Science.gov

Sample records for diagnostic pcr assay

  1. Assessing the Validity of Diagnostic Quantitative PCR Assays for Phakopsora pachyrhizi and P. meibomiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are 123 confirmed species in the genus Phakopsora worldwide, with 19 species reported in the continental United States. In 2002, a quantitative PCR (qPCR) diagnostic assay was developed by Frederick et al. that has been used for detecting Phakopsora pachyrhizi in spore trapping studies. Based ...

  2. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth disease virus and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Reid, S M; Baker, B R; Ebert, K; Ferris, N P; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; King, D P

    2007-07-26

    A high-throughput multiplexed assay was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRT-PCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  3. Diagnostic evaluation of a multiplexed RT-PCR microsphere array assay for the detection of foot-and-mouth and look-alike disease viruses

    SciTech Connect

    Hindson, B J; Baker, B R; Bentley Tammero, L F; Lenhoff, R J; Naraghi-Arani, P; Vitalis, E A; Slezak, T R; Hullinger, P J; Reid, S M; Ebert, K; Ferris, N P; King, D P

    2007-09-18

    A high-throughput multiplexed assay (Multiplex Version 1.0) was developed for the differential laboratory diagnosis of foot-and-mouth disease virus (FMDV) from viruses which cause clinically similar diseases of livestock. This assay simultaneously screens for five RNA and two DNA viruses using multiplexed reverse transcription PCR (mRT-PCR) amplification coupled with a microsphere hybridization array and flow-cytometric detection. Two of the seventeen primer-probe sets included in this multiplex assay were adopted from previously characterized real-time RT-PCR (rRT-PCR) assays for FMDV. The diagnostic accuracy of the mRT-PCR was evaluated using 287 field samples, including 248 (true positive n= 213, true negative n=34) from suspect cases of foot-and-mouth disease collected from 65 countries between 1965 and 2006 and 39 true negative samples collected from healthy animals. The mRT-PCR assay results were compared with two singleplex rRT-PCR assays, using virus isolation with antigen-ELISA as the reference method. The diagnostic sensitivity of the mRT-PCR assay for FMDV was 93.9% [95% C.I. 89.8-96.4%], compared to 98.1% [95% C.I. 95.3-99.3%] for the two singleplex rRTPCR assays used in combination. In addition, the assay could reliably differentiate between FMDV and other vesicular viruses such as swine vesicular disease virus and vesicular exanthema of swine virus. Interestingly, the mRT-PCR detected parapoxvirus (n=2) and bovine viral diarrhea virus (n=2) in clinical samples, demonstrating the screening potential of this mRT-PCR assay to identify viruses in FMDV-negative material not previously recognized using focused single-target rRT-PCR assays.

  4. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens

    PubMed Central

    Fabian, Andrew W.; Barrette, Roger W.; Sayed, Abu

    2016-01-01

    Senecavirus A (SV-A), formerly, Seneca Valley virus (SVV), has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD), a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88%) were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18%) or without (6%) vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates. PMID:26757142

  5. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens.

    PubMed

    Bracht, Alexa J; O'Hearn, Emily S; Fabian, Andrew W; Barrette, Roger W; Sayed, Abu

    2016-01-01

    Senecavirus A (SV-A), formerly, Seneca Valley virus (SVV), has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD), a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88%) were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18%) or without (6%) vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates. PMID:26757142

  6. Requisite analytic and diagnostic performance characteristics for the clinical detection of BRAF V600E in hairy cell leukemia: a comparison of 2 allele-specific PCR assays.

    PubMed

    Brown, Noah A; Weigelin, Helmut C; Bailey, Nathanael; Laliberte, Julie; Elenitoba-Johnson, Kojo S J; Lim, Megan S; Betz, Bryan L

    2015-09-01

    Detection of high-frequency BRAF V600E mutations in hairy cell leukemia (HCL) has important diagnostic utility. However, the requisite analytic performance for a clinical assay to routinely detect BRAF V600E mutations in HCL has not been clearly defined. In this study, we sought to determine the level of analytic sensitivity needed for formalin-fixed, paraffin-embedded (FFPE) and frozen samples and to compare the performance of 2 allele-specific polymerase chain reaction (PCR) assays. Twenty-nine cases of classic HCL, including 22 FFPE bone marrow aspirates and 7 frozen specimens from blood or bone marrow were evaluated using a laboratory-developed allele-specific PCR assay and a commercially available allele-specific quantitative PCR assay-myT BRAF Ultra. Also included were 6 HCL variant and 40 non-HCL B-cell lymphomas. Two cases of classic HCL, 1 showing CD5 expression, were truly BRAF V600E-negative based on negative results by PCR and sequencing despite high-level leukemic involvement. Among the remaining 27 specimens, V600E mutations were detected in 88.9% (17/20 FFPE; 7/7 frozen) and 81.5% (15/20 FFPE; 7/7 frozen), for the laboratory-developed and commercial assays, respectively. No mutations were detected among the 46 non-HCL lymphomas. Both assays showed an analytic sensitivity of 0.3% involvement in frozen specimens and 5% in FFPE tissue. On the basis of these results, an assay with high analytic sensitivity is required for the clinical detection of V600E mutations in HCL specimens. Two allele-specific PCR assays performed well in both frozen and FFPE bone marrow aspirates, although detection in FFPE tissue required 5% or more involvement.

  7. Bovine mastitis: the diagnostic properties of a PCR-based assay to monitor the Staphylococcus aureus genotype B status of a herd, using bulk tank milk.

    PubMed

    Syring, C; Boss, R; Reist, M; Bodmer, M; Hummerjohann, J; Gehrig, P; Graber, H U

    2012-07-01

    Staphylococcus aureus genotype B (GTB) is a contagious mastitis pathogen in cattle, occurring in up to 87% of individuals. Because treatment is generally insufficient, culling is often required, leading to large economic loss in the Swiss dairy industry. As the detection of this pathogen in bulk tank milk (BTM) would greatly facilitate its control, a novel real-time quantitative PCR-based assay for BTM has previously been developed and is now being evaluated for its diagnostic properties at the herd level. Herds were initially classified as to their Staph. aureus GTB status by a reference method. Using BTM and herd pools of single-quarter and 4-quarter milk, the herds were then grouped by the novel assay, and the resulting classifications were compared. A total of 54 dairy herds were evaluated. Using the reference method, 21 herds were found to be GTB positive, whereas 33 were found to be negative. Considering the novel assay using both herd pools, all herds were grouped correctly, resulting in maximal diagnostic sensitivities (100%) and specificities (100%). For BTM samples, diagnostic sensitivities and specificities were 90 and 100%, respectively. Two herds were false negative in BTM, because cows with clinical signs of mastitis were not milked into the tank. Besides its excellent diagnostic properties, the assay is characterized by its low detection level, high efficiency, and its suitability for automation. Using the novel knowledge and assay, eradication of Staph. aureus GTB from a dairy herd may be considered as a realistic goal.

  8. Novel multiplex real-time PCR diagnostic assay for identification and differentiation of Mycobacterium tuberculosis, Mycobacterium canettii, and Mycobacterium tuberculosis complex strains.

    PubMed

    Reddington, Kate; O'Grady, Justin; Dorai-Raj, Siobhan; Maher, Majella; van Soolingen, Dick; Barry, Thomas

    2011-02-01

    Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). Rapid detection of the MTC is necessary for the timely initiation of antibiotic treatment, while differentiation between members of the complex may be important to guide the appropriate antibiotic treatment and provide epidemiological information. In this study, a multiplex real-time PCR diagnostics assay using novel molecular targets was designed to identify the MTC while simultaneously differentiating between M. tuberculosis and M. canettii. The lepA gene was targeted for the detection of members of the MTC, the wbbl1 gene was used for the differentiation of M. tuberculosis and M. canettii from the remainder of the complex, and a unique region of the M. canettii genome, a possible novel region of difference (RD), was targeted for the specific identification of M. canettii. The multiplex real-time PCR assay was tested using 125 bacterial strains (64 MTC isolates, 44 nontuberculosis mycobacteria [NTM], and 17 other bacteria). The assay was determined to be 100% specific for the mycobacteria tested. Limits of detection of 2.2, 2.17, and 0.73 cell equivalents were determined for M. tuberculosis/M. canettii, the MTC, and M. canettii, respectively, using probit regression analysis. Further validation of this diagnostics assay, using clinical samples, should demonstrate its potential for the rapid, accurate, and sensitive diagnosis of TB caused by M. tuberculosis, M. canettii, and the other members of the MTC.

  9. Diagnostic Molecular Mycobacteriology in Regions With Low Tuberculosis Endemicity: Combining Real-time PCR Assays for Detection of Multiple Mycobacterial Pathogens With Line Probe Assays for Identification of Resistance Mutations.

    PubMed

    Deggim-Messmer, Vanessa; Bloemberg, Guido V; Ritter, Claudia; Voit, Antje; Hömke, Rico; Keller, Peter M; Böttger, Erik C

    2016-07-01

    Molecular assays have not yet been able to replace time-consuming culture-based methods in clinical mycobacteriology. Using 6875 clinical samples and a study period of 35months we evaluated the use of PCR-based assays to establish a diagnostic workflow with a fast time-to-result of 1-2days, for 1. detection of Mycobacterium tuberculosis complex (MTB), 2. detection and identification of nontuberculous mycobacteria (NTM), and 3. identification of drug susceptible MTB. MTB molecular-based detection and culture gave concordant results for 97.7% of the specimens. NTM PCR-based detection and culture gave concordant results for 97.0% of the specimens. Defining specimens on the basis of combined laboratory data as true positives or negatives with discrepant results resolved by clinical chart reviews, we calculated sensitivity, specificity, PPV and NPV for PCR-based MTB detection as 84.7%, 100%, 100%, and 98.7%; the corresponding values for culture-based MTB detection were 86.3%, 100%, 100%, and 98.8%. PCR-based detection of NTM had a sensitivity of 84.7% compared to 78.0% of that of culture-based NTM detection. Molecular drug susceptibility testing (DST) by line-probe assay was found to predict phenotypic DST results in MTB with excellent accuracy. Our findings suggest a diagnostic algorithm to largely replace lengthy culture-based techniques by rapid molecular-based methods.

  10. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods.

    PubMed

    Rejili, M; Fernandes, T; Dinis, A M; Pereira, J A; Baptista, P; Santos, S A P; Lino-Neto, T

    2016-10-01

    Bactrocera oleae (Rossi) (Diptera: Tephritidae) is considered the most devastating pest of the olive tree worldwide. In an effort to develop management and biological control strategies against this pest, new molecular tools are urgently needed. In this study, we present the design of B. oleae-specific primers based on mitochondrial DNA sequences of cytochrome oxidase subunit I (COI) gene. Two pairs of B. oleae-specific primers were successfully designed and named as SBo1-F/SBo1-R and SBo2-F/SBo1-R, being able to amplify 108 and 214 bp COI fragments, respectively. The specificity of designed primers was tested by amplifying DNA from phylogenetically related (i.e. Diptera order) and other non-pest insects living in olive groves from the Mediterranean region. When using these primers on a PCR-based diagnostic assay, B. oleae DNA was detected in the gut content of a soil-living insect, Pterostichus globosus (Fabricius) (Coleoptera: Carabidae). The detection of B. oleae DNA in the guts of arthropods was further optimized by adding bovine serum albumin enhancer to the PCR reaction, in order to get a fast, reproducible and sensitive tool for detecting B. oleae remains in the guts of soil-living arthropods. This molecular tool could be useful for understanding pest-predator relationships and establishing future biological control strategies for this pest. PMID:27296773

  11. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods.

    PubMed

    Rejili, M; Fernandes, T; Dinis, A M; Pereira, J A; Baptista, P; Santos, S A P; Lino-Neto, T

    2016-10-01

    Bactrocera oleae (Rossi) (Diptera: Tephritidae) is considered the most devastating pest of the olive tree worldwide. In an effort to develop management and biological control strategies against this pest, new molecular tools are urgently needed. In this study, we present the design of B. oleae-specific primers based on mitochondrial DNA sequences of cytochrome oxidase subunit I (COI) gene. Two pairs of B. oleae-specific primers were successfully designed and named as SBo1-F/SBo1-R and SBo2-F/SBo1-R, being able to amplify 108 and 214 bp COI fragments, respectively. The specificity of designed primers was tested by amplifying DNA from phylogenetically related (i.e. Diptera order) and other non-pest insects living in olive groves from the Mediterranean region. When using these primers on a PCR-based diagnostic assay, B. oleae DNA was detected in the gut content of a soil-living insect, Pterostichus globosus (Fabricius) (Coleoptera: Carabidae). The detection of B. oleae DNA in the guts of arthropods was further optimized by adding bovine serum albumin enhancer to the PCR reaction, in order to get a fast, reproducible and sensitive tool for detecting B. oleae remains in the guts of soil-living arthropods. This molecular tool could be useful for understanding pest-predator relationships and establishing future biological control strategies for this pest.

  12. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda.

    PubMed

    Rhein, Joshua; Bahr, Nathan C; Hemmert, Andrew C; Cloud, Joann L; Bellamkonda, Satya; Oswald, Cody; Lo, Eric; Nabeta, Henry; Kiggundu, Reuben; Akampurira, Andrew; Musubire, Abdu; Williams, Darlisha A; Meya, David B; Boulware, David R

    2016-03-01

    Meningitis remains a worldwide problem, and rapid diagnosis is essential to optimize survival. We evaluated the utility of a multiplex PCR test in differentiating possible etiologies of meningitis. Cerebrospinal fluid (CSF) from 69 HIV-infected Ugandan adults with meningitis was collected at diagnosis (n=51) and among persons with cryptococcal meningitis during therapeutic lumbar punctures (n=68). Cryopreserved CSF specimens were analyzed with BioFire FilmArray® Meningitis/Encephalitis panel, which targets 17 pathogens. The panel detected Cryptococcus in the CSF of patients diagnosed with a first episode of cryptococcal meningitis by fungal culture with 100% sensitivity and specificity and differentiated between fungal relapse and paradoxical immune reconstitution inflammatory syndrome in recurrent episodes. A negative FilmArray result was predictive of CSF sterility on follow-up lumbar punctures for cryptococcal meningitis. EBV was frequently detected in this immunosuppressed population (n=45). Other pathogens detected included: cytomegalovirus (n=2), varicella zoster virus (n=2), human herpes virus 6 (n=1), and Streptococcus pneumoniae (n=1). The FilmArray Meningitis/Encephalitis panel offers a promising platform for rapid meningitis diagnosis. PMID:26711635

  13. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections

    PubMed Central

    Reddington, Kate; Schwenk, Stefan; Tuite, Nina; Platt, Gareth; Davar, Danesh; Coughlan, Helena; Personne, Yoann; Gant, Vanya; Enne, Virve I.; Zumla, Alimuddin

    2015-01-01

    Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens. PMID:26109443

  14. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections.

    PubMed

    Reddington, Kate; Schwenk, Stefan; Tuite, Nina; Platt, Gareth; Davar, Danesh; Coughlan, Helena; Personne, Yoann; Gant, Vanya; Enne, Virve I; Zumla, Alimuddin; Barry, Thomas

    2015-09-01

    Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens. PMID:26109443

  15. Variola Virus-Specific Diagnostic Assays: Characterization, Sensitivity, and Specificity

    PubMed Central

    Kondas, Ashley V.; Olson, Victoria A.; Li, Yu; Abel, Jason; Laker, Miriam; Rose, Laura; Wilkins, Kimberly; Turner, Jonathan; Kline, Richard

    2015-01-01

    A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified. PMID:25673790

  16. Variola virus-specific diagnostic assays: characterization, sensitivity, and specificity.

    PubMed

    Kondas, Ashley V; Olson, Victoria A; Li, Yu; Abel, Jason; Laker, Miriam; Rose, Laura; Wilkins, Kimberly; Turner, Jonathan; Kline, Richard; Damon, Inger K

    2015-04-01

    A public health response relies upon rapid and reliable confirmation of disease by diagnostic assays. Here, we detail the design and validation of two variola virus-specific real-time PCR assays, since previous assays cross-reacted with newly identified cowpox viruses. The assay specificity must continually be reassessed as other closely related viruses are identified.

  17. A PCR-based diagnostic assay for the detection of Roseovarius crassostreae in Crassostrea virginica affected by juvenile oyster disease (JOD)

    USGS Publications Warehouse

    Maloy, A.P.; Barber, B.J.; Boettcher, K.J.

    2005-01-01

    We have developed a PCR-assay for the diagnosis of juvenile oyster disease (JOD) based on the detection of Roseovarius crassostreae directly from affected oysters. Species-specific primers are used to amplify the 16S-23S rDNA internal transcribed spacer (ITS) of R. crassostreae, and confirmation of product identity is accomplished by restriction enzyme analysis. No false positives were obtained with either closely related bacterial species or from other DNAs present in oyster samples. The assay has the potential to detect as few as 10 cells of R. crassostreae per oyster when samples are taken from the inner valve surfaces of the animal. Inclusion of material from soft body surfaces is not necessary, and may reduce sensitivity approximately 10-fold. In a JOD-affected population, a positive PCR result was obtained from all oysters from which these bacteria were subsequently cultured. The assay also detected the presence of R. crassostreae in 2 oysters from which no R. crassostreae isolates were recovered. No R. crassostreae was detected by either PCR or bacteriology in oysters from a population that was not exhibiting JOD-signs. This assay is expected to advance regional disease management efforts and provide valuable insights into the disease process and epizootiology of JOD. ?? Inter-Research 2005.

  18. Diagnostic performance and application of a real-time PCR assay for the detection of Salmonella in fecal samples collected from hospitalized horses with or without signs of gastrointestinal tract disease.

    PubMed

    Ekiri, A B; Long, M T; Hernandez, J A

    2016-02-01

    The main objective of this study was to assess the diagnostic performance of a real-time polymerase chain reaction (PCR) assay for the detection of Salmonella in fecal samples collected from hospitalized horses with or without signs of gastrointestinal (GI) tract disease. The PCR assay used primers and a probe that targeted the invA gene of Salmonella. Assuming a sensitivity of 100% and a specificity of 96.6%, and a disease prevalence of 2%, 5%, and 10-15% in study horses, the PCR assay had a high (100%) negative predictive value, and a positive predictive value that ranged from 37% in horses without signs of GI disease that tested Salmonella culture-negative, to 60% in horses with signs of GI disease that tested Salmonella culture-negative, to 76-83% in horses with signs of GI disease that tested Salmonella culture-positive. This study provides evidence that the real-time PCR that targets the Salmonella invA gene can be used as a screening test for the detection of Salmonella in feces of hospitalized horses with signs of GI disease. Horses that test PCR-positive can be tested in series using bacteriologic culture to reduce false positive results or to provide additional data (e.g., antibiogram and serotyping data) that can be used to identify potential nosocomial Salmonella infections.

  19. Diagnostic utility of droplet digital PCR for HIV reservoir quantification.

    PubMed

    Trypsteen, Wim; Kiselinova, Maja; Vandekerckhove, Linos; De Spiegelaere, Ward

    2016-01-01

    Quantitative real-time PCR (qPCR) is implemented in many molecular laboratories worldwide for the quantification of viral nucleic acids. However, over the last two decades, there has been renewed interest in the concept of digital PCR (dPCR) as this platform offers direct quantification without the need for standard curves, a simplified workflow and the possibility to extend the current detection limit. These benefits are of great interest in terms of the quantification of low viral levels in HIV reservoir research because changes in the dynamics of residual HIV reservoirs will be important to monitor HIV cure efforts. Here, we have implemented a systematic literature screening and text mining approach to map the use of droplet dPCR (ddPCR) in the context of HIV quantification. In addition, several technical aspects of ddPCR were compared with qPCR: accuracy, sensitivity, precision and reproducibility, to determine its diagnostic utility. We have observed that ddPCR was used in different body compartments in multiple HIV-1 and HIV-2 assays, with the majority of reported assays focusing on HIV-1 DNA-based applications (i.e. total HIV DNA). Furthermore, ddPCR showed a higher accuracy, precision and reproducibility, but similar sensitivity when compared to qPCR due to reported false positive droplets in the negative template controls with a need for standardised data analysis (i.e. threshold determination). In the context of a low level of detection and HIV reservoir diagnostics, ddPCR can offer a valid alternative to qPCR-based assays but before this platform can be clinically accredited, some remaining issues need to be resolved. PMID:27482456

  20. Diagnostic Performance of a Multiple Real-Time PCR Assay in Patients with Suspected Sepsis Hospitalized in an Internal Medicine Ward

    PubMed Central

    Pasqualini, Leonella; Leli, Christian; Montagna, Paolo; Cardaccia, Angela; Cenci, Elio; Montecarlo, Ines; Pirro, Matteo; di Filippo, Francesco; Cistaro, Emma; Schillaci, Giuseppe; Bistoni, Francesco; Mannarino, Elmo

    2012-01-01

    Early identification of causative pathogen in sepsis patients is pivotal to improve clinical outcome. SeptiFast (SF), a commercially available system for molecular diagnosis of sepsis based on PCR, has been mostly used in patients hospitalized in hematology and intensive care units. We evaluated the diagnostic accuracy and clinical usefulness of SF, compared to blood culture (BC), in 391 patients with suspected sepsis, hospitalized in a department of internal medicine. A causative pathogen was identified in 85 patients (22%). Sixty pathogens were detected by SF and 57 by BC. No significant differences were found between the two methods in the rates of pathogen detection (P = 0.74), even after excluding 9 pathogens which were isolated by BC and were not included in the SF master list (P = 0.096). The combination of SF and BC significantly improved the diagnostic yield in comparison to BC alone (P < 0.001). Compared to BC, SF showed a significantly lower contamination rate (0 versus 19 cases; P < 0.001) with a higher specificity for pathogen identification (1.00, 95% confidence interval [CI] of 0.99 to 1.00, versus 0.94, 95% CI of 0.90 to 0.96; P = 0.005) and a higher positive predictive value (1.00, 95% CI of 1.00 to 0.92%, versus 0.75, 95% CI of 0.63 to 0.83; P = 0.005). In the subgroup of patients (n = 191) who had been receiving antibiotic treatment for ≥24 h, SF identified more pathogens (16 versus 6; P = 0.049) compared to BC. These results suggest that, in patients with suspected sepsis, hospitalized in an internal medicine ward, SF could be a highly valuable adjunct to conventional BC, particularly in patients under antibiotic treatment. PMID:22322348

  1. PCR-based diagnostics for anaerobic infections.

    PubMed

    Song, Yuli

    2005-01-01

    Conventional methods to identify anaerobic bacteria have often relied on unique clinical findings, isolation of organisms, and laboratory identification by morphology and biochemical tests (phenotypic tests). Although these methods are still fundamental, there is an increasing move toward molecular diagnostics of anaerobes. In this review, some of the molecular approaches to anaerobic diagnostics based on the polymerase chain reaction (PCR) are discussed. This includes several technological advances in PCR-based methods for the detection, identification, and quantitation of anaerobes including real-time PCR which has been successfully used to provide rapid, quantitative data on anaerobic species on clinical samples. Since its introduction in the mid-1980s, PCR has provided many molecular diagnostic tools, some of which are discussed within this review. With the advances in micro-array technology and real-time PCR methods, the future is bright for the development of accurate, quantitative diagnostic tools that can provide information not only on individual anaerobic species but also on whole communities.

  2. Bayesian estimation of the diagnostic accuracy of a multiplex real-time PCR assay and bacteriological culture for 4 common bovine intramammary pathogens.

    PubMed

    Paradis, M-È; Haine, D; Gillespie, B; Oliver, S P; Messier, S; Comeau, J; Scholl, D T

    2012-11-01

    Bacteriological culture (BC) is the traditional method for intramammary infection diagnosis but lacks sensitivity and is time consuming. Multiplex real-time PCR (mr-PCR) enables testing the presence of several bacteria and reduces diagnosis time. Our objective was to estimate bacterial species-specific sensitivity (Se) and specificity of both BC and mr-PCR tests for detecting bacteria in milk samples from clinical mastitis cases and from apparently normal quarters, using a Bayesian latent class model. Milk samples from 1,014 clinical mastitis cases and 1,495 samples from apparently normal quarters were analyzed by BC and mr-PCR. Two positive culture definitions were used: ≥1 cfu/0.01 mL and ≥10 cfu/0.01 mL of the specified bacteria. The mr-PCR was designed to simultaneously detect Staphylococcus aureus, Streptococcus uberis, Escherichia coli, and Streptococcus agalactiae. The priors used in our Bayesian model were weakly informative, with BC priors using the best available error data. Results were compared with those obtained using uniform priors for mr-PCR to test robustness. Weak and uniform priors gave about the same posterior distributions except for Strep. uberis from normal quarters and Strep. agalactiae. Multiplex real-time PCR Se on milk from clinical mastitis were lower than mr-PCR Se on milk from normal quarters. Multiplex real-time PCR Se was higher than BC on milk from normal quarters. Multiplex real-time PCR Se was generally lower than BC on milk from clinical mastitis and it varied by clinical severity. The estimate specificities of detection for all pathogens were ≥99%, regardless of sample type. The effect of milk sample preservation before testing was evaluated and may have been a factor that affected our observed results. A significant association was observed between sample age and mr-PCR results leading to reduced detection of E. coli and Strep. agalactiae in nonclinical samples. Differences in sample age between conduct of BC and of mr-PCR

  3. PCR and real-time PCR assays to detect fungi of Alternaria alternata species.

    PubMed

    Kordalewska, Milena; Brillowska-Dąbrowska, Anna; Jagielski, Tomasz; Dworecka-Kaszak, Bożena

    2015-01-01

    Fungi of the Alternaria genus are mostly associated with allergic diseases. However, with a growing number of immunocompromised patients, these fungi, with A. alternata being the most prevalent one, are increasingly recognized as etiological agents of infections (phaeohyphomycoses) in humans. Nowadays, identification of Alternaria spp. requires their pure culture and is solely based on morphological criteria. Clinically, Alternaria infections may be indistinguishable from other fungal diseases. Therefore, a diagnostic result is often delayed or even not achieved at all. In this paper we present easy to perform and interpret PCR and real-time PCR assays enabling detection of A. alternata species. On the basis of alignment of β-tubulin gene sequences, A. alternata-specific primers were designed. DNA from fungal isolates, extracted in a two-step procedure, were used in PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The assays specificity was confirmed, since positive results were obtained for all A. alternata isolates, and no positive results were obtained neither for other molds, dermatophytes, yeast-like fungi, nor human DNA. The assays developed here enable fast and unambiguous identification of A. alternata pathogens. PMID:26610309

  4. PCR and real-time PCR assays to detect fungi of Alternaria alternata species.

    PubMed

    Kordalewska, Milena; Brillowska-Dąbrowska, Anna; Jagielski, Tomasz; Dworecka-Kaszak, Bożena

    2015-01-01

    Fungi of the Alternaria genus are mostly associated with allergic diseases. However, with a growing number of immunocompromised patients, these fungi, with A. alternata being the most prevalent one, are increasingly recognized as etiological agents of infections (phaeohyphomycoses) in humans. Nowadays, identification of Alternaria spp. requires their pure culture and is solely based on morphological criteria. Clinically, Alternaria infections may be indistinguishable from other fungal diseases. Therefore, a diagnostic result is often delayed or even not achieved at all. In this paper we present easy to perform and interpret PCR and real-time PCR assays enabling detection of A. alternata species. On the basis of alignment of β-tubulin gene sequences, A. alternata-specific primers were designed. DNA from fungal isolates, extracted in a two-step procedure, were used in PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The assays specificity was confirmed, since positive results were obtained for all A. alternata isolates, and no positive results were obtained neither for other molds, dermatophytes, yeast-like fungi, nor human DNA. The assays developed here enable fast and unambiguous identification of A. alternata pathogens.

  5. Diagnostic approaches for oculoglandular tularemia: advantages of PCR

    PubMed Central

    Kantardjiev, Todor; Padeshki, Plamen; Ivanov, Ivan N

    2007-01-01

    Aim The authors describe a diagnostic approach that proved to be particularly valuable in rare cases of ocular tularemia registered during the tularemia outbreak in 1997–2005 in Bulgaria. The authors describe the laboratory findings and diagnosis of four cases with an oculoglandular form of infection. Methods Several different specimens from each patient were analysed. Oculoglandular tularemia was diagnosed in four patients either by culture, immunofluorescent antibody analysis (IFA), serology or by a polymerase chain reaction (PCR) assay. Results and Discussion Three F tularensis strains were isolated and characterised. One of these was isolated from a conjuctival swab specimen obtained from a seronegative patient. The authors report for the first time a successful application of diagnostic PCR performed directly on conjuctival swab specimen. From all analysed specimens IFA was diagnostically effective only in the case of lymph node aspirates and was not sensitive enough for conjuctival swabs or blood samples. The authors also describe the histological picture of a conjunctival granuloma in course of infection. All patients were successfully treated with ciprofloxacin. Conclusions Some of the proposed laboratory diagnostic strategies (swab PCR) are not invasive and could represent a new approach for resolving rare and hard‐to‐diagnose cases of oculoglandular tularemia. PMID:17475710

  6. Real-time PCR in Food Science: PCR Diagnostics.

    PubMed

    Rodriguez-Lazaro, David; Cook, Nigel; Hernandez, Marta

    2013-01-01

    A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control. PMID:23513039

  7. Real-time PCR in Food Science: PCR Diagnostics.

    PubMed

    Rodriguez-Lazaro, David; Cook, Nigel; Hernandez, Marta

    2013-01-01

    A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control.

  8. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  9. Quantitative polymerase chain reaction (PCR) for detection of aquatic animal pathogens in a diagnostic laboratory setting

    USGS Publications Warehouse

    Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.

    2011-01-01

    Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.

  10. Diagnostic performance of HPV E6/E7, hTERT, and Ki67 mRNA RT-qPCR assays on formalin-fixed paraffin-embedded cervical tissue specimens from women with cervical cancer.

    PubMed

    Wang, Hye-Young; Kim, Geehyuk; Cho, Hyemi; Kim, Sunghyun; Lee, Dongsup; Park, Sunyoung; Park, Kwang Hwa; Lee, Hyeyoung

    2015-06-01

    Human papillomavirus (HPV) is a major cause of cervical cancer, which is the third most common cancer in women. Human telomerase reverse transcriptase (hTERT) and Ki67 are tumor cell markers indicating cancer cell proliferation in cancer patients, and activation of hTERT and Ki67 leads to progressive cervical carcinogenesis. In the present study, we evaluated the CervicGen HPVE6/E7 mRNA RT-qDx assay, which detects 16 HPV high-risk (HR) genotypes (HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68 and 69), and the CervicGen hTERT and Ki67 mRNA RT-qDx assay using 117 formalin-fixed paraffin-embedded (FFPE) cervical cancer tissue samples. The diagnostic validity of the CervicGen HPV RT-qDx assay for detecting histologically proven prevalent squamous cell carcinoma (SCC) was 94% sensitivity, 100% specificity, 77.8% positive predictive value (PPV), and 78.9% negative predictive value (NPV). The most common HPV genotypes detected in FFPE cervical cancer tissue samples were HPV 16 (56%) and HPV 18 (10%). The positivity rate of hTERT and Ki67 mRNA expressions in FFPE cervical cancer tissue samples on RT-qPCR was 65% and 93% respectively. Moreover, the positivity rates were 92% for a combination of HPV E6/E7 and hTERT mRNA expressions, 97% for HPV E6/E7 and Ki67 mRNA expressions, and 99% (99/100) for the combination of HPV E6/E7, hTERT, and Ki67 mRNA expressions. These data showed that SSC FFPE cervical cancer tissue samples correlated more strongly with high Ki67 mRNA expressions than with hTERT mRNA expressions. Notably, hTERT and Ki67 mRNA expression level was increased in high-grade cervical lesions, but was very low in normal samples. Our findings suggest that the combination of HPV E6/E7, hTERT, and Ki67 mRNA expression levels could be used in a complementary manner in diagnosing high-grade cervical lesions. Further studies are required to evaluate these assays as a useful predictive tool for screening low-grade cervical lesions.

  11. A Ribeiroia spp. (Class: Trematoda) - Specific PCR-based diagnostic

    USGS Publications Warehouse

    Reinitz, D.M.; Yoshino, T.P.; Cole, R.A.

