean left ventricular ejection fraction in studies reporting this outcome was 24-62%. CMR approaches included stress CMR and late gadolinium-enhanced cardiovascular magnetic resonance imaging (CE CMR). Recovery following revascularisation was the reference standard. Twelve studies assessed diagnostic accuracy of stress CMR and 14 studies assessed CE CMR. A bivariate regression model was used to calculate the sensitivity and specificity of CMR. Summary sensitivity and specificity for stress CMR was 82.2% [95% confidence interval (CI) 73.2% to 88.7%] and 87.1% (95% CI 80.4% to 91.7%) and for CE CMR was 95.5% (95% CI 94.1% to 96.7%) and 53% (95% CI 40.4% to 65.2%) respectively. The sensitivity and specificity of PET, SPECT and stress echocardiography were calculated using data from 10 studies and systematic reviews. The sensitivity of PET was 94.7% (95% CI 90.3% to 97.2%), of SPECT was 85.1% (95% CI 78.1% to 90.2%) and of stress echocardiography was 77.6% (95% CI 70.7% to 83.3%). The specificity of PET was 68.8% (95% CI 50% to 82.9%), of SPECT was 62.1% (95% CI 52.7% to 70.7%) and of stress echocardiography was 69.6% (95% CI 62.4% to 75.9%). All currently used diagnostic strategies were cost-effective compared with no testing at current National Institute for Health and Care Excellence thresholds. If the annual mortality rates for non-viable patients were assumed to be higher for revascularised patients, then testing with CE CMR was most cost-effective at a threshold of £20,000/QALY. The proportion of model runs in which each strategy was most cost-effective, at a threshold of £20,000/QALY, was 40% for CE CMR, 42% for PET and 16.5% for revascularising everyone. The expected value of perfect information at £20,000/QALY was £620 per patient. If all patients (viable or not) gained benefit from revascularisation, then it was most cost-effective to revascularise all patients. Definitions and techniques assessing viability were highly variable, making data extraction and comparisons difficult. Lack of evidence meant assumptions were made in the model leading to uncertainty; differing scenarios were generated around key assumptions. All the diagnostic pathways are a cost-effective use of NHS resources. Given the uncertainty in the mortality rates, the cost-effectiveness analysis was performed using a set of scenarios. The cost-effectiveness analyses suggest that CE CMR and revascularising everyone were the optimal strategies. Future research should look at implementation costs for this type of imaging service, provide guidance on consistent reporting of diagnostic testing data for viability assessment, and focus on the impact of revascularisation or best medical therapy in this group of high-risk patients. The National Institute of Health Technology Assessment programme.
NASA Astrophysics Data System (ADS)
Lloyd, G. R.; Nallala, J.; Stone, N.
2016-03-01
FTIR is a well-established technique and there is significant interest in applying this technique to medical diagnostics e.g. to detect cancer. The introduction of focal plane array (FPA) detectors means that FTIR is particularly suited to rapid imaging of biopsy sections as an adjunct to digital pathology. Until recently however each pixel in the image has been limited to a minimum of 5.5 µm which results in a comparatively low magnification image or histology applications and potentially the loss of important diagnostic information. The recent introduction of higher magnification optics gives image pixels that cover approx. 1.1 µm. This reduction in image pixel size gives images of higher magnification and improved spatial detail can be observed. However, the effect of increasing the magnification on spectral quality and the ability to discriminate between disease states is not well studied. In this work we test the discriminatory performance of FTIR imaging using both standard (5.5 µm) and high (1.1 µm) magnification for the detection of colorectal cancer and explore the effect of binning to degrade high resolution images to determine whether similar diagnostic information and performance can be obtained using both magnifications. Results indicate that diagnostic performance using high magnification may be reduced as compared to standard magnification when using existing multivariate approaches. Reduction of the high magnification data to standard magnification via binning can potentially recover some of the lost performance.
Can CT imaging features of ground-glass opacity predict invasiveness? A meta-analysis.
Dai, Jian; Yu, Guoyou; Yu, Jianqiang
2018-04-01
A meta-analysis was conducted to investigate the diagnostic performance of computed tomography (CT) imaging features of ground-glass opacity (GGO) to predict invasiveness. Two reviewers independently searched PubMed, Medline, Web of Science, Cochrane Embase and CNKI for relevant studies. CT imaging signs of bubble lucency, speculation, lobulated margin, and pleural indentation were used as diagnostic references to discriminate pre-invasive and invasive disease. The sensitivity, specificity, diagnostic odds ratio (DOR), summary receiver operating characteristic (SROC) curves, and the area under the SROC curve (AUC) were calculated to evaluate diagnostic efficiency. Twelve studies were finally included. Diagnostic performance ranged from 0.41 to 0.52 for sensitivity and 0.56 to 0.63 for specificity. The diagnostic positive and negative likelihood ratios ranged from 1.03 to 2.13 and 0.52 to 1.05, respectively. The DORs of the GGO CT features for discriminating invasive disease ranged from 1.02 to 4.00. The area under the ROC curve was also low, with a range of 0.60 to 0.67 for discriminating pre-invasive and invasive disease. The diagnostic value of a single CT imaging sign of GGO, such as bubble lucency, speculation, lobulated margin, or pleural indentation is limited for discriminating pre-invasive and invasive disease because of low sensitivity, specificity, and AUC. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
NASA Astrophysics Data System (ADS)
Chen, Po-Hao; Botzolakis, Emmanuel; Mohan, Suyash; Bryan, R. N.; Cook, Tessa
2016-03-01
In radiology, diagnostic errors occur either through the failure of detection or incorrect interpretation. Errors are estimated to occur in 30-35% of all exams and contribute to 40-54% of medical malpractice litigations. In this work, we focus on reducing incorrect interpretation of known imaging features. Existing literature categorizes cognitive bias leading a radiologist to an incorrect diagnosis despite having correctly recognized the abnormal imaging features: anchoring bias, framing effect, availability bias, and premature closure. Computational methods make a unique contribution, as they do not exhibit the same cognitive biases as a human. Bayesian networks formalize the diagnostic process. They modify pre-test diagnostic probabilities using clinical and imaging features, arriving at a post-test probability for each possible diagnosis. To translate Bayesian networks to clinical practice, we implemented an entirely web-based open-source software tool. In this tool, the radiologist first selects a network of choice (e.g. basal ganglia). Then, large, clearly labeled buttons displaying salient imaging features are displayed on the screen serving both as a checklist and for input. As the radiologist inputs the value of an extracted imaging feature, the conditional probabilities of each possible diagnosis are updated. The software presents its level of diagnostic discrimination using a Pareto distribution chart, updated with each additional imaging feature. Active collaboration with the clinical radiologist is a feasible approach to software design and leads to design decisions closely coupling the complex mathematics of conditional probability in Bayesian networks with practice.
Xu, Bai-xuan; Liu, Chang-bin; Wang, Rui-min; Shao, Ming-zhe; Fu, Li-ping; Li, Yun-gang; Tian, Jia-he
2013-01-01
Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18)F-FDG, (18)F-FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.
76 FR 77834 - Scientific Information Request on Intravascular Diagnostic and Imaging Medical Devices
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... solicited to inform our Comparative Effectiveness Review of Intravascular Diagnostic Procedures and Imaging... scientific information on this device will improve the quality of this comparative effectiveness review. AHRQ is requesting this scientific information and conducting this comparative effectiveness review...
Dust as a versatile matter for high-temperature plasma diagnostic.
Wang, Zhehui; Ticos, Catalin M
2008-10-01
Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.
NASA Astrophysics Data System (ADS)
Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung
2015-07-01
Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-01-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159
Fiber pixelated image database
NASA Astrophysics Data System (ADS)
Shinde, Anant; Perinchery, Sandeep Menon; Matham, Murukeshan Vadakke
2016-08-01
Imaging of physically inaccessible parts of the body such as the colon at micron-level resolution is highly important in diagnostic medical imaging. Though flexible endoscopes based on the imaging fiber bundle are used for such diagnostic procedures, their inherent honeycomb-like structure creates fiber pixelation effects. This impedes the observer from perceiving the information from an image captured and hinders the direct use of image processing and machine intelligence techniques on the recorded signal. Significant efforts have been made by researchers in the recent past in the development and implementation of pixelation removal techniques. However, researchers have often used their own set of images without making source data available which subdued their usage and adaptability universally. A database of pixelated images is the current requirement to meet the growing diagnostic needs in the healthcare arena. An innovative fiber pixelated image database is presented, which consists of pixelated images that are synthetically generated and experimentally acquired. Sample space encompasses test patterns of different scales, sizes, and shapes. It is envisaged that this proposed database will alleviate the current limitations associated with relevant research and development and would be of great help for researchers working on comb structure removal algorithms.
Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian
2017-03-01
It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.
Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.
Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella
2010-08-21
Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.
Kuru, Kaya; Niranjan, Mahesan; Tunca, Yusuf; Osvank, Erhan; Azim, Tayyaba
2014-10-01
In general, medical geneticists aim to pre-diagnose underlying syndromes based on facial features before performing cytological or molecular analyses where a genotype-phenotype interrelation is possible. However, determining correct genotype-phenotype interrelationships among many syndromes is tedious and labor-intensive, especially for extremely rare syndromes. Thus, a computer-aided system for pre-diagnosis can facilitate effective and efficient decision support, particularly when few similar cases are available, or in remote rural districts where diagnostic knowledge of syndromes is not readily available. The proposed methodology, visual diagnostic decision support system (visual diagnostic DSS), employs machine learning (ML) algorithms and digital image processing techniques in a hybrid approach for automated diagnosis in medical genetics. This approach uses facial features in reference images of disorders to identify visual genotype-phenotype interrelationships. Our statistical method describes facial image data as principal component features and diagnoses syndromes using these features. The proposed system was trained using a real dataset of previously published face images of subjects with syndromes, which provided accurate diagnostic information. The method was tested using a leave-one-out cross-validation scheme with 15 different syndromes, each of comprised 5-9 cases, i.e., 92 cases in total. An accuracy rate of 83% was achieved using this automated diagnosis technique, which was statistically significant (p<0.01). Furthermore, the sensitivity and specificity values were 0.857 and 0.870, respectively. Our results show that the accurate classification of syndromes is feasible using ML techniques. Thus, a large number of syndromes with characteristic facial anomaly patterns could be diagnosed with similar diagnostic DSSs to that described in the present study, i.e., visual diagnostic DSS, thereby demonstrating the benefits of using hybrid image processing and ML-based computer-aided diagnostics for identifying facial phenotypes. Copyright © 2014. Published by Elsevier B.V.
MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sammet, S.
The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less
MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.
The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less
Greenslade, Jaimi H; Carlton, Edward W; Van Hise, Christopher; Cho, Elizabeth; Hawkins, Tracey; Parsonage, William A; Tate, Jillian; Ungerer, Jacobus; Cullen, Louise
2018-04-01
This diagnostic accuracy study describes the performance of 5 accelerated chest pain pathways, calculated with the new Beckman's Access high-sensitivity troponin I assay. High-sensitivity troponin I was measured with presentation and 2-hour blood samples in 1,811 patients who presented to an emergency department (ED) in Australia. Patients were classified as being at low risk according to 5 rules: modified accelerated diagnostic protocol to assess patients with chest pain symptoms using troponin as the only biomarker (m-ADAPT), the Emergency Department Assessment of Chest Pain Score (EDACS) pathway, the History, ECG, Age, Risk Factors, and Troponin (HEART) pathway, the No Objective Testing Rule, and the new Vancouver Chest Pain Rule. Endpoints were 30-day acute myocardial infarction and acute coronary syndrome. Measures of diagnostic accuracy for each rule were calculated. Data included 96 patients (5.3%) with acute myocardial infarction and 139 (7.7%) with acute coronary syndrome. The new Vancouver Chest Pain Rule and No Objective Testing Rule had high sensitivity for acute myocardial infarction (100%; 95% confidence interval [CI] 96.2% to 100% for both) and acute coronary syndrome (98.6% [95% CI 94.9% to 99.8%] and 99.3% [95% CI 96.1% to 100%]). The m-ADAPT, EDACS, and HEART pathways also yielded high sensitivity for acute myocardial infarction (96.9% [95% CI 91.1% to 99.4%] for m-ADAPT and 97.9% [95% CI 92.7% to 99.7%] for EDACS and HEART), but lower sensitivity for acute coronary syndrome (≤95.0% for all). The m-ADAPT, EDACS, and HEART rules classified more patients as being at low risk (64.3%, 62.5%, and 49.8%, respectively) than the new Vancouver Chest Pain Rule and No Objective Testing Rule (28.2% and 34.5%, respectively). In this cohort with a low prevalence of acute myocardial infarction and acute coronary syndrome, using the Beckman's Access high-sensitivity troponin I assay with the new Vancouver Chest Pain Rule or No Objective Testing Rule enabled approximately one third of patients to be safely discharged after 2-hour risk stratification with no further testing. The EDACS, m-ADAPT, or HEART pathway enabled half of ED patients to be rapidly referred for objective testing. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.
Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha
2017-11-01
We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Optical diagnostics in the oral cavity: an overview.
Wilder-Smith, P; Holtzman, J; Epstein, J; Le, A
2010-11-01
As the emphasis shifts from damage mitigation to disease prevention or reversal of early disease in the oral cavity, the need for sensitive and accurate detection and diagnostic tools become more important. Many novel and emergent optical diagnostic modalities for the oral cavity are becoming available to clinicians with a variety of desirable attributes including: (i) non-invasiveness, (ii) absence of ionizing radiation, (iii) patient-friendliness, (iv) real-time information (v) repeatability, and (vi) high-resolution surface and subsurface images. In this article, the principles behind optical diagnostic approaches, their feasibility and applicability for imaging soft and hard tissues, and their potential usefulness as a tool in the diagnosis of oral mucosal lesions, dental pathologies, and other dental applications will be reviewed. The clinical applications of light-based imaging technologies in the oral cavity and of their derivative devices will be discussed to provide the reader with a comprehensive understanding of emergent diagnostic modalities. © 2010 John Wiley & Sons A/S.
Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team
2017-10-01
Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.
TU-F-9A-01: Balancing Image Quality and Dose in Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, D; Pasciak, A
2014-06-15
Emphasis is often placed on minimizing radiation dose in diagnostic imaging without a complete consideration of the effect on image quality, especially those that affect diagnostic accuracy. This session will include a patient image-based review of diagnostic quantities important to radiologists in conventional radiography, including the effects of body habitus, age, positioning, and the clinical indication of the exam. The relationships between image quality, radiation dose, and radiation risk will be discussed, specifically addressing how these factors are affected by image protocols and acquisition parameters and techniques. This session will also discuss some of the actual and perceived radiation riskmore » associated with diagnostic imaging. Regardless if the probability for radiation-induced cancer is small, the fear associated with radiation persists. Also when a risk has a benefit to an individual or to society, the risk may be justified with respect to the benefit. But how do you convey the risks and the benefits to people? This requires knowledge of how people perceive risk and how to communicate the risk and the benefit to different populations. In this presentation the sources of errors in estimating risk from radiation and some methods used to convey risks are reviewed. Learning Objectives: Understand the image quality metrics that are clinically relevant to radiologists. Understand how acquisition parameters and techniques affect image quality and radiation dose in conventional radiology. Understand the uncertainties in estimates of radiation risk from imaging exams. Learn some methods for effectively communicating radiation risk to the public.« less
Myocardial perfusion imaging with PET
Nakazato, Ryo; Berman, Daniel S; Alexanderson, Erick; Slomka, Piotr
2013-01-01
PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease. PMID:23671459
Imaging of coronary atherosclerosis and identification of the vulnerable plaque
de Feyter, P.J.; Serruys, P. W.; Nieman, K.; Mollet, N.; Cademartiri, F.; van Geuns, R. J.; Slager, C.; van der Steen, A.F.W.; Krams, R.; Schaar, J.A.; Wielopolski, P.; Pattynama, P.M.T.; Arampatzis, A.; van der Lugt, A.; Regar, E.; Ligthart, J.; Smits, P.
2003-01-01
Identification of the vulnerable plaque responsible for the occurrence of acute coronary syndromes and acute coronary death is a prerequisite for the stabilisation of this vulnerable plaque. Comprehensive coronary atherosclerosis imaging in clinical practice should involve visualisation of the entire coronary artery tree and characterisation of the plaque, including the three-dimensional morphology of the plaque, encroachment of the plaque on the vessel lumen, the major tissue components of the plaque, remodelling of the vessel and presence of inflammation. Obviously, no single diagnostic modality is available that provides such comprehensive imaging and unfortunately no diagnostic tool is available that unequivocally identifies the vulnerable plaque. The objective of this article is to discuss experience with currently available diagnostic modalities for coronary atherosclerosis imaging. In addition, a number of evolving techniques will be briefly discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:25696244
Visualization and imaging methods for flames in microgravity
NASA Technical Reports Server (NTRS)
Weiland, Karen J.
1993-01-01
The visualization and imaging of flames has long been acknowledged as the starting point for learning about and understanding combustion phenomena. It provides an essential overall picture of the time and length scales of processes and guides the application of other diagnostics. It is perhaps even more important in microgravity combustion studies, where it is often the only non-intrusive diagnostic measurement easily implemented. Imaging also aids in the interpretation of single-point measurements, such as temperature, provided by thermocouples, and velocity, by hot-wire anemometers. This paper outlines the efforts of the Microgravity Combustion Diagnostics staff at NASA Lewis Research Center in the area of visualization and imaging of flames, concentrating on methods applicable for reduced-gravity experimentation. Several techniques are under development: intensified array camera imaging, and two-dimensional temperature and species concentrations measurements. A brief summary of results in these areas is presented and future plans mentioned.
Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Larina, Irina V.
2018-02-01
Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.
Kurvers, Ralf H J M; de Zoete, Annemarie; Bachman, Shelby L; Algra, Paul R; Ostelo, Raymond
2018-01-01
Diagnosing the causes of low back pain is a challenging task, prone to errors. A novel approach to increase diagnostic accuracy in medical decision making is collective intelligence, which refers to the ability of groups to outperform individual decision makers in solving problems. We investigated whether combining the independent ratings of chiropractors, chiropractic radiologists and medical radiologists can improve diagnostic accuracy when interpreting diagnostic images of the lumbosacral spine. Evaluations were obtained from two previously published studies: study 1 consisted of 13 raters independently rating 300 lumbosacral radiographs; study 2 consisted of 14 raters independently rating 100 lumbosacral magnetic resonance images. In both studies, raters evaluated the presence of "abnormalities", which are indicators of a serious health risk and warrant immediate further examination. We combined independent decisions of raters using a majority rule which takes as final diagnosis the decision of the majority of the group. We compared the performance of the majority rule to the performance of single raters. Our results show that with increasing group size (i.e., increasing the number of independent decisions) both sensitivity and specificity increased in both data-sets, with groups consistently outperforming single raters. These results were found for radiographs and MR image reading alike. Our findings suggest that combining independent ratings can improve the accuracy of lumbosacral diagnostic image reading.
Salivary calculus diagnosis with 3-dimensional cone-beam computed tomography.
Dreiseidler, Timo; Ritter, Lutz; Rothamel, Daniel; Neugebauer, Jörg; Scheer, Martin; Mischkowski, Robert A
2010-07-01
The objective of this study was to evaluate cone-beam CT (CBCT) diagnoses of sialoliths in the major salivary glands. Twenty-nine CBCT images containing salivary calculi were retrospectively evaluated for image quality and artifact influence. Additionally, the reproducibility of calculus measurement and the differences between CBCT measurements and ultrasonography (US) and histomorphometry (HM) measurements were determined. Diagnostic sensitivity and specificity calculations were based on the observations of 3 masked clinicians, who reviewed a total of 58 CBCT volumes. Salivary calculi were sufficiently visualized in all patients. Metal artifacts were detected in images of 7 patients, and movement artifacts in 2. CBCT calculi measurements were highly reproducible, with mean differences of less than 350 microm. Mean CBCT measurements of calculi diameters differed from mean US measurements by approximately 500 microm and differed from mean HM measurements by approximately 1 mm. For calculus diagnoses, the mean sensitivity and specificity were both 98.85%. Although poor image qualities and artifacts can reduce diagnostic information, salivary calculi can be evaluated adequately with CBCT. CBCT measurements of calculi are highly reproducible and differ little from measurements made with US and HM. Diagnostic sensitivity and specificity levels with CBCT are as high as or higher than those obtained with other diagnostic methods. Because of its high diagnostic-information-to-radiation-dose ratio, CBCT is the preferable imaging modality for salivary calculus diagnosis. Copyright (c) 2010 Mosby, Inc. All rights reserved.
