Muhit, A; Zbijewski, W; Stayman, J; Thawait, G; Yorkston, J; Foos, D; Packard, N; Yang, D; Senn, R; Carrino, J; Siewerdsen, J
2012-06-01
To assess the diagnostic performance of a prototype cone-beam CT (CBCT) scanner developed for musculoskeletal extremity imaging. Studies involved controlled observer studies conducted subsequent to rigorous technical assessment as well as patient images from the first clinical trial in imaging the hand and knee. Performance assessment included: 1.) rigorous technical assessment; 2.) controlled observer studies using CBCT images of cadaveric specimens; and 3.) first clinical images. Technical assessment included measurement of spatial resolution (MTF), constrast, and noise (SDNR) versus kVp and dose using standard CT phantoms. Diagnostic performance in comparison to multi- detector CT (MDCT) was assessed in controlled observer studies involving 12 cadaveric hands and knees scanned with and without abnormality (fracture). Observer studies involved five radiologists rating pertinent diagnostics tasks in 9-point preference and 10-point diagnostic satisfaction scales. Finally, the first clinical images from an ongoing pilot study were assessed in terms of diagnostic utility in disease assessment and overall workflow in patient setup. Quantitative assessment demonstrated sub-mm spatial resolution (MTF exceeding 10% out to 15-20 cm-1) and SDNR sufficient for relevant soft-tissue visualization tasks at dose <10 mGy. Observer studies confirmed optimal acquisition techniques and demonstrated superior utility of combined soft-tissue visualization and isotropic spatial resolution in diagnostic tasks. Images from the patient trial demonstrate exquisite contrast and detail and the ability to detect tissue impingement in weight-bearing exams. The prototype CBCT scanner provides isotropic spatial resolution superior to standard-protocol MDCT with soft-tissue visibility sufficient for a broad range of diagnostic tasks in musculoskeletal radiology. Dosimetry and workflow were advantageous in comparison to whole-body MDCT. Multi-mode and weight-bearing capabilities add valuable functionality. An ongoing clinical study further assesses diagnostic utility and defines the role of such technology in the diagnostic arsenal. - Research Grant, Carestream Health - Research Grant, National Institutes of Health 2R01-CA-112163. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
Advanced Diagnostics for Reacting Flows
2006-06-01
TECHNICAL DISCUSSION: 1. Infrared-PLIF Imaging Diagnostics using Vibrational Transitions IR-PLIF allows for imaging a group of molecular species important...excitation of IR-active vibrational modes with imaging of the subsequent vibrational fluorescence. Quantitative interpretation requires knowledge of...the vibrational energy transfer processes, and hence in recent years we have been developing models for infrared fluorescence. During the past year
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
NASA Astrophysics Data System (ADS)
Shalkov, Anton; Mamaeva, Mariya
2017-11-01
The article considers the questions of application of nondestructive methods control of reducers of conveyor belts as a means of transport. Particular attention is paid to such types of diagnostics of technical condition as thermal control and analysis of the state of lubricants. The urgency of carrying out types of nondestructive testing presented in the article is determined by the increase of energy efficiency of transport systems of coal and mining enterprises, in particular, reducers of belt conveyors. Periodic in-depth spectral-emission diagnostics and monitoring of a temperature mode of operation oil in the operation of the control equipment and its technical condition and prevent the MTBF allows the monitoring of the actual technical condition of the gearbox of a belt conveyor. In turn, the thermal imaging diagnostics reveals defects at the earliest stage of their formation and development, which allows planning the volumes and terms of equipment repair. Presents diagnostics of the technical condition will allow monitoring in time the technical condition of the equipment and avoiding its premature failure. Thereby it will increase the energy efficiency of both the transport system and the enterprise as a whole, and also avoid unreasonable increases in operating and maintenance costs.
Rosen, Eyal; Taschieri, Silvio; Del Fabbro, Massimo; Beitlitum, Ilan; Tsesis, Igor
2015-07-01
The aim of this study was to evaluate the diagnostic efficacy of cone-beam computed tomographic (CBCT) imaging in endodontics based on a systematic search and analysis of the literature using an efficacy model. A systematic search of the literature was performed to identify studies evaluating the use of CBCT imaging in endodontics. The identified studies were subjected to strict inclusion criteria followed by an analysis using a hierarchical model of efficacy (model) designed for appraisal of the literature on the levels of efficacy of a diagnostic imaging modality. Initially, 485 possible relevant articles were identified. After title and abstract screening and a full-text evaluation, 58 articles (12%) that met the inclusion criteria were analyzed and allocated to levels of efficacy. Most eligible articles (n = 52, 90%) evaluated technical characteristics or the accuracy of CBCT imaging, which was defined in this model as low levels of efficacy. Only 6 articles (10%) proclaimed to evaluate the efficacy of CBCT imaging to support the practitioner's decision making; treatment planning; and, ultimately, the treatment outcome, which was defined as higher levels of efficacy. The expected ultimate benefit of CBCT imaging to the endodontic patient as evaluated by its level of diagnostic efficacy is unclear and is mainly limited to its technical and diagnostic accuracy efficacies. Even for these low levels of efficacy, current knowledge is limited. Therefore, a cautious and rational approach is advised when considering CBCT imaging for endodontic purposes. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Molecular imaging of malignant tumor metabolism: whole-body image fusion of DWI/CT vs. PET/CT.
Reiner, Caecilia S; Fischer, Michael A; Hany, Thomas; Stolzmann, Paul; Nanz, Daniel; Donati, Olivio F; Weishaupt, Dominik; von Schulthess, Gustav K; Scheffel, Hans
2011-08-01
To prospectively investigate the technical feasibility and performance of image fusion for whole-body diffusion-weighted imaging (wbDWI) and computed tomography (CT) to detect metastases using hybrid positron emission tomography/computed tomography (PET/CT) as reference standard. Fifty-two patients (60 ± 14 years; 18 women) with different malignant tumor disease examined by PET/CT for clinical reasons consented to undergo additional wbDWI at 1.5 Tesla. WbDWI was performed using a diffusion-weighted single-shot echo-planar imaging during free breathing. Images at b = 0 s/mm(2) and b = 700 s/mm(2) were acquired and apparent diffusion coefficient (ADC) maps were generated. Image fusion of wbDWI and CT (from PET/CT scan) was performed yielding for wbDWI/CT fused image data. One radiologist rated the success of image fusion and diagnostic image quality. The presence or absence of metastases on wbDWI/CT fused images was evaluated together with the separate wbDWI and CT images by two different, independent radiologists blinded to results from PET/CT. Detection rate and positive predictive values for diagnosing metastases was calculated. PET/CT examinations were used as reference standard. PET/CT identified 305 malignant lesions in 39 of 52 (75%) patients. WbDWI/CT image fusion was technically successful and yielded diagnostic image quality in 73% and 92% of patients, respectively. Interobserver agreement for the evaluation of wbDWI/CT images was κ = 0.78. WbDWI/CT identified 270 metastases in 43 of 52 (83%) patients. Overall detection rate and positive predictive value of wbDWI/CT was 89% (95% CI, 0.85-0.92) and 94% (95% CI, 0.92-0.97), respectively. WbDWI/CT image fusion is technically feasible in a clinical setting and allows the diagnostic assessment of metastatic tumor disease detecting nine of 10 lesions as compared with PET/CT. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Interventional articular and para-articular knee procedures
Lalam, Radhesh K; Winn, Naomi
2016-01-01
The knee is a common area of the body to undergo interventional procedures. This article discusses image-guided interventional issues specific to the knee area. The soft tissues in and around the knee are frequently affected by sport-related injuries and often need image-guided intervention. This article details the specific technical issues related to intervention in these soft tissues, including the iliotibial tract, fat pads, patellar tendon and other tendons, bursae and the meniscus. Most often, simple procedures such as injection and aspiration are performed without image guidance. Rarely image-guided diagnostic arthrography and therapeutic joint injections are necessary. The technique, indications and diagnostic considerations for arthrography are discussed in this article. Primary bone and soft-tissue tumours may involve the knee and adjacent soft tissues. Image-guided biopsies are frequently necessary for these lesions; this article details the technical issues related to image-guided biopsy around the knee. A number of newer ablation treatments are now available, including cryoablation, high-frequency ultrasound and microwave ablation. Radiofrequency ablation, however, still remains the most commonly employed ablation technique. The indications, technical and therapeutic considerations related to the application of this technique around the knee are discussed here. Finally, we briefly discuss some newer, but as of yet, unproven image-guided interventions for osteochondral lesions and Brodie's abscess. PMID:26682669
Expanding the PACS archive to support clinical review, research, and education missions
NASA Astrophysics Data System (ADS)
Honeyman-Buck, Janice C.; Frost, Meryll M.; Drane, Walter E.
1999-07-01
Designing an image archive and retrieval system that supports multiple users with many different requirements and patterns of use without compromising the performance and functionality required by diagnostic radiology is an intellectual and technical challenge. A diagnostic archive, optimized for performance when retrieving diagnostic images for radiologists needed to be expanded to support a growing clinical review network, the University of Florida Brain Institute's demands for neuro-imaging, Biomedical Engineering's imaging sciences, and an electronic teaching file. Each of the groups presented a different set of problems for the designers of the system. In addition, the radiologists did not want to see nay loss of performance as new users were added.
Standards to support information systems integration in anatomic pathology.
Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A
2009-11-01
Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).
The current and ideal state of anatomic pathology patient safety.
Raab, Stephen Spencer
2014-01-01
An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael
2018-06-01
To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.
Ehara, Shigeru
2010-11-28
Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously.
[Clinical Application of Non-invasive Diagnostic Tests for Liver Fibrosis].
Shin, Jung Woo; Park, Neung Hwa
2016-07-25
The diagnostic assessment of liver fibrosis is an important step in the management of patients with chronic liver diseases. Liver biopsy is considered the gold standard to assess necroinflammation and fibrosis. However, recent technical advances have introduced numerous serum biomarkers and imaging tools using elastography as noninvasive alternatives to biopsy. Serum markers can be direct or indirect markers of the fibrosis process. The elastography-based studies include transient elastography, acoustic radiation force imaging, supersonic shear wave imaging and magnetic resonance elastography. As accumulation of clinical data shows that noninvasive tests provide prognostic information of clinical relevance, non-invasive diagnostic tools have been incorporated into clinical guidelines and practice. Here, the authors review noninvasive tests for the diagnosis of liver fibrosis.
Ehara, Shigeru
2010-01-01
Technical innovations in digital data management pose a threat to radiologists in that can we remain in the process of clinical decision making or be assigned to a secondary role in future clinical practice. The value added to the imaging studies by diagnostic radiologists, or imaging specialists, has never been questioned more seriously. PMID:21179309
Contrast-enhanced spectral mammography in patients with MRI contraindications.
Richter, Vivien; Hatterman, Valerie; Preibsch, Heike; Bahrs, Sonja D; Hahn, Markus; Nikolaou, Konstantin; Wiesinger, Benjamin
2017-01-01
Background Contrast-enhanced spectral mammography (CESM) is a novel breast imaging technique providing comparable diagnostic accuracy to breast magnetic resonance imaging (MRI). Purpose To show that CESM in patients with MRI contraindications is feasible, accurate, and useful as a problem-solving tool, and to highlight its limitations. Material and Methods A total of 118 patients with MRI contraindications were examined by CESM. Histology was obtained in 94 lesions and used as gold standard for diagnostic accuracy calculations. Imaging data were reviewed retrospectively for feasibility, accuracy, and technical problems. The diagnostic yield of CESM as a problem-solving tool and for therapy response evaluation was reviewed separately. Results CESM was more accurate than mammography (MG) for lesion categorization (r = 0.731, P < 0.0001 vs. r = 0.279, P = 0.006) and for lesion size estimation (r = 0.738 vs. r = 0.689, P < 0.0001). Negative predictive value of CESM was significantly higher than of MG (85.71% vs. 30.77%, P < 0.0001). When used for problem-solving, CESM changed patient management in 2/8 (25%) cases. Superposition artifacts and timing problems affected diagnostic utility in 3/118 (2.5%) patients. Conclusion CESM is a feasible and accurate alternative for patients with MRI contraindications, but it is necessary to be aware of the method's technical limitations.
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde
2017-03-01
Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.
Physics of fractional imaging in biomedicine.
Sohail, Ayesha; Bég, O A; Li, Zhiwu; Celik, Sebahattin
2018-03-12
The mathematics of imaging is a growing field of research and is evolving rapidly parallel to evolution in the field of imaging. Imaging, which is a sub-field of biomedical engineering, considers novel approaches to visualize biological tissues with the general goal of improving health. "Medical imaging research provides improved diagnostic tools in clinical settings and supports the development of drugs and other therapies. The data acquisition and diagnostic interpretation with minimum error are the important technical aspects of medical imaging. The image quality and resolution are really important in portraying the internal aspects of patient's body. Although there are several user friendly resources for processing image features, such as enhancement, colour manipulation and compression, the development of new processing methods is still worthy of efforts. In this article we aim to present the role of fractional calculus in imaging with the aid of practical examples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas
2009-01-09
The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis.
Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas
2009-01-01
Background The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. Methods In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. Results The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. Discussion WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis. PMID:19134181
Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo
2017-01-01
Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.
A novel data processing technique for image reconstruction of penumbral imaging
NASA Astrophysics Data System (ADS)
Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin
2011-06-01
CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.
Diagnostic Approach to Pediatric Spine Disorders.
Rossi, Andrea; Martinetti, Carola; Morana, Giovanni; Severino, Mariasavina; Tortora, Domenico
2016-08-01
Understanding the developmental features of the pediatric spine and spinal cord, including embryologic steps and subsequent growth of the osteocartilaginous spine and contents is necessary for interpretation of the pathologic events that may affect the pediatric spine. MR imaging plays a crucial role in the diagnostic evaluation of patients suspected of harboring spinal abnormalities, whereas computed tomography and ultrasonography play a more limited, complementary role. This article discusses the embryologic and developmental anatomy features of the spine and spinal cord, together with some technical points and pitfalls, and the most common indications for pediatric spinal MR imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Recommendations on nuclear and multimodality imaging in IE and CIED infections.
Erba, Paola Anna; Lancellotti, Patrizio; Vilacosta, Isidre; Gaemperli, Oliver; Rouzet, Francois; Hacker, Marcus; Signore, Alberto; Slart, Riemer H J A; Habib, Gilbert
2018-05-24
In the latest update of the European Society of Cardiology (ESC) guidelines for the management of infective endocarditis (IE), imaging is positioned at the centre of the diagnostic work-up so that an early and accurate diagnosis can be reached. Besides echocardiography, contrast-enhanced CT (ce-CT), radiolabelled leucocyte (white blood cell, WBC) SPECT/CT and [ 18 F]FDG PET/CT are included as diagnostic tools in the diagnostic flow chart for IE. Following the clinical guidelines that provided a straightforward message on the role of multimodality imaging, we believe that it is highly relevant to produce specific recommendations on nuclear multimodality imaging in IE and cardiac implantable electronic device infections. In these procedural recommendations we therefore describe in detail the technical and practical aspects of WBC SPECT/CT and [ 18 F]FDG PET/CT, including ce-CT acquisition protocols. We also discuss the advantages and limitations of each procedure, specific pitfalls when interpreting images, and the most important results from the literature, and also provide recommendations on the appropriate use of multimodality imaging.
Deng, Han; Qi, Xingshun; Zhang, Tiansong; Qi, Xiaolong; Yoshida, Eric M; Guo, Xiaozhong
2018-01-01
The meta-analysis aimed to summarize the technical success rate of supersonic shear imaging (SSI) and to evaluate the diagnostic performance of liver and spleen stiffness measurement (LSM and SSM) with SSI for the detection of liver fibrosis, portal hypertension, and gastroesophageal varices in liver diseases. PubMed, EMBASE, and Cochrane Library databases were searched. Technical success rate of SSI was pooled. Area under curve (AUC), sensitivity, and specificity with corresponding 95% confidence interval (CI) were calculated. Included studies regarding the diagnostic performance of SSI for liver fibrosis, portal hypertension, and esophageal varices numbered 28, 4, and 4 respectively. The pooled technical success rates of LSM and SSM were 95.3% and 75.5%, respectively. The AUC, sensitivity, and specificity of LSM/SSM for different stages of liver fibrosis were 0.85-0.94, 0.7-0.89, and 0.82-0.92, respectively. The AUC, sensitivity, and specificity of LSM were 0.84 (95%CI = 0.8-0.86), 0.79 (95%CI = 0.7-0.85), and 0.82 (95%CI = 0.72-0.88) for clinically significant portal hypertension, 0.85 (95%CI = 0.82-0.88), 0.8 (95%CI = 0.68-0.88), and 0.8 (95%CI = 0.6-0.92) for any varices, and 0.86 (95%CI = 0.83-0.89), 0.86 (95%CI = 0.76-0.92), and 0.61 (95%CI = 0.35-0.83) for high-risk varices, respectively. LSM with SSI had a high diagnostic accuracy for liver fibrosis, but a moderate diagnostic accuracy for portal hypertension and esophageal varices.
Imaging of the peripheral retina
Kernt, Marcus; Kampik, Anselm
2013-01-01
The technical progress of the recent years has revolutionized imaging in ophthalmology. Scanning laser ophthalmoscopy (SLO), digital angiography, optical coherence tomography (OCT), and detection of fundus autofluorescence (FAF) have fundamentally changed our understanding of numerous retinal and choroidal diseases. Besides the tremendous advances in macular diagnostics, there is more and more evidence that central pathologies are often directly linked to changes in the peripheral retina. This review provides a brief overview on current posterior segment imaging techniques with a special focus on the peripheral retina. PMID:24391370
21 CFR 212.1 - What are the meanings of the technical terms used in these regulations?
Code of Federal Regulations, 2014 CFR
2014-04-01
..., numbers, or symbols from which the complete history of the production, processing, packing, holding, and... is used for providing dual photon positron emission tomographic diagnostic images. The definition.... Production means the manufacturing, compounding, processing, packaging, labeling, reprocessing, repacking...
21 CFR 212.1 - What are the meanings of the technical terms used in these regulations?
Code of Federal Regulations, 2012 CFR
2012-04-01
..., numbers, or symbols from which the complete history of the production, processing, packing, holding, and... is used for providing dual photon positron emission tomographic diagnostic images. The definition.... Production means the manufacturing, compounding, processing, packaging, labeling, reprocessing, repacking...
21 CFR 212.1 - What are the meanings of the technical terms used in these regulations?
Code of Federal Regulations, 2013 CFR
2013-04-01
..., numbers, or symbols from which the complete history of the production, processing, packing, holding, and... is used for providing dual photon positron emission tomographic diagnostic images. The definition.... Production means the manufacturing, compounding, processing, packaging, labeling, reprocessing, repacking...
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak.
Pan, X M; Yang, Z J; Ma, X D; Zhu, Y L; Luhmann, N C; Domier, C W; Ruan, B W; Zhuang, G
2016-11-01
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advanced optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.
Design of the 2D electron cyclotron emission imaging instrument for the J-TEXT tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, X. M.; Yang, Z. J., E-mail: yangzj@hust.edu.cn; Ma, X. D.
2016-11-15
A new 2D Electron Cyclotron Emission Imaging (ECEI) diagnostic is being developed for the J-TEXT tokamak. It will provide the 2D electron temperature information with high spatial, temporal, and temperature resolution. The new ECEI instrument is being designed to support fundamental physics investigations on J-TEXT including MHD, disruption prediction, and energy transport. The diagnostic contains two dual dipole antenna arrays corresponding to F band (90-140 GHz) and W band (75-110 GHz), respectively, and comprises a total of 256 channels. The system can observe the same magnetic surface at both the high field side and low field side simultaneously. An advancedmore » optical system has been designed which permits the two arrays to focus on a wide continuous region or two radially separate regions with high imaging spatial resolution. It also incorporates excellent field curvature correction with field curvature adjustment lenses. An overview of the diagnostic and the technical progress including the new remote control technique are presented.« less
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
From telepathology to virtual pathology institution: the new world of digital pathology.
Kayser, K; Kayser, G; Radziszowski, D; Oehmann, A
Telepathology has left its childhood. Its technical development is mature, and its use for primary (frozen section) and secondary (expert consultation) diagnosis has been expanded to a great amount. This is in contrast to a virtual pathology laboratory, which is still under technical constraints. Similar to telepathology, which can also be used for e-learning and e-training in pathology, as exemplarily is demonstrated on Digital Lung Pathology (Klaus.Kayser@charite.de) at least two kinds of virtual pathology laboratories will be implemented in the near future: a) those with distributed pathologists and distributed (> or = 1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists (usually situated in one institution) and a centralized laboratory, which digitizes complete histological slides. Both scenarios are under intensive technical investigations. The features of virtual pathology comprise a virtual pathology institution (mode a) that accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The Internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size and number of transferred images have to be limited, and usual different magnifications have to be used. The sender needs to possess experiences in image sampling techniques, which present with the most significant information. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. The first experiences of a virtual pathology institution group working with the iPATH server working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalization of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalization is still under development. Virtual pathology can be combined with e-learning and e-training, that will serve for a powerful daily-work-integrated pathology system. At present, e-learning systems are "stand-alone" solutions distributed on CD or via Internet. A characteristic example is the Digital Lung Pathology CD, which includes about 60 different rare and common lung diseases with some features of electronic communication. These features include access to scientific library systems (PubMed), distant measurement servers (EuroQuant), automated immunohisto-chemistry measurements, or electronic journals (Elec J Pathol Histol, www.pathology-online.org). It combines e-learning and e-training with some acoustic support. A new and complete database based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. At present, telepathology serves as promoter for a complete new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years with exciting diagnostic and scientific perspectives.
Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang
2015-01-01
Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroeze, Stephanie G. C.; Huisman, Merel; Verkooijen, Helena M.
2012-06-15
Introduction: Three-dimensional (3D) real-time fluoroscopy cone beam CT is a promising new technique for image-guided biopsy of solid tumors. We evaluated the technical feasibility, diagnostic accuracy, and complications of this technique for guidance of large-core needle biopsy in patients with suspicious renal masses. Methods: Thirteen patients with 13 suspicious renal masses underwent large-core needle biopsy under 3D real-time fluoroscopy cone beam CT guidance. Imaging acquisition and subsequent 3D reconstruction was done by a mobile flat-panel detector (FD) C-arm system to plan the needle path. Large-core needle biopsies were taken by the interventional radiologist. Technical success, accuracy, and safety were evaluatedmore » according to the Innovation, Development, Exploration, Assessment, Long-term study (IDEAL) recommendations. Results: Median tumor size was 2.6 (range, 1.0-14.0) cm. In ten (77%) patients, the histological diagnosis corresponded to the imaging findings: five were malignancies, five benign lesions. Technical feasibility was 77% (10/13); in three patients biopsy results were inconclusive. The lesion size of these three patients was <2.5 cm. One patient developed a minor complication. Median follow-up was 16.0 (range, 6.4-19.8) months. Conclusions: 3D real-time fluoroscopy cone beam CT-guided biopsy of renal masses is feasible and safe. However, these first results suggest that diagnostic accuracy may be limited in patients with renal masses <2.5 cm.« less
Niendorf, Thoralf; Paul, Katharina; Oezerdem, Celal; Graessl, Andreas; Klix, Sabrina; Huelnhagen, Till; Hezel, Fabian; Rieger, Jan; Waiczies, Helmar; Frahm, Jens; Nagel, Armin M; Oberacker, Eva; Winter, Lukas
2016-09-01
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Multiparametric prostate MRI: technical conduct, standardized report and clinical use.
Manfredi, Matteo; Mele, Fabrizio; Garrou, Diletta; Walz, Jochen; Fütterer, Jurgen J; Russo, Filippo; Vassallo, Lorenzo; Villers, Arnauld; Emberton, Mark; Valerio, Massimo
2018-02-01
Multiparametric prostate MRI (mp-MRI) is an emerging imaging modality for diagnosis, characterization, staging, and treatment planning of prostate cancer (PCa). The technique, results reporting, and its role in clinical practice have been the subject of significant development over the last decade. Although mp-MRI is not yet routinely used in the diagnostic pathway, almost all urological guidelines have emphasized the potential role of mp-MRI in several aspects of PCa management. Moreover, new MRI sequences and scanning techniques are currently under evaluation to improve the diagnostic accuracy of mp-MRI. This review presents an overview of mp-MRI, summarizing the technical applications, the standardized reporting systems used, and their current roles in various stages of PCa management. Finally, this critical review also reports the main limitations and future perspectives of the technique.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma
Becker, Aline; Elder, Brad; Puduvalli, Vinay; Winter, Jessica; Gurcan, Metin
2017-01-01
Multiplexed immunofluorescent testing has not entered into diagnostic neuropathology due to the presence of several technical barriers, amongst which includes autofluorescence. This study presents the implementation of a methodology capable of overcoming the visual challenges of fluorescent microscopy for diagnostic neuropathology by using automated digital image analysis, with long term goal of providing unbiased quantitative analyses of multiplexed biomarkers for solid tissue neuropathology. In this study, we validated PTBP1, a putative biomarker for glioma, and tested the extent to which immunofluorescent microscopy combined with automated and unbiased image analysis would permit the utility of PTBP1 as a biomarker to distinguish diagnostically challenging surgical biopsies. As a paradigm, we utilized second resections from patients diagnosed either with reactive brain changes (pseudoprogression) and recurrent glioblastoma (true progression). Our image analysis workflow was capable of removing background autofluorescence and permitted quantification of DAPI-PTBP1 positive cells. PTBP1-positive nuclei, and the mean intensity value of PTBP1 signal in cells. Traditional pathological interpretation was unable to distinguish between groups due to unacceptably high discordance rates amongst expert neuropathologists. Our data demonstrated that recurrent glioblastoma showed more DAPI-PTBP1 positive cells and a higher mean intensity value of PTBP1 signal compared to resections from second surgeries that showed only reactive gliosis. Our work demonstrates the potential of utilizing automated image analysis to overcome the challenges of implementing fluorescent microscopy in diagnostic neuropathology. PMID:28282372
Percutaneous foot joint needle placement using a C-arm flat-panel detector CT.
Wiewiorski, Martin; Takes, Martin Thanh Long; Valderrabano, Victor; Jacob, Augustinus Ludwig
2012-03-01
Image guidance is valuable for diagnostic injections in foot orthopaedics. Flat-detector computed tomography (FD-CT) was implemented using a C-arm, and the system was tested for needle guidance in foot joint injections. FD-CT-guided joint infiltration was performed in 6 patients referred from the orthopaedic department for diagnostic foot injections. All interventions were performed utilising a flat-panel fluoroscopy system utilising specialised image guidance and planning software. Successful infiltration was defined by localisation of contrast media depot in the targeted joint. The pre- and post-interventional numeric analogue scale (NAS) pain score was assessed. All injections were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of symptoms was noted by all 6 participants. FD-CT-guided joint infiltration is a feasible method for diagnostic infiltration of midfoot and hindfoot joints. The FD-CT approach may become an alternative to commonly used 2D-fluoroscopically guidance.
TU-G-201-00: Imaging Equipment Specification and Selection in Radiation Oncology Departments
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
Roth, Christopher J; Lannum, Louis M; Dennison, Donald K; Towbin, Alexander J
2016-10-01
Clinical specialties have widely varied needs for diagnostic image interpretation, and clinical image and video image consumption. Enterprise viewers are being deployed as part of electronic health record implementations to present the broad spectrum of clinical imaging and multimedia content created in routine medical practice today. This white paper will describe the enterprise viewer use cases, drivers of recent growth, technical considerations, functionality differences between enterprise and specialty viewers, and likely future states. This white paper is aimed at CMIOs and CIOs interested in optimizing the image-enablement of their electronic health record or those who may be struggling with the many clinical image viewers their enterprises may employ today.
Whitlock, J; Dixon, J; Sherlock, C; Tucker, R; Bolt, D M; Weller, R
2016-05-21
Since the 1950s, veterinary practitioners have included two separate dorsoproximal-palmarodistal oblique (DPr-PaDiO) radiographs as part of a standard series of the equine foot. One image is obtained to visualise the distal phalanx and the other to visualise the navicular bone. However, rapid development of computed radiography and digital radiography and their post-processing capabilities could mean that this practice is no longer required. The aim of this study was to determine differences in perceived image quality between DPr-PaDiO radiographs that were acquired with a computerised radiography system with exposures, centring and collimation recommended for the navicular bone versus images acquired for the distal phalanx but were subsequently manipulated post-acquisition to highlight the navicular bone. Thirty images were presented to four clinicians for quality assessment and graded using a 1-3 scale (1=textbook quality, 2=diagnostic quality, 3=non-diagnostic image). No significant difference in diagnostic quality was found between the original navicular bone images and the manipulated distal phalanx images. This finding suggests that a single DPr-PaDiO image of the distal phalanx is sufficient for an equine foot radiographic series, with appropriate post-processing and manipulation. This change in protocol will result in reduced radiographic study time and decreased patient/personnel radiation exposure. British Veterinary Association.
Technical errors in planar bone scanning.
Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M
2004-09-01
Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.
The staff of the department of diagnostic imaging: radical changes and training.
Marano, P; Pastore, G; Vecchioli Scaldazza, A
1998-01-01
When a complex reality as the Department of Diagnostic Imaging and its staff is aimed at the provision of a service, it may be extremely difficult to identify all present correlations and in turn, correlate them with the final goal. The relationship between human and technical resources, between organization and environment are of the utmost importance in planning the structure design. It should be kept in mind that "the person" is the pivot of any innovation for change. Participation by all members, a more flexible, structure, is required. In education and teaching, the global network we are heading for, could become the determining factor in a continuing training process and multispecialized research, facilitating the circulation of information in an interactive, formative dialogue.
New developments in digital pathology: from telepathology to virtual pathology laboratory.
Kayser, Klaus; Kayser, Gian; Radziszowski, Dominik; Oehmann, Alexander
2004-01-01
To analyse the present status and future development of computerized diagnostic pathology in terms of work-flow integrative telepathology and virtual laboratory. Telepathology has left its childhood. The technical development of telepathology is mature, in contrast to that of virtual pathology. Two kinds of virtual pathology laboratories are emerging: a) those with distributed pathologists and distributed (>=1) laboratories associated to individual biopsy stations/surgical theatres, and b) distributed pathologists working in a centralized laboratory. Both are under technical development. Telepathology can be used for e-learning and e-training in pathology, as exemplarily demonstrated on Digital Lung Pathology Pathology (www.pathology-online.org). A virtual pathology institution (mode a) accepts a complete case with the patient's history, clinical findings, and (pre-selected) images for first diagnosis. The diagnostic responsibility is that of a conventional institution. The internet serves as platform for information transfer, and an open server such as the iPATH (http://telepath.patho.unibas.ch) for coordination and performance of the diagnostic procedure. The size of images has to be limited, and usual different magnifications have to be used. A group of pathologists is "on duty", or selects one member for a predefined duty period. The diagnostic statement of the pathologist(s) on duty is retransmitted to the sender with full responsibility. First experiences of a virtual pathology institution group working with the iPATH server (Dr. L. Banach, Dr. G. Haroske, Dr. I. Hurwitz, Dr. K. Kayser, Dr. K.D. Kunze, Dr. M. Oberholzer,) working with a small hospital of the Salomon islands are promising. A centralized virtual pathology institution (mode b) depends upon the digitalisation of a complete slide, and the transfer of large sized images to different pathologists working in one institution. The technical performance of complete slide digitalisation is still under development and does not completely fulfil the requirements of a conventional pathology institution at present. VIRTUAL PATHOLOGY AND E-LEARNING: At present, e-learning systems are "stand-alone" solutions distributed on CD or via internet. A characteristic example is the Digital Lung Pathology CD (www.pathology-online.org), which includes about 60 different rare and common lung diseases and internet access to scientific library systems (PubMed), distant measurement servers (EuroQuant), or electronic journals (Elec J Pathol Histol). A new and complete data base based upon this CD will combine e-learning and e-teaching with the actual workflow in a virtual pathology institution (mode a). The technological problems are solved and do not depend upon technical constraints such as slide scanning systems. Telepathology serves as promotor for a new landscape in diagnostic pathology, the so-called virtual pathology institution. Industrial and scientific efforts will probably allow an implementation of this technique within the next two years.
WE-A-BRD-01: MR Imaging for Treatment Planning: What Every Physicist Should Know
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, K.
2015-06-15
Ever since its introduction as a diagnostic imaging modality over 30 years ago, the radiation therapy community has acknowledged the utility of MR imaging as a tool for not only improved visualization of the target volume but also for demarcation of adjacent organs at risk. However, the adaptation of MR imaging in radiation oncology has, until recently been slow due in large part to the inability to image radiation therapy patients in their treatment position. With the introduction of so-called wide bore high field MR scanners, multi element flexible receive only RF coils, high performance imaging gradients and a rangemore » of volumetric imaging sequences it is now possible to obtain both high resolution and high signal-to-noise ratio images of in-treatment radiation therapy patients within clinically feasible imaging times. As a Result, there is renewed interest in the use of MR imaging for radiation oncology treatment planning that is being translated into physical siting and integration of these systems into radiation oncology departments. As MR imaging expands into the radiation oncology domain there is a significant and unmet need for radiation therapy physicists to become educated regarding the strengths, limitations and technical challenges associated with MR imaging. The purpose of this presentation is to address this need by providing an educational overview of the techniques and challenges associated with MR imaging of patients for radiation therapy treatment planning. As such this presentation will: 1) describe the fundamental differences between imaging of patients for diagnostic and therapeutic purposes (i.e. radiation therapy planning), 2) describe most commonly used imaging sequences and contrasts for identification of disease for radiation planning, 3) identify the most common sources of image distortion and techniques to reduce their effect on spatial fidelity of the MR data, 4) describe the effects of motion and methods to quantify/correct it, and 5) identify emergent techniques for performing MR only treatment simulation. Upon completion attendees will have a working understanding of the basic methodologies associated with MR imaging in radiation oncology, the unique technical challenges imposed by MR imaging in the treatment position and techniques to address these. Learning Objectives: 1. Understand the differences between MR imaging for diagnostic imaging and for radiation therapy planning. 2. Identify the most common sources of distortion and artifacts and simple methods to correct them. 3. Understand the challenges with MR imaging in the therapy treatment position and appropriate techniques to address them.« less
Pannell, J Scott; Santiago-Dieppa, David R; Wali, Arvin R; Hirshman, Brian R; Steinberg, Jeffrey A; Cheung, Vincent J; Oveisi, David; Hallstrom, Jon; Khalessi, Alexander A
2016-08-29
This study establishes performance metrics for angiography and neuroendovascular surgery procedures based on longitudinal improvement in individual trainees with differing levels of training and experience. Over the course of 30 days, five trainees performed 10 diagnostic angiograms, coiled 10 carotid terminus aneurysms in the setting of subarachnoid hemorrhage, and performed 10 left middle cerebral artery embolectomies on a Simbionix Angio Mentor™ simulator. All procedures were nonconsecutive. Total procedure time, fluoroscopy time, contrast dose, heart rate, blood pressures, medications administered, packing densities, the number of coils used, and the number of stent-retriever passes were recorded. Image quality was rated, and the absolute value of technically unsafe events was recorded. The trainees' device selection, macrovascular access, microvascular access, clinical management, and the overall performance of the trainee was rated during each procedure based on a traditional Likert scale score of 1=fail, 2=poor, 3=satisfactory, 4=good, and 5=excellent. These ordinal values correspond with published assessment scales on surgical technique. After performing five diagnostic angiograms and five embolectomies, all participants demonstrated marked decreases in procedure time, fluoroscopy doses, contrast doses, and adverse technical events; marked improvements in image quality, device selection, access scores, and overall technical performance were additionally observed (p < 0.05). Similarly, trainees demonstrated marked improvement in technical performance and clinical management after five coiling procedures (p < 0.05). However, trainees with less prior experience deploying coils continued to experience intra-procedural ruptures up to the eighth embolization procedure; this observation likely corresponded with less tactile procedural experience to an exertion of greater force than appropriate for coil placement. Trainees across all levels of training and prior experience demonstrated a significant performance improvement after completion of our simulator curriculum consisting of five diagnostic angiograms, five embolectomy cases, and 10 aneurysm coil embolizations.
Schilling, R B
1993-05-01
Picture archiving and communication systems (PACS) provide image viewing at diagnostic, reporting, consultation, and remote workstations; archival on magnetic or optical media by means of short- or long-term storage devices; communications by means of local or wide area networks or public communication services; and integrated systems with modality interfaces and gateways to health care facilities and departmental information systems. Research indicates three basic needs for image and report management: (a) improved communication and turnaround time between radiologists and other imaging specialists and referring physicians, (b) fast reliable access to both current and previously obtained images and reports, and (c) space-efficient archival support. Although PACS considerations are much more complex than those associated with single modalities, the same basic purchase criteria apply. These criteria include technical leadership, image quality, throughput, life cost (eg, initial cost, maintenance, upgrades, and depreciation), and total service. Because a PACS takes much longer to implement than a single modality, the customer and manufacturer must develop a closer working relationship than has been necessary in the past.
Skweres, Justin; Yang, Zhiyun; Gonzalez-Toledo, Eduardo
2014-12-01
When unexpected results are obtained with standard image collection, the nuclear medicine physician must consider many technical factors that may have contributed. When image quality is poor, prior radiotracer administration, among other things, should always be considered. Our case demonstrates how knowledge of patient history and basic principles of nuclear medicine physics allows recognition of the septal penetration artifact. This allows the nuclear medicine physician to tailor the exam to an individual patient and obtain the most useful diagnostic information for the clinician. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, Timothy P., E-mail: tszczykutowicz@uwhealth.org; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
2016-02-15
Purpose: Accurate CT radiograph angle is not usually important in diagnostic CT. However, there are applications in radiation oncology and interventional radiology in which the orientation of the x-ray source and detector with respect to the patient is clinically important. The authors present a method for measuring the accuracy of the tube/detector assembly with respect to the prescribed tube/detector position for CT localizer, fluoroscopic, and general radiograph imaging using diagnostic, mobile, and c-arm based CT systems. Methods: A mathematical expression relating the x-ray projection of two metal BBs is related to gantry angle. Measurement of the BBs at a prescribedmore » gantry (i.e., c-arm) angle can be obtained and using this relation the prescribed versus actual gantry angle compared. No special service mode or proprietary information is required, only access to projection images is required. Projection images are available in CT via CT localizer radiographs and in the interventional setting via fluorography. Results: The technique was demonstrated on two systems, a mobile CT scanner and a diagnostic CT scanner. The results confirmed a known issue with the mobile scanner and accurately described the CT localizer angle of the diagnostic system tested. Conclusions: This method can be used to quantify gantry angle, which is important when projection images are used for procedure guidance, such as in brachytherapy and interventional radiology applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, C.
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
TU-G-201-02: An MRI Simulator From Proposal to Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.
2015-06-15
This session will update therapeutic physicists on technological advancements and radiation oncology features of commercial CT, MRI, and PET/CT imaging systems. Also described are physicists’ roles in every stage of equipment selection, purchasing, and operation, including defining specifications, evaluating vendors, making recommendations, and optimal and safe use of imaging equipment in radiation oncology environment. The first presentation defines important terminology of CT and PET/CT followed by a review of latest innovations, such as metal artifact reduction, statistical iterative reconstruction, radiation dose management, tissue classification by dual energy CT and spectral CT, improvement in spatial resolution and sensitivity in PET, andmore » potentials of PET/MR. We will also discuss important technical specifications and items in CT and PET/CT purchasing quotes and their impacts. The second presentation will focus on key components in the request for proposal for a MRI simulator and how to evaluate vendor proposals. MRI safety issues in radiation Oncology, including MRI scanner Zones (4-zone design), will be discussed. Basic MR terminologies, important functionalities, and advanced features, which are relevant to radiation therapy, will be discussed. In the third presentation, justification of imaging systems for radiation oncology, considerations in room design and construction in a RO department, shared use with diagnostic radiology, staffing needs and training, clinical/research use cases and implementation, will be discussed. The emphasis will be on understanding and bridging the differences between diagnostic and radiation oncology installations, building consensus amongst stakeholders for purchase and use, and integrating imaging technologies into the radiation oncology environment. Learning Objectives: Learn the latest innovations of major imaging systems relevant to radiation therapy Be able to describe important technical specifications of CT, MRI, and PET/CT Understand the process of budget request, equipment justification, comparisons of technical specifications, site visits, vendor selection, and contract development.« less
Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems
Kirui, Dickson K.; Ferrari, Mauro
2016-01-01
Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526
Tu, Haohua; Boppart, Stephen A.
2015-01-01
Clinical translation of coherent anti-Stokes Raman scattering microscopy is of great interest because of the advantages of noninvasive label-free imaging, high sensitivity, and chemical specificity. For this to happen, we have identified and review the technical barriers that must be overcome. Prior investigations have developed advanced techniques (features), each of which can be used to effectively overcome one particular technical barrier. However, the implementation of one or a small number of these advanced features in previous attempts for clinical translation has often introduced more tradeoffs than benefits. In this review, we outline a strategy that would integrate multiple advanced features to overcome all the technical barriers simultaneously, effectively reduce tradeoffs, and synergistically optimize CARS microscopy for clinical translation. The operation of the envisioned system incorporates coherent Raman micro-spectroscopy for identifying vibrational biomolecular markers of disease and single-frequency (or hyperspectral) Raman imaging of these specific biomarkers for real-time in vivo diagnostics and monitoring. An optimal scheme of clinical CARS micro-spectroscopy for thin ex vivo tissues. PMID:23674234
Magnetic resonance imaging for the ophthalmologist: A primer
Simha, Arathi; Irodi, Aparna; David, Sarada
2012-01-01
Magnetic resonance imaging (MRI) and computerized tomography (CT) have added a new dimension in the diagnosis and management of ocular and orbital diseases. Although CT is more widely used, MRI is the modality of choice in select conditions and can be complimentary to CT in certain situations. The diagnostic yield is best when the ophthalmologist and radiologist work together. Ophthalmologists should be able to interpret these complex imaging modalities as better clinical correlation is then possible. In this article, we attempt to describe the basic principles of MRI and its interpretation, avoiding confusing technical terms. PMID:22824600
Lung magnetic resonance imaging for pneumonia in children.
Liszewski, Mark C; Görkem, Süreyya; Sodhi, Kushaljit S; Lee, Edward Y
2017-10-01
Technical factors have historically limited the role of MRI in the evaluation of pneumonia in children in routine clinical practice. As imaging technology has advanced, recent studies utilizing practical MR imaging protocols have shown MRI to be an accurate potential alternative to CT for the evaluation of pneumonia and its complications. This article provides up-to-date MR imaging techniques that can be implemented in most radiology departments to evaluate pneumonia in children. Imaging findings in pneumonia on MRI are also reviewed. In addition, the current literature describing the diagnostic performance of MRI for pneumonia is discussed. Furthermore, potential risks and limitations of MRI for the evaluation of pneumonia in children are described.
Control and Diagnostic Model of Brushless Dc Motor
NASA Astrophysics Data System (ADS)
Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol
2014-09-01
A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values
Webster, Joshua D; Michalowski, Aleksandra M; Dwyer, Jennifer E; Corps, Kara N; Wei, Bih-Rong; Juopperi, Tarja; Hoover, Shelley B; Simpson, R Mark
2012-01-01
The extent to which histopathology pattern recognition image analysis (PRIA) agrees with microscopic assessment has not been established. Thus, a commercial PRIA platform was evaluated in two applications using whole-slide images. Substantial agreement, lacking significant constant or proportional errors, between PRIA and manual morphometric image segmentation was obtained for pulmonary metastatic cancer areas (Passing/Bablok regression). Bland-Altman analysis indicated heteroscedastic measurements and tendency toward increasing variance with increasing tumor burden, but no significant trend in mean bias. The average between-methods percent tumor content difference was -0.64. Analysis of between-methods measurement differences relative to the percent tumor magnitude revealed that method disagreement had an impact primarily in the smallest measurements (tumor burden <3%). Regression-based 95% limits of agreement indicated substantial agreement for method interchangeability. Repeated measures revealed concordance correlation of >0.988, indicating high reproducibility for both methods, yet PRIA reproducibility was superior (C.V.: PRIA = 7.4, manual = 17.1). Evaluation of PRIA on morphologically complex teratomas led to diagnostic agreement with pathologist assessments of pluripotency on subsets of teratomas. Accommodation of the diversity of teratoma histologic features frequently resulted in detrimental trade-offs, increasing PRIA error elsewhere in images. PRIA error was nonrandom and influenced by variations in histomorphology. File-size limitations encountered while training algorithms and consequences of spectral image processing dominance contributed to diagnostic inaccuracies experienced for some teratomas. PRIA appeared better suited for tissues with limited phenotypic diversity. Technical improvements may enhance diagnostic agreement, and consistent pathologist input will benefit further development and application of PRIA.
Bertram, Christof A; Gurtner, Corinne; Dettwiler, Martina; Kershaw, Olivia; Dietert, Kristina; Pieper, Laura; Pischon, Hannah; Gruber, Achim D; Klopfleisch, Robert
2018-07-01
Integration of new technologies, such as digital microscopy, into a highly standardized laboratory routine requires the validation of its performance in terms of reliability, specificity, and sensitivity. However, a validation study of digital microscopy is currently lacking in veterinary pathology. The aim of the current study was to validate the usability of digital microscopy in terms of diagnostic accuracy, speed, and confidence for diagnosing and differentiating common canine cutaneous tumor types and to compare it to classical light microscopy. Therefore, 80 histologic sections including 17 different skin tumor types were examined twice as glass slides and twice as digital whole-slide images by 6 pathologists with different levels of experience at 4 time points. Comparison of both methods found digital microscopy to be noninferior for differentiating individual tumor types within the category epithelial and mesenchymal tumors, but diagnostic concordance was slightly lower for differentiating individual round cell tumor types by digital microscopy. In addition, digital microscopy was associated with significantly shorter diagnostic time, but diagnostic confidence was lower and technical quality was considered inferior for whole-slide images compared with glass slides. Of note, diagnostic performance for whole-slide images scanned at 200× magnification was noninferior in diagnostic performance for slides scanned at 400×. In conclusion, digital microscopy differs only minimally from light microscopy in few aspects of diagnostic performance and overall appears adequate for the diagnosis of individual canine cutaneous tumors with minor limitations for differentiating individual round cell tumor types and grading of mast cell tumors.
Multiparametric magnetic resonance imaging of the prostate: current concepts*
Bittencourt, Leonardo Kayat; Hausmann, Daniel; Sabaneeff, Natalia; Gasparetto, Emerson Leandro; Barentsz, Jelle O.
2014-01-01
Multiparametric MR (mpMR) imaging is rapidly evolving into the mainstay in prostate cancer (PCa) imaging. Generally, the examination consists of T2-weighted sequences, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) evaluation, and less often proton MR spectroscopy imaging (MRSI). Those functional techniques are related to biological properties of the tumor, so that DWI correlates to cellularity and Gleason scores, DCE correlates to angiogenesis, and MRSI correlates to cell membrane turnover. The combined use of those techniques enhances the diagnostic confidence and allows for better characterization of PCa. The present article reviews and illustrates the technical aspects and clinical applications of each component of mpMR imaging, in a practical approach from the urological standpoint. PMID:25741104
Xu, Jian; Kim, Daniel; Otazo, Ricardo; Srichai, Monvadi B; Lim, Ruth P; Axel, Leon; Mcgorty, Kelly Anne; Niendorf, Thoralf; Sodickson, Daniel K
2013-07-01
To evaluate the feasibility and perform initial comparative evaluations of a 5-minute comprehensive whole-heart magnetic resonance imaging (MRI) protocol with four image acquisition types: perfusion (PERF), function (CINE), coronary artery imaging (CAI), and late gadolinium enhancement (LGE). This study protocol was Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board-approved. A 5-minute comprehensive whole-heart MRI examination protocol (Accelerated) using 6-8-fold-accelerated volumetric parallel imaging was incorporated into and compared with a standard 2D clinical routine protocol (Standard). Following informed consent, 20 patients were imaged with both protocols. Datasets were reviewed for image quality using a 5-point Likert scale (0 = non-diagnostic, 4 = excellent) in blinded fashion by two readers. Good image quality with full whole-heart coverage was achieved using the accelerated protocol, particularly for CAI, although significant degradations in quality, as compared with traditional lengthy examinations, were observed for the other image types. Mean total scan time was significantly lower for the Accelerated as compared to Standard protocols (28.99 ± 4.59 min vs. 1.82 ± 0.05 min, P < 0.05). Overall image quality for the Standard vs. Accelerated protocol was 3.67 ± 0.29 vs. 1.5 ± 0.51 (P < 0.005) for PERF, 3.48 ± 0.64 vs. 2.6 ± 0.68 (P < 0.005) for CINE, 2.35 ± 1.01 vs. 2.48 ± 0.68 (P = 0.75) for CAI, and 3.67 ± 0.42 vs. 2.67 ± 0.84 (P < 0.005) for LGE. Diagnostic image quality for Standard vs. Accelerated protocols was 20/20 (100%) vs. 10/20 (50%) for PERF, 20/20 (100%) vs. 18/20 (90%) for CINE, 18/20 (90%) vs. 18/20 (90%) for CAI, and 20/20 (100%) vs. 18/20 (90%) for LGE. This study demonstrates the technical feasibility and promising image quality of 5-minute comprehensive whole-heart cardiac examinations, with simplified scan prescription and high spatial and temporal resolution enabled by highly parallel imaging technology. The study also highlights technical hurdles that remain to be addressed. Although image quality remained diagnostic for most scan types, the reduced image quality of PERF, CINE, and LGE scans in the Accelerated protocol remain a concern. Copyright © 2012 Wiley Periodicals, Inc.
Chen, Xinyuan; Dai, Jianrong
2018-05-01
Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
[Role of MRI for detection and characterization of pulmonary nodules].
Sommer, G; Koenigkam-Santos, M; Biederer, J; Puderbach, M
2014-05-01
Due to physical and technical limitations, magnetic resonance imaging (MRI) has hitherto played only a minor role in image-based diagnostics of the lungs. However, as a consequence of important methodological developments during recent years, MRI has developed into a technically mature and clinically well-proven method for specific pulmonary questions. The purpose of this article is to provide an overview on the currently available sequences and techniques for assessment of pulmonary nodules and analyzes the clinical significance according to the current literature. The main focus is on the detection of lung metastases, the detection of primary pulmonary malignancies in high-risk individuals and the differentiation between pulmonary nodules of benign and malignant character. The MRI technique has a sensitivity of approximately 80 % for detection of malignant pulmonary nodules compared to the reference standard low-dose computed tomography (CT) and is thus somewhat inferior to CT. Advantages of MRI on the other hand are a higher specificity in differentiating malignant and benign pulmonary nodules and the absence of ionizing radiation exposure. A systematic use of MRI as a primary tool for detection and characterization of pulmonary nodules is currently not recommended due to insufficient data. The diagnostic potential of MRI for early detection and staging of malignant pulmonary diseases, however, seems promising. Therefore, further evaluation of MRI as a secondary imaging modality in clinical trials is highly warranted.