    2007-01-01

    Increased reporting of amphibian malformations in North America has been noted with concern in light of reports that amphibian numbers and species are declining worldwide. Ribeiroia ondatrae has been shown to cause a variety of types of malformations in amphibians. However, little is known about the prevalence of R. ondatrae in North America. To aid in conducting field studies of Ribeiroia spp., we have developed a polymerase chain reaction (PCR)-based diagnostic. Herein, we describe the development of an accurate, rapid, simple, and cost-effective diagnostic for detection of Ribeiroia spp. infection in snails (Planorbella trivolvis). Candidate oligonucleotide primers for PCR were designed via DNA sequence analyses of multiple ribosomal internal transcribed spacer-2 regions from Ribeiroia spp. and Echinostoma spp. Comparison of consensus sequences determined from both genera identified areas of sequence potentially unique to Ribeiroia spp. The PCR reliably produced a diagnostic 290-base pair (bp) product in the presence of a wide concentration range of snail or frog DNA. Sensitivity was examined with DNA extracted from single R. ondatrae cercaria. The single-tube PCR could routinely detect less than 1 cercariae equivalent, because DNA isolated from a single cercaria could be diluted at least 1:50 and still yield a positive result via gel electrophoresis. An even more sensitive nested PCR also was developed that routinely detected 100 fg of the 290-bp fragment. The assay did not detect furcocercous cercariae of certain Schistosomatidae, Echinostoma sp., or Sphaeridiotrema globulus nor adults of Clinostomum sp. or Cyathocotyle bushiensis. Field testing of 137 P. trivolvis identified 3 positives with no overt environmental cross-reactivity, and results concurred with microscopic examinations in all cases. ?? American Society of Parasitologists 2007.

  12. Development and Application of a Universal Hemoplasma Screening Assay Based on the SYBR Green PCR Principle▿

    PubMed Central

    Willi, Barbara; Meli, Marina L.; Lüthy, Ruedi; Honegger, Hanspeter; Wengi, Nicole; Hoelzle, Ludwig E.; Reusch, Claudia E.; Lutz, Hans; Hofmann-Lehmann, Regina

    2009-01-01

    Hemotropic mycoplasmas (hemoplasmas) are the causative agents of infectious anemia in several mammalian species. Their zoonotic potential has recently been substantiated by the identification of a feline hemoplasma isolate in an immunocompromised human patient. Although species-specific diagnostic molecular methods have been developed, their application as screening tools is limited due to the species diversity of hemoplasmas. The goals of this study were to develop a universal hemoplasma screening assay with broad specificity based on the SYBR green PCR principle, to compare the assay with hemoplasma-specific TaqMan PCR, and to analyze potential tick vectors and human blood samples to address the zoonotic potential. The newly developed PCR assay based on the 16S rRNA gene amplified feline, canine, bovine, porcine, camelid, and murine hemoplasmas, as well as Mycoplasma penetrans and Mycoplasma pneumoniae. The lower detection limit for feline and canine hemoplasmas was 1 to 10 copies/PCR. The assay exhibited 98.2% diagnostic sensitivity and 92.1% diagnostic specificity for feline hemoplasmas. All 1,950 Ixodes ticks were PCR negative, suggesting that Ixodes ticks are not relevant vectors for the above-mentioned hemoplasma species in Switzerland. None of the 414 blood samples derived from anemic or immunocompromised human patients revealed a clear positive result. The SYBR green PCR assay described here is a suitable tool to screen for known and so-far-undiscovered hemoplasma species. Positive results should be confirmed by specific TaqMan PCR or sequencing. PMID:19828748

  13. Misuse of PCR assay for diagnosis of mollusc protistan infections.

    PubMed

    Burreson, Eugene M

    2008-06-19

    Polymerase chain reaction (PCR) assays are useful tools for pathogen surveillance, but they are only proxy indications of pathogen presence in that they detect a DNA sequence. To be useful for detection of actual infections, PCR assays must be thoroughly tested for sensitivity and specificity, and ultimately validated against a technique, typically histology, which allows visualization of the parasite in host tissues. There is growing use of PCR assays for pathogen surveillance, but too often the assumption is made that a positive PCR result verifies an infection in a tested host. This assumption is valid only if the assay has been properly validated for the geographic area and for the hosts examined. Researchers should interpret unvalidated PCR assay results with caution, and editors and reviewers should insist that robust validations support all assertions that PCR results confirm infections.

  14. Multiplex PCR: Optimization and Application in Diagnostic Virology

    PubMed Central

    Elnifro, Elfath M.; Ashshi, Ahmed M.; Cooper, Robert J.; Klapper, Paul E.

    2000-01-01

    PCR has revolutionized the field of infectious disease diagnosis. To overcome the inherent disadvantage of cost and to improve the diagnostic capacity of the test, multiplex PCR, a variant of the test in which more than one target sequence is amplified using more than one pair of primers, has been developed. Multiplex PCRs to detect viral, bacterial, and/or other infectious agents in one reaction tube have been described. Early studies highlighted the obstacles that can jeopardize the production of sensitive and specific multiplex assays, but more recent studies have provided systematic protocols and technical improvements for simple test design. The most useful of these are the empirical choice of oligonucleotide primers and the use of hot start-based PCR methodology. These advances along with others to enhance sensitivity and specificity and to facilitate automation have resulted in the appearance of numerous publications regarding the application of multiplex PCR in the diagnosis of infectious agents, especially those which target viral nucleic acids. This article reviews the principles, optimization, and application of multiplex PCR for the detection of viruses of clinical and epidemiological importance. PMID:11023957

  15. An improved molecular diagnostic assay for canine and feline dermatophytosis.

    PubMed

    Cafarchia, Claudia; Gasser, Robin B; Figueredo, Luciana A; Weigl, Stefania; Danesi, Patrizia; Capelli, Gioia; Otranto, Domenico

    2013-02-01

    The few studies attempting to specifically characterize dermatophytes from hair samples of dogs and cats using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present investigation was to establish and evaluate a PCR-based approach employing genetic markers of nuclear DNA for the specific detection of dermatophytes on such specimens. Using 183 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional microscopy and in vitro culture techniques (using the latter as the reference method). The one step-PCR was highly accurate (AUC > 90) for the testing of samples from dogs, but only moderately accurate (AUC = 78.6) for cats. A nested-PCR was accurate (AUC = 93.6) for samples from cats, and achieved higher specificity (94.1 and 94.4%) and sensitivity (100 and 94.9%) for samples from dogs and cats, respectively. In addition, the nested-PCR allowed the differentiation of Microsporum canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e., Microsporum gypseum or Trichophyton terrestre), which was not possible using the one step-assay. The PCRs evaluated here provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of dermatophytoses. PMID:22686247

  16. Development and Validation of a HPV-32 Specific PCR Assay

    PubMed Central

    Herrel, Nicholas R; Johnson, Nadia L; Cameron, Jennifer E; Leigh, Janet; Hagensee, Michael E

    2009-01-01

    Background Human Papillomavirus-32 (HPV-32) has traditionally been associated with focal-epithelial-hyperplasia (FEH). It is also present in 58% of oral warts of HIV-positive individuals whose prevalence is increasing. Current methods for the detection of HPV-32 are labor-intensive and insensitive so the goal of this work was to develop a highly sensitive and easy to use specific polymerase chain reaction (PCR) assay. Materials and methods An HPV-32 L1 specific PCR assay was developed and optimized. The sensitivity and specificity was compared to previous assays utilized for detection (PGMY and MY09/11 PCR with dot blot hybridization) using cloned HPV-32 L1, the closely related HPV-42 L1 as well as clinical samples (oral swabs and fluids from 89 HIV-positive subjects). Results The HPV-32 specific PCR assay showed improved sensitivity to 5 copies of HPV-32 as compared to the PGMY PCR, MY09/11 PCR and dot blot which had a limit of detection of approximately 3,000 copies. Using the HPV-32 dot blot hybridization assay as the gold standard, the HPV-32 specific PCR assay has a sensitivity of 95.8% and 88.9% by sample and subject, respectively, and specificity was 87.8% and 58.8% by sample and subject, respectively. The low sensitivity is due to the HPV-32 specific PCR assays ability to detect more HPV-32 positive samples and may be the new gold standard. Conclusion Due to the ease, sensitivity, and specificity the HPV-32 specific PCR assay is superior to previous assays and is ideal for detection of HPV-32 in large cohorts. This assay provides an excellent tool to study the natural history of HPV-32 infection and the development of oral warts. PMID:19558697

  17. Development of real-time PCR assay for differential detection of Bordetella bronchiseptica and Bordetella parapertussis.

    PubMed

    Tizolova, Anette; Brun, Delphine; Guiso, Nicole; Guillot, Sophie

    2014-04-01

    Bordetella parapertussis is a causative agent of whooping cough in humans, and B. bronchiseptica is causing wide variety of respiratory infections in mammals, including humans. Specific diagnostic tests are not currently available. Our first objective was to develop a real-time PCR test for the specific detection of B. bronchiseptica based on the previously described end-point PCR, targeting an intergenomic sequence of the fla gene locus, but it has not been reached. However, there is cross-reactivity between B. parapertussis and B. bronchiseptica. Therefore, the targeted region of several clinical isolates of both species was sequenced, and alignment of the sequences allowed the development of a 2-step real-time PCR assay. The first PCR assay detected the DNA of all clinical isolates of both B. bronchiseptica and B. parapertussis tested. The second PCR assay detected only the DNA of B. parapertussis clinical isolates, thereby allowing discrimination between B. parapertussis and B. bronchiseptica.

  18. Overcoming inhibition in real-time diagnostic PCR.

    PubMed

    Hedman, Johannes; Rådström, Peter

    2013-01-01

    PCR is an important and powerful tool in several fields, including clinical diagnostics, food analysis, and forensic analysis. In theory, PCR enables the detection of one single cell or DNA molecule. However, the presence of PCR inhibitors in the sample affects the amplification efficiency of PCR, thus lowering the detection limit, as well as the precision of sequence-specific nucleic acid quantification in real-time PCR. In order to overcome the problems caused by PCR inhibitors, all the steps leading up to DNA amplification must be optimized for the sample type in question. Sampling and sample treatment are key steps, but most of the methods currently in use were developed for conventional diagnostic methods and not for PCR. Therefore, there is a need for fast, simple, and robust sample preparation methods that take advantage of the accuracy of PCR. In addition, the thermostable DNA polymerases and buffer systems used in PCR are affected differently by inhibitors. During recent years, real-time PCR has developed considerably and is now widely used as a diagnostic tool. This technique has greatly improved the degree of automation and reduced the analysis time, but has also introduced a new set of PCR inhibitors, namely those affecting the fluorescence signal. The purpose of this chapter is to view the complexity of PCR inhibition from different angles, presenting both molecular explanations and practical ways of dealing with the problem. Although diagnostic PCR brings together scientists from different diagnostic fields, end-users have not fully exploited the potential of learning from each other. Here, we have collected knowledge from archeological analysis, clinical diagnostics, environmental analysis, food analysis, and forensic analysis. The concept of integrating sampling, sample treatment, and the chemistry of PCR, i.e., pre-PCR processing, will be addressed as a general approach to overcoming real-time PCR inhibition and producing samples optimal for PCR

  19. Posttreatment Follow-Up of Brucellosis by PCR Assay

    PubMed Central

    Morata, Pilar; Queipo-Ortuño, María Isabel; Reguera, José María; García-Ordoñez, Miguel Angel; Pichardo, Cristina; Colmenero, Juan de Dios

    1999-01-01

    In order to evaluate the usefulness of a peripheral blood PCR assay in the posttreatment follow-up of brucellosis, a cohort of 30 patients was studied by means of blood cultures, rose Bengal, seroagglutination, Coombs' antibrucella tests, and PCR assay at the time of diagnosis, at the end of treatment, and 2, 4, and 6 months later. Of the 29 patients whose PCR assays were initially positive, 28 (96.5%) were negative at the conclusion of the treatment. PCR was positive for the two patients who had relapses and negative for another four who had suspected but unconfirmed relapses. PCR was negative for 98.3% of the follow-up samples from those patients who had a favorable evolution. In conclusion, PCR appears to be a very useful technique, not only for the initial diagnosis of the disease, but also for posttreatment follow-up and the early detection of relapses. PMID:10565954

  20. Comparison of six real-time PCR assays for qualitative detection of cytomegalovirus in clinical specimens.

    PubMed

    Binnicker, M J; Espy, M E

    2013-11-01

    In this study, we compared the performance of six real-time PCR assays for the qualitative detection of cytomegalovirus (CMV) in clinical samples other than plasma. Two hundred specimens (respiratory [n = 72], urine [n = 67], cerebrospinal fluid [CSF] [n = 25], tissue [n = 18], amniotic fluid [n = 10], and bone marrow [n = 8]) submitted for routine testing by CMV real-time PCR analyte-specific reagents (ASR) (Roche Diagnostics, Indianapolis, IN) were also tested by a laboratory-developed test (LDT) and 4 commercially available PCR assays: EraGen Multicode (Luminex, Austin, TX), Focus Simplexa (Focus Diagnostics, Cypress, CA), Elitech MGB Alert CMV (Fisher Scientific, Hanover Park, IL), and Abbott CMV (Abbott Park, IL). Nucleic acid was extracted using the MagNA Pure system (Roche Diagnostics) and subsequently tested by each PCR method. Results were analyzed by comparing each assay to a "consensus result," which was defined as the result obtained from at least 4 of the 6 assays. In addition to the prospective samples, 13 lower respiratory samples with known positive results by CMV shell vial were tested by each PCR method. Following testing of the 200 prospective specimens, the Abbott, Elitech, EraGen, and Focus PCR assays demonstrated a sensitivity of 100% (46/46), while the Roche analyte-specific reagents (ASR) and LDT showed sensitivities of 89% (41/46) and 98% (45/46), respectively. Percent specificities ranged from 97% (149/154) by Elitech to 100% (154/154) by the LDT. Among the 13 shell vial-positive lower respiratory samples, the percent sensitivities ranged from 69% (9/13) by Elitech to 92% (12/13) by the LDT. The Abbott, EraGen, Elitech, Focus, and LDT PCR assays performed similarly (κ ≥ 0.89) for the detection of CMV in clinical specimens and demonstrated increased sensitivity compared to the Roche ASR.

  1. Performance of MycAssay Aspergillus DNA real-time PCR assay compared with the galactomannan detection assay for the diagnosis of invasive aspergillosis from serum samples.

    PubMed

    Danylo, Alexis; Courtemanche, Chantal; Pelletier, René; Boudreault, Alexandre A

    2014-08-01

    Invasive aspergillosis (IA) is a major problem in the immunocompromised population, and its diagnosis is difficult due to the low sensitivity of available tests. Detection of Aspergillus nucleic acid by polymerase chain reaction (PCR) in serum samples is a promising diagnostic tool; however, use of multiple "in-house" methods precludes standardization. The first commercial PCR assay, MycAssay Aspergillus (Myconostica, Ltd), became available recently, and its performance in the diagnosis of IA was evaluated and compared with the galactomannan (GM) assay. Serum samples obtained from patients with hematological cancer were tested retrospectively with MycAssay Aspergillus PCR. Per-episode and per-test analyses were undertaken with 146 sera from 35 hematological patients. Sixteen patients had proven or probable IA and 19 had possible or no IA. In per-episode analysis, MycAssay Aspergillus had a sensitivity of 43.8% (95% confidence interval [CI], 19.8%-70.1%) and a specificity of 63.2% (95% CI, 38.4%-83.7%) for IA diagnosis. In per-test analyses, MycAssay Aspergillus had a lower specificity than the GM assay (83.3% vs. 93.1%, P = 0.04). The addition of PCR to routine clinical practice would have permitted the diagnosis of one additional probable IA in our cohort. Use of PCR instead of GM assay would have delayed the diagnosis in two cases. Aspergillus DNA detection by PCR with serum specimens using MycAssay showed a lower specificity than the GM assay and was associated with a low sensitivity for IA diagnosis. More studies are needed to determine the exact role of MycAssay in IA diagnosis in patients with hematological malignancy.

  2. Dried blood spots PCR assays to screen congenital cytomegalovirus infection: a meta-analysis.

    PubMed

    Wang, Li; Xu, Xiaoxing; Zhang, Huiping; Qian, Jihong; Zhu, Jianxing

    2015-04-14

    The performance of dried blood spots (DBS) polymerase chain reaction (PCR) assays in screening for congenital cytomegalovirus (cCMV) infection varies between different studies. To determine whether the DBS PCR assay has sufficient accuracy to be used as a screening test for cCMV infection, we performed a meta-analysis of 15 studies (n = 26007 neonates) that evaluated the performance of DBS PCR tests in screening for cCMV infection and that met our inclusion criteria. The pooled sensitivity and specificity were 0.844 (95% CI = 0.812-0.872) and 0.999 (95% CI = 0.998-0.999), respectively, and the diagnostic odds ratio was 1362.10 (95%CI = 566.91-3272.60). As sensitivity analysis showed that the results were robust. In conclusion, the performance of DBS PCR assays for testing cCMV was more suitable for retrospective diagnosis than screening.

  3. Detection of Streptococcus equi subspecies equi using a triplex qPCR assay

    PubMed Central

    Webb, Katy; Barker, Colin; Harrison, Tihana; Heather, Zoe; Steward, Karen F.; Robinson, Carl; Newton, J. Richard; Waller, Andrew S.

    2013-01-01

    Genome sequencing data for Streptococcus equi subspecies equi and zooepidemicus were used to develop a novel diagnostic triplex quantitative PCR (qPCR) assay targeting two genes specific to S. equi (eqbE and SEQ2190) and a unique 100 base pair control DNA sequence (SZIC) inserted into the SZO07770 pseudogene of S. zooepidemicus strain H70. This triplex strangles qPCR assay can provide results within 2 h of sample receipt, has an overall sensitivity of 93.9% and specificity of 96.6% relative to the eqbE singlex assay and detects S. equi at levels below the threshold of the culture assay, even in the presence of contaminating bacteria. PMID:22884566

  4. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  5. Nested PCR Assay for Detection of Granulocytic Ehrlichiae

    PubMed Central

    Massung, Robert F.; Slater, Kim; Owens, Jessica H.; Nicholson, William L.; Mather, Thomas N.; Solberg, Victoria B.; Olson, James G.

    1998-01-01

    A sensitive and specific nested PCR assay was developed for the detection of granulocytic ehrlichiae. The assay amplifies the 16S rRNA gene and was used to examine acute-phase EDTA-blood and serum samples obtained from seven humans with clinical presentations compatible with human granulocytic ehrlichiosis. Five of the seven suspected cases were positive by the PCR assay using DNA extracted from whole blood as the template, compared with a serologic assay that identified only one positive sample. The PCR assay using DNA extracted from the corresponding serum samples as the template identified three positive samples. The sensitivity of the assay on human samples was examined, and the limit of detection was shown to be fewer than 2 copies of the 16S rRNA gene. The application of the assay to nonhuman samples demonstrated products amplified from template DNA extracted from Ixodes scapularis ticks collected in Rhode Island and from EDTA-blood specimens obtained from white-tailed deer in Maryland. All PCR products were sequenced and identified as specific to granulocytic ehrlichiae. A putative variant granulocytic ehrlichia 16S rRNA gene sequence was detected among products amplified from both the ticks and the deer blood specimens. PMID:9542943

  6. Specific PCR and real-time PCR assays for detection and quantitation of 'Candidatus Phytoplasma phoenicium'.

    PubMed

    Jawhari, Maan; Abrahamian, Peter; Sater, Ali Abdel; Sobh, Hana; Tawidian, Patil; Abou-Jawdah, Yusuf

    2015-02-01

    Almond witches' broom (AlmWB) is a fast-spreading lethal disease of almond, peach and nectarine associated with 'Candidatus Phytoplasma phoenicium'. The development of PCR and quantitative real-time PCR (qPCR) assays for the sensitive and specific detection of the phytoplasma is of prime importance for early detection of 'Ca. P. phoenicium' and for epidemiological studies. The developed qPCR assay herein uses a TaqMan(®) probe labeled with Black Hole Quencher Plus. The specificity of the PCR and that of the qPCR detection protocols were tested on 17 phytoplasma isolates belonging to 11 phytoplasma 16S rRNA groups, on samples of almond, peach, nectarine, native plants and insects infected or uninfected with the phytoplasma. The developed assays showed high specificity against 'Ca. P. phoenicium' and no cross-reactivity against any other phytoplasma, plant or insect tested. The sensitivity of the developed PCR and qPCR assays was similar to the conventional nested PCR protocol using universal primers. The qPCR assay was further validated by quantitating AlmWB phytoplasma in different hosts, plant parts and potential insect vectors. The highest titers of 'Ca. P. phoenicium' were detected in the phloem tissues of stems and roots of almond and nectarine trees, where they averaged from 10(5) to 10(6) genomic units per nanogram of host DNA (GU/ng of DNA). The newly developed PCR and qPCR protocols are reliable, specific and sensitive methods that are easily applicable to high-throughput diagnosis of AlmWB in plants and insects and can be used for surveys of potential vectors and alternative hosts.

  7. Diagnostic Accuracy of Seven Commercial Assays for Rapid Detection of Group A Rotavirus Antigens

    PubMed Central

    Fremy, Céline; Pillet, Sylvie; Mendes Martins, Lucile; Ambert-Balay, Katia; Aho, Serge L.; Pothier, Pierre

    2015-01-01

    Seven commercial immunochromatographic assays intended for the detection of group A rotavirus antigens in human stool samples were evaluated. These assays showed similar levels of diagnostic accuracy and were suitable for the detection of rotavirus in patients with acute gastroenteritis but missed some asymptomatic rotavirus shedding identified by real-time reverse transcription-PCR. PMID:26378280

  8. Internal Amplification Control for a Cryptosporidium Diagnostic PCR: Construction and Clinical Evaluation.

    PubMed

    Hawash, Yousry; Ghonaim, M M; Al-Hazmi, Ayman S

    2015-04-01

    Various constituents in clinical specimens, particularly feces, can inhibit the PCR assay and lead to false-negative results. To ensure that negative results of a diagnostic PCR assay are true, it should be properly monitored by an inhibition control. In this study, a cloning vector harboring a modified target DNA sequence (≈375 bp) was constructed to be used as a competitive internal amplification control (IAC) for a conventional PCR assay that detects ≈550 bp of the Cryptosporidium oocyst wall protein (COWP) gene sequence in human feces. Modification of the native PCR target was carried out using a new approach comprising inverse PCR and restriction digestion techniques. IAC was included in the assay, with the estimated optimum concentration of 1 fg per reaction, as duplex PCR. When applied on fecal samples spiked with variable oocysts counts, ≈2 oocysts were theoretically enough for detection. When applied on 25 Cryptosporidium-positive fecal samples of various infection intensities, both targets were clearly detected with minimal competition noticed in 2-3 samples. Importantly, both the analytical and the diagnostic sensitivities of the PCR assay were not altered with integration of IAC into the reactions. When tried on 180 randomly collected fecal samples, 159 were Cryptosporidium-negatives. Although the native target DNA was absent, the IAC amplicon was obviously detected on gel of all the Cryptosporidium-negative samples. These results imply that running of the diagnostic PCR, inspired with the previously developed DNA extraction protocol and the constructed IAC, represents a useful tool for Cryptosporidium detection in human feces.

  9. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  10. PCR Assay for Species-Specific Identification of Bacteroides thetaiotaomicron

    PubMed Central

    Teng, Lee-Jene; Hsueh, Po-Ren; Tsai, Jui-Chang; Chiang, Feng-Lin; Chen, Ching-Yi; Ho, Shen-Wu; Luh, Kwen-Tay

    2000-01-01

    Bacteroides thetaiotaomicron is the second most frequently encountered species of the anaerobes isolated from clinical specimens. We developed a PCR-based assay for the rapid identification of B. thetaiotaomicron. Specific primers were based on shared amplicons of about 1.2 kb generated from B. thetaiotaomicron by randomly amplified polymorphic DNA. This 1.2-kb fragment was sequenced and then used to design a set of PCR amplification primers. This PCR generated an amplification product of 721 bp, which was unique to all 65 isolates of B. thetaiotaomicron tested. There was no amplification with isolates of other bacterial species. Restriction enzyme digestion of the amplification product and dot blot hybridization further verified the specificity of the assay. These results suggest that this PCR assay targets a nucleotide sequence that is strongly conserved in B. thetaiotaomicron. This simple and rapid PCR assay provides a rapid and accurate method for identification of B. thetaiotaomicron and shows promise for the detection of B. thetaiotaomicron in clinical samples. PMID:10747167

  11. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  12. Development and validation of a real-time PCR assay for the detection of Aeromonas salmonicida.

    PubMed

    Keeling, S E; Brosnahan, C L; Johnston, C; Wallis, R; Gudkovs, N; McDonald, W L

    2013-05-01

    A real-time PCR assay using a molecular beacon was developed and validated to detect the vapA (surface array protein) gene in the fish pathogen, Aeromonas salmonicida. The assay had 100% analytical specificity and analytical sensitivities of 5 ± 0 fg (DNA), 2.2 × 10(4) ± 1 × 10(4) CFU g(-1) (without enrichment) and 40 ± 10 CFU g(-1) (with enrichment) in kidney tissue. The assay was highly repeatable and proved to be robust following equivalency testing using a different real-time PCR platform. Following analytical validation, diagnostic specificity was determined using New Zealand farmed Chinook salmon, Oncorhynchus tshawytscha (Walbaum), (n = 750) and pink shubunkin, Carassius auratus (L.) (n = 157). The real-time PCR was run in parallel with culture and all fish tested were found to be negative by both methods for A. salmonicida, resulting in 100% diagnostic specificity (95% confidence interval). The molecular beacon real-time PCR system is specific, sensitive and a reproducible method for the detection of A. salmonicida. It can be used for diagnostic testing, health certification and active surveillance programmes.

  13. Diagnostic Real-Time PCR for Detection of Salmonella in Food

    PubMed Central

    Malorny, Burkhard; Paccassoni, Elisa; Fach, Patrick; Bunge, Cornelia; Martin, Annett; Helmuth, Reiner

    2004-01-01

    A robust 5′ nuclease (TaqMan) real-time PCR was developed and validated in-house for the specific detection of Salmonella in food. The assay used specifically designed primers and a probe target within the ttrRSBCA locus, which is located near the Salmonella pathogenicity island 2 at centisome 30.5. It is required for tetrathionate respiration in Salmonella. The assay correctly identified all 110 Salmonella strains and 87 non-Salmonella strains tested. An internal amplification control, which is coamplified with the same primers as the Salmonella DNA, was also included in the assay. The detection probabilities were 70% when a Salmonella cell suspension containing 103 CFU/ml was used as a template in the PCR (5 CFU per reaction) and 100% when a suspension of 104 CFU/ml was used. A pre-PCR sample preparation protocol including a preenrichment step in buffered peptone water followed by DNA extraction-purification was applied when 110 various food samples (chicken rinses, minced meat, fish, and raw milk) were investigated for Salmonella. The diagnostic accuracy was shown to be 100% compared to the traditional culture method. The overall analysis time of the PCR method was approximately 24 h, in contrast to 4 to 5 days of analysis time for the traditional culture method. This methodology can contribute to meeting the increasing demand of quality assurance laboratories for standard diagnostic methods. Studies are planned to assess the interlaboratory performance of this diagnostic PCR method. PMID:15574899

  14. Pentaplex PCR assay for detection of hemorrhagic bacteria from stool samples.

    PubMed

    Al-Talib, Hassanain; Latif, Baha; Mohd-Zain, Zaini

    2014-09-01

    Diarrheal diseases cause illness and death among children younger than 10 years in developing countries. Conventional testing for the detection of hemorrhagic bacteria takes 2 to 5 days to yield complete information on the organism and its antibiotic sensitivity pattern. Hence, in the present study, we developed a molecular-based diagnostic assay that identifies common hemorrhagic bacteria in stool samples. A set of specific primers were designed for the detection of Salmonella spp., Shigella spp., enterohemorrhagic Escherichia coli (EHEC), and Campylobacter spp., suitable for use in a one-tube PCR assay. The assay in the present study simultaneously detected five genes, namely, ompC for the Salmonella genus, virA for the Shigella genus, eaeA for EHEC, 16S rRNA for the Campylobacter genus, and hemA for an internal control. Specific primer pairs were successfully designed and simultaneously amplified the targeted genes. Validation with 20 Gram-negative and 17 Gram-positive strains yielded 100% specificity. The limit of detection of the multiplex PCR assay was 1 × 10(3) CFU at the bacterial cell level and 100 pg at the genomic DNA level. Further evaluation of the multiplex PCR with 223 bacterium-spiked stool specimens revealed 100% sensitivity and specificity. We conclude that the developed multiplex PCR assay was rapid, giving results within 4 h, which is essential for the identification of hemorrhagic bacteria, and it might be useful as an additional diagnostic tool whenever time is important in the diagnosis of hemorrhagic bacteria that cause diarrhea. In addition, the presence of an internal control in the multiplex PCR assay is important for excluding false-negative cases.

  15. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri

    PubMed Central

    Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  16. Comparison of Droplet Digital PCR and Quantitative PCR Assays for Quantitative Detection of Xanthomonas citri Subsp. citri.

    PubMed

    Zhao, Yun; Xia, Qingyan; Yin, Youping; Wang, Zhongkang

    2016-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a novel molecular biology technique providing absolute quantification of target nucleic acids without the need for an external calibrator. Despite its emerging applications in medical diagnosis, there are few reports of its use for the detection of plant pathogens. This work was designed to assess the diagnosis potential of the ddPCR for absolute quantitative detection of Xanthomonas citri subsp. citri, a quarantine plant pathogenic bacterium that causes citrus bacterial canker in susceptible Citrus species. We transferred an established quantitative PCR (qPCR) assay for citrus bacterial canker diagnosis directly to the ddPCR format and compared the performance of the two methods. The qPCR assay has a broader dynamic range compared to the ddPCR assay and the ddPCR assay has a significantly higher degree of sensitivity compared to the qPCR assay. The influence of PCR inhibitors can be reduced considerably in the ddPCR assay because the collection of end-point fluorescent signals and the counting of binomial events (positive or negative droplets) are associated with a Poisson algorithm. The ddPCR assay also shows lower coefficient of variation compared to the qPCR assay especially in low target concentration. The linear association of the measurements by ddPCR and qPCR assays is strong (Pearson correlation = 0.8633; P<0.001). Receiver operating characteristic analysis indicates the ddPCR methodology is a more robust approach for diagnosis of citrus bacterial canker. In summary, the results demonstrated that the ddPCR assay has the potential for the quantitative detection of X. citri subsp. citri with high precision and accuracy as compared with the results from qPCR assay. Further studies are required to evaluate and validate the value of ddPCR technology in the diagnosis of plant disease and quarantine applications. PMID:27427975

  17. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  18. Comparison of TaqMan PCR assays for detection of the melioidosis agent Burkholderia pseudomallei in clinical specimens.

    PubMed

    Kaestli, Mirjam; Richardson, Leisha J; Colman, Rebecca E; Tuanyok, Apichai; Price, Erin P; Bowers, Jolene R; Mayo, Mark; Kelley, Erin; Seymour, Meagan L; Sarovich, Derek S; Pearson, Talima; Engelthaler, David M; Wagner, David M; Keim, Paul S; Schupp, James M; Currie, Bart J

    2012-06-01

    Melioidosis is an emerging infectious disease caused by the soil bacterium Burkholderia pseudomallei. In diagnostic and forensic settings, molecular detection assays need not only high sensitivity with low limits of detection but also high specificity. In a direct comparison of published and newly developed TaqMan PCR assays, we found the TTS1-orf2 assay to be superior in detecting B. pseudomallei directly from clinical specimens. The YLF/BTFC multiplex assay (targeting the Yersinia-like fimbrial/Burkholderia thailandensis-like flagellum and chemotaxis region) also showed high diagnostic sensitivity and provides additional information on possible geographic origin.

  19. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design

    PubMed Central

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R.; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S.; Williams, Steven A.

    2016-01-01

    Background The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world’s most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Methodology/Principal Findings Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. Conclusions/Significance The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other

  20. Validation of a quantitative PCR assay for detection and quantification of 'Candidatus Xenohaliotis californiensis'.

    PubMed

    Friedman, Carolyn S; Wight, Nate; Crosson, Lisa M; White, Samuel J; Strenge, Robyn M

    2014-04-01

    Withering syndrome (WS), a serious disease affecting abalone Haliotis spp., is caused by infection from an intracellular Rickettsia-like organism (WS-RLO). Diagnosis of the disease currently relies on a combination of histological examination and molecular methods (in situ hybridization, standard PCR, and sequence analysis). However, these techniques only provide a semi-quantitative assessment of bacterial load. We created a real-time quantitative PCR (qPCR) assay to specifically identify and enumerate bacterial loads of WS-RLO in abalone tissue, fecal, and seawater samples based on 16S rDNA gene copy numbers. The qPCR assay designed to detect DNA of the WS-RLO was validated according to standards set by the World Organisation for Animal Health. Standard curves derived from purified plasmid dilutions were linear across 7 logs of concentration, and efficiencies ranged from 90.2 to 97.4%. The limit of detection was 3 gene copies per reaction. Diagnostic sensitivity was 100% and specificity was 99.8%. The qPCR assay was robust, as evidenced by its high level of repeatability and reproducibility. This study has shown for the first time that WS-RLO DNA can be detected and quantified in abalone tissue, fecal, and seawater samples. The ability to detect and quantify RLO gene copies in a variety of materials will enable us to better understand transmission dynamics in both farmed and natural environments. PMID:24695238

  1. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels.

  2. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays.

    PubMed

    Inderbitzin, Patrik; Davis, R Michael; Bostock, Richard M; Subbarao, Krishna V

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers.