Diagnostic imaging and spending review: extreme problems call for extreme measures.
Ciarrapico, Anna Micaela; Ugenti, Rossana; Di Minco, Lidia; Santori, Elisabetta; Altobelli, Simone; Coco, Irene; D'Onofrio, Silvia; Simonetti, Giovanni
2017-04-01
The number of diagnostic imaging tests has increased dramatically over the past decade and about 5 billion diagnostic examinations are performed worldwide each year. According to Health Ministry, Italy, is in second place for the number of CT and MR tests per thousand inhabitants in 2014 with a score of 83.3 (only Germany has a higher score, 95.2) that is a long way off from the European average of 46.5. It has also the highest ratio of magnetic resonances per person with 24,6 machines per million inhabitants, followed only by Greece and Finland. The development of the New Health Information System (NSIS) in 2010 made uniformly readable the non-homogeneous clinical data from all the different Italian regions and permitted a detailed analysis of all diagnostic imaging within the public outpatient care setting in Italy in 2012. Despite that MRI examinations represented only the 10% of the total number of imaging tests performed, their cost reached 30% of the health-care expenditure for outpatient diagnostic imaging with an overwhelming contribution coming from musculoskeletal MR which accounted for the 73% of the performed MR tests. It is reasonable to assume that these phenomena are likely due to a lack of appropriateness in MR requests that is difficult to analyze due to an absence or invalid query on the prescriptions which together accounted for the 98.7% of cases. Taking into account the above-mentioned situation, this is possibly why the Ministry of Health decided to perform "linear cuts" in expenditure for some diagnostic examinations.
Molecular Imaging with Theranostic Nanoparticles
Jokerst, Jesse V.; Gambhir, Sanjiv S.
2011-01-01
Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one or more. While the most clinically translatable nanoparticles have been used in the field of magnetic resonance imaging, other types are quickly becoming more biocompatible by overcoming toxicity and biodistribution concerns. The document details diagnostic imaging and therapeutic uses of nanoparticles. We propose five main types of nanoparticles with concurrent diagnostic and thereapeutic uses and offer examples of each. PMID:21919457
AFM feature definition for neural cells on nanofibrillar tissue scaffolds.
Tiryaki, Volkan M; Khan, Adeel A; Ayres, Virginia M
2012-01-01
A diagnostic approach is developed and implemented that provides clear feature definition in atomic force microscopy (AFM) images of neural cells on nanofibrillar tissue scaffolds. Because the cellular edges and processes are on the same order as the background nanofibers, this imaging situation presents a feature definition problem. The diagnostic approach is based on analysis of discrete Fourier transforms of standard AFM section measurements. The diagnostic conclusion that the combination of dynamic range enhancement with low-frequency component suppression enhances feature definition is shown to be correct and to lead to clear-featured images that could change previously held assumptions about the cell-cell interactions present. Clear feature definition of cells on scaffolds extends the usefulness of AFM imaging for use in regenerative medicine. © Wiley Periodicals, Inc.
Committee Opinion No. 723 Summary: Guidelines for Diagnostic Imaging During Pregnancy and Lactation.
2017-10-01
Imaging studies are important adjuncts in the diagnostic evaluation of acute and chronic conditions. However, confusion about the safety of these modalities for pregnant and lactating women and their infants often results in unnecessary avoidance of useful diagnostic tests or the unnecessary interruption of breastfeeding. Ultrasonography and magnetic resonance imaging are not associated with risk and are the imaging techniques of choice for the pregnant patient, but they should be used prudently and only when use is expected to answer a relevant clinical question or otherwise provide medical benefit to the patient. With few exceptions, radiation exposure through radiography, computed tomography scan, or nuclear medicine imaging techniques is at a dose much lower than the exposure associated with fetal harm. If these techniques are necessary in addition to ultrasonography or magnetic resonance imaging or are more readily available for the diagnosis in question, they should not be withheld from a pregnant patient. Breastfeeding should not be interrupted after gadolinium administration.
Committee Opinion No. 723: Guidelines for Diagnostic Imaging During Pregnancy and Lactation.
2017-10-01
Imaging studies are important adjuncts in the diagnostic evaluation of acute and chronic conditions. However, confusion about the safety of these modalities for pregnant and lactating women and their infants often results in unnecessary avoidance of useful diagnostic tests or the unnecessary interruption of breastfeeding. Ultrasonography and magnetic resonance imaging are not associated with risk and are the imaging techniques of choice for the pregnant patient, but they should be used prudently and only when use is expected to answer a relevant clinical question or otherwise provide medical benefit to the patient. With few exceptions, radiation exposure through radiography, computed tomography scan, or nuclear medicine imaging techniques is at a dose much lower than the exposure associated with fetal harm. If these techniques are necessary in addition to ultrasonography or magnetic resonance imaging or are more readily available for the diagnosis in question, they should not be withheld from a pregnant patient. Breastfeeding should not be interrupted after gadolinium administration.
Acuff, Shelley N.; Neveu, Melissa L.; Syed, Mumtaz; Kaman, Austin D.; Fu, Yitong
2018-01-01
Purpose The usage of PET/computed tomography (CT) to monitor hepatocellular carcinoma patients following yttrium-90 (90Y) radioembolization has increased. Respiratory motion causes liver movement, which can be corrected using gating techniques at the expense of added noise. This work examines the use of amplitude-based gating on 90Y-PET/CT and its potential impact on diagnostic integrity. Patients and methods Patients were imaged using PET/CT following 90Y radioembolization. A respiratory band was used to collect respiratory cycle data. Patient data were processed as both standard and motion-corrected images. Regions of interest were drawn and compared using three methods. Activity concentrations were calculated and converted into dose estimates using previously determined and published scaling factors. Diagnostic assessments were performed using a binary scale created from published 90Y-PET/CT image interpretation guidelines. Results Estimates of radiation dose were increased (P<0.05) when using amplitude-gating methods with 90Y PET/CT imaging. Motion-corrected images show increased noise, but the diagnostic determination of success, using the Kao criteria, did not change between static and motion-corrected data. Conclusion Amplitude-gated PET/CT following 90Y radioembolization is feasible and may improve 90Y dose estimates while maintaining diagnostic assessment integrity. PMID:29351124
Image-guided fine-needle aspiration of retroperitoneal masses: The role of the cytopathologist.
Mehdi, Ghazala; Maheshwari, Veena; Afzal, Sheerin; Ansari, Hena A; Ahmad, Ibne
2013-01-01
Retroperitoneal tumors constitute a difficult diagnostic category as they are not easily accessible. The advent of image-guided fine-needle aspiration (FNA) has resolved this problem significantly. We present a short study based on guided aspiration of retroperitoneal tumors, in which we have tried to assess the role of image-guided fine-needle aspiration cytology as a tool for pre-operative diagnosis. The study was conducted on patients diagnosed with retroperitoneal masses. FNA was performed under image guidance with the help of ultrasonography and/or computed tomography; smears were prepared and meticulously screened according to a fixed protocol. The results were analyzed to determine sensitivity, specificity, and diagnostic efficacy of cytopathological diagnosis using image-guided FNA techniques. We assessed 38 patients with retroperitoneal masses. In all cases, adequate cellular material was obtained. No major complications were encountered. Statistical analysis was carried out in 35 cases; sensitivity, specificity, and diagnostic accuracy were 100% in these cases. FNA under image guidance should be considered a first-line diagnostic approach for retroperitoneal and other abdominal tumors, although caution should be exercised in case selection. In areas where advanced tests are not available, the cytotechnologist and cytopathologist have a very important role to play in ensuring accurate diagnoses.
Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.
Smith, Jay; Finnoff, Jonathan T
2009-01-01
Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes.
Snapping hip: imaging and treatment.
Lee, Kenneth S; Rosas, Humberto G; Phancao, Jean-Pierre
2013-07-01
Snapping hip, or coxa saltans, presents as an audible or palpable snapping that occurs around the hip during movement and can be associated with or without pain. The prevalence of snapping hip is estimated to occur in up to 10% of the general population, but it is especially seen in athletes such as dancers, soccer players, weight lifters, and runners. Although the snapping sound can be readily heard, the diagnostic cause may be a clinical challenge. The causes of snapping hip have been divided into two distinct categories: extra-articular and intra-articular. Extra-articular snapping hip can be further subdivided into external and internal causes. Advances in imaging techniques have improved the diagnostic accuracy of the various causes of snapping hip, mainly by providing real-time imaging evaluation of moving structures during the snapping phase. Image-guided treatments have also been useful in the diagnostic work-up of snapping hip given the complexity and multitude of causes of hip pain. We discuss the common and uncommon causes of snapping hip, the advanced imaging techniques that now give us a better understanding of the underlying mechanism, and an image-guided diagnostic and therapeutic algorithm that helps to identify surgical candidates. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Advancing the Use of Administrative Data for Emergency Department Diagnostic Imaging Research.
Kuehl, Damon R; Berdahl, Carl T; Jackson, Tiffany D; Venkatesh, Arjun K; Mistry, Rakesh D; Bhargavan-Chatfield, Mythreyi; Raukar, Neha P; Carr, Brendan G; Schuur, Jeremiah D; Kocher, Keith E
2015-12-01
Administrative data are critical to describing patterns of use, cost, and appropriateness of imaging in emergency care. These data encompass a range of source materials that have been collected primarily for a nonresearch use: documenting clinical care (e.g., medical records), administering care (e.g., picture archiving and communication systems), or financial transactions (e.g., insurance claims). These data have served as the foundation for large, descriptive studies that have documented the rise and expanded role of diagnostic imaging in the emergency department (ED). This article summarizes the discussions of the breakout session on the use of administrative data for emergency imaging research at the May 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The authors describe the areas where administrative data have been applied to research evaluating the use of diagnostic imaging in the ED, the common sources for these data, and the strengths and limitations of administrative data. Next, the future role of administrative data is examined for answering key research questions in an evolving health system increasingly focused on measuring appropriateness, ensuring quality, and improving value for health spending. This article specifically focuses on four thematic areas: data quality, appropriateness and value, special populations, and policy interventions. © 2015 by the Society for Academic Emergency Medicine.
New method for detection of gastric cancer by hyperspectral imaging: a pilot study
NASA Astrophysics Data System (ADS)
Kiyotoki, Shu; Nishikawa, Jun; Okamoto, Takeshi; Hamabe, Kouichi; Saito, Mari; Goto, Atsushi; Fujita, Yusuke; Hamamoto, Yoshihiko; Takeuchi, Yusuke; Satori, Shin; Sakaida, Isao
2013-02-01
We developed a new, easy, and objective method to detect gastric cancer using hyperspectral imaging (HSI) technology combining spectroscopy and imaging A total of 16 gastroduodenal tumors removed by endoscopic resection or surgery from 14 patients at Yamaguchi University Hospital, Japan, were recorded using a hyperspectral camera (HSC) equipped with HSI technology Corrected spectral reflectance was obtained from 10 samples of normal mucosa and 10 samples of tumors for each case The 16 cases were divided into eight training cases (160 training samples) and eight test cases (160 test samples) We established a diagnostic algorithm with training samples and evaluated it with test samples Diagnostic capability of the algorithm for each tumor was validated, and enhancement of tumors by image processing using the HSC was evaluated The diagnostic algorithm used the 726-nm wavelength, with a cutoff point established from training samples The sensitivity, specificity, and accuracy rates of the algorithm's diagnostic capability in the test samples were 78.8% (63/80), 92.5% (74/80), and 85.6% (137/160), respectively Tumors in HSC images of 13 (81.3%) cases were well enhanced by image processing Differences in spectral reflectance between tumors and normal mucosa suggested that tumors can be clearly distinguished from background mucosa with HSI technology.
Li, Zhiming; Yu, Lan; Wang, Xin; Yu, Haiyang; Gao, Yuanxiang; Ren, Yande; Wang, Gang; Zhou, Xiaoming
2017-11-09
The purpose of this study was to investigate the diagnostic performance of mammographic texture analysis in the differential diagnosis of benign and malignant breast tumors. Digital mammography images were obtained from the Picture Archiving and Communication System at our institute. Texture features of mammographic images were calculated. Mann-Whitney U test was used to identify differences between the benign and malignant group. The receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of texture features. Significant differences of texture features of histogram, gray-level co-occurrence matrix (GLCM) and run length matrix (RLM) were found between the benign and malignant breast group (P < .05). The area under the ROC (AUROC) of histogram, GLCM, and RLM were 0.800, 0.787, and 0.761, with no differences between them (P > .05). The AUROCs of imaging-based diagnosis, texture analysis, and imaging-based diagnosis combined with texture analysis were 0.873, 0.863, and 0.961, respectively. When imaging-based diagnosis was combined with texture analysis, the AUROC was higher than that of imaging-based diagnosis or texture analysis (P < .05). Mammographic texture analysis is a reliable technique for differential diagnosis of benign and malignant breast tumors. Furthermore, the combination of imaging-based diagnosis and texture analysis can significantly improve diagnostic performance. Copyright © 2017 Elsevier Inc. All rights reserved.
Imaging markers for Alzheimer disease
Bocchetta, Martina; Chételat, Gael; Rabinovici, Gil D.; de Leon, Mony J.; Kaye, Jeffrey; Reiman, Eric M.; Scheltens, Philip; Barkhof, Frederik; Black, Sandra E.; Brooks, David J.; Carrillo, Maria C.; Fox, Nick C.; Herholz, Karl; Nordberg, Agneta; Jack, Clifford R.; Jagust, William J.; Johnson, Keith A.; Rowe, Christopher C.; Sperling, Reisa A.; Thies, William; Wahlund, Lars-Olof; Weiner, Michael W.; Pasqualetti, Patrizio; DeCarli, Charles
2013-01-01
Revised diagnostic criteria for Alzheimer disease (AD) acknowledge a key role of imaging biomarkers for early diagnosis. Diagnostic accuracy depends on which marker (i.e., amyloid imaging, 18F-fluorodeoxyglucose [FDG]-PET, SPECT, MRI) as well as how it is measured (“metric”: visual, manual, semiautomated, or automated segmentation/computation). We evaluated diagnostic accuracy of marker vs metric in separating AD from healthy and prognostic accuracy to predict progression in mild cognitive impairment. The outcome measure was positive (negative) likelihood ratio, LR+ (LR−), defined as the ratio between the probability of positive (negative) test outcome in patients and the probability of positive (negative) test outcome in healthy controls. Diagnostic LR+ of markers was between 4.4 and 9.4 and LR− between 0.25 and 0.08, whereas prognostic LR+ and LR− were between 1.7 and 7.5, and 0.50 and 0.11, respectively. Within metrics, LRs varied up to 100-fold: LR+ from approximately 1 to 100; LR− from approximately 1.00 to 0.01. Markers accounted for 11% and 18% of diagnostic and prognostic variance of LR+ and 16% and 24% of LR−. Across all markers, metrics accounted for an equal or larger amount of variance than markers: 13% and 62% of diagnostic and prognostic variance of LR+, and 29% and 18% of LR−. Within markers, the largest proportion of diagnostic LR+ and LR− variability was within 18F-FDG-PET and MRI metrics, respectively. Diagnostic and prognostic accuracy of imaging AD biomarkers is at least as dependent on how the biomarker is measured as on the biomarker itself. Standard operating procedures are key to biomarker use in the clinical routine and drug trials. PMID:23897875
Roy, Jean-Sébastien; Braën, Caroline; Leblond, Jean; Desmeules, François; Dionne, Clermont E; MacDermid, Joy C; Bureau, Nathalie J; Frémont, Pierre
2015-01-01
Background Different diagnostic imaging modalities, such as ultrasonography (US), MRI, MR arthrography (MRA) are commonly used for the characterisation of rotator cuff (RC) disorders. Since the most recent systematic reviews on medical imaging, multiple diagnostic studies have been published, most using more advanced technological characteristics. The first objective was to perform a meta-analysis on the diagnostic accuracy of medical imaging for characterisation of RC disorders. Since US is used at the point of care in environments such as sports medicine, a secondary analysis assessed accuracy by radiologists and non-radiologists. Methods A systematic search in three databases was conducted. Two raters performed data extraction and evaluation of risk of bias independently, and agreement was achieved by consensus. Hierarchical summary receiver-operating characteristic package was used to calculate pooled estimates of included diagnostic studies. Results Diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears was high with overall estimates of sensitivity and specificity over 0.90. As for partial RC tears and tendinopathy, overall estimates of specificity were also high (>0.90), while sensitivity was lower (0.67–0.83). Diagnostic accuracy of US was similar whether a trained radiologist, sonographer or orthopaedist performed it. Conclusions Our results show the diagnostic accuracy of US, MRI and MRA in the characterisation of full-thickness RC tears. Since full thickness tear constitutes a key consideration for surgical repair, this is an important characteristic when selecting an imaging modality for RC disorder. When considering accuracy, cost, and safety, US is the best option. PMID:25677796
Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.
2015-01-01
Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454
Brockmeyer, Matthias; Schmitt, Cornelia; Haupert, Alexander; Kohn, Dieter; Lorbach, Olaf
2017-12-01
The reliable diagnosis of partial-thickness tears of the rotator cuff is still elusive in clinical practise. Therefore, the purpose of the study was to determine the diagnostic accuracy of MR imaging and clinical tests for detecting partial-thickness tears of the rotator cuff as well as the combination of these parameters. 334 consecutive shoulder arthroscopies for rotator cuff pathologies performed during the time period between 2010 and 2012 were analyzed retrospectively for the findings of common clinical signs for rotator cuff lesions and preoperative MR imaging. These were compared with the intraoperative arthroscopic findings as "gold standard". The reports of the MR imaging were evaluated with regard to the integrity of the rotator cuff. The Ellman Classification was used to define partial-thickness tears of the rotator cuff in accordance with the arthroscopic findings. Descriptive statistics, sensitivity, specificity, positive and negative predictive value were calculated. MR imaging showed 80 partial-thickness and 70 full-thickness tears of the rotator cuff. The arthroscopic examination confirmed 64 partial-thickness tears of which 52 needed debridement or refixation of the rotator cuff. Sensitivity for MR imaging to identify partial-thickness tears was 51.6%, specificity 77.2%, positive predictive value 41.3% and negative predictive value 83.7%. For the Jobe-test, sensitivity was 64.1%, specificity 43.2%, positive predictive value 25.9% and negative predictive value 79.5%. Sensitivity for the Impingement-sign was 76.7%, specificity 46.6%, positive predictive value 30.8% and negative predictive value 86.5%. For the combination of MR imaging, Jobe-test and Impingement-sign sensitivity was 46.9%, specificity 85.4%, positive predictive value 50% and negative predictive value 83.8%. The diagnostic accuracy of MR imaging and clinical tests (Jobe-test and Impingement-sign) alone is limited for detecting partial-thickness tears of the rotator cuff. Additionally, the combination of MR imaging and clinical tests does not improve diagnostic accuracy. Level II, Diagnostic study.
Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo
2013-01-01
The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.