The Beatles, the Nobel Prize, and CT scanning of the chest.
Goodman, Lawrence R
2010-01-01
From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.
Romeo, Valeria; Maurea, Simone; Cuocolo, Renato; Petretta, Mario; Mainenti, Pier Paolo; Verde, Francesco; Coppola, Milena; Dell'Aversana, Serena; Brunetti, Arturo
2018-01-17
Adrenal adenomas (AA) are the most common benign adrenal lesions, often characterized based on intralesional fat content as either lipid-rich (LRA) or lipid-poor (LPA). The differentiation of AA, particularly LPA, from nonadenoma adrenal lesions (NAL) may be challenging. Texture analysis (TA) can extract quantitative parameters from MR images. Machine learning is a technique for recognizing patterns that can be applied to medical images by identifying the best combination of TA features to create a predictive model for the diagnosis of interest. To assess the diagnostic efficacy of TA-derived parameters extracted from MR images in characterizing LRA, LPA, and NAL using a machine-learning approach. Retrospective, observational study. Sixty MR examinations, including 20 LRA, 20 LPA, and 20 NAL. Unenhanced T 1 -weighted in-phase (IP) and out-of-phase (OP) as well as T 2 -weighted (T 2 -w) MR images acquired at 3T. Adrenal lesions were manually segmented, placing a spherical volume of interest on IP, OP, and T 2 -w images. Different selection methods were trained and tested using the J48 machine-learning classifiers. The feature selection method that obtained the highest diagnostic performance using the J48 classifier was identified; the diagnostic performance was also compared with that of a senior radiologist by means of McNemar's test. A total of 138 TA-derived features were extracted; among these, four features were selected, extracted from the IP (Short_Run_High_Gray_Level_Emphasis), OP (Mean_Intensity and Maximum_3D_Diameter), and T 2 -w (Standard_Deviation) images; the J48 classifier obtained a diagnostic accuracy of 80%. The expert radiologist obtained a diagnostic accuracy of 73%. McNemar's test did not show significant differences in terms of diagnostic performance between the J48 classifier and the expert radiologist. Machine learning conducted on MR TA-derived features is a potential tool to characterize adrenal lesions. 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Bone scintigraphy in skeletal trauma.
Holder, L E
1993-07-01
This article emphasizes the usefulness of radionuclide bone imaging (RNBI) throughout the clinical spectrum of osseous trauma and relates RNBI to the other imaging modalities available. Acute, stress, insufficiency, avulsion, and occult fracture detection are discussed and illustrated. Other traumatic lesions including the bone bruise, shin splints, tendinitis and epiphyseal injuries are included. Biomechanical lesions, the result of more chronic low level repetitive stress are discussed in detail, as is the use of RNBI in the detection of post-traumatic sequela such as the reflex sympathetic dystrophy syndrome. Technical aspects of RNBI are considered in the context of producing the quality of diagnostic images necessary for clinically complete consultative reporting.
Wallis, Lee; Hasselberg, Marie; Barkman, Catharina; Bogoch, Isaac; Broomhead, Sean; Dumont, Guy; Groenewald, Johann; Lundin, Johan; Norell Bergendahl, Johan; Nyasulu, Peter; Olofsson, Maud; Weinehall, Lars; Laflamme, Lucie
2017-06-01
Diagnostic support for clinicians is a domain of application of mHealth technologies with a slow uptake despite promising opportunities, such as image-based clinical support. The absence of a roadmap for the adoption and implementation of these types of applications is a further obstacle. This article provides the groundwork for a roadmap to implement image-based support for clinicians, focusing on how to overcome potential barriers affecting front-line users, the health-care organization and the technical system. A consensual approach was used during a two-day roundtable meeting gathering a convenience sample of stakeholders (n = 50) from clinical, research, policymaking and business fields and from different countries. A series of sessions was held including small group discussions followed by reports to the plenary. Session moderators synthesized the reports in a number of theme-specific strategies that were presented to the participants again at the end of the meeting for them to determine their individual priority. There were four to seven strategies derived from the thematic sessions. Once reviewed and prioritized by the participants some received greater priorities than others. As an example, of the seven strategies related to the front-line users, three received greater priority: the need for any system to significantly add value to the users; the usability of mHealth apps; and the goodness-of-fit into the work flow. Further, three aspects cut across the themes: ease of integration of the mHealth applications; solid ICT infrastructure and support network; and interoperability. Research and development in image-based diagnostic pave the way to making health care more accessible and more equitable. The successful implementation of those solutions will necessitate a seamless introduction into routines, adequate technical support and significant added value.
Stress Computed Tomography Myocardial Perfusion Imaging: A New Topic in Cardiology.
Seitun, Sara; Castiglione Morelli, Margherita; Budaj, Irilda; Boccalini, Sara; Galletto Pregliasco, Athena; Valbusa, Alberto; Cademartiri, Filippo; Ferro, Carlo
2016-02-01
Since its introduction about 15 years ago, coronary computed tomography angiography has become today the most accurate clinical instrument for noninvasive assessment of coronary atherosclerosis. Important technical developments have led to a continuous stream of new clinical applications together with a significant reduction in radiation dose exposure. Latest generation computed tomography scanners (≥ 64 slices) allow the possibility of performing static or dynamic perfusion imaging during stress by using coronary vasodilator agents (adenosine, dipyridamole, or regadenoson), combining both functional and anatomical information in the same examination. In this article, the emerging role and state-of-the-art of myocardial computed tomography perfusion imaging are reviewed and are illustrated by clinical cases from our experience with a second-generation dual-source 128-slice scanner (Somatom Definition Flash, Siemens; Erlangen, Germany). Technical aspects, data analysis, diagnostic accuracy, radiation dose and future prospects are reviewed. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Talbot, Jean-Noël
2010-11-01
Positron emission tomography (PET) is a well-established medical imaging method. PET is increasingly used for diagnostic purposes, especially in oncology. The most widely used radiopharmaceutical is FDG, a glucose analogue. Other radiopharmaceuticals have recently been registered or are in development. We outline technical improvements of PET machines during more than a decade of clinical use in France. Even though image quality has improved considerably and PET-CT hybrid machines have emerged, spending per examination has remained remarkably constant. Replacement and maintenance costs have remained in the range of 170-190 Euros per examination since 1997, whether early CDET gamma cameras or the latest time-of-flight PET/CT devices are used. This is mainly due to shorter acquisition times and more efficient use of FDG New reimbursement rates for PET/CT are needed in France in order to favor regular acquisition of state-of-the-art devices. One major development is the coupling of PET and MR imaging.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032
Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?
Pita, Inês; Magro, Fernando
2018-01-01
Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.
Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia
2012-08-15
Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to determine needle tip position and allows fast and accurate needle placement in targeted liver nodules.« less
Jessop, Maryam; Thompson, John D; Coward, Joanne; Sanderud, Audun; Jorge, José; de Groot, Martijn; Lança, Luís; Hogg, Peter
2015-03-01
Incidental findings on low-dose CT images obtained during hybrid imaging are an increasing phenomenon as CT technology advances. Understanding the diagnostic value of incidental findings along with the technical limitations is important when reporting image results and recommending follow-up, which may result in an additional radiation dose from further diagnostic imaging and an increase in patient anxiety. This study assessed lesions incidentally detected on CT images acquired for attenuation correction on two SPECT/CT systems. An anthropomorphic chest phantom containing simulated lesions of varying size and density was imaged on an Infinia Hawkeye 4 and a Symbia T6 using the low-dose CT settings applied for attenuation correction acquisitions in myocardial perfusion imaging. Twenty-two interpreters assessed 46 images from each SPECT/CT system (15 normal images and 31 abnormal images; 41 lesions). Data were evaluated using a jackknife alternative free-response receiver-operating-characteristic analysis (JAFROC). JAFROC analysis showed a significant difference (P < 0.0001) in lesion detection, with the figures of merit being 0.599 (95% confidence interval, 0.568, 0.631) and 0.810 (95% confidence interval, 0.781, 0.839) for the Infinia Hawkeye 4 and Symbia T6, respectively. Lesion detection on the Infinia Hawkeye 4 was generally limited to larger, higher-density lesions. The Symbia T6 allowed improved detection rates for midsized lesions and some lower-density lesions. However, interpreters struggled to detect small (5 mm) lesions on both image sets, irrespective of density. Lesion detection is more reliable on low-dose CT images from the Symbia T6 than from the Infinia Hawkeye 4. This phantom-based study gives an indication of potential lesion detection in the clinical context as shown by two commonly used SPECT/CT systems, which may assist the clinician in determining whether further diagnostic imaging is justified. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Konishi, Masaru; Lindh, Christina; Nilsson, Mats; Tanimoto, Keiji; Rohlin, Madeleine
2012-08-01
The aims of this study were to review the literature on intraoral digital radiography in endodontic treatment with focus on technical parameters and to propose recommendations for improving the quality of reports in future publications. Two electronic databases were searched. Titles and abstracts were selected according to preestablished criteria. Data were extracted using a model of image acquisition and interpretation. The literature search yielded 233 titles and abstracts; 61 reports were read in full text. Recent reports presented technical parameters more thoroughly than older reports. Most reported important parameters for the x-ray unit, but for image interpretation only about one-half of the publications cited resolution of the display system and fewer than one-half bit depth of the graphics card. The methodologic quality of future publications must be improved to permit replication of studies and comparison of results between studies in dental digital radiography. Our recommendations can improve the quality of studies on diagnostic accuracy. Copyright © 2012 Mosby, Inc. All rights reserved.
Pixel-based characterisation of CMOS high-speed camera systems
NASA Astrophysics Data System (ADS)
Weber, V.; Brübach, J.; Gordon, R. L.; Dreizler, A.
2011-05-01
Quantifying high-repetition rate laser diagnostic techniques for measuring scalars in turbulent combustion relies on a complete description of the relationship between detected photons and the signal produced by the detector. CMOS-chip based cameras are becoming an accepted tool for capturing high frame rate cinematographic sequences for laser-based techniques such as Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) and can be used with thermographic phosphors to determine surface temperatures. At low repetition rates, imaging techniques have benefitted from significant developments in the quality of CCD-based camera systems, particularly with the uniformity of pixel response and minimal non-linearities in the photon-to-signal conversion. The state of the art in CMOS technology displays a significant number of technical aspects that must be accounted for before these detectors can be used for quantitative diagnostics. This paper addresses these issues.
A ferrofluidic deformable mirror for ophthalmology
NASA Astrophysics Data System (ADS)
Macpherson, J. B.; Thibault, S.; Borra, E. F.; Ritcey, A. M.; Carufel, N.; Asselin, D.; Jerominek, H.; Campbell, M. C. W.
2005-09-01
Optical aberrations reduce the imaging quality of the human eye. In addition to degrading vision, this limits our ability to illuminate small points of the retina for therapeutic, surgical or diagnostic purposes. When viewing the rear of the eye, aberrations cause structures in the fundus to appear blurred, limiting the resolution of ophthalmoscopes (diagnostic instruments used to image the eye). Adaptive optics, such as deformable mirrors may be used to compensate for aberrations, allowing the eye to work as a diffraction-limited optical element. Unfortunately, this type of correction has not been widely available for ophthalmic applications because of the expense and technical limitations of current deformable mirrors. We present preliminary design and characterisation of a deformable mirror suitable for ophthalmology. In this ferrofluidic mirror, wavefronts are reflected from a fluid whose surface shape is controlled by a magnetic field. Challenges in design are outlined, as are advantages over traditional deformable mirrors.
Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A
2011-08-01
Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.
Imaging techniques used in the diagnostic workup of acute venous thromboembolic disease.
Tilve-Gómez, A; Rodríguez-Fernández, P; Trillo-Fandiño, L; Plasencia-Martínez, J M
Early diagnosis is one of the most important factors affecting the prognosis of pulmonary embolism (PE); however, the clinical presentation of PE is often very unspecific and it can simulate other diseases. For these reasons, imaging tests, especially computed tomography angiography (CTA) of the pulmonary arteries, have become the keystone in the diagnostic workup of PE. The wide availability and high diagnostic performance of pulmonary CTA has led to an increase in the number of examinations done and a consequent increase in the population's exposure to radiation and iodinated contrast material. Thus, other techniques such as scintigraphy and venous ultrasonography of the lower limbs, although less accurate, continue to be used in certain circumstances, and optimized protocols have been developed for CTA to reduce the dose of radiation (by decreasing the kilovoltage) and the dose of contrast agents. We describe the technical characteristics and interpretation of the findings for each imaging technique used to diagnose PE and discuss their advantages and limitations; this knowledge will help the best technique to be chosen for each case. Finally, we comment on some data about the increased use of CTA, its clinical repercussions, its "overuse", and doubts about its cost-effectiveness. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Conversion of paper-based technical manuals to interactive electronic technical manuals
NASA Astrophysics Data System (ADS)
Kuo, Mu-Hsing
1999-12-01
An IETM is intended to be the functional equivalent of a paper-based Technical Manual (TM), and in most cases a total replacement for paper manual. In this paper, we will describe some of document image understanding technologies applied to the conversion of paper-based TMs to IETMs. Using these advanced technologies allow us to convert paper-based TMs to class 1/2 IETMs. However, these were not sufficient for an automated integrated logistics support system in the ROC Department of Defense. An advanced IETM system is therefore required. Such class 4/5 like IETM system could provide intelligent display of information and other user applications such as diagnostics, intelligent design and manufacturing, or computer-managed training. The author has developed some of the advanced functions, and examples will be shown to demonstrate the new aspect of IETMs.
NASA Astrophysics Data System (ADS)
Lunt, T.; Fuchs, J. C.; Mank, K.; Feng, Y.; Brochard, F.; Herrmann, A.; Rohde, V.; Endstrasser, N.; ASDEX Upgrade Team
2010-11-01
A generally available and easy-to-use viewer for the simultaneous visualisation of the ASDEX Upgrade vacuum vessel computer aided design models, diagnostics and magnetic geometry, solutions of 3D plasma simulation codes and 2D camera images was developed. Here we report on the working principle of this software and give several examples of its technical and scientific application.
Upgrade of the infrared camera diagnostics for the JET ITER-like wall divertor.
Balboa, I; Arnoux, G; Eich, T; Sieglin, B; Devaux, S; Zeidner, W; Morlock, C; Kruezi, U; Sergienko, G; Kinna, D; Thomas, P D; Rack, M
2012-10-01
For the new ITER-like wall at JET, two new infrared diagnostics (KL9B, KL3B) have been installed. These diagnostics can operate between 3.5 and 5 μm and up to sampling frequencies of ∼20 kHz. KL9B and KL3B image the horizontal and vertical tiles of the divertor. The divertor tiles are tungsten coated carbon fiber composite except the central tile which is bulk tungsten and consists of lamella segments. The thermal emission between lamellae affects the surface temperature measurement and therefore KL9A has been upgraded to achieve a higher spatial resolution (by a factor of 2). A technical description of KL9A, KL9B, and KL3B and cross correlation with a near infrared camera and a two-color pyrometer is presented.
Hojjati, Mojgan; Van Hedent, Steven; Rassouli, Negin; Tatsuoka, Curtis; Jordan, David; Dhanantwari, Amar; Rajiah, Prabhakar
2017-11-01
To evaluate the image quality of routine diagnostic images generated from a novel detector-based spectral detector CT (SDCT) and compare it with CT images obtained from a conventional scanner with an energy-integrating detector (Brilliance iCT), Routine diagnostic (conventional/polyenergetic) images are non-material-specific images that resemble single-energy images obtained at the same radiation, METHODS: ACR guideline-based phantom evaluations were performed on both SDCT and iCT for CT adult body protocol. Retrospective analysis was performed on 50 abdominal CT scans from each scanner. Identical ROIs were placed at multiple locations in the abdomen and attenuation, noise, SNR, and CNR were measured. Subjective image quality analysis on a 5-point Likert scale was performed by 2 readers for enhancement, noise, and image quality. On phantom studies, SDCT images met the ACR requirements for CT number and deviation, CNR and effective radiation dose. In patients, the qualitative scores were significantly higher for the SDCT than the iCT, including enhancement (4.79 ± 0.38 vs. 4.60 ± 0.51, p = 0.005), noise (4.63 ± 0.42 vs. 4.29 ± 0.50, p = 0.000), and quality (4.85 ± 0.32, vs. 4.57 ± 0.50, p = 0.000). The SNR was higher in SDCT than iCT for liver (7.4 ± 4.2 vs. 7.2 ± 5.3, p = 0.662), spleen (8.6 ± 4.1 vs. 7.4 ± 3.5, p = 0.152), kidney (11.1 ± 6.3 vs. 8.7 ± 5.0, p = 0.033), pancreas (6.90 ± 3.45 vs 6.11 ± 2.64, p = 0.303), aorta (14.2 ± 6.2 vs. 11.0 ± 4.9, p = 0.007), but was slightly lower in lumbar-vertebra (7.7 ± 4.2 vs. 7.8 ± 4.5, p = 0.937). The CNR of the SDCT was also higher than iCT for all abdominal organs. Image quality of routine diagnostic images from the SDCT is comparable to images of a conventional CT scanner with energy-integrating detectors, making it suitable for diagnostic purposes.
Inventing a new diagnostic test for vaginal infection.
O'Dowd, T. C.; Bourne, N.
1994-01-01
Bacterial vaginosis, which is underdiagnosed in clinical practice, has a characteristic fishy smell because of production of diamines. This smell is the basis of a visual rapid diagnostic test that is technically simple to perform. The test has been patented in Europe and America, and a licence agreement has been negotiated. This paper describes the process from idea to invention to patenting and licensing. The combined costs of research and patenting were met by a multinational company in return for rights to exploit the patent invention. The process has taken nine years and has needed clinical, scientific, legal, and commercial input to get the test to the marketplace. Images p41-a PMID:8044068
Diffusion-weighted Breast MRI: Clinical Applications and Emerging Techniques
Partridge, Savannah C.; Nissan, Noam; Rahbar, Habib; Kitsch, Averi E.; Sigmund, Eric E.
2016-01-01
Diffusion weighted MRI (DWI) holds potential to improve the detection and biological characterization of breast cancer. DWI is increasingly being incorporated into breast MRI protocols to address some of the shortcomings of routine clinical breast MRI. Potential benefits include improved differentiation of benign and malignant breast lesions, assessment and prediction of therapeutic efficacy, and non-contrast detection of breast cancer. The breast presents a unique imaging environment with significant physiologic and inter-subject variations, as well as specific challenges to achieving reliable high quality diffusion weighted MR images. Technical innovations are helping to overcome many of the image quality issues that have limited widespread use of DWI for breast imaging. Advanced modeling approaches to further characterize tissue perfusion, complexity, and glandular organization may expand knowledge and yield improved diagnostic tools. PMID:27690173
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
Careers in Medical Physics and the American Association of Physicists in Medicine
NASA Astrophysics Data System (ADS)
Amols, Howard
2006-03-01
The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
Biomedical Applications of Carbon Nanotubes: A Critical Review.
Sharma, Priyanka; Mehra, Neelesh Kumar; Jain, Keerti; Jain, N K
2016-08-01
The convergence of nano and biotechnology is enabling scientific and technical knowledge for improving human well being. Carbon nanotubes have become most fascinating material to be studied and unveil new avenues in the field of nanobiotechnology. The nanometer size and high aspect ratio of the CNTs are the two distinct features, which have contributed to diverse biomedical applications. They have captured the attention as nanoscale materials due to their nanometric structure and remarkable list of superlative and extravagant properties that encouraged their exploitation for promising applications. Significant progress has been made in order to overcome some of the major hurdles towards biomedical application of nanomaterials, especially on issues regarding the aqueous solubility/dispersion and safety of CNTs. Functionalized CNTs have been used in drug targeting, imaging, and in the efficient delivery of gene and nucleic acids. CNTs have also demonstrated great potential in diverse biomedical uses like drug targeting, imaging, cancer treatment, tissue regeneration, diagnostics, biosensing, genetic engineering and so forth. The present review highlights the possible potential of CNTs in diagnostics, imaging and targeted delivery of bioactives and also outlines the future opportunities for biomedical applications.
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius
2017-06-01
The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.
Schulz-Wendtland, Rüdiger; Jud, Sebastian M.; Fasching, Peter A.; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W.; Emons, Julius
2017-01-01
Aim The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Materials and Methods Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. Results The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. Conclusion In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound – the second important imaging modality in complementary breast diagnostics – without increasing examination time or requiring additional staff. PMID:28713173
Project DIVIDE Instrument Development. Technical Report # 0810
ERIC Educational Resources Information Center
Ketterlin-Geller, Leanne; Jung, Eunju; Geller, Josh; Yovanoff, Paul
2008-01-01
In this technical report, we describe the development of cognitive diagnostic test items that form the basis of the diagnostic system for Project DIVIDE (Dynamic Instruction Via Individually Designed Environments). The construct underlying the diagnostic test is division of fractions. We include a description of the process we used to identify the…
MRI of the lung: state of the art.
Wielpütz, Mark; Kauczor, Hans-Ulrich
2012-01-01
Magnetic resonance imaging (MRI) of the lung is technically challenging due to the low proton density and fast signal decay of the lung parenchyma itself. Additional challenges consist of tissue loss, hyperinflation, and hypoxic hypoperfusion, e.g., in emphysema, a so-called "minus-pathology". However, pathological changes resulting in an increase of tissue ("plus-pathology"), such as atelectases, nodules, infiltrates, mucus, or pleural effusion, are easily depicted with high diagnostic accuracy. Although MRI is inferior or at best equal to multi-detector computed tomography (MDCT) for the detection of subtle morphological features, MRI now offers an increasing spectrum of functional imaging techniques such as perfusion assessment and measurement of ventilation and respiratory mechanics that are superior to what is possible with MDCT. Without putting patients at risk with ionizing radiation, repeated examinations allow for the evaluation of the course of lung disease and monitoring of the therapeutic response through quantitative imaging, providing a level of functional detail that cannot be obtained by any other single imaging modality. As such, MRI will likely be used for clinical applications beyond morphological imaging for many lung diseases. In this article, we review the technical aspects and protocol suggestions for chest MRI and discuss the role of MRI in the evaluation of nodules and masses, airway disease, respiratory mechanics, ventilation, perfusion and hemodynamics, and pulmonary vasculature.
Fetal MRI: A Technical Update with Educational Aspirations
Gholipour, Ali; Estroff, Judith A.; Barnewolt, Carol E.; Robertson, Richard L.; Grant, P. Ellen; Gagoski, Borjan; Warfield, Simon K.; Afacan, Onur; Connolly, Susan A.; Neil, Jeffrey J.; Wolfberg, Adam; Mulkern, Robert V.
2015-01-01
Fetal magnetic resonance imaging (MRI) examinations have become well-established procedures at many institutions and can serve as useful adjuncts to ultrasound (US) exams when diagnostic doubts remain after US. Due to fetal motion, however, fetal MRI exams are challenging and require the MR scanner to be used in a somewhat different mode than that employed for more routine clinical studies. Herein we review the techniques most commonly used, and those that are available, for fetal MRI with an emphasis on the physics of the techniques and how to deploy them to improve success rates for fetal MRI exams. By far the most common technique employed is single-shot T2-weighted imaging due to its excellent tissue contrast and relative immunity to fetal motion. Despite the significant challenges involved, however, many of the other techniques commonly employed in conventional neuro- and body MRI such as T1 and T2*-weighted imaging, diffusion and perfusion weighted imaging, as well as spectroscopic methods remain of interest for fetal MR applications. An effort to understand the strengths and limitations of these basic methods within the context of fetal MRI is made in order to optimize their use and facilitate implementation of technical improvements for the further development of fetal MR imaging, both in acquisition and post-processing strategies. PMID:26225129
Role of radionuclide imaging for diagnosis of device and prosthetic valve infections
Sarrazin, Jean-François; Philippon, François; Trottier, Mikaël; Tessier, Michel
2016-01-01
Cardiovascular implantable electronic device (CIED) infection and prosthetic valve endocarditis (PVE) remain a diagnostic challenge. Cardiac imaging plays an important role in the diagnosis and management of patients with CIED infection or PVE. Over the past few years, cardiac radionuclide imaging has gained a key role in the diagnosis of these patients, and in assessing the need for surgery, mainly in the most difficult cases. Both 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and radiolabelled white blood cell single-photon emission computed tomography/computed tomography (WBC SPECT/CT) have been studied in these situations. In their 2015 guidelines for the management of infective endocarditis, the European Society of Cardiology incorporated cardiac nuclear imaging as part of their diagnostic algorithm for PVE, but not CIED infection since the data were judged insufficient at the moment. This article reviews the actual knowledge and recent studies on the use of 18F-FDG PET/CT and WBC SPECT/CT in the context of CIED infection and PVE, and describes the technical aspects of cardiac radionuclide imaging. It also discusses their accepted and potential indications for the diagnosis and management of CIED infection and PVE, the limitations of these tests, and potential areas of future research. PMID:27721936
Stahl, Stephane; Hentschel, Pascal; Ketelsen, Dominik; Grosse, Ulrich; Held, Manuel; Wahler, Theodora; Syha, Roland; Schaller, Hans-Eberhard; Nikolaou, Konstantin; Grözinger, Gerd
2017-05-01
This prospective clinical study examined standard wrist magnetic resonance imaging (MRI) examinations and the incremental value of computed tomography (CT) in the diagnosis of Kienböck's disease (KD) with regard to reliability and precision in the different diagnostic steps during diagnostic work-up. Sixty-four consecutive patients referred between January 2009 and January 2014 with positive initial suspicion of KD according to external standard wrist MRI were prospectively included (step one). Institutional review board approval was obtained. Clinical examination by two handsurgeons were followed by wrist radiographs (step two), ultrathin-section CT, and 3T contrast-enhanced MRI (step three). Final diagnosis was established in a consensus conference involving all examiners and all examinations results available from step three. In 12/64 patients, initial suspicion was discarded at step two and in 34/64 patients, the initial suspicion of KD was finally discarded at step three. The final external MRI positive predictive value was 47%. The most common differential diagnoses at step three were intraosseous cysts (n=15), lunate pseudarthrosis (n=13), and ulnar impaction syndrome (n=5). A correlation between radiograph-based diagnoses (step two) with final diagnosis (step three) showed that initial suspicion of stage I KD had the lowest sensitivity for correct diagnosis (2/11). Technical factors associated with a false positive external MRI KD diagnosis were not found. Standard wrist MRI should be complemented with thin-section CT, and interdisciplinary interpretation of images and clinical data, to increase diagnostic accuracy in patients with suspected KD. Copyright © 2017. Published by Elsevier B.V.
Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.
2016-01-01
The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617
Instantaneous velocity field imaging instrument for supersonic reacting flows
NASA Technical Reports Server (NTRS)
Allen, M. G.; Davis, S. J.; Kessler, W. J.; Legner, H. H.; Mcmanus, K. R.; Mulhall, P. A.; Parker, T. E.; Sonnenfroh, D. M.
1993-01-01
The technical tasks conducted to develop and demonstrate a new gas velocity measurement technique for high enthalpy reacting flows is described. The technique is based on Doppler-shifted Planar Laser-induced Fluorescence (PLIF) imaging of the OH radical. The imaging approach permits, in principle, single-shot measurements of the 2-D distribution of a single velocity component in the measurement plane, and is thus a technique of choice for applications in high enthalpy transient flow facilities. In contrast to previous work in this area, the present program demonstrated an approach which modified the diagnostic technique to function under the constraints of practical flow conditions of engineering interest, rather than vice-versa. In order to accomplish the experimental demonstrations, the state-of-the-art in PLIF diagnostic techniques was advanced in several ways. Each of these tasks is described in detail and is intended to serve as a reference in supporting the transition of this new capability to the fielded PLIF instruments now installed at several national test facilities. Among the new results of general interest in LlF-based flow diagnostics, a detailed set of the first measurements of the collisional broadening and shifting behavior of OH (1,0) band transitions in H7-air combustion environments is included. Such measurements are critical in the design of a successful strategy for PLIF velocity imaging; they also relate to accurate concentration and temperature measurements, particularly in compressible flow regimes. Furthermore, the results shed new light on the fundamental relationship between broadening and energy transfer collisions in OH A(sup 2)Sigma(+)v(sup ') = 1. The first single-pulse, spectrally-resolved measurements of the output of common pulsed dye lasers were also produced during the course of this effort. As with the OH broadening measurements, these data are a significant aspect of a successful velocity imaging strategy, and also have potential implications for many other LIF measurement techniques. Our results indicated the need to modify the commercially available laser cavity in order to accommodate the constraints imposed by typical SCRAMJET combustion characteristics as well as to increase the instrument's velocity dynamic range to span an intra-image range in excess of 2 km/s. The various technical efforts were brought together in a series of experiments demonstrating the applicability of the technique in a high pressure, high temperature H2-air combustion system. The resultant images were compared with 2-D flow simulations in order to determine the accuracy of the instrument. Mean velocity imaging in flows with an axis of symmetry was demonstrated with an accuracy of +/- 50 m/s out of an intra-image dynamic range of 1600 m/s, including reversed flow. A more complex configuration amenable to single-shot imaging in flows without an axis of symmetry was also demonstrated. Limitations imposed by available equipment resulted in an accuracy of about +/- 200 m/s out of 1750 m/s in these demonstrations. Minor modifications to the present configuration were suggested to improve this performance. Each technical task is described in detail, along with significance of the results for the overall imaging velocimeter configuration. This report should allow the user community to integrate this new measurement capability in their existing instrumentation platforms.
Zbýň, Š; Krššák, M; Memarsadeghi, M; Gholami, B; Haitel, A; Weber, M; Helbich, T H; Trattnig, S; Moser, E; Gruber, S
2014-07-01
The presented evaluation of the relative uncertainty (δ'CCC) of the (choline + creatine)/citrate (CC/C) ratios can provide objective information about the quality and diagnostic value of prostate MR spectroscopic imaging data. This information can be combined with the numeric values of CC/C ratios and provides metabolic-quality maps enabling accurate cancer detection and user-independent data evaluation. In addition, the prostate areas suffering most from the low precision of CC/C ratios (e. g., prostate base) were identified. © Georg Thieme Verlag KG Stuttgart · New York.
Techniques A: continuous waves
NASA Astrophysics Data System (ADS)
Beuthan, J.
1993-08-01
In a vast amount of medical diseases the biochemical and physiological changes of soft tissues are hardly detectable by conventional techniques of diagnostic imaging (x- ray, ultrasound, computer tomography, and MRI). The detectivity is low and the technical efforts are tremendous. On the other hand these pathologic variations induce significant changes of the optical tissue parameters which can be detected. The corresponding variations of the scattered light can most easily be detected and evaluated by infrared diaphanoscopy, even on optical thick tissue slices.
Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.
Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R
2011-01-01
Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Diagnostic Testing Package DX v 2.0 Technical Specification. Methodology Project.
ERIC Educational Resources Information Center
McArthur, David
This paper contains the technical specifications, schematic diagrams, and program printout for a computer software package for the development and administration of diagnostic tests. The second version of the Diagnostic Testing Package DX consists of a PASCAL-based set of modules located in two main programs: (1) EDITTEST creates, modifies, and…
Aquaro, Giovanni Donato; Di Bella, Gianluca; Castelletti, Silvia; Maestrini, Viviana; Festa, Pierluigi; Ait-Ali, Lamia; Masci, Pier Giorgio; Monti, Lorenzo; di Giovine, Gabriella; De Lazzari, Manuel; Cipriani, Alberto; Guaricci, Andrea I; Dellegrottaglie, Santo; Pepe, Alessia; Marra, Martina Perazzolo; Pontone, Gianluca
2017-04-01
Cardiac magnetic resonance (CMR) has emerged as a reliable and accurate diagnostic tool for the evaluation of patients with cardiac disease in several clinical settings and with proven additional diagnostic and prognostic value compared with other imaging modalities. This document has been developed by the working group on the 'application of CMR' of the Italian Society of Cardiology to provide a perspective on the current state of technical advances and clinical applications of CMR and to inform cardiologists on how to implement their clinical and diagnostic pathways with the inclusion of this technique in clinical practice. The writing committee consisted of members of the working group of the Italian Society of Cardiology and two external peer reviewers with acknowledged experience in the field of CMR.
Electromagnetic Navigational Bronchoscopy
Port, Jeffrey; Harrison, Sebron
2013-01-01
Despite advances in technology and treatment options, lung cancer remains a deadly disease. National screening programs are being instituted in an attempt to discover lung cancer in high-risk individuals at an earlier stage. Such screening programs invariably discover small peripheral nodules that previously would not have been clinically apparent; the management of such lesions can be challenging. Current diagnostic options such as percutaneous biopsy are effective; however, they are hindered by their risk of morbidity such as pneumothorax. Electromagnetic bronchoscopy (ENB) is an emerging technology that allows the practitioner the ability to both sample and treat small peripheral pulmonary lesions. In experienced centers, ENB provides high rates of diagnostic yield for small lesions and a complication rate significantly lower than that of more conventional diagnostic modalities. Although there are current barriers to its widespread utilization (cost, specialized imaging, technical training), these obstacles will handled similarly to any other emerging technology and will likely not be long-term impediments to its use. PMID:24436528
Madou, Marc; Zoval, Jim; Jia, Guangyao; Kido, Horacio; Kim, Jitae; Kim, Nahui
2006-01-01
In this paper, centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions, such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation, are introduced. Those fluidic functions have been combined with analytical measurement techniques, such as optical imaging, absorbance, and fluorescence spectroscopy and mass spectrometry, to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays, and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare technical barriers involved in applying microfluidics for sensing and diagnostic use and applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, whereas we might have to wait longer to see commercial CD-based diagnostics.
Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus
2015-09-01
Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.
Crivianu-Gaita, D; Babyn, P; Gilday, D; O'Brien, B; Charkot, E
2000-05-01
The Department of Diagnostic Imaging at the Hospital for Sick Children (HSC), Toronto, implemented a picture archiving and communication system (PACS) during the last year. This report describes our experience from the point of view of user acceptability. Based on objective data, the following key success factors were identified: user involvement in PACS planning, training, technical support, and rollout of pilot projects. Although technical factors are critical and must be addressed, the main conclusion of our study is that other nontechnical factors need to be recognized and resolved. Recognition of the importance of these factors to user acceptance and clear communication and consultation will help reduce negative user attitudes and increase the chance of a successful PACS implementation.
WE-A-210-00: Educational: Diagnostic Ultrasound QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This presentation will focus on the present role of ultrasound medical physics in clinical practices. The first part of the presentation will provide an overview of ultrasound QC methodologies and testing procedures. A brief review of ultrasound phantoms utilized in these testing procedures will be presented. The second part of the presentation will summarize ultrasound imaging technical standards and professional guidelines by American College of Radiology (ACR), American Institute of Ultrasound in Medicine (AIUM), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC). The current accreditation requirements by ACR and AIUM for ultrasound practices will be describedmore » and the practical aspects of implementing QC programs to be compliant with these requirements will be discussed. Learning Objectives: Achieve familiarity with common ultrasound QC test methods and ultrasound phantoms. Understand the coverage of the existing testing standards and professional guidelines on diagnostic ultrasound imaging. Learn what a medical physicist needs to know about ultrasound program accreditation and be able to implement ultrasound QC programs accordingly.« less
[Virtual endoscopy with a volumetric reconstruction technic: the technical aspects].
Pavone, P; Laghi, A; Panebianco, V; Catalano, C; Giura, R; Passariello, R
1998-06-01
We analyze the peculiar technical features of virtual endoscopy obtained with volume rendering. Our preliminary experience is based on virtual endoscopy images from volumetric data acquired with spiral CT (Siemens, Somatom Plus 4) using acquisition protocols standardized for different anatomic areas. Images are reformatted at the CT console, to obtain 1 mm thick contiguous slices, and transferred in DICOM format to an O2 workstation (Silicon Graphics, Mountain View CA, USA) with processor speed of 180 Mhz, 256 Mbyte RAM memory and 4.1 Gbyte hard disk. The software is Vitrea 1.0 (Vital Images, Fairfield, Iowa), running on a Unix platform. Image output is obtained through the Ethernet network to a Macintosh computer and a thermic printer (Kodak 8600 XLS). Diagnostic quality images were obtained in all the cases. Fly-through in the airways allowed correct evaluation of the main bronchi and of the origin of segmentary bronchi. In the vascular district, both carotid strictures and abdominal aortic aneurysms were depicted, with the same accuracy as with conventional reconstruction techniques. In the colon studies, polypoid lesions were correctly depicted in all the cases, with good correlation with endoscopic and double-contrast barium enema findings. In a case of lipoma of the ascending colon, virtual endoscopy allowed to study the colon both cranially and caudally to the lesion. The simultaneous evaluation of axial CT images permitted to characterize the lesion correctly on the basis of its density values. The peculiar feature of volume rendering is the use of the whole information inside the imaging volume to reconstruct three-dimensional images; no threshold values are used and no data are lost as opposite to conventional image reconstruction techniques. The different anatomic structures are visualized modifying the reciprocal opacities, showing the structures of no interest as translucent. The modulation of different opacities is obtained modifying the shape of the opacity curve, either using pre-set curves or in a completely independent way. Other technical features of volume rendering are the perspective evaluation of the objects, color and lighting. In conclusion, volume rendering is a promising technique to elaborate three-dimensional images, offering very realistic endoscopic views. At present, the main limitation is represented by the need of powerful and high-cost workstations.
Diagnostic imaging of child abuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinman, P.K.
1987-01-01
This book provides a description for all the known radiological alterations occurring in child abuse. This allows for precise interpretation of findings by radiologists. It also helps eliminate the confusion among both clinicians and non-medical personnel involved in the diagnosis, management, and legal issues related to child abuse. CONTENTS: Introduction; Skeletal trauma: general considerations; Extremity trauma; Bony thoracic trauma; Spinal trauma; Dating fractures; Visceral trauma; Head trauma; Miscellaneous forms of abuse and neglect; The postmortem examination; Differential diagnosis of child abuse; Legal considerations; Psychosocial considerations; Technical considerations and dosimetry.
Pitfalls in classical nuclear medicine: myocardial perfusion imaging
NASA Astrophysics Data System (ADS)
Fragkaki, C.; Giannopoulou, Ch
2011-09-01
Scintigraphic imaging is a complex functional procedure subject to a variety of artefacts and pitfalls that may limit its clinical and diagnostic accuracy. It is important to be aware of and to recognize them when present and to eliminate them whenever possible. Pitfalls may occur at any stage of the imaging procedure and can be related with the γ-camera or other equipment, personnel handling, patient preparation, image processing or the procedure itself. Often, potential causes of artefacts and pitfalls may overlap. In this short review, special interest will be given to cardiac scintigraphic imaging. Most common causes of artefact in myocardial perfusion imaging are soft tissue attenuation as well as motion and gating errors. Additionally, clinical problems like cardiac abnormalities may cause interpretation pitfalls and nuclear medicine physicians should be familiar with these in order to ensure the correct evaluation of the study. Artefacts or suboptimal image quality can also result from infiltrated injections, misalignment in patient positioning, power instability or interruption, flood field non-uniformities, cracked crystal and several other technical reasons.
2012-01-01
Background The short inversion time inversion recovery (STIR) black-blood technique has been used to visualize myocardial edema, and thus to differentiate acute from chronic myocardial lesions. However, some cardiovascular magnetic resonance (CMR) groups have reported variable image quality, and hence the diagnostic value of STIR in routine clinical practice has been put into question. The aim of our study was to analyze image quality and diagnostic performance of STIR using a set of pulse sequence parameters dedicated to edema detection, and to discuss possible factors that influence image quality. We hypothesized that STIR imaging is an accurate and robust way of detecting myocardial edema in non-selected patients with acute myocardial infarction. Methods Forty-six consecutive patients with acute myocardial infarction underwent CMR (day 4.5, +/- 1.6) including STIR for the assessment of myocardial edema and late gadolinium enhancement (LGE) for quantification of myocardial necrosis. Thirty of these patients underwent a follow-up CMR at approximately six months (195 +/- 39 days). Both STIR and LGE images were evaluated separately on a segmental basis for image quality as well as for presence and extent of myocardial hyper-intensity, with both visual and semi-quantitative (threshold-based) analysis. LGE was used as a reference standard for localization and extent of myocardial necrosis (acute) or scar (chronic). Results Image quality of STIR images was rated as diagnostic in 99.5% of cases. At the acute stage, the sensitivity and specificity of STIR to detect infarcted segments on visual assessment was 95% and 78% respectively, and on semi-quantitative assessment was 99% and 83%, respectively. STIR differentiated acutely from chronically infarcted segments with a sensitivity of 95% by both methods and with a specificity of 99% by visual assessment and 97% by semi-quantitative assessment. The extent of hyper-intense areas on acute STIR images was 85% larger than those on LGE images, with a larger myocardial salvage index in reperfused than in non-reperfused infarcts (p = 0.035). Conclusions STIR with appropriate pulse sequence settings is accurate in detecting acute myocardial infarction (MI) and distinguishing acute from chronic MI with both visual and semi-quantitative analysis. Due to its unique technical characteristics, STIR should be regarded as an edema-weighted rather than a purely T2-weighted technique. PMID:22455461
Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan
2016-01-01
The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725
Steele, Joseph R; Jones, A Kyle; Clarke, Ryan K; Shiao, Sue J; Wei, Wei; Shoemaker, Stowe; Parmar, Simrit
2017-03-01
The aim of this study was to compare the impact of a digital interactive education platform and standard paper-based education on patients' knowledge regarding ionizing radiation. Beginning in January 2015, patients at a tertiary cancer center scheduled for diagnostic imaging procedures were randomized to receive information about ionizing radiation delivered through a web-based interactive education platform (interactive education group), the same information in document format (document education group), or no specialized education (control group). Patients who completed at least some education and control group patients were invited to complete a knowledge assessment; interactive education patients were invited to provide feedback about satisfaction with their experience. A total of 2,226 patients participated. Surveys were completed by 302 of 745 patients (40.5%) participating in interactive education, 488 of 993 (49.1%) participating in document education, and 363 of 488 (74.4%) in the control group. Patients in the interactive education group were significantly more likely to say that they knew the definition of ionizing radiation, outperformed the other groups in identifying which imaging examinations used ionizing radiation, were significantly more likely to identify from a list which imaging modality had the highest radiation dose, and tended to perform better when asked about the tissue effects of radiation in diagnostic imaging, although this difference was not significant. In the interactive education group, 84% of patients were satisfied with the experience, and 79% said that they would recommend the program. Complex information on a highly technical subject with personal implications for patients may be conveyed more effectively using electronic platforms, and this approach is well accepted. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Three-dimensional reconstruction of TMJ MR images: a technical note and case report.
Kitai, Noriyuki; Eriksson, Lars; Kreiborg, Sven; Wagner, Aase; Takada, Kenji
2004-01-01
MR images of the temporomandibular joint at occlusion and at various stages of mouth opening were registered and reconstructed three-dimensionally before and after a modified condylotomy in a patient with painful disk displacement. Following the condylotomy, the condyle/disk relationship had become normalized in all three planes of space at closed mouth and during mouth opening. The post-operative distances of the condylar and diskal paths had increased when compared with the preoperative distances. The three-dimensional visualizing method may, besides providing diagnostic advantages, be a valuable tool for qualitative and quantitative documentation of the efficiency of different treatment methods for normalization of the disk/condyle relationship in patients with TMJ disk displacement.
Wiesner, E L; Hillen, T J; Long, J; Jennings, J W
2018-05-01
Cervical spine biopsies can be challenging due to the anatomy and the adjacent critical structures. Percutaneous image-guided biopsies can obviate the need for an open biopsy, however there have been few studies looking at the approaches, safety, and efficacy of percutaneous cervical spine biopsies. This retrospective study evaluated technical considerations, histopathologic and microbiologic yield, and safety in CT-guided cervical bone biopsies. A retrospective review of cervical bone and/or bone/disc biopsies performed from January 2010 to January 2017 was included in this study. Clinical diagnosis and indication, patient demographics, biopsy location, biopsy needle type, technical approach, lesion size, dose-length product, conscious sedation details, complications, and diagnostic histopathologic and/or microbiologic yield were recorded for each case and summarized. A total of 73 patients underwent CT-guided cervical bone biopsies. Fifty-three percent (39/73) were for clinical/imaging concern for infection and 47% (34/73) were for primary tumors or metastatic disease. Thirty-four percent (25/73) were of the inferior cervical spine (ie, C6 and C7). A sufficient sample was obtained for histopathologic and microbiologic analyses in 96% (70/73) of the biopsies. Forty-six percent (18/39) of those samples taken for infection had positive cultures. Two intraprocedural complications occurred in which the patients became hypotensive during the procedure without long-term complications. Percutaneous CT-guided biopsy of the cervical spine is an effective and safe procedure with high diagnostic yield and can obviate open procedures for histopathologic and microbiologic analyses of patients with clinical and imaging findings concerning for infection or primary and metastatic osseous lesions. © 2018 by American Journal of Neuroradiology.
Ultrasonography in diagnosing chronic pancreatitis: New aspects
Dimcevski, Georg; Erchinger, Friedemann G; Havre, Roald; Gilja, Odd Helge
2013-01-01
The course and outcome is poor for most patients with pancreatic diseases. Advances in pancreatic imaging are important in the detection of pancreatic diseases at early stages. Ultrasonography as a diagnostic tool has made, virtually speaking a technical revolution in medical imaging in the new millennium. It has not only become the preferred method for first line imaging, but also, increasingly to clarify the interpretation of other imaging modalities to obtain efficient clinical decision. We review ultrasonography modalities, focusing on advanced pancreatic imaging and its potential to substantially improve diagnosis of pancreatic diseases at earlier stages. In the first section, we describe scanning techniques and examination protocols. Their consequences for image quality and the ability to obtain complete and detailed visualization of the pancreas are discussed. In the second section we outline ultrasonographic characteristics of pancreatic diseases with emphasis on chronic pancreatitis. Finally, new developments in ultrasonography of the pancreas such as contrast enhanced ultrasound and elastography are enlightened. PMID:24259955
Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo
NASA Astrophysics Data System (ADS)
Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming
2015-04-01
Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.
Nair, Madhu K; Pettigrew, James C; Loomis, Jeffrey S; Bates, Robert E; Kostewicz, Stephen; Robinson, Boyd; Sweitzer, Jean; Dolan, Teresa A
2009-06-01
The implementation of digital radiography in dentistry in a large healthcare enterprise setting is discussed. A distinct need for a dedicated dental picture archiving and communication systems (PACS) exists for seamless integration of different vendor products across the system. Complex issues are contended with as each clinical department migrated to a digital environment with unique needs and workflow patterns. The University of Florida has had a dental PACS installed over 2 years ago. This paper describes the process of conversion from film-based imaging from the planning stages through clinical implementation. Dentistry poses many unique challenges as it strives to achieve better integration with systems primarily designed for imaging; however, the technical requirements for high-resolution image capture in dentistry far exceed those in medicine, as most routine dental diagnostic tasks are challenging. The significance of specification, evaluation, vendor selection, installation, trial runs, training, and phased clinical implementation is emphasized.
Development of a non-contact diagnostic tool for high power lasers
NASA Astrophysics Data System (ADS)
Simmons, Jed A.; Guttman, Jeffrey L.; McCauley, John
2016-03-01
High power lasers in excess of 1 kW generate enough Rayleigh scatter, even in the NIR, to be detected by silicon based sensor arrays. A lens and camera system in an off-axis position can therefore be used as a non-contact diagnostic tool for high power lasers. Despite the simplicity of the concept, technical challenges have been encountered in the development of an instrument referred to as BeamWatch. These technical challenges include reducing background radiation, achieving high signal to noise ratio, reducing saturation events caused by particulates crossing the beam, correcting images to achieve accurate beam width measurements, creating algorithms for the removal of non-uniformities, and creating two simultaneous views of the beam from orthogonal directions. Background radiation in the image was reduced by the proper positioning of the back plane and the placement of absorbing materials on the internal surfaces of BeamWatch. Maximizing signal to noise ratio, important to the real-time monitoring of focus position, was aided by increasing lens throughput. The number of particulates crossing the beam path was reduced by creating a positive pressure inside BeamWatch. Algorithms in the software removed non-uniformities in the data prior to generating waist width, divergence, BPP, and M2 results. A dual axis version of BeamWatch was developed by the use of mirrors. By its nature BeamWatch produced results similar to scanning slit measurements. Scanning slit data was therefore taken and compared favorably with BeamWatch results.
East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc
2016-11-01
Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, Deirdre M., E-mail: d.mcgrath@sheffield.ac.uk; Lee, Jenny; Foltz, Warren D.
Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolutionmore » 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily adaptable to other types of whole tissue specimen, such as mastectomy or liver resection.« less
Thrall, James H; Li, Xiang; Li, Quanzheng; Cruz, Cinthia; Do, Synho; Dreyer, Keith; Brink, James
2018-03-01
Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large datasets ("big data"), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature, better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can be used to extract "radiomic" information from images not discernible by visual inspection, potentially increasing the diagnostic and prognostic value derived from image datasets. Predictions have been made that suggest AI will put radiologists out of business. This issue has been overstated, and it is much more likely that radiologists will beneficially incorporate AI methods into their practices. Current limitations in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access solutions. Success for AI in imaging will be measured by value created: increased diagnostic certainty, faster turnaround, better outcomes for patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists will explore these new pathways and are likely to play a leading role in medical applications of AI. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
PACS for Bhutan: a cost effective open source architecture for emerging countries.
Ratib, Osman; Roduit, Nicolas; Nidup, Dechen; De Geer, Gerard; Rosset, Antoine; Geissbuhler, Antoine
2016-10-01
This paper reports the design and implementation of an innovative and cost-effective imaging management infrastructure suitable for radiology centres in emerging countries. It was implemented in the main referring hospital of Bhutan equipped with a CT, an MRI, digital radiology, and a suite of several ultrasound units. They lacked the necessary informatics infrastructure for image archiving and interpretation and needed a system for distribution of images to clinical wards. The solution developed for this project combines several open source software platforms in a robust and versatile archiving and communication system connected to analysis workstations equipped with a FDA-certified version of the highly popular Open-Source software. The whole system was implemented on standard off-the-shelf hardware. The system was installed in three days, and training of the radiologists as well as the technical and IT staff was provided onsite to ensure full ownership of the system by the local team. Radiologists were rapidly capable of reading and interpreting studies on the diagnostic workstations, which had a significant benefit on their workflow and ability to perform diagnostic tasks more efficiently. Furthermore, images were also made available to several clinical units on standard desktop computers through a web-based viewer. • Open source imaging informatics platforms can provide cost-effective alternatives for PACS • Robust and cost-effective open architecture can provide adequate solutions for emerging countries • Imaging informatics is often lacking in hospitals equipped with digital modalities.