  3. Identification and Differentiation of Verticillium Species and V. longisporum Lineages by Simplex and Multiplex PCR Assays

    PubMed Central

    Inderbitzin, Patrik; Davis, R. Michael; Bostock, Richard M.; Subbarao, Krishna V.

    2013-01-01

    Accurate species identification is essential for effective plant disease management, but is challenging in fungi including Verticillium sensu stricto (Ascomycota, Sordariomycetes, Plectosphaerellaceae), a small genus of ten species that includes important plant pathogens. Here we present fifteen PCR assays for the identification of all recognized Verticillium species and the three lineages of the diploid hybrid V. longisporum. The assays were based on DNA sequence data from the ribosomal internal transcribed spacer region, and coding and non-coding regions of actin, elongation factor 1-alpha, glyceraldehyde-3-phosphate dehydrogenase and tryptophan synthase genes. The eleven single target (simplex) PCR assays resulted in amplicons of diagnostic size for V. alfalfae, V. albo-atrum, V. dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii, V. nonalfalfae, V. nubilum, V. tricorpus, V. zaregamsianum, and Species A1 and Species D1, the two undescribed ancestors of V. longisporum. The four multiple target (multiplex) PCR assays simultaneously differentiated the species or lineages within the following four groups: Verticillium albo-atrum, V. alfalfae and V. nonalfalfae; Verticillium dahliae and V. longisporum lineages A1/D1, A1/D2 and A1/D3; Verticillium dahliae including V. longisporum lineage A1/D3, V. isaacii, V. klebahnii and V. tricorpus; Verticillium isaacii, V. klebahnii and V. tricorpus. Since V. dahliae is a parent of two of the three lineages of the diploid hybrid V. longisporum, no simplex PCR assay is able to differentiate V. dahliae from all V. longisporum lineages. PCR assays were tested with fungal DNA extracts from pure cultures, and were not evaluated for detection and quantification of Verticillium species from plant or soil samples. The DNA sequence alignments are provided and can be used for the design of additional primers. PMID:23823707

  4. Real-Time PCR Assays for Detection of Bocavirus in Human Specimens

    PubMed Central

    Lu, Xiaoyan; Chittaganpitch, Malinee; Olsen, Sonja J.; Mackay, Ian M.; Sloots, Theo P.; Fry, Alicia M.; Erdman, Dean D.

    2006-01-01

    The recently discovered human bocavirus (HBoV) is the first member of the family Parvoviridae, genus Bocavirus, to be potentially associated with human disease. Several studies have identified HBoV in respiratory specimens from children with acute respiratory disease, but the full spectrum of clinical disease and the epidemiology of HBoV infection remain unclear. The availability of rapid and reliable molecular diagnostics would therefore aid future studies of this novel virus. To address this, we developed two sensitive and specific real-time TaqMan PCR assays that target the HBoV NS1 and NP-1 genes. Both assays could reproducibly detect 10 copies of a recombinant DNA plasmid containing a partial region of the HBoV genome, with a dynamic range of 8 log units (101 to 108 copies). Eight blinded clinical specimen extracts positive for HBoV by an independent PCR assay were positive by both real-time assays. Among 1,178 NP swabs collected from hospitalized pneumonia patients in Sa Kaeo Province, Thailand, 53 (4.5%) were reproducibly positive for HBoV by one or both targets. Our data confirm the possible association of HBoV infection with pneumonia and demonstrate the utility of these real-time PCR assays for HBoV detection. PMID:16954253

  5. A real-time PCR diagnostic method for detection of Naegleria fowleri.

    PubMed

    Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita

    2010-09-01

    Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri.

  6. Universal Single-Probe RT-PCR Assay for Diagnosis of Dengue Virus Infections

    PubMed Central

    Alm, Erik; Lesko, Birgitta; Lindegren, Gunnel; Ahlm, Clas; Söderholm, Sandra; Falk, Kerstin I.; Lagerqvist, Nina

    2014-01-01

    Background Dengue is a mosquito-borne viral disease that has become more prevalent in the last few decades. Most patients are viremic when they present with symptoms, and early diagnosis of dengue is important in preventing severe clinical complications associated with this disease and also represents a key factor in differential diagnosis. Here, we designed and validated a hydrolysis-probe-based one-step real-time RT-PCR assay that targets the genomes of dengue virus serotypes 1–4. Methodology/Principal Findings The primers and probe used in our RT-PCR assay were designed to target the 3′ untranslated region of all complete genome sequences of dengue virus available in GenBank (n = 3,305). Performance of the assay was evaluated using in vitro transcribed RNA, laboratory-adapted virus strains, external control panels, and clinical specimens. The linear dynamic range was found to be 104–1011 GCE/mL, and the detection limit was between 6.0×102 and 1.1×103 GCE/mL depending on target sequence. The assay did not cross-react with human RNA, nor did it produce false-positive results for other human pathogenic flaviviruses or clinically important etiological agents of febrile illnesses. We used clinical serum samples obtained from returning travelers with dengue-compatible symptomatology (n = 163) to evaluate the diagnostic relevance of our assay, and laboratory diagnosis performed by the RT-PCR assay had 100% positive agreement with diagnosis performed by NS1 antigen detection. In a retrospective evaluation including 60 archived serum samples collected from confirmed dengue cases 1–9 days after disease onset, the RT-PCR assay detected viral RNA up to 9 days after appearance of symptoms. Conclusions/Significance The validation of the RT-PCR assay presented here indicates that this technique can be a reliable diagnostic tool, and hence we suggest that it be introduced as the method of choice during the first 5 days of dengue symptoms. PMID:25522325

  7. Reverse Transcription-PCR-Enzyme-Linked Immunosorbent Assay for Rapid Detection and Differentiation of Alphavirus Infections▿

    PubMed Central

    Wang, Eryu; Paessler, Slobodan; Aguilar, Patricia V.; Carrara, Anne-Sophie; Ni, Haolin; Greene, Ivorlyne P.; Weaver, Scott C.

    2006-01-01

    Due to the lack of a rapid, simple, and inexpensive assay for detecting alphavirus infections, we combined a reverse transcription-PCR with an enzyme-linked immunosorbent assay (RT-PCR-ELISA) to identify human pathogenic alphaviruses that are endemic in the New World. By combining the sensitivity of PCR, the detection simplicity of ELISA, and the specificities of DNA probes, this method rapidly detected and differentiated closely related species and subtypes of several medically important alphaviruses. After an amplification using RT-PCR with primers targeting conserved sequences in the nonstructural protein 1 gene, sequence-specific, biotin-labeled probes targeted against Venezuelan, eastern, and western equine encephalitis or Mayaro virus genes were used for the detection of amplicons using ELISA. The assay is simple, fast, and easy to perform in an ordinary diagnostic laboratory or clinical setting. Nucleic acid derived from cell cultures infected with several alphaviruses, clinical specimens, and mosquito pools as well as frozen and paraffin-embedded animal tissues were detected and identified within 6 to 7 h in a sensitive and specific manner. PMID:16957044

  8. Species identification of cattle and buffalo fat through PCR assay.

    PubMed

    Vaithiyanathan, S; Kulkarni, V V

    2016-04-01

    A method was standardized to isolate quality DNA from cattle and buffalo fat for species identification using QIAamp DNA stool mini kit. The quality of the DNA was sufficient enough to amplify universal primers viz., mt 12S rRNA and mt 16S rRNA, and species specific D loop primers for cattle and buffalo. The sensitivity of the PCR assay in the species specific D loop primer amplification was with a detection level of 0. 47 ng cattle DNA and 0.23 ng buffalo DNA in simplex and, 0. 47 ng cattle DNA and 0.12 ng buffalo DNA in duplex PCR. It is a potentially reliable method for DNA detection to authenticate animal fat. PMID:27413237

  9. Advances in Diagnostic Assays for Tuberculosis.

    PubMed

    Lawn, Stephen D

    2015-08-07

    Approximately one-third of the global burden of tuberculosis (TB) remains undiagnosed each year and the vast majority of cases of multidrug-resistant TB remain undetected. Many countries still place heavy reliance on outdated technologies that are blunt and ineffective tools for controlling this epidemic. However, during the past 10 years, there has been substantial progress within the TB diagnostics developmental pipeline. Old technologies have been reviewed and improved and new technologies have been developed and evaluated and are now being implemented. This review summarizes these developments and describes the currently available diagnostic tools. Consideration is given to the requirements of future diagnostic tests and how these should be evaluated not only with regard to their diagnostic accuracy and operational feasibility, but ultimately in terms of whether they impact clinical outcomes cost effectively, especially for those most in need.

  10. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    PubMed Central

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-01-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe. PMID:27030058

  11. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays

    NASA Astrophysics Data System (ADS)

    Lam, Patricia; Gulati, Neetu M.; Stewart, Phoebe L.; Keri, Ruth A.; Steinmetz, Nicole F.

    2016-03-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  12. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays.

    PubMed

    Lam, Patricia; Gulati, Neetu M; Stewart, Phoebe L; Keri, Ruth A; Steinmetz, Nicole F

    2016-03-31

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe.

  13. Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays.

    PubMed

    Lam, Patricia; Gulati, Neetu M; Stewart, Phoebe L; Keri, Ruth A; Steinmetz, Nicole F

    2016-01-01

    The 2014 Ebola epidemic is the largest to date. There is no cure or treatment for this deadly disease; therefore there is an urgent need to develop new diagnostics to accurately detect Ebola. Current RT-PCR assays lack sensitive and reliable positive controls. To address this critical need, we devised a bio-inspired positive control for use in RT-PCR diagnostics: we encapsulated scrambled Ebola RNA sequences inside of tobacco mosaic virus to create a biomimicry that is non-infectious, but stable, and could therefore serve as a positive control in Ebola diagnostic assays. Here, we report the bioengineering and validation of this probe. PMID:27030058

  14. Detection of enteroviruses and parechoviruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Wong, Anita A; Tellier, Raymond

    2015-04-01

    Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.

  15. Detection of four important Eimeria species by multiplex PCR in a single assay.

    PubMed

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl.

  16. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    PubMed

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  17. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    PubMed

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management. PMID:27318568

  18. A molecular-beacon-based asymmetric PCR assay for easy visualization of amplicons in the diagnosis of trichomoniasis.

    PubMed

    Sonkar, Subash C; Sachdev, Divya; Mishra, Prashant K; Kumar, Anita; Mittal, Pratima; Saluja, Daman

    2016-12-15

    The currently available nucleic acid amplification tests (NAATs) for trichomoniasis are accurate, quick and confirmative with superior sensitivity than traditional culture-based microbiology assays. However, these assays are associated with problems of carry over contamination, false positive results, requirement of technical expertise for performance and detection of end product. Hence, a diagnostic assay with easy visualization of the amplified product will be profitable. An in-house, rapid, sensitive, specific molecular-beacon-based PCR assay, using primers against pfoB gene of Trichomonas vaginalis, was developed and evaluated using dry ectocervical swabs (n=392) from symptomatic females with vaginal discharge. Total DNA was isolated and used as template for the PCR assays. The performance and reproducibility of PCR assay was evaluated by composite reference standard (CRS). For easy visualization of the amplified product, molecular-beacon was designed and amplicons were visualized directly using fluorescent handheld dark reader or by Micro-Plate Reader. Molecular-beacons are single-stranded hairpin shaped nucleic acid probes composed of a stem, with fluorophore/quencher pair and a loop region complementary to the desired DNA. The beacon-based PCR assay designed in the present study is highly specific as confirmed by competition experiments and extremely sensitive with detection limit of 20fg of genomic DNA (3-4 pathogens). The minimum infrastructure requirement and ease to perform the assay makes this method highly useful for resource poor countries for better disease management.

  19. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    PubMed

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  20. Harmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012.

    PubMed

    Williams, Margaret M; Taylor, Thomas H; Warshauer, David M; Martin, Monte D; Valley, Ann M; Tondella, M Lucia

    2015-01-01

    Real-time PCR (rt-PCR) is an important diagnostic tool for the identification of Bordetella pertussis, Bordetella holmesii, and Bordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in the B. pertussis genome and 32 to 65 copies in B. holmesii. The CDC developed a multitarget PCR assay to differentiate B. pertussis, B. holmesii, and B. parapertussis and provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these three Bordetella species in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viable Bordetella and non-Bordetella species in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481 in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiated B. pertussis and B. holmesii and 68% and 72% identified B. parapertussis. IS481 cycle threshold (CT) values for B. pertussis samples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiated B. pertussis and B. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCR Bordetella diagnostic protocols in USPHLs compared to that of the previous survey.

  1. Development of a multiplex PCR assay for detection and discrimination of Theileria annulata and Theileria sergenti in cattle.

    PubMed

    Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun

    2015-07-01

    Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.

  2. Single-tube nested PCR assay for the detection of avian botulism in cecal contents of chickens.

    PubMed

    Jang, Il; Lee, Jae-Il; Kwon, Yong-Kuk; Kang, Min-Su; Kim, Hye-Ryoung; Park, Ji-Young; Lee, Song-Hyun; Lee, Hee-Soo; Bae, You-Chan

    2015-10-01

    This paper describes a novel diagnostic method for the detection of avian botulism caused by Clostridium botulinum type C and C/D, using single-tube nested PCR assay. This assay was developed to overcome the disadvantages of bioassays used in experiments with mice. Three primer pairs including an antisense primer were designed to target the N-terminal of the toxin gene from C. botulinum types C and C/D. The specificity of the PCR assay was confirmed by using 33 bacterial strains and chicken cecal contents from farms that experienced botulism outbreaks. The detection limit for purified DNA was 1.1 fg/μl, and for bacterial spores was 4.3 spores/200 mg of cecal contents. While checking for specificity of the PCR assay, the reactions with the templates form C. botulinum type C and C/D which were tested became positive, but the rest of the reactions turned negative. However, the results for all clinical samples (n = 8) were positive. The PCR assay results for cecal samples obtained from 300 healthy chickens (150 Korean native chickens and 150 broilers) were all negative. This assay is rapid and straightforward and evades ethical issues associated with mouse bioassay. Moreover, it is more economical than real-time PCR.

  3. Lab-on-a-chip PCR: real time PCR in miniaturized format for HLA diagnostics

    NASA Astrophysics Data System (ADS)

    Gaertner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Sewart, René; Frank, Rainer; Willems, Andreas

    2014-05-01

    In case of transplantation or the identification of special metabolic diseases like coeliac disease, HLA typing has to be done fast and reliably with easy-to-handle devices by using limited amount of sample. Against this background a lab-on-a-chip device was realized enabling a fast HLA typing via miniaturized Real-time PCR. Hereby, two main process steps were combined, namely the extraction of DNA from whole blood and the amplification of the target DNA by Real-time PCR giving rise-to a semi-quantitative analysis. For the implementation of both processes on chip, a sample preparation and a real-time module were used. Sample preparation was carried out by using magnetic beads that were stored directly on chip as dry powder, together with all lysis reagents. After purification of the DNA by applying a special buffer regime, the sample DNA was transferred into the PCR module for amplification and detection. Coping with a massively increased surface-to-volume ratio, which results in a higher amount of unspecific binding on the chip surface, special additives needed to be integrated to compensate for this effect. Finally the overall procedure showed a sensitivity comparable to standard Real-time PCR but reduced the duration of analysis to significantly less than one hour. The presented work demonstrates that the combination of lab-on-a-chip PCR with direct optical read-out in a real-time fashion is an extremely promising tool for molecular diagnostics.

  4. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay.

    PubMed Central

    Nickerson, D A; Kaiser, R; Lappin, S; Stewart, J; Hood, L; Landegren, U

    1990-01-01

    DNA diagnostics, the detection of specific DNA sequences, will play an increasingly important role in medicine as the molecular basis of human disease is defined. Here, we demonstrate an automated, nonisotopic strategy for DNA diagnostics using amplification of target DNA segments by the polymerase chain reaction (PCR) and the discrimination of allelic sequence variants by a colorimetric oligonucleotide ligation assay (OLA). We have applied the automated PCR/OLA procedure to diagnosis of common genetic diseases, such as sickle cell anemia and cystic fibrosis (delta F508 mutation), and to genetic linkage mapping of gene segments in the human T-cell receptor beta-chain locus. The automated PCR/OLA strategy provides a rapid system for diagnosis of genetic, malignant, and infectious diseases as well as a powerful approach to genetic linkage mapping of chromosomes and forensic DNA typing. Images PMID:2247466

  5. Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys)

    PubMed Central

    Dhami, Manpreet K.; Dsouza, Melissa; Waite, David W.; Anderson, Diane; Li, Dongmei

    2016-01-01

    The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a gregarious crop pest that has rapidly spread across the world in the last two decades. It is an excellent hitchhiker species, especially as an over-wintering adult. During this period it is often associated with non-biological commodities such as shipping containers and machinery that travel long distances. Inadequate identification keys and similarity to common species has assisted its spread across Europe, while accurate identification from immature stages or eggs is not possible. We developed a real-time TaqMan PCR assay for the accurate and sensitive detection of the brown marmorated stink bug from all life stages. The assay performance against required diagnostic criterion and within a quarantine framework are described. PMID:26955631

  6. PCR diagnostic methods for Ascosphaera infections in bees.

    PubMed

    James, R R; Skinner, J S

    2005-10-01

    Fungi in the genus Ascosphaera are the causative agents of chalkbrood, a major disease affecting bee larval viability. Identification of individual Ascosphaera species based on morphological features has been difficult due to a lack of distinguishing characteristics. Most identifications are based on the size and shape of the ascomata, spore balls and conidia. Unfortunately, much overlap occurs in the size of these structures, and some Ascosphaera species will not produce sexual structures in vitro. We report a quick and reliable diagnostic method for identifying Ascosphaera infections in Megachile bees (leafcutting bees) using PCR markers that employ genus-specific primers for Ascosphaera, and species-specific primers for species known to be associated with Megachile spp. Using these methods, species identifications can be performed directly on bees, including asymptomatic individuals. Furthermore, the PCR markers can detect co-infections of multiple Ascosphaera species in a single host. We also identified a marker for Ascosphaera apis, the predominant cause of chalkbrood in Apis mellifera, the honey bee. Our diagnostic methods eliminate the need for culturing samples, and could be used to process a large number of field collected bee larvae. PMID:16214164

  7. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri.

    PubMed

    Qvarnstrom, Yvonne; Visvesvara, Govinda S; Sriram, Rama; da Silva, Alexandre J

    2006-10-01

    Infections caused by Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris occur throughout the world and pose many diagnostic challenges. To date, at least 440 cases of severe central nervous system infections caused by these amebas have been documented worldwide. Rapid and specific identification of these free-living amebas in clinical samples is of crucial importance for efficient case management. We have developed a triplex real-time TaqMan PCR assay that can simultaneously identify Acanthamoeba spp., B. mandrillaris, and N. fowleri in the same PCR vessel. The assay was validated with 22 well-characterized amebic strains harvested from cultures and nine clinical specimens that were previously characterized by in vitro culture and/or immunofluorescence assay. The triplex assay demonstrated high specificity and a rapid test completion time of less than 5 h from the reception of the specimen in the laboratory. This assay was able to detect one single ameba per sample analyzed, as determined with cerebrospinal fluid spiked with diluted cultured amebas. This assay could become useful for fast laboratory diagnostic assessment of amebic infections (caused by free-living amebas) in laboratories with adequate infrastructure to perform real-time PCR testing.

  8. Utility of IgM ELISA, TaqMan real-time PCR, reverse transcription PCR, and RT-LAMP assay for the diagnosis of Chikungunya fever.

    PubMed

    Reddy, Vijayalakshmi; Ravi, Vasanthapuram; Desai, Anita; Parida, Manmohan; Powers, Ann M; Johnson, Barbara W

    2012-11-01

    Chikungunya fever a re-emerging infection with expanding geographical boundaries, can mimic symptoms of other infections like dengue, malaria which makes the definitive diagnosis of the infection important. The present study compares the utility of four laboratory diagnostic methods viz. IgM capture ELISA, an in house reverse transcription PCR for the diagnosis of Chikungunya fever, TaqMan real-time PCR, and a one step reverse transcription-loop mediated isothermal amplification assay (RT-LAMP). Out of the 70 serum samples tested, 29 (41%) were positive for Chikungunya IgM antibody by ELISA and 50 (71%) samples were positive by one of the three molecular assays. CHIKV specific nucleic acid was detected in 33/70 (47%) by reverse transcription PCR, 46/70 (66%) by TaqMan real-time PCR, and 43/70 (62%) by RT-LAMP assay. A majority of the samples (62/70; 89%) were positive by at least one of the four assays used in the study. The molecular assays were more sensitive for diagnosis in the early stages of illness (2-5 days post onset) when antibodies were not detectable. In the later stages of illness, the IgM ELISA is a more sensitive diagnostic test. In conclusion we recommend that the IgM ELISA be used as an initial screening test followed one of the molecular assays in samples that are collected in the early phase of illness and negative for CHIKV IgM antibodies. Such as approach would enable rapid confirmation of the diagnosis and implementation of public health measures especially during outbreaks.

  9. Molecular-beacon multiplex real-time PCR assay for detection of Vibrio cholerae.

    PubMed

    Gubala, Aneta J; Proll, David F

    2006-09-01

    A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism.

  10. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with the linear array HPV genotyping PCR assay and influence of DNA extraction method on HPV detection.

    PubMed

    Roberts, Christine C; Swoyer, Ryan; Bryan, Janine T; Taddeo, Frank J

    2011-05-01

    Real-time human papillomavirus (HPV) type-specific multiplex PCR assays were developed to detect HPV DNA in specimens collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). We evaluated the concordance between type-specific multiplex HPV PCR and the widely used, commercially available Roche Linear Array genotyping PCR assay. Female genital swab specimens were tested for the presence of L1, E6, and E7 sequences of HPV type 6 (HPV6), HPV11, HPV16, HPV18, HPV31, HPV45, HPV52, and HPV58 and E6 and E7 sequences of HPV33, HPV35, HPV39, HPV51, HPV56, and HPV59 in type- and gene-specific real-time multiplex PCR assays. Specimens were also tested for the presence of L1 sequences using two versions of the Roche Linear Array genotyping assay. Measures of concordance of a modified version of the Linear Array and the standard Linear Array PCR assay were evaluated. With specimen DNA extraction using the Qiagen Spin blood kit held as the constant, multiplex PCR assays detect more HPV-positive specimens for the 14 HPV types common to both than either version of the Linear Array HPV genotyping assay. Type-specific agreements between the assays were good, at least 0.838, but were often driven by negative agreement in HPV types with low prevalence, as evidenced by reduced proportions of positive agreement. Overall HPV status agreements ranged from 0.615 for multiplex PCR and standard Linear Array to 0.881 for multiplex PCR and modified Linear Array. An alternate DNA extraction technique, that used by the Qiagen MinElute kit, impacted subsequent HPV detection in both the multiplex PCR and Linear Array assays.

  11. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  12. Performance of a new gelled nested PCR test for the diagnosis of imported malaria: comparison with microscopy, rapid diagnostic test, and real-time PCR.

    PubMed

    Iglesias, Nuria; Subirats, Mercedes; Trevisi, Patricia; Ramírez-Olivencia, Germán; Castán, Pablo; Puente, Sabino; Toro, Carlos

    2014-07-01

    Microscopy and rapid diagnostic tests (RDTs) are the techniques commonly used for malaria diagnosis but they are usually insensitive at very low levels of parasitemia. Nested PCR is commonly used as a reference technique in the diagnosis of malaria due to its high sensitivity and specificity. However, it is a cumbersome assay only available in reference centers. We evaluated a new nested PCR-based assay, BIOMALAR kit (Biotools B&M Labs, Madrid, Spain) which employs ready-to-use gelled reagents and allows the identification of the main four species of Plasmodium. Blood samples were obtained from patients with clinical suspicion of malaria. A total of 94 subjects were studied. Fifty-two (55.3%) of them were malaria-infected subjects corresponding to 48 cases of Plasmodium falciparum, 1 Plasmodium malariae, 2 Plasmodium vivax, and 1 Plasmodium ovale. The performance of the BIOMALAR test was compared with microscopy, rapid diagnostic test (RDT) (BinaxNOW® Malaria) and real-time quantitative PCR (qPCR). The BIOMALAR test showed a sensitivity of 98.1% (95% confidence interval [CI], 89.7-100), superior to microscopy (82.7% [95% CI, 69.7-91.8]) and RDT (94.2% [95% CI, 84.1-98.8]) and similar to qPCR (100% [95% CI, 93.2-100]). In terms of specificity, the BIOMALAR assay showed the same value as microscopy and qPCR (100% [95% CI, 93.2-100]). Nine subjects were submicroscopic carriers of malaria. The BIOMALAR test identified almost all of them (8/9) in comparison with RDT (6/9) and microscopy (0/9). In conclusion, the BIOMALAR is a PCR-based assay easy to use with an excellent performance and especially useful for diagnosis submicroscopic malaria. PMID:24770719

  13. Rapid identification of bacterial pathogens using a PCR- and microarray-based assay

    PubMed Central

    2009-01-01

    Background During the course of a bacterial infection, the rapid identification of the causative agent(s) is necessary for the determination of effective treatment options. We have developed a method based on a modified broad-range PCR and an oligonucleotide microarray for the simultaneous detection and identification of 12 bacterial pathogens at the species level. The broad-range PCR primer mixture was designed using conserved regions of the bacterial topoisomerase genes gyrB and parE. The primer design allowed the use of a novel DNA amplification method, which produced labeled, single-stranded DNA suitable for microarray hybridization. The probes on the microarray were designed from the alignments of species- or genus-specific variable regions of the gyrB and parE genes flanked by the primers. We included mecA-specific primers and probes in the same assay to indicate the presence of methicillin resistance in the bacterial species. The feasibility of this assay in routine diagnostic testing was evaluated using 146 blood culture positive and 40 blood culture negative samples. Results Comparison of our results with those of a conventional culture-based method revealed a sensitivity of 96% (initial sensitivity of 82%) and specificity of 98%. Furthermore, only one cross-reaction was observed upon investigating 102 culture isolates from 70 untargeted bacteria. The total assay time was only three hours, including the time required for the DNA extraction, PCR and microarray steps in sequence. Conclusion The assay rapidly provides reliable data, which can guide optimal antimicrobial treatment decisions in a timely manner. PMID:19664269

  14. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis

    PubMed Central

    De Los Santos, Maxy; Soberón, Valeria; Lucas, Carmen M.; Matlashewski, Greg; Llanos-Cuentas, Alejandro; Ore, Marianela; Baldeviano, G. Christian; Edgel, Kimberly A.; Lescano, Andres G.; Graf, Paul C. F.; Bacon, David J.

    2013-01-01

    In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL). The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR) assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, L. (V.) peruviana and L. (V.) lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST). In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST) data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America. PMID:23301111

  15. Real-time PCR TaqMan assay for rapid screening of bloodstream infection

    PubMed Central

    2014-01-01

    Background Sepsis is one of the main causes of mortality and morbidity. The rapid detection of pathogens in blood of septic patients is essential for adequate antimicrobial therapy and better prognosis. This study aimed to accelerate the detection and discrimination of Gram-positive (GP) and Gram-negative (GN) bacteria and Candida species in blood culture samples by molecular methods. Methods The Real-GP®, -GN®, and -CAN® real-time PCR kit (M&D, Wonju, Republic of Korea) assays use the TaqMan probes for detecting pan-GP, pan-GN, and pan-Candida species, respectively. The diagnostic performances of the real-time PCR kits were evaluated with 115 clinical isolates, 256 positive and 200 negative blood culture bottle samples, and the data were compared to results obtained from conventional blood culture. Results Eighty-seven reference strains and 115 clinical isolates were correctly identified with specific probes corresponding to GP-bacteria, GN-bacteria and Candida, respectively. The overall sensitivity and specificity of the real-time PCR kit with blood culture samples were 99.6% and 89.5%, respectively. Conclusions The Real-GP®, -GN®, and -CAN® real-time PCR kits could be useful tools for the rapid and accurate screening of bloodstream infections (BSIs). PMID:24393579

  16. Clinical application of a multiplex real-time PCR assay for simultaneous detection of Legionella species, Legionella pneumophila, and Legionella pneumophila serogroup 1.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2013-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  17. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples.

    PubMed

    Marthaler, Douglas; Homwong, Nitipong; Rossow, Kurt; Culhane, Marie; Goyal, Sagar; Collins, James; Matthijnssens, Jelle; Ciarlet, Max

    2014-12-01

    Rotaviruses are important cause of diarrhea in animals, including humans. Currently, rotavirus species A, B, C, E, and H (RVA-RVC, RVE, and RVH) have been identified in pigs. Traditionally, RVA has been considered the primary cause of diarrhea in pigs, and RVB and RVC had been described sporadically in pigs until recently. Qualitative porcine RVA, RVB, and RVC RT-PCR (RT-qPCR) assays were designed and 7508 porcine diarrheic samples, submitted to University of Minnesota, were tested to estimate the percentage of RVA, RVB, and RVC over a period of approximately 2 years (from 2009 to 2011). The individual RVA and RVC RT-qPCR assays were multiplex into a single RT-qPCR while the RVB RT-qPCR assay remained as an individual RT-qPCR. In total, 83% of the samples were positive for RVA, RVB, or RVC. As expected, RVA was detected at the highest overall percentage (62%). However, 33% and 53% of the samples were positive for RVB and RVC, respectively, indicating that both RVB and RVC are also epidemiologically important in the swine population. RVC was most predominant in young pigs (1-20 days of age), while RVA and RVB were most predominant in ≥21 day old pigs. As diagnostic tools, the developed RT-qPCR assays could successfully discriminate among infecting RV species, which could lead to better surveillance and epidemiological studies for ultimately better prevention and control strategies.

  18. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples.

    PubMed

    Marthaler, Douglas; Homwong, Nitipong; Rossow, Kurt; Culhane, Marie; Goyal, Sagar; Collins, James; Matthijnssens, Jelle; Ciarlet, Max

    2014-12-01

    Rotaviruses are important cause of diarrhea in animals, including humans. Currently, rotavirus species A, B, C, E, and H (RVA-RVC, RVE, and RVH) have been identified in pigs. Traditionally, RVA has been considered the primary cause of diarrhea in pigs, and RVB and RVC had been described sporadically in pigs until recently. Qualitative porcine RVA, RVB, and RVC RT-PCR (RT-qPCR) assays were designed and 7508 porcine diarrheic samples, submitted to University of Minnesota, were tested to estimate the percentage of RVA, RVB, and RVC over a period of approximately 2 years (from 2009 to 2011). The individual RVA and RVC RT-qPCR assays were multiplex into a single RT-qPCR while the RVB RT-qPCR assay remained as an individual RT-qPCR. In total, 83% of the samples were positive for RVA, RVB, or RVC. As expected, RVA was detected at the highest overall percentage (62%). However, 33% and 53% of the samples were positive for RVB and RVC, respectively, indicating that both RVB and RVC are also epidemiologically important in the swine population. RVC was most predominant in young pigs (1-20 days of age), while RVA and RVB were most predominant in ≥21 day old pigs. As diagnostic tools, the developed RT-qPCR assays could successfully discriminate among infecting RV species, which could lead to better surveillance and epidemiological studies for ultimately better prevention and control strategies. PMID:25194889

  19. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    PubMed

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  20. A duplex PCR assay for the detection of Ralstonia solanacearum phylotype II strains in Musa spp.

    PubMed

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae.

  1. A Duplex PCR Assay for the Detection of Ralstonia solanacearum Phylotype II Strains in Musa spp.

    PubMed Central

    Cellier, Gilles; Moreau, Aurélie; Chabirand, Aude; Hostachy, Bruno; Ailloud, Florent; Prior, Philippe

    2015-01-01

    Banana wilt outbreaks that are attributable to Moko disease-causing strains of the pathogen Ralstonia solanacearum (Rs) remain a social and economic burden for both multinational corporations and subsistence farmers. All known Moko strains belong to the phylotype II lineage, which has been previously recognized for its broad genetic basis. Moko strains are paraphyletic and are distributed among seven related but distinct phylogenetic clusters (sequevars) that are potentially major threats to Musaceae, Solanaceae, and ornamental crops in many countries. Although clustered within the Moko IIB-4 sequevar, strains of the epidemiologically variant IIB-4NPB do not cause wilt on Cavendish or plantain bananas; instead, they establish a latent infection in the vascular tissues of plantains and demonstrate an expanded host range and high aggressiveness toward Solanaceae and Cucurbitaceae. Although most molecular diagnostic methods focus on strains that wilt Solanaceae (particularly potato), no relevant protocol has been described that universally detects strains of the Musaceae-infecting Rs phylotype II. Thus, a duplex PCR assay targeting Moko and IIB-4NPB variant strains was developed, and its performance was assessed using an extensive collection of 111 strains representing the known diversity of Rs Moko-related strains and IIB-4NPB variant strains along with certain related strains and families. The proposed diagnostic protocol demonstrated both high accuracy (inclusivity and exclusivity) and high repeatability, detected targets on either pure culture or spiked plant extracts. Although they did not belong to the Moko clusters described at the time of the study, recently discovered banana-infecting strains from Brazil were also detected. According to our comprehensive evaluation, this duplex PCR assay appears suitable for both research and diagnostic laboratories and provides reliable detection of phylotype II Rs strains that infect Musaceae. PMID:25811378

  2. Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of Fusarium virguliforme from Soybean Roots and Soil.