Wood, T J; Avery, G; Balcam, S; Needler, L; Smith, A; Saunderson, J R; Beavis, A W
2015-01-01
Objective: The aim of this study was to investigate via simulation a proposed change to clinical practice for chest radiography. The validity of using a scatter rejection grid across the diagnostic energy range (60–125 kVp), in conjunction with appropriate tube current–time product (mAs) for imaging with a computed radiography (CR) system was investigated. Methods: A digitally reconstructed radiograph algorithm was used, which was capable of simulating CR chest radiographs with various tube voltages, receptor doses and scatter rejection methods. Four experienced image evaluators graded images with a grid (n = 80) at tube voltages across the diagnostic energy range and varying detector air kermas. These were scored against corresponding images reconstructed without a grid, as per current clinical protocol. Results: For all patients, diagnostic image quality improved with the use of a grid, without the need to increase tube mAs (and therefore patient dose), irrespective of the tube voltage used. Increasing tube mAs by an amount determined by the Bucky factor made little difference to image quality. Conclusion: A virtual clinical trial has been performed with simulated chest CR images. Results indicate that the use of a grid improves diagnostic image quality for average adults, without the need to increase tube mAs, even at low tube voltages. Advances in knowledge: Validated with images containing realistic anatomical noise, it is possible to improve image quality by utilizing grids for chest radiography with CR systems without increasing patient exposure. Increasing tube mAs by an amount determined by the Bucky factor is not justified. PMID:25571914
Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I
2010-05-01
The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.
Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle
Linder, Ewert; Varjo, Sami; Thors, Cecilia
2016-01-01
Imaging at high resolution and subsequent image analysis with modified mobile phones have the potential to solve problems related to microscopy-based diagnostics of parasitic infections in many endemic regions. Diagnostics using the computing power of “smartphones” is not restricted by limited expertise or limitations set by visual perception of a microscopist. Thus diagnostics currently almost exclusively dependent on recognition of morphological features of pathogenic organisms could be based on additional properties, such as motility characteristics recognizable by computer vision. Of special interest are infectious larval stages and “micro swimmers” of e.g., the schistosome life cycle, which infect the intermediate and definitive hosts, respectively. The ciliated miracidium, emerges from the excreted egg upon its contact with water. This means that for diagnostics, recognition of a swimming miracidium is equivalent to recognition of an egg. The motility pattern of miracidia could be defined by computer vision and used as a diagnostic criterion. To develop motility pattern-based diagnostics of schistosomiasis using simple imaging devices, we analyzed Paramecium as a model for the schistosome miracidium. As a model for invasive nematodes, such as strongyloids and filaria, we examined a different type of motility in the apathogenic nematode Turbatrix, the “vinegar eel.” The results of motion time and frequency analysis suggest that target motility may be expressed as specific spectrograms serving as “diagnostic fingerprints.” PMID:27322330
Reiman, M P; Thorborg, K; Covington, K; Cook, C E; Hölmich, P
2017-06-01
Determine which examination findings are key clinical descriptors of femoroacetabular impingement syndrome (FAIS) through use of an international, multi-disciplinary expert panel. A three-round Delphi survey utilizing an international, multi-disciplinary expert panel operationally defined from international publications and presentations was utilized. All six domains (subjective examination, patient-reported outcome measures, physical examination, special tests, physical performance measures, and diagnostic imaging) had at least one descriptor with 75% consensus agreement for diagnosis and assessment of FAIS. Diagnostic imaging was the domain with the highest level of agreement. Domains such as patient-reported outcome measures (PRO's) and physical examination were identified as non-diagnostic measures (rather as assessments of disease impact). Although it also had the greatest level of variability in description of examination domains, diagnostic imaging continues to be the preeminent diagnostic measure for FAIS. No single domain should be utilized as the sole diagnostic or assessment parameter for FAIS. While not all investigated domains provide diagnostic capability for FAIS, those that do not are able to serve purpose as a measure of disease impact (e.g., impairments and activity limitations). The clinical relevance of this Delphi survey is the understanding that a comprehensive assessment measuring both diagnostic capability and disease impact most accurately reflects the patient with FAIS. V.
O'Connor, P J; Davies, A G; Fowler, R C; Lintott, D J; Bury, R F; Parkin, G J; Martinez, D; Saifuddin, A; Cowen, A R
1998-04-01
To assess diagnostic performance and reader preference when reporting results from digital hard-copy and two soft-copy formats of skeletal digital radiography. The data comprised hand radiographs of patients undergoing renal dialysis. Normal hand radiographs obtained in trauma patients were assessed as control images. One hundred fifteen images acquired with a photostimulable-phosphor computed radiography system were analyzed. Image selection and initial assessment were by consensus of two experienced radiologists, who graded the radiographic changes of hyperparathyroidism with the Ritz scoring system. The images were then presented to four readers in three formats: hard-copy output and soft-copy presentations at 2K2 and 1K2 resolutions. These readers scored pathologic change and image preference. The results were analyzed with the receiver operating characteristic technique. There was a significant improvement in diagnostic performance for both soft-copy formats relative to the hard-copy format (P < .001). No significant difference in diagnostic performance was found between the two soft-copy formats. There was a significant preference for both soft-copy formats relative to the hard-copy format (P < .01), with the 2K2 soft-copy images preferred to the 1K2 images (P < .01). Soft-copy reporting can provide superior diagnostic performance even for images viewed at a modest (1K2) resolution. The lack of difference between the two soft-copy formats has important economic implications with respect to departmental hardware requirements.
Hirasawa, Toshiaki; Aoyama, Kazuharu; Tanimoto, Tetsuya; Ishihara, Soichiro; Shichijo, Satoki; Ozawa, Tsuyoshi; Ohnishi, Tatsuya; Fujishiro, Mitsuhiro; Matsuo, Keigo; Fujisaki, Junko; Tada, Tomohiro
2018-07-01
Image recognition using artificial intelligence with deep learning through convolutional neural networks (CNNs) has dramatically improved and been increasingly applied to medical fields for diagnostic imaging. We developed a CNN that can automatically detect gastric cancer in endoscopic images. A CNN-based diagnostic system was constructed based on Single Shot MultiBox Detector architecture and trained using 13,584 endoscopic images of gastric cancer. To evaluate the diagnostic accuracy, an independent test set of 2296 stomach images collected from 69 consecutive patients with 77 gastric cancer lesions was applied to the constructed CNN. The CNN required 47 s to analyze 2296 test images. The CNN correctly diagnosed 71 of 77 gastric cancer lesions with an overall sensitivity of 92.2%, and 161 non-cancerous lesions were detected as gastric cancer, resulting in a positive predictive value of 30.6%. Seventy of the 71 lesions (98.6%) with a diameter of 6 mm or more as well as all invasive cancers were correctly detected. All missed lesions were superficially depressed and differentiated-type intramucosal cancers that were difficult to distinguish from gastritis even for experienced endoscopists. Nearly half of the false-positive lesions were gastritis with changes in color tone or an irregular mucosal surface. The constructed CNN system for detecting gastric cancer could process numerous stored endoscopic images in a very short time with a clinically relevant diagnostic ability. It may be well applicable to daily clinical practice to reduce the burden of endoscopists.
Cranial MRI in a young child with cochlear implants after bilateral magnet removal.
Helbig, Silke; Stöver, Timo; Burck, Iris; Kramer, Sabine
2017-12-01
A young bilateral cochlear implant (CI) user required magnetic resonance imaging (MRI) to determine the cause of hydrocephalus. The images obtained with the CIs in place were not diagnostically useful due to large artefacts generated by the CI magnets. We obtained useful images by bilaterally explanting the CI-magnets and replacing them with non-magnetic placeholder dummies then conducted the imaging. The artefact in the new images was greatly reduced and the images were diagnostically useful. Lastly, we explanted the dummies and reimplanted the CI-magnets. This procedure should be useful to obtain useful images in CI users. Copyright © 2017 Elsevier B.V. All rights reserved.
[Current macro-diagnostic trends of forensic medicine in the Czech Republic].
Frišhons, Jan; Kučerová, Štěpánka; Jurda, Mikoláš; Sokol, Miloš; Vojtíšek, Tomáš; Hejna, Petr
2017-01-01
Over the last few years, advanced diagnostic methods have penetrated in the realm of forensic medicine in addition to standard autopsy techniques supported by traditional X-ray examination and macro-diagnostic laboratory tests. Despite the progress of imaging methods, the conventional autopsy has remained basic and essential diagnostic tool in forensic medicine. Postmortem computed tomography and magnetic resonance imaging are far the most progressive modern radio diagnostic methods setting the current trend of virtual autopsies all over the world. Up to now, only two institutes of forensic medicine have available postmortem computed tomography for routine diagnostic purposes in the Czech Republic. Postmortem magnetic resonance is currently unattainable for routine diagnostic use and was employed only for experimental purposes. Photogrammetry is digital method focused primarily on body surface imaging. Recently, the most fruitful results have been yielded from the interdisciplinary cooperation between forensic medicine and forensic anthropology with the implementation of body scanning techniques and 3D printing. Non-invasive and mini-invasive investigative methods such as postmortem sonography and postmortem endoscopy was unsystematically tested for diagnostic performance with good outcomes despite of limitations of these methods in postmortem application. Other futuristic methods, such as the use of a drone to inspect the crime scene are still experimental tools. The authors of the article present a basic overview of the both routinely and experimentally used investigative methods and current macro-diagnostic trends of the forensic medicine in the Czech Republic.
Diagnostic Imaging of the Hepatobiliary System: An Update.
Marolf, Angela J
2017-05-01
Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Synergistic advances in diagnostic and therapeutic medical ultrasound
NASA Astrophysics Data System (ADS)
Lizzi, Frederic L.
2003-04-01
Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.
Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli
2013-09-01
To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.
Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification.
Jiang, Jue; Shang, Xu; Wang, Hua; Xu, Yong-Bo; Gao, Ya; Zhou, Qi
2015-03-01
The aim of this study was to investigate the diagnostic values of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in benign and malignant thyroid nodules with calcification. Conventional ultrasound and CEUS were performed in 122 patients with thyroid nodules with calcification. The thyroid nodules were characterized as benign or malignant by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of the two imaging methods were determined. The area under the receiver operating characteristics curve (AUC) was used to assess the diagnostic values of the two imaging methods. In 122 cases of thyroid nodules with calcification, 73 benign nodules and 49 malignant nodules were verified by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of conventional ultrasound were 50%, 77%, 59%, 69%, and 66%, respectively, and those of CEUS were 90%, 92%, 88%, 93%, and 91%, respectively. There were significant differences between the two imaging methods. AUCs of conventional ultrasound and CEUS were 0.628 ± 0.052 and 0.908 ± 0.031, suggesting low and high diagnostic values, respectively. CEUS has high diagnostic values, being significantly greater than those of conventional ultrasound, in differential diagnosis of benign and malignant thyroid nodules with calcification. Copyright © 2014. Published by Elsevier Taiwan.
Ripley, David P.; Brown, Julia M.; Everett, Colin C.; Bijsterveld, Petra; Walker, Simon; Sculpher, Mark; McCann, Gerry P.; Berry, Colin; Plein, Sven; Greenwood, John P.
2015-01-01
Background A number of investigative strategies exist for the diagnosis of coronary heart disease (CHD). Despite the widespread availability of noninvasive imaging, invasive angiography is commonly used early in the diagnostic pathway. Consequently, approximately 60% of angiograms reveal no evidence of obstructive coronary disease. Reducing unnecessary angiography has potential financial savings and avoids exposing the patient to unnecessary risk. There are no large-scale comparative effectiveness trials of the different diagnostic strategies recommended in international guidelines and none that have evaluated the safety and efficacy of cardiovascular magnetic resonance. Trial Design CE-MARC 2 is a prospective, multicenter, 3-arm parallel group, randomized controlled trial of patients with suspected CHD (pretest likelihood 10%-90%) requiring further investigation. A total of 1,200 patients will be randomized on a 2:2:1 basis to receive 3.0-T cardiovascular magnetic resonance–guided care, single-photon emission computed tomography–guided care (according to American College of Cardiology/American Heart Association appropriate-use criteria), or National Institute for Health and Care Excellence guidelines–based management. The primary (efficacy) end point is the occurrence of unnecessary angiography as defined by a normal (>0.8) invasive fractional flow reserve. Safety of each strategy will be assessed by 3-year major adverse cardiovascular event rates. Cost-effectiveness and health-related quality-of-life measures will be performed. Conclusions The CE-MARC 2 trial will provide comparative efficacy and safety evidence for 3 different strategies of investigating patients with suspected CHD, with the intension of reducing unnecessary invasive angiography rates. Evaluation of these management strategies has the potential to improve patient care, health-related quality of life, and the cost-effectiveness of CHD investigation. PMID:25497243
The value of liver resection for focal nodular hyperplasia: resection yes or no?
Hau, Hans Michael; Atanasov, Georgi; Tautenhahn, Hans-Michael; Ascherl, Rudolf; Wiltberger, Georg; Schoenberg, Markus Bo; Morgül, Mehmet Haluk; Uhlmann, Dirk; Moche, Michael; Fuchs, Jochen; Schmelzle, Moritz; Bartels, Michael
2015-10-22
Focal nodular hyperplasia (FNH) are benign lesions in the liver. Although liver resection is generally not indicated in these patients, rare indications for surgical approaches indeed exist. We here report on our single-center experience with patients undergoing liver resection for FNH, focussing on preoperative diagnostic algorithms and quality of life (QoL) after surgery. Medical records of 100 consecutive patients undergoing liver resection for FNH between 1992 and 2012 were retrospectively analyzed with regard to diagnostic pathways and indications for surgery. Quality of life (QoL) before and after surgery was evaluated using validated assessment tools. Student's t test, one-way ANOVA, χ (2), and binary logistic regression analyses such as Wilcoxon-Mann-Whitney test were used, as indicated. A combination of at least two preoperative diagnostic imaging approaches was applied in 99 cases, of which 70 patients were subjected to further imaging or tumor biopsy. In most patients, there was more than one indication for liver resection, including tumor-associated symptoms with abdominal discomfort (n = 46, 40.7 %), balance of risk for malignancy/history of cancer (n = 54, 47.8 %/n = 18; 33.3 %), tumor enlargement/jaundice of vascular and biliary structures (n = 13, 11.5 %), such as incidental findings during elective operation (n = 1, 0.9 %). Postoperative morbidity was 19 %, with serious complications (>grade 2, Clavien-Dindo classification) being evident in 8 %. Perioperative mortality was 0 %. Liver resection was associated with a significant overall improvement in general health (very good-excellent: preoperatively 47.4 % vs. postoperatively 68.1 %; p = 0.015). Liver resection remains a valuable therapeutic option in the treatment of either symptomatic FNH or if malignancy cannot finally be ruled out. If clinically indicated, liver resection for FNH represents a safe approach and may lead to significant improvements of QoL especially in symptomatic patients.
Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu
2016-10-01
Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.
Dankerl, Peter; Seuss, Hannes; Ellmann, Stephan; Cavallaro, Alexander; Uder, Michael; Hammon, Matthias
2017-02-01
This study aimed to evaluate the diagnostic performance of using a reformatted single-in-plane image reformation of the rib cage for the detection of rib fractures in computed tomography (CT) examinations, employing different levels of radiological experience. We retrospectively evaluated 10 consecutive patients with and 10 patients without rib fractures, whose CT scans were reformatted to a single-in-plane image reformation of the rib cage. Eight readers (two radiologists, two residents in radiology, and four interns) independently evaluated the images for the presence of rib fractures using a reformatted single-in-plane image and a multi-planar image reformation. The time limit was 30 seconds for each read. A consensus of two radiologist readings was considered as the reference standard. Diagnostic performance (sensitivity, specificity, positive predictive value [PPV], and negative predictive value [NPV]) was assessed and evaluated per rib and per location (anterior, lateral, posterior). To determine the time limit, we prospectively analyzed the average time it took radiologists to assess the rib cage, in a bone window setting, in 50 routine CT examinations. McNemar test was used to compare the diagnostic performances. Single image reformation was successful in all 20 patients. The sensitivity, specificity, PPV, and NPV for the detection of rib fractures using the conventional multi-planar read were 77.5%, 99.2%, 89.9%, and 98.0% for radiologists; 46.3%, 99.7%, 92.5%, and 95.3% for residents; and 29.4%, 99.4%, 82.5%, and 93.9% for interns, respectively. Sensitivity, PPV, and NPV increased across all three groups of experience, using the reformatted single-in-plane image of the rib cage (radiologists: 85.0%, 98.6%, and 98.7%; residents: 80.0%, 92.8%, and 98.2%; interns: 66.9%, 89.9%, and 97.1%), whereas specificity did not change significantly (99.9%, 99.4%, and 99.3%). The diagnostic performance of the interns and residents was significantly better when evaluating the single-in-plane image reformations (P < .01). The diagnostic performance of the radiologists was better when evaluating the single-in-plane image reformations; however, there was no significant difference (statistical power: 0.32). The diagnostic performance for the detection of rib fractures, using CT images that have been reformatted to a single-in-plane image, improves for readers from different educational levels when the evaluation time is restricted to 30 seconds or less. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Two Pathways to Stimulus Encoding in Category Learning?
Davis, Tyler; Love, Bradley C.; Maddox, W. Todd
2008-01-01
Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948
Delisser, Peter J; Carwardine, Darren
2017-11-29
Diagnostic imaging technology is becoming more advanced and widely available to veterinary patients with the growing popularity of veterinary-specific computed tomography (CT) and magnetic resonance imaging (MRI). Veterinary students must, therefore, be familiar with these technologies and understand the importance of sound anatomic knowledge for interpretation of the resultant images. Anatomy teaching relies heavily on visual perception of structures and their function. In addition, visual spatial ability (VSA) positively correlates with anatomy test scores. We sought to assess the impact of including more diagnostic imaging, particularly CT/MRI, in the teaching of veterinary anatomy on the students' perceived level of usefulness and ease of understanding content. Finally, we investigated survey answers' relationship to the students' inherent baseline VSA, measured by a standard Mental Rotations Test. Students viewed diagnostic imaging as a useful inclusion that provided clear links to clinical relevance, thus improving the students' perceived benefits in its use. Use of CT and MRI images was not viewed as more beneficial, more relevant, or more useful than the use of radiographs. Furthermore, students felt that the usefulness of CT/MRI inclusion was mitigated by the lack of prior formal instruction on the basics of CT/MRI image generation and interpretation. To be of significantly greater use, addition of learning resources labeling relevant anatomy in tomographical images would improve utility of this novel teaching resource. The present study failed to find any correlation between student perceptions of diagnostic imaging in anatomy teaching and their VSA.
Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi
2014-01-01
The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.
Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane
2018-07-01
To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.
Dalley, C; Basarir, H; Wright, J G; Fernando, M; Pearson, D; Ward, S E; Thokula, P; Krishnankutty, A; Wilson, G; Dalton, A; Talley, P; Barnett, D; Hughes, D; Porter, N R; Reilly, J T; Snowden, J A
2015-04-01
Specialist Integrated Haematological Malignancy Diagnostic Services (SIHMDS) were introduced as a standard of care within the UK National Health Service to reduce diagnostic error and improve clinical outcomes. Two broad models of service delivery have become established: 'co-located' services operating from a single-site and 'networked' services, with geographically separated laboratories linked by common management and information systems. Detailed systematic cost analysis has never been published on any established SIHMDS model. We used Activity Based Costing (ABC) to construct a cost model for our regional 'networked' SIHMDS covering a two-million population based on activity in 2011. Overall estimated annual running costs were £1 056 260 per annum (£733 400 excluding consultant costs), with individual running costs for diagnosis, staging, disease monitoring and end of treatment assessment components of £723 138, £55 302, £184 152 and £94 134 per annum, respectively. The cost distribution by department was 28.5% for haematology, 29.5% for histopathology and 42% for genetics laboratories. Costs of the diagnostic pathways varied considerably; pathways for myelodysplastic syndromes and lymphoma were the most expensive and the pathways for essential thrombocythaemia and polycythaemia vera being the least. ABC analysis enables estimation of running costs of a SIHMDS model comprised of 'networked' laboratories. Similar cost analyses for other SIHMDS models covering varying populations are warranted to optimise quality and cost-effectiveness in delivery of modern haemato-oncology diagnostic services in the UK as well as internationally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue
2018-01-01
The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865
Shah, R; Foldyna, B; Hoffmann, U
2016-08-01
The development of coronary artery disease (CAD) is a major, final common pathway in heart disease worldwide. With a rise in stress testing and increased scrutiny on cost-effectiveness and radiation exposure in medical imaging, a focus on the relative merits of anatomic versus functional characterization of CAD has emerged. In this context, coronary computed tomography angiography (CCTA) is a noninvasive alternative to functional testing as a first-line test for CAD detection but is complimentary in its nature. Here, we discuss the design, results, and implications of the PROMISE trial, a randomized comparative effectiveness study of 10,003 patients across 193 sites in the United States and Canada comparing the prognostic and diagnostic power of CCTA and standard stress testing. Specifically, we discuss the safety (e. g., contrast, radiation exposure) of CCTA versus functional testing in CAD, the need for improved selection for noninvasive testing, the frequency of downstream testing after anatomic or functional imaging, the use of imaging results in clinical management, and novel modalities of CAD risk determination using CCTA. PROMISE demonstrated that in a real-world, low-to-intermediate risk patient population referred to noninvasive testing for CAD, both CCTA and functional testing approaches have similar clinical, economic, and safety-based outcomes. We conclude with open questions in CAD imaging, specifically as they pertain to the utilization of CCTA.