Teleneurosonology: a novel application of transcranial and carotid ultrasound.
Rubin, Mark N; Barrett, Kevin M; Freeman, W David; Lee Iannotti, Joyce K; Channer, Dwight D; Rabinstein, Alejandro A; Demaerschalk, Bart M
2015-03-01
To demonstrate the technical feasibility of interfacing transcranial Doppler (TCD) and carotid "duplex" ultrasonography (CUS) peripherals with telemedicine end points to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. We performed remote TCD and CUS examinations on a healthy, volunteer employee from our institution without known cerebrovascular disease. The telemedicine end point was stationed in our institution's hospital where the neurosonology examinations took place and the control station was in a dedicated telemedicine room in a separate building. The examinations were performed by a postgraduate level neurohospitalist trainee (M.N.R.) and interpreted by an attending vascular neurologist, both with experience in the performance and interpretation of TCD and CUS. Spectral waveform and duplex ultrasound data were successfully transmitted from TCD and CUS instruments through a telemedicine end point to a remote reviewer at a control station. Image quality was preserved in all cases, and technical failures were not encountered. This proof-of-concept study demonstrates the technical feasibility of interfacing TCD and CUS peripherals with a telemedicine end point to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. Medical diagnostic and telemedicine devices should be equipped with interfaces that allow simple transmission of high-quality audio and video information from the medical devices to the telemedicine technology. Further study is encouraged to determine the clinical impact of teleneurosonology. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Definitions and outlook targeting x-ray exposure of patients in diagnostic imaging
NASA Astrophysics Data System (ADS)
Regulla, Dieter F.
2011-03-01
Computer tomography (CT) is vital and currently irreplaceable in diagnostic radiology. But CT operates with ionizing radiation which may cause cancer or non-cancer diseases in humans. The degree of radiation impact depends on the dose administered by an investigation. And this is the core issue: Even CT exams executed lege artis, administer doses to patients which by magnitude are far beyond the level of hitherto known doses of conventional film-screen techniques. Patients undergoing one or multiple CT examinations, digital angiographies or interventions will be exposed to effective doses between roughly several mSv and several 100 mSv depending on type and frequency of the diagnostic investigations. From the radiation protection point of view, there is therefore the worldwide problem of formulating firm rules for the control of these high-dose investigations, as dose limits can not be established for reasons of the medical benefit. This makes the difference compared with radiation protection for occupationally exposed persons. What remains is "software", namely "justification" and "optimization". Justification requires balancing the interests between the health benefit and the potential harm of an exam which has to be responsibly executed by the physician himself; therefore the radiologists' associations are in the duty to prepare practicable rules for justification. Optimization again needs a cooperative solution, and that is the establishment of reference doses for diagnostic examinations, to be checked by the technical service of the producers' companies. Experts and authorities have been aware of the high-dose dilemma in diagnostic imaging since long. It is time for the reflection of active solutions and their implementation into practice.
NASA Astrophysics Data System (ADS)
Kuzin, Evgeny G.; Gerike, Boris L.; Drozdenko, Yuriy V.; Lupiy, Michael G.; Grigoryeva, Natalya V.
2017-10-01
The article reviews the issues of complex use of methods of technical diagnostics of gearboxes for belt conveyors, with the aim of creating an effective system of maintenance. The article is showing the results of the evaluation of the technical condition of the drives of belt conveyors based on vibration monitoring and thermal parameters, and analysis of lubricating oil.
Xu, J; Reh, D D; Carey, J P; Mahesh, M; Siewerdsen, J H
2012-08-01
As cone-beam CT (CBCT) systems dedicated to various imaging specialties proliferate, technical assessment grounded in imaging physics is important to ensuring that image quality and radiation dose are quantified, understood, and justified. This paper involves technical assessment of a new CBCT scanner (CS 9300, Carestream Health, Rochester, NY) dedicated to imaging of the ear and sinuses for applications in otolaryngology-head and neck surgery (OHNS). The results guided evaluation of technique protocols to minimize radiation dose in a manner sufficient for OHNS imaging tasks. The technical assessment focused on the imaging performance and radiation dose for each of seven technique protocols recommended by the manufacturer: three sinus protocols and four ear (temporal bone) protocols. Absolute dose was measured using techniques adapted from AAPM Task Group Report No. 111, involving three stacked 16 cm diameter acrylic cylinders (CTDI phantoms) and a 0.6 cm(3) Farmer ionization chamber to measure central and peripheral dose. The central dose (D(o)) was also measured as a function of longitudinal position (z) within and beyond the primary radiation field to assess, for example, out-of-field dose to the neck. Signal-difference-to-noise ratio (SDNR) and Hounsfield unit (HU) accuracy were assessed in a commercially available quality assurance phantom (CATPHAN module CTP404, The Phantom Laboratory, Greenwich, NY) and a custom phantom with soft-tissue-simulating plastic inserts (Gammex RMI, Madison, WI). Spatial resolution was assessed both qualitatively (a line-pair pattern, CATPHAN module CTP528) and quantitatively (modulation transfer function, MTF, measured with a wire phantom). Imaging performance pertinent to various OHNS imaging tasks was qualitatively assessed using an anthropomorphic phantom as evaluated by two experienced OHNS specialists. The technical assessment motivated a variety of modifications to the manufacturer-specified protocols to provide reduced radiation dose without compromising pertinent task-based imaging performance. The revised protocols yielded D(o) ranging 2.9-5.7 mGy, representing a ∼30% reduction in dose from the original technique chart. Out-of-field dose was ∼10% of D(o) at a distance of ∼8 cm from the field edge. Soft-tissue contrast resolution was fairly limited (water-brain SDNR ∼0.4-0.7) while high-contrast performance was reasonably good (SDNR ∼2-4 for a polystyrene insert in the CATPHAN). The scanner does not demonstrate (or claim to provide) accurate HU and exhibits a systematic error in CT number that could potentially be addressed by further calibration. The spatial resolution is ∼10-16 lp∕cm as assessed in a line-pair phantom, with MTF exceeding 10% out to ∼20 lp∕cm. Qualitative assessment by expert readers suggested limited soft-tissue visibility but excellent high-contrast (bone) visualization with isotropic spatial resolution suitable to a broad spectrum of pertinent sinus and temporal bone imaging tasks. The CBCT scanner provided spatial and contrast resolution suitable to visualization of high-contrast morphology in sinus, maxillofacial, and otologic imaging applications. Rigorous technical assessment guided revision of technique protocols to reduce radiation dose while maintaining image quality sufficient for pertinent imaging tasks. The scanner appears well suited to high-contrast sinus and temporal bone imaging at doses comparable to or less than that reported for conventional diagnostic CT of the head.
A Vision for Better Health: Mass Spectrometry Imaging for Clinical Diagnostics
Ye, Hui; Gemperline, Erin; Li, Lingjun
2012-01-01
Background Mass spectrometry imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules from small molecules to large proteins by creating detailed distribution maps of selected compounds. Its usefulness in biomarker discovery towards clinical applications has obtained success by correlating the molecular expression of tissues acquired from MSI with well-established histology. Results To date, MSI has demonstrated its versatility in clinical applications, such as biomarker diagnostics of different diseases, prognostics of disease severities and metabolic response to drug treatment, etc. These studies have provided significant insight in clinical studies over the years and current technical advances are further facilitating the improvement of this field. Although the underlying concept is simple, factors such as choice of ionization method, sample preparation, instrumentation and data analysis must be taken into account for successful applications of MSI. Herein, we briefly reviewed these key elements yet focused on the clinical applications of MSI that cannot be addressed by other means. Conclusions Challenges and future perspectives in this field are also discussed to conclude that the ever-growing applications with continuous development of this powerful analytical tool will lead to a better understanding of the biology of diseases and improvements in clinical diagnostics. PMID:23078851
NASA Astrophysics Data System (ADS)
Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.
2003-05-01
Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.
Silva, Luiz Antonio F.; Barriviera, Mauricio; Januário, Alessandro L.; Bezerra, Ana Cristina B.; Fioravanti, Maria Clorinda S.
2011-01-01
The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures. PMID:22122905
[Mathematical model of technical equipment of a clinical-diagnostic laboratory].
Bukin, S I; Busygin, D V; Tilevich, M E
1990-01-01
The paper is concerned with the problems of technical equipment of standard clinico-diagnostic laboratories (CDL) in this country. The authors suggest a mathematic model that may minimize expenditures for laboratory studies. The model enables the following problems to be solved: to issue scientifically-based recommendations for technical equipment of CDL; to validate the medico-technical requirements for newly devised items; to select the optimum types of uniform items; to define optimal technical decisions at the stage of the design; to determine the lab assistant's labour productivity and the cost of some investigations; to compute the medical laboratory engineering requirement for treatment and prophylactic institutions of this country.
Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C
2015-07-01
The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. © 2015 by the American Institute of Ultrasound in Medicine.
Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics.
Erickson, David; O'Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh
2014-09-07
The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260 M active smartphones in the US and millions of health accessories and software "apps" running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings.
CT-guided robotically-assisted infiltration of foot and ankle joints.
Wiewiorski, Martin; Valderrabano, Victor; Kretzschmar, Martin; Rasch, Helmut; Markus, Tanja; Dziergwa, Severine; Kos, Sebastian; Bilecen, Deniz; Jacob, Augustinus Ludwig
2009-01-01
It was our aim to describe a CT-guided robotically-assisted infiltration technique for diagnostic injections in foot and ankle orthopaedics. CT-guided mechatronically-assisted joint infiltration was performed on 16 patients referred to the orthopaedic department for diagnostic foot and ankle assessment. All interventions were performed using an INNOMOTION-assistance device on a multislice CT scanner in an image-guided therapy suite. Successful infiltration was defined as CT localization of contrast media in the target joint. Additionally, pre- and post-interventional VAS pain scores were assessed. All injections (16/16 joints) were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of pain was noted by all 16 patients (p<0.01). CT-guided robotically-assisted intervention is an exact, reliable and safe application method for diagnostic infiltration of midfoot and hindfoot joints. The high accuracy and feasibility in a clinical environment make it a viable alternative to the commonly used fluoroscopic-guided procedures.
Smartphone technology can be transformative to the deployment of lab-on-chip diagnostics
Erickson, David; O’Dell, Dakota; Jiang, Li; Oncescu, Vlad; Gumus, Abdurrahman; Lee, Seoho; Mancuso, Matthew; Mehta, Saurabh
2014-01-01
The rapid expansion of mobile technology is transforming the biomedical landscape. By 2016 there will be 260M active smartphones in the US and millions of health accessories and software “apps” running off them. In parallel with this have come major technical achievements in lab-on-a-chip technology leading to incredible new biochemical sensors and molecular diagnostic devices. Despite these advancements, the uptake of lab-on-a-chip technologies at the consumer level has been somewhat limited. We believe that the widespread availability of smartphone technology and the capabilities they offer in terms of computation, communication, social networking, and imaging will be transformative to the deployment of lab-on-a-chip type technology both in the developed and developing world. In this paper we outline why we believe this is the case, the new business models that may emerge, and detail some specific application areas in which this synergy will have long term impact, namely: nutrition monitoring and disease diagnostics in limited resource settings. PMID:24700127
Dobi, S; Horváth, A; Szunyogh, I; Józsa, T; Antóny, A; Várnai, F; Abdul Latif, K
1994-05-15
There has only a small number of invasive amoebiasis cases occurred in Hungary up to now. Introducing two of our cases we would like to call attention on these cases coming mainly from tropical countries or having been just transiently there invasive amoebiasis should also be considered. Modern diagnostic imaging technics are of importance in differential diagnosis in showing antibodies against amoebas (!) because amoebas frequently cannot be directly shown from the patients in the invasive stage. Both ulcerous amoebic colitis and amoebic liver abscesses can be treated with drugs affecting amoebas in deep tissues (metronidazole, emetine, and its derivates, etc.).
Mell, Matthew; Tefera, Girma; Thornton, Frank; Siepman, David; Turnipseed, William
2007-03-01
The diagnostic accuracy of magnetic resonance angiography (MRA) in the infrapopliteal arterial segment is not well defined. This study evaluated the clinical utility and diagnostic accuracy of time-resolved imaging of contrast kinetics (TRICKS) MRA compared with digital subtraction contrast angiography (DSA) in planning for percutaneous interventions of popliteal and infrapopliteal arterial occlusive disease. Patients who underwent percutaneous lower extremity interventions for popliteal or tibial occlusive disease were identified for this study. Preprocedural TRICKS MRA was performed with 1.5 Tesla (GE Healthcare, Waukesha, Wis) magnetic resonance imaging scanners with a flexible peripheral vascular coil, using the TRICKS technique with gadodiamide injection. DSA was performed using standard techniques in angiography suite with a 15-inch image intensifier. DSA was considered the gold standard. The MRA and DSA were then evaluated in a blinded fashion by a radiologist and a vascular surgeon. The popliteal artery and tibioperoneal trunk were evaluated separately, and the tibial arteries were divided into proximal, mid, and distal segments. Each segment was interpreted as normal (0% to 49% stenosis), stenotic (50% to 99% stenosis), or occluded (100%). Lesion morphology was classified according to the TransAtlantic Inter-Society Consensus (TASC). We calculated concordance between the imaging studies and the sensitivity and specificity of MRA. The clinical utility of MRA was also assessed in terms of identifying arterial access site as well as predicting technical success of the percutaneous treatment. Comparisons were done on 150 arterial segments in 30 limbs of 27 patients. When evaluated by TASC classification, TRICKS MRA correlated with DSA in 83% of the popliteal and in 88% of the infrapopliteal segments. MRA correctly identified significant disease of the popliteal artery with a sensitivity of 94% and a specificity of 92%, and of the tibial arteries with a sensitivity of 100% and specificity of 84%. When used to evaluate for stenosis vs occlusion, MRA interpretation agreed with DSA 90% of the time. Disagreement occurred in 15 arterial segments, most commonly in distal tibioperoneal arteries. MRA misdiagnosed occlusion for stenosis in 11 of 15 segments, and stenosis for occlusion in four of 15 segments. Arterial access was accurately planned based on preprocedural MRA findings in 29 of 30 patients. MRA predicted technical success 83% of the time. Five technical failures were due to inability to cross arterial occlusions, all accurately identified by MRA. TRICKS MRA is an accurate method of evaluating patients for popliteal and infrapopliteal arterial occlusive disease and can be used for planning percutaneous interventions.
Counting malaria parasites with a two-stage EM based algorithm using crowsourced data.
Cabrera-Bean, Margarita; Pages-Zamora, Alba; Diaz-Vilor, Carles; Postigo-Camps, Maria; Cuadrado-Sanchez, Daniel; Luengo-Oroz, Miguel Angel
2017-07-01
Malaria eradication of the worldwide is currently one of the main WHO's global goals. In this work, we focus on the use of human-machine interaction strategies for low-cost fast reliable malaria diagnostic based on a crowdsourced approach. The addressed technical problem consists in detecting spots in images even under very harsh conditions when positive objects are very similar to some artifacts. The clicks or tags delivered by several annotators labeling an image are modeled as a robust finite mixture, and techniques based on the Expectation-Maximization (EM) algorithm are proposed for accurately counting malaria parasites on thick blood smears obtained by microscopic Giemsa-stained techniques. This approach outperforms other traditional methods as it is shown through experimentation with real data.
Carroll, Kate T; Lochte, Bryson C; Chen, James Y; Snyder, Vivian S; Carter, Bob S; Chen, Clark C
2018-04-01
Magnetic resonance imaging (MRI)-guided biopsy is an emerging diagnostic technique that holds great promise for otherwise difficult to access neuroanatomy. Here we describe MRI-guided biopsy of a suprasellar lesion located posterior and superior to the pituitary stalk. The approach was implemented successfully in a 38-year-old woman who had developed progressive visual deterioration. Intraoperative MRI revealed the need for trajectory adjustment due to an unintended, minor deviation in the burr hole entry point, demonstrating the benefit of an MRI-guided approach. Langerhans cell histiocytosis was diagnosed after biopsy, and the lesion regressed after cladribine treatment. Technical nuances of the case are reviewed in the context of the available literature. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Rimbert, J. N.; Lafargue, C.; Pachot, M.; Dumas, F.; Eugene, M.; Brunelle, F.; Lallemand, D.
1990-07-01
Biochemical constitution of the hematoma is depending of its evolution. In order to obtain a reliable diagnostic of the NMR images in case of vascular accidents, a systematic study of the time-evolution of hematomas has been performed, using Mössbauer spectrometry and complementary technics (ESR and visible absorption spectrophotometry). The change, in the course of time, of HbO2 in deoxyhemoglobin Hb and other denaturation products (MHb, hemi- and hemochromes,…) are well-recognized on the different spectra. T 1 and T 2 NMR relaxation times are measured in the same time and their shortening is related to the appearance of the paramagnetic denaturation blood compounds.
Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos
2007-01-01
The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.
Sex assessment from the acetabular rim by means of image analysis.
Benazzi, S; Maestri, C; Parisini, S; Vecchi, F; Gruppioni, G
2008-08-25
Determining sex from skeletal remains is one of the most important steps in archaeological and forensic anthropology. The present study considers the diagnostic value of the acetabulum based on its planar image and related metric data. For this purpose, 83 adult os coxae of known age were examined. Digital photos of the acetabular area were taken, with each bone in a standardized orientation. Technical drawing software was used to trace the acetabular rim and to measure the related dimensions (area, perimeter, longitudinal and transverse maximum width). The measurements were subjected to SPSS discriminant and classification function analysis. There were significant differences (p
Ultrasonography in gastroenterology.
Ødegaard, Svein; Nesje, Lars B; Hausken, Trygve; Gilja, Odd Helge
2015-06-01
Ultrasonography (US) is a safe and available real-time, high-resolution imaging method, which during the last decades has been increasingly integrated as a clinical tool in gastroenterology. New US applications have emerged with enforced data software and new technical solutions, including strain evaluation, three-dimensional imaging and use of ultrasound contrast agents. Specific gastroenterologic applications have been developed by combining US with other diagnostic or therapeutic methods, such as endoscopy, manometry, puncture needles, diathermy and stents. US provides detailed structural information about visceral organs without hazard to the patients and can play an important clinical role by reducing the need for invasive procedures. This paper presents different aspects of US in gastroenterology, with a special emphasis on the contribution from Nordic scientists in developing clinical applications.
An update on carbon nanotube-enabled X-ray sources for biomedical imaging.
Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z
2018-01-01
A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the mouth for dental imaging. Conceived less than 20 years ago, CNT-enabled X-ray sources are now being manufactured on a commercial scale and are powering both research tools and experimental human imaging devices. WIREs Nanomed Nanobiotechnol 2018, 10:e1475. doi: 10.1002/wnan.1475 This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging. © 2017 Wiley Periodicals, Inc.
[New guidelines on chronic pancreatitis : interdisciplinary treatment strategies].
Lerch, M M; Bachmann, K A; Izbicki, J R
2013-02-01
Chronic pancreatitis is a common disorder associated with significant morbidity and mortality. Interdisciplinary consensus guidelines have recently updated the definitions and diagnostic criteria for chronic pancreatitis and provide a critical assessment of therapeutic procedures. Diagnostic imaging relies on endoscopic ultrasound (EUS) as the most sensitive technique, whereas computed tomography (CT) and magnetic resonance imaging (MRI)/magnetic resonance cholangiopancreatography (MRCP) remain a frequent preoperative requirement. Endoscopic retrograde cholangiopancreatography (ERCP) is now used mostly as a therapeutic procedure except for the differential diagnosis of autoimmune pancreatitis. Complications of chronic pancreatitis, such as pseudocysts, duct stricture and intractable pain can be treated with endoscopic interventions as well as open surgery. In the treatment of pseudocysts endoscopic drainage procedures now prevail while pain treatment has greater long-term effectiveness following surgical procedures. Currently, endocopic as well as surgical treatment of chronic pancreatitis require an ever increasing degree of technical and medical expertise and are provided increasingly more often by interdisciplinary centres. Surgical treatment is superior to interventional therapy regarding the outcome of pain control and duodenum-preserving pancreatic head resection is presently the surgical procedure of choice.
Should the diagnostic and therapeutic protocols for adrenal incidentalomas be changed?
Mateo-Gavira, Isabel; Vilchez-López, Francisco Javier; Larrán-Escandón, Laura; Ojeda-Schuldt, María Belén; Tinoco, Cristina López; Aguilar-Diosdado, Manuel
2015-01-01
The prevalence of adrenal incidentalomas is increasing with the aging of the population and the use of high resolution imaging technics. Current protocols propose a comprehensive monitoring of their functional and morphological state, but with no conclusive clinical evidence that endorses it. Retrospective study of 96 patients diagnosed with adrenal incidentaloma between 2008 and 2012. We evaluated clinical, functional and imaging at baseline and during follow-up. Initially, 9 cases were surgically removed: 4 due to hyperfunction (2 Cushing syndromes and 2 pheochromocytomas) and 5 due to size larger than 4cm. During follow-up one case of pheochromocytoma was diagnosed and another grew more than 1cm, needing surgery. In 98.86% of nonfunctional and benign lesions, there was no functional and/or morphological changes in the final evaluation. The results of our study challenge the validity of current diagnostic-therapeutic protocols of incidentalomas, which should be reassessed in prospective studies taking into account efficiency characteristics. Copyright © 2013 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
[Low-field magnetic resonance imaging for rheumatoid arthritis].
Ostendorf, B; Edelmann, E; Kellner, H; Scherer, A
2010-02-01
Magnetic resonance imaging (MRI) as a cross-sectional imaging procedure allows a three-dimensional representation of musculature, ligaments, tendons, capsules, synovial membranes, bones and cartilage with high resolution quality. An activity assessment is further possible by application of a contrast medium (gadolinium-DTPA) to differentiate between active and chronic inflammatory processes. Evidence of a bone marrow edema detected by MRI in patients with rheumatoid arthritis (RA) can be interpreted as a prognostic and predictive factor for the development of bone erosions. On the basis of these advantages MRI is being employed more and more in the early diagnosis of inflammatory joint diseases. Semi-quantitative scores for analysis and grading of findings have already been developed and are in clinical use. Because MRI technical performances are invariably reproducible they can be practically retrieved in the course of examination which is particularly relevant in rheumatology. Therapy response or progression can thus be adequately displayed. Open, dedicated low-field MRI with a low signal strength of 0.2 Tesla (T) has been known since the 90s and now represents new MRI examination options in rheumatology. Smaller devices with lower acquisition and maintenance expenses as well as considerably more convenience due to the device itself result in a higher subjective acceptability by the patients as well as objectively more data records of low-field MRI scans of RA, which underline the significance of this new technical method. The German Society for Rheumatology (DGRh), represented by the Committee for "Diagnostic Imaging", meets this development with the release of recommendations and standards for the procedures of low-field MRI and their scoring and summarizes the most important technical data and information on clinical indications.
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
To develop a study aiming at optimizing myocardial perfusion imaging. Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The (99m)Tc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol.
Taqueti, Viviany R.; Di Carli, Marcelo F.
2018-01-01
Over the last several decades, radionuclide myocardial perfusion imaging (MPI) with single photon emission tomography and positron emission tomography has been a mainstay for the evaluation of patients with known or suspected coronary artery disease (CAD). More recently, technical advances in separate and complementary imaging modalities including coronary computed tomography angiography, computed tomography perfusion, cardiac magnetic resonance imaging, and contrast stress echocardiography have expanded the toolbox of diagnostic testing for cardiac patients. While the growth of available technologies has heralded an exciting era of multimodality cardiovascular imaging, coordinated and dispassionate utilization of these techniques is needed to implement the right test for the right patient at the right time, a promise of “precision medicine.” In this article, we review the maturing role of MPI in the current era of multimodality cardiovascular imaging, particularly in the context of recent advances in myocardial blood flow quantitation, and as applied to the evaluation of patients with known or suspected CAD. PMID:25770849
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
Objective To develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The 99mTc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. PMID:25741088
Feasibility of low contrast media volume in CT angiography of the aorta.
Seehofnerová, Anna; Kok, Madeleine; Mihl, Casper; Douwes, Dave; Sailer, Anni; Nijssen, Estelle; de Haan, Michiel J W; Wildberger, Joachim E; Das, Marco
2015-01-01
Using smaller volumes of contrast media (CM) in CT angiography (CTA) is desirable in terms of cost reduction and prevention of contrast-induced nephropathy (CIN). The purpose was to evaluate the feasibility of low CM volume in CTA of the aorta. 77 patients referred for CTA of the aorta were scanned using a standard MDCT protocol at 100 kV. A bolus of 50 ml CM (Iopromide 300 mg Iodine/ml) at a flow rate of 6 ml/s was applied (Iodine delivery rate IDR = 1.8 g/s; Iodine load 15 g) followed by a saline bolus of 40 ml at the same flow rate. Scan delay was determined by the test bolus method. Subjective image quality was assessed and contrast enhancement was measured at 10 anatomical levels of the aorta. Diagnostic quality images were obtained for all patients, reaching a mean overall contrast enhancement of 324 ± 28 HU. Mean attenuation was 350 ± 60 HU at the thoracic aorta and 315 ± 83 HU at the abdominal aorta. A straightforward low volume CM protocol proved to be technically feasible and led to CTA examinations reaching diagnostic image quality of the aorta at 100 kV. Based on these findings, the use of a relatively small CM bolus can be incorporated into routine clinical imaging.
Sabbatini, Amber K; Merck, Lisa H; Froemming, Adam T; Vaughan, William; Brown, Michael D; Hess, Erik P; Applegate, Kimberly E; Comfere, Nneka I
2015-12-01
Patient-centered emergency diagnostic imaging relies on efficient communication and multispecialty care coordination to ensure optimal imaging utilization. The construct of the emergency diagnostic imaging care coordination cycle with three main phases (pretest, test, and posttest) provides a useful framework to evaluate care coordination in patient-centered emergency diagnostic imaging. This article summarizes findings reached during the patient-centered outcomes session of the 2015 Academic Emergency Medicine consensus conference "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The primary objective was to develop a research agenda focused on 1) defining component parts of the emergency diagnostic imaging care coordination process, 2) identifying gaps in communication that affect emergency diagnostic imaging, and 3) defining optimal methods of communication and multidisciplinary care coordination that ensure patient-centered emergency diagnostic imaging. Prioritized research questions provided the framework to define a research agenda for multidisciplinary care coordination in emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Diagnostic Efficiency of easyCBM[R] Math: Oregon. Technical Report #1009
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2010-01-01
The easyCBM[R] assessment system is an online benchmark and progress monitoring assessment system designed for use within a response to intervention framework. Educators using easyCBM[R] are often interested in using the results to predict students' state test performance. In the following technical document, we report diagnostic efficiency…
Walter, U; Noachtar, S; Hinrichs, H
2018-02-01
The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.
Imaging in multiple sclerosis: A new spin on lesions.
Bou Fakhredin, Rayan; Saade, Charbel; Kerek, Racha; El-Jamal, Lara; Khoury, Samia J; El-Merhi, Fadi
2016-10-01
This article evaluates the most relevant state-of-the-art magnetic resonance (MR) techniques that are clinically available to investigate multiple sclerosis (MS). The presence of hypo- and hyperintense lesions on T1- and T2-weighted magnetic resonance imaging (MRI) sequences in white matter (WM) is a common finding that is occasionally a diagnostic challenge for the radiologist. The technical requirements and how they may help to understand, classify or follow-up these pathologies are briefly summarized. The gold standard for MS diagnosis is pathological correlation. Yet due to limited availability of biopsy and autopsy material, there is a high demand for imaging as a diagnostic as well as prognostic indicator. With the progress in MRI during the last decade, MRI now plays a leading role in the diagnosis and follow-up of MS. A number of correlative pathological and MR studies have helped to define pathological substrates of MS in focal lesions and normal appearing white matter (NAWM). Vascular spaces mimicking MS lesions have been minimized by the enhanced differentiation of WM and grey (GM) matter parenchyma. The aim of this article is to enhance the current understanding of histopathology and radiological characteristics of MS lesions in space and time. © 2016 The Royal Australian and New Zealand College of Radiologists.
Spick, Claudio; Herrmann, Ken; Czernin, Johannes
2016-01-01
18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709
Diagnostic Algorithm Benchmarking
NASA Technical Reports Server (NTRS)
Poll, Scott
2011-01-01
A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.
Data analysis and review of radiology services at Glasgow 2014 Commonwealth Games.
Bethapudi, Sarath; Ritchie, David; Bongale, Santosh; Gordon, Jonny; MacLean, John; Mendl, Liz
2015-10-01
Medical services at the Glasgow 2014 Commonwealth Games (CWG) were provided though a purpose-built medical polyclinic, which had a fully equipped radiology department along with other services, set up within the main Games Village. Data analysis of radiology services offered at CWG has not been published before. Imaging services within the polyclinic, Athletes Village, Glasgow 2014 CWG. The aim of the paper is to analyse data on radiological investigations and assess the demand and distribution of workload on imaging services at CWG 2014. Data on radiology investigations at the CWG 2014 was retrieved from the Carestream picture archiving and communication system (PACS) and Pharmasys (CWG official centralised electronic database system) and analysed. Six hundred ninety-seven diagnostic and interventional procedures were performed. Of these 37.9% were magnetic resonance imaging (MRI) scans, 22% were diagnostic ultrasound (US) examinations, 33.1% were radiographs, 4.3% were computed tomography (CT) scans and 2.7% were imaging-guided interventional procedures. 88% of imaging was performed on athletes and the remainder were performed on team officials and workforce. Demand on radiology services gradually picked up through the pre-competition period and peaked half way through the CWG. Radiology played a vital role in the successful provision of medical services at the Glasgow 2014 CWG. High demand on imaging services can be expected at major international sporting events and therefore pre-event planning is vital. Having back-up facilities in case of technical failure should be given due importance when planning radiology services at future CWG events.
[Definition of the Diagnosis Osteomyelitis-Osteomyelitis Diagnosis Score (ODS)].
Schmidt, H G K; Tiemann, A H; Braunschweig, R; Diefenbeck, M; Bühler, M; Abitzsch, D; Haustedt, N; Walter, G; Schoop, R; Heppert, V; Hofmann, G O; Glombitza, M; Grimme, C; Gerlach, U-J; Flesch, I
2011-08-01
The disease "osteomyelitis" is characterised by different symptoms and parameters. Decisive roles in the development of the disease are played by the causative bacteria, the route of infection and the individual defense mechanisms of the host. The diagnosis is based on different symptoms and findings from the clinical history, clinical symptoms, laboratory results, diagnostic imaging, microbiological and histopathological analyses. While different osteomyelitis classifications have been published, there is to the best of our knowledge no score that gives information how sure the diagnosis "osteomyelitis" is in general. For any scientific study of a disease a valid definition is essential. We have developed a special osteomyelitis diagnosis score for the reliable classification of clinical, laboratory and technical findings. The score is based on five diagnostic procedures: 1) clinical history and risk factors, 2) clinical examination and laboratory results, 3) diagnostic imaging (ultrasound, radiology, CT, MRI, nuclear medicine and hybrid methods), 4) microbiology, and 5) histopathology. Each diagnostic procedure is related to many individual findings, which are weighted by a score system, in order to achieve a relevant value for each assessment. If the sum of the five diagnostic criteria is 18 or more points, the diagnosis of osteomyelitis can be viewed as "safe" (diagnosis class A). Between 8-17 points the diagnosis is "probable" (diagnosis class B). Less than 8 points means that the diagnosis is "possible, but unlikely" (class C diagnosis). Since each parameter can score six points at a maximum, a reliable diagnosis can only be achieved if at least 3 parameters are scored with 6 points. The osteomyelitis diagnosis score should help to avoid the false description of a clinical presentation as "osteomyelitis". A safe diagnosis is essential for the aetiology, treatment and outcome studies of osteomyelitis. © Georg Thieme Verlag KG Stuttgart · New York.
Liquid crystal thermography and true-colour digital image processing
NASA Astrophysics Data System (ADS)
Stasiek, J.; Stasiek, A.; Jewartowski, M.; Collins, M. W.
2006-06-01
In the last decade thermochromic liquid crystals (TLC) and true-colour digital image processing have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. Thin coatings of TLCs at surfaces are utilized to obtain detailed temperature distributions and heat transfer rates for steady or transient processes. Liquid crystals also can be used to make visible the temperature and velocity fields in liquids by the simple expedient of directly mixing the liquid crystal material into the liquid (water, glycerol, glycol, and silicone oils) in very small quantities to use as thermal and hydrodynamic tracers. In biomedical situations e.g., skin diseases, breast cancer, blood circulation and other medical application, TLC and image processing are successfully used as an additional non-invasive diagnostic method especially useful for screening large groups of potential patients. The history of this technique is reviewed, principal methods and tools are described and some examples are also presented.
Wide-field and high-resolution optical imaging for early detection of oral neoplasia
NASA Astrophysics Data System (ADS)
Pierce, Mark C.; Schwarz, Richard A.; Rosbach, Kelsey; Roblyer, Darren; Muldoon, Tim; Williams, Michelle D.; El-Naggar, Adel K.; Gillenwater, Ann M.; Richards-Kortum, Rebecca
2010-02-01
Current procedures for oral cancer screening typically involve visual inspection of the entire tissue surface at risk under white light illumination. However, pre-cancerous lesions can be difficult to distinguish from many benign conditions when viewed under these conditions. We have developed wide-field (macroscopic) imaging system which additionally images in cross-polarized white light, narrowband reflectance, and fluorescence imaging modes to reduce specular glare, enhance vascular contrast, and detect disease-related alterations in tissue autofluorescence. We have also developed a portable system to enable high-resolution (microscopic) evaluation of cellular features within the oral mucosa in situ. This system is a wide-field epi-fluorescence microscope coupled to a 1 mm diameter, flexible fiber-optic imaging bundle. Proflavine solution was used to specifically label cell nuclei, enabling the characteristic differences in N/C ratio and nuclear distribution between normal, dysplastic, and cancerous oral mucosa to be quantified. This paper discusses the technical design and performance characteristics of these complementary imaging systems. We will also present data from ongoing clinical studies aimed at evaluating diagnostic performance of these systems for detection of oral neoplasia.
Lim, C; Vibert, E; Azoulay, D; Salloum, C; Ishizawa, T; Yoshioka, R; Mise, Y; Sakamoto, Y; Aoki, T; Sugawara, Y; Hasegawa, K; Kokudo, N
2014-04-01
Imaging detection of liver cancers and identification of the bile ducts during surgery, based on the fluorescence properties of indocyanine green, has recently been developed in liver surgery. The principle of this imaging technique relies on the intravenous administration of indocyanine green before surgery and the illumination of the surface of the liver by an infrared camera that simultaneously induces and collects the fluorescence. Detection by fluorescence is based on the contrast between the (fluorescent) tumoral or peri-tumoral tissues and the healthy (non-fluorescent) liver. Results suggest that indocyanine green fluorescence imaging is capable of identification of new liver cancers and enables the characterization of known hepatic lesions in real time during liver resection. The purpose of this paper is to present the fundamental principles of fluorescence imaging detection, to describe successively the practical and technical aspects of its use and the appearance of hepatic lesions in fluorescence, and to expose the diagnostic and therapeutic perspectives of this innovative imaging technique in liver surgery. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Seeram, Euclid
2006-03-01
The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the only standard for image compression is stated in the ACR's Technical Standards for Teleradiology and Digital Image Management.
Diagnostic Efficiency of easyCBM[R] Math: Washington State. Technical Report #1008
ERIC Educational Resources Information Center
Anderson, Daniel; Alonzo, Julie; Tindal, Gerald
2010-01-01
easyCBM[R] is an online benchmark and progress monitoring assessment system designed for use within a response to intervention framework. Educators using easyCBM[R] are often interested in using the results to predict students' state test performance. In the following technical document, we report diagnostic efficiency statistics using a sample…
MALDI mass spectrometry imaging, from its origins up to today: the state of the art.
Francese, Simona; Dani, Francesca R; Traldi, Pietro; Mastrobuoni, Guido; Pieraccini, Giuseppe; Moneti, Gloriano
2009-02-01
Mass Spectrometry (MS) has a number of features namely sensitivity, high dynamic range, high resolution, and versatility which make it a very powerful analytical tool for a wide spectrum of applications spanning all the life science fields. Among all the MS techniques, MALDI Imaging mass spectrometry (MALDI MSI) is currently one of the most exciting both for its rapid technological improvements, and for its great potential in high impact bioscience fields. Here, MALDI MSI general principles are described along with technical and instrumental details as well as application examples. Imaging MS instruments and imaging mass spectrometric techniques other than MALDI, are presented along with examples of their use. As well as reporting MSI successes in several bioscience fields, an attempt is made to take stock of what has been achieved so far with this technology and to discuss the analytical and technological advances required for MSI to be applied as a routine technique in clinical diagnostics, clinical monitoring and in drug discovery.
Rubin, Geoffrey D.; Leipsic, Jonathon; Schoepf, U. Joseph; Fleischmann, Dominik; Napel, Sandy
2015-01-01
Through a marriage of spiral computed tomography (CT) and graphical volumetric image processing, CT angiography was born 20 years ago. Fueled by a series of technical innovations in CT and image processing, over the next 5–15 years, CT angiography toppled conventional angiography, the undisputed diagnostic reference standard for vascular disease for the prior 70 years, as the preferred modality for the diagnosis and characterization of most cardiovascular abnormalities. This review recounts the evolution of CT angiography from its development and early challenges to a maturing modality that has provided unique insights into cardiovascular disease characterization and management. Selected clinical challenges, which include acute aortic syndromes, peripheral vascular disease, aortic stent-graft and transcatheter aortic valve assessment, and coronary artery disease, are presented as contrasting examples of how CT angiography is changing our approach to cardiovascular disease diagnosis and management. Finally, the recently introduced capabilities for multispectral imaging, tissue perfusion imaging, and radiation dose reduction through iterative reconstruction are explored with consideration toward the continued refinement and advancement of CT angiography. PMID:24848958
Obese patients and radiography literature: what do we know about a big issue?
Le, Nhat Tan Thanh; Robinson, John; Lewis, Sarah J
2015-01-01
Obesity is a global health issue with obese patients requiring specialised diagnosis, treatment and care through the health service. The practical and social difficulties associated with medical imaging of obese patients are an increasingly common problem and it is currently unknown how student and qualified radiographers perceive and respond to these challenges. By better understanding challenges presented in providing quality imaging and care of imaging obese patients, education for both qualified and student radiographers can be enhanced. Radiographers are heavily reliant on visual and tactile senses to locate the position of anatomical structures for diagnostic imaging and determine radiation exposure through a delicate consideration of dose, image quality and anatomical attenuation. However, obese patients require modifications to routine radiographic practice in terms of movement/assisted positioning, equipment capabilities to take increased weight or coverage. These patients may also be subject to compromised radiological diagnosis through poor visualisation of structures. In this paper, the professional and educational literature was narratively reviewed to assess gaps in the evidence base related to the skill and care knowledge for obese patients. Literature was sourced relating to discrete radiographic considerations such as the technical factors of imaging obese patients, exposure and the impact of obesity on imaging departments’ service provisions. The recent literature (post-2000 to coincide with the sharp increase in global obesity) on the perceptions of health professionals and student health practitioners has also been explored because there are no specific radiographer studies to report. By understanding the research in similar fields, we may identify what common attitudes qualified and student radiographer's hold and what challenges, technical and care related, can be prepared for. PMID:26229678
Obese patients and radiography literature: what do we know about a big issue?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Nhat Tan Thanh; Robinson, John; Lewis, Sarah J, E-mail: sarah.lewis@sydney.edu.au
Obesity is a global health issue with obese patients requiring specialised diagnosis, treatment and care through the health service. The practical and social difficulties associated with medical imaging of obese patients are an increasingly common problem and it is currently unknown how student and qualified radiographers perceive and respond to these challenges. By better understanding challenges presented in providing quality imaging and care of imaging obese patients, education for both qualified and student radiographers can be enhanced. Radiographers are heavily reliant on visual and tactile senses to locate the position of anatomical structures for diagnostic imaging and determine radiation exposuremore » through a delicate consideration of dose, image quality and anatomical attenuation. However, obese patients require modifications to routine radiographic practice in terms of movement/assisted positioning, equipment capabilities to take increased weight or coverage. These patients may also be subject to compromised radiological diagnosis through poor visualisation of structures. In this paper, the professional and educational literature was narratively reviewed to assess gaps in the evidence base related to the skill and care knowledge for obese patients. Literature was sourced relating to discrete radiographic considerations such as the technical factors of imaging obese patients, exposure and the impact of obesity on imaging departments’ service provisions. The recent literature (post-2000 to coincide with the sharp increase in global obesity) on the perceptions of health professionals and student health practitioners has also been explored because there are no specific radiographer studies to report. By understanding the research in similar fields, we may identify what common attitudes qualified and student radiographer's hold and what challenges, technical and care related, can be prepared for.« less
Strategic marketing: an introduction for medical specialists.
Lexa, Frank James; Berlin, Jonathan
2006-03-01
Marketing and branding are 2 of the most important factors for business success in the United States. They are particularly critical in service industries such as diagnostic imaging. However, in spite of their strategic importance in radiology success, a search of the peer-reviewed radiology literature reveals a paucity of published work that addresses marketing for imaging practices. In particular, there is a dearth of literature addressing the role (both direct and indirect) of radiologists in marketing efforts. In this article, the authors attempt to identify and correct some common misconceptions that physicians and other scientific and technical professionals have about marketing. Basic terms and preliminary concepts are introduced to provide a foundational understanding of the topic, allowing the interested reader to move forward and explore these critical issues in greater depth.
NASA Astrophysics Data System (ADS)
Izadyyazdanabadi, Mohammadhassan; Belykh, Evgenii; Martirosyan, Nikolay; Eschbacher, Jennifer; Nakaji, Peter; Yang, Yezhou; Preul, Mark C.
2017-03-01
Confocal laser endomicroscopy (CLE), although capable of obtaining images at cellular resolution during surgery of brain tumors in real time, creates as many non-diagnostic as diagnostic images. Non-useful images are often distorted due to relative motion between probe and brain or blood artifacts. Many images, however, simply lack diagnostic features immediately informative to the physician. Examining all the hundreds or thousands of images from a single case to discriminate diagnostic images from nondiagnostic ones can be tedious. Providing a real time diagnostic value assessment of images (fast enough to be used during the surgical acquisition process and accurate enough for the pathologist to rely on) to automatically detect diagnostic frames would streamline the analysis of images and filter useful images for the pathologist/surgeon. We sought to automatically classify images as diagnostic or non-diagnostic. AlexNet, a deep-learning architecture, was used in a 4-fold cross validation manner. Our dataset includes 16,795 images (8572 nondiagnostic and 8223 diagnostic) from 74 CLE-aided brain tumor surgery patients. The ground truth for all the images is provided by the pathologist. Average model accuracy on test data was 91% overall (90.79 % accuracy, 90.94 % sensitivity and 90.87 % specificity). To evaluate the model reliability we also performed receiver operating characteristic (ROC) analysis yielding 0.958 average for area under ROC curve (AUC). These results demonstrate that a deeply trained AlexNet network can achieve a model that reliably and quickly recognizes diagnostic CLE images.
Percutaneous transhepatic bile drainage.
Mori, K; Misumi, A; Sugiyama, M; Okabe, M; Matsuoka, T
1977-01-01
Percutaneous transhepatic bile drainage was performed in 13 patients with obstructive jaundice, using a combination of the PTC technique and a Seldinger angiography catheter. In 11 cases, the outflow of bile through the catheter was satisfactory and complications were few. Since the risk of the procedure is low and it can be done without laparotomy, it is an ideal technic for biliary decompression before attempting to do a resection. Also, repeated cholangiography through a catheter which is left in place is helpful as a diagnostic aid before and after surgery. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:831630
Cerenkov imaging - a new modality for molecular imaging
Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan
2012-01-01
Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811
TH-A-207B-00: Shear-Wave Imaging and a QIBA US Biomarker Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garra, B.
Imaging of tissue elastic properties is a relatively new and powerful approach to one of the oldest and most important diagnostic tools. Imaging of shear wave speed with ultrasound is has been added to most high-end ultrasound systems. Understanding this exciting imaging mode aiding its most effective use in medicine can be a rewarding effort for medical physicists and other medical imaging and treatment professionals. Assuring consistent, quantitative measurements across the many ultrasound systems in a typical imaging department will constitute a major step toward realizing the great potential of this technique and other quantitative imaging. This session will targetmore » these two goals with two presentations. A. Basics and Current Implementations of Ultrasound Imaging of Shear Wave Speed and Elasticity - Shigao Chen, Ph.D. Learning objectives-To understand: Introduction: Importance of tissue elasticity measurement Strain vs. shear wave elastography (SWE), beneficial features of SWE The link between shear wave speed and material properties, influence of viscosity Generation of shear waves External vibration (Fibroscan) ultrasound radiation force Point push Supersonic push (Aixplorer) Comb push (GE Logiq E9) Detection of shear waves Motion detection from pulse-echo ultrasound Importance of frame rate for shear wave imaging Plane wave imaging detection How to achieve high effective frame rate using line-by-line scanners Shear wave speed calculation Time to peak Random sample consensus (RANSAC) Cross correlation Sources of bias and variation in SWE Tissue viscosity Transducer compression or internal pressure of organ Reflection of shear waves at boundaries B. Elasticity Imaging System Biomarker Qualification and User Testing of Systems – Brian Garra, M.D. Learning objectives-To understand: Goals Review the need for quantitative medical imaging Provide examples of quantitative imaging biomarkers Acquaint the participant with the purpose of the RSNA Quantitative Imaging Biomarker Alliance and the need for such an organization Review the QIBA process for creating a quantitative biomarker Summarize steps needed to verify adherence of site, operators, and imaging systems to a QIBA profile Underlying Premise and Assumptions Objective, quantifiable results are needed to enhance the value of diagnostic imaging in clinical practice Reasons for quantification Evidence based medicine requires objective, not subjective observer data Computerized decision support tools (eg CAD) generally require quantitative input. Quantitative, reproducible measures are more easily used to develop personalized molecular medical diagnostic and treatment systems What is quantitative imaging? Definition from Imaging Metrology Workshop The Quantitative Imaging Biomarker Alliance Formation 2008 Mission Structure Example Imaging Biomarkers Being Explored Biomarker Selection Groundwork Draft Protocol for imaging and data evaluation QIBA Profile Drafting Equipment and Site Validation Technical Clinical Site and Equipment QA and Compliance Checking Ultrasound Elasticity Estimation Biomarker US Elasticity Estimation Background Current Status and Problems Biomarker Selection-process and outcome US SWS for Liver Fibrosis Biomarker Work Groundwork Literature search and analysis results Phase I phantom testing-Elastic phantoms Phase II phantom testing-Viscoelastic phantoms Digital Simulated Data Protocol and Profile Drafting Protocol: based on UPICT and existing literature and standards bodies protocols Profile-Current claims, Manufacturer specific appendices What comes after the profile Profile Validation Technical validation Clinical validation QA and Compliance Possible approaches Site Operator testing Site protocol re-evaluation Imaging system Manufacturer testing and attestation User acceptance testing and periodic QA Phantom Tests Digital Phantom Based Testing Standard QA Testing Remediation Schemes Profile Evolution Towards additional applications Towards higher accuracy and precision Supported in part by NIH contract HHSN268201300071C from NIBIB. Collaboration with GE Global Research, no personal support.; S. Chen, Some technologies described in this presentation have been licensed. Mayo Clinic and Dr. Chen have financial interests these technologies.« less
Le Faivre, Julien; Duhamel, Alain; Khung, Suonita; Faivre, Jean-Baptiste; Lamblin, Nicolas; Remy, Jacques; Remy-Jardin, Martine
2016-11-01
To evaluate the impact of CT perfusion imaging on the detection of peripheral chronic pulmonary embolisms (CPE). 62 patients underwent a dual-energy chest CT angiographic examination with (a) reconstruction of diagnostic and perfusion images; (b) enabling depiction of vascular features of peripheral CPE on diagnostic images and perfusion defects (20 segments/patient; total: 1240 segments examined). The interpretation of diagnostic images was of two types: (a) standard (i.e., based on cross-sectional images alone) or (b) detailed (i.e., based on cross-sectional images and MIPs). The segment-based analysis showed (a) 1179 segments analyzable on both imaging modalities and 61 segments rated as nonanalyzable on perfusion images; (b) the percentage of diseased segments was increased by 7.2 % when perfusion imaging was compared to the detailed reading of diagnostic images, and by 26.6 % when compared to the standard reading of images. At a patient level, the extent of peripheral CPE was higher on perfusion imaging, with a greater impact when compared to the standard reading of diagnostic images (number of patients with a greater number of diseased segments: n = 45; 72.6 % of the study population). Perfusion imaging allows recognition of a greater extent of peripheral CPE compared to diagnostic imaging. • Dual-energy computed tomography generates standard diagnostic imaging and lung perfusion analysis. • Depiction of CPE on central arteries relies on standard diagnostic imaging. • Detection of peripheral CPE is improved by perfusion imaging.
[No exchange of information without technology : modern infrastructure in radiology].
Hupperts, H; Hermann, K-G A
2014-01-01
Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.
Funding for the 2ND IAEA technical meeting on fusion data processing, validation and analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwald, Martin
The International Atomic Energy Agency (IAEA) will organize the second Technical Meeting on Fusion Da Processing, Validation and Analysis from 30 May to 02 June, 2017, in Cambridge, MA USA. The meeting w be hosted by the MIT Plasma Science and Fusion Center (PSFC). The objective of the meeting is to provide a platform where a set of topics relevant to fusion data processing, validation and analysis are discussed with the view of extrapolation needs to next step fusion devices such as ITER. The validation and analysis of experimental data obtained from diagnostics used to characterize fusion plasmas are crucialmore » for a knowledge based understanding of the physical processes governing the dynamics of these plasmas. The meeting will aim at fostering, in particular, discussions of research and development results that set out or underline trends observed in the current major fusion confinement devices. General information on the IAEA, including its mission and organization, can be found at the IAEA websit Uncertainty quantification (UQ) Model selection, validation, and verification (V&V) Probability theory and statistical analysis Inverse problems & equilibrium reconstru ction Integrated data analysis Real time data analysis Machine learning Signal/image proc essing & pattern recognition Experimental design and synthetic diagnostics Data management« less
[Mobile CT: technical aspects of prehospital stroke imaging before intravenous thrombolysis].