    PubMed

    Kandel, Yuba R; Haudenshield, James S; Srour, Ali Y; Islam, Kazi Tariqul; Fakhoury, Ahmad M; Santos, Patricia; Wang, Jie; Chilvers, Martin I; Hartman, Glen L; Malvick, Dean K; Floyd, Crystal M; Mueller, Daren S; Leandro, Leonor F S

    2015-12-01

    The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS.

  3. Multilaboratory Comparison of Quantitative PCR Assays for Detection and Quantification of Fusarium virguliforme from Soybean Roots and Soil.

    PubMed

    Kandel, Yuba R; Haudenshield, James S; Srour, Ali Y; Islam, Kazi Tariqul; Fakhoury, Ahmad M; Santos, Patricia; Wang, Jie; Chilvers, Martin I; Hartman, Glen L; Malvick, Dean K; Floyd, Crystal M; Mueller, Daren S; Leandro, Leonor F S

    2015-12-01

    The ability to accurately detect and quantify Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, in samples such as plant root tissue and soil is extremely valuable for accurate disease diagnoses and to address research questions. Numerous quantitative real-time polymerase chain reaction (qPCR) assays have been developed for this pathogen but their sensitivity and specificity for F. virguliforme have not been compared. In this study, six qPCR assays were compared in five independent laboratories using the same set of DNA samples from fungi, plants, and soil. Multicopy gene-based assays targeting the ribosomal DNA intergenic spacer (IGS) or the mitochondrial small subunit (mtSSU) showed relatively high sensitivity (limit of detection [LOD] = 0.05 to 5 pg) compared with a single-copy gene (FvTox1)-based assay (LOD = 5 to 50 pg). Specificity varied greatly among assays, with the FvTox1 assay ranking the highest (100%) and two IGS assays being slightly less specific (95 to 96%). Another IGS assay targeting four SDS-causing fusaria showed lower specificity (70%), while the two mtSSU assays were lowest (41 and 47%). An IGS-based assay showed consistently highest sensitivity (LOD = 0.05 pg) and specificity and inclusivity above 94% and, thus, is suggested as the most useful qPCR assay for F. virguliforme diagnosis and quantification. However, specificity was also above 94% in two other assays and their selection for diagnostics and research will depend on objectives, samples, and materials used. These results will facilitate both fundamental and disease management research pertinent to SDS. PMID:26368513

  4. Development and laboratory evaluation of a real-time PCR assay for detecting viruses and bacteria of relevance for community-acquired pneumonia.

    PubMed

    Edin, Alicia; Granholm, Susanne; Koskiniemi, Satu; Allard, Annika; Sjöstedt, Anders; Johansson, Anders

    2015-05-01

    Community-acquired pneumonia may present with similar clinical symptoms, regardless of viral or bacterial cause. Diagnostic assays are needed to rapidly discriminate between causes, because this will guide decisions on appropriate treatment. Therefore, a quantitative real-time PCR (qPCR) assay with duplex reactions targeting eight bacteria and six viruses was developed. Technical performance was examined with linear plasmids. Upper and lower respiratory tract specimens were used to compare the qPCR assay with standard microbiological methods. The limit of detection was 5 to 20 DNA template copies with approximately 1000-fold differences in concentrations of the two competing templates. SDs for positive controls were <5%. The use of the qPCR assay resulted in 113 positive identifications in 94 respiratory specimens compared with 38 by using standard diagnostics. Diagnostic accuracy of the qPCR assay varied between 60% positive agreement with standard tests for Streptococcus pneumoniae and 100% for Mycoplasma pneumoniae, Moraxella catarrhalis, and Staphylococcus aureus. Negative percentage of agreement was >95% for M. pneumoniae, Streptococcus pyogenes, respiratory syncytial virus, and influenza A virus; whereas it was only 56% for Haemophilus influenzae. Multiple microbial agents were identified in 19 of 44 sputum and 19 of 50 nasopharynx specimens. We conclude that in parallel qPCR detection of the targeted respiratory bacteria and viruses is feasible. The results indicate good technical performance of the assay in clinical specimens.

  5. Field-based multiplex and quantitative assay platforms for diagnostics

    NASA Astrophysics Data System (ADS)

    Venkatasubbarao, Srivatsa; Dixon, C. Edward; Chipman, Russell; Scherer, Axel; Beshay, Manal; Kempen, Lothar U.; Chandra Sekhar, Jai Ganesh; Yan, Hong; Puccio, Ava; Okonkwo, David; McClain, Stephen; Gilbert, Noah; Vyawahare, Saurabh

    2011-06-01

    The U.S. military has a continued interest in the development of handheld, field-usable sensors and test kits for a variety of diagnostic applications, such as traumatic brain injury (TBI) and infectious diseases. Field-use presents unique challenges for biosensor design, both for the readout unit and for the biological assay platform. We have developed robust biosensor devices that offer ultra-high sensitivity and also meet field-use needs. The systems under development include a multiplexed quantitative lateral flow test strip for TBI diagnostics, a field test kit for the diagnosis of pathogens endemic to the Middle East, and a microfluidic assay platform with a label-free reader for performing complex biological automated assays in the field.

  6. Multiplex RT-PCR assay for the differential diagnosis of alveolar rhabdomyosarcoma and Ewing's sarcoma.

    PubMed Central

    Downing, J. R.; Khandekar, A.; Shurtleff, S. A.; Head, D. R.; Parham, D. M.; Webber, B. L.; Pappo, A. S.; Hulshof, M. G.; Conn, W. P.; Shapiro, D. N.

    1995-01-01

    Cytogenetic analysis has defined specific translocations associated with two of the most common small round cell tumors of childhood, t(11;22) in Ewing's sarcoma and t(2;13) in alveolar rhabdomyosarcoma. We and others have previously demonstrated the diagnostic utility of a reverse transcriptase polymerase chain reaction (RT-PCR) assay for the detection of the t(11;22) encoded EWS/FLI-1 chimeric message in Ewing's sarcoma. More recently, we have cloned the t(2;13)(q35;q14) translocation and have shown that it results in the fusion of the PAX3 gene on chromosome 2 to FKHR, a novel member of the fork-head family of transcription factors on chromosome 13. To define the morphological spectrum of childhood sarcomas that express the t(2;13) encoded PAX3/FKHR chimeric message, we have performed RT-PCR analysis on samples from 44 primary pediatric sarcomas and 8 sarcoma cell lines. PAX3/FKHR chimeric messages were detected in 24 of 27 alveolar, 2 of 12 embryonal, and 0 of 1 pleomorphic rhabdomyosarcoma and in 1 of 2 ectomesenchymomas. In contrast, none of 8 Ewing's sarcomas or 2 undifferentiated sarcomas expressed this message. Chimeric transcripts were detected in all cases with cytogenetic evidence of the (2;13) translocation, and in each case the chimeric PAX3/FKHR message had the identical junction sequence, suggesting that genomic chromosome breaks were clustered in a single intron in both genes. By combining the PAX3/FKHR RT-PCR assay with primers for detection of the Ewing's sarcoma t(11;22) encoded EWS/FLI-1 chimeric transcript, we have developed a multiplex RT-PCR reaction that allows the rapid and accurate identification of either translocation in a biopsy sample. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:7887445

  7. Two-stage PCR assay for detection of human brucellosis in endemic areas

    PubMed Central

    2013-01-01

    Background Brucellosis is a common zoonosis that can cause a severe febrile illness in humans. It constitutes a persistent health problem in many developing countries around the world. It is one of the most frequently reported diseases in Saudi Arabia and incidence is particularly high in the Central region, and around the city of Riyadh. The aim of this study was to evaluate a two-stage PCR assay for detection of human brucellosis particularly in endemic areas. Methods A total of 101 serum samples were collected from patients with acute febrile illness (AFI) of unknown cause from two different locations in the Western region of Saudi Arabia. The first location (Northern) is characterized by a nomadic rural population while the second (Central) is a modern urban city. All samples were subjected to DNA extraction and Brucella genus-specific PCR amplification using B4/B5 primers of the bcsp31 gene. Positive B4/B5 samples were subjected to multiplex species-specific Brucella PCR amplification. Results In the Northern location, 81.9% of the AFI samples were confirmed Brucella positive, while all the samples collected from the Central region proved to be Brucella negative. Samples positive for Brucella were subjected to multiplex species-specific Brucella amplification. B. abortus was detected in 10% and B. melitensis in 8% of the samples, while the majority (82%) of samples showed both B. abortus and B. melitensis. As expected, B. suis was not detected in any of the samples. Conclusions This study concluded that a two-stage PCR assay could be useful as a rapid diagnostic tool to allow the consideration of brucellosis as a possible cause of AFI, particularly in non-urban locations. It also recommends the collection of epidemiological data for such patients to obtain further information that may help in rapid diagnosis. PMID:23517532

  8. Real-time PCR assay for detection and quantification of hepatitis B virus genotypes A to G.

    PubMed

    Welzel, Tania M; Miley, Wendell J; Parks, Thomas L; Goedert, James J; Whitby, Denise; Ortiz-Conde, Betty A

    2006-09-01

    The detection and quantification of hepatitis B virus (HBV) DNA play an important role in diagnosing and monitoring HBV infection as well as assessing therapeutic response. The great variability among HBV genotypes and the enormous range of clinical HBV DNA levels present challenges for PCR-based amplification techniques. In this study, we describe the development, evaluation, and validation of a novel real-time PCR assay designed to provide accurate quantification of DNA from all eight HBV genotypes in patient plasma specimens. A computer algorithm was used to design degenerate real-time PCR primers and probes based upon a large number (n = 340) of full-length genomic sequences including HBV genotypes A to H from Europe, Africa, Asia, and North and South America. Genotype performance was tested and confirmed using 59 genotype A to G specimens from two commercially available worldwide genotype panels. This assay has a dynamic range of at least 8 log(10) without the need for specimen dilution, good clinical intra- and interassay precision, and excellent correlation with the Bayer Diagnostics VERSANT HBV DNA 3.0 (branched DNA) assay (r = 0.93). Probit analysis determined the 95% detection level was 56 IU/ml, corresponding to 11 copies per PCR well. The high sensitivity, wide linear range, good reproducibility, and genotype inclusivity, combined with a small sample volume requirement and low cost, make this novel quantitative HBV real-time PCR assay particularly well suited for application to large clinical and epidemiological studies.

  9. Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia.

    PubMed

    Schär, Fabian; Odermatt, Peter; Khieu, Virak; Panning, Marcus; Duong, Socheat; Muth, Sinuon; Marti, Hanspeter; Kramme, Stefanie

    2013-05-01

    Diagnosis of soil-transmitted helminths such as Strongyloides stercoralis and hookworms (Ancylostoma duodenale and Necator americanus) is challenging due to irregular larval and egg output in infected individuals and insensitive conventional diagnostic procedures. Sensitive novel real-time PCR assays have been developed. Our study aimed to evaluate the real-time PCR assays as a diagnostic tool for detection of Strongyloides spp. and hookworms in a random stool sample of 218 asymptomatic schoolchildren in Cambodia. Overall prevalence of 17.4% (38/218) and 34.9% (76/218) were determined by real-time PCR for S. stercoralis and hookworms, respectively. Sensitivity and specificity of S. stercoralis specific real-time PCR as compared to the combination of Baermann/Koga Agar as gold standard were 88.9% and 92.7%, respectively. For hookworm specific real-time PCR a sensitivity of 78.9% and specificity of 78.9% were calculated. Co-infections were detectable by PCR in 12.8% (28/218) of individuals. S. stercoralis real-time PCR applied in asymptomatic cases showed a lower sensitivity compared to studies undertaken with symptomatic patients with the same molecular tool, yet it proved to be a valid supplement in the diagnosis of STH infection in Cambodia.

  10. Performance of two real-time PCR assays for hepatitis B virus DNA detection and quantitation.

    PubMed

    Kania, Dramane; Ottomani, Laure; Meda, Nicolas; Peries, Marianne; Dujols, Pierre; Bolloré, Karine; Rénier, Wendy; Viljoen, Johannes; Ducos, Jacques; Van de Perre, Philippe; Tuaillon, Edouard

    2014-06-01

    In-house developed real-time PCR (qPCR) techniques could be useful conjunctives to the management of hepatitis B virus (HBV) infection in resource-limited settings with high prevalence. Two qPCR assays (qPCR1 and qPCR2), based on primers/probes targeting conserved regions of the X and S genes of HBV respectively, were evaluated using clinical samples of varying HBV genotypes, and compared to the commercial Roche Cobas AmpliPrep/Cobas TaqMan HBV Test v2.0. The lower detection limit (LDL) was established at 104 IU/ml for qPCR1, and 91 IU/ml for qPCR2. Good agreement and correlation were obtained between the Roche assay and both qPCR assays (r = 0.834 for qPCR1; and r = 0.870 for qPCR2). Differences in HBV DNA load of > 0.5 Log10 IU/ml between the Roche and the qPCR assays were found in 49/122 samples of qPCR1, and 35/122 samples of qPCR2. qPCR1 tended to underestimate HBV DNA quantity in samples with a low viral load and overestimate HBV DNA concentration in samples with a high viral load when compared to the Roche test. Both molecular tools that were developed, used on an open real-time PCR system, were reliable for HBV DNA detection and quantitation. The qPCR2 performed better than the qPCR1 and had the additional advantage of various HBV genotype detection and quantitation. This low cost quantitative HBV DNA PCR assay may be an alternative solution when implementing national programmes to diagnose, monitor and treat HBV infection in low- to middle-income countries where testing for HBV DNA is not available in governmental health programmes.

  11. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics

    PubMed Central

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A.; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S.

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC’s ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC’s performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  12. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.

    PubMed

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC's ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC's performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings. PMID:26872358

  13. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture.

    PubMed

    Elliott, D G; Applegate, L J; Murray, A L; Purcell, M K; McKibben, C L

    2013-09-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  14. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture

    USGS Publications Warehouse

    Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.

    2013-01-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  15. Validation of a real-time reverse transcriptase-PCR assay for the detection of H7 avian influenza virus

    USGS Publications Warehouse

    Pedersen, J.; Killian, M.L.; Hines, N.; Senne, D.; Panigrahy, B.; Ip, H.S.; Spackman, Erica

    2010-01-01

    This report describes the validation of an avian influenza virus (AIV) H7 subtype-specific real-time reverse transcriptasePCR (rRT-PCR) assay developed at the Southeast Poultry Research Laboratory (SEPRL) for the detection of H7 AI in North and South American wild aquatic birds and poultry. The validation was a collaborative effort by the SEPRL and the National Veterinary Services Laboratories. The 2008 H7 rRT-PCR assay detects 101 50% embryo infectious doses per reaction, or 103104 copies of transcribed H7 RNA. Diagnostic sensitivity and specificity were estimated to be 97.5% and 82.4%, respectively; the assay was shown to be specific for H7 AI when tested with >270 wild birds and poultry viruses. Following validation, the 2008 H7 rRT-PCR procedure was adopted as an official U.S. Department of Agriculture procedure for the detection of H7 AIV. The 2008 H7 assay replaced the previously used (2002) assay, which does not detect H7 viruses currently circulating in wild birds in North and South America. ?? 2010 American Association of Avian Pathologists.

  16. Development of a consensus reverse transcription PCR assay for the specific detection of tortoise picornaviruses.

    PubMed

    Marschang, Rachel E; Ihász, Katalin; Kugler, Renáta; Lengyel, György; Fehér, Enikő; Marton, Szilvia; Bányai, Krisztián; Aqrawi, Tara; Farkas, Szilvia L

    2016-05-01

    Picornaviruses (PVs) of different terrestrial tortoise species, previously designated as Virus "X," have been frequently detected from various tissues by virus isolation in Terrapene heart cell culture as the preferred laboratory method for diagnosis. Here, we describe the development of 2 diagnostic reverse transcription (RT)-PCR-based assays for the identification and characterization of tortoise PVs belonging to the tentative genus Topivirus To test the novel diagnostic systems, PVs were isolated from swab and tissue samples collected in Germany, Italy, and Hungary between 2000 and 2013. All 25 tested isolates gave positive results with both novel consensus primer sets. Sequencing of the amplified products confirmed that all studied viruses were members of the new proposed genus Topivirus Phylogenetic analyses clearly distinguished 2 lineages within the genus. Based on sequence analysis, no association was observed between the geographic distribution and genetic relatedness. Furthermore, no strict host specificity was indicated. The PCR-based diagnosis may provide a time-saving and sensitive method to detect tortoise PVs, and evaluation of PV presence in these animals may help control virus spread. PMID:27034342

  17. Evaluation of IFN-γ polymorphism+874 T/A in patients with recurrent tonsillitis by PCR real time mismatch amplification mutation assay (MAMA real time PCR).

    PubMed

    Bergallo, Massimiliano; Gambarino, Stefano; Loiacono, Elisa; Vergano, Luca; Galliano, Ilaria; Montanari, Paola; Astegiano, Sara; Tavormina, Paolo; Tovo, Pier-Angelo

    2015-02-01

    Interferon gamma (IFN-γ) is an important cytokine that plays a crucial role in the balance between normal and pathological immune response. Defect of IFN-γ can give a predisposition to infectious disease, autoimmune pathologies and tumours. Different polymorphisms in this gene have been described, in particular the single nucleotide polymorphism (SNP)+874∗T/A that may affect IFN-γ gene expression. Several techniques can be used for the detection of SNPs. In this work two PCR Real Time assays were developed, an Amplification Refractory Mutation System (ARMS) and a Mismatch Amplification Mutation Assay (MAMA). Twenty-seven samples from patients (tonsillectomy) and 85 from donor's blood bank were considered. As a result, 78/85 controls (91.7%) and 25/27 patients (92.6%) were heterozygosis, considering the ARMS-PCR; 55/85 (64.7%) and 14/27 (51.9%) were heterozygosis using MAMA-PCR assay. Fourteen of 85 (16.5%) and 8/27 (29.6%) were homozygosis A, 16/85 (18.8%) and 5/27 (18.5%) presented homozygosis T, taking into account the MAMA-PCR. There are statistically difference between the two assay with p<0.0001 at Chi-square test. Our preliminary data suggest that tonsillectomy patients had a statistical trend to possess the low IFN-γ polymorphism when compared with control subject (p=0.3) but is not statistically significant. In conclusion the Real time MAMA-PCR assay has several advantages over other SNP identification techniques such as rapidity, reliability, easily to perform in one working day and applicable in clinical molecular diagnostic laboratories, although sequencing remains the gold standard.

  18. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA

    USGS Publications Warehouse

    Purcell, Maureen K.; Pearman-Gillman, Schuyler; Thompson, Rachel L.; Gregg, Jacob L.; Hart, Lucas M.; Winton, James R.; Emmenegger, Eveline J.; Hershberger, Paul K.

    2016-01-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii. The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea.

  19. Identification of the major capsid protein of erythrocytic necrosis virus (ENV) and development of quantitative real-time PCR assays for quantification of ENV DNA.

    PubMed

    Purcell, Maureen K; Pearman-Gillman, Schuyler; Thompson, Rachel L; Gregg, Jacob L; Hart, Lucas M; Winton, James R; Emmenegger, Eveline J; Hershberger, Paul K

    2016-07-01

    Viral erythrocytic necrosis (VEN) is a disease of marine and anadromous fish that is caused by the erythrocytic necrosis virus (ENV), which was recently identified as a novel member of family Iridoviridae by next-generation sequencing. Phylogenetic analysis of the ENV DNA polymerase grouped ENV with other erythrocytic iridoviruses from snakes and lizards. In the present study, we identified the gene encoding the ENV major capsid protein (MCP) and developed a quantitative real-time PCR (qPCR) assay targeting this gene. Phylogenetic analysis of the MCP gene sequence supported the conclusion that ENV does not group with any of the currently described iridovirus genera. Because there is no information regarding genetic variation of the MCP gene across the reported host and geographic range for ENV, we also developed a second qPCR assay for a more conserved ATPase-like gene region. The MCP and ATPase qPCR assays demonstrated good analytical and diagnostic sensitivity and specificity based on samples from laboratory challenges of Pacific herring Clupea pallasii The qPCR assays had similar diagnostic sensitivity and specificity as light microscopy of stained blood smears for the presence of intraerythrocytic inclusion bodies. However, the qPCR assays may detect viral DNA early in infection prior to the formation of inclusion bodies. Both qPCR assays appear suitable for viral surveillance or as a confirmatory test for ENV in Pacific herring from the Salish Sea. PMID:27154315

  20. A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin

    PubMed Central

    2009-01-01

    Background Staphylococcus aureus is a major human pathogen, especially methicillin-resistant S. aureus (MRSA), which causes a wide range of hospital and community-acquired infections worldwide. Conventional testing for detection of MRSA takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Results The present study focused on the development of a pentaplex PCR assay for the rapid detection of MRSA. The assay simultaneously detected five genes, namely 16S rRNA of the Staphylococcus genus, femA of S. aureus, mecA that encodes methicillin resistance, lukS that encodes production of Panton-Valentine leukocidin (PVL), a necrotizing cytotoxin, and one internal control. Specific primer pairs were successfully designed and simultaneously amplified the targeted genes. The analytical sensitivity and specificity of the pentaplex PCR assay was evaluated by comparing it with the conventional method. The analytical sensitivity of the pentaplex PCR at the DNA level was found to be 10 ng DNA. The analytical specificity was evaluated with 34 reference staphylococci and non-staphylococcal strains and was found to be 100%. The diagnostic evaluation of MRSA carried out using 230 clinical isolates, showed 97.6% of sensitivity, 99.3% of specificity, 98.8% of positive predictive value and 98.6% of negative predictive value compared to the conventional method. The presence of an internal control in the pentaplex PCR assay is important to exclude false-negative cases. Conclusion The pentaplex PCR assay developed was rapid and gave results within 4 h, which is essential for the identification of Staphylococcus spp., virulence and their resistance to methicillin. Our PCR assay may be used as an effective surveillance tool to survey the prevalence of MRSA and PVL-producing strains in hospitals and the community. PMID:19476638

  1. Aspergillus PCR-Based Investigation of Fresh Tissue and Effusion Samples in Patients with Suspected Invasive Aspergillosis Enhances Diagnostic Capabilities

    PubMed Central

    Reinwald, M.; Spiess, B.; Heinz, W. J.; Heussel, C. P.; Bertz, H.; Cornely, O. A.; Hahn, J.; Lehrnbecher, T.; Kiehl, M.; Laws, H. J.; Wolf, H. H.; Schwerdtfeger, R.; Schultheis, B.; Burchardt, A.; Klein, M.; Dürken, M.; Claus, B.; Schlegel, F.; Hummel, M.; Hofmann, W.-K.

    2013-01-01

    Although it is a severe complication in immunocompromised patients, diagnosing invasive fungal disease (IFD), especially invasive aspergillosis (IA), remains difficult. In certain clinical scenarios, examining tissue samples for identification of the infectious organism becomes important. As culture-based methods rarely yield results, the performance of an Aspergillus-specific nested PCR in fresh tissue or pleural effusion samples was evaluated. Fresh tissue (n = 59) and effusion (n = 47) specimens from 79 immunocompromised patients were subjected to an Aspergillus-specific PCR assay. Twenty-six patients had proven (n = 20) or probable (n = 6) IFD, according to the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria, while the remaining patients were classified as having either possible IFD (n = 30) or no IFD (n = 23). IA was identified as the underlying IFD in 21/26 proven/probable cases. PCR positivity was observed for 18/21 proven/probable and 6 possible IA cases; cases classified as no IA did not show positive signals. Patients with proven IFD (n = 5) with cultures positive for non-Aspergillus molds also had negative Aspergillus PCR results. Aspergillus PCR performance analysis yielded sensitivity and specificity values of 86% (95% confidence interval [CI], 65% to 95%) and 100% (95% CI, 86% to 100%), respectively, thus leading to a diagnostic odds ratio of >200. In this analysis, good diagnostic performance of the PCR assay for detection of IA was observed for tissue samples, while effusion samples showed lower sensitivity rates. PCR testing represents a complementary tool; a positive PCR result strengthens the likelihood of IA, whereas IA seems unlikely in cases with negative results but findings could indicate non-Aspergillus IFD. Thus, PCR testing of these specimens enhances the diagnostic capabilities. PMID

  2. Test verification and validation for molecular diagnostic assays.

    PubMed

    Halling, Kevin C; Schrijver, Iris; Persons, Diane L

    2012-01-01

    With our ever-increasing understanding of the molecular basis of disease, clinical laboratories are implementing a variety of molecular diagnostic tests to aid in the diagnosis of hereditary disorders, detection and monitoring of cancer, determination of prognosis and guidance for cancer therapy, and detection and monitoring of infectious diseases. Before introducing any new test into the clinical laboratory, the performance characteristics of the assay must be "verified," if it is a US Food and Drug Administration (FDA)-approved or FDA-cleared test, or "validated," if it is a laboratory-developed test. Although guidelines exist for how validation and verification studies may be addressed for molecular assays, the specific details of the approach used by individual laboratories is rarely published. Many laboratories, especially those introducing new types of molecular assays, would welcome additional guidance, especially in the form of specific examples, on the process of preparing a new molecular assay for clinical use. PMID:22208481

  3. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    EPA Science Inventory

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  4. Immuno-PCR assay for sensitive detection of proteins in real time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The immuno-PCR (IPCR) assay combines the versatility and robustness of immunoassays with the exponential signal amplification power of the polymerase chain reaction (PCR). Typically, IPCR allows a 10–1,000-fold increase in sensitivity over the analogous enzyme-linked immunosorbent assay (ELISA). Thi...

  5. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  6. Comparison of real-time multiplex human papillomavirus (HPV) PCR assays with INNO-LiPA HPV genotyping extra assay.

    PubMed

    Else, Elizabeth A; Swoyer, Ryan; Zhang, Yuhua; Taddeo, Frank J; Bryan, Janine T; Lawson, John; Van Hyfte, Inez; Roberts, Christine C

    2011-05-01

    Real-time type-specific multiplex human papillomavirus (HPV) PCR assays were developed to detect HPV DNA in samples collected for the efficacy determination of the quadrivalent HPV (type 6, 11, 16, and 18) L1 virus-like particle (VLP) vaccine (Gardasil). Additional multiplex (L1, E6, and E7 open reading frame [ORF]) or duplex (E6 and E7 ORF) HPV PCR assays were developed to detect high-risk HPV types, including HPV type 31 (HPV31), HPV33, HPV35, HPV39, HPV45, HPV51, HPV52, HPV56, HPV58, and HPV59. Here, we evaluated clinical specimen concordance and compared the limits of detection (LODs) between multiplex HPV PCR assays and the INNO-LiPA HPV Genotyping Extra assay, which detects 28 types, for the 14 HPV types common to both of these methods. Overall HPV detection agreement rates were >90% for swabs and >95% for thin sections. Statistically significant differences in detection were observed for HPV6, HPV16, HPV18, HPV35, HPV39, HPV45, HPV56, HPV58, and HPV59 in swabs and for HPV45, HPV58, and HPV59 in thin sections. Where P was <0.05, discordance was due to detection of more HPV-positive samples by the multiplex HPV PCR assays. LODs were similar for eight HPV types, significantly lower in multiplex assays for five HPV types, and lower in INNO-LiPA for HPV6 only. LODs were under 50 copies for all HPV types, with the exception of HPV39, HPV58, and HPV59 in the INNO-LiPA assay. The overall percent agreement for detection of 14 HPV types between the type-specific multiplex HPV PCR and INNO-LiPA genotyping assays was good. The differences in positive sample detection favored multiplex HPV PCR, suggesting increased sensitivity of HPV DNA detection by type-specific multiplex HPV PCR assays.

  7. Development of a real time quantitative PCR assay for the hard clam pathogen Quahog Parasite Unknown (QPX).

    PubMed

    Lyons, M Maille; Smolowitz, Roxanna; Dungan, Christopher F; Roberts, Steven B

    2006-09-14

    Quahog Parasite Unknown (QPX) is a thraustochytrid pathogen responsible for catastrophic mortalities of the northern quahog (hard clam) Mercenaria mercenaria. A real-time quantitative polymerase chain reaction (qPCR) assay was developed to assist research efforts on QPX ecology and pathology. Sensitivity of the assay was evaluated with serial dilutions of QPX-cultured cells to determine the lowest concentration of DNA that remained detectable in both the presence and absence of extraneous environmental substances. QPX cells were quantified before DNA extraction to calibrate standard curves to cell counts. Based on our results, the qPCR assay is able to quantify QPX within the range of 1 to several thousand organisms per reaction. Specificity of the assay was assessed by testing 29 thraustochytrid-like protists isolated from suspension-feeding bivalves from China, Oregon, Maryland, and Virginia. Application of the assay was demonstrated with positive qPCR results from naturally contaminated environmental samples including marine aggregates (i.e. marine snow), clam pseudofeces, and inflammatory nodules from infected clams. This quantitative assay for QPX will provide a valuable tool for characterizing QPX parasite abundances in coastal environments and for improving clam disease diagnostics.

  8. [Establishment and Preliminary Application of the SYBR Green I Real-time PCR Assay for Detection of the Bovine Enterovirus].

    PubMed

    Zhu, Tong; Zhao, Guimin; Shen, Furao; Hou Peili; Wang, Hongmei; Li, Jie; He, Hongbin

    2015-09-01

    The bovine enterovirus (BEV) is a pathogen found the digestive tracts of cattle. Recently, the BEV was discovered in cattle in a province in China. A rapid and effective detection method for the BEV is essential. An assay was carried out using two specific primers designed to amplify a highly conserved sequence of the 3D gene. A recombinant plasmid containing the target gene 3D was constructed as a standard control. The limit of detection of the reaction was 7.13 x 10(1) plasmid copies/μL of initial templates, which was tenfold more sensitive than the conventional reverse-transcription-polymerase chain reaction (RT-PCR). Moreover, the assay was highly specific because all negative controls and other viruses of clinical relevance did not develop positive results. Assay performance on field samples was evaluated on 44 (41 diarrhea and 3 aerosol) samples and compared with the conventional RT-PCR assay. Sixteen diarrhea samples were positive (16/41, 39. 02%) and 3 aerosol samples were positive (3/3, 100%). Preliminary results for clinical detection showed that the SYBR Green I real-time PCR assay was highly sensitive, specific and reproducible. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications for epidemics and in BEV research. PMID:26738285

  9. Novel light-upon-extension real-time PCR assay for simultaneous detection, quantification, and genogrouping of group A rotavirus.

    PubMed

    Nordgren, Johan; Bucardo, Filemón; Svensson, Lennart; Lindgren, Per-Eric

    2010-05-01

    We have developed a light-upon-extension (LUX) real-time PCR assay for detection, quantification, and genogrouping of group A rotavirus (RV), the most common cause of acute gastroenteritis in children. The LUX system uses a fluorophore attached to one primer and having a self-quenching hairpin structure, making it cost-effective and specific. We designed genogroup-specific primers having different fluorophores, making it possible to differentiate between the two main genogroups of human group A RVs. The assay was applied on clinical stool specimens from Sweden and Central America (n=196) and compared to immunological and conventional PCR assays. The genogrouping ability was further validated against a subset of clinical specimens, which had been genogrouped using monoclonal antibodies. Our real-time PCR assay detected and quantified all positive specimens (n=145) and exhibited higher sensitivity than immunological assays and conventional PCR. The assay exhibited a wide dynamic range, detecting from 5 to >10(7) genes per PCR, resulting in a theoretical lower detection limit of <10,000 viruses per gram of stool. No cross-reaction was observed with specimens containing norovirus, sapovirus, astrovirus, or adenovirus. In total, 22 (15%) of the positive clinical specimens were identified as genogroup I, 122 (84%) were identified as genogroup II, and 1 specimen was found to contain a mix of both genogroups. All genogroup I-positive specimens were associated with capsid glycoprotein 2 (G2). No significant difference in viral load was found between genogroups or geographic region. The detection and quantification, combined with the genogrouping ability, make this assay a valuable tool both for diagnostics and for molecular epidemiological investigations.

  10. Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media.

    PubMed

    Jung, Yu Jung; Kim, Ji-Youn; Song, Dong Joon; Koh, Won-Jung; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong

    2016-06-01

    We evaluated the analytical performance of M. tuberculosis complex (MTBC)/nontuberculous mycobacteria (NTM) PCR assays for differential identification of MTBC and NTM using culture-positive liquid media. Eighty-five type strains and 100 consecutive mycobacterial liquid media cultures (MGIT 960 system) were analyzed by a conventional PCR assay (MTB-ID(®) V3) and three real-time PCR assays (AdvanSure™ TB/NTM real-time PCR, AdvanSure; GENEDIA(®) MTB/NTM Detection Kit, Genedia; Real-Q MTB & NTM kit, Real-Q). The accuracy rates for reference strains were 89.4%, 100%, 98.8%, and 98.8% for the MTB-ID V3, AdvanSure, Genedia, and Real-Q assays, respectively. Cross-reactivity in the MTB-ID V3 assay was mainly attributable to non-mycobacterium Corynebacterineae species. The diagnostic performance was determined using clinical isolates grown in liquid media, and the overall sensitivities for all PCR assays were higher than 95%. In conclusion, the three real-time PCR assays showed better performance in discriminating mycobacterium species and non-mycobacterium Corynebacterineae species than the conventional PCR assay.