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.
Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H
2014-11-01
A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.
Sardanelli, Francesco; Bashir, Humayun; Berzaczy, Dominik; Cannella, Guglielmo; Espeland, Ansgar; Flor, Nicola; Helbich, Thomas; Hunink, Myriam; Malone, Dermot E; Mann, Ritse; Muzzupappa, Claudia; Petersen, Lars J; Riklund, Katrine; Sconfienza, Luca M; Serafin, Zbigniew; Spronk, Sandra; Stoker, Jaap; van Beek, Edwin J R; Vorwerk, Dierk; Di Leo, Giovanni
2014-08-01
To evaluate the inclusion of radiologists or nuclear medicine physicians (imaging specialists) as authors of systematic reviews (SRs) on imaging and imaging-guided diagnostic procedures and to determine the impact of imaging specialists' presence as authors on the overall quality of the reviews. A MEDLINE and EMBASE search was performed for SRs of diagnostic and interventional image-guided procedures that were published from January 2001 to December 2010. SRs about procedures primarily performed by nonimaging specialists were excluded. The inclusion of imaging specialists among the SR authors and the frequency of publication in imaging journals were evaluated. The quality of a subset of 200 SRs (100 most recent SRs with imaging specialists as authors and 100 most recent SRs without imaging specialists as authors) was rated by using a 12-item modified assessment of multiple SRs (AMSTAR) evaluation tool. Spearman, χ(2), and Mann-Whitney statistics were used. From among 3258 retrieved citations, 867 SRs were included in the study. Neuroimaging had the largest number of SRs (28% [241 of 867]), 41% (354 of 867) of SRs concerned diagnostic performance, and 26% (228 of 867) of SRs were published in imaging journals. Imaging specialists were authors (in any position) in 330 (38%) of 867 SRs; they were first authors of 176 SRs and last authors of 161 SRs. SRs with imaging specialists as authors were more often published in imaging journals than in nonimaging journals (54% [179 of 330] vs 9% [49 of 537]; P < .001). The median number of modified AMSTAR quality indicators was nine in SRs with imaging specialists as authors, while that in SRs without imaging specialists as authors was seven (P = .003). Only 38% (330 of 867) of SRs on radiology or nuclear medicine-related imaging published from January 2001 to December 2010 included imaging specialists as authors. However, the inclusion of imaging specialists as authors was associated with a significant increase in the scientific quality (as judged by using a modified AMSTAR scale) of the SR.
Safe patient handling in diagnostic imaging.
Murphey, Susan L
2010-01-01
Raising awareness of the risk to diagnostic imaging personnel from manually lifting, transferring, and repositioning patients is critical to improving workplace safety and staff utilization. The aging baby boomer generation and growing bariatric population exacerbate the problem. Also, legislative initiatives are increasing nationwide for hospitals to implement safe patient handling programs. A management process designed to improve working conditions through implementing ergonomic programs can reduce losses and improve productivity and patient care outcome measures for imaging departments.
A tutorial on ultrasonic physics and imaging techniques.
Halliwell, M
2010-01-01
Ultrasound is a widely used modality for both therapy and diagnosis in medicine and biology. Currently, in the field of medical diagnosis, ultrasound is responsible for about one in five of all diagnostic images. The physical characteristics of medical ultrasound, along with its behaviour as it interacts with biological tissues, are described in this tutorial. The role of ultrasound in therapeutic and diagnostic applications is briefly described. In view of the importance of ultrasound as a medical imaging modality, the basic technological building blocks utilized in diagnostic ultrasound scanners are also described. Many of these topics are the subjects of other papers in this special issue where they are dealt with in more detail.
Myositis Ossificans Mimicking Sarcoma, the Importance of Diagnostic Imaging – Case Report
Łuczyńska, Elżbieta; Kasperkiewicz, Hanna; Domalik, Agnieszka; Cwierz, Anna; Bobek-Billewicz, Barbara
2014-01-01
Summary Background Myositis ossificans is localized inflammatory process affecting skeletal muscles. Very rarely it can affect one of the neck muscles and present as a neck tumor, it can be misdiagnosed as the clinical, radiological and histological examinations can mimic a sarcoma. Case Report We report a 29 year old female patient with neck tumor suspected to be a sarcoma who underwent full diagnostics imaging and open bipsy with histopatological examination, afterwards surgical excision was performed. Conclusions The aim of this study was to present the differential diagnosis based on diagnostics imaging between MO and malignant tumors, such as parosteal sarcoma, synovial sarcoma and malignant fibrous histiocytoma. PMID:25077008
Auletta, Sveva; Bonfiglio, Rita; Wunder, Andreas; Varani, Michela; Galli, Filippo; Borri, Filippo; Scimeca, Manuel; Niessen, Heiko G; Schönberger, Tanja; Bonanno, Elena
2018-03-01
Inflammatory bowel diseases are lifelong disorders affecting the gastrointestinal tract characterized by intermittent disease flares and periods of remission with a progressive and destructive nature. Unfortunately, the exact etiology is still not completely known, therefore a causal therapy to cure the disease is not yet available. Current treatment options mainly encompass the use of non-specific anti-inflammatory agents and immunosuppressive drugs that cause significant side effects that often have a negative impact on patients' quality of life. As the majority of patients need a long-term follow-up it would be ideal to rely on a non-invasive technique with good compliance. Currently, the gold standard diagnostic tools for managing IBD are represented by invasive procedures such as colonoscopy and histopathology. Nevertheless, recent advances in imaging technology continue to improve the ability of imaging techniques to non-invasively monitor disease activity and treatment response in preclinical models of IBD. Novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. Furthermore, molecular imaging advances allow us to increase our knowledge on the critical biological pathways involved in disease progression by characterizing in vivo processes at a cellular and molecular level and enabling significant improvements in the understanding of the etiology of IBD. This review presents a critical and updated overview on the imaging advances in animal models of IBD. Our aim is to highlight the potential beneficial impact and the range of applications that imaging techniques could offer for the improvement of the clinical monitoring and management of IBD patients: diagnosis, staging, determination of therapeutic targets, monitoring therapy and evaluation of the prognosis, personalized therapeutic approaches.
NASA Astrophysics Data System (ADS)
Sokolov, Vladimir V.; Filonenko, E. V.; Telegina, L. V.; Boulgakova, N. N.; Smirnov, V. V.
2002-11-01
The results of comparative studies of autofluorescence and 5-ALA-induced fluorescence of protoporphyrin IX, used in the diagnostics of early cancer of larynx and bronchi, are presented. The autofluorescence and 5-ALA-induced fluorescence images of larynx and bronchial tissues are analysed during the endoscopic study. The method of local spectrophotometry is used to verify findings obtained from fluorescence images. It is shown that such a combined approach can be efficiently used to improve the diagnostics of precancer and early cancer, to detect a primary multiple tumours, as well as for the diagnostics of a residual tumour or an early recurrence after the endoscopic, surgery or X-ray treatment. The developed approach allows one to minimise the number of false-positive results and to reduce the number of biopsies, which are commonly used in the white-light bronchoscopy search for occult cancerous loci.
Rendeiro, Daniel G.; Deyle, Gail D.; Boissonnault, William G.
2015-01-01
Background: Physical therapy care for musculoskeletal conditions includes an ongoing process that systematically considers and prioritises diagnostic hypotheses. These diagnostic hypotheses include those that are typical for common musculoskeletal conditions, and must also include more rare conditions that would require care outside the scope of practice of the physical therapist. When additional screening is required, physical therapists collaborate with other providers or directly order the appropriate tests to rule out suspected pathology. Case Description: This article illustrates the use of musculoskeletal imaging ordered by a physical therapist to guide ongoing management of a patient with back pain and a history of cancer. Outcomes: The patient successfully returned to moderate-intensity sport activities after a course of physical therapy. Discussion: This case provides an example of how clinical diagnostic reasoning combined with clinical privileges to order musculoskeletal imaging can facilitate diagnostic accuracy in a timely and cost-efficient manner. PMID:26309382
Magnetic resonance imaging in the new paradigm for the diagnosis of prostate cancer.
Vilanova, J C; Catalá, V
For various reasons, prostate cancer is a major public health problem. It is a very common cancer, but has a very low mortality rate because it comprises two types of disease: one insignificant, indolent, and much more common, and the other aggressive, significant, and much less common. The routine diagnostic approach to prostate cancer has been systematic blind biopsies, which has low detection rates and might detect low risk, insignificant prostate cancer, leading to overdiagnosis and overtreatment of indolent cancers. The possibility of including multiparametric magnetic resonance imaging in the diagnostic management to improve the detection of aggressive cancer while reducing the overdiagnosis of indolent cancer represents a change in the diagnostic management. This article updates knowledge about the diagnostic management of prostate cancer including multiparametric magnetic resonance imaging. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
A revolution in diagnostic imaging.
Mamula, Paul W
2003-03-01
In November 1966, Sandy Koufax, the star left-handed pitcher of the Los Angeles Dodgers, retired after spending his final season coping with traumatic arthritis in his elbow, the compounded effects of a sliding injury to his pitching arm the previous season and 12 years of hard throwing.1 Had his career begun a few years later, he might have been able to benefit from the advances in diagnostic imaging and treatment that were introduced at that time. Modern arthroscopy and computed tomography (CT) did not become available until the mid 1970s,2 and the first elbow reconstruction was done by Frank Jobe, MD, about 10 years after Koufax retired.1 Arthroscopy was first used as a diagnostic tool, but it later became a surgical tool, affecting treatment of knees, then, later, shoulders. Since 1973, when The Physician and Sportsmedicine was launched, we have witnessed a revolution in diagnostic imaging and are continuing to see an evolution of modalities.
Automated Dermoscopy Image Analysis of Pigmented Skin Lesions
Baldi, Alfonso; Quartulli, Marco; Murace, Raffaele; Dragonetti, Emanuele; Manganaro, Mario; Guerra, Oscar; Bizzi, Stefano
2010-01-01
Dermoscopy (dermatoscopy, epiluminescence microscopy) is a non-invasive diagnostic technique for the in vivo observation of pigmented skin lesions (PSLs), allowing a better visualization of surface and subsurface structures (from the epidermis to the papillary dermis). This diagnostic tool permits the recognition of morphologic structures not visible by the naked eye, thus opening a new dimension in the analysis of the clinical morphologic features of PSLs. In order to reduce the learning-curve of non-expert clinicians and to mitigate problems inherent in the reliability and reproducibility of the diagnostic criteria used in pattern analysis, several indicative methods based on diagnostic algorithms have been introduced in the last few years. Recently, numerous systems designed to provide computer-aided analysis of digital images obtained by dermoscopy have been reported in the literature. The goal of this article is to review these systems, focusing on the most recent approaches based on content-based image retrieval systems (CBIR). PMID:24281070
Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
NASA Astrophysics Data System (ADS)
Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling
2016-07-01
To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.
NASA Astrophysics Data System (ADS)
Szczepura, Katy; Thompson, John; Manning, David
2017-03-01
In computed tomography the Hounsfield Units (HU) are used as an indicator of the tissue type based on the linear attenuation coefficients of the tissue. HU accuracy is essential when this metric is used in any form to support diagnosis. In hybrid imaging, such as SPECT/CT and PET/CT, the information is used for attenuation correction (AC) of the emission images. This work investigates the HU accuracy of nodules of known size and HU, comparing diagnostic quality (DQ) images with images used for AC.
The diagnostic accuracy of multiparametric MRI to determine pediatric brain tumor grades and types.
Koob, Mériam; Girard, Nadine; Ghattas, Badih; Fellah, Slim; Confort-Gouny, Sylviane; Figarella-Branger, Dominique; Scavarda, Didier
2016-04-01
Childhood brain tumors show great histological variability. The goal of this retrospective study was to assess the diagnostic accuracy of multimodal MR imaging (diffusion, perfusion, MR spectroscopy) in the distinction of pediatric brain tumor grades and types. Seventy-six patients (range 1 month to 18 years) with brain tumors underwent multimodal MR imaging. Tumors were categorized by grade (I-IV) and by histological type (A-H). Multivariate statistical analysis was performed to evaluate the diagnostic accuracy of single and combined MR modalities, and of single imaging parameters to distinguish the different groups. The highest diagnostic accuracy for tumor grading was obtained with diffusion-perfusion (73.24%) and for tumor typing with diffusion-perfusion-MR spectroscopy (55.76%). The best diagnostic accuracy was obtained for tumor grading in I and IV and for tumor typing in embryonal tumor and pilocytic astrocytoma. Poor accuracy was seen in other grades and types. ADC and rADC were the best parameters for tumor grading and typing followed by choline level with an intermediate echo time, CBV for grading and Tmax for typing. Multiparametric MR imaging can be accurate in determining tumor grades (primarily grades I and IV) and types (mainly pilocytic astrocytomas and embryonal tumors) in children.
Vedantham, Srinivasan; Shi, Linxi; Karellas, Andrew; O’Connell, Avice M.; Conover, David L.
2013-01-01
This study retrospectively analyzed the mean glandular dose (MGD) to 133 breasts from 132 subjects, all women, who participated in a clinical trial evaluating dedicated breast CT in a diagnostic population. The clinical trial was conducted in adherence to a protocol approved by institutional review boards and the study participants provided written informed consent. Individual estimates of mean glandular dose to each breast from dedicated breast CT was obtained by combining x-ray beam characteristics with estimates of breast dimensions and fibroglandular fraction from volumetric breast CT images, and using normalized glandular dose coefficients. For each study participant and for the breast corresponding to that imaged with breast CT, an estimate of the MGD from diagnostic mammography (including supplemental views) was obtained from the DICOM image headers for comparison. This estimate uses normalized glandular dose coefficients corresponding to a breast with 50% fibroglandular weight fraction. The median fibroglandular weight fraction for the study cohort determined from volumetric breast CT images was 15%. Hence, the MGD from diagnostic mammography was corrected to be representative of the study cohort. Individualized estimates of MGD from breast CT ranged from 5.7 mGy to 27.8 mGy. Corresponding to the breasts imaged with breast CT, the MGD from diagnostic mammography ranged from 2.6 to 31.6 mGy. The mean (± inter-breast SD) and the median MGD (mGy) from dedicated breast CT exam were 13.9±4.6 and 12.6, respectively. For the corresponding breasts, the mean (± inter-breast SD) and the median MGD (mGy) from diagnostic mammography were 12.4±6.3 and 11.1, respectively. Statistical analysis indicated that at the 0.05 level, the distributions of MGD from dedicated breast CT and diagnostic mammography were significantly different (Wilcoxon signed ranks test, p = 0.007). While the interquartile range and the range (maximum-minimum) of MGD from dedicated breast CT was lower than diagnostic mammography, the median MGD from dedicated breast CT was approximately 13.5% higher than that from diagnostic mammography. The MGD for breast CT is based on a 1.45 mm skin layer and that for diagnostic mammography is based on a 4 mm skin layer; thus, favoring a lower estimate for MGD from diagnostic mammography. The median MGD from dedicated breast CT corresponds to the median MGD from 4 to 5 diagnostic mammography views. In comparison, for the same 133 breasts, the mean and the median number of views per breast during diagnostic mammography were 4.53 and 4, respectively. Paired analysis showed that there was approximately equal likelihood of receiving lower MGD from either breast CT or diagnostic mammography. Future work will investigate methods to reduce and optimize radiation dose from dedicated breast CT. PMID:24165162
Imaging anatomy of the vestibular and visual systems.
Gunny, Roxana; Yousry, Tarek A
2007-02-01
This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.
Development of a new gas puff imaging diagnostic on the HL-2A tokamak
NASA Astrophysics Data System (ADS)
Yuan, B.; Xu, M.; Yu, Y.; Zang, L.; Hong, R.; Chen, C.; Wang, Z.; Nie, L.; Ke, R.; Guo, D.; Wu, Y.; Long, T.; Gong, S.; Liu, H.; Ye, M.; Duan, X.; HL-2A team
2018-03-01
A new gas puff imaging (GPI) diagnostic has been developed on the HL-2A tokamak to study two-dimensional plasma edge turbulence in poloidal vs. radial plane. During a discharge, neutral helium or deuterium gas is puffed at the edge of the plasma through a rectangular multi\
Delaloge, Suzette; Bonastre, Julia; Borget, Isabelle; Garbay, Jean-Rémi; Fontenay, Rachel; Boinon, Diane; Saghatchian, Mahasti; Mathieu, Marie-Christine; Mazouni, Chafika; Rivera, Sofia; Uzan, Catherine; André, Fabrice; Dromain, Clarisse; Boyer, Bruno; Pistilli, Barbara; Azoulay, Sandy; Rimareix, Françoise; Bayou, El-Hadi; Sarfati, Benjamin; Caron, Hélène; Ghouadni, Amal; Leymarie, Nicolas; Canale, Sandra; Mons, Muriel; Arfi-Rouche, Julia; Arnedos, Monica; Suciu, Voichita; Vielh, Philippe; Balleyguier, Corinne
2016-10-01
Rapid diagnosis is a key issue in modern oncology, for which one-stop breast clinics are a model. We aimed to assess the diagnosis accuracy and procedure costs of a large-scale one-stop breast clinic. A total of 10,602 individuals with suspect breast lesions attended the Gustave Roussy's regional one-stop breast clinic between 2004 and 2012. The multidisciplinary clinic uses multimodal imaging together with ultrasonography-guided fine needle aspiration for masses and ultrasonography-guided and stereotactic biopsies as needed. Diagnostic accuracy was assessed by comparing one-stop diagnosis to the consolidated diagnosis obtained after surgery or biopsy or long-term monitoring. The medical cost per patient of the care pathway was assessed from patient-level data collected prospectively. Sixty-nine percent of the patients had masses, while 31% had micro-calcifications or other non-mass lesions. In 75% of the cases (87% of masses), an exact diagnosis could be given on the same day. In the base-case analysis (i.e. considering only benign and malignant lesions at one-stop and at consolidated diagnoses), the sensitivity of the one-stop clinic was 98.4%, specificity 99.8%, positive and negative predictive values 99.7% and 99.0%. In the sensitivity analysis (reclassification of suspect, atypical and undetermined lesions), diagnostic sensitivity varied from 90.3% to 98.5% and specificity varied from 94.3% to 99.8%. The mean medical cost per patient of one-stop diagnostic procedure was €420. One-stop breast clinic can provide timely and cost-efficient delivery of highly accurate diagnoses and serve as models of care for multiple settings, including rapid screening-linked diagnosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics.