Gierhake, D; Weber, J E; Villringer, K; Ebinger, M; Audebert, H J; Fiebach, J B
2013-01-01
To reduce the time from symptom onset to treatment with tissue plasminogen activator (tPA) in ischemic stroke, an ambulance was equipped with a CT scanner. We analyzed process and image quality of CT scanning during the pilot study regarding image quality and safety issues. The pilot study of a stroke emergency mobile unit (STEMO) ran over a period of 12 weeks on 5 weekdays from 7a.m. to 6:30 p.m. A teleradiological service for the justifying indication and reporting was established. The radiographer was responsible for the performance of the CT scan on the ambulance. 64 cranial CT scans and 1 intracranial CT angiography were performed. We compared times from ambulance alarm to treatment decision (time of last brain scan) with a cohort of 50 consecutive tPA treatments before implementation of STEMO. 62 (95%) of the 65 scans performed had sufficient quality for reading. Technical quality was not optimal in 45 cases (69%) mainly caused by suboptimal positioning of patient or eye lens protection. Motion artefacts were observed in 8 exams (12%). No safety issues occurred for team or patients. 23 patients were treated with thrombolysis. Time from alarm to last CT scan was 18 minutes shorter than in the tPA cohort before STEMO implementation. A teleradiological support for primary stroke imaging by CT on-site is feasible, quality-wise of diagnostic value and has not raised safety issues. © Georg Thieme Verlag KG Stuttgart · New York.
Henderson, Michael L; Dayhoff, Ruth E; Titton, Csaba P; Casertano, Andrew
2006-01-01
As part of its patient care mission, the U.S. Veterans Health Administration performs diagnostic imaging procedures at 141 medical centers and 850 outpatient clinics. VHA's VistA Imaging Package provides a full archival, display, and communications infrastructure and interfaces to radiology and other HIS modules as well as modalities and a worklist provider In addition, various medical center entities within VHA have elected to install commercial picture archiving and communications systems to enable image organization and interpretation. To evaluate interfaces between commercial PACS, the VistA hospital information system, and imaging modalities, VHA has built a fully constrained specification that is based on the Radiology Technical Framework (Rad-TF) Integrating the Healthcare Enterprise. The Health Level Seven normative conformance mechanism was applied to the IHE Rad-TF and agency requirements to arrive at a baseline set of message specifications. VHA provides a thorough implementation and testing process to promote the adoption of standards-based interoperability by all PACS vendors that want to interface with VistA Imaging.
Feasibility of low contrast media volume in CT angiography of the aorta
Seehofnerová, Anna; Kok, Madeleine; Mihl, Casper; Douwes, Dave; Sailer, Anni; Nijssen, Estelle; de Haan, Michiel J.W.; Wildberger, Joachim E.; Das, Marco
2015-01-01
Objectives Using smaller volumes of contrast media (CM) in CT angiography (CTA) is desirable in terms of cost reduction and prevention of contrast-induced nephropathy (CIN). The purpose was to evaluate the feasibility of low CM volume in CTA of the aorta. Methods 77 patients referred for CTA of the aorta were scanned using a standard MDCT protocol at 100 kV. A bolus of 50 ml CM (Iopromide 300 mg Iodine/ml) at a flow rate of 6 ml/s was applied (Iodine delivery rate IDR = 1.8 g/s; Iodine load 15 g) followed by a saline bolus of 40 ml at the same flow rate. Scan delay was determined by the test bolus method. Subjective image quality was assessed and contrast enhancement was measured at 10 anatomical levels of the aorta. Results Diagnostic quality images were obtained for all patients, reaching a mean overall contrast enhancement of 324 ± 28 HU. Mean attenuation was 350 ± 60 HU at the thoracic aorta and 315 ± 83 HU at the abdominal aorta. Conclusions A straightforward low volume CM protocol proved to be technically feasible and led to CTA examinations reaching diagnostic image quality of the aorta at 100 kV. Based on these findings, the use of a relatively small CM bolus can be incorporated into routine clinical imaging. PMID:26937437
Paediatric cerebrovascular CT angiography-towards better image quality.
Thust, Stefanie C; Chong, Wui Khean Kling; Gunny, Roxana; Mazumder, Asif; Poitelea, Marius; Welsh, Anna; Ederies, Ash; Mankad, Kshitij
2014-12-01
Paediatric cerebrovascular CT angiography (CTA) can be challenging to perform due to variable cardiovascular physiology between different age groups and the risk of movement artefact. This analysis aimed to determine what proportion of CTA at our institution was of diagnostic quality and identify technical factors which could be improved. a retrospective analysis of 20 cases was performed at a national paediatric neurovascular centre assessing image quality with a subjective scoring system and Hounsfield Unit (HU) measurements. Demographic data, contrast dose, flow rate and triggering times were recorded for each patient. Using a qualitative scoring system, 75% of studies were found to be of diagnostic quality (n=9 'good', n=6 'satisfactory') and 25% (n=5) were 'poor'. Those judged subjectively to be poor had arterial contrast density measured at less than 250 HU. Increased arterial opacification was achieved for cases performed with an increased flow rate (2.5-4 mL/s) and higher intravenous contrast dose (2 mL/kg). Triggering was found to be well timed in nine cases, early in four cases and late in seven cases. Of the scans triggered early, 75% were poor. Of the scans triggered late, less (29%) were poor. High flow rates (>2.5 mL/s) were a key factor for achieving high quality paediatric cerebrovascular CTA imaging. However, appropriate triggering by starting the scan immediately on contrast opacification of the monitoring vessel plays an important role and could maintain image quality when flow rates were lower. Early triggering appeared more detrimental than late.
NASA Astrophysics Data System (ADS)
Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David
2013-05-01
Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.
Investment alternative: the status quo or PACS?
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.; Cywinski, Jozef K.
1990-08-01
While the cost of Picture Archiving and Communication Systems (PACS) can be substantial, the cost of continuing with present manual methods may become prohibitive in growing departments as the need for additional space and personnel (both technical and professional) to meet the increasing requirements for all image management activities continues to grow. This will occur simultaneously with increasing pressures on problems of the present system, i.e., lost films, lost revenues, delayed reporting and longer diagnostic cycle times. Present methods of image archiving communication and management i.e. the relationship of procedure volume to VFE requirements for professional and technical personnel, costs of film, film storage space, and other performance factors are analyzed based on the database created by the Technology Marketing Group (TMG) computerized cost analysis model applied to over 50 US hospitals. Also, the model is used to provide the projected cost of present methods of film management for an average US 400 +bed hospital based on ten year growth rate assumptions. TMG PACS Tracking data provides confirmation of staffmg pattern correlation to procedure volume. The data presented in the paper provides a basis for comparing the investment in maintaining the status quo to an investment in PACS.
Kimber, James A; Kazarian, Sergei G
2017-10-01
Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Graphical abstract Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective.
Hahn, D; Beer, M; Sandstede, J
2000-10-01
The introduction of magnetic resonance (MR) tomography has fundamentally changed radiological diagnosis for many diseases. Invasive digital subtraction angiography has already been widely replaced by noninvasive MR angiography for most of the vascular diseases. The rapid technical development of MR imaging in recent years has opened new functional imaging techniques. MR imaging of the heart allows simultaneous measurement of morphological and functional parameters in a single noninvasive examination without any radiation exposure. Because of the high spatial resolution and the reproducibility cine MR imaging is now the gold standard for functional analysis. With the improvement of myocardial perfusion and viability studies many diseases of the heart can be diagnosed in a single examination. MR spectroscopy is the only method which allows a view of the metabolism of the heart. New examinations for vascular imaging and flow quantification complete the goal of "one-stop-shop" imaging of the heart. MR imaging is the only diagnostic modality which allows a complete evaluation of many diseases of the heart with one technique, basic examination as well as follow-up studies. The very rapid improvement in MRI will overcome most of the limitations in the near future, especially concerning MR coronary angiography.
Virtual surgery in a (tele-)radiology framework.
Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P
1999-09-01
This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.
Schlager, Daniel; Maas, Moritz; Hein, Simon; Adams, Fabian; Schoenthaler, Martin; Wetterauer, Ulrich; Diemer, Thorsten; Weidner, Wolfgang; Miernik, Arkadiusz
2016-08-01
The most common pathologies of the seminal tract are persistent hematospermia, seminal vesicle stones, and seminal duct obstruction. Endoscopic diagnostic work-up of the seminal tract is impeded by complex anatomy and lack of technical equipment. To date, there is no standardized endoscopic approach. The purpose of this study was to investigate the applicability and feasibility of a flexible microoptical device for atraumatic endoscopy of the seminal tract in a male human cadaver. The transurethral endoscopic examination was performed on a male cadaver. No premortal interventions or diseases of the genitourinary tract had been reported. The seminal orifice was identified via cystoscopy and accessed by the Seldinger technique using a hydrophilic guidewire and ureteral catheter. Retrograde endoscopic inspection of the distal seminal tract was performed using a miniaturized flexible endoscope. An antegrade endoscopic inspection of the seminal tract was carried out via high scrotal access to the vas deferens. Structures of the seminal tract, such as the ejaculatory duct, seminal vesicles, and distal portion of the ductus deferentes, were visualized using the miniaturized endoscope. Image quality allowed identification of anatomical structures and characterization of tissue properties. The technical limitations we observed involved the system's maneuverability. Initial results of this novel endoscopic approach to the seminal tract using a flexible microoptical system are encouraging. However, considerable anatomical limitations of the targeted organs necessitate further refinements of the technical equipment. This approach might improve diagnostics and treatment of genitourinary diseases. Future surgical techniques may include intraseminal laser therapy or endoocclusion to monitor fertility in men.
HÖner, Oliver; Votteler, Andreas; Schmid, Markus; Schultz, Florian; Roth, Klaus
2015-01-01
The utilisation of motor performance tests for talent identification in youth sports is discussed intensively in talent research. This article examines the reliability, differential stability and validity of the motor diagnostics conducted nationwide by the German football talent identification and development programme and provides reference values for a standardised interpretation of the diagnostics results. Highly selected players (the top 4% of their age groups, U12-U15) took part in the diagnostics at 17 measurement points between spring 2004 and spring 2012 (N = 68,158). The heterogeneous test battery measured speed abilities and football-specific technical skills (sprint, agility, dribbling, ball control, shooting, juggling). For all measurement points, the overall score and the speed tests showed high internal consistency, high test-retest reliability and satisfying differential stability. The diagnostics demonstrated satisfying factorial-related validity with plausible and stable loadings on the two empirical factors "speed" and "technical skills". The score, and the technical skills dribbling and juggling, differentiated the most among players of different performance levels and thus showed the highest criterion-related validity. Satisfactory psychometric properties for the diagnostics are an important prerequisite for a scientifically sound rating of players' actual motor performance and for the future examination of the prognostic validity for success in adulthood.
Hectors, Stefanie J; Besa, Cecilia; Wagner, Mathilde; Jajamovich, Guido H; Haines, George K; Lewis, Sara; Tewari, Ashutosh; Rastinehad, Ardeshir; Huang, Wei; Taouli, Bachir
2017-09-01
To quantify Tofts model (TM) and shutter-speed model (SSM) perfusion parameters in prostate cancer (PCa) and noncancerous peripheral zone (PZ) and to compare the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to Prostate Imaging and Reporting and Data System (PI-RADS) classification for the assessment of PCa aggressiveness. Fifty PCa patients (mean age 60 years old) who underwent MRI at 3.0T followed by prostatectomy were included in this Institutional Review Board-approved retrospective study. DCE-MRI parameters (K trans , v e , k ep [TM&SSM] and intracellular water molecule lifetime τ i [SSM]) were determined in PCa and PZ. Differences in DCE-MRI parameters between PCa and PZ, and between models were assessed using Wilcoxon signed-rank tests. Receiver operating characteristic (ROC) analysis for differentiation between PCa and PZ was performed for individual and combined DCE-MRI parameters. Diagnostic performance of DCE-MRI parameters for identification of aggressive PCa (Gleason ≥8, grade group [GG] ≥3 or pathology stage pT3) was assessed using ROC analysis and compared with PI-RADSv2 scores. DCE-MRI parameters were significantly different between TM and SSM and between PZ and PCa (P < 0.037). Diagnostic performances of TM and SSM for differentiation of PCa from PZ were similar (highest AUC TM: K trans +k ep 0.76, SSM: τ i +k ep 0.80). PI-RADS outperformed TM and SSM DCE-MRI for identification of Gleason ≥8 lesions (AUC PI-RADS: 0.91, highest AUC DCE-MRI: K trans +τ i SSM 0.61, P = 0.002). The diagnostic performance of PI-RADS and DCE-MRI for identification of GG ≥3 and pT3 PCa was not significantly different (P > 0.213). SSM DCE-MRI did not increase the diagnostic performance of DCE-MRI for PCa characterization. PI-RADS outperformed both TM and SSM DCE-MRI for identification of aggressive cancer. 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:837-849. © 2017 International Society for Magnetic Resonance in Medicine.
Small renal mass biopsy--how, what and when: report from an international consensus panel.
Tsivian, Matvey; Rampersaud, Edward N; del Pilar Laguna Pes, Maria; Joniau, Steven; Leveillee, Raymond J; Shingleton, William B; Aron, Monish; Kim, Charles Y; DeMarzo, Angelo M; Desai, Mihir M; Meler, James D; Donovan, James F; Klingler, Hans Christoph; Sopko, David R; Madden, John F; Marberger, Michael; Ferrandino, Michael N; Polascik, Thomas J
2014-06-01
To discuss the use of renal mass biopsy (RMB) for small renal masses (SRMs), formulate technical aspects, outline potential pitfalls and provide recommendations for the practicing clinician. The meeting was conducted as an informal consensus process and no scoring system was used to measure the levels of agreement on the different topics. A moderated general discussion was used as the basis for consensus and arising issues were resolved at this point. A consensus was established and lack of agreement to topics or specific items was noted at this point. Recommended biopsy technique: at least two cores, sampling different tumour regions with ultrasonography being the preferred method of image guidance. Pathological interpretation: 'non-diagnostic samples' should refer to insufficient material, inconclusive and normal renal parenchyma. For non-diagnostic samples, a repeat biopsy is recommended. Fine-needle aspiration may provide additional information but cannot substitute for core biopsy. Indications for RMB: biopsy is recommended in most cases except in patients with imaging or clinical characteristics indicative of pathology (syndromes, imaging characteristics) and cases whereby conservative management is not contemplated. RMB is recommended for active surveillance but not for watchful-waiting candidates. We report the results of an international consensus meeting on the use of RMB for SRMs, defining the technique, pathological interpretation and indications. © 2013 The Authors. BJU International © 2013 BJU International.
Update on Modern Management of Pheochromocytoma and Paraganglioma.
Lenders, Jacques W M; Eisenhofer, Graeme
2017-06-01
Despite all technical progress in modern diagnostic methods and treatment modalities of pheochromocytoma/paraganglioma, early consideration of the presence of these tumors remains the pivotal link towards the best possible outcome for patients. A timely diagnosis and proper treatment can prevent the wide variety of potentially catastrophic cardiovascular complications. Modern biochemical testing should include tests that offer the best available diagnostic performance, measurements of metanephrines and 3-methoxytyramine in plasma or urine. To minimize false-positive test results particular attention should be paid to pre-analytical sampling conditions. In addition to anatomical imaging by computed tomography (CT) or magnetic resonance imaging, new promising functional imaging modalities of photon emission tomography/CT using with somatostatin analogues such as ⁶⁸Ga-DOTATATE (⁶⁸Ga-labeled DOTA(0)-Tyr(3)-octreotide) will probably replace ¹²³I-MIBG (iodine-123-metaiodobenzylguanidine) in the near future. As nearly half of all pheochromocytoma patients harbor a mutation in one of the 14 tumor susceptibility genes, genetic testing and counseling should at least be considered in all patients with a proven tumor. Post-surgical annual follow-up of patients by measurements of plasma or urinary metanephrines should last for at least 10 years for timely detection of recurrent or metastatic disease. Patients with a high risk for recurrence or metastatic disease (paraganglioma, young age, multiple or large tumors, genetic background) should be followed up lifelong. Copyright © 2017 Korean Endocrine Society.
Advanced Diagnostic System on Earth Observing One
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth
2004-01-01
In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.
The Changing World of Breast Cancer
Kuhl, Christiane K.
2015-01-01
Abstract Compared with other fields of medicine, there is hardly an area that has seen such fast development as the world of breast cancer. Indeed, the way we treat breast cancer has changed fundamentally over the past decades. Breast imaging has always been an integral part of this change, and it undergoes constant adjustment to new ways of thinking. This relates not only to the technical tools we use for diagnosing breast cancer but also to the way diagnostic information is used to guide treatment. There is a constant change of concepts for and attitudes toward breast cancer, and a constant flux of new ideas, new treatment approaches, and new insights into the molecular and biological behavior of this disease. Clinical breast radiologists and even more so, clinician scientists, interested in breast imaging need to keep abreast with this rapidly changing world. Diagnostic or treatment approaches that are considered useful today may be abandoned tomorrow. Approaches that seem irrelevant or far too extravagant today may prove clinically useful and adequate next year. Radiologists must constantly question what they do, and align their clinical aims and research objectives with the changing needs of contemporary breast oncology. Moreover, knowledge about the past helps better understand present debates and controversies. Accordingly, in this article, we provide an overview on the evolution of breast imaging and breast cancer treatment, describe current areas of research, and offer an outlook regarding the years to come. PMID:26083829
Gill, Thomas J; Safran, Marc; Mandelbaum, Bert; Huber, Bryan; Gambardella, Ralph; Xerogeanes, John
2018-05-24
The purpose of this study was to compare the efficacy, accuracy, and safety of in-office diagnostic arthroscopy with magnetic resonance imaging (MRI) and surgical diagnostic arthroscopy. A prospective, blinded, multicenter, clinical trial was performed on 110 patients, ages 18 to 75 years, who presented with knee pain. The study period was April 2012 to April 2013. Each patient underwent a physical examination, an MRI, in-office diagnostic imaging, and a diagnostic arthroscopic examination in the operating room. The attending physician completed clinical report forms comparing the in-office arthroscopic examination and surgical diagnostic arthroscopy findings on each patient. Two blinded experts, unaffiliated with the clinical care of the study's subjects, reviewed the in-office arthroscopic images and MRI images using the surgical diagnostic arthroscopy images as the "control" group comparison. Patients were consecutive, and no patients were excluded from the study. In this study, the accuracy, sensitivity, and specificity of in-office arthroscopy was equivalent to surgical diagnostic arthroscopy and more accurate than MRI. When comparing in-office arthroscopy with surgical diagnostic arthroscopy, all kappa statistics were between 0.766 and 0.902. For MRI compared with surgical diagnostic arthroscopy, kappa values ranged from a low of 0.130 (considered "slight" agreement) to a high of 0.535 (considered "moderate" agreement). The comparison of MRI to in-office arthroscopy showed very similar results as the comparison of MRI with surgical diagnostic arthroscopy, ranging from a low kappa of 0.112 (slight agreement) to a high of 0.546 (moderate agreement). There were no patient-related or device-related complications related to the use of in-office arthroscopy. Needle-based diagnostic imaging that can be used in the office setting is statistically equivalent to surgical diagnostic arthroscopy with regard to the diagnosis of intra-articular, nonligamentous knee joint pathology. In-office diagnostic imaging can provide a more detailed and accurate diagnostic assessment of intra-articular knee pathology than MRI. Based on the study results, in-office diagnostic imaging provides a safe, accurate, real-time, minimally invasive diagnostic modality to evaluate intra-articular pathology without the need for surgical diagnostic arthroscopy or high-cost imaging. Level II, comparative prospective trial. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
That liver lesion on MDCT in the oncology patient: is it important?
Thakrar, Kiran H.; Wenzke, Daniel R.; Newmark, Geraldine M.; Mehta, Uday K.; Berlin, Jonathan W.
2012-01-01
Abstract Multidetector-row computed tomography (MDCT) has become the primary imaging test for the staging and follow-up of most malignancies that originate outside of the central nervous system. Technical advances in this imaging technique have led to significant improvement in the detection of metastatic disease to the liver. An unintended by-product of this improving diagnostic acumen is the discovery of incidental hepatic lesions in oncology patients that in the past remained undetected. These ubiquitous, incidentally identified hepatic lesions have created a management dilemma for both clinicians and radiologists: are these lesions benign or do they represent metastases? Naturally, the answer to this question has profound prognostic and therapeutic implications. In this review, guidelines concerning the diagnosis and management of some of the more common hepatic incidental lesions detected in patients with extrahepatic malignancies are presented. PMID:23023318
Value of diagnostic imaging for the symptomatic male breast: Can we avoid unnecessary biopsies?
Foo, Eric T; Lee, Amie Y; Ray, Kimberly M; Woodard, Genevieve A; Freimanis, Rita I; Joe, Bonnie N
To review the use of diagnostic breast imaging and outcomes for symptomatic male patients. We retrospectively evaluated 122 males who underwent diagnostic imaging for breast symptoms at our academic center. The majority (94%) of cases had negative or benign imaging, with gynecomastia being the most common diagnosis (78%). There were two malignancies, both of which had positive imaging. Fifteen patients underwent percutaneous biopsy, and over half (53%) were palpation-guided biopsies initiated by the referring clinician despite negative imaging. Diagnostic imaging demonstrated 100% sensitivity and 96% specificity for identifying cancer. Malignancy is rarely a cause of male breast symptoms. Diagnostic breast imaging is useful to establish benignity and avert unnecessary biopsies. Copyright © 2017 Elsevier Inc. All rights reserved.
Farid, Karim; Charidimou, Andreas; Baron, Jean-Claude
2017-01-01
Sporadic cerebral amyloid angiopathy (CAA) is a very common small vessel disease of the brain, showing preferential and progressive amyloid-βdeposition in the wall of small arterioles and capillaries of the leptomeninges and cerebral cortex. CAA now encompasses not only a specific cerebrovascular pathological trait, but also different clinical syndromes - including spontaneous lobar intracerebral haemorrhage (ICH), dementia and 'amyloid spells' - an expanding spectrum of brain parenchymal MRI lesions and a set of diagnostic criteria - the Boston criteria, which have resulted in increasingly detecting CAA during life. Although currently available validated diagnostic criteria perform well in multiple lobar ICH, a formal diagnosis is currently lacking unless a brain biopsy is performed. This is partly because in practice CAA MRI biomarkers provide only indirect evidence for the disease. An accurate diagnosis of CAA in different clinical settings would have substantial impact for ICH risk stratification and antithrombotic drug use in elderly people, but also for sample homogeneity in drug trials. It has recently been demonstrated that vascular (in addition to parenchymal) amyloid-βdeposition can be detected and quantified in vivo by positron emission tomography (PET) amyloid tracers. This non-invasive approach has the potential to provide a molecular signature of CAA, and could in turn have major clinical impact. However, several issues around amyloid-PET in CAA remain unsettled and hence its diagnostic utility is limited. In this article we systematically review and critically appraise the published literature on amyloid-PET (PiB and other tracers) in sporadic CAA. We focus on two key areas: (a) the diagnostic utility of amyloid-PET in CAA and (b) the use of amyloid-PET as a window to understand pathophysiological mechanism of the disease. Key issues around amyloid-PET imaging in CAA, including relevant technical aspects are also covered in depth. A total of six small-scale studies have addressed (or reported data useful to address) the diagnostic utility of late-phase amyloid PET imaging in CAA, and one additional study dealt with early PiB images as a proxy of brain perfusion. Across these studies, amyloid PET imaging has definite diagnostic utility (currently tested only in probable CAA): it helps rule out CAA if negative, whether compared to healthy controls or to hypertensive deep ICH controls. If positive, however, differentiation from underlying incipient Alzheimer's disease (AD) can be challenging and so far, no approach (regional values, ratios, visual assessment) seems sufficient and specific enough, although early PiB data seem to hold promise. Based on the available evidence reviewed, we suggest a tentative diagnostic flow algorithm for amyloid-PET use in the clinical setting of suspected CAA, combining early- and late-phase PiB-PET images. We also identified ten mechanistic amyloid-PET studies providing early but promising proof-of-concept data on CAA pathophysiology and its various manifestations including key MRI lesions, cognitive impairment and large scale brain alterations. Key open questions that should be addressed in future studies of amyloid-PET imaging in CAA are identified and highlighted.
[Digital imaging and robotics in endoscopic surgery].
Go, P M
1998-05-23
The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).
Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.
Tanaka, Rie
2016-07-01
Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.
Karnowski, Karol; Ajduk, Anna; Wieloch, Bartosz; Tamborski, Szymon; Krawiec, Krzysztof; Wojtkowski, Maciej; Szkulmowski, Maciej
2017-06-23
Imaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers' ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling. In the present paper, we utilized the internal motion of cytoplasm, as well as custom scanning and signal processing protocols, to effectively reduce the speckle noise typical for standard OCM and enable high-resolution intracellular time-lapse imaging. To test our imaging system we used mouse and pig oocytes and embryos and visualized them through fertilization and the first embryonic division, as well as at selected stages of oogenesis and preimplantation development. Because all morphological and morphokinetic properties recorded by OCM are believed to be biomarkers of oocyte/embryo quality, OCM may represent a new chapter in imaging-based preimplantation embryo diagnostics.
Development of the Science Data System for the International Space Station Cold Atom Lab
NASA Technical Reports Server (NTRS)
van Harmelen, Chris; Soriano, Melissa A.
2015-01-01
Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.
TH-A-BRF-11: Image Intensity Non-Uniformities Between MRI Simulation and Diagnostic MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulson, E
2014-06-15
Purpose: MRI simulation for MRI-based radiotherapy demands that patients be setup in treatment position, which frequently involves use of alternative radiofrequency (RF) coil configurations to accommodate immobilized patients. However, alternative RF coil geometries may exacerbate image intensity non-uniformities (IINU) beyond those observed in diagnostic MRI, which may challenge image segmentation and registration accuracy as well as confound studies assessing radiotherapy response when MR simulation images are used as baselines for evaluation. The goal of this work was to determine whether differences in IINU exist between MR simulation and diagnostic MR images. Methods: ACR-MRI phantom images were acquired at 3T usingmore » a spin-echo sequence (TE/TR:20/500ms, rBW:62.5kHz, TH/skip:5/5mm). MR simulation images were obtained by wrapping two flexible phased-array RF coils around the phantom. Diagnostic MR images were obtained by placing the phantom into a commercial phased-array head coil. Pre-scan normalization was enabled in both cases. Images were transferred offline and corrected for IINU using the MNI N3 algorithm. Coefficients of variation (CV=σ/μ) were calculated for each slice. Wilcoxon matched-pairs and Mann-Whitney tests compared CV values between original and N3 images and between MR simulation and diagnostic MR images. Results: Significant differences in CV were detected between original and N3 images in both MRI simulation and diagnostic MRI groups (p=0.010, p=0.010). In addition, significant differences in CV were detected between original MR simulation and original and N3 diagnostic MR images (p=0.0256, p=0.0016). However, no significant differences in CV were detected between N3 MR simulation images and original or N3 diagnostic MR images, demonstrating the importance of correcting MR simulation images beyond pre-scan normalization prior to use in radiotherapy. Conclusions: Alternative RF coil configurations used in MRI simulation can Result in significant IINU differences compared to diagnostic MR images. The MNI N3 algorithm reduced MR simulation IINU to levels observed in diagnostic MR images. Funding provided by Advancing a Healthier Wisconsin.« less
O'Connor, Michael K; Morrow, Melissa M; Tran, Thuy; Hruska, Carrie B; Conners, Amy L; Hunt, Katie N
2017-02-01
The purpose of this study was to perform a pilot evaluation of an integrated molecular breast imaging/ultrasound (MBI/US) system designed to enable, in real-time, the registration of US to MBI and diagnostic evaluation of breast lesions detected on MBI. The MBI/US system was constructed by modifying an existing dual-head cadmium zinc telluride (CZT)-based MBI gamma camera. The upper MBI detector head was replaced with a mesh panel, which allowed an ultrasound probe to access the breast. An optical tracking system was used to monitor the location of the ultrasound transducer, referenced to the MBI detector. The lesion depth at which ultrasound was targeted was estimated from analysis of previously acquired dual-head MBI datasets. A software tool was developed to project the US field of view onto the current MBI image. Correlation of lesion location between both modalities with real-time MBI/US scanning was confirmed in a breast phantom model and assessed in 12 patients with a breast lesion detected on MBI. Combined MBI/US scanning allowed for registration of lesions detected on US and MBI as validated in phantom experiments. In patient studies, successful registration was achieved in 8 of 12 (67%) patients, with complete registration achieved in seven and partial registration achieved in one patient. In 4 of 12 (37%) patients, lesion registration was not achieved, partially attributed to uncertainty in lesion depth estimates from MBI. The MBI/US system enabled successful registration of US to MBI in over half of patients studied in this pilot evaluation. Future studies are needed to determine if real-time, registered US imaging of MBI-detected lesions may obviate the need to proceed to more expensive procedures such as contrast-enhanced breast MRI for diagnostic workup or biopsy of MBI findings. © 2016 American Association of Physicists in Medicine.
Cone beam tomographic imaging anatomy of the maxillofacial region.
Angelopoulos, Christos
2008-10-01
Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.
CT myocardial perfusion imaging: current status and future perspectives.
Yang, Dong Hyun; Kim, Young-Hak
2017-07-01
Computed tomography myocardial perfusion (CTP) combined with coronary computed tomography angiography (CCTA) may constitute a "1-stop shop" for the noninvasive diagnosis of hemodynamically significant coronary stenosis during a single CT examination. CTP shows high diagnostic performance and provides incremental value over CCTA for the detection of hemodynamically significant coronary stenosis in patients with a high Agatston calcium score or coronary artery stents. Future studies should determine the optimal protocol and clinical value of CTP for guiding revascularization strategy and prognostication. In this article, we review the current status and future perspectives of CTP, focusing on technical considerations, clinical applications, and future research topics.
Hybrid treatment of a huge complex aortic pseudo-aneurysm subsequent to a coarctation.
Rizza, Antonio; Barletta, Valentina; Palmieri, Cataldo; Berti, Sergio
2017-07-01
Endovascular treatment of pseudo-aneurysms subsequent to a pre-existing aortic coarctation is becoming a well-accepted technical solution especially in patients presenting anatomical challenges involving the aortic arch. We report the case of a 65-year-old woman with a huge pseudo-aneurysm of the descending thoracic aorta. Diagnostic imaging assessment documented also the presence of an aneurysmatic aberrant right subclavian artery. Due to patient's anatomical arterial condition, we decided to treat the aneurysm applying a hybrid approach. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Freebody, John; Wegner, Eva A; Rossleigh, Monica A
2014-01-01
Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology. PMID:25349660
Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael
2012-01-01
In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252
Tailoring protocols for chest CT applications: when and how?
Iezzi, Roberto; Larici, Anna Rita; Franchi, Paola; Marano, Riccardo; Magarelli, Nicola; Posa, Alessandro; Merlino, Biagio; Manfredi, Riccardo; Colosimo, Cesare
2017-01-01
In the medical era of early detection of diseases and tailored therapies, an accurate characterization and staging of the disease is pivotal for treatment planning. The widespread use of computed tomography (CT)—often with the use of contrast material (CM)—probably represents the most important advance in diagnostic radiology. The result is a marked increase in radiation exposure of the population for medical purposes, with its intrinsic carcinogenic potential, and CM affecting kidney function. The radiologists should aim to minimize patient’s risk by reducing radiation exposure and CM amount, while maintaining the highest image quality. To achieve this goal, it is necessary to perform “patient-centric imaging”. The purpose of this review is to provide radiologists with “tips and tricks” to control radiation dose at CT, summarizing technical artifices in order to reduce image noise and increase image contrast. Also chest CT tailored protocols are supplied, with particular attention to three most common thoracic CT protocols: aortic/cardiac CT angiography (CTA), pulmonary CTA, and routine chest CT. PMID:29097345
[Management of human resources, materials, and organization processes in radioprotection].
Coppola, V
1999-06-01
The radiologist must learn to face daily management responsibilities and therefore he/she needs the relevant knowledge. Aside from the mechanisms of management accounting, which differ only slightly from similar analysis methods used in other centers, the managing radiologist (the person in charge) is directly responsible for planning, organizing, coordinating and controlling radiation protection, a major discipline characterizing diagnostic imaging. We will provide some practical management hints, keeping in mind that radiation protection must not be considered a simple (or annoying) technical task, but rather an extraordinary positive element for the radiologist's cultural differentiation and professional identity. The managing radiologist can use the theory and practice of management techniques successfully applied in business, customizing them to the ethics and economics of health care. Meeting the users' needs must obviously prevail on balancing the budget from both a logical and an accounting viewpoints, since non-profit organizations are involved. In radiological practice, distinguishing the management of human from structural resources (direct funding is not presently available) permits to use internal benchmarking for the former and controlled acquisition and planned replacement of technologies in the latter, obviously after evaluation of specific indicators and according to the relevant laws and technical guidelines. Managing human resources means safeguarding the patient, the operator and the population, which can be achieved or improved using benchmarking in a diagnostic imaging department. The references for best practice will be set per tabulas based on the relevant laws and (inter)national guidelines. The physical-technical and bureaucratic-administrative factors involved will be considered as process indices to evaluate the gap from normal standards. Among the different elements involved in managing structural resources, the appropriate acquisition of a piece of radiological equipment is important from both a radiation protection and an economic viewpoints. In the acquisition process, the first and the last steps (technology assessment and planned replacement, respectively) are specifically important for the radiologist and play a major role in global management. In both cases the radiologist must be able to lay out autonomous and objective working projects, also using evaluation algorithms.
New Technologies for Human Cancer Imaging
Frangioni, John V.
2008-01-01
Despite technical advances in many areas of diagnostic radiology, the detection and imaging of human cancer remains poor. A meaningful impact on cancer screening, staging, and treatment is unlikely to occur until the tumor-to-background ratio improves by three to four orders of magnitude (ie, 103- to 104-fold), which in turn will require proportional improvements in sensitivity and contrast agent targeting. This review analyzes the physics and chemistry of cancer imaging and highlights the fundamental principles underlying the detection of malignant cells within a background of normal cells. The use of various contrast agents and radiotracers for cancer imaging is reviewed, as are the current limitations of ultrasound, x-ray imaging, magnetic resonance imaging (MRI), single-photon emission computed tomography, positron emission tomography (PET), and optical imaging. Innovative technologies are emerging that hold great promise for patients, such as positron emission mammography of the breast and spectroscopy-enhanced colonoscopy for cancer screening, hyperpolarization MRI and time-of-flight PET for staging, and ion beam-induced PET scanning and near-infrared fluorescence-guided surgery for cancer treatment. This review explores these emerging technologies and considers their potential impact on clinical care. Finally, those cancers that are currently difficult to image and quantify, such as ovarian cancer and acute leukemia, are discussed. PMID:18711192
Romano, A; Tavanti, F; Rossi Espagnet, M C; Terenzi, V; Cassoni, A; Suma, G; Boellis, A; Pierallini, A; Valentini, V; Bozzao, A
2015-01-01
In this preliminary report, we describe our experience with time-resolved imaging of contrast kinetics-MR angiography (TRICKS-MRA) in the assessment of head-neck vascular anomalies (HNVAs). We prospectively studied six consecutive patients with clinically suspected or diagnosed HNVAs. All of them underwent TRICKS-MRA of the head and neck as part of the routine for treatment planning. A digital subtraction angiography (DSA) was also performed. TRICKS-MRA could be achieved in all cases. Three subjects were treated based on TRICKS-MRA imaging findings and subsequent DSA examination. In all of them, DSA confirmed the vascular architecture of HNVAs shown by TRICKS-MRA. In the other three patients, a close follow up to assess the evolution of the suspected haemangioma was preferred. TRICKS sequences add important diagnostic information in cases of HNVAs, helpful for therapeutic decisions and post-treatment follow up. We recommend TRICKS-MRA use (if technically possible) as part of routine MRI protocol for HNVAs, representing a possible alternative imaging tool to conventional DSA.
Device for wavelength-selective imaging
Frangioni, John V.
2010-09-14
An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.
Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture.
Esses, Steven J; Lu, Xiaoguang; Zhao, Tiejun; Shanbhogue, Krishna; Dane, Bari; Bruno, Mary; Chandarana, Hersh
2018-03-01
To develop and test a deep learning approach named Convolutional Neural Network (CNN) for automated screening of T 2 -weighted (T 2 WI) liver acquisitions for nondiagnostic images, and compare this automated approach to evaluation by two radiologists. We evaluated 522 liver magnetic resonance imaging (MRI) exams performed at 1.5T and 3T at our institution between November 2014 and May 2016 for CNN training and validation. The CNN consisted of an input layer, convolutional layer, fully connected layer, and output layer. 351 T 2 WI were anonymized for training. Each case was annotated with a label of being diagnostic or nondiagnostic for detecting lesions and assessing liver morphology. Another independently collected 171 cases were sequestered for a blind test. These 171 T 2 WI were assessed independently by two radiologists and annotated as being diagnostic or nondiagnostic. These 171 T 2 WI were presented to the CNN algorithm and image quality (IQ) output of the algorithm was compared to that of two radiologists. There was concordance in IQ label between Reader 1 and CNN in 79% of cases and between Reader 2 and CNN in 73%. The sensitivity and the specificity of the CNN algorithm in identifying nondiagnostic IQ was 67% and 81% with respect to Reader 1 and 47% and 80% with respect to Reader 2. The negative predictive value of the algorithm for identifying nondiagnostic IQ was 94% and 86% (relative to Readers 1 and 2). We demonstrate a CNN algorithm that yields a high negative predictive value when screening for nondiagnostic T 2 WI of the liver. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:723-728. © 2017 International Society for Magnetic Resonance in Medicine.
Identification of mine rescue equipment reduction gears technical condition
NASA Astrophysics Data System (ADS)
Gerike, B. L.; Klishin, V. I.; Kuzin, E. G.
2017-09-01
The article presents the reasons for adopting intelligent service of mine belt conveyer drives concerning evaluation of their technical condition based on the diagnostic techniques instead of regular preventative maintenance. The article reveals the diagnostic results of belt conveyer drive reduction gears condition taking into account the parameters of lubricating oil, vibration and temperature. Usage of a complex approach to evaluate technical conditions allows reliability of the forecast to be improved, which makes it possible not only to prevent accidental breakdowns and eliminate unscheduled downtime, but also to bring sufficient economic benefits through reduction of the term and scope of work during overhauls.
Reductions in Diagnostic Imaging With High Deductible Health Plans.
Zheng, Sarah; Ren, Zhong Justin; Heineke, Janelle; Geissler, Kimberley H
2016-02-01
Diagnostic imaging utilization grew rapidly over the past 2 decades. It remains unclear whether patient cost-sharing is an effective policy lever to reduce imaging utilization and spending. Using 2010 commercial insurance claims data of >21 million individuals, we compared diagnostic imaging utilization and standardized payments between High Deductible Health Plan (HDHP) and non-HDHP enrollees. Negative binomial models were used to estimate associations between HDHP enrollment and utilization, and were repeated for standardized payments. A Hurdle model were used to estimate associations between HDHP enrollment and whether an enrollee had diagnostic imaging, and then the magnitude of associations for enrollees with imaging. Models with interaction terms were used to estimate associations between HDHP enrollment and imaging by risk score tercile. All models included controls for patient age, sex, geographic location, and health status. HDHP enrollment was associated with a 7.5% decrease in the number of imaging studies and a 10.2% decrease in standardized imaging payments. HDHP enrollees were 1.8% points less likely to use imaging; once an enrollee had at least 1 imaging study, differences in utilization and associated payments were small. Associations between HDHP and utilization were largest in the lowest (least sick) risk score tercile. Increased patient cost-sharing may contribute to reductions in diagnostic imaging utilization and spending. However, increased cost-sharing may not encourage patients to differentiate between high-value and low-value diagnostic imaging services; better patient awareness and education may be a crucial part of any reductions in diagnostic imaging utilization.
Paediatric cerebrovascular CT angiography—towards better image quality
Thust, Stefanie C.; Chong, Wui Khean Kling; Gunny, Roxana; Mazumder, Asif; Poitelea, Marius; Welsh, Anna; Ederies, Ash
2014-01-01
Background Paediatric cerebrovascular CT angiography (CTA) can be challenging to perform due to variable cardiovascular physiology between different age groups and the risk of movement artefact. This analysis aimed to determine what proportion of CTA at our institution was of diagnostic quality and identify technical factors which could be improved. Materials and methods a retrospective analysis of 20 cases was performed at a national paediatric neurovascular centre assessing image quality with a subjective scoring system and Hounsfield Unit (HU) measurements. Demographic data, contrast dose, flow rate and triggering times were recorded for each patient. Results Using a qualitative scoring system, 75% of studies were found to be of diagnostic quality (n=9 ‘good’, n=6 ‘satisfactory’) and 25% (n=5) were ‘poor’. Those judged subjectively to be poor had arterial contrast density measured at less than 250 HU. Increased arterial opacification was achieved for cases performed with an increased flow rate (2.5-4 mL/s) and higher intravenous contrast dose (2 mL/kg). Triggering was found to be well timed in nine cases, early in four cases and late in seven cases. Of the scans triggered early, 75% were poor. Of the scans triggered late, less (29%) were poor. Conclusions High flow rates (>2.5 mL/s) were a key factor for achieving high quality paediatric cerebrovascular CTA imaging. However, appropriate triggering by starting the scan immediately on contrast opacification of the monitoring vessel plays an important role and could maintain image quality when flow rates were lower. Early triggering appeared more detrimental than late. PMID:25525579
Lewiss, Resa E; Chan, Wilma; Sheng, Alexander Y; Soto, Jorge; Castro, Alexandra; Meltzer, Andrew C; Cherney, Alan; Kumaravel, Manickam; Cody, Dianna; Chen, Esther H
2015-12-01
The appropriate selection and accurate interpretation of diagnostic imaging is a crucial skill for emergency practitioners. To date, the majority of the published literature and research on competency assessment comes from the subspecialty of point-of-care ultrasound. A group of radiologists, physicists, and emergency physicians convened at the 2015 Academic Emergency Medicine consensus conference to discuss and prioritize a research agenda related to education, assessment, and competency in ordering and interpreting diagnostic imaging. A set of questions for the continued development of an educational curriculum on diagnostic imaging for trainees and competency assessment using specific assessment methods based on current best practices was delineated. The research priorities were developed through an iterative consensus-driven process using a modified nominal group technique that culminated in an in-person breakout session. The four recommendations are: 1) develop a diagnostic imaging curriculum for emergency medicine (EM) residency training; 2) develop, study, and validate tools to assess competency in diagnostic imaging interpretation; 3) evaluate the role of simulation in education, assessment, and competency measures for diagnostic imaging; 4) study is needed regarding the American College of Radiology Appropriateness Criteria, an evidence-based peer-reviewed resource in determining the use of diagnostic imaging, to maximize its value in EM. In this article, the authors review the supporting reliability and validity evidence and make specific recommendations for future research on the education, competency, and assessment of learning diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Toumpanakis, Christos; Kim, Michelle K; Rinke, Anja; Bergestuen, Deidi S; Thirlwell, Christina; Khan, Mohid S; Salazar, Ramon; Oberg, Kjell
2014-01-01
Molecular imaging modalities exploit aspects of neuroendocrine tumors (NET) pathophysiology for both diagnostic imaging and therapeutic purposes. The characteristic metabolic pathways of NET determine which tracers are useful for their visualization. In this review, we summarize the diagnostic value of all available molecular imaging studies, present data about their use in daily practice in NET centers globally, and finally make recommendations about the appropriate use of those modalities in specific clinical scenarios. Somatostatin receptor scintigraphy (SRS) continues to have a central role in the diagnostic workup of patients with NET, as it is also widely available. However, and despite the lack of prospective randomized studies, many NET experts predict that Gallium-68 ((68)Ga)-DOTA positron emission tomography (PET) techniques may replace SRS in the future, not only because of their technical advantages, but also because they are superior in patients with small-volume disease, in patients with skeletal metastases, and in those with occult primary tumors. Carbon-11 ((11)C)-5-hydroxy-L-tryptophan (5-HTP) PET and (18)F-dihydroxyphenylalanine ((18)F-DOPA) PET are new molecular imaging techniques of limited availability, and based on retrospective data, their sensitivities seem to be inferior to that of (68)Ga-DOTA PET. Glucagon-like-peptide-1 (GLP-1) receptor imaging seems promising for localization of the primary in benign insulinomas, but is currently available only in a few centers. Fluorine-18 ((18)F)-fluorodeoxyglucose ((18)F-FDG) PET was initially thought to be of limited value in NET, due to their usually slow-growing nature. However, according to subsequent data, (18)F-FDG PET is particularly helpful for visualizing the more aggressive NET, such as poorly differentiated neuroendocrine carcinomas, and well-differentiated tumors with Ki67 values >10%. According to limited data, (18)F-FDG-avid tumor lesions, even in slow-growing NET, may indicate a more aggressive disease course. When a secondary malignancy has already been established or is strongly suspected, combining molecular imaging techniques (e.g. (18)F-FDG PET and (68)Ga-DOTA PET) takes advantage of the diverse avidities of different tumor types to differentiate lesions of different origins. All the above-mentioned molecular imaging studies should always be reviewed and interpreted in a multidisciplinary (tumor board) meeting in combination with the conventional cross-sectional imaging, as the latter remains the imaging of choice for the evaluation of treatment response and disease follow-up. © 2014 S. Karger AG, Basel
Companion diagnostics and molecular imaging-enhanced approaches for oncology clinical trials.
Van Heertum, Ronald L; Scarimbolo, Robert; Ford, Robert; Berdougo, Eli; O'Neal, Michael
2015-01-01
In the era of personalized medicine, diagnostic approaches are helping pharmaceutical and biotechnology sponsors streamline the clinical trial process. Molecular assays and diagnostic imaging are routinely being used to stratify patients for treatment, monitor disease, and provide reliable early clinical phase assessments. The importance of diagnostic approaches in drug development is highlighted by the rapidly expanding global cancer diagnostics market and the emergent attention of regulatory agencies worldwide, who are beginning to offer more structured platforms and guidance for this area. In this paper, we highlight the key benefits of using companion diagnostics and diagnostic imaging with a focus on oncology clinical trials. Nuclear imaging using widely available radiopharmaceuticals in conjunction with molecular imaging of oncology targets has opened the door to more accurate disease assessment and the modernization of standard criteria for the evaluation, staging, and treatment responses of cancer patients. Furthermore, the introduction and validation of quantitative molecular imaging continues to drive and optimize the field of oncology diagnostics. Given their pivotal role in disease assessment and treatment, the validation and commercialization of diagnostic tools will continue to advance oncology clinical trials, support new oncology drugs, and promote better patient outcomes.
[Possibilities of sonographic image fusion: Current developments].
Jung, E M; Clevert, D-A
2015-11-01
For diagnostic and interventional procedures ultrasound (US) image fusion can be used as a complementary imaging technique. Image fusion has the advantage of real time imaging and can be combined with other cross-sectional imaging techniques. With the introduction of US contrast agents sonography and image fusion have gained more importance in the detection and characterization of liver lesions. Fusion of US images with computed tomography (CT) or magnetic resonance imaging (MRI) facilitates the diagnostics and postinterventional therapy control. In addition to the primary application of image fusion in the diagnosis and treatment of liver lesions, there are more useful indications for contrast-enhanced US (CEUS) in routine clinical diagnostic procedures, such as intraoperative US (IOUS), vascular imaging and diagnostics of other organs, such as the kidneys and prostate gland.
Fritz, Jan; Dellon, A Lee; Williams, Eric H; Rosson, Gedge D; Belzberg, Allan J; Eckhauser, Frederick E
2017-10-01
Purpose To determine if 3-T magnetic resonance (MR) neurography-guided retroperitoneal genitofemoral nerve (GFN) blocks are safe and effective for the diagnosis of genitofemoral neuralgia. Materials and Methods Following institutional review board approval and informed consent, 26 subjects (16 men, 10 women; mean age, 42 years [range, 24-78 years]; mean body mass index, 28 kg/m 2 [range, 20-35 kg/m 2 ]) with intractable groin pain were included. By using a 3-T MR imaging system, intermediate-weighted turbo spin-echo pulse sequences, and MR-conditional needles, diagnostic MR neurography-guided GFN blocks were performed in the retroperitoneum. Outcome variables included technical success, procedure time, complications, and rates of positive and negative GFN blocks in association with therapeutic outcomes. For the assessment of a learning curve, Mann-Whitney test was used. P values ≤ .05 were considered to indicate a statistically significant difference. Results In 26 subjects, 30 retroperitoneal GFN blocks were performed. Twelve (40%) were performed with an anterior needle path, 12 (40%) with a lateral needle path, and six (20%) with a posterior needle path. GFN blocks were technically successful in 24 of 26 (92%) subjects, achieving appropriate scrotal anesthesia. No complications occurred. The time required for a GFN block was 40 minutes (range, 18-67 minutes). The rate of a successful GFN intervention after a positive GFN block was 88% (14 of 16). The rate of a successful intervention of an alternative target after a negative GFN block was 71% (five of seven). Conclusion Selective retroperitoneally directed MR neurography-guided GFN blocks are safe and effective with high technical success and positive effect on surgical decision making in patients with presumed genitofemoral neuralgia. © RSNA, 2017 Online supplemental material is available for this article.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnon, J., E-mail: juliengarnon@gmail.com; Ramamurthy, N., E-mail: nitin-ramamurthy@hotmail.com; Caudrelier J, J., E-mail: caudjean@yahoo.fr
2016-05-15
ObjectiveTo evaluate the diagnostic accuracy and safety of magnetic resonance imaging (MRI)-guided percutaneous biopsy of mediastinal masses performed using a wide-bore high-field scanner.Materials and MethodsThis is a retrospective study of 16 consecutive patients (8 male, 8 female; mean age 74 years) who underwent MRI-guided core needle biopsy of a mediastinal mass between February 2010 and January 2014. Size and location of lesion, approach taken, time for needle placement, overall duration of procedure, and post-procedural complications were evaluated. Technical success rates and correlation with surgical pathology (where available) were assessed.ResultsTarget lesions were located in the anterior (n = 13), middle (n = 2), and posterior mediastinummore » (n = 1), respectively. Mean size was 7.2 cm (range 3.6–11 cm). Average time for needle placement was 9.4 min (range 3–18 min); average duration of entire procedure was 42 min (range 27–62 min). 2–5 core samples were obtained from each lesion (mean 2.6). Technical success rate was 100 %, with specimens successfully obtained in all 16 patients. There were no immediate complications. Histopathology revealed malignancy in 12 cases (4 of which were surgically confirmed), benign lesions in 3 cases (1 of which was false negative following surgical resection), and one inconclusive specimen (treated as inaccurate since repeat CT-guided biopsy demonstrated thymic hyperplasia). Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy in our study were 92.3, 100, 100, 66.7, and 87.5 %, respectively.ConclusionMRI-guided mediastinal biopsy is a safe procedure with high diagnostic accuracy, which may offer a non-ionizing alternative to CT guidance.« less
Theoretical aspects of diagnostics of car as mechatronic system
NASA Astrophysics Data System (ADS)
Goncharov, A. E.; Bondarenko, E. V.; Krasnoshtanov, S. Yu
2018-03-01
The article describes transformation of mechanical systems of automobiles into mechatronic ones due to application of electronic control systems. To assess the relationship of mechanical and electronic components of the mechatronic systems with regard to their technical states, the method of equivalent elements was employed. A mathematical model of changes in the technical state of equivalent elements was developed. It allowed us to present changes in operation capacity in a graphic form. The analytical model is used to ensure operating capacity potential stability for the mechatronic system. For this purpose, new resources were identified with regard to the information ‘field’. Therefore, a new approach to the systematization of knowledge about mechatronic transport systems (D-C-R-E system) is required. The D-C-R-E system is examined as a separate unit. The article describes Information unit formation based on the physical component of the D-C-R-E system and external information which is collected and processed in the Information Diagnostic Center (IDC). Using probability theory and Boolean algebra methods, the authors obtained a logistic model describing information relations between elements of the upgraded D-C-R-E system and contribution of each component to the road safety protection. The logistic model helped formulate main IDC tasks. Implementation of those tasks was transformed into the logical sequence of data collection and analysis in the IDC. That approach predetermined development of the multi-level diagnosing system which made it possible to put in order existing and improved image identification methods and algorithms and to create a diagnosing method for mechatronic systems of cars which reduces labor content and increases accuracy. That approach can help assess the technical state of vehicles with characteristics of mechatronic systems and their transport and environmental safety.
Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.
Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P
2015-12-01
Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond
2014-01-01
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases. PMID:25392822
Feng, Yuanbo; Bogaert, Jan; Oyen, Raymond; Ni, Yicheng
2014-10-01
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.
Liver CT image processing: a short introduction of the technical elements.
Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni
2006-05-01
In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.
The Quantitative Science of Evaluating Imaging Evidence.
Genders, Tessa S S; Ferket, Bart S; Hunink, M G Myriam
2017-03-01
Cardiovascular diagnostic imaging tests are increasingly used in everyday clinical practice, but are often imperfect, just like any other diagnostic test. The performance of a cardiovascular diagnostic imaging test is usually expressed in terms of sensitivity and specificity compared with the reference standard (gold standard) for diagnosing the disease. However, evidence-based application of a diagnostic test also requires knowledge about the pre-test probability of disease, the benefit of making a correct diagnosis, the harm caused by false-positive imaging test results, and potential adverse effects of performing the test itself. To assist in clinical decision making regarding appropriate use of cardiovascular diagnostic imaging tests, we reviewed quantitative concepts related to diagnostic performance (e.g., sensitivity, specificity, predictive values, likelihood ratios), as well as possible biases and solutions in diagnostic performance studies, Bayesian principles, and the threshold approach to decision making. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Histological Image Feature Mining Reveals Emergent Diagnostic Properties for Renal Cancer
Kothari, Sonal; Phan, John H.; Young, Andrew N.; Wang, May D.
2016-01-01
Computer-aided histological image classification systems are important for making objective and timely cancer diagnostic decisions. These systems use combinations of image features that quantify a variety of image properties. Because researchers tend to validate their diagnostic systems on specific cancer endpoints, it is difficult to predict which image features will perform well given a new cancer endpoint. In this paper, we define a comprehensive set of common image features (consisting of 12 distinct feature subsets) that quantify a variety of image properties. We use a data-mining approach to determine which feature subsets and image properties emerge as part of an “optimal” diagnostic model when applied to specific cancer endpoints. Our goal is to assess the performance of such comprehensive image feature sets for application to a wide variety of diagnostic problems. We perform this study on 12 endpoints including 6 renal tumor subtype endpoints and 6 renal cancer grade endpoints. Keywords-histology, image mining, computer-aided diagnosis PMID:28163980
Aitken-Palmer, Copper; A C Z M, Dipl; Ware, Lisa H; Braun, Lacey; Lang, Kenneth; Joyner, Priscilla H
2017-03-01
Maned wolves ( Chrysocyon brachyurus ) maintained in ex situ populations challenge veterinarians and managers with high neonatal mortality and parental incompetence. These challenges led to the development of a novel diagnostic approach for pregnancy detection using radiographic imaging without anesthesia or sedation. To do this, a specialized crate was constructed to easily contain a single maned wolf, allowing the capture of lateral projection radiographic images of the abdomen prior to and throughout a 66-day pregnancy (days 20, 34, 48, and 55 of 66). Radiographs taken at days 48 and 55 postbreeding showed evidence of neonatal skeleton mineralization, confirming pregnancy with two pups. The dam gave birth at day 66 to two pups. This technical report describes a novel approach without anesthesia for successful radiographic pregnancy detection and determination of litter size in the maned wolf, a midsize carnivore, using a specially constructed crate.
"You Will": Technology, Magic, and the Cultural Contexts of Technical Communication.
ERIC Educational Resources Information Center
Kitalong, Karla Saari
2000-01-01
Provides some background on the use of magical language in technical contexts, gives examples of magical discourse in technology advertisements and newsmagazine articles, and proposes a technical communication pedagogy of media analysis. Notes that the proposed pedagogy involves students conducting diagnostic critiques of media texts and affords…
NASA Astrophysics Data System (ADS)
Noel, Jean; Prieto, Juan C.; Styner, Martin
2017-03-01
Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.
The Importance of Quality in Ventilation-Perfusion Imaging.
Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman
2018-06-01
As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on appropriate imaging techniques and protocols, true imaging variants and tracer distributions versus artifacts that may result in a lower-quality or misinterpreted study, and the use of SPECT and SPECT/CT as an alternative providing a high-quality, interpretable study with better diagnostic accuracy and fewer nondiagnostic procedures than historical planar imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Virtual simulation as a learning method in interventional radiology.
Avramov, Predrag; Avramov, Milena; Juković, Mirela; Kadić, Vuk; Till, Viktor
2013-01-01
Radiology is the fastest growing discipline of medicine thanks to the implementation of new technologies and very rapid development of imaging diagnostic procedures in the last few decades. On the other hand, the development of imaging diagnostic procedures has put aside the traditional gaining of experience by working on real patients, and the need for other alternatives of learning interventional radiology procedures has emerged. A new method of virtual approach was added as an excellent alternative to the currently known methods of training on physical models and animals. Virtual reality represents a computer-generated reconstruction of anatomical environment with tactile interactions and it enables operators not only to learn on their own mistakes without compromising the patient's safety, but also to enhance their knowledge and experience. It is true that studies published so far on the validity of endovascular simulators have shown certain improvement of operator's technical skills and reduction in time needed for the procedure, but on the other hand, it is still a question whether these skills are transferable to the real patients in the angio room. With further improvement of technology, shortcomings of virtual approach to interventional procedures learning will be less significant and this procedure is likely to become the only method of learning in the near future.
Klemes, Jan; Kotzianova, Adela; Pokorny, Marek; Mojzes, Peter; Novak, Jindrich; Sukova, Lada; Demuth, Jaroslav; Vesely, Jaroslav; Sasek, Ladislav; Velebny, Vladimir
2017-11-01
Non-invasive optical diagnostic methods allow important information about studied systems to be obtained in a non-destructive way. Complete diagnosis requires information about the chemical composition as well as the morphological structure of a sample. We report on the development of an opto-mechanical probe that combines Raman spectroscopy (RS) and optical coherence tomography (OCT), two methods that provide all the crucial information needed for a non-invasive diagnosis. The aim of this paper is to introduce the technical design, construction and optimization of a dual opto-mechanical probe combining two in-house developed devices for confocal RS and OCT. The unique benefit of the probe is a gradual acquisition of OCT and RS data, which allows to use the acquired OCT images to pinpoint locations of interest for RS measurements. The parameters and the correct functioning of the probe were verified by RS scanning of various samples (silicon wafer and ex vivo tissue) based on their OCT images - lateral as well as depth scanning was performed. Both the OCT and RS systems were developed, optimized and tested with the ultimate aim of verifying the functionality of the probe. Picture: Schematic illustration and visualization of the developed RS-OCT probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
WE-FG-207A-05: Dedicated Breast CT as a Diagnostic Imaging Tool: Physics and Clinical Feasibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karellas, A.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
First ERO2.0 modeling of Be erosion and non-local transport in JET ITER-like wall
NASA Astrophysics Data System (ADS)
Romazanov, J.; Borodin, D.; Kirschner, A.; Brezinsek, S.; Silburn, S.; Huber, A.; Huber, V.; Bufferand, H.; Firdaouss, M.; Brömmel, D.; Steinbusch, B.; Gibbon, P.; Lasa, A.; Borodkina, I.; Eksaeva, A.; Linsmeier, Ch; Contributors, JET
2017-12-01
ERO is a Monte-Carlo code for modeling plasma-wall interaction and 3D plasma impurity transport for applications in fusion research. The code has undergone a significant upgrade (ERO2.0) which allows increasing the simulation volume in order to cover the entire plasma edge of a fusion device, allowing a more self-consistent treatment of impurity transport and comparison with a larger number and variety of experimental diagnostics. In this contribution, the physics-relevant technical innovations of the new code version are described and discussed. The new capabilities of the code are demonstrated by modeling of beryllium (Be) erosion of the main wall during JET limiter discharges. Results for erosion patterns along the limiter surfaces and global Be transport including incident particle distributions are presented. A novel synthetic diagnostic, which mimics experimental wide-angle 2D camera images, is presented and used for validating various aspects of the code, including erosion, magnetic shadowing, non-local impurity transport, and light emission simulation.
Dynamic Optical Coherence Tomography in Dermatology.
Ulrich, Martina; Themstrup, Lotte; de Carvalho, Nathalie; Manfredi, Marco; Grana, Costantino; Ciardo, Silvana; Kästle, Raphaela; Holmes, Jon; Whitehead, Richard; Jemec, Gregor B E; Pellacani, Giovanni; Welzel, Julia
2016-01-01
Optical coherence tomography (OCT) represents a non-invasive imaging technology, which may be applied to the diagnosis of non-melanoma skin cancer and which has recently been shown to improve the diagnostic accuracy of basal cell carcinoma. Technical developments of OCT continue to expand the applicability of OCT for different neoplastic and inflammatory skin diseases. Of these, dynamic OCT (D-OCT) based on speckle variance OCT is of special interest as it allows the in vivo evaluation of blood vessels and their distribution within specific lesions, providing additional functional information and consequently greater density of data. In an effort to assess the potential of D-OCT for future scientific and clinical studies, we have therefore reviewed the literature and preliminary unpublished data on the visualization of the microvasculature using D-OCT. Information on D-OCT in skin cancers including melanoma, as well as in a variety of other skin diseases, is presented in an atlas. Possible diagnostic features are suggested, although these require additional validation. © 2016 S. Karger AG, Basel.
Lesion location and cognitive impact of cerebral small vessel disease.
Biesbroek, J Matthijs; Weaver, Nick A; Biessels, Geert Jan
2017-04-25
Cerebral small vessel disease (SVD) is an important cause of cognitive impairment. Important MRI manifestations of SVD include white matter hyperintensities (WMH) and lacunes. This narrative review addresses the role of anatomical lesion location in the impact of SVD on cognition, integrating findings from early autopsy studies with emerging findings from recent studies with advanced image analysis techniques. Early autopsy and imaging studies of small case series indicate that single lacunar infarcts in, for example the thalamus, caudate nucleus or internal capsule can cause marked cognitive impairment. However, the findings of such case studies may not be generalizable. Emerging location-based image analysis approaches are now being applied to large cohorts. Recent studies show that WMH burden in strategic white matter tracts, such as the forceps minor or anterior thalamic radiation (ATR), is more relevant in explaining variance in cognitive functioning than global WMH volume. These findings suggest that the future diagnostic work-up of memory clinic patients could potentially be improved by shifting from a global assessment of WMH and lacune burden towards a quantitative assessment of lesion volumes within strategic brain regions. In this review, a summary of currently known strategic regions for SVD-related cognitive impairment is provided, highlighting recent technical developments in SVD research. The potential and challenges of location-based approaches for diagnostic purposes in clinical practice are discussed, along with their potential prognostic and therapeutic applications. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Review of the current state of whole slide imaging in pathology
Pantanowitz, Liron; Valenstein, Paul N.; Evans, Andrew J.; Kaplan, Keith J.; Pfeifer, John D.; Wilbur, David C.; Collins, Laura C.; Colgan, Terence J.
2011-01-01
Whole slide imaging (WSI), or “virtual” microscopy, involves the scanning (digitization) of glass slides to produce “digital slides”. WSI has been advocated for diagnostic, educational and research purposes. When used for remote frozen section diagnosis, WSI requires a thorough implementation period coupled with trained support personnel. Adoption of WSI for rendering pathologic diagnoses on a routine basis has been shown to be successful in only a few “niche” applications. Wider adoption will most likely require full integration with the laboratory information system, continuous automated scanning, high-bandwidth connectivity, massive storage capacity, and more intuitive user interfaces. Nevertheless, WSI has been reported to enhance specific pathology practices, such as scanning slides received in consultation or of legal cases, of slides to be used for patient care conferences, for quality assurance purposes, to retain records of slides to be sent out or destroyed by ancillary testing, and for performing digital image analysis. In addition to technical issues, regulatory and validation requirements related to WSI have yet to be adequately addressed. Although limited validation studies have been published using WSI there are currently no standard guidelines for validating WSI for diagnostic use in the clinical laboratory. This review addresses the current status of WSI in pathology related to regulation and validation, the provision of remote and routine pathologic diagnoses, educational uses, implementation issues, and the cost-benefit analysis of adopting WSI in routine clinical practice. PMID:21886892
Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R
2014-01-01
Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
To map the different methods for diagnostic imaging instruction at medical schools in Brazil. In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution.
Suh, Young Joo; Kim, Young Jin; Kim, Jin Young; Chang, Suyon; Im, Dong Jin; Hong, Yoo Jin; Choi, Byoung Wook
2017-11-01
We aimed to determine the effect of a whole-heart motion-correction algorithm (new-generation snapshot freeze, NG SSF) on the image quality of cardiac computed tomography (CT) images in patients with mechanical valve prostheses compared to standard images without motion correction and to compare the diagnostic accuracy of NG SSF and standard CT image sets for the detection of prosthetic valve abnormalities. A total of 20 patients with 32 mechanical valves who underwent wide-coverage detector cardiac CT with single-heartbeat acquisition were included. The CT image quality for subvalvular (below the prosthesis) and valvular regions (valve leaflets) of mechanical valves was assessed by two observers on a four-point scale (1 = poor, 2 = fair, 3 = good, and 4 = excellent). Paired t-tests or Wilcoxon signed rank tests were used to compare image quality scores and the number of diagnostic phases (image quality score≥3) between the standard image sets and NG SSF image sets. Diagnostic performance for detection of prosthetic valve abnormalities was compared between two image sets with the final diagnosis set by re-operation or clinical findings as the standard reference. NG SSF image sets had better image quality scores than standard image sets for both valvular and subvalvular regions (P < 0.05 for both). The number of phases that were of diagnostic image quality per patient was significantly greater in the NG SSF image set than standard image set for both valvular and subvalvular regions (P < 0.0001). Diagnostic performance of NG SSF image sets for the detection of prosthetic abnormalities (20 pannus and two paravalvular leaks) was greater than that of standard image sets (P < 0.05). Application of NG SSF can improve CT image quality and diagnostic accuracy in patients with mechanical valves compared to standard images. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
Overuse of Diagnostic Imaging for Work-Related Injuries.
Clendenin, Brianna Rebecca; Conlon, Helen Acree; Burns, Candace
2017-02-01
Overuse of health care in the United States is a growing concern. This article addresses the use of diagnostic imaging for work-related injuries. Diagnostic imaging drives substantial cost for increases in workers' compensation. Despite guidelines published by the American College of Radiology and the American College of Occupational Medicine and the Official Disability Guidelines, practitioners are prematurely ordering imaging sooner than recommended. Workers are exposed to unnecessary radiation and are incurring increasing costs without evidence of better outcomes. Practitioners caring for workers and submitting workers' compensation claims should adhere to official guidelines, using their professional judgment to consider financial impact and health outcomes of diagnostic imaging including computed tomography, magnetic resonance imaging, nuclear medicine imaging, radiography, and ultrasound.
[Diagnostic imaging of changes of the canine intervertebral disc].
Harder, Lisa K
2016-10-12
Intervertebral disc degeneration can cause intervertebral disc herniation. Diagnostic imaging, including radiography, computed tomography and magnetic resonance imaging, is the most important tool in diagnosis. Firstly, an overview of macroscopic and biochemical physiology and pathology of the intervertebral disc will be given. Subsequently, the physics of diagnostic imaging and the appearance of intervertebral disc degeneration and displacement in several imaging methods are described.
Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility.
Bukari, Bakhtiar A; Citartan, Marimuthu; Ch'ng, Ewe Seng; Bilibana, Mawethu P; Rozhdestvensky, Timofey; Tang, Thean-Hock
2017-05-01
Antibodies have been the workhorse for diagnostic immunohistochemistry to specifically interrogate the expression of certain protein to aid in histopathological diagnosis. This review introduces another dimension of histochemistry that employs aptamers as the core tool, the so-called aptahistochemistry. Aptamers are an emerging class of molecular recognition elements that could recapitulate the roles of antibodies. The many advantageous properties of aptamers suited for this diagnostic platform are scrutinized. An in-depth discussion on the technical aspects of aptahistochemistry is provided with close step-by-step comparison to the more familiarized immunohistochemical procedures, namely functionalization of the aptamer as a probe, antigen retrieval, optimization with emphasis on incubation parameters and visualization methods. This review offers rationales to overcome the anticipated challenges in transition from immunohistochemistry to aptahistochemistry, which is deemed feasible for an average diagnostic pathology laboratory.
NASA Astrophysics Data System (ADS)
Jain, Manu; Pulijal, Sri Varsha; Rajadhyaksha, Milind
2017-02-01
Reflectance confocal microscopy (RCM) is a non-invasive device that images skin lesions in vivo at a cellular resolution to guide management of patient care. While previous studies have demonstrated high accuracy of RCM in diagnosing skin cancers, most of these studies were performed by experts as a blinded analysis off-site and does not reflect true clinical scenario. We assessed the diagnostic potential of a novice RCM reader, in clinical settings, at the bedside. Over a period of 15 months (August 2015- November 2016), 168 lesions (from 128 cases) were imaged with RCM to determine BCC and or melanoma in dermoscopically equivocal lesions. To evaluate the learning curve of the novice reader, diagnostic accuracy was evaluated at the end of 15 months, as well as during the first half (8 months) and latter half (seven months) of the study. Histopathological diagnosis was available in 95/168 lesions, including 38 melanocytic lesions (ML: 13 melanomas and 25 nevi) and 57 non-melanocytic lesions (NML: 26 BCCs, 4 SCCs and 27 benign). The remaining 73/168 lesions (43.45%) were not biopsied (received topical treatment, monitoring). On RCM, 22/26 (84.61%) BCCs and 11/13 (84.61%) melanomas were correctly diagnosed. BCC was missed in 3/26 (11.53%) lesions and melanoma in 2/13 (15.38%) lesions; these lesions were diagnosed mostly as superficial BCCs and focal epidermal changes overlying deeply situated melanoma nodule on histopathology, respectively. False positive diagnosis of BCC was obtained in 7/23 (30.4%) lesions and of melanoma in 2/22 (4.5%) lesions; these were diagnosed mostly as benign inflamed keratosis and moderately atypical dysplastic nevus on histopathology, respectively. In 7 lesions BCC or melanoma could not be ruled out. A marked increase in the sensitivity and specificity was noticed between the two halves of the study. An overall high diagnostic accuracy of 80.28% with high sensitivity and specificity of 80.68% and 80.8%, respectively in diagnosing skin cancers was obtained. Based on this study, we identified some current limitations and potential pitfalls of RCM. The fact that the diagnostic accuracy of the novice reader increased with time, indicates a learning curve reading RCM images. Additionally, current technical limitations of RCM such as inability to differentiate various cell types, sampling error, and, shallow depth of imaging also lead to false diagnosis. Efforts are ongoing to overcome these challenges by building US based teaching-training program and through a multimodal imaging approach for better diagnosis and patient care.
Interventional radiology; Diagnostic radiology; X-ray imaging ... DIAGNOSTIC RADIOLOGY Diagnostic radiology helps health care professionals see structures inside your body. Doctors that specialize in the interpretation ...
Gunn, Martin L; Marin, Jennifer R; Mills, Angela M; Chong, Suzanne T; Froemming, Adam T; Johnson, Jamlik O; Kumaravel, Manickam; Sodickson, Aaron D
2016-08-01
In May 2015, the Academic Emergency Medicine consensus conference "Diagnostic imaging in the emergency department: a research agenda to optimize utilization" was held. The goal of the conference was to develop a high-priority research agenda regarding emergency diagnostic imaging on which to base future research. In addition to representatives from the Society of Academic Emergency Medicine, the multidisciplinary conference included members of several radiology organizations: American Society for Emergency Radiology, Radiological Society of North America, the American College of Radiology, and the American Association of Physicists in Medicine. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Through a multistep consensus process, participants developed targeted research questions for future research in six content areas within emergency diagnostic imaging: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use.
Investigating the Link Between Radiologists Gaze, Diagnostic Decision, and Image Content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent C
2013-01-01
Objective: To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods: Gaze data and diagnostic decisions were collected from six radiologists who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Texture analysis was performed in mammographic regions that attracted radiologists attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results: By poolingmore » the data from all radiologists machine learning produced highly accurate predictive models linking image content, gaze, cognition, and error. Merging radiologists gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the radiologists diagnostic errors while confirming 96.2% of their correct diagnoses. The radiologists individual errors could be adequately predicted by modeling the behavior of their peers. However, personalized tuning appears to be beneficial in many cases to capture more accurately individual behavior. Conclusions: Machine learning algorithms combining image features with radiologists gaze data and diagnostic decisions can be effectively developed to recognize cognitive and perceptual errors associated with the diagnostic interpretation of mammograms.« less
47 CFR 15.513 - Technical requirements for medical imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for medical imaging systems. 15.513 Section 15.513 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.513 Technical requirements for medical imaging systems. (a) The UWB...
Technical Highlight: NREL Improves Building Energy Simulation Programs Through Diagnostic Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polly, B.
2012-01-09
This technical highlight describes NREL research to develop Building Energy Simulation Test for Existing Homes (BESTEST-EX) to increase the quality and accuracy of energy analysis tools for the building retrofit market.
47 CFR 15.510 - Technical requirements for through D-wall imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for through D-wall imaging systems. 15.510 Section 15.510 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.510 Technical requirements for through D-wall imaging...
Are all after-hours diagnostic imaging appropriate? An Australian Emergency Department pilot study.
Gardiner, Fergus William; Zhai, Shaun
2016-12-01
This study was aimed at determining the extent to which after-hours diagnostic imaging is appropriate within the case hospital's Emergency Department. This was amid growing concerns of the inappropriateness of some medical investigations within the Australian health-care system. After-hours referral data and patient notes were used in reviewing the clinical case. Diagnostic imaging was deemed appropriate if reflective of clinical guidelines, and if not reflective, whether the investigation changed the patient's ongoing management. Results indicated that 96.37% of after-hours diagnostic imaging adhered to clinical guidelines and was appropriately requested, with 95.85% changing the ongoing management of the patient. The most sought after diagnostic imaging procedures were Chest X-Ray (30.83%), and CT Brain (16.58%), with 99.16% and 98.44 appropriateness respectively. Chest pain (14.49%) and motor vehicle accidents (8.12%) were the leading reason for ordering after-hours imaging. This study provided an Emergency Department example as it relates to after-hours diagnostic imaging appropriateness. This study found that most after-hours referrals were appropriate.
Optimizing Diagnostic Imaging in the Emergency Department
Mills, Angela M.; Raja, Ali S.; Marin, Jennifer R.
2015-01-01
While emergency diagnostic imaging use has increased significantly, there is a lack of evidence for corresponding improvements in patient outcomes. Optimizing emergency department (ED) diagnostic imaging has the potential to improve the quality, safety, and outcomes of ED patients, but to date, there have not been any coordinated efforts to further our evidence-based knowledge in this area. The objective of this article is to discuss six aspects of diagnostic imaging in order to provide background information on the underlying framework for the 2015 Academic Emergency Medicine consensus conference, “Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization.” The consensus conference aims to generate a high priority research agenda for emergency diagnostic imaging that will inform the design of future investigations. The six components herein will serve as the group topics for the conference: 1) patient-centered outcomes research; 2) clinical decision rules; 3) training, education, and competency; 4) knowledge translation and barriers to image optimization; 5) use of administrative data; and 6) comparative effectiveness research: alternatives to traditional CT use. PMID:25731864
Optimizing diagnostic imaging in the emergency department.
Mills, Angela M; Raja, Ali S; Marin, Jennifer R
2015-05-01
While emergency diagnostic imaging use has increased significantly, there is a lack of evidence for corresponding improvements in patient outcomes. Optimizing emergency department (ED) diagnostic imaging has the potential to improve the quality, safety, and outcomes of ED patients, but to date, there have not been any coordinated efforts to further our evidence-based knowledge in this area. The objective of this article is to discuss six aspects of diagnostic imaging to provide background information on the underlying framework for the 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The consensus conference aims to generate a high priority research agenda for emergency diagnostic imaging that will inform the design of future investigations. The six components herein will serve as the group topics for the conference: 1) patient-centered outcomes research; 2) clinical decision rules; 3) training, education, and competency; 4) knowledge translation and barriers to image optimization; 5) use of administrative data; and 6) comparative effectiveness research: alternatives to traditional CT use. © 2015 by the Society for Academic Emergency Medicine.
Chojniak, Rubens; Carneiro, Dominique Piacenti; Moterani, Gustavo Simonetto Peres; Duarte, Ivone da Silva; Bitencourt, Almir Galvão Vieira; Muglia, Valdair Francisco; D'Ippolito, Giuseppe
2017-01-01
Objective To map the different methods for diagnostic imaging instruction at medical schools in Brazil. Materials and Methods In this cross-sectional study, a questionnaire was sent to each of the coordinators of 178 Brazilian medical schools. The following characteristics were assessed: teaching model; total course hours; infrastructure; numbers of students and professionals involved; themes addressed; diagnostic imaging modalities covered; and education policies related to diagnostic imaging. Results Of the 178 questionnaires sent, 45 (25.3%) were completed and returned. Of those 45 responses, 17 (37.8%) were from public medical schools, whereas 28 (62.2%) were from private medical schools. Among the 45 medical schools evaluated, the method of diagnostic imaging instruction was modular at 21 (46.7%), classic (independent discipline) at 13 (28.9%), hybrid (classical and modular) at 9 (20.0%), and none of the preceding at 3 (6.7%). Diagnostic imaging is part of the formal curriculum at 36 (80.0%) of the schools, an elective course at 3 (6.7%), and included within another modality at 6 (13.3%). Professors involved in diagnostic imaging teaching are radiologists at 43 (95.5%) of the institutions. Conclusion The survey showed that medical courses in Brazil tend to offer diagnostic imaging instruction in courses that include other content and at different time points during the course. Radiologists are extensively involved in undergraduate medical education, regardless of the teaching methodology employed at the institution. PMID:28298730
NASA Astrophysics Data System (ADS)
Murukeshan, Vadakke M.; Hoong Ta, Lim
2014-11-01
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
Resource Planning Model | Energy Analysis | NREL
balancing authority. An image of a overlapping circles labelled Resource, Technical, Economic, and Market competing electricity technologies. An image of a overlapping circles labelled Resource, Technical, Economic ; Federal Resource Planning. Volume 1: Sectoral, Technical, and Economic Trends, NREL Technical Report (2016
Zöllner, Frank G; Daab, Markus; Sourbron, Steven P; Schad, Lothar R; Schoenberg, Stefan O; Weisser, Gerald
2016-01-14
Perfusion imaging has become an important image based tool to derive the physiological information in various applications, like tumor diagnostics and therapy, stroke, (cardio-) vascular diseases, or functional assessment of organs. However, even after 20 years of intense research in this field, perfusion imaging still remains a research tool without a broad clinical usage. One problem is the lack of standardization in technical aspects which have to be considered for successful quantitative evaluation; the second problem is a lack of tools that allow a direct integration into the diagnostic workflow in radiology. Five compartment models, namely, a one compartment model (1CP), a two compartment exchange (2CXM), a two compartment uptake model (2CUM), a two compartment filtration model (2FM) and eventually the extended Toft's model (ETM) were implemented as plugin for the DICOM workstation OsiriX. Moreover, the plugin has a clean graphical user interface and provides means for quality management during the perfusion data analysis. Based on reference test data, the implementation was validated against a reference implementation. No differences were found in the calculated parameters. We developed open source software to analyse DCE-MRI perfusion data. The software is designed as plugin for the DICOM Workstation OsiriX. It features a clean GUI and provides a simple workflow for data analysis while it could also be seen as a toolbox providing an implementation of several recent compartment models to be applied in research tasks. Integration into the infrastructure of a radiology department is given via OsiriX. Results can be saved automatically and reports generated automatically during data analysis ensure certain quality control.
Going the Distance: Taking a Diagnostic Imaging Program to Frontier and Rural Oregon
ERIC Educational Resources Information Center
Malosh, Ann; Mallory, Stacy; Olson, Marcene
2009-01-01
The Grow Your Own diagnostic imaging program is a public/private collaborative venture involving the efforts of an array of community colleges, employers, workforce, and educational partners throughout Oregon. This statewide Community College Partnership delivers diagnostic imaging education to Oregon's rural communities via distributed learning…
[Diagnostic imaging of urolithiais. Current recommendations and new developments].
Thalgott, M; Kurtz, F; Gschwend, J E; Straub, M
2015-07-01
Prevalence of urolithiasis is increasing in industrialized countries--in both adults and children, representing a unique diagnostic and therapeutic challenge. Risk-adapted diagnostic imaging currently means assessment with maximized sensitivity and specificity together with minimal radiation exposure. In clinical routine, imaging is performed by sonography, unenhanced computed tomography (NCCT) or intravenous urography (IVU) as well as plain kidney-ureter-bladder (KUB) radiographs. The aim of the present review is a critical guideline-based and therapy-aligned presentation of diagnostic imaging procedures for optimized treatment of urolithiasis considering the specifics in children and pregnant women.
NASA Technical Reports Server (NTRS)
Wiederholt, Bradley J.; Browning, Elica J.; Norton, Jeffrey E.; Johnson, William B.
1991-01-01
MITT Writer is a software system for developing computer based training for complex technical domains. A training system produced by MITT Writer allows a student to learn and practice troubleshooting and diagnostic skills. The MITT (Microcomputer Intelligence for Technical Training) architecture is a reasonable approach to simulation based diagnostic training. MITT delivers training on available computing equipment, delivers challenging training and simulation scenarios, and has economical development and maintenance costs. A 15 month effort was undertaken in which the MITT Writer system was developed. A workshop was also conducted to train instructors in how to use MITT Writer. Earlier versions were used to develop an Intelligent Tutoring System for troubleshooting the Minuteman Missile Message Processing System.
Technical aspects of cardiac PET/MRI.
Masuda, Atsuro; Nemoto, Ayaka; Takeishi, Yasuchika
2018-06-01
PET/MRI is a novel modality that enables to combine PET and MR images, and has significant potential to evaluate various cardiac diseases through the combination of PET molecular imaging and MRI functional imaging. Precise management of technical issues, however, is necessary for cardiac PET/MRI. This article describes several technical points, including patient preparation, MR attenuation correction, parallel acquisition of PET with MRI, clinical aspects, and image quality control.
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples.
Becker, Holger; Gärtner, Claudia
2017-01-01
Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.
Relationship of brain imaging with radionuclides and with x-ray computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhl, D.E.
1981-03-03
Because of high sensitivity and specificity for altered local cerebral structure, x-ray computed tomography (CT) is the preferred initial diagnostic imaging study under most circumstances when cerebral disease is suspected. CT has no competitor for detecting fresh intracerebral hemorrhage. Radionuclide imaging (RN) scan is preferred when relative perfusion is to be assessed, in patients allergic to contrast media, and when an adequate CT study is not technically possible. (RN) plays an important complementary role to CT, especially for patients suspected of subacute or chronic subdura hematoma, cerebral infarction, arteriovenous malformations, meningitis, encephalitis, normal pressure hydrocephalus, or when CT findings aremore » inconclusive. When CT is not available, RN serves as a good screening study for suspected cerebral tumor, infection, recent infarction, arteriovenous malformation, and chronic subdural hematoma. Future improvement in radionuclide imaging by means of emission composition potential. The compound plating approacl threshold for all the investigated transistors and fast neutron spectra lies within the raal. The value of the potential slightly changes with the coordinate change in this region, i.e. the charge on a collecting electrode is not practically guided up to a certain moment of time during the movement of nonequilibrium carriers.« less
[State of the art and future trends in technology for computed tomography dose reduction].
Calzado Cantera, A; Hernández-Girón, I; Salvadó Artells, M; Rodríguez González, R
2013-12-01
The introduction of helical and multislice acquisitions in CT scanners together with decreased image reconstruction times has had a tremendous impact on radiological practice. Technological developments in the last 10 to 12 years have enabled very high quality images to be obtained in a very short time. Improved image quality has led to an increase in the number of indications for CT. In parallel to this development, radiation exposure in patients has increased considerably. Concern about the potential health risks posed by CT imaging, reflected in diverse initiatives and actions by official organs and scientific societies, has prompted the search for ways to reduce radiation exposure in patients without compromising diagnostic efficacy. To this end, good practice guidelines have been established, special applications have been developed for scanners, and research has been undertaken to optimize the clinical use of CT. Noteworthy technical developments incorporated in scanners include the different modes of X-ray tube current modulation, automatic selection of voltage settings, selective organ protection, adaptive collimation, and iterative reconstruction. The appropriate use of these tools to reduce radiation doses requires thorough knowledge of how they work. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zagzebski, J.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Radiologic imaging of the renal parenchyma structure and function.
Grenier, Nicolas; Merville, Pierre; Combe, Christian
2016-06-01
Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.
Barrio, Jorge R; Marcus, Carol S; Hung, Joseph C; Keppler, Jennifer S
2004-01-01
We propose a new regulatory approach for positron emission tomography (PET) molecular imaging probes, essential tools in today's medicine. Even though the focus of this paper is on positron-emitting labeled probes, it is also justified to extend this proposed regulatory approach to other diagnostic nuclear medicine radiopharmaceuticals. Key aspects of this proposal include: (1) PET molecular imaging probes would be placed in a "no significant risk" category, similar to that category for devices in current Food and Drug Administration (FDA) regulations, based on overwhelming scientific evidence that demonstrates their faultless safety profile; (2) the FDA-sanctioned Radioactive Drug Research Committee (RDRC) will oversee all diagnostic research with these probes. The newly defined RDRC should approve "first in man" use; supervise a broader spectrum of diagnostic research protocols, including those looking to demonstrate initial efficacy, as well as multicenter clinical trials and the use of molecular imaging probes as a screening tool in drug discovery. The current investigational new drug (IND) mechanism is thus eliminated for these diagnostic probes; (3) when a molecular imaging probe has demonstrated diagnostic efficacy, FDA approval (i.e., NDA) will be sought. The review will be done by a newly constituted Radioactive Drug Advisory Committee (RDAC) composed of experts chosen by the professional societies, who would provide a binding assessment of the adequacy of the safety and efficacy data. When the RDAC recommends its diagnostic use on scientific and medical grounds, the molecular imaging probe becomes FDA approved. After a molecular imaging probe is approved for a diagnostic indication, the existing mechanism to seek reimbursement will be utilized; and (4) the FDA would retain its direct oversight function for traditional manufacturers engaged in commercial distribution of the approved diagnostic molecular imaging probes (i.e., under NDA) to monitor compliance with existing US Pharmacopeia (USP) requirements. With abbreviated and more appropriate regulations, new PET molecular imaging probes for diagnostic use would be then rapidly incorporated into the mainstream diagnostic medicine. Equally importantly, this approach would facilitate the use of molecular imaging in drug discovery and development, which would substantially reduce the costs and time required to bring new therapeutic drugs to market.
Preliminary clinical report of flexible videoarthroscopy in diagnostic knee and hip arthroscopy.
Bouaicha, Samy; Dora, Claudio; Puskas, Gabor J; Koch, Peter P; Wirth, Stephan H; Meyer, Dominik C
2012-01-01
Compared to rigid arthroscopic optics, a flexible camera system offers theoretically significant advantages: It has the potential to adapt to the naturally curved surface of joints, to move within the joint without stress to the cartilage or capsule and thereby to reduce the number of portals needed. Former studies evaluated flexible fiberoptic systems which were insufficient regarding image resolution. This is the first report on a new flexible videoendoscope with the so called "chip-on-the-tip" technology used in human joints. With a plasma sterilized 3.9 diameter flexible video endoscopy system (Visera ENF V, OLYMPUS) commonly used in diagnostic rhino-laryngoscopy, we performed preliminary testing in cadaveric knee joints. After successful feasibility testing we utilized the tool in two qualitative diagnostic knee and five hip arthroscopies in combination with conventional rigid 30° and 70° arthroscopes (STORZ). Qualitative evaluation showed superior visualisation of the posterior aspects of the knee joint as insertion of the posterior medial and lateral meniscal horn, tibial insertion of the posterior cruciate ligament and the posterolateral capsulo-ligamentous corner with acceptable image resolution and clarity compared to the rigid arthroscope. In the hip, it was possible to pass around the femoral neck, avoiding additional portals. There seemed to be virtually no risk for cartilage damage at all. Difficulties of the system were scope handling, navigation and orientation within the joint as well as potential damage to the tool itself. This is to our knowledge the first report on flexible videoarthroscopy. Some of the expectations were met, such as to reach virtually every corner the joint with minimal risk for the cartilage or other joint structures and with acceptable image quality. However, there are many significant disadvantages which question the routine use of such a videoendoscopic system with its present technical features. © 2012 – IOS Press and the authors. All rights reserved
Daly, Corinne; Urbach, David R; Stukel, Thérèse A; Nathan, Paul C; Deitel, Wayne; Paszat, Lawrence F; Wilton, Andrew S; Baxter, Nancy N
2015-09-03
Survivors of young adult malignancies are at risk of accumulated exposures to radiation from repetitive diagnostic imaging. We designed a population-based cohort study to describe patterns of diagnostic imaging and cumulative diagnostic radiation exposure among survivors of young adult cancer during a survivorship time period where surveillance imaging is not typically warranted. Young adults aged 20-44 diagnosed with invasive malignancy in Ontario from 1992-1999 who lived at least 5 years from diagnosis were identified using the Ontario Cancer Registry and matched 5 to 1 to randomly selected cancer-free persons. We determined receipt of 5 modalities of diagnostic imaging and associated radiation dose received by survivors and controls from years 5-15 after diagnosis or matched referent date through administrative data. Matched pairs were censored six months prior to evidence of recurrence. 20,911 survivors and 104,524 controls had a median of 13.5 years observation. Survivors received all modalities of diagnostic imaging at significantly higher rates than controls. Survivors received CT at a 3.49-fold higher rate (95% Confidence Interval [CI]:3.37, 3.62) than controls in years 5 to 15 after diagnosis. Survivors received a mean radiation dose of 26 miliSieverts solely from diagnostic imaging in the same time period, a 4.57-fold higher dose than matched controls (95% CI: 4.39, 4.81). Long-term survivors of young adult cancer have a markedly higher rate of diagnostic imaging over time than matched controls, imaging associated with substantial radiation exposure, during a time period when surveillance is not routinely recommended.
Cancer Risks Associated with External Radiation From Diagnostic Imaging Procedures
Linet, Martha S.; Slovis, Thomas L.; Miller, Donald L.; Kleinerman, Ruth; Lee, Choonsik; Rajaraman, Preetha; de Gonzalez, Amy Berrington
2012-01-01
The 600% increase in medical radiation exposure to the US population since 1980 has provided immense benefit, but potential future cancer risks to patients. Most of the increase is from diagnostic radiologic procedures. The objectives of this review are to summarize epidemiologic data on cancer risks associated with diagnostic procedures, describe how exposures from recent diagnostic procedures relate to radiation levels linked with cancer occurrence, and propose a framework of strategies to reduce radiation from diagnostic imaging in patients. We briefly review radiation dose definitions, mechanisms of radiation carcinogenesis, key epidemiologic studies of medical and other radiation sources and cancer risks, and dose trends from diagnostic procedures. We describe cancer risks from experimental studies, future projected risks from current imaging procedures, and the potential for higher risks in genetically susceptible populations. To reduce future projected cancers from diagnostic procedures, we advocate widespread use of evidence-based appropriateness criteria for decisions about imaging procedures, oversight of equipment to deliver reliably the minimum radiation required to attain clinical objectives, development of electronic lifetime records of imaging procedures for patients and their physicians, and commitment by medical training programs, professional societies, and radiation protection organizations to educate all stakeholders in reducing radiation from diagnostic procedures. PMID:22307864
Effect of routine diagnostic imaging for patients with musculoskeletal disorders: A meta-analysis.
Karel, Yasmaine H J M; Verkerk, Karin; Endenburg, Silvio; Metselaar, Sven; Verhagen, Arianne P
2015-10-01
The increasing use of diagnostic imaging has led to high expenditures, unnecessary invasive procedures and/or false-positive diagnoses, without certainty that the patients actually benefit from these imaging procedures. This review explores whether diagnostic imaging leads to better patient-reported outcomes in individuals with musculoskeletal disorders. Databases were searched from inception to September 2013, together with scrutiny of selected bibliographies. Trials were eligible when: 1) a diagnostic imaging procedure was compared with any control group not getting or not receiving the results of imaging; 2) the population included individuals suffering from musculoskeletal disorders, and 3) if patient-reported outcomes were available. Primary outcome measures were pain and function. Secondary outcome measures were satisfaction and quality of life. Subgroup analysis was done for different musculoskeletal complaints and high technological medical imaging (MRI/CT). Eleven trials were eligible. The effects of diagnostic imaging were only evaluated in patients with low back pain (n=7) and knee complaints (n=4). Overall, there was a moderate level of evidence for no benefit of diagnostic imaging on all outcomes compared with controls. A significant but clinically irrelevant effect was found in favor of no (routine) imaging in low back pain patients in terms of pain severity at short [SMD 0.17 (0.04-0.31)] and long-term follow-up [SMD 0.13 (0.02-0.24)], and for overall improvement [RR 1.15 (1.03-1.28)]. Subgroup analysis did not significantly change these results. These results strengthen the available evidence that routine referral to diagnostic imaging by general practitioners for patients with knee and low back pain yields little to no benefit. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
The neutron imaging diagnostic at NIF (invited).
Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C
2012-10-01
A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.
Cost-effective handling of digital medical images in the telemedicine environment.
Choong, Miew Keen; Logeswaran, Rajasvaran; Bister, Michel
2007-09-01
This paper concentrates on strategies for less costly handling of medical images. Aspects of digitization using conventional digital cameras, lossy compression with good diagnostic quality, and visualization through less costly monitors are discussed. For digitization of film-based media, subjective evaluation of the suitability of digital cameras as an alternative to the digitizer was undertaken. To save on storage, bandwidth and transmission time, the acceptable degree of compression with diagnostically no loss of important data was studied through randomized double-blind tests of the subjective image quality when compression noise was kept lower than the inherent noise. A diagnostic experiment was undertaken to evaluate normal low cost computer monitors as viable viewing displays for clinicians. The results show that conventional digital camera images of X-ray images were diagnostically similar to the expensive digitizer. Lossy compression, when used moderately with the imaging noise to compression noise ratio (ICR) greater than four, can bring about image improvement with better diagnostic quality than the original image. Statistical analysis shows that there is no diagnostic difference between expensive high quality monitors and conventional computer monitors. The results presented show good potential in implementing the proposed strategies to promote widespread cost-effective telemedicine and digital medical environments. 2006 Elsevier Ireland Ltd
Secrets to effective imaging services marketing.
Leepson, Evan
2005-01-01
Marketing outpatient diagnostic imaging services is similar to marketing professional services. However, the definition of marketing outpatient diagnostic imaging goes far beyond textbook and traditional meanings of marketing. There are 5 major trends that are forcing hospitals to market their diagnostic imaging services: demographics, competition, non-radiologist expansion, self-protective practice, and evolving technologies. Before thinking about identifying whom to target to develop a strategic relationship, it is necessary to get a sense of what is going on in the local area in terms of demographic trends. Much of this information can be obtained from the hospital's planning department. Local and state health planning organizations have some of the data and information. It is most critical for imaging departments to manage strategic relationships because they do not have direct access to patients. The department is solely dependent on cultivating relationships if it is to thrive. Diagnostic imaging centers have more freedom than hospitals when considering with whom to develop relationships. There are 5 essential components to any diagnostic imaging services marketing plan: be on top of referral patterns; brag about the organization's service; know the customer; keep communication channels open; and understand that marketing is a family affair. Successful diagnostic imaging marketing is key to an organization's long-term health. Developing and implementing a comprehensive, targeted, and sustained plan is crucial.
Vlahiotis, Anna; Griffin, Brian; Stavros, A Thomas; Margolis, Jay
2018-01-01
Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam. To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures. Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy) other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event), with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes. The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients), 6,987,399 breast ultrasounds (42.4% of patients), and 1,585,856 biopsies (10.3% of patients). Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD) costs for diagnostic mammograms of US$349 ($493), ultrasounds US$132 ($134), and biopsies US$1,938 ($2,343) contributed US$3.05 billion, US$0.92 billion, and US$3.07 billion, respectively, to annual diagnostic breast expenditures estimated at US$7.91 billion. The volume and expense of additional breast diagnostic testing, estimated at US$7.91 billion annually, underscores the need for technological improvements in the breast diagnostic landscape.
[Technical specification for clinical application of critical ultrasonography].
Yin, M G; Wang, X T; Liu, D W; Chao, Y G; Guan, X D; Kang, Y; Yan, J; Ma, X C; Tang, Y Q; Hu, Z J; Yu, K J; Chen, D C; Ai, Y H; Zhang, L N; Zhang, H M; Wu, J; Liu, L X; Zhu, R; He, W; Zhang, Q; Ding, X; Li, L; Li, Y; Liu, H T; Zeng, Q B; Si, X; Chen, H; Zhang, J W; Xu, Q H; Chen, W J; Chen, X K; Huang, D Z; Cai, S H; Shang, X L; Guan, J; Du, J; Zhao, L; Wang, M J; Cui, S; Wang, X M; Zhou, R; Zeng, X Y; Wang, Y P; Lyu, L W; Zhu, W H; Zhu, Y; Duan, J; Yang, J; Yang, H
2018-06-01
Critical ultrasonography(CUS) is different from the traditional diagnostic ultrasound, the examiner and interpreter of the image are critical care medicine physicians. The core content of CUS is to evaluate the pathophysiological changes of organs and systems and etiology changes. With the idea of critical care medicine as the soul, it can integrate the above information and clinical information, bedside real-time diagnosis and titration treatment, and evaluate the therapeutic effect so as to improve the outcome. CUS is a traditional technique which is applied as a new application method. The consensus of experts on critical ultrasonography in China released in 2016 put forward consensus suggestions on the concept, implementation and application of CUS. It should be further emphasized that the accurate and objective assessment and implementation of CUS requires the standardization of ultrasound image acquisition and the need to establish a CUS procedure. At the same time, the standardized training for CUS accepted by critical care medicine physicians requires the application of technical specifications, and the establishment of technical specifications is the basis for the quality control and continuous improvement of CUS. Chinese Critical Ultrasound Study Group and Critical Hemodynamic Therapy Collabration Group, based on the rich experience of clinical practice in critical care and research, combined with the essence of CUS, to learn the traditional ultrasonic essence, established the clinical application technical specifications of CUS, including in five parts: basic view and relevant indicators to obtain in CUS; basic norms for viscera organ assessment and special assessment; standardized processes and systematic inspection programs; examples of CUS applications; CUS training and the application of qualification certification. The establishment of applied technology standard is helpful for standardized training and clinical correct implementation. It is helpful for clinical evaluation and correct guidance treatment, and is also helpful for quality control and continuous improvement of CUS application.
Confocal Endomicroscopy: Instrumentation and Medical Applications
Jabbour, Joey M.; Saldua, Meagan A.; Bixler, Joel N.; Maitland, Kristen C.
2013-01-01
Advances in fiber optic technology and miniaturized optics and mechanics have propelled confocal endomicroscopy into the clinical realm. This high resolution, non-invasive imaging technology provides the ability to microscopically evaluate cellular and sub-cellular features in tissue in vivo by optical sectioning. Because many cancers originate in epithelial tissues accessible by endoscopes, confocal endomicroscopy has been explored to detect regions of possible neoplasia at an earlier stage by imaging morphological features in vivo that are significant in histopathologic evaluation. This technique allows real-time assessment of tissue which may improve diagnostic yield by guiding biopsy. Research and development continues to reduce the overall size of the imaging probe, increase the image acquisition speed, and improve resolution and field of view of confocal endomicroscopes. Technical advances will continue to enable application to less accessible organs and more complex systems in the body. Lateral and axial resolutions down to 0.5 μm and 3 μm, respectively, field of view as large as 800×450 μm, and objective lens and total probe outer diameters down to 350 μm and 1.25 mm, respectively, have been achieved. We provide a review of the historical developments of confocal imaging in vivo, the evolution of endomicroscope instrumentation, and the medical applications of confocal endomicroscopy. PMID:21994069
Relyea-Chew, Annemarie
2013-09-01
Federal regulation of diagnostic imaging in the United States has increased dramatically in recent years. The primary statutes aimed at curbing escalating costs and reorienting the national priorities of health care have a direct effect on the specialty of diagnostic imaging. This paper surveys the major regulations and current issues that pose challenges to the practice of diagnostic imaging in the United States, from the Deficit Reduction Act of 2005 through the American Taxpayer Relief Act of 2012. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.
Multi-method automated diagnostics of rotating machines
NASA Astrophysics Data System (ADS)
Kostyukov, A. V.; Boychenko, S. N.; Shchelkanov, A. V.; Burda, E. A.