  11. Specific detection of common pathogens of acute bacterial meningitis using an internally controlled tetraplex-PCR assay.

    PubMed

    Farahani, Hamidreza; Ghaznavi-Rad, Ehsanollah; Mondanizadeh, Mahdieh; MirabSamiee, Siamak; Khansarinejad, Behzad

    2016-08-01

    Accurate and timely diagnosis of acute bacterial meningitis is critical for antimicrobial treatment of patients. Although PCR-based methods have been widely used for the diagnosis of acute meningitis caused by bacterial pathogens, the main disadvantage of these methods is their high cost. This disadvantage has hampered the widespread use of molecular assays in many developing countries. The application of multiplex assays and "in-house" protocols are two main approaches that can reduce the overall cost of a molecular test. In the present study, an internally controlled tetraplex-PCR was developed and validated for the specific detection of Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae in cerebrospinal fluid (CSF) samples. The analysis of a panel of other human pathogens showed no cross-reactivity in the assay. The analytical sensitivity of the in-house assay was 792.3 copies/ml, when all three bacteria were presentin the specimens. This value was calculated as 444.5, 283.7, 127.8 copies/ml when only S. pneumoniae, N. meningitidis and H. influenzae, respectively, were present. To demonstrate the diagnostic performance of the assay, a total of 150 archival CSF samples were tested and compared with a commercial multiplex real-time PCR kit. A diagnostic sensitivity of 92.8% and a specificity of 95.1% were determined for the present tetraplex-PCR assay. The results indicate that the established method is sensitive, specific and cost-effective, and can be used particularly in situations where the high cost of commercial kits prevents the use of molecular methods for the diagnosis of bacterial meningitis. PMID:27401970

  12. Clinical evaluation of a type III secretion system real-time PCR assay for diagnosing melioidosis.

    PubMed

    Meumann, Ella M; Novak, Ryan T; Gal, Daniel; Kaestli, Mirjam E; Mayo, Mark; Hanson, Joshua P; Spencer, Emma; Glass, Mindy B; Gee, Jay E; Wilkins, Patricia P; Currie, Bart J

    2006-08-01

    A Burkholderia pseudomallei type III secretion system real-time PCR assay was evaluated on clinical specimens in a region where melioidosis is endemic. The PCR was positive in 30/33 (91%) patients with culture-confirmed melioidosis. All six patients with melioidosis septic shock were blood PCR positive, suggesting potential for rapid diagnosis and commencement of appropriate therapy.

  13. Evaluation of Roche Amplicor PCR assay for Mycobacterium tuberculosis.

    PubMed Central

    Wobeser, W L; Krajden, M; Conly, J; Simpson, H; Yim, B; D'costa, M; Fuksa, M; Hian-Cheong, C; Patterson, M; Phillips, A; Bannatyne, R; Haddad, A; Brunton, J L; Krajden, S

    1996-01-01

    The Roche Amplicor Mycobacterium tuberculosis PCR test (RMtb-PCR) was compared with mycobacterial culture, with the BACTEC 460 system and inoculation on Lowenstein-Jensen media. Results were interpreted with an adjusted "gold standard" incorporating clinical diagnosis. A total of 1,480 clinical specimens from 1,155 patients, including tissues and fluids, as well as 141 specimens which demonstrated a positive growth index on the BACTEC 460 system were assessed. The sensitivity, specificity, and positive and negative predictive values of RMtb-PCR compared with the adjusted gold standard for clinical specimens were 79, 99, 93, and 98%, respectively. In smear-positive specimens, the sensitivity of RMtb-PCR was 98% versus 53% for smear-negative specimens. When RMtb-PCR was performed two times per week, PCR results were available an average of 21 days before the culture results. For specimens demonstrating a positive growth index on the BACTEC 460 system, RMtb-PCR had a sensitivity and specificity of 98 and 100%, respectively. This study demonstrates the value of a commercial nucleic acid amplification kit for rapid diagnosis of M. tuberculosis, particularly in smear-positive specimens or BACTEC culture-positive specimens. PMID:8748289

  14. Detection of Pathogenic Yersinia enterocolitica by a Rapid and Sensitive Duplex PCR Assay

    PubMed Central

    Wannet, Wim J. B.; Reessink, Michiel; Brunings, Henk A.; Maas, Henny M. E.

    2001-01-01

    A duplex PCR assay targeting the ail and 16S rRNA genes of Yersinia enterocolitica was developed to specifically identify pathogenic Y. enterocolitica from pure culture. Validation of the assay was performed with 215 clinical Yersinia strains and 40 strains of other bacterial species. Within an assay time of 4 h, this assay offers a very specific, reliable, and inexpensive alternative to the conventional phenotypic assays used in clinical laboratories to identify pathogenic Y. enterocolitica. PMID:11724866

  15. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Faye, Oumar; Thaloengsok, Sasikanya; Heidenreich, Doris; Matangkasombut, Ponpan; Manopwisedjaroen, Khajohnpong; Sakuntabhai, Anavaj; Sall, Amadou A.; Hufert, Frank T.; Weidmann, Manfred

    2015-01-01

    Background Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF). Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR) are the standard method for molecular detection of the dengue virus (DENV). Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA) assays were developed to detect DENV1-4. Methodology/Principal Findings Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4) to 241 (DENV1-3) RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal) and in Bangkok (Thailand). In Kedougou, the RT-RPA was operated at an ambient temperature of 38°C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31) and 100% (n=23), respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90) and 100%(n=41), respectively. Conclusions/Significance During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations. PMID:26075598

  16. Development and Evaluation of a Blood Culture PCR Assay for Rapid Detection of Salmonella Paratyphi A in Clinical Samples

    PubMed Central

    Zhou, Liqing; Jones, Claire; Gibani, Malick M.; Dobinson, Hazel; Thomaides-Brears, Helena; Shrestha, Sonu; Blohmke, Christoph J.; Darton, Thomas C.; Pollard, Andrew J.

    2016-01-01

    Background Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day. Methods Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A. Results An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1–6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens. Conclusions The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a

  17. Real-time-PCR assay for diagnosis of Entamoeba histolytica infection.

    PubMed

    Roy, Shantanu; Kabir, Mamun; Mondal, Dinesh; Ali, Ibne Karim M; Petri, William A; Haque, Rashidul

    2005-05-01

    We developed a real-time-PCR assay utilizing a molecular-beacon probe for the detection of Entamoeba histolytica and compared its sensitivity to stool antigen detection and traditional PCR. A total of 205 stool and liver abscess pus specimens from patients and controls were used for this purpose, 101 (49%) of which were positive by the TechLab E. histolytica-specific antigen detection test, while the other 104 (51%) stool and liver abscess pus specimens were negative by the antigen detection test. DNA was extracted from the stool and liver abscess pus specimens by the QIAGEN method and the small-subunit rRNA gene of E. histolytica and then amplified by traditional and real-time PCR. Out of these 205 stool and liver abscess pus specimens, 124 were positive by the real-time-PCR assay and 90 were positive by the traditional-PCR test. Compared to the real-time-PCR assay, the antigen detection test was 79% sensitive and 96% specific. When the traditional-PCR test results were compared to the real-time-PCR assay, the sensitivity of traditional PCR was 72% and the specificity was 99%. In conclusion, all three methods for the detection of E. histolytica were highly specific, with real-time PCR being the most sensitive.

  18. Development of a novel PCR-RFLP assay for improved detection and typing of bovine papillomaviruses.

    PubMed

    Kawauchi, Kyoko; Takahashi, Chiaki; Ishihara, Ryoko; Hatama, Shinichi

    2015-06-15

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay was developed to detect and type bovine papillomaviruses (BPVs) from tumors in cattle. Two degenerate primer sets targeting the BPV L1 gene, subAup/subAdw and subBup/subBdw, and one restriction enzyme RsaI were used in this assay. In silico analyses of the restriction enzyme sites in the PCR fragments of 13 BPV sequences (BPV-1 to -13) revealed that all known BPVs are differentiated by the PCR-RFLP assay. Analyses of 63 previously typed clinical samples, that included teat papillomas and both esophageal and urinary bladder cancer biopsies, show that the assay clearly differentiates between eight clinically important BPV types (BPV-1 to -6, -9, -10), and discriminates between single and multiple infections. To further assess the reliability of the PCR-RFLP method amplified fragments were sequenced. A high correlation (95%) was observed when the results of the PCR-RFLP method were compared with PCR-sequencing. Differences in typing occurred for 3 of 63 specimens; PCR-RFLP identified additional BPV types in these specimens, while the PCR-sequencing identified only one. These results indicate that the PCR-RFLP method reported here is simpler and more reliable in the detection and typing of BPVs from bovine tumor samples than PCR-sequencing.

  19. Development of real-time PCR assays for the detection of Moraxella macacae associated with bloody nose syndrome in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques

    PubMed Central

    Whitehouse, Chris A.; Chase, Kitty; Embers, Monica E.; Kulesh, David A.; Ladner, Jason T.; Palacios, Gustavo F.; Minogue, Timothy D.

    2016-01-01

    Background Moraxella macacae is a recently described bacterial pathogen that causes epistaxis or so-called bloody nose syndrome in captive macaques. The aim of this study was to develop specific molecular diagnostic assays for M. macacae and to determine their performance characteristics. Methods We developed six real-time PCR assays on the Roche LightCycler. The accuracy, precision, selectivity, and limit of detection (LOD) were determined for each assay, in addition to further validation by testing nasal swabs from macaques presenting with epistaxis at the Tulane National Primate Research Center. Results All assays exhibited 100% specificity and were highly sensitive with an LOD of 10 fg for chromosomal assays and 1 fg for the plasmid assay. Testing of nasal swabs from 10 symptomatic macaques confirmed the presence of M. macacae in these animals. Conclusions We developed several accurate, sensitive, and species-specific real-time PCR assays for the detection of M. macacae in captive macaques. PMID:26365904

  20. Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid.

    PubMed

    Papayiannis, Lambros C

    2014-02-01

    Citrus exocortis viroid (CEVd) and Hop stunt viroid (HSVd) are two important viroids known to infect several plant species worldwide. In this study, a real-time reverse transcription (RT) TaqMan polymerase chain reaction (PCR) assay was developed and optimized for the simultaneous detection of CEVd and HSVd. The assay's analytical and diagnostic sensitivity and specificity were evaluated using reference isolates. Two different RNA extraction methods and one rapid crude template preparation procedure were compared in terms of extraction purity and efficiency for PCR applications. Extraction method Q included a commercially available kit, whereas method C was a modified chloroform-phase extraction in house protocol. Procedure S involved blotting the sap extract on a positively charged nylon membrane and elution. The multiplex RT-TaqMan PCR assay successfully discriminated the two viroid species from all reference samples and its recorded diagnostic sensitivity (Dse) and specificity (Dsp) was 100%. On the contrary, in conventional RT-PCR tests, the overall Dse and Dsp were lower and estimated at 94 and 95% for CEVd, and 97 and 98% for HSVd, respectively. In a direct comparison, the developed assay presented 1000-fold more analytical sensitivity. Spectrophotometric results showed that RNA extraction methods Q and C, yielded the purest RNA, and gave the lowest mean Ct values. Alternative template preparation method S resulted in Ct values statistically similar to those obtained with methods Q to C when tested by RT-TaqMan PCR. The developed assay, using crude template preparation S, allows the simple, accurate and cost-effective testing of a large number of plant samples, and can be applied in surveys and certification schemes.

  1. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    PubMed

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  2. A Trio of Human Molecular Genetics PCR Assays

    ERIC Educational Resources Information Center

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  3. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    PubMed

    Xie, Xingmei; Liang, Qiaoyi

    2014-01-01

    Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR). Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY), five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377), one X/Y-common STR (X22), and two autosomal STRs (D13S305 and D21S11). Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  4. Comparison of PCR and Plaque Assay for Detection and Enumeration of Coliphage in Polluted Marine Waters

    PubMed Central

    Rose, J. B.; Zhou, X.; Griffin, D. W.; Paul, J. H.

    1997-01-01

    A total of 68 marine samples from various sites impacted by sewage and storm waters were analyzed by both the plaque assay and a reverse transcriptase (RT) PCR technique for F(sup+)-specific coliphage. The coliphage levels detected by the plaque assay averaged 1.90 x 10(sup4) PFU/100.0 ml. Using a most probable number (MPN) PCR approach, the levels averaged 2.40 x 10(sup6) MPN-PCR units/100.0 ml. Two samples were positive by RT-PCR but negative by plaque assay, and 12 samples were positive by plaque assay but negative by RT-PCR (levels lower than 11.00 PFU/100.0 ml). The host system used for the plaque assay may detect somatic coliphage in addition to the F(sup+)-specific coliphage. When it is used as an indicator of pollution, contamination may be missed with more restrictive systems. The difference in results may be due to the sensitivity, specificity, or inhibition of RT-PCR in marine samples. This study provides information on quantifying PCR results by an MPN method and insights into interpretation of PCR data for detection of viruses in marine environments. PMID:16535737

  5. PCR for Detection of Herpes Simplex Virus in Cerebrospinal Fluid: Alternative Acceptance Criteria for Diagnostic Workup

    PubMed Central

    Alonso, Roberto; de Egea, Viviana; Usubillaga, Rafael; Muñoz, Patricia; Bouza, Emilio

    2013-01-01

    The determination of herpes simplex virus (HSV) infection using a PCR assay is one of the most commonly requested tests for analysis of cerebrospinal fluid (CSF), although only a very low proportion of results are positive. A previously reported study showed that selecting only those CSF samples with >5 leukocytes/mm3 or a protein level of >50 mg/dl was adequate for the diagnostic workup. The aim of the present study was to assess the reliability of alternative acceptance criteria based on elevated CSF white blood cell counts (>10 cells/mm3). We analyzed all requests for HSV PCR received between January 2008 and December 2011. CSF samples were accepted for analysis if they had >10 cells/mm3 or if the sample was from an immunocompromised patient or a child aged <2 years. In order to evaluate our selection criteria, we identified those CSF samples with a leukocyte count of 5 to 10 cells/mm3 or protein levels of >50 mg/dl in order to test them for HSV type 1 and 2 (HSV-1 and HSV-2) DNA. During the study period, 466 CSF samples were submitted to the microbiology laboratory for HSV PCR. Of these, 268 (57.5%) were rejected, and 198 (42.5%) were tested according to our routine criteria. Of the tested samples, 11 (5.5%) were positive for HSV DNA (7 for HSV-1 and 4 for HSV-2). Of the 268 rejected specimens, 74 met the criteria of >5 cells/mm3 and/or protein levels of >50 mg/dl. Of these, 70 (94.6%) were available for analysis. None of the samples yielded a positive HSV PCR result. Acceptance criteria based on CSF leukocyte counts, host immune status, and age can help to streamline the application of HSV PCR without reducing sensitivity. PMID:23804382

  6. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  7. A quantitative TaqMan PCR assay for the detection of Ureaplasma diversum.

    PubMed

    Marques, Lucas M; Amorim, Aline T; Martins, Hellen Braga; Rezende, Izadora Souza; Barbosa, Maysa Santos; Lobão, Tassia Neves; Campos, Guilherme B; Timenetsky, Jorge

    2013-12-27

    Ureaplasma diversum in veterinary studies is an undesirable microbe, which may cause infection in bulls and may result in seminal vesiculitis, balanopostitis, and alterations in spermatozoids, whereas in cows, it may cause placentitis, fetal alveolitis, abortion, and birth of weak calves. U. diversum is released through organic secretions, especially semen, preputial and vaginal mucus, conjunctival secretion, and milk. The aim of the present study was to develop a TaqMan probe, highly sensitive and specific quantitative PCR (qPCR) assay for the detection and quantification of U. diversum from genital swabs of bovines. Primers and probes specific to U. diversum 16S rRNA gene were designed. The specificity, detection limit, intra- and inter-assay variability of qPCR to detect this ureaplasma was compared with the results of the conventional PCR assay (cPCR). Swabs of vaginal mucus from 169 cows were tested. The qPCR assay detected as few as 10 copies of U. diversum and was 100-fold more sensitive than the cPCR. No cross-reactivity with other Mollicutes or eubacteria was observed. U. diversum was detected in 79 swabs (46.42%) by qPCR, while using cPCR it was detected in 42 (25%) samples. The difference in cPCR and qPCR ureaplasma detection between healthy and sick animals was not statistically significant. But the U. diversum load in samples from animals with genital disorders was higher than in healthy animals. The qPCR assay developed herein is highly sensitive and specific for the detection and quantification of U. diversum in vaginal bovine samples.

  8. Evaluation of Signature Erosion in Ebola Virus Due to Genomic Drift and Its Impact on the Performance of Diagnostic Assays

    PubMed Central

    Sozhamannan, Shanmuga; Holland, Mitchell Y.; Hall, Adrienne T.; Negrón, Daniel A.; Ivancich, Mychal; Koehler, Jeffrey W.; Minogue, Timothy D.; Campbell, Catherine E.; Berger, Walter J.; Christopher, George W.; Goodwin, Bruce G.; Smith, Michael A.

    2015-01-01

    Genome sequence analyses of the 2014 Ebola Virus (EBOV) isolates revealed a potential problem with the diagnostic assays currently in use; i.e., drifting genomic profiles of the virus may affect the sensitivity or even produce false-negative results. We evaluated signature erosion in ebolavirus molecular assays using an in silico approach and found frequent potential false-negative and false-positive results. We further empirically evaluated many EBOV assays, under real time PCR conditions using EBOV Kikwit (1995) and Makona (2014) RNA templates. These results revealed differences in performance between assays but were comparable between the old and new EBOV templates. Using a whole genome approach and a novel algorithm, termed BioVelocity, we identified new signatures that are unique to each of EBOV, Sudan virus (SUDV), and Reston virus (RESTV). Interestingly, many of the current assay signatures do not fall within these regions, indicating a potential drawback in the past assay design strategies. The new signatures identified in this study may be evaluated with real-time reverse transcription PCR (rRT-PCR) assay development and validation. In addition, we discuss regulatory implications and timely availability to impact a rapidly evolving outbreak using existing but perhaps less than optimal assays versus redesign these assays for addressing genomic changes. PMID:26090727

  9. Differential Detection of Entamoeba histolytica, Entamoeba dispar, and Entamoeba moshkovskii by a Single-Round PCR Assay

    PubMed Central

    Hamzah, Zulhainan; Petmitr, Songsak; Mungthin, Mathirut; Leelayoova, Saovanee; Chavalitshewinkoon-Petmitr, Porntip

    2006-01-01

    A single-round PCR assay was developed for detection and differential diagnosis of the three Entamoeba species found in humans, Entamoeba moshkovskii, Entamoeba histolytica, and Entamoeba dispar, that are morphologically identical as both cysts and trophozoites. A conserved forward primer was derived from the middle of the small-subunit rRNA gene, and reverse primers were designed from signature sequences specific to each of these three Entamoeba species. PCR generates a 166-bp product with E. histolytica DNA, a 752-bp product with E. dispar DNA, and a 580-bp product with E. moshkovskii DNA. Thirty clinical specimens were examined, and the species present were successfully detected and differentiated using this assay. It was possible to detect as little as 10 pg of E. moshkovskii and E. histolytica DNA, while for E. dispar the sensitivity was about 20 pg of DNA. Testing with DNA from different pathogens, including bacteria and other protozoa, confirmed the high specificity of the assay. We propose the use of this PCR assay as an accurate, rapid, and effective diagnostic method for the detection and discrimination of these three morphologically indistinguishable Entamoeba species in both routine diagnosis of amoebiasis and epidemiological surveys. PMID:16954247

  10. Evaluation of Two PCR-Based Swine-Specific Fecal Source Tracking Assays (Poster)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the specificity and distribution of these targets have not been adequately assessed. Consequently, the utility of these assays in identifying swine fecal contamination...

  11. Performance Assessment of Human and Cattle Associated Quantitative Real-time PCR Assays - slides

    EPA Science Inventory

    The presentation overview is (1) Single laboratory performance assessment of human- and cattle associated PCR assays and (2) A Field Study: Evaluation of two human fecal waste management practices in Ohio watershed.

  12. Rapid and Sensitive Detection of Yersinia pestis Using Amplification of Plague Diagnostic Bacteriophages Monitored by Real-Time PCR

    PubMed Central

    Sergueev, Kirill V.; He, Yunxiu; Borschel, Richard H.; Nikolich, Mikeljon P.; Filippov, Andrey A.

    2010-01-01

    Background Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. Methodology/Principal Findings The objective of this work was to develop an alternative to conventional phage lysis tests – a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages ϕA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. ϕA1122-specific qPCR enabled the detection of an initial bacterial concentration of 103 CFU/ml (equivalent to as few as one Y. pestis cell per 1-µl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, ϕA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Conclusions/Significance Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria. PMID:20596528

  13. A One-Step, Real-Time PCR Assay for Rapid Detection of Rhinovirus

    PubMed Central

    Do, Duc H.; Laus, Stella; Leber, Amy; Marcon, Mario J.; Jordan, Jeanne A.; Martin, Judith M.; Wadowsky, Robert M.

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID50 (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform. PMID:19948820

  14. Development of a real-time PCR assay for quantification of Citrobacter rodentium.

    PubMed

    Sagaidak, Sofia; Taibi, Amel; Wen, Bijun; Comelli, Elena M

    2016-07-01

    Molecular tools to quantify Citrobacter rodentium are not available. We developed a quantitative PCR assay targeting the espB gene. This assay is specific, has a linearity range of about 6.7×10(1) to 6.7×10(6)cells/PCR reaction (92% efficiency) and a detection limit of about 10(4)cells/g wet feces.

  15. Development of three triplex real-time reverse transcription PCR assays for the qualitative molecular typing of the nine serotypes of African horse sickness virus.

    PubMed

    Weyer, Camilla T; Joone, Christopher; Lourens, Carina W; Monyai, Mpho S; Koekemoer, Otto; Grewar, John D; van Schalkwyk, Antoinette; Majiwa, Phelix O A; MacLachlan, N James; Guthrie, Alan J

    2015-10-01

    Blood samples collected as part of routine diagnostic investigations from South African horses with clinical signs suggestive of African horse sickness (AHS) were subjected to analysis with an AHS virus (AHSV) group specific reverse transcription quantitative polymerase chain reaction (AHSV RT-qPCR) assay and virus isolation (VI) with subsequent serotyping by plaque inhibition (PI) assays using AHSV serotype-specific antisera. Blood samples that tested positive by AHSV RT-qPCR were then selected for analysis using AHSV type specific RT-qPCR (AHSV TS RT-qPCR) assays. The TS RT-qPCR assays were evaluated using both historic stocks of the South African reference strains of each of the 9 AHSV serotypes, as well as recently derived stocks of these same viruses. Of the 503 horse blood samples tested, 156 were positive by both AHSV RT-qPCR and VI assays, whereas 135 samples that were VI negative were positive by AHSV RT-qPCR assay. The virus isolates made from the various blood samples included all 9 AHSV serotypes, and there was 100% agreement between the results of conventional serotyping of individual virus isolates by PI assay and AHSV TS RT-qPCR typing results. Results of the current study confirm that the AHSV TS RT-qPCR assays for the identification of individual AHSV serotypes are applicable and practicable and therefore are potentially highly useful and appropriate for virus typing in AHS outbreak situations in endemic or sporadic incursion areas, which can be crucial in determining appropriate and timely vaccination and control strategies.

  16. A quadruplex PCR (qxPCR) assay for adulteration in dairy products.

    PubMed

    Agrimonti, Caterina; Pirondini, Andrea; Marmiroli, Marta; Marmiroli, Nelson

    2015-11-15

    This study describes the development of a quadruplex quantitative Real Time PCR (qxPCR) based on SYBR®GreenER chemistry, for rapid identification of DNA of cow, goat, sheep and buffalo in dairy products, and for quantification of cow DNA in these products. The platform was applied to: (i) mixes of milks at fixed percentages; (ii) cheeses prepared with the same mixes; (iii) commercial dairy products. The methodology enabled the detection of DNA from cow in mixes of milk and cheeses with a limit of detection (LOD) of 0.1%. When applied to commercial dairy products the qxPCR gave results comparable with each single-plex Real Time PCR. A good correlation (R(2)>0.9) between peaks' area of derivative of melting curves of amplicons and percentages of cow milk in milk mixes and cheeses, allows for an estimation of cow DNA in a dynamic range varying from 0.1-5% to 1-25%.

  17. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR

    PubMed Central

    Zhang, Qian; Wang, Jing; Deng, Fang; Yan, Zhengjian; Xia, Yinglin; Wang, Zhongliang; Ye, Jixing; Deng, Youlin; Zhang, Zhonglin; Qiao, Min; Li, Ruifang; Denduluri, Sahitya K.; Wei, Qiang; Zhao, Lianggong; Lu, Shun; Wang, Xin; Tang, Shengli; Liu, Hao; Luu, Hue H.; Haydon, Rex C.; He, Tong-Chuan; Jiang, Li

    2015-01-01

    The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited. PMID:26172450

  18. Development and optimization of a PCR assay for detection of Dobrava and Puumala hantaviruses in Bosnia and Herzegovina.

    PubMed

    Smajlović, Lejla; Davoren, Jon; Heyman, Paul; Cochez, Christel; Haas, Cordula; Maake, Caroline; Hukić, Mirsada

    2012-06-01

    Hantavirus-specific serology tests are the main diagnostic technique for detection of hantavirus infection in Bosnia and Herzegovina. In order to enhance hantavirus infections monitoring a sensitive PCR based assay was developed to detect Dobrava (DOBV) and Puumala (PUUV) hantaviruses. Nested primer sets were designed within three different regions of the viral RNA (S and M segment of DOBV and M segment of PUUV) based on highly similar regions from a number of different European hantavirus strains. Assay conditions were optimized using cell cultures infected with DOBV Slovenia, PUUV Sotkamo and PUUV CG 18-20. This sensitive and specific assay has proven to be useful for detection of both Puumala and Dobrava hantaviruses.

  19. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason

    2016-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  20. Concurrent Analysis of Nose and Groin Swab Specimens by the IDI-MRSA PCR Assay Is Comparable to Analysis by Individual-Specimen PCR and Routine Culture Assays for Detection of Colonization by Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Bishop, Emma J.; Grabsch, Elizabeth A.; Ballard, Susan A.; Mayall, Barrie; Xie, Shirley; Martin, Rhea; Grayson, M. Lindsay

    2006-01-01

    The IDI-MRSA assay (Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada) with the Smart Cycler II rapid DNA amplification system (Cepheid, Sunnyvale, CA) appears to be sensitive and specific for the rapid detection of nasal colonization by methicillin-resistant Staphylococcus aureus (MRSA). We assessed the sensitivity and specificity of this assay under conditions in which both the nose and cutaneous groin specimens were analyzed together and compared the accuracy of this PCR approach to that when these specimens were tested separately and by culture assays in an inpatient population with known high rates (12 to 15%) of MRSA colonization. Of 211 patients screened, 192 had results assessable by all three methods (agar-broth culture, separate nose and groin IDI-MRSA assay, and combined nose-groin IDI-MRSA assay), with MRSA carriage noted in 31/192 (16.1%), 41/192 (21.4%), and 36/192 (18.8%) patients by each method, respectively. Compared to agar culture results, the sensitivity and specificity of the combined nose-groin IDI-MRSA assay were 88.0% and 91.6%, respectively, whereas when each specimen was processed separately, the sensitivities were 90.0% (nose) and 83.3% (groin) and the specificities were 91.7% (nose) and 90.2% (groin). IDI-MRSA assay of a combined nose-groin specimen appears to have an accuracy similar to that of the current recommended PCR protocol, providing results in a clinically useful time frame, and may represent a more cost-effective approach to using this assay for screening for MRSA colonization. PMID:16891510

  1. Concurrent analysis of nose and groin swab specimens by the IDI-MRSA PCR assay is comparable to analysis by individual-specimen PCR and routine culture assays for detection of colonization by methicillin-resistant Staphylococcus aureus.

    PubMed

    Bishop, Emma J; Grabsch, Elizabeth A; Ballard, Susan A; Mayall, Barrie; Xie, Shirley; Martin, Rhea; Grayson, M Lindsay

    2006-08-01

    The IDI-MRSA assay (Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada) with the Smart Cycler II rapid DNA amplification system (Cepheid, Sunnyvale, CA) appears to be sensitive and specific for the rapid detection of nasal colonization by methicillin-resistant Staphylococcus aureus (MRSA). We assessed the sensitivity and specificity of this assay under conditions in which both the nose and cutaneous groin specimens were analyzed together and compared the accuracy of this PCR approach to that when these specimens were tested separately and by culture assays in an inpatient population with known high rates (12 to 15%) of MRSA colonization. Of 211 patients screened, 192 had results assessable by all three methods (agar-broth culture, separate nose and groin IDI-MRSA assay, and combined nose-groin IDI-MRSA assay), with MRSA carriage noted in 31/192 (16.1%), 41/192 (21.4%), and 36/192 (18.8%) patients by each method, respectively. Compared to agar culture results, the sensitivity and specificity of the combined nose-groin IDI-MRSA assay were 88.0% and 91.6%, respectively, whereas when each specimen was processed separately, the sensitivities were 90.0% (nose) and 83.3% (groin) and the specificities were 91.7% (nose) and 90.2% (groin). IDI-MRSA assay of a combined nose-groin specimen appears to have an accuracy similar to that of the current recommended PCR protocol, providing results in a clinically useful time frame, and may represent a more cost-effective approach to using this assay for screening for MRSA colonization.

  2. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan) PCR Assay

    PubMed Central

    Fu, Hua-Ying; Sun, Sheng-Ren; Wang, Jin-Da; Ahmad, Kashif; Wang, Heng-Bo; Chen, Ru-Kai

    2016-01-01

    Ratoon stunting disease (RSD) of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx). A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR) assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR) and a fluorogenic probe (Pat1-QP) targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7%) of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174) were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174) were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields. PMID:27725937

  3. Final Report Nucleic Acid System - Hybrid PCR and Multiplex Assay Project Phase 2

    SciTech Connect

    Koopman, R P; Langlois, R G; Nasarabadi, S; Benett, W J; Colston, B W; Johnson, D C; Brown, S B; Stratton, P L; Milanovich, F P

    2002-04-17

    This report covers phase 2 (year 2) of the Nucleic Acid System--Hybrid PCR and Multiplex Assay project. The objective of the project is to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction) in a multiplex mode using flow cytometry. The Hybrid instrument consists of a flow-through PCR module capable of handling a multiplexed PCR assay, a hybridizing module capable of hybridizing multiplexed PCR amplicons and beads, and a flow cytometer module for bead-based identification, all controlled by a single computer. Multiplex immunoassay using bead-based Luminex flow cytometry is available, allowing rapid screening for many agents. PCR is highly specific and complements and verifies immunoassay. It can also be multiplexed and detection provided using the bead-based Luminex flow cytometer. This approach allows full access to the speed and 100-fold multiplex capability of flow cytometry for rapid screening as well as the accuracy and specificity of PCR. This project has two principal activities: (1) Design, build and test a prototype hybrid PCR/flow cytometer with the basic capabilities for rapid, broad spectrum detection and identification, and (2) Develop and evaluate multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products. This project requires not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This involves development and evaluation of multiplex flow analysis assay protocols and reagents for the simultaneous detection of PCR products.

  4. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  5. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  6. Risk of Misdiagnosis Due to Allele Dropout and False-Positive PCR Artifacts in Molecular Diagnostics: Analysis of 30,769 Genotypes.

    PubMed

    Blais, Jonatan; Lavoie, Sébastien B; Giroux, Sylvie; Bussières, Johanne; Lindsay, Carmen; Dionne, Jacqueline; Laroche, Mélissa; Giguère, Yves; Rousseau, François

    2015-09-01

    Quality control is a complex issue for clinical molecular diagnostic applications. In the case of genotyping assays, artifacts such as allele dropout represent a risk of misdiagnosis for amplification-based methods. However, its frequency of occurrence in PCR-based diagnostic assays remains unknown. To maximize the likelihood of detecting allele dropout, our clinical genotyping PCR-based assays are designed with two independent assays for each allele (nonoverlapping primers on each DNA strand). To estimate the incidence of allelic dropout, we took advantage of the capacity of our clinical assays to detect such events. We retrospectively studied their occurrence in the initial PCR assay for 30,769 patient reports for mutations involved in four diseases produced over 8 years. Ninety-three allele dropout events were detected and all were solved before reporting. In addition, 42 cases of artifacts caused by amplification of an allele ultimately confirmed to not be part of the genotype (drop-in events) were detected and solved. These artifacts affected 1:227 genotypes, 94% of which were due to nonreproducible PCR failures rather than sequence variants interfering with the assay, suggesting that careful primer design cannot prevent most of these errors. This provides a quantitative estimate for clinical laboratories to take this phenomenon into account in quality management and to favor assay designs that can detect (and minimize) occurrence of these artifacts in routine clinical use.