Knowlton, Stephanie M; Yenilmez, Bekir; Amin, Reza; Tasoglu, Savas
2017-02-19
Currently, many clinical diagnostic procedures are complex, costly, inefficient, and inaccessible to a large population in the world. The requirements for specialized equipment and trained personnel require that many diagnostic tests be performed at remote, centralized clinical laboratories. Magnetic levitation is a simple yet powerful technique and can be applied to levitate cells, which are suspended in a paramagnetic solution and placed in a magnetic field, at a position determined by equilibrium between a magnetic force and a buoyancy force. Here, we present a versatile platform technology designed for point-of-care diagnostics which uses magnetic levitation coupled to microscopic imaging and automated analysis to determine the density distribution of a patient's cells as a useful diagnostic indicator. We present two platforms operating on this principle: (i) a smartphone-compatible version of the technology, where the built-in smartphone camera is used to image cells in the magnetic field and a smartphone application processes the images and to measures the density distribution of the cells and (ii) a self-contained version where a camera board is used to capture images and an embedded processing unit with attached thin-film-transistor (TFT) screen measures and displays the results. Demonstrated applications include: (i) measuring the altered distribution of a cell population with a disease phenotype compared to a healthy phenotype, which is applied to sickle cell disease diagnosis, and (ii) separation of different cell types based on their characteristic densities, which is applied to separate white blood cells from red blood cells for white blood cell cytometry. These applications, as well as future extensions of the essential density-based measurements enabled by this portable, user-friendly platform technology, will significantly enhance disease diagnostic capabilities at the point of care.
Mohrs, Oliver K; Petersen, Steffen E; Voigtlaender, Thomas; Peters, Jutta; Nowak, Bernd; Heinemann, Markus K; Kauczor, Hans-Ulrich
2006-10-01
The aim of this study was to evaluate the diagnostic value of time-resolved contrast-enhanced MR angiography in adults with congenital heart disease. Twenty patients with congenital heart disease (mean age, 38 +/- 14 years; range, 16-73 years) underwent contrast-enhanced turbo fast low-angle shot MR angiography. Thirty consecutive coronal 3D slabs with a frame rate of 1-second duration were acquired. The mask defined as the first data set was subtracted from subsequent images. Image quality was evaluated using a 5-point scale (from 1, not assessable, to 5, excellent image quality). Twelve diagnostic parameters yielded 1 point each in case of correct diagnosis (binary analysis into normal or abnormal) and were summarized into three categories: anatomy of the main thoracic vessels (maximum, 5 points), sequential cardiac anatomy (maximum, 5 points), and shunt detection (maximum, 2 points). The results were compared with a combined clinical reference comprising medical or surgical reports and other imaging studies. Diagnostic accuracies were calculated for each of the parameters as well as for the three categories. The mean image quality was 3.7 +/- 1.0. Using a binary approach, 220 (92%) of the 240 single diagnostic parameters could be analyzed. The percentage of maximum diagnostic points, the sensitivity, the specificity, and the positive and the negative predictive values were all 100% for the anatomy of the main thoracic vessels; 97%, 87%, 100%, 100%, and 96% for sequential cardiac anatomy; and 93%, 93%, 92%, 88%, and 96% for shunt detection. Time-resolved contrast-enhanced MR angiography provides, in one breath-hold, anatomic and qualitative functional information in adult patients with congenital heart disease. The high diagnostic accuracy allows the investigator to tailor subsequent specific MR sequences within the same session.
Diffusion of Molecular Diagnostic Lung Cancer Tests: A Survey of German Oncologists
Steffen, Julius Alexander
2014-01-01
This study was aimed at examining the diffusion of diagnostic lung cancer tests in Germany. It was motivated by the high potential of detecting and targeting oncogenic drivers. Recognizing that the diffusion of diagnostic tests is a conditio sine qua non for the success of personalized lung cancer therapies, this study analyzed the diffusion of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tests in Germany. Qualitative and quantitative research strategies were combined in a mixed-method design. A literature review and subsequent Key Opinion Leader interviews identified a set of qualitative factors driving the diffusion process, which were then translated into an online survey. The survey was conducted among a sample of 961 oncologists (11.34% response rate). The responses were analyzed in a multiple linear regression which identified six statistically significant factors driving the diffusion of molecular diagnostic lung cancer tests: reimbursement, attitude towards R&D, information self-assessment, perceived attitudes of colleagues, age and test-pathway strategies. Besides the important role of adequate reimbursement and relevant guidelines, the results of this study suggest that an increasing usage of test-pathway strategies, especially in an office-based setting, can increase the diffusion of molecular diagnostic lung cancer tests in the future. PMID:25562146
Koh, D-M; Collins, D J; Wallace, T; Chau, I; Riddell, A M
2012-07-01
To compare the diagnostic accuracy of gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced MRI, diffusion-weighted MRI (DW-MRI) and a combination of both techniques for the detection of colorectal hepatic metastases. 72 patients with suspected colorectal liver metastases underwent Gd-EOB-DTPA MRI and DW-MRI. Images were retrospectively reviewed with unenhanced T(1) and T(2) weighted images as Gd-EOB-DTPA image set, DW-MRI image set and combined image set by two independent radiologists. Each lesion detected was scored for size, location and likelihood of metastasis, and compared with surgery and follow-up imaging. Diagnostic accuracy was compared using receiver operating characteristics and interobserver agreement by kappa statistics. 417 lesions (310 metastases, 107 benign) were found in 72 patients. For both readers, diagnostic accuracy using the combined image set was higher [area under the curve (Az)=0.96, 0.97] than Gd-EOB-DTPA image set (Az=0.86, 0.89) or DW-MRI image set (Az=0.93, 0.92). Using combined image set improved identification of liver metastases compared with Gd-EOB-DTPA image set (p<0.001) or DW-MRI image set (p<0.001). There was very good interobserver agreement for lesion classification (κ=0.81-0.88). Combining DW-MRI with Gd-EOB-DTPA-enhanced T(1) weighted MRI significantly improved the detection of colorectal liver metastases.
PEGylated Peptide-Based Imaging Agents for Targeted Molecular Imaging.
Wu, Huizi; Huang, Jiaguo
2016-01-01
Molecular imaging is able to directly visualize targets and characterize cellular pathways with a high signal/background ratio, which requires a sufficient amount of agents to uptake and accumulate in the imaging area. The design and development of peptide based agents for imaging and diagnosis as a hot and promising research topic that is booming in the field of molecular imaging. To date, selected peptides have been increasingly developed as agents by coupling with different imaging moieties (such as radiometals and fluorophore) with the help of sophisticated chemical techniques. Although a few successes have been achieved, most of them have failed mainly caused by their fast renal clearance and therefore low tumor uptakes, which may limit the effectively tumor retention effect. Besides, several peptide agents based on nanoparticles have also been developed for medical diagnostics. However, a great majority of those agents shown long circulation times and accumulation over time into the reticuloendothelial system (RES; including spleen, liver, lymph nodes and bone marrow) after systematic administration, such long-term severe accumulation probably results in the possible likelihood of toxicity and potentially induces health hazards. Recently reported design criteria have been proposed not only to enhance binding affinity in tumor region with long retention, but also to improve clearance from the body in a reasonable amount of time. PEGylation has been considered as one of the most successful modification methods to prolong tumor retention and improve the pharmacokinetic and pharmacodynamic properties for peptide-based imaging agents. This review summarizes an overview of PEGylated peptides imaging agents based on different imaging moieties including radioisotopes, fluorophores, and nanoparticles. The unique concepts and applications of various PEGylated peptide-based imaging agents are introduced for each of several imaging moieties. Effects of PEGylation on their target capability, clearance kinetics and metabolic stability are depicted. Problems and issues relating to the pharmacokinetic and optimization design of peptide-based imaging agents are also discussed.
Genetic investigations on intracranial aneurysm: update and perspectives.
Bourcier, Romain; Redon, Richard; Desal, Hubert
2015-04-01
Detection of an intracranial aneurysm (IA) is a common finding in MRI practice. Nowadays, the incidence of unruptured IA seems to be increasing with the continuous evolution of imaging techniques. Important modifiable risk factors for SAH are well defined, but familial history of IA is the best risk marker for the presence of IA. Numerous heritable conditions are associated with IA formation but these syndromes account for less than 1% of all IAs in the population. No diagnostic test based on genetic knowledge is currently available to identify theses mutations and patients who are at higher risk for developing IAs. In the longer term, a more comprehensive understanding of independent and interdependent molecular pathways germane to IA formation and rupture may guide the physician in developing targeted therapies and optimizing prognostic risk assessment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Alshipli, Marwan; Kabir, Norlaili A.
2017-05-01
Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.
Deagle, Jennifer; Allen, James; Mani, Raj
2005-06-01
This article describes the management of deep vein thrombosis (DVT) using an ambulatory nurse-led pathway and the compression technique using duplex ultrasound. This pathway permits the management of the "walking wounded" as well as other patients at varying risks of having DVT and in so doing has changed the approach toward the management of this common clinical event. The success of the described pathway is attributed to the development of low molecular weight heparin and the reliability of diagnostics.
Elschot, Mattijs; Nijsen, Johannes F W; Lam, Marnix G E H; Smits, Maarten L J; Prince, Jip F; Viergever, Max A; van den Bosch, Maurice A A J; Zonnenberg, Bernard A; de Jong, Hugo W A M
2014-10-01
Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic (99m)Tc-macroaggregated albumin ((99m)Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of (99m)Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic (166)Ho-microsphere imaging and to the actual lung absorbed doses after (166)Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with (166)Ho radioembolization. (99m)Tc-MAA-based and (166)Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after (166)Ho radioembolization. In the phantom study, (166)Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than (166)Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment (166)Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of (166)Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), (99m)Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and (99m)Tc-MAA planar scintigraphy (median 5.5 Gy, range 2.3 to 18.2 Gy; p < 0.001). In clinical practice, lung absorbed doses are significantly overestimated by pretreatment diagnostic (99m)Tc-MAA imaging. Pretreatment diagnostic (166)Ho-microsphere SPECT/CT imaging accurately predicts lung absorbed doses after (166)Ho radioembolization.
Martini, Katharina; Meier, Andreas; Opitz, Isabelle; Weder, Walter; Veit-Haibach, Patrick; Stahel, Rolf A; Frauenfelder, Thomas
2016-04-01
To investigate the diagnostic accuracy of sequential co-registered PET+MR (PET+MR) for local staging of malignant pleural mesothelioma (MPM) compared to PET/CT. In a prospective clinical trial 34 consecutive patients (median age 66 years; range 40-79 years; 1 female, 33 male) with known MPM, who underwent PET/CT and PET+MR exams for either staging or re-staging/follow-up were evaluated. Imaging was conducted using a tri-modality PET/CT-MR set-up (Discovery PET/CT 690, 3T Discovery MR 750w, both GE Healthcare, Waukesha, WI, USA). In 26 cases histopathology served as standard of reference. Two independent readers evaluated images for T and N stage, confidence level (sure to unsure; 1-3) and subjective overall image quality (very good to non-diagnostic; 1-4). Inter-observer agreement of T and N stages (Cohen's kappa) and interclass correlation coefficient (ICC) between PET/CT vs. PET+MR was calculated. Inter observer agreement for evaluation of T and N Stage in PET/CT images was excellent (k=0.844 and k=0.824, respectively), whereas PET+MR imaging showed substantial agreement in T and N stage (k=0.729 and k=0.691, respectively). The ICC of PET/CT vs. PET+MR for evaluation of both, T and N Stage, was excellent (ICC=0.951 and ICC=0.93, respectively). Diagnostic confidence was scored significantly higher in PET+MR compared to PET/CT (mean score=1.66 and 1.93, respectively; p=0.004). Image quality was diagnostic for all image series. Comparing pT and pN stage vs cT and cN stage (n=26 cases), both imaging modalities showed excellent agreement for T stage (ICCPET+MR=0.888 vs. ICCPET/CT=0.853, respectively) and substantial to moderate agreement for N stage (ICCPET+MR=0.683 vs. ICC=0.595PET/CT, respectively). Our findings suggest that diagnostic accuracy of PET+MR is comparable to PET/CT for local staging of MPM, whereas radiologists felt significantly more confident staging PET+MR compared to PET/CT images (p=0003), using dedicated sequences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Socioeconomic status and the utilization of diagnostic imaging in an urban setting
Demeter, Sandor; Reed, Martin; Lix, Lisa; MacWilliam, Leonard; Leslie, William D.
2005-01-01
Background In publicly funded health care systems, the utilization of health care services should be equitable, irrespective of socioeconomic status (SES). Although the association between SES and health care utilization has been examined in Canada relative to surgical, cardiac and preventive health care services, no published studies have specifically explored the association between SES and diagnostic imaging. Methods We examined over 300 000 diagnostic imaging claims made in the Winnipeg Regional Health Authority between Apr. 1, 2001, and Mar. 31, 2002. Using patient postal codes, we assigned SES on the basis of average household incomes in Canada's 1996 census. Using multiple regression, we examined the association between income quintile, patient age group (≤16, 17–64, ≥ 65 years), patient morbidity level according to the Johns Hopkins University Adjusted Clinical Group method (high, moderate, low), and imaging modality (general radiology, vascular, computed tomography, magnetic resonance, and general and obstetric ultrasound). Results Relative rates (RR) of diagnostic imaging utilization (highest v. lowest income quintile) were significantly increased in pediatric and adult patient groups at all morbidity levels receiving general radiology (highest RR 2.47, 95% confidence interval [CI] 2.07–2.93); pediatric and adult patient groups at high and low morbidity levels and elderly patient groups at low morbidity levels receiving general ultrasound (highest RR 2.26, 95% CI 1.20–4.26); pediatric and adult patient groups at all morbidity levels and elderly patients at high and moderate morbidity levels receiving magnetic resonance imaging (highest RR 2.51, 95% CI 1.78– 3.52); and adult patient groups at all morbidity levels receiving computed tomography (highest RR 1.46, 95% CI 1.35– 1.59). A lower RR of diagnostic imaging utilization in the highest income quintile was found only among patients receiving obstetric ultrasound (RR 0.80, 95% CI 0.73–0.87). No significant associations were found among elderly patients receiving general radiology or computed tomography or adult patients receiving vascular imaging. Interpretation We found a pattern of increased diagnostic imaging utilization in patient groups with a higher SES. Further research is needed to better understand the nature of this finding and how it contributes to health outcomes. PMID:16275968
Altered cerebellar feedback projections in Asperger syndrome.
Catani, Marco; Jones, Derek K; Daly, Eileen; Embiricos, Nitzia; Deeley, Quinton; Pugliese, Luca; Curran, Sarah; Robertson, Dene; Murphy, Declan G M
2008-07-15
It has been proposed that the biological basis of autism spectrum disorder includes cerebellar 'disconnection'. However, direct in vivo evidence in support of this is lacking. Here, the microstructural integrity of cerebellar white matter in adults with Asperger syndrome was studied using diffusion tensor magnetic resonance tractography. Fifteen adults with Asperger syndrome and 16 age-IQ-gender-matched healthy controls underwent diffusion tensor magnetic resonance imaging. For each subject, tract-specific measurements of mean diffusivity and fractional anisotropy were made within the inferior, middle, superior cerebellar peduncles and short intracerebellar fibres. No group differences were observed in mean diffusivity. However, people with Asperger syndrome had significantly lower fractional anisotropy in the short intracerebellar fibres (p<0.001) and right superior cerebellar (output) peduncle (p<0.001) compared to controls; but no difference in the input tracts. Severity of social impairment, as measured by the Autistic Diagnostic Interview, was negatively correlated with diffusion anisotropy in the fibres of the left superior cerebellar peduncle. These findings suggest a vulnerability of specific cerebellar neural pathways in people with Asperger syndrome. The localised abnormalities in the main cerebellar outflow pathway may prevent the cerebral cortex from receiving those cerebellar feedback inputs necessary for a successful adaptive social behaviour.
Physiogenomic analysis of localized FMRI brain activity in schizophrenia.
Windemuth, Andreas; Calhoun, Vince D; Pearlson, Godfrey D; Kocherla, Mohan; Jagannathan, Kanchana; Ruaño, Gualberto
2008-06-01
The search for genetic factors associated with disease is complicated by the complexity of the biological pathways linking genotype and phenotype. This analytical complexity is particularly concerning in diseases historically lacking reliable diagnostic biological markers, such as schizophrenia and other mental disorders. We investigate the use of functional magnetic resonance imaging (fMRI) as an intermediate phenotype (endophenotype) to identify physiogenomic associations to schizophrenia. We screened 99 subjects, 30 subjects diagnosed with schizophrenia, 13 unaffected relatives of schizophrenia patients, and 56 unrelated controls, for gene polymorphisms associated with fMRI activation patterns at two locations in temporal and frontal lobes previously implied in schizophrenia. A total of 22 single nucleotide polymorphisms (SNPs) in 15 genes from the dopamine and serotonin neurotransmission pathways were genotyped in all subjects. We identified three SNPs in genes that are significantly associated with fMRI activity. SNPs of the dopamine beta-hydroxylase (DBH) gene and of the dopamine receptor D4 (DRD4) were associated with activity in the temporal and frontal lobes, respectively. One SNP of serotonin-3A receptor (HTR3A) was associated with temporal lobe activity. The results of this study support the physiogenomic analysis of neuroimaging data to discover associations between genotype and disease-related phenotypes.
Update on Vascular Cognitive Impairment Associated with Subcortical Small-Vessel Disease
Wallin, Anders; Román, Gustavo C.; Esiri, Margaret; Kettunen, Petronella; Svensson, Johan; Paraskevas, George P.; Kapaki, Elisabeth
2018-01-01
Subcortical small-vessel disease (SSVD) is a disorder well characterized from the clinical, imaging, and neuropathological viewpoints. SSVD is considered the most prevalent ischemic brain disorder, increasing in frequency with age. Vascular risk factors include hypertension, diabetes, hyperlipidemia, elevated homocysteine, and obstructive sleep apnea. Ischemic white matter lesions are the hallmark of SSVD; other pathological lesions include arteriolosclerosis, dilatation of perivascular spaces, venous collagenosis, cerebral amyloid angiopathy, microbleeds, microinfarcts, lacunes, and large infarcts. The pathogenesis of SSVD is incompletely understood but includes endothelial changes and blood-brain barrier alterations involving metalloproteinases, vascular endothelial growth factors, angiotensin II, mindin/spondin, and the mammalian target of rapamycin pathway. Metabolic and genetic conditions may also play a role but hitherto there are few conclusive studies. Clinical diagnosis of SSVD includes early executive dysfunction manifested by impaired capacity to use complex information, to formulate strategies, and to exercise self-control. In comparison with Alzheimer’s disease (AD), patients with SSVD show less pronounced episodic memory deficits. Brain imaging has advanced substantially the diagnostic tools for SSVD. With the exception of cortical microinfarcts, all other lesions are well visualized with MRI. Diagnostic biomarkers that separate AD from SSVD include reduction of cerebrospinal fluid amyloid-β (Aβ)42 and of the ratio Aβ42/Aβ40 often with increased total tau levels. However, better markers of small-vessel function of intracerebral blood vessels are needed. The treatment of SSVD remains unsatisfactory other than control of vascular risk factors. There is an urgent need of finding targets to slow down and potentially halt the progression of this prevalent, but often unrecognized, disorder. PMID:29562536
Banks, Jon; Wye, Lesley; Hall, Nicola; Rooney, James; Walter, Fiona M; Hamilton, Willie; Gjini, Ardiana; Rubin, Greg
2017-12-13
In examining an initiative to develop and implement new cancer diagnostic pathways in two English localities, this paper evaluates 'what works' and examines the role of researchers in facilitating knowledge translation amongst teams of local clinicians and policy-makers. Using realist evaluation with a mixed methods case study approach, we conducted documentary analysis of meeting minutes and pathway iterations to map pathway development. We interviewed 14 participants to identify the contexts, mechanisms and outcomes (CMOs) that led to successful pathway development and implementation. Interviews were analysed thematically and four CMO configurations were developed. One site produced three fully implemented pathways, while the other produced two that were partly implemented. In explaining the differences, we found that a respected, independent, well-connected leader modelling partnership working and who facilitates a local, stable group that agree about the legitimacy of the data and project (context) can empower local teams to become sufficiently autonomous (mechanism) to develop and implement research-based pathways (outcome). Although both teams designed relevant, research-based cancer pathways, in the site where the pathways were successfully implemented the research team merely assisted, while, in the other, the research team drove the initiative. Based on our study findings, local stakeholders can apply local and research knowledge to develop and implement research-based pathways. However, success will depend on how academics empower local teams to create autonomy. Crucially, after re-packaging and translating research for local circumstances, identifying fertile environments with the right elements for implementation and developing collaborative relationships with local leaders, academics must step back.