2017-08-01
The automated machinery diagnostics and monitoring systems utilized within the petrochemical plants are an integral part of the measures taken to ensure safety and, as a consequence, the efficiency of these industrial facilities. Such systems are often limited in their functionality due to the specifics of the diagnostic techniques adopted. As the diagnostic techniques applied in each system are limited, and machinery defects can have different physical nature, it becomes necessary to combine several diagnostics and monitoring systems to control various machinery components. Such an approach is inconvenient, since it requires additional measures to bring the diagnostic results in a single view of the technical condition of production assets. In this case, we mean by a production facility a bonded complex of a process unit, a drive, a power source and lines. A failure of any of these components will cause an outage of the production asset, which is unacceptable. The purpose of the study is to test a combined use of vibration diagnostics and partial discharge techniques within the diagnostic systems of enterprises for automated control of the technical condition of rotating machinery during maintenance and at production facilities. The described solutions allow you to control the condition of mechanical and electrical components of rotating machines. It is shown that the functionality of the diagnostics systems can be expanded with minimal changes in technological chains of repair and operation of rotating machinery. Automation of such systems reduces the influence of the human factor on the quality of repair and diagnostics of the machinery.
The system of technical diagnostics of the industrial safety information network
NASA Astrophysics Data System (ADS)
Repp, P. V.
2017-01-01
This research is devoted to problems of safety of the industrial information network. Basic sub-networks, ensuring reliable operation of the elements of the industrial Automatic Process Control System, were identified. The core tasks of technical diagnostics of industrial information safety were presented. The structure of the technical diagnostics system of the information safety was proposed. It includes two parts: a generator of cyber-attacks and the virtual model of the enterprise information network. The virtual model was obtained by scanning a real enterprise network. A new classification of cyber-attacks was proposed. This classification enables one to design an efficient generator of cyber-attacks sets for testing the virtual modes of the industrial information network. The numerical method of the Monte Carlo (with LPτ - sequences of Sobol), and Markov chain was considered as the design method for the cyber-attacks generation algorithm. The proposed system also includes a diagnostic analyzer, performing expert functions. As an integrative quantitative indicator of the network reliability the stability factor (Kstab) was selected. This factor is determined by the weight of sets of cyber-attacks, identifying the vulnerability of the network. The weight depends on the frequency and complexity of cyber-attacks, the degree of damage, complexity of remediation. The proposed Kstab is an effective integral quantitative measure of the information network reliability.
Davatzikos, Christos; Rathore, Saima; Bakas, Spyridon; Pati, Sarthak; Bergman, Mark; Kalarot, Ratheesh; Sridharan, Patmaa; Gastounioti, Aimilia; Jahani, Nariman; Cohen, Eric; Akbari, Hamed; Tunc, Birkan; Doshi, Jimit; Parker, Drew; Hsieh, Michael; Sotiras, Aristeidis; Li, Hongming; Ou, Yangming; Doot, Robert K; Bilello, Michel; Fan, Yong; Shinohara, Russell T; Yushkevich, Paul; Verma, Ragini; Kontos, Despina
2018-01-01
The growth of multiparametric imaging protocols has paved the way for quantitative imaging phenotypes that predict treatment response and clinical outcome, reflect underlying cancer molecular characteristics and spatiotemporal heterogeneity, and can guide personalized treatment planning. This growth has underlined the need for efficient quantitative analytics to derive high-dimensional imaging signatures of diagnostic and predictive value in this emerging era of integrated precision diagnostics. This paper presents cancer imaging phenomics toolkit (CaPTk), a new and dynamically growing software platform for analysis of radiographic images of cancer, currently focusing on brain, breast, and lung cancer. CaPTk leverages the value of quantitative imaging analytics along with machine learning to derive phenotypic imaging signatures, based on two-level functionality. First, image analysis algorithms are used to extract comprehensive panels of diverse and complementary features, such as multiparametric intensity histogram distributions, texture, shape, kinetics, connectomics, and spatial patterns. At the second level, these quantitative imaging signatures are fed into multivariate machine learning models to produce diagnostic, prognostic, and predictive biomarkers. Results from clinical studies in three areas are shown: (i) computational neuro-oncology of brain gliomas for precision diagnostics, prediction of outcome, and treatment planning; (ii) prediction of treatment response for breast and lung cancer, and (iii) risk assessment for breast cancer.
Uosyte, Raimonda; Shaw, Darren J; Gunn-Moore, Danielle A; Fraga-Manteiga, Eduardo; Schwarz, Tobias
2015-01-01
Turbinate destruction is an important diagnostic criterion in canine and feline nasal computed tomography (CT). However decreased turbinate visibility may also be caused by technical CT settings and nasal fluid. The purpose of this experimental, crossover study was to determine whether fluid reduces conspicuity of canine and feline nasal turbinates in CT and if so, whether CT settings can maximize conspicuity. Three canine and three feline cadaver heads were used. Nasal slabs were CT-scanned before and after submerging them in a water bath; using sequential, helical, and ultrahigh resolution modes; with images in low, medium, and high frequency image reconstruction kernels; and with application of additional posterior fossa optimization and high contrast enhancing filters. Visible turbinate length was measured by a single observer using manual tracing. Nasal density heterogeneity was measured using the standard deviation (SD) of mean nasal density from a region of interest in each nasal cavity. Linear mixed-effect models using the R package ‘nlme’, multivariable models and standard post hoc Tukey pair-wise comparisons were performed to investigate the effect of several variables (nasal content, scanning mode, image reconstruction kernel, application of post reconstruction filters) on measured visible total turbinate length and SD of mean nasal density. All canine and feline water-filled nasal slabs showed significantly decreased visibility of nasal turbinates (P < 0.001). High frequency kernels provided the best turbinate visibility and highest SD of aerated nasal slabs, whereas medium frequency kernels were optimal for water-filled nasal slabs. Scanning mode and filter application had no effect on turbinate visibility. PMID:25867935
The essence of the Japan Radiological Society/Japanese College of Radiology Imaging Guideline.
Yamashita, Yasuyuki; Murayama, Sadayuki; Okada, Masahiro; Watanabe, Yoshiyuki; Kataoka, Masako; Kaji, Yasushi; Imamura, Keiko; Takehara, Yasuo; Hayashi, Hiromitsu; Ohno, Kazuko; Awai, Kazuo; Hirai, Toshinori; Kojima, Kazuyuki; Sakai, Shuji; Matsunaga, Naofumi; Murakami, Takamichi; Yoshimitsu, Kengo; Gabata, Toshifumi; Matsuzaki, Kenji; Tohno, Eriko; Kawahara, Yasuhiro; Nakayama, Takeo; Monzawa, Shuichi; Takahashi, Satoru
2016-01-01
Diagnostic imaging is undoubtedly important in modern medicine, and final clinical decisions are often made based on it. Fortunately, Japan has the highest numbers of diagnostic imaging instruments, such as CT and MRI devices, and boasts easy access to them as well as a high level of diagnostic accuracy. In consequence, a very large number of imaging examinations are performed, but diagnostic instruments are installed in so many medical facilities that expert management of these examinations tends to be insufficient. Particularly, in order to avoid risks, clinicians have recently become indifferent to indications of imaging modalities and tend to rely on CT or MRI resulting in increasing the number of imaging examinations in Japan. This is a serious problem from the viewpoints of avoidance of unnecessary exposure and medical economy. Under these circumstances, the Japan Radiological Society and Japanese College of Radiology jointly initiated the preparation of new guidelines for diagnostic imaging. However, the field of diagnostic imaging is extremely wide, and it is impossible to cover all diseases. Therefore, in drafting the guidelines, we selected important diseases and focused on "showing evidence and suggestions in the form of clinical questions (CQs)" concerning clinically encountered questions and "describing routine imaging techniques presently considered to be standards to guarantee the quality of imaging examinations". In so doing, we adhered to the basic principles of assuming the readers to be "radiologists specializing in diagnostic imaging", "simultaneously respecting the global standards and attending to the situation in Japan", and "making the guidelines consistent with those of other scientific societies related to imaging". As a result, the guidelines became the largest ever, consisting of 152 CQs, nine areas of imaging techniques, and seven reviews, but no other guidelines in the world summarize problems concerning diagnostic imaging in the form of CQs. In this sense, the guidelines are considered to reflect the abilities of diagnostic radiologists in Japan. The contents of the guidelines are essential knowledge for radiologists, but we believe that they are also of use to general clinicians and clinical radiological technicians. While the number and contents of CQs are still insufficient, and while chapters such as those on imaging in children and emergency imaging need to be supplemented, the guidelines will be serially improved through future revisions. Lastly, we would like to extend our sincere thanks to the 153 members of the drafting committee who authored the guidelines, 12 committee chairpersons who coordinated their efforts, six members of the secretariat, and affiliates of related scientific societies who performed external evaluation.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Donovan, Michael S; Kassop, David; Liotta, Robert A; Hulten, Edward A
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction.
Donovan, Michael S.; Kassop, David; Liotta, Robert A.; Hulten, Edward A.
2015-01-01
Sinus venosus atrial septal defects (SV-ASD) have nonspecific clinical presentations and represent a diagnostic imaging challenge. Transthoracic echocardiography (TTE) remains the initial diagnostic imaging modality. However, detection rates have been as low as 12%. Transesophageal echocardiography (TEE) improves diagnostic accuracy though it may not detect commonly associated partial anomalous pulmonary venous return (PAPVR). Cardiac magnetic resonance (CMR) imaging provides a noninvasive, highly sensitive and specific imaging modality of SV-ASD. We describe a case of an adult male with exercise-induced, paroxysmal supraventricular tachycardia who presented with palpitations and dyspnea. Despite nondiagnostic imaging results on TTE, CMR proved to be instrumental in visualizing a hemodynamically significant SV-ASD with PAPVR that ultimately led to surgical correction. PMID:25705227
Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir
2014-01-01
Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318
Flaherty, Stephen; Mortele, Koenraad J; Young, Gary J
2018-06-01
To report utilization trends in diagnostic imaging among commercially insured Massachusetts residents from 2009 to 2013. Current Procedural Terminology codes were used to identify diagnostic imaging claims in the Massachusetts All-Payer Claims Database for the years 2009 to 2013. We reported utilization and spending annually by imaging modality using total claims, claims per 1,000 individuals, total expenditures, and average per claim payments. The number of diagnostic imaging claims per insured MA resident increased only 0.6% from 2009 to 2013, whereas nonradiology claims increased by 6% annually. Overall diagnostic imaging expenditures, adjusted for inflation, were 27% lower in 2009 than 2013, compared with an 18% increase in nonimaging expenditures. Average payments per claim were lower in 2013 than 2009 for all modalities except nuclear medicine. Imaging procedure claims per 1,000 MA residents increased from 2009 to 2013 by 13% in MRI, from 147 to 166; by 17% in ultrasound, from 453 to 530; and by 12% in radiography (x-ray), from 985 to 1,100. However, CT claims per 1,000 fell by 37%, from 341 to 213, and nuclear medicine declined 57%, from 89 claims per 1,000 to 38. Diagnostic imaging utilization exhibited negligible growth over the study period. Diagnostic imaging expenditures declined, largely the result of falling payments per claim in most imaging modalities, in contrast with increased utilization and spending on nonimaging services. Utilization of MRI, ultrasound, and x-ray increased from 2009 to 2013, whereas CT and nuclear medicine use decreased sharply, although CT was heavily impacted by billing code changes. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Telemedicine-based system for quality management and peer review in radiology.
Morozov, Sergey; Guseva, Ekaterina; Ledikhova, Natalya; Vladzymyrskyy, Anton; Safronov, Dmitry
2018-06-01
Quality assurance is the key component of modern radiology. A telemedicine-based quality assurance system helps to overcome the "scoring" approach and makes the quality control more accessible and objective. A concept for quality assurance in radiology is developed. Its realization is a set of strategies, actions, and tools. The latter is based on telemedicine-based peer review of 23,199 computed tomography (CT) and magnetic resonance imaging (MRI) images. The conception of the system for quality management in radiology represents a chain of actions: "discrepancies evaluation - routine support - quality improvement activity - discrepancies evaluation". It is realized by an audit methodology, telemedicine, elearning, and other technologies. After a year of systemic telemedicine-based peer reviews, the authors have estimated that clinically significant discrepancies were detected in 6% of all cases, while clinically insignificant ones were found in 19% of cases. Most often, problems appear in musculoskeletal records; 80% of the examinations have diagnostic or technical imperfections. The presence of routine telemedicine support and personalized elearning allowed improving the diagnostics quality. The level of discrepancies has decreased significantly (p < 0.05). The telemedicine-based peer review system allows improving radiology departments' network effectiveness. • "Scoring" approach to radiologists' performance assessment must be changed. • Telemedicine peer review and personalized elearning significantly decrease the number of discrepancies. • Teleradiology allows linking all primary-level hospitals to a common peer review network.
Health information exchange reduces repeated diagnostic imaging for back pain.
Bailey, James E; Pope, Rebecca A; Elliott, Elizabeth C; Wan, Jim Y; Waters, Teresa M; Frisse, Mark E
2013-07-01
This study seeks to determine whether health information exchange reduces repeated diagnostic imaging and related costs in emergency back pain evaluation. This was a longitudinal data analysis of health information exchange patient-visit data. All repeated emergency department (ED) patient visits for back pain with previous ED diagnostic imaging to a Memphis metropolitan area ED between August 1, 2007, and July 31, 2009, were included. Use of a regional health information exchange by ED personnel to access the patient's record during the emergency visit was the primary independent variable. Main outcomes included repeated lumbar or thoracic diagnostic imaging (radiograph, computed tomography [CT], or magnetic resonance imaging [MRI]) and total patient-visit estimated cost. One hundred seventy-nine (22.4%) of the 800 qualifying repeated back pain visits resulted in repeated diagnostic imaging (radiograph 84.9%, CT 6.1%, and MRI 9.5%). Health information exchange use in the study population was low, at 12.5%, and health care providers as opposed to administrative/nursing staff accounted for 80% of the total health information exchange use. Health information exchange use by any ED personnel was associated with reduced repeated diagnostic imaging (odds ratio 0.36; 95% confidence interval 0.18 to 0.71), as was physician or nurse practitioner health information exchange use (odds ratio 0.47; 95% confidence interval 0.23 to 0.96). No cost savings were associated with health information exchange use because of increased CT imaging when health care providers used health information exchange. Health information exchange use is associated with 64% lower odds of repeated diagnostic imaging in the emergency evaluation of back pain. Health information exchange effect on estimated costs was negligible. More studies are needed to evaluate specific strategies to increase health information exchange use and further decrease potentially unnecessary diagnostic imaging and associated costs of care. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
A multispectral imaging approach for diagnostics of skin pathologies
NASA Astrophysics Data System (ADS)
Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis
2013-06-01
Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.
Brand, Christopher J.
2013-01-01
The U.S. Geological Survey—National Wildlife Health Center (NWHC) provides diagnostic services, technical assistance, applied research, and training to federal, state, territorial, and local government agencies and Native American tribes on wildlife diseases and wildlife health issues throughout the United States and its territories, commonwealth, and freely associated states. Since 1975, >16,000 carcasses and specimens from vertebrate species listed under the Endangered Species Act have been submitted to NWHC for determination of causes of morbidity or mortality or assessment of health/disease status. Results from diagnostic investigations, analyses of the diagnostic database, technical assistance and consultation, field investigation of epizootics, and wildlife disease research by NWHC wildlife disease specialists have contributed importantly to the management and recovery of listed species.
Brand, Christopher J
2013-12-01
The U.S. Geological Survey-National Wildlife Health Center (NWHC) provides diagnostic services, technical assistance, applied research, and training to federal, state, territorial, and local government agencies and Native American tribes on wildlife diseases and wildlife health issues throughout the United States and its territories, commonwealth, and freely associated states. Since 1975, >16,000 carcasses and specimens from vertebrate species listed under the Endangered Species Act have been submitted to NWHC for determination of causes of morbidity or mortality or assessment of health/disease status. Results from diagnostic investigations, analyses of the diagnostic database, technical assistance and consultation, field investigation of epizootics, and wildlife disease research by NWHC wildlife disease specialists have contributed importantly to the management and recovery of listed species.
Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L
2011-02-01
Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.
Chen, Jun; Yin, Meng; Talwalkar, Jayant A.; Oudry, Jennifer; Glaser, Kevin J.; Smyrk, Thomas C.; Miette, Véronique; Sandrin, Laurent
2017-01-01
Purpose To evaluate the diagnostic performance and examination success rate of magnetic resonance (MR) elastography and vibration-controlled transient elastography (VCTE) in the detection of hepatic fibrosis in patients with severe to morbid obesity. Materials and Methods This prospective and HIPAA-compliant study was approved by the institutional review board. A total of 111 patients (71 women, 40 men) participated. Written informed consent was obtained from all patients. Patients underwent MR elastography with two readers and VCTE with three observers to acquire liver stiffness measurements for liver fibrosis assessment. The results were compared with those from liver biopsy. Each pathology specimen was evaluated by two hepatopathologists according to the METAVIR scoring system or Brunt classification when appropriate. All imaging observers were blinded to the biopsy results, and all hepatopathologists were blinded to the imaging results. Examination success rate, interobserver agreement, and diagnostic accuracy for fibrosis detection were assessed. Results In this obese patient population (mean body mass index = 40.3 kg/m2; 95% confidence interval [CI]: 38.7 kg/m2, 41.8 kg/m2]), the examination success rate was 95.8% (92 of 96 patients) for MR elastography and 81.3% (78 of 96 patients) or 88.5% (85 of 96 patients) for VCTE. Interobserver agreement was higher with MR elastography than with biopsy (intraclass correlation coefficient, 0.95 vs 0.89). In patients with successful MR elastography and VCTE examinations (excluding unreliable VCTE examinations), both MR elastography and VCTE had excellent diagnostic accuracy in the detection of clinically significant hepatic fibrosis (stage F2–F4) (mean area under the curve: 0.93 [95% CI: 0.85, 0.97] vs 0.91 [95% CI: 0.83, 0.96]; P = .551). Conclusion In this obese patient population, both MR elastography and VCTE had excellent diagnostic performance for assessing hepatic fibrosis; MR elastography was more technically reliable than VCTE and had a higher interobserver agreement than liver biopsy. © RSNA, 2016 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on January 25, 2017. PMID:27861111
Dental Assisting Program Guide.
ERIC Educational Resources Information Center
Georgia Univ., Athens. Dept. of Vocational Education.
This program guide contains the standard dental assisting curriculum for technical institutes in Georgia. The curriculum encompasses the minimum competencies required for entry-level dental assistants, and includes job skills in the technical areas of preventive dentistry; four-handed dentistry; chairside assisting with emphasis in diagnostics,…
Diagnostic imaging and radiation exposure in inflammatory bowel disease.
Zakeri, Nekisa; Pollok, Richard C G
2016-02-21
Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.
Diagnostic imaging and radiation exposure in inflammatory bowel disease
Zakeri, Nekisa; Pollok, Richard CG
2016-01-01
Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282
Telemedicine: a cautious welcome.
Wootton, R.
1996-01-01
Telemedicine is a major new development. Having become technically and economically feasible, it deserves proper investigation. Rushing into equipment purchase, however, is almost certain to prove counterproductive. Face to face contact is fundamental to health care and enthusiasts of telemedicine should recognise that it is not as good as the real thing (and unlikely ever to be). However, constraints on time and resources will make face to face consultation increasingly expensive, and telemedicine has the potential to produce major efficiencies in the diagnostic process. The goal of current research is therefore to marry medicine with technology, capitalising on the advantages of telemedicine and producing a robust system that delivers an acceptable service at an appropriate price. Images p1375-a p1375-b p1376-a PMID:8956707
Combustion process science and technology
NASA Technical Reports Server (NTRS)
Hale, Robert R.
1989-01-01
An important and substantial area of technical work in which noncontact temperature measurement (NCTM) is desired is that involving combustion process research. In the planning for this workshop, it was hoped that W. Serignano would provide a briefing regarding the experimental requirements for thermal measurements to support such research. The particular features of thermal measurement requirements included those describing the timeline for combustion experiments, the requirements for thermal control and diagnostics of temperature and other related thermal measurements and the criticality to the involved science to parametric features of measurement capability including precision, repeatability, stability, and resolution. In addition, it was hoped that definitions could be provided which characterize the needs for concurrent imaging as it relates to science observations during the conduct of experimentation.
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT
The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...
Diagnostic imaging lets doctors look inside your body for clues about a medical condition. A variety of machines and ... and activities inside your body. The type of imaging your doctor uses depends on your symptoms and ...
Shaida, Nadeem; Priest, Andrew N; See, T C; Winterbottom, Andrew P; Graves, Martin J; Lomas, David J
2017-06-01
To evaluate the diagnostic performance of velocity- and acceleration-sensitized noncontrast-enhanced magnetic resonance angiography (NCE-MRA) of the infrageniculate arteries using contrast-enhanced MRA (CE-MRA) as a reference standard. Twenty-four patients with symptoms of peripheral arterial disease were recruited. Each patient's infrageniculate arterial tree was examined using a velocity-dependent flow-sensitized dephasing (VEL-FSD) technique, an acceleration-dependent (ACC-FSD) technique, and our conventional CE-MRA technique performed at 1.5T. The images were independently reviewed by two experienced vascular radiologists, who evaluated each vessel segment to assess visibility, diagnostic confidence, venous contamination, and detection of pathology. In all, 432 segments were evaluated by each of the three techniques by each reader in total. Overall diagnostic confidence was rated as moderate or high in 98.5% of segments with CE-MRA, 92.1% with VEL-FSD, and 79.9% with ACC-FSD. No venous contamination was seen in 96% of segments with CE-MRA, 72.2% with VEL-FSD, and 85.8% with ACC-FSD. Per-segment, per-limb, and per-patient sensitivities for detecting significant stenotic disease were 63.4%, 73%, and 92%, respectively, for ACC-FSD, and 65.3%, 87.2%, and 96% for VEL-FSD, and as such no significant statistical change was detected using McNemar's chi-squared test with P-values of 1.00, 0.13, and 0.77 obtained, respectively. Flow-dependent NCE-MRA techniques may have a role to play in evaluation of patients with peripheral vascular disease. Increased sensitivity of a velocity-based technique compared to an acceleration-based technique comes at the expense of greater venous contamination. 2J. Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1846-1853. © 2016 International Society for Magnetic Resonance in Medicine.
Arnold, Corey W; Wallace, W Dean; Chen, Shawn; Oh, Andrea; Abtin, Fereidoun; Genshaft, Scott; Binder, Scott; Aberle, Denise; Enzmann, Dieter
2016-01-01
The current paradigm of cancer diagnosis involves uncoordinated communication of findings from radiology and pathology to downstream physicians. Discordance between these findings can require additional time from downstream users to resolve, or given incorrect resolution, may adversely impact treatment decisions. To mitigate this problem, we developed a web-based system, called RadPath, for correlating and integrating radiology and pathology reporting. RadPath includes interfaces to our institution's clinical information systems, which are used to retrieve reports, images, and test results that are structured into an interactive compendium for a diagnostic patient case. The system includes an editing interface for physicians, allowing for the inclusion of additional clinical data, as well as the ability to retrospectively correlate and contextualize imaging findings following pathology diagnosis. During pilot deployment and testing over the course of 1 year, physicians at our institution have completed 60 RadPath cases, requiring an average of 128 seconds from a radiologist and an average of 93 seconds from a pathologist per case. Several technical and workflow challenges were encountered during development, including interfacing with diverse clinical information systems, automatically structuring report contents, and determining the appropriate physicians to create RadPath summaries. Reaction to RadPath has been positive, with users valuing the system's ability to consolidate diagnostic information. With the increasing complexity of medicine and the movement toward team-based disease management, there is a need for improved clinical communication and information exchange. RadPath provides a platform for generating coherent and correlated diagnostic summaries in cancer diagnosis with minimal additional effort from physicians. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Farshid, Gelareh; Downey, Peter; Pieterse, Steve; Gill, P Grantley
2017-09-01
Technical advances have improved the detection of small mammographic lesions. In the context of mammographic screening, accurate sampling of these lesions by percutaneous biopsy is crucial in limiting diagnostic surgical biopsies, many of which show benign results. Women undergoing core biopsy between January 1997 and December 2007 for <10-mm lesions are included. Patient demographics, imaging features and final histology were tabulated. Performance indices were evaluated. This audit includes 803 lesions <10 mm. Based on core histology, 345 women (43.0%) were immediately cleared of malignancy and 300 (37.4%) were referred for definitive cancer treatment. A further 157 women (19.6%) required diagnostic surgical biopsy because of indefinite or inadequate core results or radiological-pathological discordance, and one woman (0.1%) needed further imaging in 12 months. The open biopsies were malignant in 46 (29.3%) cases. The positive predictive value of malignant core biopsy was 100%. The negative predictive value for benign core results was 97.7%, and the false-negative rate was 2.6%. The lesion could not be visualized after core biopsy in 5.1% of women and in 4.0% of women with malignant core biopsies excision specimens did not contain residual malignancy. Excessive delays in surgery because of complications of core biopsy were not reported. Even at this small size range, core biopsy evaluation of screen-detected breast lesions is highly effective and accurate. A lesion miss rate of 3.1% and under-representation of lesions on core samples highlight the continued need for multidisciplinary collaboration and selective use of diagnostic surgical biopsy. © 2015 Royal Australasian College of Surgeons.
WE-FG-207A-01: Introduction to Dedicated Breast CT - Early Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedantham, S.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
WE-FG-207A-04: Performance Characteristics of Photon-Counting Breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalender, W.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
WE-FG-207A-02: Why We Need Breast CT? - Clinical Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connell, A.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
WE-FG-207A-00: Advances in Dedicated Breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
WE-FG-207A-03: Low-Dose Cone-Beam Breast CT: Physics and Technology Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, J.
Mammography-based screening has been a valuable imaging tool for the early detection of non-palpable lesions and has contributed to significant reduction in breast cancer associated mortality. However, the breast imaging community recognizes that mammography is not ideal, and in particular is inferior for women with dense breasts. Also, the 2-D projection of a 3-D organ results in tissue superposition contributing to false-positives. The sensitivity of mammography is breast-density dependent. Its sensitivity, especially in dense breasts, is low due to overlapping tissue and the fact that normal breast tissue, benign lesions and breast cancers all have similar “densities”, making lesion detectionmore » more difficult. We ideally need 3-D imaging for imaging the 3-D breast. MRI is 3-D, whole breast ultrasound is 3-D, digital breast tomosynthesis is called 3-D but is really “pseudo 3-D” due to poor resolution along the depth-direction. Also, and importantly, we need to be able to administer intravenous contrast agents for optimal imaging, similar to other organ systems in the body. Dedicated breast CT allows for 3-D imaging of the uncompressed breast. In current designs, the patient is positioned prone on the table and the breast is pendant through an aperture and the scan takes approximately 10 seconds [O’Connell et al., AJR 195: 496–509, 2010]. Almost on the heels of the invention of CT itself, work began on the development of dedicated breast CT. These early breast CT systems were used in clinical trials and the results from comparative performance evaluation of breast CT and mammography for 1625 subjects were reported in 1980 [Chang et al., Cancer 46: 939–46, 1980]. However, the technological limitations at that time stymied clinical translation for decades. Subsequent to the landmark article in 2001 [Boone et al., Radiology 221: 657–67, 2001] that demonstrated the potential feasibility in terms of radiation dose, multiple research groups are actively investigating dedicated breast CT. The development of large-area flat-panel detectors with field-of-view sufficient to image the entire breast in each projection enabled development of flat-panel cone-beam breast CT. More recently, the availability of complimentary metal-oxide semiconductor (CMOS) detectors with lower system noise and finer pixel pitch, combined with the development of x-ray tubes with focal spot dimensions similar to mammography systems, has shown improved spatial resolution and could improve visualization of microcalcifications. These technological developments promise clinical translation of low-dose cone-beam breast CT. Dedicated photon-counting breast CT (pcBCT) systems represent a novel detector design, which provide high spatial resolution (∼ 100µm) and low mean glandular dose (MGD). The CdTe-based direct conversion detector technology was previously evaluated and confirmed by simulations and basic experiments on laboratory setups [Kalender et al., Eur Radiol 22: 1–8, 2012]. Measurements of dose, technical image quality parameters, and surgical specimens on a pcBCT scanner have been completed. Comparative evaluation of surgical specimens showed that pcBCT outperformed mammography and digital breast tomosynthesis with respect to 3D spatial resolution, detectability of calcifications, and soft tissue delineation. Major barriers to widespread clinical use of BCT relate to radiation dose, imaging of microcalcifications, and adequate coverage of breast tissue near the chest wall. Adequate chest wall coverage is also technically challenging but recent progress in x-ray tube, detector and table design now enables full breast coverage in the majority of patients. At this time, BCT has been deemed to be suitable for diagnostic imaging but not yet for screening. The mean glandular dose (MGD) from BCT has been reported to be between 5.7 to 27.8 mGy, and this range is comparable to, and within the range of, the MGD of 2.6 to 31.6 mGy in diagnostic mammography. In diagnostic studies, the median MGD from BCT and mammography were 12.6 and 11.1 mGy, respectively [Vedantham et al., Phys Med Biol. 58: 7921–36, 2013]. Moreover, in diagnostic imaging of the breast the location of the lesion is known and therefore characterization and not detection is by far the primary consideration. The role of bCT is particularly compelling for diagnostic imaging of the breast because it may replace in part the multiple mammographic views of the breast under vigorous compression. Other non-screening potential applications of bCT include the assessment of response to neoadjuvant therapy [Vedantham et al., J Clin Imaging Sci 4, 64, 2014] and pre-surgical evaluation. Learning Objectives: To understand the metrics used to evaluate screening and diagnostic imaging To understand the benefits and limitations of current clinical modalities To understand how breast CT can improve over current clinical modalities To note the early attempts to translate breast CT to the clinic in 1970s-1990s To understand the recent developments in low-dose cone-beam breast CT To understand the recent developments in photon-counting breast CT To understand the radiation dose, clinical translation, and recent developments in diagnostic imaging with breast CT Supported in part by NIH grants R21 CA134128, R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH or the NCI.; S. Vedantham, Funding sources: Supported in part by NIH/NCI grants R01 CA128906 and R01 CA195512. The contents are solely the responsibility of the authors and do not reflect the official views of the NIH/NCI. Disclosures: Research collaboration with Koning Corporation, West Henrietta, NY. Conflicts of Interest: J. Boone, This research was supported in part by NIH grant R01CA181081; W. Kalender, WK is founder and CEO of CT Imaging GmbH Erlangen, Germany.; A. Karellas, NIH R21 CA134128, R01 CA128906, and R01 CA195512 and Research collaboration with Koning Corporation.« less
Philadelpho Arantes Pereira, Fernanda; Martins, Gabriela; Gregorio Calas, Maria Julia; Fonseca Torres de Oliveira, Maria Veronica; Gasparetto, Emerson Leandro; Barbosa da Fonseca, Lea Mirian
2013-09-18
Magnetic resonance imaging (MRI) guided wire localization presents several challenges apart from the technical difficulties. An alternative to this conventional localization method using a wire is the radio-guided occult lesion localization (ROLL), more related to safe surgical margins and reductions in excision volume. The purpose of this study was to establish a safe and reliable magnetic resonance imaging-radioguided occult lesion localization (MRI-ROLL) technique and to report our initial experience with the localization of nonpalpable breast lesions only observed on MRI. Sixteen women (mean age 53.2 years) with 17 occult breast lesions underwent radio-guided localization in a 1.5-T MR system using a grid-localizing system. All patients had a diagnostic MRI performed prior to the procedure. An intralesional injection of Technetium-99m macro-aggregated albumin followed by distilled water was performed. After the procedure, scintigraphy was obtained. Surgical resection was performed with the help of a gamma detector probe. The lesion histopathology and imaging concordance; the procedure's positive predictive value (PPV), duration time, complications, and accuracy; and the rate of exactly excised lesions evaluated with MRI six months after the surgery were assessed. One lesion in one patient had to be excluded because the radioactive substance came back after the injection, requiring a wire placement. Of the remaining cases, there were four malignant lesions, nine benign lesions, and three high-risk lesions. Surgical histopathology and imaging findings were considered concordant in all benign and high-risk cases. The PPV of MRI-ROLL was greater if the indication for the initial MR examination was active breast cancer. The median procedure duration time was 26 minutes, and all included procedures were defined as accurate. The exact and complete lesion removal was confirmed in all (100%) patients who underwent six-month postoperative MRI (50%). MRI-ROLL offers a precise, technically feasible, safe, and rapid means for performing preoperative MRI localizations in the breast.
Gadolinium-based magnetic resonance imaging contrast agents in interventional radiology.
Atar, Eli
2004-07-01
Gadolinium-based agents are widely used in magnetic resonance imaging as contrast agents. These agents are radio-opaque enough for diagnostic imaging of the vascular tree by using digitally subtracted images as well as for imaging of the biliary system and the urinary tract. The recommended doses for gadolinium do not impair renal function or cause adverse reactions in patients with iodine sensitivity; thus patients with such conditions can safely undergo diagnostic angiography, either by MRI angiography or by catheterization using gadolinium as contrast agent, for diagnostic and therapeutic purposes.
Image quality enhancement for skin cancer optical diagnostics
NASA Astrophysics Data System (ADS)
Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey
2017-12-01
The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.
HAMAMOTO, Kohei; MATSUURA, Katsuhiko; CHIBA, Emiko; OKOCHI, Tomohisa; TANNO, Keisuke; TANAKA, Osamu
2016-01-01
Purpose: The purpose of this study was to evaluate the diagnostic performance of non-contrast-enhanced magnetic resonance angiography with time-spatial labeling inversion pulse (time-SLIP MRA) in the assessment of pulmonary arteriovenous malformation (PAVM). Methods: Eleven consecutive patients with 38 documented PAVMs underwent time-SLIP MRA with a 3-tesla unit. Eight patients with 25 lesions were examined twice, once before and once after embolotherapy. The lesions were divided into two groups—initial diagnosis (n = 35) and follow-up (n = 28)—corresponding to untreated and treated lesions, respectively, and were evaluated separately. To evaluate the initial diagnosis group, two reviewers assessed image quality for visualization of PAVMs by using a qualitative 4-point scale (1 = not assessable to 4 = excellent). The location and classification of PAVMs were also evaluated. The results were compared with those from digital subtraction angiography. For evaluation of the follow-up group, the reviewers assessed the status of treated PAVMs. Reperfusion and occlusion were defined respectively as visualization or disappearance of the aneurysmal sac. The diagnostic accuracy of time-SLIP MRA was assessed and compared with standard reference images. Interobserver agreement was evaluated with the κ statistic. Results: In the initial diagnosis group, time-SLIP MRA correctly determined the PAVMs in all but one patient with one lesion who had image degradation due to irregular breath. Image quality was considered excellent (median = 4) and the κ coefficient was 0.85. Additionally, both readers could correctly localize and classify the PAVMs on time-SLIP MRA images with both κ coefficient of 1.00. In the follow-up group, the sensitivity and specificity of time-SLIP MRA for reperfusion of PAVMs were both 100%, and the κ coefficient was 1.00. Conclusion: Time-SLIP MRA is technically and clinically feasible and represents a promising technique for noninvasive pre- and post-treatment assessment of PAVMs. PMID:26841853
Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.
Gray, J E; Orton, C G
2000-12-01
Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff.
de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva
2015-01-01
Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282
Erberich, Stephan G; Bhandekar, Manasee; Chervenak, Ann; Kesselman, Carl; Nelson, Marvin D
2007-01-01
Functional MRI is successfully being used in clinical and research applications including preoperative planning, language mapping, and outcome monitoring. However, clinical use of fMRI is less widespread due to its complexity of imaging, image workflow, post-processing, and lack of algorithmic standards hindering result comparability. As a consequence, wide-spread adoption of fMRI as clinical tool is low contributing to the uncertainty of community physicians how to integrate fMRI into practice. In addition, training of physicians with fMRI is in its infancy and requires clinical and technical understanding. Therefore, many institutions which perform fMRI have a team of basic researchers and physicians to perform fMRI as a routine imaging tool. In order to provide fMRI as an advanced diagnostic tool to the benefit of a larger patient population, image acquisition and image post-processing must be streamlined, standardized, and available at any institution which does not have these resources available. Here we describe a software architecture, the functional imaging laboratory (funcLAB/G), which addresses (i) standardized image processing using Statistical Parametric Mapping and (ii) its extension to secure sharing and availability for the community using standards-based Grid technology (Globus Toolkit). funcLAB/G carries the potential to overcome the limitations of fMRI in clinical use and thus makes standardized fMRI available to the broader healthcare enterprise utilizing the Internet and HealthGrid Web Services technology.
Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.
Busse, Harald; Kahn, Thomas; Moche, Michael
2011-08-01
Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.
Current State of the Regulatory Trajectory for Whole Slide Imaging Devices in the USA
Abels, Esther; Pantanowitz, Liron
2017-01-01
The regulatory field for digital pathology (DP) has advanced significantly. A major milestone was accomplished when the FDA allowed the first vendor to market their device for primary diagnostic use in the USA and published in the classification order that this device, and substantially equivalent devices of this generic type, should be classified into class II instead of class III as previously proposed. The Digital Pathology Association (DPA) regulatory task force had a major role in the accomplishment of getting the application request for Whole Slide Imaging (WSI) Systems recommended for a de novo. This article reviews the past and emerging regulatory environment of WSI for clinical use in the USA. A WSI system with integrated subsystems is defined in the context of medical device regulations. The FDA technical performance assessment guideline is also discussed as well as parameters involved in analytical testing and clinical studies to demonstrate that WSI devices are safe and effective for clinical use. PMID:28584684
Current State of the Regulatory Trajectory for Whole Slide Imaging Devices in the USA.
Abels, Esther; Pantanowitz, Liron
2017-01-01
The regulatory field for digital pathology (DP) has advanced significantly. A major milestone was accomplished when the FDA allowed the first vendor to market their device for primary diagnostic use in the USA and published in the classification order that this device, and substantially equivalent devices of this generic type, should be classified into class II instead of class III as previously proposed. The Digital Pathology Association (DPA) regulatory task force had a major role in the accomplishment of getting the application request for Whole Slide Imaging (WSI) Systems recommended for a de novo . This article reviews the past and emerging regulatory environment of WSI for clinical use in the USA. A WSI system with integrated subsystems is defined in the context of medical device regulations. The FDA technical performance assessment guideline is also discussed as well as parameters involved in analytical testing and clinical studies to demonstrate that WSI devices are safe and effective for clinical use.
Multiparametric magnetic resonance imaging and prostate cancer: what's new?
Catalá, V; Vilanova, J C; Gaya, J M; Algaba, F; Martí, T
Prostatic multi-parametric magnetic resonance imaging (MP-MRI) has recently had a wide development becoming a key tool in the diagnostic and therapeutic decisions in prostate cancer (Pca). The fast development both in technology and in reading (PIRADS V2) requires a continuous updating of knowledge within this area. The aim of this article is to present an updated revision of technical aspects, reading patterns and prostatic MP-MRI in Pca, with a multidisciplinary approach. Currently guidelines establish the use of the MP-MRI when there is a high PSA and a negative prostatic biopsy; tumor staging; evaluation in candidates to active surveillance; focal treatments plans and tumoral recurrence evaluation. Although it is used in other indications in some centers, like its use in patients suspicious of Pca but with no previous biopsy, there is still the need of a cost/benefit assessment for its use to be wider. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Boxx, I.; Stöhr, M.; Carter, C.; Meier, W.
2009-04-01
We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications.
Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography
Wang, Tianshi; Pfeiffer, Tom; Regar, Evelyn; Wieser, Wolfgang; van Beusekom, Heleen; Lancee, Charles T.; Springeling, Geert; Krabbendam, Ilona; van der Steen, Antonius F.W.; Huber, Robert; van Soest, Gijs
2015-01-01
Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called “Heartbeat OCT”, combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. PMID:26713214
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Baer, F M
2007-09-01
The stress-ECG is the most often adopted and most cost effective initial diagnostic test for the assessment of myocardial ischemia in patients with suspected coronary artery disease (CAD). Prerequisites for the diagnostic usefullness of stress-ECG are a clearly interpretable ST-segment, ability to reach the predicted work load, an intermediate pretest probability for CAD ranging between 10% and 90% and the absence of any contraindications for dynamic exercise. Because of the limited diagnostic sensitivity of about 70%, and a high percentage of patients, who are unable to exercise, a negative stress ECG can definitely not exclude hemodynamically significant CAD. Therefore, stress imaging techniques like myocardial scintigraphy, stress-echocardiography and stress magnetic resonance imaging play a major role in the stepwise diagnostic work-up of patients with suspected CAD. These stress imaging techniques are basically interchangeable since no method is definitely superior to one of the others. However, each method has its specific pros and cons and inherent contraindications. Therefore the choice of the stress imaging method and the form of stress applied should be based on the individual patients characteristics to gain optimal image quality and diagnostic accuracy. Moreover, the decision for one method should take the local availability and institutional expertise of diagnostic centers into account. Although partly substituted by stress imaging techniques the stress-ECG still remains the workhorse for a stepwise diagnostic work-up of patients with suspected CAD.
Munro, Sarah A; Lund, Steven P; Pine, P Scott; Binder, Hans; Clevert, Djork-Arné; Conesa, Ana; Dopazo, Joaquin; Fasold, Mario; Hochreiter, Sepp; Hong, Huixiao; Jafari, Nadereh; Kreil, David P; Łabaj, Paweł P; Li, Sheng; Liao, Yang; Lin, Simon M; Meehan, Joseph; Mason, Christopher E; Santoyo-Lopez, Javier; Setterquist, Robert A; Shi, Leming; Shi, Wei; Smyth, Gordon K; Stralis-Pavese, Nancy; Su, Zhenqiang; Tong, Weida; Wang, Charles; Wang, Jian; Xu, Joshua; Ye, Zhan; Yang, Yong; Yu, Ying; Salit, Marc
2014-09-25
There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.
Rosman, David A; Duszak, Richard; Wang, Wenyi; Hughes, Danny R; Rosenkrantz, Andrew B
2018-02-01
The objective of our study was to use a new modality and body region categorization system to assess changing utilization of noninvasive diagnostic imaging in the Medicare fee-for-service population over a recent 20-year period (1994-2013). All Medicare Part B Physician Fee Schedule services billed between 1994 and 2013 were identified using Physician/Supplier Procedure Summary master files. Billed codes for diagnostic imaging were classified using the Neiman Imaging Types of Service (NITOS) coding system by both modality and body region. Utilization rates per 1000 beneficiaries were calculated for families of services. Among all diagnostic imaging modalities, growth was greatest for MRI (+312%) and CT (+151%) and was lower for ultrasound, nuclear medicine, and radiography and fluoroscopy (range, +1% to +31%). Among body regions, service growth was greatest for brain (+126%) and spine (+74%) imaging; showed milder growth (range, +18% to +67%) for imaging of the head and neck, breast, abdomen and pelvis, and extremity; and showed slight declines (range, -2% to -7%) for cardiac and chest imaging overall. The following specific imaging service families showed massive (> +100%) growth: cardiac CT, cardiac MRI, and breast MRI. NITOS categorization permits identification of temporal shifts in noninvasive diagnostic imaging by specific modality- and region-focused families, providing a granular understanding and reproducible analysis of global changes in imaging overall. Service family-level perspectives may help inform ongoing policy efforts to optimize imaging utilization and appropriateness.
Modifications to the synthetic aperture microwave imaging diagnostic.
Brunner, K J; Chorley, J C; Dipper, N A; Naylor, G; Sharples, R M; Taylor, G; Thomas, D A; Vann, R G L
2016-11-01
The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016.
Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT
NASA Astrophysics Data System (ADS)
Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia
2017-07-01
Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod
Kluge, Annette; Grauel, Britta; Burkolter, Dina
2013-03-01
Two studies are presented in which the design of a procedural aid and the impact of an additional decision aid for process control were assessed. In Study 1, a procedural aid was developed that avoids imposing unnecessary extraneous cognitive load on novices when controlling a complex technical system. This newly designed procedural aid positively affected germane load, attention, satisfaction, motivation, knowledge acquisition and diagnostic speed for novel faults. In Study 2, the effect of a decision aid for use before the procedural aid was investigated, which was developed based on an analysis of diagnostic errors committed in Study 1. Results showed that novices were able to diagnose both novel faults and practised faults, and were even faster at diagnosing novel faults. This research contributes to the question of how to optimally support novices in dealing with technical faults in process control. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for ground penetrating radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...
Matz, Samantha; Connell, Mary; Sinha, Madhumita; Goettl, Christopher S; Patel, Palak C; Drachman, David
2013-09-01
The presence of free intraperitoneal fluid on diagnostic imaging (sonography or computed tomography [CT]) may indicate an acute inflammatory process in children with abdominal pain in a nontraumatic setting. Although clinical outcomes of pediatric trauma patients with free fluid on diagnostic examinations without evidence of solid-organ injury have been studied, similar studies in the absence of trauma are rare. Our objective was to study clinical outcomes of children with acute abdominal pain of nontraumatic etiology and free intraperitoneal fluid on diagnostic imaging (abdominal/pelvic sonography, CT, or both). We conducted a retrospective review of medical records of children aged 0 to 18 years presenting to a pediatric emergency department with acute abdominal pain (nontraumatic) between April 2008 and March 2009. Patients with intraperitoneal free fluid on imaging were divided into 2 groups: group I, imaging suggestive of an intra-abdominal surgical condition such as appendicitis; and group II, no evidence of an acute surgical condition on imaging, including patients with equivocal studies. Computed tomograms and sonograms were reviewed by a board-certified radiologist, and the free fluid volume was quantitated. Of 1613 patients who underwent diagnostic imaging, 407 were eligible for the study; 134 (33%) had free fluid detected on diagnostic imaging. In patients with both sonography and CT, there was a significant correlation in the free fluid volume (r = 0.79; P < .0005). A significantly greater number of male patients with free fluid had a surgical condition identified on imaging (57.4% versus 25%; P < .001). Children with free fluid and an associated condition on imaging were more likely to have surgery (94.4% versus 6.3%; P < .001). We found clinical outcomes (surgical versus nonsurgical) to be most correlated with a surgical diagnosis on diagnostic imaging and not with the amount of fluid present.
The Downside of Diagnostic Imaging
An article about radiation exposure during computed tomography and nuclear imaging procedures and the risk of cancer. Several studies released in 2009 have helped to quantify the risk and the growing use of these diagnostic imaging methods.
Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive
2009-06-01
time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast
Reflectometric measurement of plasma imaging and applications
NASA Astrophysics Data System (ADS)
Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.
2012-01-01
Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.
Hwang, Shin Hye; You, Je Sung; Song, Mi Kyong; Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun
2015-04-01
To evaluate feasibility of radiation dose reduction by optimal phase selection of computed tomography (CT) in patients who visited the emergency department (ED) for abdominal pain. We included 253 patients who visited the ED for abdominal pain. They underwent multiphasic CT including precontrast, late arterial phase (LAP), and hepatic venous phase (HVP). Three image sets (HVP, precontrast + HVP, and precontrast + LAP + HVP) were reviewed. Two reviewers determined the most appropriate diagnosis with five-point confidence scale. Diagnostic performances were compared among image sets by weighted-least-squares method or DeLong's method. Linear mixed model was used to assess changes of diagnostic confidence and radiation dose. There was no difference in diagnostic performance among three image sets, although diagnostic confidence level was significantly improved after review of triphasic images compared with both HVP images only or HVP with precontrast images (confidence scale, 4.64 ± 0.05, 4.66 ± 0.05, and 4.76 ± 0.04 in the order of the sets; overall P = 0.0008). Similar trends were observed in the subgroup analysis for diagnosis of pelvic inflammatory disease and cholecystitis. There is no difference between HVP-CT alone and multiphasic CT for the diagnosis of causes of abdominal pain in patients admitted to the ED without prior chronic disease or neoplasia. • There was no difference in diagnostic performance of HVP CT and multiphasic CT. • The diagnostic confidence level was improved after review of the LAP images. • HVP CT can achieve diagnostic performance similar to that of multiphasic CT, while minimizing radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less
Bariatric CT Imaging: Challenges and Solutions.
Fursevich, Dzmitry M; LiMarzi, Gary M; O'Dell, Matthew C; Hernandez, Manuel A; Sensakovic, William F
2016-01-01
The obesity epidemic in the adult and pediatric populations affects all aspects of health care, including diagnostic imaging. With the increasing prevalence of obese and morbidly obese patients, bariatric computed tomographic (CT) imaging is becoming common in day-to-day radiology practice, and a basic understanding of the unique problems that bariatric patients pose to the imaging community is crucial in any setting. Because larger patients may not fit into conventional scanners, having a CT scanner with an adequate table load limit, a large gantry aperture, a large scan field of view, and a high-power generator is a prerequisite for bariatric imaging. Iterative reconstruction methods, high tube current, and high tube voltage can reduce the image noise that is frequently seen in bariatric CT images. Truncation artifacts, cropping artifacts, and ring artifacts frequently complicate the interpretation of CT images of larger patients. If recognized, these artifacts can be easily reduced by using the proper CT equipment, scan acquisition parameters, and postprocessing options. Lastly, because of complex contrast material dynamics, contrast material-enhanced studies of bariatric patients require special attention. Understanding how the rate of injection, the scan timing, and the total mass of iodine affect vascular and parenchymal enhancement will help to optimize contrast-enhanced studies in the bariatric population. This article familiarizes the reader with the challenges that are frequently encountered at CT imaging of bariatric patients, beginning with equipment selection and ending with a review of the most commonly encountered obesity-related artifacts and the technical considerations in the acquisition of contrast-enhanced images. (©)RSNA, 2016.
Zweben, S. J.; Terry, J. L.; Stotler, D. P.; ...
2017-04-27
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zweben, S. J.; Terry, J. L.; Stotler, D. P.
Gas puff imaging (GPI) is a diagnostic of plasma turbulence which uses a puff of neutral gas at the plasma edge to increase the local visible light emission for improved space-time resolution of plasma fluctuations. This paper reviews gas puff imaging diagnostics of edge plasma turbulence in magnetic fusion research, with a focus on the instrumentation, diagnostic cross-checks, and interpretation issues. The gas puff imaging hardware, optics, and detectors are described for about 10 GPI systems implemented over the past similar to 15 years. Comparison of GPI results with other edge turbulence diagnostic results is described, and many common featuresmore » are observed. Here, several issues in the interpretation of GPI measurements are discussed, and potential improvements in hardware and modeling are suggested.« less
Technical aspects of CT imaging of the spine.
Tins, Bernhard
2010-11-01
This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements.
Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong
2018-01-04
This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.
Wade, Ryckie G; Itte, Vinay; Rankine, James J; Ridgway, John P; Bourke, Grainne
2018-03-01
Identification of root avulsions is of critical importance in traumatic brachial plexus injuries because it alters the reconstruction and prognosis. Pre-operative magnetic resonance imaging is gaining popularity, but there is limited and conflicting data on its diagnostic accuracy for root avulsion. This cohort study describes consecutive patients requiring brachial plexus exploration following trauma between 2008 and 2016. The index test was magnetic resonance imaging at 1.5 Tesla and the reference test was operative exploration of the supraclavicular plexus. Complete data from 29 males was available. The diagnostic accuracy of magnetic resonance imaging for root avulsion(s) of C5-T1 was 79%. The diagnostic accuracy of a pseudomeningocoele as a surrogate marker of root avulsion(s) of C5-T1 was 68%. We conclude that pseudomeningocoles were not a reliable sign of root avulsion and magnetic resonance imaging has modest diagnostic accuracy for root avulsions in the context of adult traumatic brachial plexus injuries. III.