  7. Risk of Misdiagnosis Due to Allele Dropout and False-Positive PCR Artifacts in Molecular Diagnostics: Analysis of 30,769 Genotypes.

    PubMed

    Blais, Jonatan; Lavoie, Sébastien B; Giroux, Sylvie; Bussières, Johanne; Lindsay, Carmen; Dionne, Jacqueline; Laroche, Mélissa; Giguère, Yves; Rousseau, François

    2015-09-01

    Quality control is a complex issue for clinical molecular diagnostic applications. In the case of genotyping assays, artifacts such as allele dropout represent a risk of misdiagnosis for amplification-based methods. However, its frequency of occurrence in PCR-based diagnostic assays remains unknown. To maximize the likelihood of detecting allele dropout, our clinical genotyping PCR-based assays are designed with two independent assays for each allele (nonoverlapping primers on each DNA strand). To estimate the incidence of allelic dropout, we took advantage of the capacity of our clinical assays to detect such events. We retrospectively studied their occurrence in the initial PCR assay for 30,769 patient reports for mutations involved in four diseases produced over 8 years. Ninety-three allele dropout events were detected and all were solved before reporting. In addition, 42 cases of artifacts caused by amplification of an allele ultimately confirmed to not be part of the genotype (drop-in events) were detected and solved. These artifacts affected 1:227 genotypes, 94% of which were due to nonreproducible PCR failures rather than sequence variants interfering with the assay, suggesting that careful primer design cannot prevent most of these errors. This provides a quantitative estimate for clinical laboratories to take this phenomenon into account in quality management and to favor assay designs that can detect (and minimize) occurrence of these artifacts in routine clinical use. PMID:26146130

  8. Detection of Thielaviopsis basicola in soil with real-time quantitative PCR assays.

    PubMed

    Huang, Junli; Kang, Zhenhui

    2010-07-20

    Thielaviopsis basicola is a soil-borne fungus with a wide host range and a cosmopolitan distribution. It causes disease on many agricultural crops and in China it is the causal agent of black root rot on tobacco plant. Early diagnosis and detection of the pathogen in soil are critical to control this disease in field. The objective of this study was to develop sensitive and effective methods suitable for large-scale detection and quantification of T. basicola. Based on the nucleotide sequences of the internal transcribed spacer (ITS) regions of rDNA genes of Thielaviopsis spp, primers and TaqMan probe were designed specifically to amplify DNA from T. basicola and real-time, quantitative PCR (qPCR) assays were developed for rapid, specific and sensitive detection and quantification of T. basicola. It was sensitive with the detection limit of 100 fg microl(-1) genomic DNA of T. basicola in qPCR assays. By combining the qPCR assays with the efficient protocol to extract DNA from soil, it was possible to achieve real-time detection of T. basicola in soil in 4-5 h and the detection limit of 3 conidia per reaction in qPCR was recorded. The assays were applied to survey soils from tobacco fields in China for the presence of T. basicola and the analyses of naturally infested soil showed the reliability of the qPCR assays.

  9. A novel quantitative PCR assay for the detection of Streptococcus pneumoniae using the competence regulator gene target comX.

    PubMed

    Habets, Marrit N; Cremers, Amelieke J H; Bos, Martine P; Savelkoul, Paul; Eleveld, Marc J; Meis, Jacques F; Hermans, Peter W M; Melchers, Willem J; de Jonge, Marien I; Diavatopoulos, Dimitri A

    2016-02-01

    Streptococcus pneumoniae is responsible for an estimated 1.6 million deaths worldwide every year. While rapid detection and timely treatment with appropriate antibiotics is preferred, this is often difficult due to the amount of time that detection with blood cultures takes. In this study, a novel quantitative PCR assay for the detection of Streptococcus pneumoniae was developed. To identify novel targets, we analysed the pneumococcal genome for unique, repetitive DNA sequences. This approach identified comX, which is conserved and present in duplicate copies in Streptococcus pneumoniae but not in other bacterial species. Comparison with lytA, the current 'gold standard' for detection by quantitative PCR, demonstrated an analytic specificity of 100% for both assays on a panel of 10 pneumococcal and 18 non-pneumococcal isolates, but a reduction of 3.5 quantitation cycle values (± 0.23 sem), resulting in an increased analytical detection rate of comX. We validated our assay on DNA extracted from the serum of 30 bacteraemic patients who were blood culture positive for Streptococcus pneumoniae and 51 serum samples that were culture positive for other bacteria. This resulted in a similar clinical sensitivity between the comX and lytA assays (47%) and in a diagnostic specificity of 98.2 and 100% for the lytA and comX assays, respectively. In conclusion, we have developed a novel quantitative PCR assay with increased analytical sensitivity for the detection of Streptococcus pneumoniae, which may be used to develop a rapid bedside test for the direct detection of Streptococcus pneumoniae in clinical specimens.

  10. Authentication of beef, carabeef, chevon, mutton and pork by a PCR-RFLP assay of mitochondrial cytb gene.

    PubMed

    Kumar, Deepak; Singh, S P; Karabasanavar, Nagappa S; Singh, Rashmi; Umapathi, V

    2014-11-01

    Authentication of meat assumes significance in view of religious, quality assurance, food safety, public health, conservation and legal concerns. Here, we describe a PCR-RFLP (Polymerase Chain Reaction- Restriction Fragment Length Polymorphism) assay targeting mitochondrial cytochrome-b gene for the identification of meats of five most common food animals namely cattle, buffalo, goat, sheep and pig. A pair of forward and reverse primers (VPH-F & VPH-R) amplifying a conserved region (168-776 bp) of mitochondrial cytochrome-b (cytb) gene for targeted species was designed which yielded a 609 bp PCR amplicon. Further, restriction enzyme digestion of the amplicons with Alu1 and Taq1 restriction enzymes resulted in a distinctive digestion pattern that was able to discriminate each species. The repeatability of the PCR-RFLP assay was validated ten times with consistent results observed. The developed assay can be used in routine diagnostic laboratories to differentiate the meats of closely related domestic livestock species namely cattle from buffalo and sheep from goat. PMID:26396346

  11. Development and evaluation of a new PCR assay for detection of Pseudomonas aeruginosa D genotype.

    PubMed

    Lødeng, A G G; Ahlén, C; Lysvand, H; Mandal, L H; Iversen, O J

    2006-08-01

    This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype. PMID:16842571

  12. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-01

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies.

  13. Viability-qPCR for detecting Legionella: Comparison of two assays based on different amplicon lengths.

    PubMed

    Ditommaso, Savina; Giacomuzzi, Monica; Ricciardi, Elisa; Zotti, Carla M

    2015-08-01

    Two different real-time quantitative PCR (PMA-qPCR) assays were applied for quantification of Legionella spp. by targeting a long amplicon (approx 400 bp) of 16S rRNA gene and a short amplicon (approx. 100 bp) of 5S rRNA gene. Purified DNA extracts from pure cultures of Legionella spp. and from environmental water samples were quantified. Application of the two assays to quantify Legionella in artificially contaminated water achieved that both assays were able to detect Legionella over a linear range of 10 to 10(5) cells ml(-1). A statistical analysis of the standard curves showed that both assays were linear with a good correlation coefficient (R(2) = 0.99) between the Ct and the copy number. Amplification with the reference assay was the most effective for detecting low copy numbers (1 bacterium per PCR mixture). Using selective quantification of viable Legionella by the PMA-qPCR method we obtained a greater inhibition of the amplification of the 400-bp 16S gene fragment (Δlog(10) = 3.74 ± 0.39 log(10) GU ml(-1)). A complete inhibition of the PCR signal was obtained when heat-killed cells in a concentration below 1 × 10(5) cells ml(-1) were pretreated with PMA. Analysing short amplicon sizes led to only 2.08 log reductions in the Legionella dead-cell signal. When we tested environmental water samples, the two qPCR assays were in good agreement according to the kappa index (0.741). Applying qPCR combined with PMA treatment, we also obtained a good agreement (kappa index 0.615). The comparison of quantitative results shows that both assays yielded the same quantification sensitivity (mean log = 4.59 vs mean log = 4.31).

  14. Development and Evaluation of an Enterovirus D68 Real-Time Reverse Transcriptase PCR Assay

    PubMed Central

    Wylie, Todd N.; Wylie, Kristine M.; Buller, Richard S.; Cannella, Maria

    2015-01-01

    We have developed and evaluated a real-time reverse transcriptase PCR (RT-PCR) assay for the detection of human enterovirus D68 (EV-D68) in clinical specimens. This assay was developed in response to the unprecedented 2014 nationwide EV-D68 outbreak in the United States associated with severe respiratory illness. As part of our evaluation of the outbreak, we sequenced and published the genome sequence of the EV-D68 virus circulating in St. Louis, MO. This sequence, along with other GenBank sequences from past EV-D68 occurrences, was used to computationally select a region of EV-D68 appropriate for targeting in a strain-specific RT-PCR assay. The RT-PCR assay amplifies a segment of the VP1 gene, with an analytic limit of detection of 4 copies per reaction, and it was more sensitive than commercially available assays that detect enteroviruses and rhinoviruses without distinguishing between the two, including three multiplex respiratory panels approved for clinical use by the FDA. The assay did not detect any other enteroviruses or rhinoviruses tested and did detect divergent strains of EV-D68, including the first EV-D68 strain (Fermon) identified in California in 1962. This assay should be useful for identifying and studying current and future outbreaks of EV-D68 viruses. PMID:26063859

  15. Development of real-time PCR assays for detection of megalocytiviruses in imported ornamental fish.

    PubMed

    Gias, E; Johnston, C; Keeling, S; Spence, R P; McDonald, W L

    2011-08-01

    Megalocytiviruses have been associated globally with severe systemic disease and economic loss in farmed food fish and ornamental fish. The viruses have been spread internationally by translocation of live fish. In New Zealand, megalocytiviruses are regarded as exotic. A potential pathway for introduction has been identified, namely imported ornamental fish. In the present study, real-time PCR assays were developed for detection of megalocytiviruses using a conserved major capsid protein gene. A SYBR green assay was developed to target all known megalocytiviruses. A second real-time PCR assay using a molecular beacon was developed to specifically target gourami, Trichogaster trichopterus, iridovirus, a species of iridovirus previously linked to ornamental fish imports in Australia. The analytical sensitivity for the SYBR green and molecular beacon assays were 10 and 100 fg, respectively. The analytical specificity of the real-time PCR assays determined using genomic DNA templates from three target viruses, 12 non-target viruses and 25 aquatic bacterial species were 100%. The intra-run and inter-run coefficients of variation of both assays were <5%. The real-time PCR assays developed in this study provide rapid, sensitive, and specific detection of megalocytiviruses and gourami iridovirus.

  16. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  17. A highly sensitive telomerase activity assay that eliminates false-negative results caused by PCR inhibitors.

    PubMed

    Yaku, Hidenobu; Murashima, Takashi; Miyoshi, Daisuke; Sugimoto, Naoki

    2013-01-01

    An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR) on magnetic beads (MBs) and subsequent application of cycling probe technology (CPT) is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGG)n-3') of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF) cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity. PMID:24071983

  18. Comparison of a multiplex reverse transcription-PCR-enzyme hybridization assay with conventional viral culture and immunofluorescence techniques for the detection of seven viral respiratory pathogens.

    PubMed

    Liolios, L; Jenney, A; Spelman, D; Kotsimbos, T; Catton, M; Wesselingh, S

    2001-08-01

    A multiplex reverse transcription-PCR-enzyme hybridization assay (RT-PCR-EHA; Hexaplex; Prodesse Inc., Waukesha, Wis.) was used for the simultaneous detection of human parainfluenza virus types 1, 2, and 3, influenza virus types A and B, and respiratory syncytial virus types A and B. One hundred forty-three respiratory specimens from 126 patients were analyzed by RT-PCR-EHA, and the results were compared to those obtained by conventional viral culture and immunofluorescence (IF) methods. RT-PCR-EHA proved to be positive for 17 of 143 (11.9%) specimens, whereas 8 of 143 (5.6%) samples were positive by viral culture and/or IF. Eight samples were positive by both RT-PCR-EHA and conventional methods, while nine samples were RT-PCR-EHA positive and viral culture and IF negative. Eight of the nine samples with discordant results were then independently tested by a different multiplex RT-PCR assay for influenza virus types A and B, and all eight proved to be positive. In comparison to viral culture and IF methods, RT-PCR-EHA gave a sensitivity and a specificity of 100 and 93%, respectively. Since RT-PCR-EHA was able to detect more positive samples, which would otherwise have been missed by routine methods, we suggest that this multiplex RT-PCR-EHA provides a highly sensitive and specific means of diagnostic detection of major respiratory viruses.

  19. GenomEra MRSA/SA, a fully automated homogeneous PCR assay for rapid detection of Staphylococcus aureus and the marker of methicillin resistance in various sample matrixes.

    PubMed

    Hirvonen, Jari J; Kaukoranta, Suvi-Sirkku

    2013-09-01

    The GenomEra MRSA/SA assay (Abacus Diagnostica, Turku, Finland) is the first commercial homogeneous PCR assay using thermally stable, intrinsically fluorescent time-resolved fluorometric (TRF) labels resistant to autofluorescence and other background effects. This fully automated closed tube PCR assay simultaneously detects Staphylococcus aureus specific DNA and the mecA gene within 50 min. It can be used for both screening and confirmation of methicillin-resistant and -sensitive S. aureus (MRSA and MSSA) directly in different specimen types or from preceding cultures. The assay has shown excellent performance in comparisons with other diagnostic methods in all the sample types tested. The GenomEra MRSA/SA assay provides rapid assistance for the detection of MRSA as well as invasive staphylococcal infections and helps the early targeting of antimicrobial therapy to patients with potential MRSA infection.

  20. PCR assay confirms diagnosis in syndrome with variably expressed phenotype: mutation detection in Stickler syndrome.

    PubMed Central

    Ahmad, N N; McDonald-McGinn, D M; Dixon, P; Zackai, E H; Tasman, W S

    1996-01-01

    Stickler syndrome is an autosomal dominant disease with ocular (severe myopia, vitreal degeneration, and retinal detachment) and other systemic manifestations (hearing loss, cleft palate, epiphyseal dysplasia, and premature osteoarthritis). As with other dominantly inherited conditions, the clinical phenotype of Stickler syndrome varies considerably. To date, all mutations have been located in the type II procollagen (COL2A1) gene. Analysis of a C-->T mutation we had identified previously, in COL2A1 gene in exon 40, in a three generation pedigree showed the loss of a cleavage site for the TaqI restriction enzyme. We designed a rapid PCR based restriction enzyme assay to detect this mutation and used it to establish the diagnosis in a neonate from the same pedigree, presenting with the first occurrence of the Pierre-Robin sequence in the family and minimal ocular findings. These results underline the potential diagnostic value of many as yet undetected DNA mutations in families affected with Stickler syndrome, since the variability of the phenotype can impede accurate diagnosis, appropriate genetic counselling, and effective intervention and prophylactic treatment for affected people. Images PMID:8863161

  1. An improved validated SYBR green-based real-time quantitative PCR assay for the detection of the Penaeus stylirostris densovirus in penaeid shrimp.

    PubMed

    Encinas-García, Trinidad; Mendoza-Cano, Fernando; Enríquez-Espinoza, Tania; Luken-Vega, Leonardo; Vichido-Chávez, Rodrigo; Sánchez-Paz, Arturo

    2015-02-01

    The Penaeus stylirostris densovirus (PstDV) (also known as infectious hypodermal and hematopoietic necrosis virus, IHHNV), one of the major shrimp pathogens, has a worldwide distribution in farmed and wild shrimp populations. Outbreaks of IHHNV have been associated with substantial economic losses which are accompanied by a negative social impact. Current diagnostic PCR tests may result in false-positive results as several parts of PstDV genome may be endogenized in the nuclear genome of the shrimp P. stylirostris. A one-step qPCR SYBR-Green based quantitative real-time polymerase chain reaction (qPCR) assay to detect different isolates of the IHHNV in shrimp samples was developed. The detection limit of the assay was 81 viral copies of targeted DNA per reaction. The specificity of the assay was evaluated by melting curve analysis, which showed that the IHHNV product generated a single melt peak at 81.4±0.044°C. The assay was more sensitive than conventional PCR. The standardized PCR was shown to be highly sensible, specific, robust, and reproducible, which makes it an economical and powerful tool for both diagnostic applications and general research of IHHNV.

  2. Development of one-step real-time reverse transcriptase-PCR-based assays for the rapid and simultaneous detection of four viruses causing porcine diarrhea.

    PubMed

    Masuda, Tsuneyuki; Tsuchiaka, Shinobu; Ashiba, Tomoko; Yamasato, Hiroshi; Fukunari, Kazuhiro; Omatsu, Tsutomu; Furuya, Tetsuya; Shirai, Junsuke; Mizutani, Tetsuya; Nagai, Makoto

    2016-02-01

    Porcine diarrhea caused by viruses is a major problem of the pig farming industry and can result in substantial losses of revenue. Thus, diagnosing the infectious agents is important to prevent and control diseases in pigs. We developed novel one-step real-time quantitative RT-PCR (qPCR) assays that can detect four porcine diarrheal viruses simultaneously: porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine deltacoronavirus (PDCoV), and porcine group A rotavirus (PRVA). The qPCR analysis takes only 75 minutes to detect the presence of the four viruses. The limits of detection of our new assays for PEDV, TGEV, PDCoV, and PRVA were 100, 10, 10 and 10 copies per reaction, respectively. The sensitivity of qPCR was 1-1000 times higher than that of published gel-based RT-PCR. We used our qPCR method to successfully diagnose clinical samples from infected pigs, and no false positive results were obtained. In conclusion, qPCR can drastically reduce the diagnostic time to detect viruses compared to currently employed methods. We predict that the qPCR assays will become a useful tool for detecting viral infections that cause diarrhea and other complications in pigs. PMID:27348884

  3. Comparative Evaluation of the Diagnostic Performance of the Prototype Cepheid GeneXpert Ebola Assay.

    PubMed

    Jansen van Vuren, Petrus; Grobbelaar, Antoinette; Storm, Nadia; Conteh, Ousman; Konneh, Kelfala; Kamara, Abdul; Sanne, Ian; Paweska, Janusz T

    2016-02-01

    The Ebola virus disease (EVD) outbreak in West Africa has highlighted an urgent need for point-of-care (POC) assays for the diagnosis of this devastating disease in resource-limited African countries. The diagnostic performance characteristics of a prototype Cepheid GeneXpert Ebola POC used to detect Ebola virus (EBOV) in stored serum and plasma samples collected from suspected EVD cases in Sierra Leone in 2014 and 2015 was evaluated. The GeneXpert Ebola POC is a self-contained single-cartridge automated system that targets the glycoprotein (GP) and nucleoprotein (NP) genes of EBOV and yields results within 90 min. Results from 281 patient samples were compared to the results of a TaqMan real-time reverse transcription-PCR (RT-PCR) targeting the polymerase gene and performed on two real-time PCR machines. Agreement between the three platforms was 100% at cycle threshold (CT) values of ≤34.99, but discordant results were noted between CT values of 35 and 45.The diagnostic sensitivity of the three platforms was 100% in 91 patient samples that were confirmed to be infectious by virus isolation. All three molecular platforms detected viral EBOV RNA in additional samples that did not contain viable EBOV. The analytical sensitivity of the GeneXpert Ebola POC for the detection of NP was higher, and comparable to that of polymerase gene detection, than that for the detection of GP when using a titrated laboratory stock of EBOV. There was no detectable cross-reactivity with other hemorrhagic fever viruses or arboviruses. The GeneXpert Ebola POC offers an easy to operate and sensitive diagnostic tool that can be used for the rapid screening of suspected EVD cases in treatment or in holding centers during EVD outbreaks.

  4. Performance of Simplexa dengue molecular assay compared to conventional and SYBR green RT-PCR for detection of dengue infection in Indonesia.

    PubMed

    Sasmono, R Tedjo; Aryati, Aryati; Wardhani, Puspa; Yohan, Benediktus; Trimarsanto, Hidayat; Fahri, Sukmal; Setianingsih, Tri Y; Meutiawati, Febrina

    2014-01-01

    Diagnostic tests based on detection of dengue virus (DENV) genome are available with varying sensitivities and specificities. The Simplexa Dengue assay (Focus Diagnostics) is a newly developed real-time RT-PCR method designed to detect and serotype DENV simultaneously. To assess the performance of the Simplexa Dengue assay, we performed comparison with conventional RT-PCR and SYBR Green real-time RT-PCR on patients sera isolated from eight cities across Indonesia, a dengue endemic country. A total of 184 sera that were confirmed using NS1 and/or IgM and IgG ELISA were examined. Using conventional and SYBR Green real-time RT-PCR, we detected DENV in 53 (28.8%) and 81 (44.0%) out of 184 sera, respectively. When the Simplexa Dengue assay was employed, the detection rate was increased to 76.6% (141 out of 184 samples). When tested in 40 sera that were confirmed by virus isolation as the gold standard, the conventional RT-PCR yielded 95% sensitivity while the sensitivity of SYBR Green real-time RT-PCR and Simplexa Dengue assay reached 97.5% and 100%, respectively. The specificities of all methods were 100% when tested in 43 non-dengue illness and 20 healthy human samples. Altogether, our data showed the higher detection rate of Simplexa Dengue compared to conventional and SYBR Green real-time RT-PCR in field/surveillance setting. In conclusion, Simplexa Dengue offers rapid and accurate detection and typing of dengue infection and is suitable for both routine diagnostic and surveillance.

  5. Evaluation of a Genus- and Group-Specific Rapid PCR Assay Panel on Synovial Fluid for Diagnosis of Prosthetic Knee Infection

    PubMed Central

    Melendez, Dante P.; Greenwood-Quaintance, Kerryl E.; Berbari, Elie F.; Osmon, Douglas R.; Mandrekar, Jayawant N.; Hanssen, Arlen D.

    2015-01-01

    We evaluated a genus- and group-specific PCR assay panel using 284 prosthetic knee synovial fluid samples collected from patients presenting to our institution with implant failure. Using the Musculoskeletal Infection Society diagnostic criteria, 88 and 196 samples were classified as showing prosthetic joint infection (PJI) and aseptic failure (AF), respectively. Sensitivities of the synovial fluid PCR panel and culture were 55.6% and 76.1% (P ≤ 0.001), respectively, and specificities were 91.8% and 97.4% (P = 0.016), respectively. Among the 70 subjects who had received antibiotics within the month preceding synovial fluid aspiration (48 of whom had PJI), PCR panel and synovial fluid culture sensitivities were 64.5% and 85.4%, respectively (P < 0.0001). In this group, the PCR panel detected Staphylococcus aureus in two culture-negative PJI cases. Overall, the evaluated molecular diagnostic tool had low sensitivity when applied to synovial fluid. PMID:26537446

  6. Performance of PCR-based and Bioluminescent assays for mycoplasma detection.

    PubMed

    Falagan-Lotsch, Priscila; Lopes, Talíria Silva; Ferreira, Nívea; Balthazar, Nathália; Monteiro, Antônio M; Borojevic, Radovan; Granjeiro, José Mauro

    2015-11-01

    Contaminated eukaryotic cell cultures are frequently responsible for unreliable results. Regulatory entities request that cell cultures must be mycoplasma-free. Mycoplasma contamination remains a significant problem for cell cultures and may have an impact on biological analysis since they affect many cell parameters. The gold standard microbiological assay for mycoplasma detection involves laborious and time-consuming protocols. PCR-based and Bioluminescent assays have been considered for routine cell culture screening in research laboratories since they are fast, easy and sensitive. Thus, the aim of this work is to compare the performance of two popular commercial assays, PCR-based and Bioluminescent assays, by assessing the level of mycoplasma contamination in cell cultures from Rio de Janeiro Cell Bank (RJCB) and also from customers' laboratories. The results obtained by both performed assays were confirmed by scanning electron microscopy. In addition, we evaluated the limit of detection of the PCR kit under our laboratory conditions and the storage effects on mycoplasma detection in frozen cell culture supernatants. The performance of both assays for mycoplasma detection was not significantly different and they showed very good agreement. The Bioluminescent assay for mycoplasma detection was slightly more dependable than PCR-based due to the lack of inconclusive results produced by the first technique, especially considering the ability to detect mycoplasma contamination in frozen cell culture supernatants. However, cell lines should be precultured for four days or more without antibiotics to obtain safe results. On the other hand, a false negative result was obtained by using this biochemical approach. The implementation of fast and reliable mycoplasma testing methods is an important technical and regulatory issue and PCR-based and Bioluminescent assays may be good candidates. However, validation studies are needed. PMID:26296900

  7. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis.

    PubMed

    García, Alfredo; Martínez, Remigio; Benitez-Medina, José Manuel; Risco, David; Garcia, Waldo Luis; Rey, Joaquín; Alonso, Juan Manuel; Hermoso de Mendoza, Javier

    2013-01-01

    Methods such as real time (RT)-PCR have not been developed for the rapid detection and diagnosis of Dermatophilus (D.) congolensis infection. In the present study, a D. congolensis-specific SYBR Green RT-PCR assay was evaluated. The detection limit of the RT-PCR assay was 1 pg of DNA per PCR reaction. No cross-reaction with nucleic acids extracted from Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, or Austwickia chelonae was observed. Finally, the RT-PCR assay was used to evaluate clinical samples collected from naturally infected animals with D. congolensis. The results showed that this assay is a fast and reliable method for diagnosing dermatophilosis.

  8. Comparison of two in-house real-time PCR assays with MTB Q-PCR Alert and GenoType MTBDRplus for the rapid detection of mycobacteria in clinical specimens.

    PubMed

    Seagar, Amie-Louise; Neish, Barry; Laurenson, Ian F

    2012-10-01

    An in-house IS6110 real-time PCR (IH IS6110), MTB Q-PCR Alert (Q-PCR) and GenoType MTBDRplus (MTBDR; Hain Lifescience) were compared for the direct detection of Mycobacterium tuberculosis complex (MTBC) in 87 specimens following automated NucliSENS easyMAG DNA extraction. This included 82 first smear-positive specimens and three smear-negative specimens. Another in-house real-time PCR with a Mycobacterium genus-specific probe for the internal transcribed spacer (ITS) region (IH ITS) was used to allow a full comparison with culture results. The sensitivities of IH IS6110, Q-PCR, MTBDR and IH ITS for MTBC detection were 100, 92, 87 and 87 %, respectively, compared with culture. Both IS6110-based real-time PCRs (in-house and Q-PCR) were similar in performance, with 91.2 % concordant results for MTBC detection. Inhibition rates were low, with zero to three specimens producing uninterpretable results. However, the Q-PCR failed to detect MTBC in five samples that were smear negative or had few acid-fast bacilli (one to 10 bacilli in 10 microscopic fields) detected by IH IS6110. IH ITS was the least sensitive assay but may be useful when used in conjunction with IS6110 PCR results to determine the presence of non-tuberculous mycobacteria in smear-negative specimens. None of the real-time PCR assays tested provided drug-resistance data. It was concluded that an IH IS6110 assay could easily be incorporated into the workflow of a diagnostic laboratory for rapid and accurate identification of MTBC from clinical specimens. The inclusion of an internal control and amplification of an ITS target enhance the diagnostic utility of the test.

  9. DNA Sequence Signatures for Rapid Detection of Six Target Bacterial Pathogens Using PCR Assays

    PubMed Central

    Nagamine, Kenjiro; Hung, Guo-Chiuan; Li, Bingjie; Lo, Shyh-Ching

    2015-01-01

    Using Streptococcus pyogenes as a model, we previously established a stepwise computational workflow to effectively identify species-specific DNA signatures that could be used as PCR primer sets to detect target bacteria with high specificity and sensitivity. In this study, we extended the workflow for the rapid development of PCR assays targeting Enterococcus faecalis, Enterococcus faecium, Clostridium perfringens, Clostridium difficile, Clostridium tetani, and Staphylococcus aureus, which are of safety concern for human tissue intended for transplantation. Twenty-one primer sets that had sensitivity of detecting 5–50 fg DNA from target bacteria with high specificity were selected. These selected primer sets can be used in a PCR array for detecting target bacteria with high sensitivity and specificity. The workflow could be widely applicable for the rapid development of PCR-based assays for a wide range of target bacteria, including those of biothreat agents. PMID:26279626

  10. Detection of Haemophilus influenzae and Streptococcus pneumoniae DNA in blood culture by a single PCR assay.

    PubMed Central

    Hassan-King, M; Baldeh, I; Adegbola, R; Omosigho, C; Usen, S O; Oparaugo, A; Greenwood, B M

    1996-01-01

    A multiplex PCR assay was developed to screen blood cultures from children in The Gambia with suspected pneumonia for the simultaneous detection of Haemophilus influenzae type b and Streptococcus pneumoniae isolates. Analysis of 295 blood cultures showed that PCR detected the organisms in all samples positive by culture in two samples infected with H. influenzae type b and four samples infected with S. pneumoniae that were culture negative, indicating that this method is sensitive for detecting these organisms in blood cultures. PMID:8818907

  11. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis

    PubMed Central

    Te, Shu Harn; Chen, Enid Yingru

    2015-01-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques—qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples. PMID:26025892

  12. Comparison of Quantitative PCR and Droplet Digital PCR Multiplex Assays for Two Genera of Bloom-Forming Cyanobacteria, Cylindrospermopsis and Microcystis.

    PubMed

    Te, Shu Harn; Chen, Enid Yingru; Gin, Karina Yew-Hoong

    2015-08-01

    The increasing occurrence of harmful cyanobacterial blooms, often linked to deteriorated water quality and adverse public health effects, has become a worldwide concern in recent decades. The use of molecular techniques such as real-time quantitative PCR (qPCR) has become increasingly popular in the detection and monitoring of harmful cyanobacterial species. Multiplex qPCR assays that quantify several toxigenic cyanobacterial species have been established previously; however, there is no molecular assay that detects several bloom-forming species simultaneously. Microcystis and Cylindrospermopsis are the two most commonly found genera and are known to be able to produce microcystin and cylindrospermopsin hepatotoxins. In this study, we designed primers and probes which enable quantification of these genera based on the RNA polymerase C1 gene for Cylindrospermopsis species and the c-phycocyanin beta subunit-like gene for Microcystis species. Duplex assays were developed for two molecular techniques-qPCR and droplet digital PCR (ddPCR). After optimization, both qPCR and ddPCR assays have high linearity and quantitative correlations for standards. Comparisons of the two techniques showed that qPCR has higher sensitivity, a wider linear dynamic range, and shorter analysis time and that it was more cost-effective, making it a suitable method for initial screening. However, the ddPCR approach has lower variability and was able to handle the PCR inhibition and competitive effects found in duplex assays, thus providing more precise and accurate analysis for bloom samples.

  13. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.

    PubMed

    Osman, Fatima; Hodzic, Emir; Kwon, Sun-Jung; Wang, Jinbo; Vidalakis, Georgios

    2015-08-01

    A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701

  14. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.

    PubMed

    Osman, Fatima; Hodzic, Emir; Kwon, Sun-Jung; Wang, Jinbo; Vidalakis, Georgios

    2015-08-01

    A single real-time multiplex reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay for the simultaneous detection of Citrus tristeza virus (CTV), Citrus psorosis virus (CPsV), and Citrus leaf blotch virus (CLBV) was developed and validated using three different fluorescently labeled minor groove binding qPCR probes. To increase the detection reliability, coat protein (CP) genes from large number of different isolates of CTV, CPsV and CLBV were sequenced and a multiple sequence alignment was generated with corresponding CP sequences from the GenBank and a robust multiplex RT-qPCR assay was designed. The capacity of the multiplex RT-qPCR assay in detecting the viruses was compared to singleplex RT-qPCR designed specifically for each virus and was assessed using multiple virus isolates from diverse geographical regions and citrus species as well as graft-inoculated citrus plants infected with various combination of the three viruses. No significant difference in detection limits was found and specificity was not affected by the inclusion of the three assays in a multiplex RT-qPCR reaction. Comparison of the viral load for each virus using singleplex and multiplex RT-qPCR assays, revealed no significant differences between the two assays in virus detection. No significant difference in Cq values was detected when using one-step and two-step multiplex RT-qPCR detection formats. Optimizing the RNA extraction technique for citrus tissues and testing the quality of the extracted RNA using RT-qPCR targeting the cytochrome oxidase citrus gene as an RNA specific internal control proved to generate better diagnostic assays. Results showed that the developed multiplex RT-qPCR can streamline viruses testing of citrus nursery stock by replacing three separate singleplex assays, thus reducing time and labor while retaining the same sensitivity and specificity. The three targeted RNA viruses are regulated pathogens for California's mandatory "Section 3701

  15. Multiplex PCR Assay Targeting a Diguanylate Cyclase-Encoding Gene, cgcA, To Differentiate Species within the Genus Cronobacter

    PubMed Central

    Carter, L.; Lindsey, L. A.; Grim, C. J.; Sathyamoorthy, V.; Jarvis, K. G.; Gopinath, G.; Lee, C.; Sadowski, J. A.; Trach, L.; Pava-Ripoll, M.; McCardell, B. A.; Tall, B. D.