Ikeda, Hidetoshi; Abe, Takehiko; Watanabe, Kazuo
2010-04-01
Fifty to eighty percent of Cushing disease is diagnosed by typical endocrine responses. Recently, the number of diagnoses of Cushing disease without typical Cushing syndrome has been increasing; therefore, improving ways to determine the localization of the adenoma and making an early diagnosis is important. This study was undertaken to determine the present diagnostic accuracy for Cushing microadenoma and to compare the differences in diagnostic accuracy between MR imaging and PET/MR imaging. During the past 3 years the authors analyzed the diagnostic accuracy in a series of 35 patients with Cushing adenoma that was verified by surgical pituitary exploration. All 35 cases of Cushing disease, including 20 cases of "overt" and 15 cases of "preclinical" Cushing disease, were studied. Superconductive MR images (1.5 or 3.0 T) and composite images from FDG-PET or methionine (MET)-PET and 3.0-T MR imaging were compared with the localization of adenomas verified by surgery. The diagnostic accuracy of superconductive MR imaging for detecting the localization of Cushing microadenoma was only 40%. The causes of unsatisfactory results for superconductive MR imaging were false-negative results (10 cases), false-positive results (6 cases), and instances of double pituitary adenomas (3 cases). In contrast, the accuracy of microadenoma localization using MET-PET/3.0-T MR imaging was 100% and that of FDG-PET/3.0-T MR imaging was 73%. Moreover, the adenoma location was better delineated on MET-PET/MR images than on FDG-PET/MR images. There was no significant difference in maximum standard uptake value of adenomas evaluated by MET-PET between preclinical Cushing disease and overt Cushing disease. Composite MET-PET/3.0-T MR imaging is useful for the improvement of the delineation of Cushing microadenoma and offers high-quality detectability for early-stage Cushing adenoma.
Inherent Contrast in Magnetic Resonance Imaging and the Potential for Contrast Enhancement
Brasch, Robert C.
1985-01-01
Magnetic resonance (MR) imaging is emerging as a powerful new diagnostic tool valued for its apparent lack of adverse effects. The excellent inherent contrast between biologic tissues and fluids afforded by MR imaging is one of the foremost characteristics of this technique and depends on physicochemical properties such as hydrogen density and T1 and T2 relaxation rates, on magnetic field strength and on operator-chosen factors for acquiring the MR imaging signal. Pharmaceutical contrast-enhancing agents shorten the MR imaging process and improve sensitivity and diagnostic accuracy. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 8.Figure 9.Figure 10.Figure 11. PMID:2992172
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2018-01-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Practical Considerations for Clinical PET/MR Imaging.
Galgano, Samuel; Viets, Zachary; Fowler, Kathryn; Gore, Lael; Thomas, John V; McNamara, Michelle; McConathy, Jonathan
2017-05-01
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
A manifesto for cardiovascular imaging: addressing the human factor†
Fraser, Alan G
2017-01-01
Abstract Our use of modern cardiovascular imaging tools has not kept pace with their technological development. Diagnostic errors are common but seldom investigated systematically. Rather than more impressive pictures, our main goal should be more precise tests of function which we select because their appropriate use has therapeutic implications which in turn have a beneficial impact on morbidity or mortality. We should practise analytical thinking, use checklists to avoid diagnostic pitfalls, and apply strategies that will reduce biases and avoid overdiagnosis. We should develop normative databases, so that we can apply diagnostic algorithms that take account of variations with age and risk factors and that allow us to calculate pre-test probability and report the post-test probability of disease. We should report the imprecision of a test, or its confidence limits, so that reference change values can be considered in daily clinical practice. We should develop decision support tools to improve the quality and interpretation of diagnostic imaging, so that we choose the single best test irrespective of modality. New imaging tools should be evaluated rigorously, so that their diagnostic performance is established before they are widely disseminated; this should be a shared responsibility of manufacturers with clinicians, leading to cost-effective implementation. Trials should evaluate diagnostic strategies against independent reference criteria. We should exploit advances in machine learning to analyse digital data sets and identify those features that best predict prognosis or responses to treatment. Addressing these human factors will reap benefit for patients, while technological advances continue unpredictably. PMID:29029029
Park, M; Lee, S-K; Choi, J; Kim, S-H; Kim, S H; Shin, N-Y; Kim, J; Ahn, S S
2015-10-01
Cystic pituitary adenomas may mimic Rathke cleft cysts when there is no solid enhancing component found on MR imaging, and preoperative differentiation may enable a more appropriate selection of treatment strategies. We investigated the diagnostic potential of MR imaging features to differentiate cystic pituitary adenomas from Rathke cleft cysts and to develop a diagnostic model. This retrospective study included 54 patients with a cystic pituitary adenoma (40 women; mean age, 37.7 years) and 28 with a Rathke cleft cyst (18 women; mean age, 31.5 years) who underwent MR imaging followed by surgery. The following imaging features were assessed: the presence or absence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, an off-midline location, the presence or absence of an intracystic nodule, size change, and signal change. On the basis of the results of logistic regression analysis, a diagnostic tree model was developed to differentiate between cystic pituitary adenomas and Rathke cleft cysts. External validation was performed for an additional 16 patients with a cystic pituitary adenoma and 8 patients with a Rathke cleft cyst. The presence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, and an off-midline location were more common with pituitary adenomas, whereas the presence of an intracystic nodule was more common with Rathke cleft cysts. Multiple logistic regression analysis showed that cystic pituitary adenomas and Rathke cleft cysts can be distinguished on the basis of the presence of a fluid-fluid level, septation, an off-midline location, and the presence of an intracystic nodule (P = .006, .032, .001, and .023, respectively). Among 24 patients in the external validation population, 22 were classified correctly on the basis of the diagnostic tree model used in this study. A systematic approach using this diagnostic tree model can be helpful in distinguishing cystic pituitary adenomas from Rathke cleft cysts. © 2015 by American Journal of Neuroradiology.
X-ray diffraction diagnostic design for the National Ignition Facility
NASA Astrophysics Data System (ADS)
Ahmed, Maryum F.; House, Allen; Smith, R. F.; Ayers, Jay; Lamb, Zachary S.; Swift, David W.
2013-09-01
This paper describes the design considerations for Target Diffraction In-Situ (TARDIS), an x-ray diffraction diagnostic at the National Ignition Facility. A crystal sample is ramp-compressed to peak pressures between 10 and 30 Mbar and, during a pressure hold period, is probed with quasi-monochromatic x-rays emanating from a backlighter source foil. The crystal spectrography diffraction lines are recorded onto image plates. The crystal sample, filter, and image plates are packaged into one assembly, allowing for accurate and repeatable target to image plate registration. Unconverted laser light impinges upon the device, generating debris, the effects of which have been mitigated. Dimpled blast shields, high strength steel alloy, and high-z tungsten are used to shield and protect the image plates. A tapered opening was designed to provide adequate thickness of shielding materials without blocking the drive beams or x-ray source from reaching the crystal target. The high strength steel unit serves as a mount for the crystal target and x-ray source foil. A tungsten body contains the imaging components. Inside this sub-assembly, there are three image plates: a 160 degree field of view curved plate directly opposite the target opening and two flat plates for the top and bottom. A polycarbonate frame, coated with the appropriate filter material and embedded with registration features for image plate location, is inserted into the diagnostic body. The target assembly is metrologized and then the diagnostic assembly is attached.
Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang
2015-01-01
Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637
A systematic review of diagnostic imaging use for low back pain in the United States.
Dagenais, Simon; Galloway, Erin K; Roffey, Darren M
2014-06-01
Various studies have reported on the increasing use and costs of diagnostic imaging for low back pain (LBP) in the United States. However, it is unclear whether the methods used in these studies allowed for meaningful comparisons or whether the reported use data can be used to develop evidence-based use benchmarks. The primary purpose of this study was to review previous estimates of the use of diagnostic imaging for LBP in the United States. The study design is a systematic review of published literature. A search through May 2012 was conducted using keywords and free text terms related to health services and LBP in Medline and Health Policy Reference; results were screened for relevance independently, and full-text studies were assessed for eligibility. Only studies published in English since the year 2000 reporting on use of diagnostic imaging for LBP using claims data from the United States were included. Reporting quality was assessed using a modified Downs and Black tool for observational studies. The search strategy yielded 1,102 citations, seven of which met the criteria for eligibility. Studies reported use from commercial health plans (N=4) and Medicare (N=3), with sample sizes ranging from 13,760 to 740,467 members with LBP from specific states or across the United States. The number of diagnostic codes used to identify nonspecific LBP ranged from 2 to 66; other heterogeneity was noted in the methods used across these studies. In commercial health plans, use of radiography occurred in 12.0% to 32.2% of patients with LBP, magnetic resonance imaging (MRI) was used in 16.0% to 21.0%, computed tomography (CT) was used in 1.4% to 3.0%, and MRI and/or CT was used in 10.9% to 16.1%. Findings in Medicare populations were 22.9% to 48.2% for radiography, 11.6% for MRI, and 10.4% to 16.3% for MRI and/or CT. The reported use of diagnostic imaging for LBP varied across the studies reviewed; differences in methodology made meaningful comparisons difficult. Standardizing methods for performing and reporting analyses of claims data related to use could facilitate efforts by third-party payers, health care providers, and researchers to identify and address the perceived overuse of diagnostic imaging for LBP. Copyright © 2014 Elsevier Inc. All rights reserved.
Focal-Plane Imaging of Crossed Beams in Nonlinear Optics Experiments
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Herring, G. C.
2007-01-01
An application of focal-plane imaging that can be used as a real time diagnostic of beam crossing in various optical techniques is reported. We discuss two specific versions and demonstrate the capability of maximizing system performance with an example in a combined dual-pump coherent anti-Stokes Raman scattering interferometric Rayleigh scattering experiment (CARS-IRS). We find that this imaging diagnostic significantly reduces beam alignment time and loss of CARS-IRS signals due to inadvertent misalignments.
2011-01-01
Journal Publications (1) S.J. Erickson, S.L. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Improved detection limits using a hand-held...Erickson, S. Martinez, J. Gonzalez, L. Caldera , and A. Godavarty. “Non- invasive Diagnostic Breast Imaging using a Hand-held Optical Imager...Proceedings of the 14th World Multi-Conference on Systems, Cybernetics and Informatics, 2010. (4) S.J. Erickson, S. Martinez, L. Caldera , and A
Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.
Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku
2017-01-01
The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.
Radiation Protection of the Child from Diagnostic Imaging.
Leung, Rebecca S
2015-01-01
In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.
Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D.
2015-01-01
Objective Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Methods Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. Results MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. Conclusions The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies. PMID:26200775
Wagner, Franca; Wimmer, Wilhelm; Leidolt, Lars; Vischer, Mattheus; Weder, Stefan; Wiest, Roland; Mantokoudis, Georgios; Caversaccio, Marco D
2015-01-01
Cochlear implants (CIs) are standard treatment for postlingually deafened individuals and prelingually deafened children. This human cadaver study evaluated diagnostic usefulness, image quality and artifacts in 1.5T and 3T magnetic resonance (MR) brain scans after CI with a removable magnet. Three criteria (diagnostic usefulness, image quality, artifacts) were assessed at 1.5T and 3T in five cadaver heads with CI. The brain magnetic resonance scans were performed with and without the magnet in situ. The criteria were analyzed by two blinded neuroradiologists, with focus on image distortion and limitation of the diagnostic value of the acquired MR images. MR images with the magnet in situ were all compromised by artifacts caused by the CI. After removal of the magnet, MR scans showed an unequivocal artifact reduction with significant improvement of the image quality and diagnostic usefulness, both at 1.5T and 3T. Visibility of the brain stem, cerebellopontine angle, and parieto-occipital lobe ipsilateral to the CI increased significantly after magnet removal. The results indicate the possible advantages for 1.5T and 3T MR scanning of the brain in CI carriers with removable magnets. Our findings support use of CIs with removable magnets, especially in patients with chronic intracranial pathologies.
TU-AB-204-03: Research Activities in Medical Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badano, A.
The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC), Image Gently, and the Quantitative Imaging Biomarkers Alliance (QIBA) among others, to fulfill FDA’s mission will be discussed. Learning Objectives: Understand FDA’s pre-market and post-market review processes for medical devices Understand FDA’s current regulatory research activities in the areas of medical physics and imaging products Understand how being involved with AAPM and other organizations can also help to promote innovative, safe and effective medical devices J. Delfino, nothing to disclose.« less
TU-AB-204-01: Device Approval Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delfino, J.
The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC), Image Gently, and the Quantitative Imaging Biomarkers Alliance (QIBA) among others, to fulfill FDA’s mission will be discussed. Learning Objectives: Understand FDA’s pre-market and post-market review processes for medical devices Understand FDA’s current regulatory research activities in the areas of medical physics and imaging products Understand how being involved with AAPM and other organizations can also help to promote innovative, safe and effective medical devices J. Delfino, nothing to disclose.« less
TU-AB-204-02: Device Adverse Events and Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzales, S.
The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC), Image Gently, and the Quantitative Imaging Biomarkers Alliance (QIBA) among others, to fulfill FDA’s mission will be discussed. Learning Objectives: Understand FDA’s pre-market and post-market review processes for medical devices Understand FDA’s current regulatory research activities in the areas of medical physics and imaging products Understand how being involved with AAPM and other organizations can also help to promote innovative, safe and effective medical devices J. Delfino, nothing to disclose.« less
TU-AB-204-00: CDRH/FDA Regulatory Processes and Device Science Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The responsibilities of the Food and Drug Administration (FDA) have increased since the inception of the Food and Drugs Act in 1906. Medical devices first came under comprehensive regulation with the passage of the 1938 Food, Drug, and Cosmetic Act. In 1971 FDA also took on the responsibility for consumer protection against unnecessary exposure to radiation-emitting devices for home and occupational use. However it was not until 1976, under the Medical Device Regulation Act, that the FDA was responsible for the safety and effectiveness of medical devices. This session will be presented by the Division of Radiological Health (DRH) andmore » the Division of Imaging, Diagnostics, and Software Reliability (DIDSR) from the Center for Devices and Radiological Health (CDRH) at the FDA. The symposium will discuss on how we protect and promote public health with a focus on medical physics applications organized into four areas: pre-market device review, post-market surveillance, device compliance, current regulatory research efforts and partnerships with other organizations. The pre-market session will summarize the pathways FDA uses to regulate the investigational use and commercialization of diagnostic imaging and radiation therapy medical devices in the US, highlighting resources available to assist investigators and manufacturers. The post-market session will explain the post-market surveillance and compliance activities FDA performs to monitor the safety and effectiveness of devices on the market. The third session will describe research efforts that support the regulatory mission of the Agency. An overview of our regulatory research portfolio to advance our understanding of medical physics and imaging technologies and approaches to their evaluation will be discussed. Lastly, mechanisms that FDA uses to seek public input and promote collaborations with professional, government, and international organizations, such as AAPM, International Electrotechnical Commission (IEC), Image Gently, and the Quantitative Imaging Biomarkers Alliance (QIBA) among others, to fulfill FDA’s mission will be discussed. Learning Objectives: Understand FDA’s pre-market and post-market review processes for medical devices Understand FDA’s current regulatory research activities in the areas of medical physics and imaging products Understand how being involved with AAPM and other organizations can also help to promote innovative, safe and effective medical devices J. Delfino, nothing to disclose.« less
Nonportable computed radiography of the chest--radiologists' acceptance
NASA Astrophysics Data System (ADS)
Gennari, Rose C.; Gur, David; Miketic, Linda M.; Campbell, William L.; Oliver, James H., III; Plunkett, Michael B.
1994-04-01
Following a large ROC study to assess diagnostic accuracy of PA chest computed radiography (CR) images displayed in a variety of formats, we asked nine experienced radiologists to subjectively assess their acceptance of and preferences for display modes in primary diagnosis of erect PA chest images. Our results indicate that radiologists felt somewhat less comfortable interpreting CR images displayed on either laser-printed films or workstations as compared to conventional films. The use of four minified images were thought to somewhat decrease diagnostic confidence, as well as to increase the time of interpretation. The reverse mode (black bone) images increased radiologists' confidence level in the detection of soft tissue abnormalities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp; Ito, N.; Nagayama, Y.
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
Kuwahara, D; Ito, N; Nagayama, Y; Yoshinaga, T; Yamaguchi, S; Yoshikawa, M; Kohagura, J; Sugito, S; Kogi, Y; Mase, A
2014-11-01
A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.
NASA Astrophysics Data System (ADS)
Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.
2011-05-01
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.
Bosnjak, J; Ciraj-Bjelac, O; Strbac, B
2008-01-01
Application of a quality control (QC) programme is very important when optimisation of image quality and reduction of patient exposure is desired. QC surveys of diagnostics imaging equipment in Republic of Srpska (entity of Bosnia and Herzegovina) has been systematically performed since 2001. The presented results are mostly related to the QC test results of X-ray tubes and generators for diagnostic radiology units in 92 radiology departments. In addition, results include workplace monitoring and usage of personal protective devices for staff and patients. Presented results showed the improvements in the implementation of the QC programme within the period 2001--2005. Also, more attention is given to appropriate maintenance of imaging equipment, which was one of the main problems in the past. Implementation of a QC programme is a continuous and complex process. To achieve good performance of imaging equipment, additional tests are to be introduced, along with image quality assessment and patient dosimetry. Training is very important in order to achieve these goals.
Shapelet analysis of pupil dilation for modeling visuo-cognitive behavior in screening mammography
NASA Astrophysics Data System (ADS)
Alamudun, Folami; Yoon, Hong-Jun; Hammond, Tracy; Hudson, Kathy; Morin-Ducote, Garnetta; Tourassi, Georgia
2016-03-01
Our objective is to improve understanding of visuo-cognitive behavior in screening mammography under clinically equivalent experimental conditions. To this end, we examined pupillometric data, acquired using a head-mounted eye-tracking device, from 10 image readers (three breast-imaging radiologists and seven Radiology residents), and their corresponding diagnostic decisions for 100 screening mammograms. The corpus of mammograms comprised cases of varied pathology and breast parenchymal density. We investigated the relationship between pupillometric fluctuations, experienced by an image reader during mammographic screening, indicative of changes in mental workload, the pathological characteristics of a mammographic case, and the image readers' diagnostic decision and overall task performance. To answer these questions, we extract features from pupillometric data, and additionally applied time series shapelet analysis to extract discriminative patterns in changes in pupil dilation. Our results show that pupillometric measures are adequate predictors of mammographic case pathology, and image readers' diagnostic decision and performance with an average accuracy of 80%.
Huddy, Jeremy R; Weldon, Sharon-Marie; Ralhan, Shvaita; Painter, Tim; Hanna, George B; Kneebone, Roger; Bello, Fernando
2016-01-01
Objectives Public and patient engagement (PPE) is fundamental to healthcare research. To facilitate effective engagement in novel point-of-care tests (POCTs), the test and downstream consequences of the result need to be considered. Sequential simulation (SqS) is a tool to represent patient journeys and the effects of intervention at each and subsequent stages. This case study presents a process evaluation of SqS as a tool for PPE in the development of a volatile organic compound-based breath test POCT for the diagnosis of oesophagogastric (OG) cancer. Setting Three 3-hour workshops in central London. Participants 38 members of public attended a workshop, 26 (68%) had no prior experience of the OG cancer diagnostic pathway. Interventions Clinical pathway SqS was developed from a storyboard of a patient, played by an actor, noticing symptoms of oesophageal cancer and following a typical diagnostic pathway. The proposed breath testing strategy was then introduced and incorporated into a second SqS to demonstrate pathway impact. Facilitated group discussions followed each SqS. Primary and secondary outcome measures Evaluation was conducted through pre-event and postevent questionnaires, field notes and analysis of audiovisual recordings. Results 38 participants attended a workshop. All participants agreed they were able to contribute to discussions and like the idea of an OG cancer breath test. Five themes emerged related to the proposed new breath test including awareness of OG cancer, barriers to testing and diagnosis, design of new test device, new clinical pathway and placement of test device. 3 themes emerged related to the use of SqS: participatory engagement, simulation and empathetic engagement, and why participants attended. Conclusions SqS facilitated a shared immersive experience for participants and researchers that led to the coconstruction of knowledge that will guide future research activities and be of value to stakeholders concerned with the invention and adoption of POCT. PMID:27625053
X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model.
Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Conlon, Thomas M; Braunagel, Margarita B; Auweter, Sigrid; Yildirim, Ali Ö; Eickelberg, Oliver; Pfeiffer, Franz; Reiser, Maximilian F; Meinel, Felix G
2017-03-23
The aim of this study was to evaluate whether diagnosing pulmonary fibrosis with projection radiography can be improved by using X-ray dark-field radiograms. Pulmonary X-ray transmission and dark-field images of C57Bl/6N mice, either treated with bleomycin to induce pulmonary fibrosis or PBS to serve as controls, were acquired with a prototype grating-based small-animal scanner. Two blinded readers, both experienced radiologists and familiar with dark-field imaging, had to assess dark-field and transmission images for the absence or presence of fibrosis. Furthermore readers were asked to grade their stage of diagnostic confidence. Histological evaluation of the lungs served as the standard of reference in this study. Both readers showed a notably higher diagnostic confidence when analyzing the dark-field radiographs (p < 0.001). Diagnostic accuracy improved significantly when evaluating the lungs in dark-field images alone (p = 0.02) or in combination with transmission images (p = 0.01) compared to sole analysis of absorption images. Interreader agreement improved from good when assessing only transmission images to excellent when analyzing dark-field images alone or in combination with transmission images. Adding dark-field images to conventional transmission images in a murine model of pulmonary fibrosis leads to an improved diagnosis of this disease on chest radiographs.
Polarization Rotation Caused by Cross-Beam Energy Transfer in Direct-Drive Implosions
NASA Astrophysics Data System (ADS)
Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J. G.; Turnbull, D.; Froula, D. H.
2017-10-01
The first evidence of polarization rotation caused by cross-beam energy transfer (CBET) during direct-drive implosions has been provided by a new beamlets diagnostic that was fielded on OMEGA. Beamlet images are, in essence, the end points of beamlets of light originating from different regions of each beam profile and following paths determined by refraction through the coronal plasma. The intensity of each beamlet varies because of absorption and many CBET interactions along that path. The new diagnostic records images in two time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarization images recording the polarization of each beamlet. Only the common polarization components couple during CBET so when each beam is linearly polarized, CBET rotates the polarization of each beam. A 3-D CBET postprocessor for hydrodynamics codes was used to model the beamlet images. The predicted images are compared to the images recorded by the new diagnostic. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Maier, Hans; de Heer, Gert; Ortac, Ajda; Kuijten, Jan
2015-11-01
To analyze, interpret and evaluate microscopic images, used in medical diagnostics and forensic science, video images for educational purposes were made with a very high resolution of 4096 × 2160 pixels (4K), which is four times as many pixels as High-Definition Video (1920 × 1080 pixels). The unprecedented high resolution makes it possible to see details that remain invisible to any other video format. The images of the specimens (blood cells, tissue sections, hair, fibre, etc.) are recorded using a 4K video camera which is attached to a light microscope. After processing, this resulted in very sharp and highly detailed images. This material was then used in education for classroom discussion. Spoken explanation by experts in the field of medical diagnostics and forensic science was also added to the high-resolution video images to make it suitable for self-study. © 2015 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Recommendations on nuclear and multimodality imaging in IE and CIED infections.
Erba, Paola Anna; Lancellotti, Patrizio; Vilacosta, Isidre; Gaemperli, Oliver; Rouzet, Francois; Hacker, Marcus; Signore, Alberto; Slart, Riemer H J A; Habib, Gilbert
2018-05-24
In the latest update of the European Society of Cardiology (ESC) guidelines for the management of infective endocarditis (IE), imaging is positioned at the centre of the diagnostic work-up so that an early and accurate diagnosis can be reached. Besides echocardiography, contrast-enhanced CT (ce-CT), radiolabelled leucocyte (white blood cell, WBC) SPECT/CT and [ 18 F]FDG PET/CT are included as diagnostic tools in the diagnostic flow chart for IE. Following the clinical guidelines that provided a straightforward message on the role of multimodality imaging, we believe that it is highly relevant to produce specific recommendations on nuclear multimodality imaging in IE and cardiac implantable electronic device infections. In these procedural recommendations we therefore describe in detail the technical and practical aspects of WBC SPECT/CT and [ 18 F]FDG PET/CT, including ce-CT acquisition protocols. We also discuss the advantages and limitations of each procedure, specific pitfalls when interpreting images, and the most important results from the literature, and also provide recommendations on the appropriate use of multimodality imaging.
Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.
Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael
2016-11-01
Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.
2016-11-15
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
NASA Astrophysics Data System (ADS)
Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.
2016-11-01
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
Diagnostic imaging modalities in head and neck disease.
Dammann, Florian; Bootz, Friedrich; Cohnen, Mathias; Hassfeld, Stefan; Tatagiba, Marcos; Kösling, Sabrina
2014-06-09
Because of the complex anatomy of the head and neck region, conventional projection radiography alone is unreliable and carries a high risk of misdiagnosis. The poor risk-benefit ratio of conventional radiography has led to their replacement by tomographic imaging for nearly all studies in this region. This review is based on pertinent articles retrieved by a selective search in the PubMed database (January 1980 to May 2013) as well as on the relevant guidelines from Germany and abroad. The indication for diagnostic imaging in the anatomically complex head and neck region should be established for a specific type of imaging study on the basis of a thorough clinical examination. Conventional films, though easy to obtain, often cannot answer the diagnostic question and may yield confusing information leading to misdiagnosis. Computed tomography (CT) has the best risk-benefit profile and a high diagnostic value, but low-dose protocols have not yet been put into use in all centers. Magnetic resonance imaging (MRI) is best for bone and soft-tissue diagnosis, but consumes more resources. Digital volume tomography (DVT) is another type of three-dimensional, sectional imaging with high local resolution; the associated radiation exposure and image quality are generally both low, but may vary depending on the apparatus used. DVT cannot be used to evaluate the soft tissues. Ultrasonography can be used to evaluate superficial structures in the head and neck region; nuclear imaging can be used to evaluate thyroid disease and cancer. Inflammatory, traumatic, and neoplastic diseases of the head and neck are best evaluated with cross-sectional imaging (CT, MRI) in accordance with current guidelines. Conventional x-rays should, in general, only be used for dental evaluation, with rare exceptions.
Misawa, Masashi; Kudo, Shin-Ei; Mori, Yuichi; Takeda, Kenichi; Maeda, Yasuharu; Kataoka, Shinichi; Nakamura, Hiroki; Kudo, Toyoki; Wakamura, Kunihiko; Hayashi, Takemasa; Katagiri, Atsushi; Baba, Toshiyuki; Ishida, Fumio; Inoue, Haruhiro; Nimura, Yukitaka; Oda, Msahiro; Mori, Kensaku
2017-05-01
Real-time characterization of colorectal lesions during colonoscopy is important for reducing medical costs, given that the need for a pathological diagnosis can be omitted if the accuracy of the diagnostic modality is sufficiently high. However, it is sometimes difficult for community-based gastroenterologists to achieve the required level of diagnostic accuracy. In this regard, we developed a computer-aided diagnosis (CAD) system based on endocytoscopy (EC) to evaluate cellular, glandular, and vessel structure atypia in vivo. The purpose of this study was to compare the diagnostic ability and efficacy of this CAD system with the performances of human expert and trainee endoscopists. We developed a CAD system based on EC with narrow-band imaging that allowed microvascular evaluation without dye (ECV-CAD). The CAD algorithm was programmed based on texture analysis and provided a two-class diagnosis of neoplastic or non-neoplastic, with probabilities. We validated the diagnostic ability of the ECV-CAD system using 173 randomly selected EC images (49 non-neoplasms, 124 neoplasms). The images were evaluated by the CAD and by four expert endoscopists and three trainees. The diagnostic accuracies for distinguishing between neoplasms and non-neoplasms were calculated. ECV-CAD had higher overall diagnostic accuracy than trainees (87.8 vs 63.4%; [Formula: see text]), but similar to experts (87.8 vs 84.2%; [Formula: see text]). With regard to high-confidence cases, the overall accuracy of ECV-CAD was also higher than trainees (93.5 vs 71.7%; [Formula: see text]) and comparable to experts (93.5 vs 90.8%; [Formula: see text]). ECV-CAD showed better diagnostic accuracy than trainee endoscopists and was comparable to that of experts. ECV-CAD could thus be a powerful decision-making tool for less-experienced endoscopists.
Choi, Sang Hyun; Byun, Jae Ho; Lim, Young-Suk; Yu, Eunsil; Lee, So Jung; Kim, So Yeon; Won, Hyung Jin; Shin, Yong Moon; Kim, Pyo Nyun
2016-05-01
Current diagnostic imaging criteria for hepatocellular carcinoma (HCC) are dedicated to imaging with nonspecific extracellular contrast agents. This study aimed to evaluate diagnostic criteria for HCC ⩽3 cm on magnetic resonance imaging (MRI) with a hepatocyte-specific contrast agent through an inception cohort study. Of 291 patients with chronic liver disease and new nodules of 1-3 cm in diameter at surveillance ultrasonography, 295 solid nodules (194 HCCs, 98 benign nodules, and three other malignancies) in 198 patients with a confirmed final diagnosis or ⩾24 months follow-up were evaluated on gadoxetic acid-enhanced MRI. Through univariate and multivariate logistic regression analyses, various diagnostic criteria were developed by combining significant MRI findings for diagnosing HCC. The diagnostic performance of each criterion was compared with that of the European Association for the Study of the Liver (EASL) criteria. Four MRI findings (arterial-phase hyperintensity, transitional-phase hypointensity, hepatobiliary-phase hypointensity, and rim enhancement) were independently significant for diagnosis of HCC ⩽3 cm. For whole nodules, EASL criteria showed the best performance for diagnosing HCC (sensitivity, 83.5%; specificity, 81.2%). For nodules ⩽2 cm in diameter, a new criterion (arterial-phase hyperintensity and hepatobiliary-phase hypointensity) showed a significantly higher sensitivity than that of the EASL criteria (83.0% vs. 74.5%, p=0.008), without a significantly different specificity (76.7% vs. 81.1%, p=0.125). EASL criteria exhibit the best diagnostic performance for HCC ⩽3 cm on hepatocyte-specific contrast-enhanced MRI. A newly identified criterion (arterial-phase hyperintensity and hepatobiliary-phase hypointensity) may increase the diagnostic sensitivity of small (⩽2 cm) HCC. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Bioinorganic Activity of Technetium Radiopharmaceuticals.
ERIC Educational Resources Information Center
Pinkerton, Thomas C.; And Others
1985-01-01
Technetium radiopharmaceuticals are diagnostic imaging agents used in the field of nuclear medicine to visualize tissues, anatomical structures, and metabolic disorders. Bioavailability of technetium complexes, thyroid imaging, brain imaging, kidney imaging, imaging liver function, bone imaging, and heart imaging are the major areas discussed. (JN)
Ippolito, Davide; Drago, Silvia Girolama; Franzesi, Cammillo Talei; Fior, Davide; Sironi, Sandro
2016-01-01
AIM: To assess the diagnostic accuracy of multidetector-row computed tomography (MDCT) as compared with conventional magnetic resonance imaging (MRI), in identifying mesorectal fascia (MRF) invasion in rectal cancer patients. METHODS: Ninety-one patients with biopsy proven rectal adenocarcinoma referred for thoracic and abdominal CT staging were enrolled in this study. The contrast-enhanced MDCT scans were performed on a 256 row scanner (ICT, Philips) with the following acquisition parameters: tube voltage 120 KV, tube current 150-300 mAs. Imaging data were reviewed as axial and as multiplanar reconstructions (MPRs) images along the rectal tumor axis. MRI study, performed on 1.5 T with dedicated phased array multicoil, included multiplanar T2 and axial T1 sequences and diffusion weighted images (DWI). Axial and MPR CT images independently were compared to MRI and MRF involvement was determined. Diagnostic accuracy of both modalities was compared and statistically analyzed. RESULTS: According to MRI, the MRF was involved in 51 patients and not involved in 40 patients. DWI allowed to recognize the tumor as a focal mass with high signal intensity on high b-value images, compared with the signal of the normal adjacent rectal wall or with the lower tissue signal intensity background. The number of patients correctly staged by the native axial CT images was 71 out of 91 (41 with involved MRF; 30 with not involved MRF), while by using the MPR 80 patients were correctly staged (45 with involved MRF; 35 with not involved MRF). Local tumor staging suggested by MDCT agreed with those of MRI, obtaining for CT axial images sensitivity and specificity of 80.4% and 75%, positive predictive value (PPV) 80.4%, negative predictive value (NPV) 75% and accuracy 78%; while performing MPR the sensitivity and specificity increased to 88% and 87.5%, PPV was 90%, NPV 85.36% and accuracy 88%. MPR images showed higher diagnostic accuracy, in terms of MRF involvement, than native axial images, as compared to the reference magnetic resonance images. The difference in accuracy was statistically significant (P = 0.02). CONCLUSION: New generation CT scanner, using high resolution MPR images, represents a reliable diagnostic tool in assessment of loco-regional and whole body staging of advanced rectal cancer, especially in patients with MRI contraindications. PMID:27239115
Oelze, Michael L; Mamou, Jonathan
2016-02-01
Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and preclinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy.
Oelze, Michael L.; Mamou, Jonathan
2017-01-01
Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical devices. Successful clinical and pre-clinical applications demonstrating the ability of QUS to improve medical diagnostics include characterization of the myocardium during the cardiac cycle, cancer detection, classification of solid tumors and lymph nodes, detection and quantification of fatty liver disease, and monitoring and assessment of therapy. PMID:26761606
Lo Re, Giuseppe; De Luca, Rossella; Muscarneri, Filippa; Dorangricchia, Patrizia; Picone, Dario; Vernuccio, Federica; Salerno, Sergio; La Tona, Giuseppe; Pinto, Antonio; Midiri, Massimo; Russo, Antonio; Lagalla, Roberto; Cicero, Giuseppe
2016-10-01
Every patient could feel anxious when he waits in a radiological department to undergo diagnostic exams. The aim of our study is to evaluate the impact of the radiological exams on patient anxiety. We evaluated 343 patients (mean age 54.83 years) who underwent different types of diagnostic exams in the Department of Diagnostic Imaging at our Hospital from April 2013 to August 2014. We administered to patients the State and Trait Anxiety Inventory Test, which detected with high sensitivity both state anxiety and trait anxiety. A team of clinical psychologists and radiologists evaluated the scores obtained. 83 out of 343 patients were excluded because refused to file the questionnaire. 31 % of the patients were submitted to MR, 18 % to breast imaging, 10 % to X-ray, 22 % Computer Tomography and 19 % to ultrasound, as previously described. 41 % of patients were submitted to the examination because of an oncologic disease, while 59 % because of non-oncological disease. Therefore, it was found that high levels of anxiety were present in most (about 91 %) of the patients and the scores varied according to the imaging examination and to the examination's reason: anxiety level was higher in non-oncological patients (54 %) and in patients waiting to undergo to MRI exams (29 %). Our data suggest that the diagnostic exams are stressful events for the patient, also in non-oncological patients. So, it is important to adequate the radiological staff to receive the patient, to inform him and perform exams with emotive involvement with a targeted education. Also, further studies are needed to evaluate the anxiety level and the quality of the images, because the anxiety can result in a somatic disorder with hyperactivity of the autonomic nervous system which may affect the patient's physical examination, causing problems in the evaluation of radiological images making to non-cooperative patient. MRI imaging is the examination that more of all led to an anxious state of patients but the main stressor is not related to the type of diagnostic examination, but to the uncertainty of the diagnosis, therapy and prognosis.
Romeo, Valeria; Maurea, Simone; Cuocolo, Renato; Petretta, Mario; Mainenti, Pier Paolo; Verde, Francesco; Coppola, Milena; Dell'Aversana, Serena; Brunetti, Arturo
2018-01-17
Adrenal adenomas (AA) are the most common benign adrenal lesions, often characterized based on intralesional fat content as either lipid-rich (LRA) or lipid-poor (LPA). The differentiation of AA, particularly LPA, from nonadenoma adrenal lesions (NAL) may be challenging. Texture analysis (TA) can extract quantitative parameters from MR images. Machine learning is a technique for recognizing patterns that can be applied to medical images by identifying the best combination of TA features to create a predictive model for the diagnosis of interest. To assess the diagnostic efficacy of TA-derived parameters extracted from MR images in characterizing LRA, LPA, and NAL using a machine-learning approach. Retrospective, observational study. Sixty MR examinations, including 20 LRA, 20 LPA, and 20 NAL. Unenhanced T 1 -weighted in-phase (IP) and out-of-phase (OP) as well as T 2 -weighted (T 2 -w) MR images acquired at 3T. Adrenal lesions were manually segmented, placing a spherical volume of interest on IP, OP, and T 2 -w images. Different selection methods were trained and tested using the J48 machine-learning classifiers. The feature selection method that obtained the highest diagnostic performance using the J48 classifier was identified; the diagnostic performance was also compared with that of a senior radiologist by means of McNemar's test. A total of 138 TA-derived features were extracted; among these, four features were selected, extracted from the IP (Short_Run_High_Gray_Level_Emphasis), OP (Mean_Intensity and Maximum_3D_Diameter), and T 2 -w (Standard_Deviation) images; the J48 classifier obtained a diagnostic accuracy of 80%. The expert radiologist obtained a diagnostic accuracy of 73%. McNemar's test did not show significant differences in terms of diagnostic performance between the J48 classifier and the expert radiologist. Machine learning conducted on MR TA-derived features is a potential tool to characterize adrenal lesions. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Rief, Matthias; Chen, Marcus Y; Vavere, Andrea L; Kendziora, Benjamin; Miller, Julie M; Bandettini, W Patricia; Cox, Christopher; George, Richard T; Lima, João; Di Carli, Marcelo; Plotkin, Michail; Zimmermann, Elke; Laule, Michael; Schlattmann, Peter; Arai, Andrew E; Dewey, Marc
2018-02-01
Purpose To compare the diagnostic performance of stress myocardial computed tomography (CT) perfusion with that of stress myocardial magnetic resonance (MR) perfusion imaging in the detection of coronary artery disease (CAD). Materials and Methods All patients gave written informed consent prior to inclusion in this institutional review board-approved study. This two-center substudy of the prospective Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-Detector Row Computed Tomography (CORE320) multicenter trial included 92 patients (mean age, 63.1 years ± 8.1 [standard deviation]; 73% male). All patients underwent perfusion CT and perfusion MR imaging with either adenosine or regadenoson stress. The predefined reference standards were combined quantitative coronary angiography (QCA) and single-photon emission CT (SPECT) or QCA alone. Results from coronary CT angiography were not included, and diagnostic performance was evaluated with the Mantel-Haenszel test stratified by disease status. Results The prevalence of CAD was 39% (36 of 92) according to QCA and SPECT and 64% (59 of 92) according to QCA alone. When compared with QCA and SPECT, per-patient diagnostic accuracy of perfusion CT and perfusion MR imaging was 63% (58 of 92) and 75% (69 of 92), respectively (P = .11); sensitivity was 92% (33 of 36) and 83% (30 of 36), respectively (P = .45); and specificity was 45% (25 of 56) and 70% (39 of 56), respectively (P < .01). When compared with QCA alone, diagnostic accuracy of CT perfusion and MR perfusion imaging was 82% (75 of 92) and 74% (68 of 92), respectively (P = .27); sensitivity was 90% (53 of 59) and 69% (41 of 59), respectively (P < .01); and specificity was 67% (22 of 33) and 82% (27 of 33), respectively (P = .27). Conclusion This multicenter study shows that the diagnostic performance of perfusion CT is similar to that of perfusion MR imaging in the detection of CAD. © RSNA, 2017 Online supplemental material is available for this article.