Design and development of a simple UV fluorescence multi-spectral imaging system
NASA Astrophysics Data System (ADS)
Tovar, Carlos; Coker, Zachary; Yakovlev, Vladislav V.
2018-02-01
Healthcare access in low-resource settings is compromised by the availability of affordable and accurate diagnostic equipment. The four primary poverty-related diseases - AIDS, pneumonia, malaria, and tuberculosis - account for approximately 400 million annual deaths worldwide as of 2016 estimates. Current diagnostic procedures for these diseases are prolonged and can become unreliable under various conditions. We present the development of a simple low-cost UV fluorescence multi-spectral imaging system geared towards low resource settings for a variety of biological and in-vitro applications. Fluorescence microscopy serves as a useful diagnostic indicator and imaging tool. The addition of a multi-spectral imaging modality allows for the detection of fluorophores within specific wavelength bands, as well as the distinction between fluorophores possessing overlapping spectra. The developed instrument has the potential for a very diverse range of diagnostic applications in basic biomedical science and biomedical diagnostics and imaging. Performance assessment of the microscope will be validated with a variety of samples ranging from organic compounds to biological samples.
Molecular malaria diagnostics: A systematic review and meta-analysis.
Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F
2016-01-01
Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.
Marin, Jennifer R; Mills, Angela M
2015-12-01
The 2015 Academic Emergency Medicine (AEM) consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization," was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to: 1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging utilization and identify key opportunities, limitations, and gaps in knowledge; 2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and 3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified prior to the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were 164 individuals involved in the conference spanning various specialties, including emergency medicine (EM), radiology, surgery, medical physics, and the decision sciences. This issue of AEM is dedicated to the proceedings of the 16th annual AEM consensus conference as well as original research related to emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.
Integrated Maintenance Information System (IMIS) Diagnostic Module Redesign
1990-12-01
Government- related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have...invention that may in any way be related thereto. The Public Affairs Office has reviewed this report, and it is releasable to the National Technical...instance of the controller class is needed to perform diagnostics. This instance creates, monitors, and controls one or more diagnostic groups . This process
Payne, Deborah A; Baluchova, Katarina; Peoc'h, Katell H; van Schaik, Ron H N; Chan, K C Allen; Maekawa, Masato; Mamotte, Cyril; Russomando, Graciela; Rousseau, François; Ahmad-Nejad, Parviz
2017-04-01
Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.
Clinical Decision Rules for Diagnostic Imaging in the Emergency Department: A Research Agenda.
Finnerty, Nathan M; Rodriguez, Robert M; Carpenter, Christopher R; Sun, Benjamin C; Theyyunni, Nik; Ohle, Robert; Dodd, Kenneth W; Schoenfeld, Elizabeth M; Elm, Kendra D; Kline, Jeffrey A; Holmes, James F; Kuppermann, Nathan
2015-12-01
Major gaps persist in the development, validation, and implementation of clinical decision rules (CDRs) for diagnostic imaging. The objective of this working group and article was to generate a consensus-based research agenda for the development and implementation of CDRs for diagnostic imaging in the emergency department (ED). The authors followed consensus methodology, as outlined by the journal Academic Emergency Medicine (AEM), combining literature review, electronic surveys, telephonic communications, and a modified nominal group technique. Final discussions occurred in person at the 2015 AEM consensus conference. A research agenda was developed, prioritizing the following questions: 1) what are the optimal methods to justify the derivation and validation of diagnostic imaging CDRs, 2) what level of evidence is required before disseminating CDRs for widespread implementation, 3) what defines a successful CDR, 4) how should investigators best compare CDRs to clinical judgment, and 5) what disease states are amenable (and highest priority) to development of CDRs for diagnostic imaging in the ED? The concepts discussed herein demonstrate the need for further research on CDR development and implementation regarding diagnostic imaging in the ED. Addressing this research agenda should have direct applicability to patients, clinicians, and health care systems. © 2015 by the Society for Academic Emergency Medicine.
Modifications to the synthetic aperture microwave imaging diagnostic
Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; ...
2016-09-02
The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. Finally, the diagnostic has also been installed on the NSTX-U and is acquiring datamore » since May 2016.« less
Thomas, Christoph; Brodoefel, Harald; Tsiflikas, Ilias; Bruckner, Friederike; Reimann, Anja; Ketelsen, Dominik; Drosch, Tanja; Claussen, Claus D; Kopp, Andreas; Heuschmid, Martin; Burgstahler, Christof
2010-02-01
To prospectively evaluate the influence of the clinical pretest probability assessed by the Morise score onto image quality and diagnostic accuracy in coronary dual-source computed tomography angiography (DSCTA). In 61 patients, DSCTA and invasive coronary angiography were performed. Subjective image quality and accuracy for stenosis detection (>50%) of DSCTA with invasive coronary angiography as gold standard were evaluated. The influence of pretest probability onto image quality and accuracy was assessed by logistic regression and chi-square testing. Correlations of image quality and accuracy with the Morise score were determined using linear regression. Thirty-eight patients were categorized into the high, 21 into the intermediate, and 2 into the low probability group. Accuracies for the detection of significant stenoses were 0.94, 0.97, and 1.00, respectively. Logistic regressions and chi-square tests showed statistically significant correlations between Morise score and image quality (P < .0001 and P < .001) and accuracy (P = .0049 and P = .027). Linear regression revealed a cutoff Morise score for a good image quality of 16 and a cutoff for a barely diagnostic image quality beyond the upper Morise scale. Pretest probability is a weak predictor of image quality and diagnostic accuracy in coronary DSCTA. A sufficient image quality for diagnostic images can be reached with all pretest probabilities. Therefore, coronary DSCTA might be suitable also for patients with a high pretest probability. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Schalk, Stefan G; Demi, Libertario; Smeenge, Martijn; Mills, David M; Wallace, Kirk D; de la Rosette, Jean J M C H; Wijkstra, Hessel; Mischi, Massimo
2015-05-01
Currently, nonradical treatment for prostate cancer is hampered by the lack of reliable diagnostics. Contrastultrasound dispersion imaging (CUDI) has recently shown great potential as a prostate cancer imaging technique. CUDI estimates the local dispersion of intravenously injected contrast agents, imaged by transrectal dynamic contrast-enhanced ultrasound (DCE-US), to detect angiogenic processes related to tumor growth. The best CUDI results have so far been obtained by similarity analysis of the contrast kinetics in neighboring pixels. To date, CUDI has been investigated in 2-D only. In this paper, an implementation of 3-D CUDI based on spatiotemporal similarity analysis of 4-D DCE-US is described. Different from 2-D methods, 3-D CUDI permits analysis of the entire prostate using a single injection of contrast agent. To perform 3-D CUDI, a new strategy was designed to estimate the similarity in the contrast kinetics at each voxel, and data processing steps were adjusted to the characteristics of 4-D DCE-US images. The technical feasibility of 4-D DCE-US in 3-D CUDI was assessed and confirmed. Additionally, in a preliminary validation in two patients, dispersion maps by 3-D CUDI were quantitatively compared with those by 2-D CUDI and with 12-core systematic biopsies with promising results.
Busse, Harald; Schmitgen, Arno; Trantakis, Christos; Schober, Ralf; Kahn, Thomas; Moche, Michael
2006-07-01
To present an advanced approach for intraoperative image guidance in an open 0.5 T MRI and to evaluate its effectiveness for neurosurgical interventions by comparison with a dynamic scan-guided localization technique. The built-in scan guidance mode relied on successive interactive MRI scans. The additional advanced mode provided real-time navigation based on reformatted high-quality, intraoperatively acquired MR reference data, allowed multimodal image fusion, and used the successive scans of the built-in mode for quick verification of the position only. Analysis involved tumor resections and biopsies in either scan guidance (N = 36) or advanced mode (N = 59) by the same three neurosurgeons. Technical, surgical, and workflow aspects were compared. The image quality and hand-eye coordination of the advanced approach were improved. While the average extent of resection, neurologic outcome after functional MRI (fMRI) integration, and diagnostic yield appeared to be slightly better under advanced guidance, particularly for the main surgeon, statistical analysis revealed no significant differences. Resection times were comparable, while biopsies took around 30 minutes longer. The presented approach is safe and provides more detailed images and higher navigation speed at the expense of actuality. The surgical outcome achieved with advanced guidance is (at least) as good as that obtained with dynamic scan guidance. (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
Doctoral theses in diagnostic imaging: a study of Spanish production between 1976 and 2011.
Machan, K; Sendra Portero, F
2018-05-15
To analyze the production of doctoral theses in diagnostic imaging in Spain in the period comprising 1976 through 2011 with the aim of a) determining the number of theses and their distribution over time, b) describing the production in terms of universities and directors, and c) analyzing the content of the theses according to the imaging technique, anatomic site, and type of research used. The TESEO database was searched for "radiología" and/or "diagnóstico por imagen" and for terms related to diagnostic imaging in the title of the thesis. A total of 1036 theses related to diagnostic imaging were produced in 37 Spanish universities (mean, 29.6 theses/year; range, 4-59). A total of 963 thesis directors were identified; 10 of these supervised 10 or more theses. Most candidates and directors were men, although since the 2000-2001 academic year the number of male and female candidates has been similar. The anatomic regions most often included in diagnostic imaging theses were the abdomen (22.5%), musculoskeletal system (21.8%), central nervous system (16.4%), and neck and face (15.6%). The imaging techniques most often included were ultrasonography in the entire period (25.5%) and magnetic resonance imaging in the last 5 years. Most theses (63.8%) were related to clinical research. Despite certain limitations, the TESEO database makes it possible to analyze the production of doctoral theses in Spain effectively. The annual mean production of theses in diagnostic imaging is higher than in other medical specialties. This analysis reflects the historic evolution of imaging techniques and research in radiology as well as the development of Spanish universities. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Self-diagnostics and home monitoring: exploring new business opportunities.
Lewis, T S
1999-03-01
The world is still shrinking. Advances in telecommunications are turning the concept of a global community into a reality. In the medical industry, this has translated into increased self-diagnostics and home monitoring. This article discusses a number of strategies for successful product positioning amidst technical revolution.
Bickelhaupt, Sebastian; Tesdorff, Jana; Laun, Frederik Bernd; Kuder, Tristan Anselm; Lederer, Wolfgang; Teiner, Susanne; Maier-Hein, Klaus; Daniel, Heidi; Stieber, Anne; Delorme, Stefan; Schlemmer, Heinz-Peter
2017-02-01
The aim of this study was to evaluate the accuracy and applicability of solitarily reading fused image series of T2-weighted and high-b-value diffusion-weighted sequences for lesion characterization as compared to sequential or combined image analysis of these unenhanced sequences and to contrast- enhanced breast MRI. This IRB-approved study included 50 female participants with suspicious breast lesions detected in screening X-ray mammograms, all of which provided written informed consent. Prior to biopsy, all women underwent MRI including diffusion-weighted imaging (DWIBS, b = 1500s/mm 2 ). Images were analyzed as follows: prospective image fusion of DWIBS and T2-weighted images (FU), side-by-side analysis of DWIBS and T2-weighted series (CO), combination of the first two methods (CO+FU), and full contrast-enhanced diagnostic protocol (FDP). Diagnostic indices, confidence, and image quality of the protocols were compared by two blinded readers. Reading the CO+FU (accuracy 0.92; NPV 96.1 %; PPV 87.6 %) and the CO series (0.90; 96.1 %; 83.7 %) provided a diagnostic performance similar to the FDP (0.95; 96.1 %; 91.3 %; p > 0.05). FU reading alone significantly reduced the diagnostic accuracy (0.82; 93.3 %; 73.4 %; p = 0.023). MR evaluation of suspicious BI-RADS 4 and 5 lesions detected on mammography by using a non-contrast-enhanced T2-weighted and DWIBS sequence protocol is most accurate if MR images were read using the CO+FU protocol. • Unenhanced breast MRI with additional DWIBS/T2w-image fusion allows reliable lesion characterization. • Abbreviated reading of fused DWIBS/T2w-images alone decreases diagnostic confidence and accuracy. • Reading fused DWIBS/T2w-images as the sole diagnostic method should be avoided.
Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał
Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.
Maliborski, Artur; Różycki, Radosław
2014-04-17
Excessive watering of the eye is a common condition in ophthalmological practice. It may be the result of excessive production of tear fluid or obstruction and insufficiency of efferent tear pathways. The differentiation between obstruction and insufficiency of the lacrimal pathways is still clinically questionable. In the diagnostic process it is necessary to perform clinical tests and additional diagnostic imaging is often needed. Dacryocystography, with or without the extension of the dynamic phase or subtraction option, still remains the criterion standard for diagnostic imaging of the lacrimal obstruction. It may help to clarify the cause and exact place of the obstruction and provide information for further management, especially surgical treatment. Increasingly, new techniques are used in diagnostic imaging of the lacrimal tract, such as computed tomography, magnetic resonance, and isotopic methods. Adequate knowledge of the anatomy and physiology of the lacrimal system and the secretion and outflow of tears is the basis for proper diagnostic imaging. The purpose of this paper is to present the exact anatomy of the lacrimal system, with particular emphasis on the radiological anatomy and the current state of knowledge about the physiology of tear secretion and drainage.
Parallel Algorithms for Image Analysis.
1982-06-01
8217 _ _ _ _ _ _ _ 4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED PARALLEL ALGORITHMS FOR IMAGE ANALYSIS TECHNICAL 6. PERFORMING O4G. REPORT NUMBER TR-1180...Continue on reverse side it neceesary aid Identlfy by block number) Image processing; image analysis ; parallel processing; cellular computers. 20... IMAGE ANALYSIS TECHNICAL 6. PERFORMING ONG. REPORT NUMBER TR-1180 - 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(s) Azriel Rosenfeld AFOSR-77-3271 9
Ochs, Marco M; Siepen, Fabian Aus dem; Fritz, Thomas; Andre, Florian; Gitsioudis, Gitsios; Korosoglou, Grigorios; Seitz, Sebastian; Bogomazov, Yuriy; Schlett, Christopher L; Sokiranski, Roman; Sommer, Andre; Gückel, Friedemann; Brado, Matthias; Kauczor, Hans-Ulrich; Görich, Johannes; Friedrich, Matthias G W; Katus, Hugo A; Buss, Sebastian J
2017-07-01
The usage of coronary CT angiography (CTA) is appropriate in patients with acute or chronic chest pain; however the diagnostic accuracy may be challenged with increased Agatston score (AS), increased heart rate, arrhythmia and severe obesity. Thus, we aim to determine the potential of the recently introduced third-generation dual-source CT (DSCT) for CTA in a 'real-life' clinical setting. Two hundred and sixty-eight consecutive patients (age: 67 ± 10 years; BMI: 27 ± 5 kg/m²; 61% male) undergoing clinically indicated CTA with DSCT were included in the retrospective single-center analysis. A contrast-enhanced volume dataset was acquired in sequential (SSM) (n = 151) or helical scan mode (HSM) (n = 117). Coronary segments were classified in diagnostic or non-diagnostic image quality. A subset underwent invasive angiography to determine the diagnostic accuracy of CTA. SSM (96.8 ± 6%) and HSM (97.5 ± 8%) provided no significant differences in the overall diagnostic image quality. However, AS had significant influence on diagnostic image quality exclusively in SSM (B = 0.003; p = 0.0001), but not in HSM. Diagnostic image quality significantly decreased in SSM in patients with AS ≥2,000 (p = 0.03). SSM (sensitivity: 93.9%; specificity: 96.7%; PPV: 88.6%; NPV: 98.3%) and HSM (sensitivity: 97.4%; specificity: 94.3%; PPV: 86.0%; NPV: 99.0%) provided comparable diagnostic accuracy (p = n.s.). SSM yielded significantly lower radiation doses as compared to HSM (2.1 ± 2.0 vs. 5.1 ± 3.3 mSv; p = 0.0001) in age and BMI-matched cohorts. SSM in third-generation DSCT enables significant dose savings and provides robust diagnostic image quality in patients with AS ≤2000 independent of heart rate, heart rhythm or obesity.
Image formation in diffusion MRI: A review of recent technical developments
Miller, Karla L.
2017-01-01
Diffusion magnetic resonance imaging (MRI) is a standard imaging tool in clinical neurology, and is becoming increasingly important for neuroscience studies due to its ability to depict complex neuroanatomy (eg, white matter connectivity). Single‐shot echo‐planar imaging is currently the predominant formation method for diffusion MRI, but suffers from blurring, distortion, and low spatial resolution. A number of methods have been proposed to address these limitations and improve diffusion MRI acquisition. Here, the recent technical developments for image formation in diffusion MRI are reviewed. We discuss three areas of advance in diffusion MRI: improving image fidelity, accelerating acquisition, and increasing the signal‐to‐noise ratio. Level of Evidence: 5 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:646–662 PMID:28194821
Navigation concepts for MR image-guided interventions.
Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald
2008-02-01
The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.
DICOM structured report to track patient's radiation dose to organs from abdominal CT exam
NASA Astrophysics Data System (ADS)
Morioka, Craig; Turner, Adam; McNitt-Gray, Michael; Zankl, Maria; Meng, Frank; El-Saden, Suzie
2011-03-01
The dramatic increase of diagnostic imaging capabilities over the past decade has contributed to increased radiation exposure to patient populations. Several factors have contributed to the increase in imaging procedures: wider availability of imaging modalities, increase in technical capabilities, rise in demand by patients and clinicians, favorable reimbursement, and lack of guidelines to control utilization. The primary focus of this research is to provide in depth information about radiation doses that patients receive as a result of CT exams, with the initial investigation involving abdominal CT exams. Current dose measurement methods (i.e. CTDIvol Computed Tomography Dose Index) do not provide direct information about a patient's organ dose. We have developed a method to determine CTDIvol normalized organ doses using a set of organ specific exponential regression equations. These exponential equations along with measured CTDIvol are used to calculate organ dose estimates from abdominal CT scans for eight different patient models. For each patient, organ dose and CTDIvol were estimated for an abdominal CT scan. We then modified the DICOM Radiation Dose Structured Report (RDSR) to store the pertinent patient information on radiation dose to their abdominal organs.
Queiroz, Marcelo A; Barbosa, Felipe de Galiza; Buchpiguel, Carlos Alberto; Cerri, Giovanni Guido
2018-01-01
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET)/MRI for Lung Cancer Staging.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-07-01
Tumor, lymph node, and metastasis (TNM) classification of lung cancer is typically performed with the TNM staging system, as recommended by the Union Internationale Contre le Cancer (UICC), the American Joint Committee on Cancer (AJCC), and the International Association for the Study of Lung Cancer (IASLC). Radiologic examinations for TNM staging of lung cancer patients include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG-PET), and FDG-PET combined with CT (FDG-PET/CT) and are used for pretherapeutic assessments. Recent technical advances in MR systems, application of fast and parallel imaging and/or introduction of new MR techniques, and utilization of contrast media have markedly improved the diagnostic utility of MRI in this setting. In addition, FDG-PET can be combined or fused with MRI (PET/MRI) for clinical practice. This review article will focus on these recent advances in MRI as well as on PET/MRI for lung cancer staging, in addition to a discussion of their potential and limitations for routine clinical practice in comparison with other modalities such as CT, FDG-PET, and PET/CT.
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2010 CFR
2010-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
21 CFR Appendix B to Subpart B of... - Scope of Product Coverage
Code of Federal Regulations, 2011 CFR
2011-04-01
... Transducer ITX—Transducer, Ultrasonic, Diagnostic Diagnostic X-Ray Imaging Devices (except mammographic x-ray systems): RA 892.1600 Angiographic X-Ray System IZI—System, X-Ray, Angiographic RA 892.1650 Image-Intensified Fluoroscopic X-Ray System MQB—Solid State X-Ray Imager (Flat Panel/Digital Imager) JAA—System, X...
A fluorescence color-encoded lipid-supported polymeric particle.
Shin, Seung Won; Park, Kyung Soo; Baek, Changyoon; Min, Junhong; Cho, Seung-Woo; Choi, Jeong-Woo; Kim, Dong-Ik; Um, Soong Ho
2014-10-01
Several fluorescent or luminescent organisms with biological, chemical, and ecological diversity have been proposed as substitutes for use in new imaging and diagnostic technologies. Inspired by these trends, we designed a synthetic fluorescent light-encoding particulate to serve as a novel and prospective cancer-diagnostic imaging platform. The fluorescence-emitting particulate was used practically for both in vitro and in vivo selective cancer diagnostic imaging. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Retico, A.
2018-02-01
Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.
Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.
Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B
2014-11-01
The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.
Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.
Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B
2013-01-01
To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.
Microdose acquisition in adolescent leg length discrepancy using a low-dose biplane imaging system.
Jensen, Janni; Mussmann, Bo R; Hjarbæk, John; Al-Aubaidi, Zaid; Pedersen, Niels W; Gerke, Oke; Torfing, Trine
2017-09-01
Background Children with leg length discrepancy often undergo repeat imaging. Therefore, every effort to reduce radiation dose is important. Using low dose preview images and noise reduction software rather than diagnostic images for length measurements might contribute to reducing dose. Purpose To compare leg length measurements performed on diagnostic images and low dose preview images both acquired using a low-dose bi-planar imaging system. Material and Methods Preview and diagnostic images from 22 patients were retrospectively collected (14 girls, 8 boys; mean age, 12.8 years; age range, 10-15 years). All images were anonymized and measured independently by two musculoskeletal radiologists. Three sets of measurements were performed on all images; the mechanical axis lines of the femur and the tibia as well as the anatomical line of the entire extremity. Statistical significance was tested with a paired t-test. Results No statistically significant difference was found between measurements performed on the preview and on the diagnostic image. The mean tibial length difference between the observers was -0.06 cm (95% confidence interval [CI], -0.12 to 0.01) and -0.08 cm (95% CI, -0.21 to 0.05), respectively; 0.10 cm (95% CI, 0.02-0.17) and 0.06 cm (95% CI, -0.02 to 0.14) for the femoral measurements and 0.12 cm (95% CI, -0.05 to 0.26) and 0.08 cm (95% CI, -0.02 to 0.19) for total leg length discrepancy. ICCs were >0.99 indicating excellent inter- and intra-rater reliability. Conclusion The data strongly imply that leg length measurements performed on preview images from a low-dose bi-planar imaging system are comparable to measurements performed on diagnostic images.
Collins, Sean P; Matheson, Jodi S; Hamor, Ralph E; Mitchell, Mark A; Labelle, Amber L; O'Brien, Robert T
2013-09-01
To compare the diagnostic quality of computed tomography (CT) images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Eleven privately owned cats with nasal disease presenting to a single referral hospital. All cats received a complete ophthalmic examination. A 16 multislice helical CT system was utilized to acquire images of the skull and neck with and without the use of general anesthesia. Images were acquired before and after the administration of intravenous iodinated contrast. Images of normal ocular and orbital structures were evaluated via consensus by two board-certified radiologists. Visibility of ocular and orbital structures, degree of motion, and streak artifact were assessed and scored for each image set in the transverse, dorsal, and sagittal planes. The use of general anesthesia did not significantly affect the diagnostic quality of images. No motion artifact was observed in any CT image. Streak artifact was significantly increased in scans performed in the transverse orientation but not in the dorsal orientation or sagittal orientation and did not affect the diagnostic quality of the images. Contrast enhancement did not significantly enhance the visibility of any ocular or orbital structures. Diagnostic CT images of normal ocular and orbital structures can be acquired without the use of general anesthesia in the cat. © 2012 American College of Veterinary Ophthalmologists.
Treglia, Giorgio; Trimboli, Pierpaolo; Huellner, Martin; Giovanella, Luca
2018-06-01
Primary hyperparathyroidism (PHPT) is a common endocrine disorder usually due to hyperfunctioning parathyroid glands (HP). Surgical removal of HP is the main treatment in PHPT, particularly in symptomatic patients. The correct detection and localization of HP is challenging and crucial as it may guide surgical treatment in patients with PHPT. To date, different imaging methods have been used to detect and localize HP in patients with PHPT including radiology, nuclear medicine and hybrid techniques. This review was focused to describe the diagnostic performance of several imaging methods used in detecting HP in patients with PHPT. We have summarized the diagnostic performance of different imaging methods used in detecting HP in patients with PHPT taking into account recent evidence-based articles published in the literature. To this regard, findings of recently published meta-analyses on the diagnostic accuracy of imaging methods in PHPT were reported. Furthermore, a suggested imaging strategy taking into account the diagnostic performance and further consideration has been described. Cervical ultrasound (US) and parathyroid scintigraphy using 99mTc-MIBI are the most commonly employed first-line investigations in patients with PHPT, with many institutions using both methods in combination. The diagnostic performance of US and planar 99mTc-MIBI scintigraphy seems to be similar. The use of tomographic imaging (SPECT and SPECT/CT) increases the detection rate of HP compared to planar 99mTc-MIBI scintigraphy. Whereas traditional computed tomography (CT) has limited usefulness in PHPT, four dimensional CT (4D-CT) has similar diagnostic performance compared to tomographic parathyroid scintigraphy but a higher radiation dose. Although initial encouraging results, to date there is insufficient evidence to recommend the routine use of MRI or positron emission tomography (PET) with several radiopharmaceuticals in patients with PHPT. However, they could be useful alternatives in cases with negative or discordant findings at first-line imaging methods. Patients with PHPT who are candidates for parathyroidectomy should be referred to an expert clinician to decide which imaging studies to perform based on regional imaging capabilities. The imaging techniques with higher diagnostic performance in detecting and localizing HP seems to be 99mTc-MIBI SPECT/CT and 4D-CT. Taking into account several data beyond the diagnostic performance, the combination of cervical US performed by an experienced parathyroid sonographer and 99mTc-MIBI SPECT or SPECT//CT seems to be an optimal first-line strategy in the preoperative planning of patients with PHPT.
Dual-energy KUB radiographic examination for the detection of renal calculus.
Yen, Peggy; Bailly, Greg; Pringle, Christopher; Barnes, David
2014-08-01
The dual-energy radiographic technique has been proved to be clinically useful in the thorax. Herein, we attempt to apply this technique to the abdomen and pelvis in the context of renal colic. The visibility of renal calculi were assessed using various dual energy peak kilovoltage combination radiographs applied to standard phantoms. This technique demonstrates a higher than acceptable radiation dosage required to optimize the image quality and the optimized diagnostic quality is inferior to that of the standard Kidneys, Ureters, and Bladder radiograph. The dual-energy radiographic technique could not better identify the radiopaque renal calculi. Limiting technical considerations include the increased subcutaneous and peritoneal adipose tissue and the limited contrast between the soft tissue and underlying calculi. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.
Colon Capsule Endoscopy: Where Are We and Where Are We Going
Han, Yoo Min; Im, Jong Pil
2016-01-01
Colon capsule endoscopy (CCE) is a noninvasive technique for diagnostic imaging of the colon. It does not require air inflation or sedation and allows minimally invasive and painless colonic evaluation. The role of CCE is rapidly evolving; for example, for colorectal screening (colorectal cancer [CRC]) in average-risk patients, in patients with an incomplete colonoscopy, in patients refusing a conventional colonoscopy, and in patients with contraindications for conventional colonoscopy. In this paper, we comprehensively review the technical characteristics and procedure of CCE and compare CCE with conventional methods such as conventional colonoscopy or computed tomographic colonography. Future expansion of CCE in the area of CRC screening for the surveillance of polyps and adenomatous lesions and for assessment of inflammatory bowel disease is also discussed. PMID:27653441
Diagnostic accuracy of optical coherence tomography in actinic keratosis and basal cell carcinoma.
Olsen, J; Themstrup, L; De Carvalho, N; Mogensen, M; Pellacani, G; Jemec, G B E
2016-12-01
Early diagnosis of non-melanoma skin cancer (NMSC) is potentially possible using optical coherence tomography (OCT) which provides non-invasive, real-time images of skin with micrometre resolution and an imaging depth of up to 2mm. OCT technology for skin imaging has undergone significant developments, improving image quality substantially. The diagnostic accuracy of any method is influenced by continuous technological development making it necessary to regularly re-evaluate methods. The objective of this study is to estimate the diagnostic accuracy of OCT in basal cell carcinomas (BCC) and actinic keratosis (AK) as well as differentiating these lesions from normal skin. A study set consisting of 142 OCT images meeting selection criterea for image quality and diagnosis of AK, BCC and normal skin was presented uniformly to two groups of blinded observers: 5 dermatologists experienced in OCT-image interpretation and 5 dermatologists with no experience in OCT. During the presentation of the study set the observers filled out a standardized questionnaire regarding the OCT diagnosis. Images were captured using a commercially available OCT machine (Vivosight ® , Michelson Diagnostics, UK). Skilled OCT observers were able to diagnose BCC lesions with a sensitivity of 86% to 95% and a specificity of 81% to 98%. Skilled observers with at least one year of OCT-experience showed an overall higher diagnostic accuracy compared to inexperienced observers. The study shows an improved diagnostic accuracy of OCT in differentiating AK and BCC from healthy skin using state-of-the-art technology compared to earlier OCT technology, especially concerning BCC diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Marin, Jennifer R; Mills, Angela M
2015-12-01
The 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization" was held on May 12, 2015, with the goal of developing a high-priority research agenda on which to base future research. The specific aims of the conference were to (1) understand the current state of evidence regarding emergency department (ED) diagnostic imaging use and identify key opportunities, limitations, and gaps in knowledge; (2) develop a consensus-driven research agenda emphasizing priorities and opportunities for research in ED diagnostic imaging; and (3) explore specific funding mechanisms available to facilitate research in ED diagnostic imaging. Over a 2-year period, the executive committee and other experts in the field convened regularly to identify specific areas in need of future research. Six content areas within emergency diagnostic imaging were identified before the conference and served as the breakout groups on which consensus was achieved: clinical decision rules; use of administrative data; patient-centered outcomes research; training, education, and competency; knowledge translation and barriers to imaging optimization; and comparative effectiveness research in alternatives to traditional computed tomography use. The executive committee invited key stakeholders to assist with the planning and to participate in the consensus conference to generate a multidisciplinary agenda. There were a total of 164 individuals involved in the conference and spanned various specialties, including general emergency medicine, pediatric emergency medicine, radiology, surgery, medical physics, and the decision sciences.
Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Jensen, David; Poll, Scott
2009-01-01
Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.
Digital Pathology: Data-Intensive Frontier in Medical Imaging
Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.
2013-01-01
Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166
Stationary intraoral tomosynthesis for dental imaging
NASA Astrophysics Data System (ADS)
Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto
2017-03-01
Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaf, S.; APS Engineering Support Division
A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.
Rayleigh Scattering Diagnostics Workshop
NASA Technical Reports Server (NTRS)
Seasholtz, Richard (Compiler)
1996-01-01
The Rayleigh Scattering Diagnostics Workshop was held July 25-26, 1995 at the NASA Lewis Research Center in Cleveland, Ohio. The purpose of the workshop was to foster timely exchange of information and expertise acquired by researchers and users of laser based Rayleigh scattering diagnostics for aerospace flow facilities and other applications. This Conference Publication includes the 12 technical presentations and transcriptions of the two panel discussions. The first panel was made up of 'users' of optical diagnostics, mainly in aerospace test facilities, and its purpose was to assess areas of potential applications of Rayleigh scattering diagnostics. The second panel was made up of active researchers in Rayleigh scattering diagnostics, and its purpose was to discuss the direction of future work.
Lee, Edward Y; Jenkins, Kathy J; Muneeb, Muhammad; Marshall, Audrey C; Tracy, Donald A; Zurakowski, David; Boiselle, Phillip M
2013-08-01
One of the important benefits of using multidetector computed tomography (MDCT) is its capability to generate high-quality two-dimensional (2-D) multiplanar (MPR) and three-dimensional (3-D) images from volumetric and isotropic axial CT data. However, to the best of our knowledge, no results have been published on the potential diagnostic role of multiplanar and 3-D volume-rendered (VR) images in detecting pulmonary vein stenosis, a condition in which MDCT has recently assumed a role as the initial noninvasive imaging modality of choice. The purpose of this study was to compare diagnostic accuracy and interpretation time of axial, multiplanar and 3-D VR images for detection of proximal pulmonary vein stenosis in children, and to assess the potential added diagnostic value of multiplanar and 3-D VR images. We used our hospital information system to identify all consecutive children (< 18 years of age) with proximal pulmonary vein stenosis who had both a thoracic MDCT angiography study and a catheter-based conventional angiography within 2 months from June 2005 to February 2012. Two experienced pediatric radiologists independently reviewed each MDCT study for the presence of proximal pulmonary vein stenosis defined as ≥ 50% of luminal narrowing on axial, multiplanar and 3-D VR images. Final diagnosis was confirmed by angiographic findings. Diagnostic accuracy was compared using the z-test. Confidence level of diagnosis (scale 1-5, 5 = highest), perceived added diagnostic value (scale 1-5, 5 = highest), and interpretation time of multiplanar or 3-D VR images were compared using paired t-tests. Interobserver agreement was measured using the chance-corrected kappa coefficient. The final study population consisted of 28 children (15 boys and 13 girls; mean age: 5.2 months). Diagnostic accuracy based on 116 individual pulmonary veins for detection of proximal pulmonary vein stenosis was 72.4% (84 of 116) for axial MDCT images, 77.5% (90 of 116 cases) for multiplanar MDCT images, and 93% (108 of 116 cases) for 3-D VR images with significantly higher accuracy with 3-D VR compared to axial (z = 4.17, P < 0.001) and multiplanar (z = 3.34, P < 0.001) images. Confidence levels for detection of proximal pulmonary vein stenosis were significantly higher with 3-D VR images (mean level: 4.6) compared to axial MDCT images (mean level: 1.7) and multiplanar MDCT images (mean level: 2.0) (paired t-tests, P < 0.001). Thus, 3-D VR images (mean added diagnostic value: 4.7) were found to provide added diagnostic value for detecting proximal pulmonary vein stenosis (paired t-test, P < 0.001); however, multiplanar MDCT images did not provide added value (paired t-test, P = 0.89). Interpretation time was significantly longer and interobserver agreement was higher when using 3-D VR images than using axial MDCT images or MPR MDCT images for diagnosing proximal pulmonary vein stenosis (paired t-tests, P < 0.001). Use of 3-D VR images in the diagnosis of proximal pulmonary vein stenosis in children significantly increases accuracy, confidence level, added diagnostic value and interobserver agreement. Thus, the routine use of this technique should be encouraged despite its increased interpretation time.
Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X
2014-01-01
Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.
Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne
2016-06-01
The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen
2017-01-01
The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P < 0.05). Readers have higher diagnostic confidence based on the UHRCT images than of CHRCT images (P<0.05). The follow-up recommendations were significantly different between UHRCT and CHRCT images (P<0.05). Compared with the surgical pathological findings, UHRCT had a relative higher diagnostic accuracy than CHRCT (P > 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period. PMID:28231320
Enhanced CT images by the wavelet transform improving diagnostic accuracy of chest nodules.
Guo, Xiuhua; Liu, Xiangye; Wang, Huan; Liang, Zhigang; Wu, Wei; He, Qian; Li, Kuncheng; Wang, Wei
2011-02-01
The objective of this study was to compare the diagnostic accuracy in the interpretation of chest nodules using original CT images versus enhanced CT images based on the wavelet transform. The CT images of 118 patients with cancers and 60 with benign nodules were used in this study. All images were enhanced through an algorithm based on the wavelet transform. Two experienced radiologists interpreted all the images in two reading sessions. The reading sessions were separated by a minimum of 1 month in order to minimize the effect of observer's recall. The Mann-Whitney U nonparametric test was used to analyze the interpretation results between original and enhanced images. The Kruskal-Wallis H nonparametric test of K independent samples was used to investigate the related factors which could affect the diagnostic accuracy of observers. The area under the ROC curves for the original and enhanced images was 0.681 and 0.736, respectively. There is significant difference in diagnosing the malignant nodules between the original and enhanced images (z = 7.122, P < 0.001), whereas there is no significant difference in diagnosing the benign nodules (z = 0.894, P = 0.371). The results showed that there is significant difference between original and enhancement images when the size of nodules was larger than 2 cm (Z = -2.509, P = 0.012, indicating the size of the nodules is a critical evaluating factor of the diagnostic accuracy of observers). This study indicated that the image enhancement based on wavelet transform could improve the diagnostic accuracy of radiologists for the malignant chest nodules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supanich, M.
The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less
X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.
Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S
2016-02-01
Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.
International Students in the Scientific and Technical Writing Class.
ERIC Educational Resources Information Center
Constantinides, Janet C.
A course sequence for teaching the forms and formats of scientific and technical writing to English as a second language (ESL) learners is described. The first assignment, a letter of application, serves as a diagnostic indication of the student's ability. The second assignment, a narrative, is designed to define the importance of audience and…
Welk, Blayne; Liu, Kuan; Al-Jaishi, Ahmed; McArthur, Eric; Jain, Arsh K; Ordon, Michael
2016-01-01
Health information exchange systems can link the results of diagnostic imaging tests across hospitals and geographic areas. One of the potential benefits of these systems is a reduction in imaging studies ordered by physicians who do not know about or have access to the previous imaging results. We used administrative data from Ontario, Canada (from the year 2013), to measure how frequently the same cross-sectional imaging study is repeated in a patient. Overall, 12.8% of the specified imaging tests were repeated within 90 days. An area of Southwestern Ontario with a health information exchange system for diagnostic imaging tests had a 13% lower rate of repeat cross-sectional imaging compared with the rest of the province (11.2 vs 12.8%, p < 0.01). The use of linked radiology systems may be able to reduce the number of repeated imaging tests and improve patient safety and hospital efficiency.
Dynamic Assessment: One Approach and Some Initial Data. Technical Report No. 361.
ERIC Educational Resources Information Center
Campione, Joseph C.; Brown, Ann L.
In an effort to validate dynamic assessment methods influenced by Vygotsky's (1978) definition of zones of proximal development (an indicator of readiness), three sets of experiments addressed two goals: the development of diagnostic assessment methods and the use of diagnostic results to guide the design of instructional programs. The first two…
Research Support for the Instructional Strategy Diagnostic Profile. Technical Report No. 3
ERIC Educational Resources Information Center
Merrill, M. David; And Others
By using a taxonomy of instructional strategy variables, an Instructional Strategy Diagnostic Profile (ISDP) was developed which can be used either to determine a judged index of instructional effectiveness for a previously designed instructional product or to guide the design and development of a new instructional product. Existing experimental…
ERIC Educational Resources Information Center
Marion, Rodger; And Others
The Appalachian Education Satellite Project (AESP) is designed to apply communications satellite technology to the task of improving education in Appalachia. Data were gathered about attitudinal responses of the students, site coordinators, and college faculty consultants to the various components of the course Diagnostic and Prescriptive Reading…
Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health.
Miller, Eric; Sikes, Hadley D
Immunochromatographic rapid diagnostic tests (RDTs) have demonstrated significant potential for use as point-of-care diagnostic tests in resource-limited settings. Most notably, RDTs for malaria have reached an unparalleled level of technological maturity and market penetration, and are now considered an important complement to standard microscopic methods of malaria diagnosis. However, the technical development of RDTs for other infectious diseases, and their uptake within the global health community as a core diagnostic modality, has been hindered by a number of extant challenges. These range from technical and biological issues, such as the need for better affinity agents and biomarkers of disease, to social, infrastructural, regulatory and economic barriers, which have all served to slow their adoption and diminish their impact. In order for the immunochromatographic RDT format to be successfully adapted to other disease targets, to see widespread distribution, and to improve clinical outcomes for patients on a global scale, these challenges must be identified and addressed, and the global health community must be engaged in championing the broader use of RDTs.
Addressing Barriers to the Development and Adoption of Rapid Diagnostic Tests in Global Health
Miller, Eric; Sikes, Hadley D.
2015-01-01
Immunochromatographic rapid diagnostic tests (RDTs) have demonstrated significant potential for use as point-of-care diagnostic tests in resource-limited settings. Most notably, RDTs for malaria have reached an unparalleled level of technological maturity and market penetration, and are now considered an important complement to standard microscopic methods of malaria diagnosis. However, the technical development of RDTs for other infectious diseases, and their uptake within the global health community as a core diagnostic modality, has been hindered by a number of extant challenges. These range from technical and biological issues, such as the need for better affinity agents and biomarkers of disease, to social, infrastructural, regulatory and economic barriers, which have all served to slow their adoption and diminish their impact. In order for the immunochromatographic RDT format to be successfully adapted to other disease targets, to see widespread distribution, and to improve clinical outcomes for patients on a global scale, these challenges must be identified and addressed, and the global health community must be engaged in championing the broader use of RDTs. PMID:26594252
Diagnostic value of imaging in infective endocarditis: a systematic review.
Gomes, Anna; Glaudemans, Andor W J M; Touw, Daan J; van Melle, Joost P; Willems, Tineke P; Maass, Alexander H; Natour, Ehsan; Prakken, Niek H J; Borra, Ronald J H; van Geel, Peter Paul; Slart, Riemer H J A; van Assen, Sander; Sinha, Bhanu
2017-01-01
Sensitivity and specificity of the modified Duke criteria for native valve endocarditis are both suboptimal, at approximately 80%. Diagnostic accuracy for intracardiac prosthetic material-related infection is even lower. Non-invasive imaging modalities could potentially improve diagnosis of infective endocarditis; however, their diagnostic value is unclear. We did a systematic literature review to critically appraise the evidence for the diagnostic performance of these imaging modalities, according to PRISMA and GRADE criteria. We searched PubMed, Embase, and Cochrane databases. 31 studies were included that presented original data on the performance of electrocardiogram (ECG)-gated multidetector CT angiography (MDCTA), ECG-gated MRI, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET/CT, and leucocyte scintigraphy in diagnosis of native valve endocarditis, intracardiac prosthetic material-related infection, and extracardiac foci in adults. We consistently found positive albeit weak evidence for the diagnostic benefit of 18 F-FDG PET/CT and MDCTA. We conclude that additional imaging techniques should be considered if infective endocarditis is suspected. We propose an evidence-based diagnostic work-up for infective endocarditis including these non-invasive techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Studies on the foundation and development of diagnostic ultrasound
Wagai, Toshio
2007-01-01
In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150
Recent Advances in Tumor Ablation for Hepatocellular Carcinoma
Kang, Tae Wook; Rhim, Hyunchul
2015-01-01
Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC. PMID:26674766
Comparison of quality control software tools for diffusion tensor imaging.
Liu, Bilan; Zhu, Tong; Zhong, Jianhui
2015-04-01
Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Multidisciplinary molecular diagnostics: the 9th European meeting on molecular diagnostics.
Loonen, Anne J M; Schuurman, Rob; van den Brule, Adriaan J C
2016-01-01
This report presents a summary of the 9th European Meeting on Molecular Diagnostics held in Noordwijk, The Netherlands, 14-16 October 2015. This 3-day conference covered many relevant topics in the field of molecular diagnostics in humans, including infectious disease, oncology, outbreak management, population-based cancer screening, standardization and quality control, chronic diseases and pharmacogenetics. Beyond these different areas, shared values are new technologies and novel technical and clinical applications. Approximately 450 participants, the majority coming from European countries, attended the meeting. Besides high quality scientific presentations, more than 35 diagnostic companies presented their latest innovations, altogether in an informal and inspiring scientific ambience.
Schwein, Adeline; Chinnadurai, Ponraj; Shah, Dipan J; Lumsden, Alan B; Bechara, Carlos F; Bismuth, Jean
2017-05-01
Three-dimensional image fusion of preoperative computed tomography (CT) angiography with fluoroscopy using intraoperative noncontrast cone-beam CT (CBCT) has been shown to improve endovascular procedures by reducing procedure length, radiation dose, and contrast media volume. However, patients with a contraindication to CT angiography (renal insufficiency, iodinated contrast allergy) may not benefit from this image fusion technique. The primary objective of this study was to evaluate the feasibility of magnetic resonance angiography (MRA) and fluoroscopy image fusion using noncontrast CBCT as a guidance tool during complex endovascular aortic procedures, especially in patients with renal insufficiency. All endovascular aortic procedures done under MRA image fusion guidance at a single-center were retrospectively reviewed. The patients had moderate to severe renal insufficiency and underwent diagnostic contrast-enhanced magnetic resonance imaging after gadolinium or ferumoxytol injection. Relevant vascular landmarks electronically marked in MRA images were overlaid on real-time two-dimensional fluoroscopy for image guidance, after image fusion with noncontrast intraoperative CBCT. Technical success, time for image registration, procedure time, fluoroscopy time, number of digital subtraction angiography (DSA) acquisitions before stent deployment or vessel catheterization, and renal function before and after the procedure were recorded. The image fusion accuracy was qualitatively evaluated on a binary scale by three physicians after review of image data showing virtual landmarks from MRA on fluoroscopy. Between November 2012 and March 2016, 10 patients underwent endovascular procedures for aortoiliac aneurysmal disease or aortic dissection using MRA image fusion guidance. All procedures were technically successful. A paired t-test analysis showed no difference between preimaging and postoperative renal function (P = .6). The mean time required for MRA-CBCT image fusion was 4:09 ± 01:31 min:sec. Total fluoroscopy time was 20.1 ± 6.9 minutes. Five of 10 patients (50%) underwent stent graft deployment without any predeployment DSA acquisition. Three of six vessels (50%) were cannulated under image fusion guidance without any precannulation DSA runs, and the remaining vessels were cannulated after one planning DSA acquisition. Qualitative evaluation showed 14 of 22 virtual landmarks (63.6%) from MRA overlaid on fluoroscopy were completely accurate, without the need for adjustment. Five of eight incorrect virtual landmarks (iliac and visceral arteries) resulted from vessel deformation caused by endovascular devices. Ferumoxytol or gadolinium-enhanced MRA imaging and image fusion with fluoroscopy using noncontrast CBCT is feasible and allows patients with renal insufficiency to benefit from optimal guidance during complex endovascular aortic procedures, while preserving their residual renal function. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
PROPELLER technique to improve image quality of MRI of the shoulder.
Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A
2011-12-01
The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.
Lee, N J; Chung, M S; Jung, S C; Kim, H S; Choi, C-G; Kim, S J; Lee, D H; Suh, D C; Kwon, S U; Kang, D-W; Kim, J S
2016-12-01
High-resolution MR imaging has recently been introduced as a promising diagnostic modality in intracranial artery disease. Our aim was to compare high-resolution MR imaging with digital subtraction angiography for the characterization and diagnosis of various intracranial artery diseases. Thirty-seven patients who had undergone both high-resolution MR imaging and DSA for intracranial artery disease were enrolled in our study (August 2011 to April 2014). The time interval between the high-resolution MR imaging and DSA was within 1 month. The degree of stenosis and the minimal luminal diameter were independently measured by 2 observers in both DSA and high-resolution MR imaging, and the results were compared. Two observers independently diagnosed intracranial artery diseases on DSA and high-resolution MR imaging. The time interval between the diagnoses on DSA and high-resolution MR imaging was 2 weeks. Interobserver diagnostic agreement for each technique and intermodality diagnostic agreement for each observer were acquired. High-resolution MR imaging showed moderate-to-excellent agreement (interclass correlation coefficient = 0.892-0.949; κ = 0.548-0.614) and significant correlations (R = 0.766-892) with DSA on the degree of stenosis and minimal luminal diameter. The interobserver diagnostic agreement was good for DSA (κ = 0.643) and excellent for high-resolution MR imaging (κ = 0.818). The intermodality diagnostic agreement was good (κ = 0.704) for observer 1 and moderate (κ = 0.579) for observer 2, respectively. High-resolution MR imaging may be an imaging method comparable with DSA for the characterization and diagnosis of various intracranial artery diseases. © 2016 by American Journal of Neuroradiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Z.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
NASA Astrophysics Data System (ADS)
Rogatkin, Dmitrii A.; Tchernyi, Vladimir V.
2003-07-01
The optical noninvasive diagnostic systems are now widely applied and investigated in different areas of medicine. One of the such techniques is the noninvasive spectrophotometry, the complex diagnostic technique consisting on elastic scattering spectroscopy, absorption spectroscopy, fluorescent diagnostics, photoplethismography, etc. Today a lot of real optical diagnostic systems indicate the technical parameters and physical data only as a result of the diagnostic procedure. But, it is clear that for the medical staff the more convenient medical information is needed. This presentation lights the general way for development a diagnostic system"s software, which can produce the full processing of the diagnostic data from a physical to a medical level. It is shown, that this process is a multilevel (3-level) procedure and the main diagnostic result for noninvasive spectrophotometry methods, the biochemical and morphological composition of the tested tissues, arises in it on a second level of calculations.
Fourier domain image fusion for differential X-ray phase-contrast breast imaging.
Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne
2017-04-01
X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well. Copyright © 2017 Elsevier B.V. All rights reserved.
O'Flynn, Elizabeth A M; Blackledge, Matthew; Collins, David; Downey, Katherine; Doran, Simon; Patel, Hardik; Dumonteil, Sam; Mok, Wing; Leach, Martin O; Koh, Dow-Mu
2016-07-01
To evaluate the diagnostic sensitivity of computed diffusion-weighted (DW)-MR imaging for the detection of breast cancer. Local research ethics approval was obtained. A total of 61 women (median 48 years) underwent dynamic contrast enhanced (DCE)- and DW-MR between January 2011 and March 2012, including 27 with breast cancer on core biopsy and 34 normal cases. Standard ADC maps using all four b values (0, 350, 700, 1150) were used to generate computed DW-MR images at b = 1500 s/mm(2) and b = 2000 s/mm(2) . Four image sets were read sequentially by two readers: acquired b = 1150 s/mm(2) , computed b = 1500 s/mm(2) and b = 2000 s/mm(2) , and DCE-MR at an early time point. Cancer detection was rated using a five-point scale; image quality and background suppression were rated using a four-point scale. The diagnostic sensitivity for breast cancer detection was compared using the McNemar test and inter-reader agreement with a Kappa value. Computed DW-MR resulted in higher overall diagnostic sensitivity with b = 2000 s/mm(2) having a mean diagnostic sensitivity of 76% (range 49.8-93.7%) and b = 1500 s/mm(2) having a mean diagnostic sensitivity of 70.3% (range 32-97.7%) compared with 44.4% (range 25.5-64.7%) for acquired b = 1150 s/mm(2) (both p = 0.0001). Computed DW-MR images produced better image quality and background suppression (mean scores for both readers: 2.55 and 2.9 for b 1500 s/mm(2) ; 2.55 and 3.15 for b 2000 s/mm(2) , respectively) than the acquired b value 1150 s/mm(2) images (mean scores for both readers: 2.4 and 2.45, respectively). Computed DW-MR imaging has the potential to improve the diagnostic sensitivity of breast cancer detection compared to acquired DW-MR. J. Magn. Reson. Imaging 2016;44:130-137. © 2016 Wiley Periodicals, Inc.