    2013-01-01

    In a comparison to the widely used Cronobacter rpoB PCR assay, a highly specific multiplexed PCR assay based on cgcA, a diguanylate cyclase gene, that identified all of the targeted six species among 305 Cronobacter isolates was designed. This assay will be a valuable tool for identifying suspected Cronobacter isolates from food-borne investigations. PMID:23144142

  16. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    NASA Astrophysics Data System (ADS)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  17. Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains.

    PubMed

    Liu, Xinsheng; Wang, Qiuhong

    2016-08-01

    Concurrently, several porcine epidemic diarrhea virus (PEDV) variants are circulating in US swine farms, including the original US and the spike insertion-deletion (S-INDEL) strains. In this study, reverse transcription (RT)-PCR assays for the detection and differentiation of different US PEDV variants were developed based on the differences in the S1 domain of the spike (S) gene. This assay successfully differentiated three PEDV strains: PC22A (the original US virulent), Iowa106 (S-INDEL), and PC177 (S-197DEL) that was derived from cell culture adaptation and has a 197 amino acid-deletion in the S1 domain. The assays did not amplify the porcine deltacoronavirus OH-FD22 strain or transmissible gastroenteritis virus Miller strain. It is the first report on the development of RT-PCR assays allowing the detection and differentiation of all major types of US PEDV variants. PMID:27134071

  18. Development and evaluation of real-time PCR assays for bloodmeal identification in Culicoides midges.

    PubMed

    VAN DER Saag, M R; Gu, X; Ward, M P; Kirkland, P D

    2016-06-01

    Culicoides (Diptera: Ceratopogonidae) midges are the biological vectors of a number of arboviruses of veterinary importance. However, knowledge relating to the basic biology of some species, including their host-feeding preferences, is limited. Identification of host-feeding preferences in haematophagous insects can help to elucidate the transmission dynamics of the arboviruses they may transmit. In this study, a series of semi-quantitative real-time polymerase chain reaction (qPCR) assays to identify the vertebrate host sources of bloodmeals of Culicoides midges was developed. Two pan-reactive species group and seven species-specific qPCR assays were developed and evaluated. The assays are quick to perform and less expensive than nucleic acid sequencing of bloodmeals. Using these assays, it was possible to rapidly test nearly 700 blood-fed midges of various species from several geographic locations in Australia. PMID:26854008

  19. Quantitative real-time PCR (qPCR) assay for human-dog-cat species identification and nuclear DNA quantification.

    PubMed

    Kanthaswamy, S; Premasuthan, A; Ng, J; Satkoski, J; Goyal, V

    2012-03-01

    In the United States, human forensic evidence collected from crime scenes is usually comingled with biomaterial of canine and feline origins. Knowledge of the concentration of nuclear DNA extracted from a crime scene biological sample and the species from which the sample originated is essential for DNA profiling. The ability to accurately detect and quantify target DNA in mixed-species samples is crucial when target DNA may be overwhelmed by non-target DNA. We have designed and evaluated a species-specific (human, dog and cat) nuclear DNA identification assay based on the TaqMan(®) quantitative real-time PCR (qPCR) technology that can simultaneously detect and measure minute quantities of DNA specific to either humans, dogs and/or cats. The fluorogenic triplex assay employs primers and hydrolysis probes that target the human TH01 locus as well as the dog and cat Melanocortin 1 Receptor (MC1R) sequences in a species-specific manner. We also demonstrate that the assay is a highly sensitive, reliable and robust method for identifying and quantifying mixed-species templates of human-dog-cat origin with as little as 0.4 pg of human and cat nuclear DNA, respectively, and 4.0 pg of dog nuclear DNA.

  20. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  1. Highly Sensitive PCR Assay for Routine Diagnosis of African Swine Fever Virus in Clinical Samples

    PubMed Central

    Agüero, M.; Fernández, J.; Romero, L.; Sánchez Mascaraque, C.; Arias, M.; Sánchez-Vizcaíno, J. M.

    2003-01-01

    This work provides a novel, highly sensitive, hot start PCR method for rapid and specific detection of African swine fever virus (ASFV) that can be used as a routine diagnostic test for ASFV in surveillance, control, and eradication programs. A confirmatory test of the specificity of this method based on restriction endonuclease analysis was also developed. PMID:12958285

  2. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae)

    PubMed Central

    Li, Dongmei; Fan, Qing-Hai; Waite, David W.; Gunawardana, Disna; George, Sherly; Kumarasinghe, Lalith

    2015-01-01

    Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand’s borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS) 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide. PMID:26147599

  3. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae).

    PubMed

    Li, Dongmei; Fan, Qing-Hai; Waite, David W; Gunawardana, Disna; George, Sherly; Kumarasinghe, Lalith

    2015-01-01

    Spider mites of the genus Tetranychus are difficult to identify due to their limited diagnostic characters. Many of them are morphologically similar and males are needed for species-level identification. Tetranychus urticae is a common interception and non-regulated pest at New Zealand's borders, however, most of the intercepted specimens are females and the identification was left at Tetranychus sp. Consequently, the shipments need to be fumigated. DNA sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) protocols could be used to facilitate the accurate identification. However, in the context of border security practiced in New Zealand, insect identifications are required to be provided within four hours of receiving the samples; thus, those molecular methods are not sufficient to meet this requirement. Therefore, a real-time PCR TaqMan assay was developed for identification of T. urticae by amplification of a 142 bp Internal Transcribed Spacer (ITS) 1 sequence. The developed assay is rapid, detects all life stages of T. urticae within three hours, and does not react with closely related species. Plasmid DNA containing ITS1 sequence of T. uritcae was serially diluted and used as standards in the real-time PCR assay. The quantification cycle (Cq) value of the assay depicted a strong linear relationship with T. urticae DNA content, with a regression coefficient of 0.99 and efficiency of 98%. The detection limit was estimated to be ten copies of the T. urticae target region. The assay was validated against a range of T. urticae specimens from various countries and hosts in a blind panel test. Therefore the application of the assay at New Zealand will reduce the unnecessary fumigation and be beneficial to both the importers and exporters. It is expected that the implementation of this real-time PCR assay would have wide applications in diagnostic and research agencies worldwide.

  4. A PCR assay for gender assignment in dugong (Dugong dugon) and West Indian manatee (Trichechus manatus).

    PubMed

    McHale, M; Broderick, D; Ovenden, J R; Lanyon, J M

    2008-05-01

    Gender assignment for some aquatic mammals in the field is difficult. Molecular sexing from tissue biopsies is possible as males are heterogametic. Here we describe a multiplex PCR assay that amplifies the male specific SRY gene and differentiates ZFX and ZFY gametologues in two sirenian species, dugong (Dugong dugon) and West Indian manatee (Trichechus manatus). The assay was validated with animals of known gender and proved accurate and robust to experimental failure.

  5. A PCR assay for gender assignment in dugong (Dugong dugon) and West Indian manatee (Trichechus manatus).

    PubMed

    McHale, M; Broderick, D; Ovenden, J R; Lanyon, J M

    2008-05-01

    Gender assignment for some aquatic mammals in the field is difficult. Molecular sexing from tissue biopsies is possible as males are heterogametic. Here we describe a multiplex PCR assay that amplifies the male specific SRY gene and differentiates ZFX and ZFY gametologues in two sirenian species, dugong (Dugong dugon) and West Indian manatee (Trichechus manatus). The assay was validated with animals of known gender and proved accurate and robust to experimental failure. PMID:21585866

  6. Detection of Cryptococcus neoformans DNA in Tissue Samples by Nested and Real-Time PCR Assays

    PubMed Central

    Bialek, Ralf; Weiss, Michael; Bekure-Nemariam, Kubrom; Najvar, Laura K.; Alberdi, Maria B.; Graybill, John R.; Reischl, Udo

    2002-01-01

    Two PCR protocols targeting the 18S rRNA gene of Cryptococcus neoformans were established, compared, and evaluated in murine cryptococcal meningitis. One protocol was designed as a nested PCR to be performed in conventional block thermal cyclers. The other protocol was designed as a quantitative single-round PCR adapted to LightCycler technology. One hundred brain homogenates and dilutions originating from 20 ICR mice treated with different azoles were examined. A fungal burden of 3 × 101 to 2.9 × 104 CFU per mg of brain tissue was determined by quantitative culture. Specific PCR products were amplified by the conventional and the LightCycler methods in 86 and 87 samples, respectively, with products identified by DNA sequencing and real-time fluorescence detection. An analytical sensitivity of 1 CFU of C. neoformans per mg of brain tissue and less than 10 CFU per volume used for extraction was observed for both PCR protocols, while homogenates of 70 organs from mice infected with other fungi were PCR negative. Specificity testing was performed with genomic DNA from 31 hymenomycetous fungal species and from the ustilaginomycetous yeast Malassezia furfur, which are phylogenetically related to C. neoformans. Twenty-four strains, including species of human skin flora like M. furfur and Trichosporon spp., were PCR negative. Amplification was observed with Cryptococcus amylolentus, Filobasidiella depauperata, Cryptococcus laurentii, and five species unrelated to clinical specimens. LightCycler PCR products from F. depauperata and Trichosporon faecale could be clearly discriminated by melting curve analysis. The sensitive and specific nested PCR assay as well as the rapid and quantitative LightCycler PCR assay might be useful for the diagnosis and monitoring of human cryptococcal infections. PMID:11874894

  7. Detection of methicillin-resistant Staphylococcus aureus directly from nasal swab specimens by a real-time PCR assay.

    PubMed

    Warren, David K; Liao, Robert S; Merz, Liana R; Eveland, Michael; Dunne, W Michael

    2004-12-01

    Screening for colonization with methicillin-resistant Staphylococcus aureus (MRSA) is a key aspect of infection control to limit the nosocomial spread of this organism. Current methods for the detection of MRSA in clinical microbiology laboratories, including molecularly based techniques, require a culture step and the isolation of pure colonies that result in a minimum of 20 to 24 h until a result is known. We describe a qualitative in vitro diagnostic test for the rapid detection of MRSA directly from nasal swab specimens (IDI-MRSA; Infectio Diagnostic, Inc., Sainte-Foy, Quebec, Canada), based upon a real-time PCR and direct detection of MRSA via amplicon hybridization with a fluorogenic target-specific molecular beacon probe. Samples from 288 patients were analyzed for the presence of MRSA with the IDI-MRSA assay, compared to detection by either direct plating or enrichment broth selective culture methods. The diagnostic values for this MRSA screening method were 91.7% sensitivity, 93.5% specificity, 82.5% positive predictive value, and 97.1% negative predictive value when compared to culture-based methods. The time from the start of processing of specimen to result was approximately 1.5 h. In our hands, the IDI-MRSA assay is a sensitive and specific test for detection of nasal colonization with MRSA and providing for same-day results, allowing more efficient and effective use of infection control resources to control MRSA in health care facilities.

  8. Comparison of a Real-Time Multiplex PCR and Sequetyping Assay for Pneumococcal Serotyping

    PubMed Central

    Robberts, Lourens; Wolter, Nicole; Nicol, Paul; Mafofo, Joseph; Africa, Samantha; Zar, Heather J.; Nicol, Mark P.

    2015-01-01

    Background Pneumococcal serotype identification is essential to monitor pneumococcal vaccine effectiveness and serotype replacement. Serotyping by conventional serological methods are costly, labour-intensive, and require significant technical expertise. We compared two different molecular methods to serotype pneumococci isolated from the nasopharynx of South African infants participating in a birth cohort study, the Drakenstein Child Health Study, in an area with high 13-valent pneumococcal conjugate vaccine (PCV13) coverage. Methods A real-time multiplex PCR (rmPCR) assay detecting 21 different serotypes/-groups and a sequetyping assay, based on the sequence of the wzh gene within the pneumococcal capsular locus, were compared. Forty pneumococcal control isolates, with serotypes determined by the Quellung reaction, were tested. In addition, 135 pneumococcal isolates obtained from the nasopharynx of healthy children were tested by both serotyping assays and confirmed by Quellung testing. Discordant results were further investigated by whole genome sequencing of four isolates. Results Of the 40 control isolates tested, 25 had a serotype covered by the rmPCR assay. These were all correctly serotyped/-grouped. Sequetyping PCR failed in 7/40 (18%) isolates. For the remaining isolates, sequetyping assigned the correct serotype/-group to 29/33 (88%) control isolates. Of the 132/135 (98%) nasopharyngeal pneumococcal isolates that could be typed, 69/132 (52%) and 112/132 (85%) were assigned the correct serotype/-group by rmPCR and sequetyping respectively. The serotypes of 63/132 (48%) isolates were not included in the rmPCR panel. All except three isolates (serotype 25A and 38) were theoretically amplified and differentiated into the correct serotype/-group with some strains giving ambigous results (serotype 13/20, 17F/33C, and 11A/D/1818F). Of the pneumococcal serotypes detected in this study, 69/91 (76%) were not included in the current PCV13. The most frequently

  9. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  10. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  11. Development of a Multiplex Real-Time PCR Assay for the Detection of Treponema pallidum, HCV, HIV-1, and HBV.

    PubMed

    Zhou, Li; Gong, Rui; Lu, Xuan; Zhang, Yi; Tang, Jingfeng

    2015-01-01

    Treponema pallidum, hepatitis C virus (HCV), human immunodeficiency virus (HIV)-1, and hepatitis B virus (HBV) are major causes of sexually transmitted diseases passed through blood contact. The development of a sensitive and efficient method for detection is critical for early diagnosis and for large-scale screening of blood specimens in China. This study aims to establish an assay to detect these pathogens in clinical serum specimens. We established a TaqMan-locked nucleic acid (LNA) real-time polymerase chain reaction (PCR) assay for rapid, sensitive, specific, quantitative, and simultaneous detection and identification. The copy numbers of standards of these 4 pathogens were quantified. Standard curves were generated by determining the mean cycle threshold values versus 10-fold serial dilutions of standards over a range of 10(6) to 10(1) copies/μL, with the lowest detection limit of the assay being 10(1) copies/μL. The assay was applied to 328 clinical specimens and compared with enzyme-linked immunosorbent assay (ELISA) and commercial nucleic acid testing (NAT) methods. The assay identified 39 T. pallidum-, 96 HCV-, 13 HIV-1-, 123 HBV-, 5 HBV/HCV-, 1 T. pallidum/HBV-, 1 HIV-1/HCV-, and 1 HIV-1/T. pallidum-positive specimens. The high sensitivity of the assay confers strong potential for its use as a highly reliable, cost-effective, and useful molecular diagnostic tool for large-scale screening of clinical specimens. This assay will assist in the study of the pathogenesis and epidemiology of sexually transmitted blood diseases. PMID:25866106

  12. Promising Nucleic Acid Lateral Flow Assay Plus PCR for Shiga Toxin-Producing Escherichia coli.

    PubMed

    Terao, Yoshitaka; Takeshita, Kana; Nishiyama, Yasutaka; Morishita, Naoki; Matsumoto, Takashi; Morimatsu, Fumiki

    2015-08-01

    Shiga toxin (Stx)-producing Escherichia coli (STEC) is a frequent cause of foodborne infections, and methods for rapid and reliable detection of STEC are needed. A nucleic acid lateral flow assay (NALFA) plus PCR was evaluated for detecting STEC after enrichment. When cell suspensions of 45 STEC strains, 14 non-STEC strains, and 13 non-E. coli strains were tested with the NALFA plus PCR, all of the STEC strains yielded positive results, and all of the non-STEC and non-E. coli strains yielded negative results. The lower detection limit for the STEC strains ranged from 0.1 to 1 pg of genomic DNA (about 20 to 200 CFU) per test, and the NALFA plus PCR was able to detect Stx1- and Stx2-producing E. coli strains with similar sensitivities. The ability of the NALFA plus PCR to detect STEC in enrichment cultures of radish sprouts, tomato, raw ground beef, and beef liver inoculated with 10-fold serially diluted STEC cultures was comparable to that of a real-time PCR assay (at a level of 100 to 100,000 CFU/ml in enrichment culture). The bacterial inoculation test in raw ground beef revealed that the lower detection limit of the NALFA plus PCR was also comparable to that obtained with a real-time PCR assay that followed the U.S. Department of Agriculture guidelines. Although further evaluation is required, these results suggest that the NALFA plus PCR is a specific and sensitive method for detecting STEC in a food manufacturing plant. PMID:26219371

  13. Real-time PCR assay is superior to other methods for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran.

    PubMed

    Molla Kazemiha, Vahid; Bonakdar, Shahin; Amanzadeh, Amir; Azari, Shahram; Memarnejadian, Arash; Shahbazi, Shirin; Shokrgozar, Mohammad Ali; Mahdian, Reza

    2016-08-01

    Mycoplasmas are the most important contaminants of cell cultures throughout the world. They are considered as a major problem in biological studies and biopharmaceutical economic issues. In this study, our aim was to find the best standard technique as a rapid method with high sensitivity, specificity and accuracy for the detection of mycoplasma contamination in the cell lines of the National Cell Bank of Iran. Thirty cell lines suspected to mycoplasma contamination were evaluated by five different techniques including microbial culture, indirect DNA DAPI staining, enzymatic mycoalert(®) assay, conventional PCR and real-time PCR. Five mycoplasma-contaminated cell lines were assigned as positive controls and five mycoplasma-free cell lines as negative controls. The enzymatic method was performed using the mycoalert(®) mycoplasma detection kit. Real-time PCR technique was conducted by PromoKine diagnostic kits. In the conventional PCR method, mycoplasma genus-specific primers were designed to analyze the sequences based on a fixed and common region on 16S ribosomal RNA with PCR product size of 425 bp. Mycoplasma contamination was observed in 60, 56.66, 53.33, 46.66 and 33.33 % of 30 different cell cultures by real-time PCR, PCR, enzymatic mycoalert(®), indirect DNA DAPI staining and microbial culture methods, respectively. The analysis of the results of the different methods showed that the real-time PCR assay was superior the other methods with the sensitivity, specificity, accuracy, predictive value of positive and negative results of 100 %. These values were 94.44, 100, 96.77, 100 and 92.85 % for the conventional PCR method, respectively. Therefore, this study showed that real-time PCR and PCR assays based on the common sequences in the 16S ribosomal RNA are reliable methods with high sensitivity, specificity and accuracy for detection of mycoplasma contamination in cell cultures and other biological products.

  14. Diagnostic Assays for Polyomavirus JC and Progressive Multifocal Leukoencephalopathy

    PubMed Central

    White, Martyn K.; Sariyer, Ilker K.; Gordon, Jennifer; Delbue, Serena; Pietropaolo, Valeria; Berger, Joseph R.; Khalili, Kamel

    2016-01-01

    SUMMARY Progressive multifocal leukoencephalopathy (PML) is a devastating and often fatal demyelinating disease of the central nervous system (CNS) for which effective therapies are lacking. It is caused by the replication of polyomavirus JC (JCV) in the oligodendrocytes and astrocytes leading to their cytolytic death and loss of myelin from the subcortical white matter. While the virus is very common in human populations worldwide, the incidence of the disease is very low and confined almost exclusively to individuals with some form of immunological dysfunction. However, the number of people who constitute the at-risk population is growing larger and includes individuals with HIV-1/AIDS and patients receiving immunomodulatory therapies such as multiple sclerosis patients treated with natalizumab. Further adding to the public health significance of this disease are the difficulties encountered in the diagnosis of PML and the lack of useful biomarkers for PML progression. In this review, we examine the diagnostic assays that are available for different aspects of the JCV life cycle, their usefulness and drawbacks, and the prospects for improvements. PMID:26663440

  15. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food.

    PubMed

    Kim, Kwang-Pyo; Singh, Atul K; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K

    2015-09-08

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 10⁴ CFU/mL.

  16. Development of rapid canine fecal source identification PCR-based assays.

    PubMed

    Green, Hyatt C; White, Karen M; Kelty, Cathy A; Shanks, Orin C

    2014-10-01

    The extent to which dogs contribute to aquatic fecal contamination is unknown despite the potential for zoonotic transfer of harmful human pathogens. We used genome fragment enrichment (GFE) to identify novel nonribosomal microbial genetic markers potentially useful for detecting dog fecal contamination with PCR-based methods in environmental samples. Of the 679 sequences obtained from GFE, we used 84 for the development of PCR assays targeting putative canine-associated genetic markers. Twelve genetic markers were shown to be prevalent among dog fecal samples and were rarely found in other animals. Three assays, DG3, DG37, and DG72, performed best in terms of specificity and sensitivity and were used for the development of SYBR Green and TaqMan quantitative PCR (qPCR) assays. qPCR analysis of 244 fecal samples collected from a wide geographic range indicated that marker concentrations were below limits of detection in noncanine hosts. As a proof-of-concept, these markers were detected in urban stormwater samples, suggesting a future application of newly developed methods for water quality monitoring.

  17. Novel PCR Assays Complement Laser Biosensor-Based Method and Facilitate Listeria Species Detection from Food

    PubMed Central

    Kim, Kwang-Pyo; Singh, Atul K.; Bai, Xingjian; Leprun, Lena; Bhunia, Arun K.

    2015-01-01

    The goal of this study was to develop the Listeria species-specific PCR assays based on a house-keeping gene (lmo1634) encoding alcohol acetaldehyde dehydrogenase (Aad), previously designated as Listeria adhesion protein (LAP), and compare results with a label-free light scattering sensor, BARDOT (bacterial rapid detection using optical scattering technology). PCR primer sets targeting the lap genes from the species of Listeria sensu stricto were designed and tested with 47 Listeria and 8 non-Listeria strains. The resulting PCR primer sets detected either all species of Listeria sensu stricto or individual L. innocua, L. ivanovii and L. seeligeri, L. welshimeri, and L. marthii without producing any amplified products from other bacteria tested. The PCR assays with Listeria sensu stricto-specific primers also successfully detected all species of Listeria sensu stricto and/or Listeria innocua from mixed culture-inoculated food samples, and each bacterium in food was verified by using the light scattering sensor that generated unique scatter signature for each species of Listeria tested. The PCR assays based on the house-keeping gene aad (lap) can be used for detection of either all species of Listeria sensu stricto or certain individual Listeria species in a mixture from food with a detection limit of about 104 CFU/mL. PMID:26371000

  18. Comparison of PCR assay and bacteriological culture method for the detection of Brucella melitensis in stomach content samples of aborted sheep fetuses.

    PubMed

    Ilhan, Z; Solmaz, H; Aksakal, A; Gülhan, T; Ekin, I H; Boynukara, B

    2007-12-01

    The aim of this study was to evaluate the polymerase chain reaction (PCR) assay for detection of Brucella melitensis in stomach content samples of aborted sheep fetuses and to compare its performance with bacteriological culture method. It was also aimed to determine the agreement between PCR and Rose Bengal plate test (RBPT). Materials were collected from aborted sheep from 109 different sheep flocks in the region of Van during the lambing seasons of 2004-2005 and 2005-2006. Stomach contents from 135 aborted sheep fetuses were examined by bacteriological culture and PCR, and 135 sera from these aborting ewes were tested by RBPT. Identification and typing of Brucella strains were performed using standard classification test. B. melitensis biovar 3 was isolated from 26 (19.2%) of foetal stomach contents. B. melitensis was detected by PCR in 29 (21.4%) stomach content samples. Twenty five sera (18.5%) from aborting ewes tested positive by RBPT. The detection limit of B. melitensis 16 M strain by PCR was 1.7 x 10(3) cfu (colony forming units) /ml in spiked stomach contents. Diagnostic sensitivity and specificity of the PCR were detected as 100% and 97.2%, respectively. The agreement between PCR and RBPT was found to be 97%. In conclusion, PCR assay would have an advantage over conventional bacteriological culture method, but in particular for its ability to meet the specificity requirements for the detection of B. melitensis in stomach content samples of aborted sheep fetuses.

  19. Development and Preliminary Evaluation of a New Real-Time RT-PCR Assay For Detection of Peste des petits Ruminants Virus Genome.

    PubMed

    Polci, A; Cosseddu, G M; Ancora, M; Pinoni, C; El Harrak, M; Sebhatu, T T; Ghebremeskel, E; Sghaier, S; Lelli, R; Monaco, F

    2015-06-01

    A duplex real-time reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed for a simple and rapid diagnosis of Peste des petits ruminants (PPR). qRT-PCR primers and TaqMan probe were designed on a conserved region of nucleocapsid protein (Np) of PPR virus (PPRV) genome. An in vitro transcript of the target region was constructed and tested to determine analytical sensitivity. Commercial heterologous Armored RNA(®) was used as an internal positive control (IPC) for either RNA isolation or RT-PCR steps. The detection limit of the newly designed duplex real-time RT-PCR (qRT-PCR PPR_Np) was approximately 20 copies/μl with a 95% probability. No amplification signals were recorded when the qRT-PCR PPR_Np was applied to viruses closely related or clinically similar to PPRV- or to PPR-negative blood samples. A preliminary evaluation of the diagnostic performance was carried out by testing a group of 43 clinical specimens collected from distinct geographic areas of Africa and Middle East. qRT-PCR PPR_Np showed higher sensitivity than the conventional gel-based RT-PCR assays, which have been used as reference standards. Internal positive control made it possible to identify the occurrence of 5 false-negative results caused by the amplification failure, thus improving the accuracy of PPRV detection.

  20. DETECTION OF PHAKOPSORA PACHYRHIZI SPORES IN RAIN USING REAL-TIME PCR ASSAY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2005, rain samples were collected weekly at selected National Atmospheric Deposition Program (NADP) sites in the eastern and central US and screened for Phakopsora pachyrhizi (Asian soybean rust) spores. A nested real-time PCR assay was used to detect P. pachyrhizi DNA in the filter residue. A su...

  1. Evaluation of Two PCR-based Swine-specific Fecal Source Tracking Assays (Abstract)

    EPA Science Inventory

    Several PCR-based methods have been proposed to identify swine fecal pollution in environmental waters. However, the utility of these assays in identifying swine fecal contamination on a broad geographic scale is largely unknown. In this study, we evaluated the specificity, distr...

  2. Final Report Nucleic Acid System - PCR, Multiplex Assays and Sample Preparation Project

    SciTech Connect

    Koopman, R.P.; Langlois, R.G.; Nasarabadi, S.; Benett, W.J.; Richards, J.B.; Hadley, D.R.; Miles, R.R.; Brown, S.B.; Stratton, P.L.; Milanovich, F.P.

    2001-04-20

    The objective of this project was to reduce to practice the detection and identification of biological warfare pathogens by the nucleic acid recognition technique of PCR (polymerase chain reaction). This entailed not only building operationally functional instrumentation but also developing the chemical assays for detection of priority pathogens. This project had two principal deliverables: (1) design, construct, test and deliver a 24 chamber, multiplex capable suitcase sized PCR instrument, and (2) develop and reduce to practice a multiplex assay for the detection of PCR product by flow cytometry. In addition, significant resources were allocated to test and evaluation of the Hand-held Advanced Nucleic Acid Analyzer (HANAA). This project helps provide the signature and intelligence gathering community the ability to perform, on-site or remote, rapid analysis of environmental or like samples for the presence of a suite of biological warfare pathogens.

  3. Detection of pork adulteration by highly-specific PCR assay of mitochondrial D-loop.

    PubMed

    Karabasanavar, Nagappa S; Singh, S P; Kumar, Deepak; Shebannavar, Sunil N

    2014-02-15

    We describe a highly specific PCR assay for the authentic identification of pork. Accurate detection of tissues derived from pig (Sus scrofa) was accomplished by using newly designed primers targeting porcine mitochondrial displacement (D-loop) region that yielded an unique amplicon of 712 base pairs (bp). Possibility of cross-amplification was precluded by testing as many as 24 animal species (mammals, birds, rodent and fish). Suitability of PCR assay was confirmed in raw (n = 20), cooked (60, 80 and 100 °C), autoclaved (121 °C) and micro-oven processed pork. Sensitivity of detection of pork in other species meat using unique pig-specific PCR was established to be at 0.1%; limit of detection (LOD) of pig DNA was 10 pg (pico grams). The technique can be used for the authentication of raw, processed and adulterated pork and products under the circumstances of food adulteration related disputes or forensic detection of origin of pig species.

  4. Real-time PCR assay using molecular beacon for quantitation of hepatitis B virus DNA.

    PubMed

    Sum, Simon Siu-Man; Wong, Danny Ka-Ho; Yuen, Man-Fung; Yuan, He-Jun; Yu, Jian; Lai, Ching-Lung; Ho, David; Zhang, Linqi

    2004-08-01

    Levels of hepatitis B virus (HBV) DNA in the blood serve as an important marker in monitoring the disease progression and treatment efficacy of chronic HBV infection. Several commercial assays are available for accurate measurement of HBV genomic DNA, but many of them are hampered by relatively low sensitivity and limited dynamic range. The aim of this study was to develop a sensitive and accurate assay for measuring HBV genomic DNA using real-time PCR with a molecular beacon (HBV beacon assay). The performance of this assay was validated by testing serial dilutions of the two EUROHEP HBV DNA standards (ad and ay subtypes) of known concentrations. The assay showed low intra-assay (<7%) and interassay (<5%) variations for both subtypes. Its dynamic range was found to be 10(1) to 10(7) copies per reaction (1.0 x 10(2) to 1.0 x 10(9) copies ml(-1)). The assay was further evaluated clinically using serum samples from 175 individuals with chronic hepatitis B. The HBV DNA level measured by this assay showed good correlation with that measured by the commercially available COBAS AMPLICOR HBV Monitor test (r = 0.901; P < 0.001). The higher sensitivity and broader dynamic range of this assay compared to the existing commercial assays will provide an ideal tool for monitoring disease progression and treatment efficacy in HBV-infected patients, in particular for those with low levels of HBV viremia.

  5. From SOMAmer-Based Biomarker Discovery to Diagnostic and Clinical Applications: A SOMAmer-Based, Streamlined Multiplex Proteomic Assay

    PubMed Central

    Kraemer, Stephan; Vaught, Jonathan D.; Bock, Christopher; Gold, Larry; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Saccomano, Nicholas A.; Wilcox, Sheri K.; Zichi, Dom; Sanders, Glenn M.

    2011-01-01

    Recently, we reported a SOMAmer-based, highly multiplexed assay for the purpose of biomarker identification. To enable seamless transition from highly multiplexed biomarker discovery assays to a format suitable and convenient for diagnostic and life-science applications, we developed a streamlined, plate-based version of the assay. The plate-based version of the assay is robust, sensitive (sub-picomolar), rapid, can be highly multiplexed (upwards of 60 analytes), and fully automated. We demonstrate that quantification by microarray-based hybridization, Luminex bead-based methods, and qPCR are each compatible with our platform, further expanding the breadth of proteomic applications for a wide user community. PMID:22022604

  6. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    NASA Astrophysics Data System (ADS)

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-05-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants.

  7. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay

    PubMed Central

    Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim

    1998-01-01

    This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391

  8. Development of Quantitative Real-time PCR Assays for Different Clades of “Candidatus Accumulibacter”

    PubMed Central

    Zhang, An Ni; Mao, Yanping; Zhang, Tong

    2016-01-01

    We designed novel quantitative real-time polymerase chain reaction (qPCR) primers for the polyphosphate kinase 1 (ppk1) gene, targeting eight individual “Candidatus Accumulibacter” (referred to as Accumulibacter) clades. An evaluation of primer sets was conducted regarding the coverage, specificity, and PCR efficiency. (i) All primer sets were designed to cover all available sequences of the target clade. (ii) The phylogenetic analysis of the sequences retrieved from the qPCR products by each primer set demonstrated a high level of specificity. (iii) All calibration curves presented high PCR efficiencies in the range of 85–112% (R2 = 0.962–0.998). In addition, the possible interference of non-target amplicons was individually examined using the qPCR assay for 13 Accumulibacter clades, which were either undetected or showed negligible detection. With the primers designed by other research groups, a highly selective and sensitive qPCR-based method was developed to quantify all Accumulibacter clades, with the exception of Clade IE, in one assay, which enables more comprehensive insights into the community dynamics. The applicability to environmental samples was demonstrated by profiling the Accumulibacter clades in activated sludge samples of nine full-scale wastewater treatment plants. PMID:27142574

  9. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies

    PubMed Central

    Wong, Samson S. Y.; Poon, Rosana W. S.; Chau, Sandy; Wong, Sally C. Y.; To, Kelvin K. W.; Cheng, Vincent C. C.; Fung, Kitty S. C.

    2015-01-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  10. Development of Conventional and Real-Time Quantitative PCR Assays for Diagnosis and Monitoring of Scabies.