Cosottini, M; Frosini, D; Pesaresi, I; Donatelli, G; Cecchi, P; Costagli, M; Biagi, L; Ceravolo, R; Bonuccelli, U; Tosetti, M
2015-03-01
Standard neuroimaging fails in defining the anatomy of the substantia nigra and has a marginal role in the diagnosis of Parkinson disease. Recently 7T MR target imaging of the substantia nigra has been useful in diagnosing Parkinson disease. We performed a comparative study to evaluate whether susceptibility-weighted angiography can diagnose Parkinson disease with a 3T scanner. Fourteen patients with Parkinson disease and 13 healthy subjects underwent MR imaging examination at 3T and 7T by using susceptibility-weighted angiography. Two expert blinded observers and 1 neuroradiology fellow evaluated the 3T and 7T images of the sample to identify substantia nigra abnormalities indicative of Parkinson disease. Diagnostic accuracy and intra- and interobserver agreement were calculated separately for 3T and 7T acquisitions. Susceptibility-weighted angiography 7T MR imaging can diagnose Parkinson disease with a mean sensitivity of 93%, specificity of 100%, and diagnostic accuracy of 96%. 3T MR imaging diagnosed Parkinson disease with a mean sensitivity of 79%, specificity of 94%, and diagnostic accuracy of 86%. Intraobserver and interobserver agreement was excellent at 7T. At 3T, intraobserver agreement was excellent for experts, and interobserver agreement ranged between good and excellent. The less expert reader obtained a diagnostic accuracy of 89% at 3T. Susceptibility-weighted angiography images obtained at 3T and 7T differentiate controls from patients with Parkinson disease with a higher diagnostic accuracy at 7T. The capability of 3T in diagnosing Parkinson disease might encourage its use in clinical practice. The use of the more accurate 7T should be supported by a dedicated cost-effectiveness study. © 2015 by American Journal of Neuroradiology.
Ectopic third molars in the sigmoid notch: etiology, diagnostic imaging and treatment options.
Hanisch, Marcel; Fröhlich, Leopold F; Kleinheinz, Johannes
2016-12-06
The etiology of ectopic third molars located in the sigmoid notch of the mandible is unclear. Only a few cases have been reported. The aim of this article is to discuss the etiology as well as treatment options and diagnostic imaging techniques. A PubMed and Medline search of the literature from 1965 to 2015 to ectopic third molars in the mandibular notch was performed. Furthermore, a clinical case provided by the authors is reported. Among the eight reviewed cases, two male and six female patients were affected that ranged from 25 to 62 years of age (mean 48.4). Pain and swelling in the preauricular region or trismus but also the absence of symptoms was reported. Only in two of the summarized articles an extra-oral access for the removal of the tooth was used. The etiology seems to be individually different, however dentigerous cysts and chronic inflammation seem to play an important role in their appearance. While previous diagnostic reports described two-dimensional diagnostic imaging, currently the three-dimensional imaging is common for preoperative surgical planning with respect to removing ectopic molars. Ectopic third molars in the mandible are a rare condition. The etiology seems to be individually different. Nowadays, three-dimensional imaging is common for preoperative surgical planning.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin L.
The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR ormore » OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.« less
Alterations in metabolic pathways and networks in Alzheimer's disease
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-01-01
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809
Alterations in metabolic pathways and networks in Alzheimer's disease.
Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E
2013-04-09
The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.
Tuuli, Methodius G; Odibo, Anthony O
2011-08-01
The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.
Ultrasound of the thyroid and parathyroid glands.
Barraclough, B M; Barraclough, B H
2000-02-01
The superficial position of thyroid and parathyroid glands facilitates the use of diagnostic ultrasound (US) as an imaging technique. Techniques of image acquisition and interpretation are described in detail. Size and morphology of glands can be defined easily. The most important use of US guided biopsy in relation to thyroid and parathyroid glands is to increase diagnostic accuracy.
[Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].
Shin, Jung Woo; Park, Neung Hwa
2016-07-25
The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis.
Heuristics and Cognitive Error in Medical Imaging.
Itri, Jason N; Patel, Sohil H
2018-05-01
The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.
Medical Images Remote Consultation
NASA Astrophysics Data System (ADS)
Ferraris, Maurizio; Frixione, Paolo; Squarcia, Sandro
Teleconsultation of digital images among different medical centers is now a reality. The problem to be solved is how to interconnect all the clinical diagnostic devices in a hospital in order to allow physicians and health physicists, working in different places, to discuss on interesting clinical cases visualizing the same diagnostic images at the same time. Applying World Wide Web technologies, the proposed system can be easily used by people with no specific computer knowledge providing a verbose help to guide the user through the right steps of execution. Diagnostic images are retrieved from a relational database or from a standard DICOM-PACS through the DICOM-WWW gateway allowing connection of the usual Web browsers to DICOM applications via the HTTP protocol. The system, which is proposed for radiotherapy implementation, where radiographies play a fundamental role, can be easily converted to different field of medical applications where a remote access to secure data are compulsory.
Detector for imaging and dosimetry of laser-driven epithermal neutrons by alpha conversion
NASA Astrophysics Data System (ADS)
Mirfayzi, S. R.; Alejo, A.; Ahmed, H.; Wilson, L. A.; Ansell, S.; Armstrong, C.; Butler, N. M. H.; Clarke, R. J.; Higginson, A.; Notley, M.; Raspino, D.; Rusby, D. R.; Borghesi, M.; Rhodes, N. J.; McKenna, P.; Neely, D.; Brenner, C. M.; Kar, S.
2016-10-01
An epithermal neutron imager based on detecting alpha particles created via boron neutron capture mechanism is discussed. The diagnostic mainly consists of a mm thick Boron Nitride (BN) sheet (as an alpha converter) in contact with a non-borated cellulose nitride film (LR115 type-II) detector. While the BN absorbs the neutrons in the thermal and epithermal ranges, the fast neutrons register insignificantly on the detector due to their low neutron capture and recoil cross-sections. The use of solid-state nuclear track detectors (SSNTD), unlike image plates, micro-channel plates and scintillators, provide safeguard from the x-rays, gamma-rays and electrons. The diagnostic was tested on a proof-of-principle basis, in front of a laser driven source of moderated neutrons, which suggests the potential of using this diagnostic (BN+SSNTD) for dosimetry and imaging applications.
Imaging Patterns of Muscle Atrophy.
Weber, Marc-André; Wolf, Marcel; Wattjes, Mike P
2018-07-01
The role of muscle imaging in the diagnosis of inherited and acquired muscle diseases has gained clinical relevance. In particular, magnetic resonance imaging (MRI) is increasingly being used for diagnostic purposes, especially with its capability of whole-body musculature assessment. The assessment and quantification of muscle involvement in muscle diseases can be of diagnostic value by identifying a certain involvement pattern and thus narrowing the differential diagnosis and supporting the clinical diagnosis. In addition, more recently the role of imaging has gone beyond diagnostic purposes and includes disease as well as treatment monitoring. Conventional and quantitative muscle MRI techniques allow for the detection of subclinical disease progression (e.g., in muscular dystrophies) and is a powerful surrogate outcome measure in clinical trials. We present and discuss recent data on the role of conventional and quantitative MRI in the diagnosis and monitoring of inherited dystrophic muscle diseases as well as muscle denervation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Haviland, Julia A; Tonelli, Marco; Haughey, Dermot T; Porter, Warren P; Assadi-Porter, Fariba M
2012-08-01
Metabolomics is the study of a unique fingerprint of small molecules present in biological systems under healthy and disease conditions. One of the major challenges in metabolomics is validation of fingerprint molecules to identify specifically perturbed pathways in metabolic aberrations. This step is crucial to the understanding of budding metabolic pathologies and the ability to identify early indicators of common diseases such as obesity, type 2 diabetes mellitus, metabolic syndrome, polycystic ovary syndrome, and cancer. We present a novel approach to diagnosing aberrations in glucose utilization including metabolic pathway switching in a disease state. We used a well-defined prenatally exposed glucocorticoid mouse model that results in adult females with metabolic dysfunction. We applied the complementary technologies of nuclear magnetic resonance spectroscopy and cavity ring-down spectroscopy to analyze serial plasma samples and real-time breath measurements following selective (13)C-isotope-assisted labeling. These platforms allowed us to trace metabolic markers in whole animals and identify key metabolic pathway switching in prenatally glucocorticoid-treated animals. Total glucose flux is significantly proportionally increased through the major oxidative pathways of glycolysis and the pentose phosphate pathway in the prenatally glucocorticoid-treated animals relative to the control animals. This novel diagnostics approach is fast, noninvasive, and sensitive for determining specific pathway utilization, and provides a direct translational application in the health care field. Copyright © 2012 Elsevier Inc. All rights reserved.
Scheuerlein, Hubert; Rauchfuss, Falk; Dittmar, Yves; Molle, Rüdiger; Lehmann, Torsten; Pienkos, Nicole; Settmacher, Utz
2012-06-01
Clinical pathways (CP) are nowadays used in numerous institutions, but their real impact is still a matter of debate. The optimal design of a clinical pathway remains unclear and is mainly determined by the expectations of the individual institution. The purpose of the here described pilot project was the development of two CP (colon and rectum carcinoma) according to Business Process Modeling Notation (BPMN) and Tangible Business Process Modeling (t.BPM). BPMN is an established standard for business process modelling in industry and economy. It is, in the broadest sense, a computer programme which enables the description and a relatively easy graphical imaging of complex processes. t.BPM is a modular construction system of the BPMN symbols which enables the creation of an outline or raw model, e.g. by placing the symbols on a spread-out paper sheet. The thus created outline can then be transferred to the computer and further modified as required. CP for the treatment of colon and rectal cancer have been developed with support of an external IT coach. The pathway was developed in an interdisciplinary and interprofessional manner (55 man-days over 15 working days). During this time, necessary interviews with medical, nursing and administrative staffs were conducted as well. Both pathways were developed parallel. Subsequent analysis was focussed on feasibility, expenditure, clarity and suitability for daily clinical practice. The familiarization with BPMN was relatively quick and intuitive. The use of t.BPM enabled the pragmatic, effective and results-directed creation of outlines for the CP. The development of both CP was finished from the diagnostic evaluation to the adjuvant/neoadjuvant therapy and rehabilitation phase. The integration of checklists, guidelines and important medical or other documents is easily accomplished. A direct integration into the hospital computer system is currently not possible for technical reasons. BPMN and t.BPM are sufficiently suitable for the planned modelling and imaging of CP. The application in medicine is new, and transfer from the industrial process management is in principle possible. BPMN-CP may be used for teaching and training, patient information and quality management. The graphical image is clearly structured and appealing. Even though the efficiency in the creation of BPMN-CP increases markedly after the training phase, high amounts of manpower and time are required. The most sensible and consequent application of a BPMN-CP would be the direct integration into the hospital computer system. The integration of a modelling language, such as BPMN, into the hospital computer systems could be a very sensible approach for the development of new hospital information systems in the future.
Multi-channel medical imaging system
Frangioni, John V
2013-12-31
A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in the subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.
Multi-channel medical imaging system
Frangioni, John V.
2016-05-03
A medical imaging system provides simultaneous rendering of visible light and fluorescent images. The system may employ dyes in a small-molecule form that remain in a subject's blood stream for several minutes, allowing real-time imaging of the subject's circulatory system superimposed upon a conventional, visible light image of the subject. The system may provide an excitation light source to excite the fluorescent substance and a visible light source for general illumination within the same optical guide used to capture images. The system may be configured for use in open surgical procedures by providing an operating area that is closed to ambient light. The systems described herein provide two or more diagnostic imaging channels for capture of multiple, concurrent diagnostic images and may be used where a visible light image may be usefully supplemented by two or more images that are independently marked for functional interest.
Estimation of melanin content in iris of human eye: prognosis for glaucoma diagnostics
NASA Astrophysics Data System (ADS)
Bashkatov, Alexey N.; Koblova, Ekaterina V.; Genina, Elina A.; Kamenskikh, Tatyana G.; Dolotov, Leonid E.; Sinichkin, Yury P.; Tuchin, Valery V.
2007-02-01
Based on the experimental data obtained in vivo from digital analysis of color images of human irises, the mean melanin content in human eye irises has been estimated. For registration of the color images a digital camera Olympus C-5060 has been used. The images have been obtained from irises of healthy volunteers as well as from irises of patients with open-angle glaucoma. The computer program has been developed for digital analysis of the images. The result has been useful for development of novel and optimization of already existing methods of non-invasive glaucoma diagnostics.
Evaluation of the painful athletic hip: imaging options and imaging-guided injections.
Jacobson, Jon A; Bedi, Asheesh; Sekiya, Jon K; Blankenbaker, Donna G
2012-09-01
This article reviews diagnostic imaging tests and injections that provide important information for clinical management of patients with sports-related hip pain. In the evaluation of sports-related hip symptoms, MR arthrography is often used to evaluate intraarticular pathology of the hip. The addition of short- and long-acting anesthetic agents with the MR arthrography injection adds additional information that can distinguish between symptomatic and asymptomatic imaging findings. Osseous abnormalities can be characterized with radiography, MRI, or CT. Ultrasound is important in the assessment of iliopsoas abnormalities, including tendon snapping, and to guide diagnostic anesthetic injection.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Kaplan, A L; Agarwal, N; Setlur, N P; Tan, H J; Niedzwiecki, D; McLaughlin, N; Burke, M A; Steinberg, K; Chamie, K; Saigal, C S
2015-03-01
Determining '"value'" in health care, defined as outcomes per unit cost, depends on accurately measuring cost. We used time-driven activity-based costing (TDABC) to determine the cost of care in men with benign prostatic hyperplasia (BPH) - a common urologic condition. We implemented TDABC across the entire care pathway for BPH including primary and specialist care in both inpatient and outpatient settings. A team of expert stakeholders created detailed process maps, determined space and product costs, and calculated personnel capacity cost rates. A model pathway was derived from practice guidelines and calculated costs were applied. Although listed as 'optional' in practice guidelines, invasive diagnostic testing can increase costs by 150% compared with the standalone urology clinic visit. Of five different surgical options, a 400% cost discrepancy exists between the most and least expensive treatments. TDABC can be used to measure cost across an entire care pathway in a large academic medical center. Sizable cost variation exists between diagnostic and surgical modalities for men with BPH. As financial risk is shifted toward providers, understanding the cost of care will be vital. Future work is needed to determine outcome discrepancy between the diagnostic and surgical modalities in BPH. Copyright © 2014 Elsevier Inc. All rights reserved.
Might telesonography be a new useful diagnostic tool aboard merchant ships? A pilot study.
Nikolić, Nebojsa; Mozetić, Vladimir; Modrcin, Bob; Jaksić, Slaven
2006-01-01
Developments of new, ultra-light diagnostic ultrasound systems (UTS) and modern satellite telecommunication networks are opening new potential applications for diagnostic sonography. One such area is maritime medicine. It is our belief that ship officers can be trained to use diagnostic ultrasound systems with the aim to generate ultrasound images of sufficient quality to be interpreted by medical professionals qualified to read sonograms. To test our thesis we included lectures and hands on scanning practice to the current maritime medicine curriculum at the Faculty of Maritime Studies at the University of Rijeka. Following the didactic and practical training all participating students examined several patients, some with pathology some without. Images obtained by students were then submitted for interpretation to a qualified physician (specialist of general surgery trained in UTS) who was unaware of the patient's pathology. In total, 37 students performed 37 examinations and made 45 ultrasound images, on 3 patients. In this paper, results on this pilot study are presented. It is possible to teach ship officers to produce diagnostically usable ultrasound pictures aboard ships at sea. But before reaching final conclusion about applicability of telesonography on board merchant ships, further studies are necessary, that would include studies of economic feasibility, and on validity of introducing such a diagnostic tool to the maritime medical practice.
Riley, Robert F; Miller, Chadwick D; Russell, Gregory B; Harper, Erin N; Hiestand, Brian C; Hoekstra, James W; Lefebvre, Cedric W; Nicks, Bret A; Cline, David M; Askew, Kim L; Mahler, Simon A
2017-01-01
The HEART Pathway is a diagnostic protocol designed to identify low-risk patients presenting to the emergency department with chest pain that are safe for early discharge. This protocol has been shown to significantly decrease health care resource utilization compared with usual care. However, the impact of the HEART Pathway on the cost of care has yet to be reported. We performed a cost analysis of patients enrolled in the HEART Pathway trial, which randomized participants to either usual care or the HEART Pathway protocol. For low-risk patients, the HEART Pathway recommended early discharge from the emergency department without further testing. We compared index visit cost, cost at 30 days, and cardiac-related health care cost at 30 days between the 2 treatment arms. Costs for each patient included facility and professional costs. Cost at 30 days included total inpatient and outpatient costs, including the index encounter, regardless of etiology. Cardiac-related health care cost at 30 days included the index encounter and costs adjudicated to be cardiac-related within that period. Two hundred seventy of the 282 patients enrolled in the trial had cost data available for analysis. There was a significant reduction in cost for the HEART Pathway group at 30 days (median cost savings of $216 per individual), which was most evident in low-risk (Thrombolysis In Myocardial Infarction score of 0-1) patients (median savings of $253 per patient) and driven primarily by lower cardiac diagnostic costs in the HEART Pathway group. Using the HEART Pathway as a decision aid for patients with undifferentiated chest pain resulted in significant cost savings. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.
2015-09-01
Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.
Clinical applications of computerized thermography
NASA Technical Reports Server (NTRS)
Anbar, Michael
1988-01-01
Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.
Diagnostic imaging of posterior fossa anomalies in the fetus.
Robinson, Ashley James; Ederies, M Ashraf
2016-10-01
Ultrasound and magnetic resonance imaging are the two imaging modalities used in the assessment of the fetus. Ultrasound is the primary imaging modality, whereas magnetic resonance is used in cases of diagnostic uncertainty. Both techniques have advantages and disadvantages and therefore they are complementary. Standard axial ultrasound views of the posterior fossa are used for routine scanning for fetal anomalies, with additional orthogonal views directly and indirectly obtainable using three-dimensional ultrasound techniques. Magnetic resonance imaging allows not only direct orthogonal imaging planes, but also tissue characterization, for example to search for blood breakdown products. We review the nomenclature of several posterior fossa anomalies using standardized criteria, and we review cerebellar abnormalities based on an etiologic classification. Copyright © 2016 Elsevier Ltd. All rights reserved.
MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.
The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS080949 and Philips Healthcare research grant C32.« less
Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas
2009-01-09
The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis.
Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas
2009-01-01
Background The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. Methods In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. Results The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. Discussion WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis. PMID:19134181
Sousa, Thiago Oliveira; Haiter-Neto, Francisco; Nascimento, Eduarda Helena Leandro; Peroni, Leonardo Vieira; Freitas, Deborah Queiroz; Hassan, Bassam
2017-07-01
The aim of this study was to assess the diagnostic accuracy of periapical radiography (PR) and cone-beam computed tomographic (CBCT) imaging in the detection of the root canal configuration (RCC) of human premolars. PR and CBCT imaging of 114 extracted human premolars were evaluated by 2 oral radiologists. RCC was recorded according to Vertucci's classification. Micro-computed tomographic imaging served as the gold standard to determine RCC. Accuracy, sensitivity, specificity, and predictive values were calculated. The Friedman test compared both PR and CBCT imaging with the gold standard. CBCT imaging showed higher values for all diagnostic tests compared with PR. Accuracy was 0.55 and 0.89 for PR and CBCT imaging, respectively. There was no difference between CBCT imaging and the gold standard, whereas PR differed from both CBCT and micro-computed tomographic imaging (P < .0001). CBCT imaging was more accurate than PR for evaluating different types of RCC individually. Canal configuration types III, VII, and "other" were poorly identified on CBCT imaging with a detection accuracy of 50%, 0%, and 43%, respectively. With PR, all canal configurations except type I were poorly visible. PR presented low performance in the detection of RCC in premolars, whereas CBCT imaging showed no difference compared with the gold standard. Canals with complex configurations were less identifiable using both imaging methods, especially PR. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.