Development of companion diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; ...
2015-12-12
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of companion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of Companion Diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.
2016-01-01
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857
WE-AB-206-00: Diagnostic QA/QC Hands-On Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Application of content-based image compression to telepathology
NASA Astrophysics Data System (ADS)
Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace
2002-05-01
Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.
[Diagnostic imaging and acute abdominal pain].
Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob
2015-01-19
Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.
Plenoptic Imaging for Three-Dimensional Particle Field Diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guildenbecher, Daniel Robert; Hall, Elise Munz
2017-06-01
Plenoptic imaging is a promising emerging technology for single-camera, 3D diagnostics of particle fields. In this work, recent developments towards quantitative measurements of particle size, positions, and velocities are discussed. First, the technique is proven viable with measurements of the particle field generated by the impact of a water drop on a thin film of water. Next, well cont rolled experiments are used to verify diagnostic uncertainty. Finally, an example is presented of 3D plenoptic imaging of a laboratory scale, explosively generated fragment field.
Fritz, Jan; Henes, Jörg C; Thomas, Christoph; Clasen, Stephan; Fenchel, Michael; Claussen, Claus D; Lewin, Jonathan S; Pereira, Philippe L
2008-12-01
The objective of our study was to prospectively test the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively. Over a 12-month period, 60 patients (32 women and 28 men; median age, 28 years; age range, 18-49 years) with chronic lower back pain suspected to originate from the sacroiliac joints were enrolled in the study. Based on diagnostic MRI findings, MR fluoroscopy-guided sacroiliac joint injections were performed in 57 (95%) patients. Diagnostic injections (35, 58.3%) were performed if nonspecific or degenerative MRI findings were present. Therapeutic injections (22, 36.7%) were performed in patients with inflammatory arthropathy. In three (5%) patients, no injections were performed. Technical effectiveness was assessed by analyzing, first, the rate of intraarticular injection; second, the time required for the procedure; third, image quality; and, fourth, occurrence of complications and clinical outcome by analyzing pain intensity changes and volume and signal intensity of sacroiliac inflammatory changes. The rate of intraarticular injection was 90.4% (103/114). The mean length of time for the procedure was 50 minutes (range, 34-103 minutes), with exponential shortening over time (p < or = 0.001). The contrast-to-noise ratios of the needle and tissues were sufficiently different for excellent delineation of the needle. No complications occurred. Diagnostic injections identified the sacroiliac joints as generating significant pain in 46.9% (15/32) of the patients. Three months after therapeutic injections, pain intensity had decreased by 62.5% (p < or = 0.001) and the volume and relative signal intensity of inflammatory changes had decreased by 37.5% (p = 0.003) and 47.6% (p < or = 0.001), respectively. We accept the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively for comprehensive diagnosis and therapy of lower back pain originating from the sacroiliac joints.
Method and apparatus for holographic wavefront diagnostics
Toeppen, J.S.
1995-04-25
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image. 3 figs.
Method and apparatus for holographic wavefront diagnostics
Toeppen, John S.
1995-01-01
A wavefront diagnostic apparatus has an optic and a measuring system. The optic forms a holographic image in response to a beam of light striking a hologram formed on a surface of the optic. The measuring system detects the position of the array of holographic images and compares the positions of the array of holographic images to a reference holographic image.
Thermal image analysis using the serpentine method
NASA Astrophysics Data System (ADS)
Koprowski, Robert; Wilczyński, Sławomir
2018-03-01
Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.
Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert; Buonomo, Carlo; Taylor, George A
2016-05-01
Enteric contrast media are commonly administered for diagnostic cross-sectional imaging studies in the pediatric population. The purpose of this manuscript is to review the use of enteric contrast media for CT, MRI, and ultrasound in infants, children, and adolescents and to share our experiences at a large tertiary care pediatric teaching hospital. The use of enteric contrast material for diagnostic imaging in infants and children continues to evolve with advances in imaging technology and available enteric contrast media. Many principles of enteric contrast use in pediatric imaging are similar to those in adult imaging, but important differences must be kept in mind when imaging the gastrointestinal tract in infants and children, and practical ways to optimize the imaging examination and the patient experience should be employed where possible.
Morsbach, Fabian; Gordic, Sonja; Desbiolles, Lotus; Husarik, Daniela; Frauenfelder, Thomas; Schmidt, Bernhard; Allmendinger, Thomas; Wildermuth, Simon; Alkadhi, Hatem; Leschka, Sebastian
2014-08-01
To evaluate image quality, maximal heart rate allowing for diagnostic imaging, and radiation dose of turbo high-pitch dual-source coronary computed tomographic angiography (CCTA). First, a cardiac motion phantom simulating heart rates (HRs) from 60-90 bpm in 5-bpm steps was examined on a third-generation dual-source 192-slice CT (prospective ECG-triggering, pitch 3.2; rotation time, 250 ms). Subjective image quality regarding the presence of motion artefacts was interpreted by two readers on a four-point scale (1, excellent; 4, non-diagnostic). Objective image quality was assessed by calculating distortion vectors. Thereafter, 20 consecutive patients (median, 50 years) undergoing clinically indicated CCTA were included. In the phantom study, image quality was rated diagnostic up to the HR75 bpm, with object distortion being 1 mm or less. Distortion increased above 1 mm at HR of 80-90 bpm. Patients had a mean HR of 66 bpm (47-78 bpm). Coronary segments were of diagnostic image quality for all patients with HR up to 73 bpm. Average effective radiation dose in patients was 0.6 ± 0.3 mSv. Our combined phantom and patient study indicates that CCTA with turbo high-pitch third-generation dual-source 192-slice CT can be performed at HR up to 75 bpm while maintaining diagnostic image quality, being associated with an average radiation dose of 0.6 mSv. • CCTA is feasible with the turbo high-pitch mode. • Turbo high-pitch CCTA provides diagnostic image quality up to 73 bpm. • The radiation dose of high-pitch CCTA is 0.6 mSv on average.
Advanced Imaging Utilization Trends in Privately Insured Patients From 2007 to 2013.
Horný, Michal; Burgess, James F; Cohen, Alan B
2015-12-01
The aim of the study was to investigate whether the increase in utilization of advanced diagnostic imaging for privately insured patients in 2011 was the beginning of a new trend in imaging utilization growth, or an isolated deviation from the declining trend that began in 2008. We extracted outpatient and inpatient CT, diagnostic ultrasound, MRI, and PET procedures from databases, for the years 2007 to 2013. This study extended previous work, covering 2012 to 2013, using the same methodology. For every year of the study period, we calculated the following: number of procedures per person-year covered by private health insurance; proportion of office and emergency visits that resulted in an imaging session; average payments per procedure; and total payments per person-year covered by private health insurance. Outpatient utilization of CT and PET decreased in both 2012 and 2013; outpatient utilization of MRI mildly increased in 2012, but then decreased in 2013. Outpatient utilization of diagnostic ultrasound showed a very different pattern, increasing throughout the study period. Inpatient utilization of all imaging modalities except PET decreased in both 2012 and 2013. Adjusted payments for all imaging modalities increased in 2012, and then dropped substantially in 2013, except the adjusted payments for diagnostic ultrasound that increased in 2013 again. The trend of increasing utilization of advanced diagnostic imaging seems to be over for some, but not all, imaging modalities. A combination of policy (eg, breast density notification laws), technologic advancement, and wider access seems to be responsible for at least part of an increasing utilization of diagnostic ultrasound. Copyright © 2015 American College of Radiology. All rights reserved.
Metrology Standards for Quantitative Imaging Biomarkers
Obuchowski, Nancy A.; Kessler, Larry G.; Raunig, David L.; Gatsonis, Constantine; Huang, Erich P.; Kondratovich, Marina; McShane, Lisa M.; Reeves, Anthony P.; Barboriak, Daniel P.; Guimaraes, Alexander R.; Wahl, Richard L.
2015-01-01
Although investigators in the imaging community have been active in developing and evaluating quantitative imaging biomarkers (QIBs), the development and implementation of QIBs have been hampered by the inconsistent or incorrect use of terminology or methods for technical performance and statistical concepts. Technical performance is an assessment of how a test performs in reference objects or subjects under controlled conditions. In this article, some of the relevant statistical concepts are reviewed, methods that can be used for evaluating and comparing QIBs are described, and some of the technical performance issues related to imaging biomarkers are discussed. More consistent and correct use of terminology and study design principles will improve clinical research, advance regulatory science, and foster better care for patients who undergo imaging studies. © RSNA, 2015 PMID:26267831
Department of Cybernetic Acoustics
NASA Astrophysics Data System (ADS)
The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.
NASA Astrophysics Data System (ADS)
Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.
1986-06-01
In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.
Crowell, Michael S; Dedekam, Erik A; Johnson, Michael R; Dembowski, Scott C; Westrick, Richard B; Goss, Donald L
2016-10-01
While advanced diagnostic imaging is a large contributor to the growth in health care costs, direct-access to physical therapy is associated with decreased rates of diagnostic imaging. No study has systematically evaluated with evidence-based criteria the appropriateness of advanced diagnostic imaging, including magnetic resonance imaging (MRI), when ordered by physical therapists. The primary purpose of this study was to describe the appropriateness of magnetic resonance imaging (MRI) or magnetic resonance arthrogram (MRA) exams ordered by physical therapists in a direct-access sports physical therapy clinic. Retrospective observational study of practice. Greater than 80% of advanced diagnostic imaging orders would have an American College of Radiology (ACR) Appropriateness Criteria rating of greater than 6, indicating an imaging order that is usually appropriate. A 2-year retrospective analysis identified 108 MRI/MRA examination orders from four physical therapists. A board-certified radiologist determined the appropriateness of each order based on ACR appropriateness criteria. The principal investigator and co-investigator radiologist assessed agreement between the clinical diagnosis and MRI/surgical findings. Knee (31%) and shoulder (25%) injuries were the most common. Overall, 55% of injuries were acute. The mean ACR rating was 7.7; scores from six to nine have been considered appropriate orders and higher ratings are better. The percentage of orders complying with ACR appropriateness criteria was 83.2%. Physical therapist's clinical diagnosis was confirmed by MRI/MRA findings in 64.8% of cases and was confirmed by surgical findings in 90% of cases. Physical therapists providing musculoskeletal primary care in a direct-access sports physical therapy clinic appropriately ordered advanced diagnostic imaging in over 80% of cases. Future research should prospectively compare physical therapist appropriateness and utilization to other groups of providers and explore the effects of physical therapist imaging privileging on outcomes. Diagnosis, Level 3.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki
2010-03-01
Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Ni, X-G; Zhang, Q-Q; Wang, G-Q
2016-11-01
This study aimed to compare the diagnostic effectiveness of narrow band imaging and autofluorescence imaging for malignant laryngopharyngeal tumours. Between May 2010 and October 2010, 50 consecutive patients with suspected laryngopharyngeal tumour underwent endoscopic laryngopharynx examination. The morphological characteristics of laryngopharyngeal lesions were analysed using high performance endoscopic systems equipped with narrow band imaging and autofluorescence imaging modes. The diagnostic effectiveness of white light image, narrow band imaging and autofluorescence imaging endoscopy for benign and malignant laryngopharyngeal lesions was evaluated. Under narrow band imaging endoscopy, the superficial microvessels of squamous cell carcinomas appeared as dark brown spots or twisted cords. Under autofluorescence imaging endoscopy, malignant lesions appeared as bright purple. The sensitivity of malignant lesion diagnosis was not significantly different between narrow band imaging and autofluorescence imaging modes, but was better than for white light image endoscopy (χ2 = 12.676, p = 0.002). The diagnostic specificity was significantly better in narrow band imaging mode than in both autofluorescence imaging and white light imaging mode (χ2 = 8.333, p = 0.016). Narrow band imaging endoscopy is the best option for the diagnosis and differential diagnosis of laryngopharyngeal tumours.
Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload.
Ruefer, Axel; Bapst, Christine; Benz, Rudolf; Bremerich, Jens; Cantoni, Nathan; Infanti, Laura; Samii, Kaveh; Schmid, Mathias; Vallée, Jean-Paul
2017-11-09
Hyperferritinaemia is a frequent clinical problem. Elevated serum ferritin levels can be detected in different genetic and acquired diseases and can occur with or without anaemia. It is therefore important to determine whether hyperferritinaemia is due to iron overload or due to a secondary cause. The main causes of iron overload are intestinal iron hyperabsorption disorders and transfusion-dependent disorders. Iron homeostasis and iron overload are quantified by different diagnostic approaches. The evaluation of serum ferritin and transferrin saturation is the first diagnostic step to identify the cause of hyperferritinaemia. The assessment of liver iron concentration by liver biopsy or magnetic resonance imaging (MRI) may guide the further diagnostic and therapeutic workup. Liver biopsy is invasive and poorly accepted by patients and should only be carried out in selected patients with hereditary haemochromatosis. As a non-invasive approach, MRI is considered the standard method to diagnose and to monitor both hepatic iron overload and the effectiveness of iron chelation therapy in many clinical conditions such as thalassaemia and myelodysplastic syndromes. Accurate evaluation and monitoring of iron overload has major implications regarding adherence, quality of life and prognosis. There are different technical MRI approaches to measuring the liver iron content. Of these, T2 and T2* relaxometry are considered the standard of care. MRI with cardiac T2* mapping is also suitable for the assessment of cardiac iron. Currently there is no consensus which technique should be preferred. The choice depends on local availability and patient population. However, it is important to use the same MRI technique in subsequent visits in the same patient to get comparable results. Signal intensity ratio may be a good adjunct to R2 and R2* methods as it allows easy visual estimation of the liver iron concentration. In this review a group of Swiss haematologists and radiologists give an overview of different conditions leading to primary or secondary iron overload and on diagnostic methods to assess hyperferritinaemia with a focus on the role of liver MRI. They summarise the standard practice in Switzerland on the use of liver iron concentration MRI as well as disease-specific guideline recommendations.
Kedia, Prashant; Gaidhane, Monica
2013-01-01
Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is one of the least invasive and most effective modality in diagnosing pancreatic adenocarcinoma in solid pancreatic lesions, with a higher diagnostic accuracy than cystic tumors. EUS-FNA has been shown to detect tumors less than 3 mm, due to high spatial resolution allowing the detection of very small lesions and vascular invasion, particularly in the pancreatic head and neck, which may not be detected on transverse computed tomography. Furthermore, this minimally invasive procedure is often ideal in the endoscopic procurement of tissue in patients with unresectable tumors. While EUS-FNA has been increasingly used as a diagnostic tool, most studies have collectively looked at all primary pancreatic solid lesions, including lymphomas and pancreatic neuroendocrine neoplasms, whereas very few studies have examined the diagnostic utility of EUS-FNA of pancreatic ductal carcinoma only. As with any novel and advanced endoscopic procedure that may incorporate several practices and approaches, endoscopists have adopted diverse techniques to improve the tissue procurement practice and increase diagnostic accuracy. In this article, we present a review of literature to date and discuss currently practiced EUS-FNA technique, including indications, technical details, equipment, patient selection, and diagnostic accuracy. PMID:24143320
Thermal imaging diagnostics of high-current electron beams.
Pushkarev, A; Kholodnaya, G; Sazonov, R; Ponomarev, D
2012-10-01
The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.
Expansion Mini-Microscopy: An Enabling Alternative in Point-of-Care Diagnostics
Zhang, Yu Shrike; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Schiff, Steven J.; Boyden, Edward S.; Khademhosseini, Ali
2017-01-01
Diagnostics play a significant role in health care. In the developing world and low-resource regions the utility for point-of-care (POC) diagnostics becomes even greater. This need has long been recognized, and diagnostic technology has seen tremendous progress with the development of portable instrumentation such as miniature imagers featuring low complexity and cost. However, such inexpensive devices have not been able to achieve a resolution sufficient for POC detection of pathogens at very small scales, such as single-cell parasites, bacteria, fungi, and viruses. To this end, expansion microscopy (ExM) is a recently developed technique that, by physically expanding preserved biological specimens through a chemical process, enables super-resolution imaging on conventional microscopes and improves imaging resolution of a given microscope without the need to modify the existing microscope hardware. Here we review recent advances in ExM and portable imagers, respectively, and discuss the rational combination of the two technologies, that we term expansion mini-microscopy (ExMM). In ExMM, the physical expansion of a biological sample followed by imaging on a mini-microscope achieves a resolution as high as that attainable by conventional high-end microscopes imaging non-expanded samples, at significant reduction in cost. We believe that this newly developed ExMM technique is likely to find widespread applications in POC diagnostics in resource-limited and remote regions by expanded-scale imaging of biological specimens that are otherwise not resolvable using low-cost imagers. PMID:29062977
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions
NASA Technical Reports Server (NTRS)
Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina
2002-01-01
OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.
Diagnostic Imaging in the Medical Support of the Future Missions to the Moon
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael
2007-01-01
This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.
Takx, Richard A P; Suchá, Dominika; Park, Jakob; Leiner, Tim; Hoffmann, Udo
2015-12-01
To systematically investigate the literature for the influence of sublingual nitroglycerin administration on coronary diameter, the number of evaluable segments, image quality, heart rate and blood pressure, and diagnostic accuracy of coronary computed tomography (CT) angiography. A systematic search was performed in PubMed, EMBASE and Web of Science. The studies were evaluated for the effect of sublingual nitroglycerin on coronary artery diameter, evaluable segments, objective and subjective image quality, systemic physiological effects and diagnostic accuracy. Due to the heterogeneous reporting of outcome measures, a narrative synthesis was applied. Of the 217 studies identified, nine met the inclusion criteria: seven reported on the effect of nitroglycerin on coronary artery diameter, six on evaluable segments, four on image quality, five on systemic physiological effects and two on diagnostic accuracy. Sublingual nitroglycerin administration resulted in an improved evaluation of more coronary segments, in particular, in smaller coronary branches, better image quality and improved diagnostic accuracy. Side effects were mild and were alleviated without medical intervention. Sublingual nitroglycerin improves the coronary diameter, the number of assessable segments, image quality and diagnostic accuracy of coronary CT angiography without major side effects or systemic physiological changes. • Sublingual nitroglycerin administration results in significant coronary artery dilatation. • Nitroglycerin increases the number of evaluable coronary branches. • Image quality is improved the most in smaller coronary branches. • Nitroglycerin increases the diagnostic accuracy of coronary CT angiography. • Most side effects are mild and do not require medical intervention.
Sajn, Luka; Kukar, Matjaž
2011-12-01
The paper presents results of our long-term study on using image processing and data mining methods in a medical imaging. Since evaluation of modern medical images is becoming increasingly complex, advanced analytical and decision support tools are involved in integration of partial diagnostic results. Such partial results, frequently obtained from tests with substantial imperfections, are integrated into ultimate diagnostic conclusion about the probability of disease for a given patient. We study various topics such as improving the predictive power of clinical tests by utilizing pre-test and post-test probabilities, texture representation, multi-resolution feature extraction, feature construction and data mining algorithms that significantly outperform medical practice. Our long-term study reveals three significant milestones. The first improvement was achieved by significantly increasing post-test diagnostic probabilities with respect to expert physicians. The second, even more significant improvement utilizes multi-resolution image parametrization. Machine learning methods in conjunction with the feature subset selection on these parameters significantly improve diagnostic performance. However, further feature construction with the principle component analysis on these features elevates results to an even higher accuracy level that represents the third milestone. With the proposed approach clinical results are significantly improved throughout the study. The most significant result of our study is improvement in the diagnostic power of the whole diagnostic process. Our compound approach aids, but does not replace, the physician's judgment and may assist in decisions on cost effectiveness of tests. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
The role of modern diagnostic imaging in diagnosing and differentiating kidney diseases in children.
Maliborski, Artur; Zegadło, Arkadiusz; Placzyńska, Małgorzata; Sopińska, Małgorzata; Lichosik, Marianna; Jobs, Katarzyna
2018-01-01
Urinary tract diseases are in the group of the most commonly diagnosed medical conditions in pediatric patients. Many diseases with different etiologies are accompanied by pain, fever, hematuria, or urinary tract dysfunction. Those most common ones in children are urinary tract infections and congenital malformation. They can also represent tumors or changes caused by systemic diseases. Clinical tests and even more often additional imaging studies are required to make a proper diagnosis of urinary tract diseases. Just a few decades ago urography, cystography or voiding cystourethrography were the main methods in diagnostic imaging of the urinary tract. Today's imaging methods supported by digital radiographic and fluoroscopy systems, high sensitivity detectors with quantum detection, advanced algorithms eliminating motion artifacts, modern medical imaging monitors with a resolution of three or even eight megapixels significantly differ from conventional radiographic methods. The methods that are currently usually performed are: computed tomography, magnetic resonance imaging, isotopic methods and ultrasonography using elastography and new solutions in Doppler imaging. Modern techniques are currently focused on reducing radiation exposure with better imaging capabilities. The development of these techniques became an essential diagnostic aid in nephrological and urological practice. The aim of this paper is to present the latest solutions that are currently used in the diagnostic imaging of urinary tract diseases.
ERIC Educational Resources Information Center
Thompson, Timothy F.; Clancey, William J.
This report describes the application of a shell expert system from the medical diagnostic system, Neomycin, to Caster, a diagnostic system for malfunctions in industrial sandcasting. This system was developed to test the hypothesis that starting with a well-developed classification procedure and a relational language for stating the…
Structural Equation Modeling Diagnostics Using R Package Semdiag and EQS
ERIC Educational Resources Information Center
Yuan, Ke-Hai; Zhang, Zhiyong
2012-01-01
Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…
The Pathologist 2.0: An Update on Digital Pathology in Veterinary Medicine.
Bertram, Christof A; Klopfleisch, Robert
2017-09-01
Using light microscopy to describe the microarchitecture of normal and diseased tissues has changed very little since the middle of the 19th century. While the premise of histologic analysis remains intact, our relationship with the microscope is changing dramatically. Digital pathology offers new forms of visualization, and delivery of images is facilitated in unprecedented ways. This new technology can untether us entirely from our light microscopes, with many pathologists already performing their jobs using virtual microscopy. Several veterinary colleges have integrated virtual microscopy in their curriculum, and some diagnostic histopathology labs are switching to virtual microscopy as their main tool for the assessment of histologic specimens. Considering recent technical advancements of slide scanner and viewing software, digital pathology should now be considered a serious alternative to traditional light microscopy. This review therefore intends to give an overview of the current digital pathology technologies and their potential in all fields of veterinary pathology (ie, research, diagnostic service, and education). A future integration of digital pathology in the veterinary pathologist's workflow seems to be inevitable, and therefore it is proposed that trainees should be taught in digital pathology to keep up with the unavoidable digitization of the profession.
NASA Technical Reports Server (NTRS)
Norton, Jeffrey E.; Wiederholt, Bradley J.; Johnson, William B.
1990-01-01
Microcomputer Intelligence for Technical Training (MITT) uses Intelligent Tutoring System (OTS) technology to deliver diagnostic training in a variety of complex technical domains. Over the past six years, MITT technology has been used to develop training systems for nuclear power plant diesel generator diagnosis, Space Shuttle fuel cell diagnosis, and message processing diagnosis for the Minuteman missile. Presented here is an overview of the MITT system, describing the evolution of the MITT software and the benefits of using the MITT system.
Body-wide anatomy recognition in PET/CT images
NASA Astrophysics Data System (ADS)
Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A.
2015-03-01
With the rapid growth of positron emission tomography/computed tomography (PET/CT)-based medical applications, body-wide anatomy recognition on whole-body PET/CT images becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem and seldom studied due to unclear anatomy reference frame and low spatial resolution of PET images as well as low contrast and spatial resolution of the associated low-dose CT images. We previously developed an automatic anatomy recognition (AAR) system [15] whose applicability was demonstrated on diagnostic computed tomography (CT) and magnetic resonance (MR) images in different body regions on 35 objects. The aim of the present work is to investigate strategies for adapting the previous AAR system to low-dose CT and PET images toward automated body-wide disease quantification. Our adaptation of the previous AAR methodology to PET/CT images in this paper focuses on 16 objects in three body regions - thorax, abdomen, and pelvis - and consists of the following steps: collecting whole-body PET/CT images from existing patient image databases, delineating all objects in these images, modifying the previous hierarchical models built from diagnostic CT images to account for differences in appearance in low-dose CT and PET images, automatically locating objects in these images following object hierarchy, and evaluating performance. Our preliminary evaluations indicate that the performance of the AAR approach on low-dose CT images achieves object localization accuracy within about 2 voxels, which is comparable to the accuracies achieved on diagnostic contrast-enhanced CT images. Object recognition on low-dose CT images from PET/CT examinations without requiring diagnostic contrast-enhanced CT seems feasible.
Present Practice And Perceived Needs-Managing Diagnostic Images
NASA Astrophysics Data System (ADS)
Vanden Brink, John A.
1982-01-01
With the advent of digital radiography and the installed base of CT, Nuclear Medicine and Ultrasound Scanners numbering in the thousands and the potential of NMR, the market potential for the electronic management of digital images is perhaps one of the most exciting, fastest growing (and most ill defined) fields in medicine today. New technology in optical data storage, electronic transmission, image reproduction, microprocessing, automation and software development provide the promise of a whole new generation of products which will simplify and enhance the diagnostic process (thereby hopefully improving diagnostic accuracy), enable implementation of archival review in a practical sense, expand the availability of diagnostic data and lower the cost/case by at least an order of magnitude.
Klink, Thorsten; Geiger, Julia; Both, Marcus; Ness, Thomas; Heinzelmann, Sonja; Reinhard, Matthias; Holl-Ulrich, Konstanze; Duwendag, Dirk; Vaith, Peter; Bley, Thorsten Alexander
2014-12-01
To assess the diagnostic accuracy of contrast material-enhanced magnetic resonance (MR) imaging of superficial cranial arteries in the initial diagnosis of giant cell arteritis ( GCA giant cell arteritis ). Following institutional review board approval and informed consent, 185 patients suspected of having GCA giant cell arteritis were included in a prospective three-university medical center trial. GCA giant cell arteritis was diagnosed or excluded clinically in all patients (reference standard [final clinical diagnosis]). In 53.0% of patients (98 of 185), temporal artery biopsy ( TAB temporal artery biopsy ) was performed (diagnostic standard [ TAB temporal artery biopsy ]). Two observers independently evaluated contrast-enhanced T1-weighted MR images of superficial cranial arteries by using a four-point scale. Diagnostic accuracy, involvement pattern, and systemic corticosteroid ( sCS systemic corticosteroid ) therapy effects were assessed in comparison with the reference standard (total study cohort) and separately in comparison with the diagnostic standard TAB temporal artery biopsy ( TAB temporal artery biopsy subcohort). Statistical analysis included diagnostic accuracy parameters, interobserver agreement, and receiver operating characteristic analysis. Sensitivity of MR imaging was 78.4% and specificity was 90.4% for the total study cohort, and sensitivity was 88.7% and specificity was 75.0% for the TAB temporal artery biopsy subcohort (first observer). Diagnostic accuracy was comparable for both observers, with good interobserver agreement ( TAB temporal artery biopsy subcohort, κ = 0.718; total study cohort, κ = 0.676). MR imaging scores were significantly higher in patients with GCA giant cell arteritis -positive results than in patients with GCA giant cell arteritis -negative results ( TAB temporal artery biopsy subcohort and total study cohort, P < .001). Diagnostic accuracy of MR imaging was high in patients without and with sCS systemic corticosteroid therapy for 5 days or fewer (area under the curve, ≥0.9) and was decreased in patients receiving sCS systemic corticosteroid therapy for 6-14 days. In 56.5% of patients with TAB temporal artery biopsy -positive results (35 of 62), MR imaging displayed symmetrical and simultaneous inflammation of arterial segments. MR imaging of superficial cranial arteries is accurate in the initial diagnosis of GCA giant cell arteritis . Sensitivity probably decreases after more than 5 days of sCS systemic corticosteroid therapy; thus, imaging should not be delayed. Clinical trial registration no. DRKS00000594 . © RSNA, 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voisin, Sophie; Pinto, Frank M; Morin-Ducote, Garnetta
2013-01-01
Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADsmore » images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.« less
Vascular applications of contrast-enhanced ultrasound imaging.
Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A
2017-07-01
Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Diagnostic report acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Brooks, Everett G.; Rothman, Melvyn L.
1991-07-01
The Mayo Clinic and IBM Rochester have jointly developed a picture archive and control system (PACS) for use with Mayo's MRI and Neuro-CT imaging modalities. One of the challenges of developing a useful PACS involves integrating the diagnostic reports with the electronic images so they can be displayed simultaneously. By the time a diagnostic report is generated for a particular case, its images have already been captured and archived by the PACS. To integrate the report with the images, the authors have developed an IBM Personal System/2 computer (PS/2) based diagnostic report acquisition unit (RAU). A typed copy of the report is transmitted via facsimile to the RAU where it is stacked electronically with other reports that have been sent previously but not yet processed. By processing these reports at the RAU, the information they contain is integrated with the image database and a copy of the report is archived electronically on an IBM Application System/400 computer (AS/400). When a user requests a set of images for viewing, the report is automatically integrated with the image data. By using a hot key, the user can toggle on/off the report on the display screen. This report describes process, hardware, and software employed to integrate the diagnostic report information into the PACS, including how the report images are captured, transmitted, and entered into the AS/400 database. Also described is how the archived reports and their associated medical images are located and merged for retrieval and display. The methods used to detect and process error conditions are also discussed.
MRI and MRA of spinal cord arteriovenous shunts.
Condette-Auliac, Stéphanie; Boulin, Anne; Roccatagliata, Luca; Coskun, Oguzhan; Guieu, Stéphanie; Guedin, Pierre; Rodesch, Georges
2014-12-01
The purpose of this review is to describe the diagnostic criteria for spinal cord arteriovenous shunts (SCAVSs) when using magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and to discuss the extent to which the different MRI and MRA sequences and technical parameters provide the information that is required to diagnose these lesions properly. SCAVSs are divided into four groups according to location (paraspinal, epidural, dural, or intradural) and type (fistula or nidus); each type of lesion is described. SCAVSs are responsible for neurological symptoms due to spinal cord or nerve root involvement. MRI is usually the first examination performed when a spinal cord lesion is suspected. Recognition of the image characteristics of vascular lesions is mandatory if useful sequences are to be performed-especially MRA sequences. Because the treatment of SCAVSs relies mainly on endovascular therapies, MRI and MRA help with the planning of the angiographic procedure. We explain the choice of MRA sequences and parameters, the advantages and pitfalls to be aware of in order to obtain the best visualization, and the analysis of each lesion. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Devadhasan, Jasmine P.; Kim, Sanghyo
2015-07-01
Complementary metal oxide semiconductor (CMOS) image sensors are received great attention for their high efficiency in biological applications. The present work describes a CMOS image sensor-based whole blood glucose monitoring system through a point-of-care (POC) approach. A simple poly-ethylene terephthalate (PET) film chip was developed to carry out the enzyme kinetic reaction at various concentrations of blood glucose. In this technique, assay reagent was adsorbed onto amine functionalized silica (AFSiO2) nanoparticles in order to achieve glucose oxidation on the PET film chip. The AFSiO2 nanoparticles can immobilize the assay reagent with an electrostatic attraction and eased to develop the opaque platform which was technically suitable chip to analyze by the camera module. The oxidized glucose then produces a green color according to the glucose concentration and is analyzed by the camera module as a photon detection technique. The photon number decreases with increasing glucose concentration. The simple sensing approach, utilizing enzyme immobilized AFSiO2 nanoparticle chip and assay detection method was developed for quantitative glucose measurement.
NASA Astrophysics Data System (ADS)
Telepak, Robert J.; Freede, Emily; Jaramillo, Richard E.; Alverson, Dale C.
1998-07-01
During the past 5 years (1992 - 1997) the Department of Radiology of the University of New Mexico Health Sciences Center has developed an active teleradiology program. Contracts are in place to provide both routine and emergency image interpretations 24 hours per day, every day of the year. Several rural hospitals are served as well as the Navajo Indian Health Service. Areas of success: include significantly improved radiologic service to the rural sites, specialty consultations to general radiologists, successful teaching of teleradiology practice to radiology residents and staff, good diagnostic quality images, a small but real profit, improved quality assurance for the rural sites, and no significant medical-legal problems. Failures include: significant telecommunications problems, lack of acceptance and utilization by some of the rural sites, poor QA compliance by some sites, a long period of disappointing technical support by equipment vendors, and slow acceptance of DICOM by equipment manufacturers. The successes outweigh the failures. We would do it again -- but somewhat differently. We offer advice to institutions developing a new rural teleradiology operation.
Negreanu, L; Preda, C M; Ionescu, D; Ferechide, D
2015-01-01
Background. A substantial advance in digestive endoscopy that has been made during the last decade is represented by digital chromoendoscopy, which was developed as a quicker and sometimes better alternative to the gold standard of dye spraying. Fujifilm developed a virtual coloration technique called Flexible spectral Imaging Color Enhancement (FICE). FICE provides a better detection of lesions of "minimal" esophagitis, of dysplasia in Barrett's esophagus and of squamous cell esophageal cancer. The use of FICE resulted in an improvement in the visualization of the early gastric cancer, being less invasive, and time consuming than the classic dye methods. Current evidence does not support FICE for screening purposes in colon cancer but it definitely improves characterization of colonic lesions. Its use in inflammatory bowel disease is still controversial and in video capsule endoscopy is considered a substantial progress. Conclusions. The use of FICE endoscopy in routine clinical practice can increase the diagnostic yield and can provide a better characterization of lesions. Future studies to validate its use, the good choice of channels, and the "perfect indications" and to provide common definitions and classifications are necessary.
NASA Astrophysics Data System (ADS)
Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.
2017-07-01
Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.
Dedicated Cone-Beam CT System for Extremity Imaging
Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.
2014-01-01
Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for this article. PMID:24475803
Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis
NASA Astrophysics Data System (ADS)
Wang, Shang; Lopez, Andrew L.; Larina, Irina V.
2018-02-01
Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.
The Diagnosticity of Color for Emotional Objects
McMenamin, Brenton W.; Radue, Jasmine; Trask, Joanna; Huskamp, Kristin; Kersten, Daniel; Marsolek, Chad J.
2012-01-01
Object classification can be facilitated if simple diagnostic features can be used to determine class membership. Previous studies have found that simple shapes may be diagnostic for emotional content and automatically alter the allocation of visual attention. In the present study, we analyzed whether color is diagnostic of emotional content and tested whether emotionally diagnostic hues alter the allocation of visual attention. Reddish-yellow hues are more common in (i.e., diagnostic of) emotional images, particularly images with positive emotional content. An exogenous cueing paradigm was employed to test whether these diagnostic hues orient attention differently from other hues due to the emotional diagnosticity. In two experiments, we found that participants allocated attention differently to diagnostic hues than to non-diagnostic hues, in a pattern indicating a broadening of spatial attention when cued with diagnostic hues. Moreover, the attentional broadening effect was predicted by self-reported measures of affective style, linking the behavioral effect to emotional processes. These results confirm the existence and use of diagnostic features for the rapid detection of emotional content. PMID:24659831
Oncology Patient Perceptions of the Use of Ionizing Radiation in Diagnostic Imaging.
Steele, Joseph R; Jones, Aaron K; Clarke, Ryan K; Giordano, Sharon H; Shoemaker, Stowe
2016-07-01
To measure the knowledge of oncology patients regarding use and potential risks of ionizing radiation in diagnostic imaging. A 30-question survey was developed and e-mailed to 48,736 randomly selected patients who had undergone a diagnostic imaging study at a comprehensive cancer center between November 1, 2013 and January 31, 2014. The survey was designed to measure patients' knowledge about use of ionizing radiation in diagnostic imaging and attitudes about radiation. Nonresponse bias was quantified by sending an abbreviated survey to patients who did not respond to the original survey. Of the 48,736 individuals who were sent the initial survey, 9,098 (18.7%) opened it, and 5,462 (11.2%) completed it. A total of 21.7% of respondents reported knowing the definition of ionizing radiation; 35.1% stated correctly that CT used ionizing radiation; and 29.4% stated incorrectly that MRI used ionizing radiation. Many respondents did not understand risks from exposure to diagnostic doses of ionizing radiation: Of 3,139 respondents who believed that an abdominopelvic CT scan carried risk, 1,283 (40.9%) believed sterility was a risk; 669 (21.3%) believed heritable mutations were a risk; 657 (20.9%) believed acute radiation sickness was a risk; and 135 (4.3%) believed cataracts were a risk. Most patients and caregivers do not possess basic knowledge regarding the use of ionizing radiation in oncologic diagnostic imaging. To ensure health literacy and high-quality patient decision making, efforts to educate patients and caregivers should be increased. Such education might begin with information about effects that are not risks of diagnostic imaging. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Architecture for a PACS primary diagnosis workstation
NASA Astrophysics Data System (ADS)
Shastri, Kaushal; Moran, Byron
1990-08-01
A major factor in determining the overall utility of a medical Picture Archiving and Communications (PACS) system is the functionality of the diagnostic workstation. Meyer-Ebrecht and Wendler [1] have proposed a modular picture computer architecture with high throughput and Perry et.al [2] have defined performance requirements for radiology workstations. In order to be clinically useful, a primary diagnosis workstation must not only provide functions of current viewing systems (e.g. mechanical alternators [3,4]) such as acceptable image quality, simultaneous viewing of multiple images, and rapid switching of image banks; but must also provide a diagnostic advantage over the current systems. This includes window-level functions on any image, simultaneous display of multi-modality images, rapid image manipulation, image processing, dynamic image display (cine), electronic image archival, hardcopy generation, image acquisition, network support, and an easy user interface. Implementation of such a workstation requires an underlying hardware architecture which provides high speed image transfer channels, local storage facilities, and image processing functions. This paper describes the hardware architecture of the Siemens Diagnostic Reporting Console (DRC) which meets these requirements.
Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira
2016-01-01
Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776
Results From the New NIF Gated LEH imager
NASA Astrophysics Data System (ADS)
Chen, Hui; Amendt, P.; Barrios, M.; Bradley, D.; Casey, D.; Hinkel, D.; Berzak Hopkins, L.; Kilkenny, J.; Kritcher, A.; Landen, O.; Jones, O.; Ma, T.; Milovich, J.; Michel, P.; Moody, J.; Ralph, J.; Pak, A.; Palmer, N.; Schneider, M.
2016-10-01
A novel ns-gated Laser Entrance Hole (G-LEH) diagnostic has been successfully implemented at the National Ignition Facility (NIF). This diagnostic has successfully acquired images from various experimental campaigns, providing critical information for inertial confinement fusion experiments. The G-LEH diagnostic which takes time-resolved gated images along a single line-of-sight, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories into the existing Static X-ray Imager diagnostic at NIF. It is capable of capturing two laser-entrance-hole images per shot on its 1024x448 pixel photo-detector array, with integration times as short as 2 ns per frame. The results that will be presented include the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. This work was performed under the auspices of the U.S. Department of Energy by LLNS, LLC, under Contract No. DE-AC52- 07NA27344.
Focused Assessment with Sonography for Trauma in weightlessness: a feasibility study
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew W.; Hamilton, Douglas R.; Nicolaou, Savvas; Sargsyan, Ashot E.; Campbell, Mark R.; Feiveson, Alan; Dulchavsky, Scott A.; Melton, Shannon; Beck, George; Dawson, David L.
2003-01-01
BACKGROUND: The Focused Assessment with Sonography for Trauma (FAST) examines for fluid in gravitationally dependent regions. There is no prior experience with this technique in weightlessness, such as on the International Space Station, where sonography is currently the only diagnostic imaging tool. STUDY DESIGN: A ground-based (1 g) porcine model for sonography was developed. We examined both the feasibility and the comparative performance of the FAST examination in parabolic flight. Sonographic detection and fluid behavior were evaluated in four animals during alternating weightlessness (0 g) and hypergravity (1.8 g) periods. During flight, boluses of fluid were incrementally introduced into the peritoneal cavity. Standardized sonographic windows were recorded. Postflight, the video recordings were divided into 169 20-second segments for subsequent interpretation by 12 blinded ultrasonography experts. Reviewers first decided whether a video segment was of sufficient diagnostic quality to analyze (determinate). Determinate segments were then analyzed as containing or not containing fluid. A probit regression model compared the probability of a positive fluid diagnosis to actual fluid levels (0 to 500 mL) under both 0-g and 1.8-g conditions. RESULTS: The in-flight sonographers found real-time scanning and interpretation technically similar to that of terrestrial conditions, as long as restraint was maintained. On blinded review, 80% of the recorded ultrasound segments were considered determinate. The best sensitivity for diagnosis in 0 g was found to be from the subhepatic space, with probability of a positive fluid diagnosis ranging from 9% (no fluid) to 51% (500 mL fluid). CONCLUSIONS: The FAST examination is technically feasible in weightlessness, and merits operational consideration for clinical contingencies in space.
[Diagnostic imaging of breast cancer : An update].
Funke, M
2016-10-01
Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.
2013-01-01
Background Magnetic resonance imaging (MRI) guided wire localization presents several challenges apart from the technical difficulties. An alternative to this conventional localization method using a wire is the radio-guided occult lesion localization (ROLL), more related to safe surgical margins and reductions in excision volume. The purpose of this study was to establish a safe and reliable magnetic resonance imaging-radioguided occult lesion localization (MRI-ROLL) technique and to report our initial experience with the localization of nonpalpable breast lesions only observed on MRI. Methods Sixteen women (mean age 53.2 years) with 17 occult breast lesions underwent radio-guided localization in a 1.5-T MR system using a grid-localizing system. All patients had a diagnostic MRI performed prior to the procedure. An intralesional injection of Technetium-99m macro-aggregated albumin followed by distilled water was performed. After the procedure, scintigraphy was obtained. Surgical resection was performed with the help of a gamma detector probe. The lesion histopathology and imaging concordance; the procedure’s positive predictive value (PPV), duration time, complications, and accuracy; and the rate of exactly excised lesions evaluated with MRI six months after the surgery were assessed. Results One lesion in one patient had to be excluded because the radioactive substance came back after the injection, requiring a wire placement. Of the remaining cases, there were four malignant lesions, nine benign lesions, and three high-risk lesions. Surgical histopathology and imaging findings were considered concordant in all benign and high-risk cases. The PPV of MRI-ROLL was greater if the indication for the initial MR examination was active breast cancer. The median procedure duration time was 26 minutes, and all included procedures were defined as accurate. The exact and complete lesion removal was confirmed in all (100%) patients who underwent six-month postoperative MRI (50%). Conclusions MRI-ROLL offers a precise, technically feasible, safe, and rapid means for performing preoperative MRI localizations in the breast. PMID:24044428
Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.
Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A
2009-07-01
An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.
Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph
2011-04-01
The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.
ERIC Educational Resources Information Center
Smith, Gregory D.; Nunan, Elizabeth; Walker, Claire; Kushel, Dan
2009-01-01
Imaging of artwork is an important aspect of art conservation, technical art history, and art authentication. Many forms of near-infrared (NIR) imaging are used by conservators, archaeologists, forensic scientists, and technical art historians to examine the underdrawings of paintings, to detect damages and restorations, to enhance faded or…
Diagnostic imaging advances in murine models of colitis.
Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik
2016-01-21
Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.
3.0-T functional brain imaging: a 5-year experience.
Scarabino, T; Giannatempo, G M; Popolizio, T; Tosetti, M; d'Alesio, V; Esposito, F; Di Salle, F; Di Costanzo, A; Bertolino, A; Maggialetti, A; Salvolini, U
2007-02-01
The aim of this paper is to illustrate the technical, methodological and diagnostic features of functional imaging (comprising spectroscopy, diffusion, perfusion and cortical activation techniques) and its principal neuroradiological applications on the basis of the experience gained by the authors in the 5 years since the installation of a high-field magnetic resonance (MR) magnet. These MR techniques are particularly effective at 3.0 Tesla (T) owing to their high signal, resolution and sensitivity, reduced scanning times and overall improved diagnostic ability. In particular, the high-field strength enhances spectroscopic analysis due to a greater signal-to-noise ratio (SNR) and improved spectral, space and time resolution, resulting in the ability to obtain high-resolution spectroscopic studies not only of the more common metabolites, but also--and especially--of those which, due to their smaller concentrations, are difficult to detect using 1.5-T systems. All of these advantages can be obtained with reduced acquisition times. In diffusion studies, the high-field strength results in greater SNR, because 3.0-T magnets enable increased spatial resolution, which enhances accuracy. They also allow exploration in greater detail of more complex phenomena (such as diffusion tensor and tractography), which are not clearly depicted on 1.5-T systems. The most common perfusion study (with intravenous injection of a contrast agent) benefits from the greater SNR and higher magnetic susceptibility by achieving dramatically improved signal changes, and thus greater reliability, using smaller doses of contrast agent. Functional MR imaging (fMRI) is without doubt the modality in which high-field strength has had the greatest impact. Images acquired with the blood-oxygen-level-dependent (BOLD) technique benefit from the greater SNR afforded by 3.0-T magnets and from their stronger magnetic susceptibility effects, providing higher signal and spatial resolution. This enhances reliability of the localisation of brain functions, making it possible to map additional areas, even in the millimetre and submillimetre scale. The data presented and results obtained to date show that 3.0-T morphofunctional imaging can become the standard for high-resolution investigation of brain disease.
Monitoring by holographic radar systems
NASA Astrophysics Data System (ADS)
Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco
2013-04-01
Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to Commemorate the 60th Anniversary of the Invention of Holography, Springfield, Massachusetts USA, October 27-29, pp. 183-197, 2008. [2] I. Catapano, L. Crocco, A. F. Morabito, F. Soldovieri, "Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation", Nondestructive testing and evaluation, vol. 27, pp. 229-237, 2012.
Functional valve assessment: the emerging role of cardiovascular magnetic resonance.
Shah, Dipan J
2010-01-01
The prevalence of valvular heart disease is increasing along with the life span of the population. In assessing individuals with valve disease, echocardiography is the primary imaging modality used by clinicians both for initial assessment and for longitudinal evaluation. Information regarding valve morphology and function, cardiac chamber size, wall thickness, ventricular function, and estimates of pulmonary artery pressures can be readily obtained and integrated to formulate an assessment of valve disease severity. In some instances, body habitus or the presence of coexisting lung disease may result in suboptimal acoustic windows on echocardiography, which may lead to technically difficult studies. Additionally, in some patients, information from clinical history and physical examination or other diagnostic tests may be discordant with echocardiographic findings. In these instances, there is a significant clinical role for cardiovascular magnetic resonance (CMR). The diagnostic capabilities of CMR have increased substantially over the past 20 years due to hardware and software advances. Today, CMR has a number of unique advantages over other imaging modalities - primarily, it provides a view of the entire heart without limitations from inadequate imaging windows or body habitus. Furthermore, CMR can obtain imaging data in any imaging plane prescribed by the scan operator, which makes it ideal for accurate investigation of all cardiac valves - aortic, mitral, pulmonic, and tricuspid. In addition, CMR for valve assessment is noninvasive, free of ionizing radiation, and in most instances does not require contrast administration. Since a comprehensive review of the role of CMR in all valve lesions is beyond the scope of this article, we will focus on the most common valvular indication for performance of clinical CMR techniques and an overview of selected validation and reproducibility studies. The objectives of a comprehensive CMR study for evaluating mitral insufficiency are threefold: 1) to provide insight into the mechanism of mitral insufficiency, and 3) to discern the consequences of the lesions including the effects on left ventricular (LV) volume, LV systolic function, and left atrial volumes. In most instances this information can be obtained without the need for intravenous contrast agents (gadolinium). Therefore, CMR can be performed even in patients with severe renal failure.
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.
2014-08-21
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-01
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong
2018-06-01
The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E
2016-01-01
With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
An image, looking east into Room 112A, filled with technical ...
An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH
WE-AB-206-02: ACR Ultrasound Accreditation: Requirements and Pitfalls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, J.
The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less
Role of radiology in the management of primary aldosteronism.
Patel, Shilpan M; Lingam, Ravi K; Beaconsfield, Tina I; Tran, Tan L; Brown, Beata
2007-01-01
The diagnosis of primary aldosteronism, the most common form of secondary hypertension, is based on clinical and biochemical features. Although radiology plays no role in the initial diagnosis, it has an important role in differentiating between the two main causes of primary aldosteronism: aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia (BAH). This distinction is important because APAs are generally managed surgically and BAH medically. Adrenal venous sampling is considered the standard of reference for determining the cause of primary aldosteronism but is technically demanding, operator dependent, costly, and time consuming, with a low but significant complication rate. Other imaging modalities, including computed tomography, magnetic resonance imaging, and adrenal scintigraphy, have also been used to determine the cause of primary aldosteronism. Cross-sectional imaging has traditionally focused on establishing the diagnosis of an APA, with that of BAH being one of exclusion. A high specificity for detecting an APA is desirable, since it will avert unnecessary surgery in patients with BAH. However, an overreliance on cross-sectional imaging can lead to the incorrect treatment of affected patients, mainly due to the wide variation in the reported diagnostic performance of these modalities. A combination of modalities is usually required to confidently determine the cause of primary aldosteronism. The quest for optimal radiologic management of primary aldosteronism continues just over a half century since this disease entity was first described. RSNA, 2007
Current global and Korean issues in radiation safety of nuclear medicine procedures.
Song, H C
2016-06-01
In recent years, the management of patient doses in medical imaging has evolved as concern about radiation exposure has increased. Efforts and techniques to reduce radiation doses are focussed not only on the basis of patient safety, but also on the fundamentals of justification and optimisation in cooperation with international organisations such as the International Commission on Radiological Protection, the International Atomic Energy Agency, and the World Health Organization. The Image Gently campaign in children and Image Wisely campaign in adults to lower radiation doses have been initiated in the USA. The European Association of Nuclear Medicine paediatric dosage card, North American consensus guidelines, and Nuclear Medicine Global Initiative have recommended the activities of radiopharmaceuticals that should be administered in children. Diagnostic reference levels (DRLs), developed predominantly in Europe, may be an important tool to manage patient doses. In Korea, overexposure to radiation, even from the use of medical imaging, has become a public issue, particularly since the accident at the Fukushima nuclear power plant. As a result, the Korean Nuclear Safety and Security Commission revised the technical standards for radiation safety management in medical fields. In parallel, DRLs for nuclear medicine procedures have been collected on a nationwide scale. Notice of total effective dose from positron emission tomography-computed tomography for cancer screening has been mandatory since mid-November 2014. © The International Society for Prosthetics and Orthotics.