    PubMed

    Wong, Samson S Y; Poon, Rosana W S; Chau, Sandy; Wong, Sally C Y; To, Kelvin K W; Cheng, Vincent C C; Fung, Kitty S C; Yuen, K Y

    2015-07-01

    Scabies remains the most prevalent, endemic, and neglected ectoparasitic infestation globally and can cause institutional outbreaks. The sensitivity of routine microscopy for demonstration of Sarcoptes scabiei mites or eggs in skin scrapings is only about 50%. Except for three studies using conventional or two-tube nested PCR on a small number of cases, no systematic study has been performed to improve the laboratory diagnosis of this important infection. We developed a conventional and a real-time quantitative PCR (qPCR) assay based on the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of S. scabiei. The cox1 gene is relatively well conserved, with its sequence having no high levels of similarity to the sequences of other human skin mites, pathogenic zoonotic mites, or common house dust mite species. This mitochondrial gene is also present in large quantities in arthropod cells, potentially improving the sensitivity of a PCR-based assay. In our study, both assays were specific and were more sensitive than microscopy in diagnosing scabies, with positive and negative predictive values of 100%. The S. scabiei DNA copy number in the microscopy-positive specimens was significantly higher than that in the microscopy-negative specimens (median S. scabiei DNA copy number, 3.604 versus 2.457 log10 copies per reaction; P = 0.0213). In the patient with crusted scabies, the qPCR assay performed on lesional skin swabs instead of scrapings revealed that the parasite DNA load took about 2 weeks to become negative after treatment. The utility of using lesional skin swabs as an alternative sample for diagnosis of scabies by PCR should be further evaluated. PMID:25903566

  11. Amplification refractory mutation system PCR assays for the detection of variola and Orthopoxvirus.

    PubMed

    Pulford, David; Meyer, Hermann; Brightwell, Gale; Damon, Inger; Kline, Richard; Ulaeto, David

    2004-04-01

    PCR assays that can identify the presence of variola virus (VARV) sequences in an unknown DNA sample were developed using principles established for the amplification refractory mutation system (ARMS). The assay's specificity utilised unique single nucleotide polymorphisms (SNP) identified among Orthopoxvirus (OPV) orthologs of the vaccinia virus Copenhagen strain A13L and A36R genes. When a variola virus specific primer was used with a consensus primer in an ARMS assay with different Orthopoxvirus genomes, a PCR product was only amplified from variola virus DNA. Incorporating a second consensus primer into the assay produced a multiplex PCR that provided Orthopoxvirus generic and variola-specific products with variola virus DNA. We tested two single nucleotide polymorphisms with a panel of 43 variola virus strains, collected over 40 years from countries across the world, and have shown that they provide reliable markers for variola virus identification. The variola virus specific primers did not produce amplicons with either assay format when tested with 50 other Orthopoxvirus DNA samples. Our analysis shows that these two polymorphisms were conserved in variola virus genomes and provide a reliable signature of Orthopoxvirus species identification.

  12. Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays

    EPA Science Inventory

    Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay wa...

  13. Strategies to develop strain-specific PCR based assays for probiotics.

    PubMed

    Treven, P

    2015-01-01

    Since health benefits conferred by probiotics are strain-specific, identification to the strain level is mandatory to allow the monitoring of the presence and the abundance of specific probiotic in a product or in a gastrointestinal tract. Compared to standard plate counts, the reduced duration of the assays and higher specificity makes PCR-based methods (standard PCR and quantitative PCR) very appropriate for detection or quantification of probiotics. Development of strain-specific assay consists of 4 main stages: (1) strain-specific marker identification; (2) construction of potential strain-specific primers; (3) validation on DNA from pure cultures of target and related strains; and (4) validation on spiked samples. The most important and also the most challenging step is the identification of strain-specific sequences, which can be subsequently targeted by specific primers or probes. Such regions can be identified on sequences derived from 16S-23S internally transcribed spacers, randomly amplified polymorphic DNA, representational difference analysis and suppression subtractive hybridisation. Already known phenotypic or genotypic characteristics of the target strain can also be used to develop the strain-specific assay. However, the initial stage of strain-specific assay development can be replaced by comparative genomics analysis of target genome with related genomes in public databases. Advances in whole genome sequencing (WGS) have resulted in a cost reduction for bacterial genome sequencing and consequently have made this approach available to most laboratories. In the present paper I reviewed the available literature on PCR and qPCR assays developed for detection of a specific probiotic strain and discussed future WGS and comparative genomics-based approaches.

  14. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    PubMed

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; P<0.001), 100 % (95 % CI, 0.983-1.000; P<0.001), 100 % and 99 %, respectively. However, positivity of the Real-methicillin-resistant Staphylococcusaureus multiplex real-time PCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  15. Direct Comparison of Flow-FISH and qPCR as Diagnostic Tests for Telomere Length Measurement in Humans

    PubMed Central

    Gutierrez-Rodrigues, Fernanda; Santana-Lemos, Bárbara A.; Scheucher, Priscila S.; Alves-Paiva, Raquel M.; Calado, Rodrigo T.

    2014-01-01

    Telomere length measurement is an essential test for the diagnosis of telomeropathies, which are caused by excessive telomere erosion. Commonly used methods are terminal restriction fragment (TRF) analysis by Southern blot, fluorescence in situ hybridization coupled with flow cytometry (flow-FISH), and quantitative PCR (qPCR). Although these methods have been used in the clinic, they have not been comprehensively compared. Here, we directly compared the performance of flow-FISH and qPCR to measure leukocytes' telomere length of healthy individuals and patients evaluated for telomeropathies, using TRF as standard. TRF and flow-FISH showed good agreement and correlation in the analysis of healthy subjects (R2 = 0.60; p<0.0001) and patients (R2 = 0.51; p<0.0001). In contrast, the comparison between TRF and qPCR yielded modest correlation for the analysis of samples of healthy individuals (R2 = 0.35; p<0.0001) and low correlation for patients (R2 = 0.20; p = 0.001); Bland-Altman analysis showed poor agreement between the two methods for both patients and controls. Quantitative PCR and flow-FISH modestly correlated in the analysis of healthy individuals (R2 = 0.33; p<0.0001) and did not correlate in the comparison of patients' samples (R2 = 0.1, p = 0.08). Intra-assay coefficient of variation (CV) was similar for flow-FISH (10.8±7.1%) and qPCR (9.5±7.4%; p = 0.35), but the inter-assay CV was lower for flow-FISH (9.6±7.6% vs. 16±19.5%; p = 0.02). Bland-Altman analysis indicated that flow-FISH was more precise and reproducible than qPCR. Flow-FISH and qPCR were sensitive (both 100%) and specific (93% and 89%, respectively) to distinguish very short telomeres. However, qPCR sensitivity (40%) and specificity (63%) to detect telomeres below the tenth percentile were lower compared to flow-FISH (80% sensitivity and 85% specificity). In the clinical setting, flow-FISH was more accurate, reproducible, sensitive, and specific in the

  16. A diagnostic polymerase chain reaction assay for Zika virus.

    PubMed

    Balm, Michelle N D; Lee, Chun Kiat; Lee, Hong Kai; Chiu, Lily; Koay, Evelyn S C; Tang, Julian W

    2012-09-01

    Zika virus (ZIKV) is a mosquito-borne flavivirus. Infection results in a dengue-like illness with fever, headache, malaise, and a maculopapular rash. Nearly all cases are mild and self-limiting but in 2007, a large outbreak of ZIKV was reported from the island of Yap (in Micronesia, northwest of Indonesia). Singapore is already endemic for dengue, and its impact on public health and economic burden is significant. Other dengue-like infections (e.g., Chikungunya virus) are present. Yet only 10% of reported dengue cases have laboratory confirmation. The identification and control of other dengue-like, mosquito-transmitted infections is thus important for the health of Singapore's population, as well as its economy. Given that ZIKV shares the same Aedes mosquito vector with both dengue and Chikungunya, it is possible that this virus is present in Singapore and causing some of the mild dengue-like illness. A specific and sensitive one-step, reverse transcription polymerase chain reaction (RT-PCR) with an internal control (IC) was designed and tested on 88 archived samples of dengue-negative, Chikungunya-negative sera from patients presenting to our hospital with a dengue-like illness, to determine the presence of ZIKV in Singapore. The assay was specific for detection of ZIKV and displayed a lower limit of detection (LoD) of 140 copies viral RNA/reaction when tested on synthetic RNA standards prepared using pooled negative patient plasma. Of the 88 samples tested, none were positive for ZIKV RNA, however, the vast majority of these were from patients admitted to hospital and further study may be warranted in community-based environments.

  17. Rapid Preclinical Detection of Sheeppox Virus by a Real-Time PCR Assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sheeppox virus (SPPV) is a member of the Capripoxvirus (CaPV) genus of the Poxviridae family. Members of this genus, which also includes goatpox (GTPV) and lumpy skin disease (LSDV) viruses, cause economically significant disease in sheep, goats and cattle. A rapid diagnostic assay for CaPV would ...

  18. Pre-PCR processing in bioterrorism preparedness: improved diagnostic capabilities for laboratory response networks.

    PubMed

    Hedman, Johannes; Knutsson, Rickard; Ansell, Ricky; Rådström, Peter; Rasmusson, Birgitta

    2013-09-01

    Diagnostic DNA analysis using polymerase chain reaction (PCR) has become a valuable tool for rapid detection of biothreat agents. However, analysis is often challenging because of the limited size, quality, and purity of the biological target. Pre-PCR processing is an integrated concept in which the issues of analytical limit of detection and simplicity for automation are addressed in all steps leading up to PCR amplification--that is, sampling, sample treatment, and the chemical composition of PCR. The sampling method should maximize target uptake and minimize uptake of extraneous substances that could impair the analysis--so-called PCR inhibitors. In sample treatment, there is a trade-off between yield and purity, as extensive purification leads to DNA loss. A cornerstone of pre-PCR processing is to apply DNA polymerase-buffer systems that are tolerant to specific sample impurities, thereby lowering the need for expensive purification steps and maximizing DNA recovery. Improved awareness among Laboratory Response Networks (LRNs) regarding pre-PCR processing is important, as ineffective sample processing leads to increased cost and possibly false-negative or ambiguous results, hindering the decision-making process in a bioterrorism crisis. This article covers the nature and mechanisms of PCR-inhibitory substances relevant for agroterrorism and bioterrorism preparedness, methods for quality control of PCR reactions, and applications of pre-PCR processing to optimize and simplify the analysis of various biothreat agents. Knowledge about pre-PCR processing will improve diagnostic capabilities of LRNs involved in the response to bioterrorism incidents.

  19. High-Throughput Direct Fecal PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Sheep and Cattle

    PubMed Central

    Waldron, Anna M.; Galea, Francesca; Whittington, Ann-Michele; Saunders, Vanessa F.; Begg, Douglas J.; de Silva, Kumudika; Purdie, Auriol C.; Whittington, Richard J.

    2014-01-01

    Johne's disease (JD) is a chronic enteric disease caused by Mycobacterium avium subsp. paratuberculosis that affects ruminants. Transmission occurs by the fecal-oral route. A commonly used antemortem diagnostic test for the detection of M. avium subsp. paratuberculosis in feces is liquid culture; however, a major constraint is the 2- to 3-month incubation period needed for this method. Rapid methods for the detection of M. avium subsp. paratuberculosis based on PCR have been reported, but comprehensive validation data are lacking. We describe here a new test, the high-throughput-Johnes (HT-J), to detect M. avium subsp. paratuberculosis in feces. Its diagnostic accuracy was compared with that of liquid radiometric (Bactec) fecal culture using samples from cattle (1,330 samples from 23 herds) and sheep (596 samples from 16 flocks). The multistage protocol involves the recovery of M. avium subsp. paratuberculosis cells from a fecal suspension, cell rupture by bead beating, extraction of DNA using magnetic beads, and IS900 quantitative PCR. The limit of detection of the assay was 0.0005 pg, and the limit of quantification was 0.005 pg M. avium subsp. paratuberculosis genomic DNA. Only M. avium subsp. paratuberculosis was detected from a panel of 51 mycobacterial isolates, including 10 with IS900-like sequences. Of the 549 culture-negative fecal samples from unexposed herds and flocks, 99% were negative in the HT-J test, while 60% of the bovine- and 84% of the ovine-culture-positive samples were positive in the HT-J test. As similar total numbers of samples from M. avium subsp. paratuberculosis-exposed animals were positive in culture and HT-J tests in both species, and as the results of a McNemar's test were not significant, these methods probably have similar sensitivities, but the true diagnostic sensitivities of these tests are unknown. These validation data meet the consensus-based reporting standards for diagnostic test accuracy studies for paratuberculosis and

  20. Real-time PCR assays for genotyping of Cryptococcus gattii in North America

    PubMed Central

    2014-01-01

    Background Cryptococcus gattii has been the cause of an ongoing outbreak starting in 1999 on Vancouver Island, British Columbia and spreading to mainland Canada and the US Pacific Northwest. In the course of the outbreak, C. gattii has been identified outside of its previously documented climate, habitat, and host disease. Genotyping of C. gattii is essential to understand the ecological and geographical expansion of this emerging pathogen. Methods We developed and validated a mismatch amplification mutation assay (MAMA) real-time PCR panel for genotyping C. gattii molecular types VGI-VGIV and VGII subtypes a,b,c. Subtype assays were designed based on whole-genome sequence of 20 C. gattii strains. Publically available multilocus sequence typing (MLST) data from a study of 202 strains was used for the molecular type (VGI-VGIV) assay design. All assays were validated across DNA from 112 strains of diverse international origin and sample types, including animal, environmental and human. Results Validation revealed each assay on the panel is 100% sensitive, specific and concordant with MLST. The assay panel can detect down to 0.5 picograms of template DNA. Conclusions The (MAMA) real-time PCR panel for C. gattii accurately typed a collection of 112 diverse strains and demonstrated high sensitivity. This is a time and cost efficient method of genotyping C. gattii best suited for application in large-scale epidemiological studies. PMID:24886039

  1. Development and Validation of a Quantitative PCR Assay for Diagnosis of Scedosporiosis▿

    PubMed Central

    Castelli, Maria V.; Buitrago, Maria J.; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Rodriguez-Tudela, Juan L.; Cuenca-Estrella, Manuel

    2008-01-01

    Scedosporium apiospermum and Scedosporium prolificans are fungal pathogens that can cause severe human infections, including disseminated mycosis in immunocompromised patients. Two real-time PCR (RT-PCR) assays for the diagnosis of these species were developed and validated for the classification of clinical strains and for the detection of DNA in clinical samples by use of a murine model of invasive infection. A total of 14 clinical strains and 141 samples, including blood, serum, and lung samples from infected CD1 mice, were analyzed. Each RT-PCR methodology used a species-specific molecular beacon probe targeting a highly conserved region of the fungal ribosomal DNA gene. Results showed 100% specificity and a detection limit of 10 fg of DNA for both assays. The sensitivities for the S. prolificans-specific PCR assay were 100% for cultured clinical strains, 95.5% for lung tissues, 85% for serum, and 83.3% for blood. For S. apiospermum, the sensitivities were 100% for clinical strains and 97.2%, 81.8%, and 54.5% for lung tissues, serum, and blood, respectively. Both techniques can be useful for clinical diagnosis, and further studies are warranted. PMID:18684999

  2. Development and validation of a quantitative PCR assay for diagnosis of scedosporiosis.

    PubMed

    Castelli, Maria V; Buitrago, Maria J; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Rodriguez-Tudela, Juan L; Cuenca-Estrella, Manuel

    2008-10-01

    Scedosporium apiospermum and Scedosporium prolificans are fungal pathogens that can cause severe human infections, including disseminated mycosis in immunocompromised patients. Two real-time PCR (RT-PCR) assays for the diagnosis of these species were developed and validated for the classification of clinical strains and for the detection of DNA in clinical samples by use of a murine model of invasive infection. A total of 14 clinical strains and 141 samples, including blood, serum, and lung samples from infected CD1 mice, were analyzed. Each RT-PCR methodology used a species-specific molecular beacon probe targeting a highly conserved region of the fungal ribosomal DNA gene. Results showed 100% specificity and a detection limit of 10 fg of DNA for both assays. The sensitivities for the S. prolificans-specific PCR assay were 100% for cultured clinical strains, 95.5% for lung tissues, 85% for serum, and 83.3% for blood. For S. apiospermum, the sensitivities were 100% for clinical strains and 97.2%, 81.8%, and 54.5% for lung tissues, serum, and blood, respectively. Both techniques can be useful for clinical diagnosis, and further studies are warranted.

  3. Rapid diagnosis of Argentine hemorrhagic fever by reverse transcriptase PCR-based assay.

    PubMed Central

    Lozano, M E; Enría, D; Maiztegui, J I; Grau, O; Romanowski, V

    1995-01-01

    Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus. This report demonstrates that a reverse transcriptase (RT) PCR-based assay developed in our laboratory to detect Junín virus in whole blood samples is sensitive and specific. The experiments were conducted in a double-blinded manner using 94 clinical samples collected in the area in which AHF is endemic. The RT-PCR-based assay was compared with traditional methodologies, including enzyme-linked immunosorbent assay, plaque neutralization tests, and occasionally viral isolation. The calculated parameters for RT-PCR diagnosis, with seroconversion as the "gold standard," were 98% sensitivity and 76% specificity. It is noteworthy that 94% of the patients with putative false-positive results (RT-PCR positive and no seroconversion detected) exhibited febrile syndromes of undefined etiology. These results could be interpreted to mean that most of those patients with febrile syndromes were actually infected with Junín virus but did not develop a detectable immune response. Furthermore, 8 laboratory-fabricated samples and 25 blood samples of patients outside the area in which AHF is endemic tested in a similar way were disclosed correctly (100% match). The RT-PCR assay is the only laboratory test available currently for the early and rapid diagnosis of AHF. It is sensitive enough to detect the low viremia found during the period in which immune plasma therapy can be used effectively, reducing mortality rates from 30% to less than 1%. PMID:7542268

  4. Development of a versatile and stable internal control system for RT-qPCR assays.

    PubMed

    Felder, Eva; Wölfel, Roman

    2014-11-01

    RT-qPCR, an established method for the detection of RNA viruses, requires internal RNA controls for the correct interpretation of PCR results. Robust and versatile RT-PCR controls can be achieved for example by packaging RNA into a virus-derived protein shell. In this study a MS2-based internal control system was developed, that allows stable and universal packing of different RNAs into non-infectious, non-lytic MS2-based viral like particles (VLPs). Two competitive internal controls for a hantavirus assay and a Crimean-Congo Hemorrhagic Fever Virus (CCHFV) assay were cloned for the expression of VLPs. The expression of VLPs containing the RNA of interest could be induced with arabinose in Escherichia coli. The VLPs proved to be temperature resistant and could be frozen and thawed several times without degradation. Distinction of IC RNA from the target RNA was facilitated by a clear shift in the melting temperature or by specific hybridization signals. Furthermore, target and IC PCR amplification could be easily distinguished by their size in gel-electrophoretic analyses. Limits of detection were determined, demonstrating that the application of the IC did not reduce the sensitivity of the target RT-qPCR reactions. The system can be adapted to nearly any required sequence, resulting in a highly flexible method with broad range applications.

  5. Quantitative analysis of amplifiable DNA in tissues exposed to various environments using competitive PCR assays.

    PubMed

    Imaizuml, K; Miyasaka, S; Yoshino, M

    2004-01-01

    Competitive PCR assays were established for the mitochondrial DNA hypervariable region I and the human amelogenin locus. Using these assays, the copy numbers of DNA participating in PCR (amplifiable DNA) were quantified in tissues exposed to different environments. Human ribs, skin and nails were left in three exposure conditions (in the open air, in soil and in water). The amounts of amplifiable DNA in these tissues were quantified during a time period of up to two months. The amount of amplifiable DNA was well preserved in hard tissues (ribs and nails) regardless of the exposure conditions, whereas the soft tissues immersed in water showed a rapid decrease in amplifiable DNA. Strong PCR inhibition was observed in the DNA extracts obtained from buried bones. This phenomenon was clearly identified from an amplification failure of the internal standards in the competitive PCR. A preliminary examination to identify the PCR inhibitor suggested that the soil itself contributed to the inhibition. In addition, the amounts of amplifiable DNA in case samples were also investigated.

  6. Evaluation of FRET real-time PCR assay for rapid detection and differentiation of Plasmodium species in returning travellers and migrants

    PubMed Central

    Safeukui, Innocent; Millet, Pascal; Boucher, Sébastien; Melinard, Laurence; Fregeville, Frédéric; Receveur, Marie-Catherine; Pistone, Thierry; Fialon, Pierre; Vincendeau, Philippe; Fleury, Hervé; Malvy, Denis

    2008-01-01

    Background A simple real-time PCR assay using one set of primer and probe for rapid, sensitive and quantitative detection of Plasmodium species, with simultaneous differentiation of Plasmodium falciparum from the three other Plasmodium species (Plasmodium vivax, Plasmodium ovale and Plasmodium malariae) in febrile returning travellers and migrants was developed and evaluated. Methods Consensus primers were used to amplify a species-specific region of the multicopy 18S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be perfect matches to the 18S rRNA gene of the fourth Plasmodium species, while the acceptor probe sequence was designed for P. falciparum over a region containing one mismatched, which allowed differentiation of the three other Plasmodium species. The performance characteristics of the real-time PCR assay were compared with those of conventional PCR and microscopy-based diagnosis from 119 individuals with a suspected clinical diagnostic of imported malaria. Results Blood samples with parasite densities less than 0.01% were all detected, and analytical sensitivity was 0.5 parasite per PCR reaction. The melt curve means Tms (standard deviation) in clinical isolates were 60.5°C (0.6°C) for P. falciparum infection and 64.6°C (1.8°C) for non-P. falciparum species. These Tms values of the P. falciparum or non-P. falciparum species did not vary with the geographic origin of the parasite. The real-time PCR results correlated with conventional PCR using both genus-specific (Kappa coefficient: 0.95, 95% confidence interval: 0.9 – 1) or P. falciparum-specific (0.91, 0.8 – 1) primers, or with the microscopy results (0.70, 0.6 – 0.8). The real-time assay was 100% sensitive and specific for differentiation of P. falciparum to non-P. falciparum species, compared with conventional PCR or microscopy. The real-time PCR assay can also

  7. Detection of Dientamoeba fragilis in animal faeces using species specific real time PCR assay.

    PubMed

    Chan, Douglas; Barratt, Joel; Roberts, Tamalee; Phillips, Owen; Šlapeta, Jan; Ryan, Una; Marriott, Deborah; Harkness, John; Ellis, John; Stark, Damien

    2016-08-30

    Dientamoeba fragilis is a potentially pathogenic, enteric, protozoan parasite with a worldwide distribution. While clinical case reports and prevalence studies appear regularly in the scientific literature, little attention has been paid to this parasite's biology, life cycle, host range, and possible transmission routes. Overall, these aspects of Dientamoeba biology remain poorly understood at best. In this study, a total of 420 animal samples, collected from Australia, were surveyed for the presence of Dientamoeba fragilis using PCR. Several PCR assays were evaluated for sensitivity and specificity. Two previously published PCR methods demonstrated cross reactivity with other trichomonads commonly found in animal samples. Only one assay exhibited excellent specificity. Using this assay D. fragilis was detected from one dog and one cat sample. This is the first report of D. fragilis from these animals and highlights the role companion animals may play in D. fragilis transmission. This study demonstrated that some published D. fragilis molecular assays cross react with other closely related trichomonads and consequently are not suitable for animal prevalence studies.

  8. Detection of Dientamoeba fragilis in animal faeces using species specific real time PCR assay.

    PubMed

    Chan, Douglas; Barratt, Joel; Roberts, Tamalee; Phillips, Owen; Šlapeta, Jan; Ryan, Una; Marriott, Deborah; Harkness, John; Ellis, John; Stark, Damien

    2016-08-30

    Dientamoeba fragilis is a potentially pathogenic, enteric, protozoan parasite with a worldwide distribution. While clinical case reports and prevalence studies appear regularly in the scientific literature, little attention has been paid to this parasite's biology, life cycle, host range, and possible transmission routes. Overall, these aspects of Dientamoeba biology remain poorly understood at best. In this study, a total of 420 animal samples, collected from Australia, were surveyed for the presence of Dientamoeba fragilis using PCR. Several PCR assays were evaluated for sensitivity and specificity. Two previously published PCR methods demonstrated cross reactivity with other trichomonads commonly found in animal samples. Only one assay exhibited excellent specificity. Using this assay D. fragilis was detected from one dog and one cat sample. This is the first report of D. fragilis from these animals and highlights the role companion animals may play in D. fragilis transmission. This study demonstrated that some published D. fragilis molecular assays cross react with other closely related trichomonads and consequently are not suitable for animal prevalence studies. PMID:27523936

  9. Profound inhibition of the PCR step of CF V3 multiplex PCR/OLA assay by the use of UV-irradiated plastic reaction tubes.

    PubMed

    Fox, David H; Huang, Chih-Kang; Du, Juan; Chang, Tylis Y; Pan, Qiulu

    2007-06-01

    Supplies, such as bags of plastic reaction tubes, are sometimes left in the laminar flow hoods unintentionally while the ultraviolet (UV) lamp is illuminated overnight. In addition, UV irradiation is used for sterilization and amplicon inactivation to avoid contamination. The oligonucleotide ligation assay (OLA) is a unique approach to mutation detection of point mutations, small deletions, and small insertions. Recently, we encountered problems with this assay and peak heights were much lower or disappeared. After going through systemic trouble-shooting, we found that profound inhibition of the polymerase chain reaction (PCR) step of CF V3 multiplex PCR/OLA assay by the use of UV-irradiated plastic reaction tubes. When UV-irradiated tubes used throughout the assay, tubes exposed for 8 weeks at 0.7 m from the UV source gave a reduction of 60% and 67% in the assay products on the basis of sum of peak heights. Tubes exposed for 3 weeks at 0.1 m from the UV source totally eliminated assay product yielding no peaks. Further experiments showed that the inhibition happened mostly in the PCR step. Burgess and Hall had reported that inhibition of PCR of human glyceraldehydes-3-phosphate dehydrogenase transcripts after UV irradiating the tubes. This showed that the inhibition was not assay-specific. The reason that the inhibition of PCR was more profound could be due to a multiplex PCR assay and small reaction volume. The mechanism of PCR inhibition by UV irradiation is not clear. In conclusion, plastic reaction tubes intended for PCR/OLA assays should not be exposed to UV.

  10. Rapid detection and identification of human adenovirus species by adenoplex, a multiplex PCR-enzyme hybridization assay.

    PubMed

    Pehler-Harrington, Karen; Khanna, Marilyn; Waters, Chris R; Henrickson, Kelly J

    2004-09-01

    Human adenoviruses (AdV) have been implicated in a wide variety of diseases and are ubiquitous in populations worldwide. These agents are of concern particularly in immunocompromised patients, children, and military recruits, resulting in severe disease or death. Clinical diagnosis of AdV is usually achieved through routine viral cell culture, which can take weeks for results. Immunofluorescence and enzyme-linked immunosorbent assay-based techniques are more timely but lack sensitivity. The ability to distinguish between the six different AdV species (A to F) is diagnostically relevant, as infections with specific AdV species are often associated with unique clinical outcomes and epidemiological features. Therefore, we developed a multiplex PCR-enzyme hybridization assay, the Adenoplex, using primers to the fiber gene that can simultaneously detect all six AdV species A through F in a single test. The limit of detection (LOD) based on the viral 50% tissue culture infective dose/ml for AdV A, B, C, D, E, and F was 10(-2), 10(-1), 10(-1), 10(-2), 10(-1), and 10(-2), respectively. Similarly, the LOD for the six DNA controls ranged from 10(2) to 10(3) copies/ml. Twelve common respiratory pathogens were tested with the Adenoplex, and no cross-reactivity was observed. We also validated our assay using clinical specimens spiked with different concentrations of AdV strains of each species type and tested by multiplex PCR and culture. The results demonstrated an overall sensitivity and specificity of Adenoplex of 100%. This assay can be completed in as few as 5 h and provides a rapid, specific, and sensitive method to detect and subtype AdV species A through F.

  11. Development and evaluation of a real-time PCR assay for detection and quantification of blastocystis parasites in human stool samples: prospective study of patients with hematological malignancies.

    PubMed

    Poirier, Philippe; Wawrzyniak, Ivan; Albert, Aurélie; El Alaoui, Hicham; Delbac, Frédéric; Livrelli, Valérie

    2011-03-01

    Blastocystis anaerobic parasites are widespread worldwide in the digestive tract of many animal species, including humans. Epidemiological Blastocystis studies are often limited by the poor sensitivity of standard parasitological assays for its detection. This report presents a highly sensitive real-time quantitative PCR (qPCR) assay developed to detect Blastocystis parasites in stool samples. The assay targets a partial sequence of the Blastocystis small ribosomal subunit (SSU) rRNA gene, allowing subtyping (ST) of Blastocystis isolates by direct sequencing of qPCR products. This qPCR method was assessed in a prospective study of 186 patients belonging to two cohorts--a group of 94 immunocompromised patients presenting hematological malignancies and a control group of 92 nonimmunocompromised patients. Direct-light microscopy and xenic in vitro stool culture analysis showed only 29% and 52% sensitivity, respectively, compared to our qPCR assay. Of the 27 (14.5%) Blastocystis-positive patients, 8 (4%) experienced digestive symptoms. No correlation was found between symptomatic patients and immune status, parasite load, or parasite subtypes, although subtyping of all isolates revealed a high (63.0%) prevalence of ST4. Two unexpected avian subtypes were found, i.e., ST6 and ST7, which are frequently isolated in Asia but rarely present in Western countries. In conclusion, this qPCR proved by far the most sensitive of the tested methods and allowed subtype determination by direct sequencing of qPCR products. New diagnostic tools such as the qPCR are essential for evaluating the clinical relevance of Blastocystis subtypes and their role in acute or chronic digestive disorders. PMID:21177897

  12. Development of viral disinfectant assays for duck hepatitis B virus using cell culture/PCR.

    PubMed

    Wang, Chi-Young J; Giambrone, Joseph J; Smith, Bruce F

    2002-10-01

    Human hepatitis B virus (HBV) is a worldwide public health problem with chronic carriers at risk for developing cirrhosis and hepatocellular carcinoma. Accidental nosocomial infections from inadequately disinfected equipment or exposure to blood and body fluids from patients are major routes. To solve such problems, disinfectants to inactivate HBV must be validated. Duck hepatitis B virus (DHBV) is accepted as a surrogate for HBV, due to their similar sensitivities to disinfectants and its safety. Ducklings are used for disinfectant efficacy assays; however, the same virus titer is obtained using duck embryonic hepatocytes. Viral titration in disinfectant efficacy assay is conducted using Southern hybridization of infected duck serum. However, this test requires radioisotopes. Therefore, disinfectant assessment protocols were developed using duck embryonic hepatocytes with polymerase chain reaction (PCR) or nested PCR. The ease of handling, lowered cost and enhanced sensitivity make PCR desirable. Chicken embryonic hepatocytes were applied to DHBV disinfectant efficacy assay. Results were consistent and could be used under certain conditions. The virucidal activities of two quaternary ammonium chloride disinfectants, n-alkyl dimethyl benzyl ammonium chloride and alkyl dimethyl benzyl ammonium chloride (10C-12C) were compared and effective concentrations were 1200 and 1800 ppm, respectively. Efficacies of these disinfectants were validated using real-time quantitative PCR. Results confirmed that the efficacy of n-alkyl dimethyl benzyl ammonium chloride was higher than alkyl dimethyl benzyl ammonium chloride (10C-12C). This assay was useful for rapid discrimination of killing potentials of disinfectants. In conclusion, these assays can be applied to other viruses that are unable to cause CPE in cell cultures and broadened the utility of DHBV as animal model for HBV.

  13. Development and validation of a fecal PCR assay for Notoedres cati and application to notoedric mange cases in bobcats (Lynx rufus) in Northern California, USA.

    PubMed

    Stephenson, Nicole; Clifford, Deana; Worth, S Joy; Serieys, Laurel E K; Foley, Janet

    2013-04-01

    Notoedric mange in felids is a devastating disease caused by a hypersensitivity reaction to the mite Notoedres cati. The burrowing of the mite causes intense pruritis resulting in self-mutilation, secondary bacterial infection, and often death of affected felids if left untreated. Our understanding of how notoedric mange is maintained in felid populations, and the true geographic extent of infestations, has been hampered because wild felids are elusive and, thus, traditional diagnostic methods are difficult to implement. To create a noninvasive diagnostic test, we developed and validated a novel PCR assay to detect N. cati DNA in fecal samples of bobcats (Lynx rufus) and used this assay to investigate a recent outbreak of mange in northern California, United States. Although the fecal PCR assay was 100% specific and could detect as few as 1.9 mites/200 μg of feces, it had a moderate sensitivity of 52.6%, potentially due to intermittent shedding of mites in feces or fecal PCR inhibitors. In a field investigation, 12% (95% confidence interval [CI]: 0.06, 0.23) of fecal samples (n=65) collected from Rancho San Antonia County Park and Open Space Preserve in Santa Clara County, California were PCR-positive for N. cati. When this estimate was adjusted for test sensitivity, the corrected proportion for fecal samples containing N. cati was 23% (95% CI: 0.14, 0.36), suggesting widespread mange in this area. This novel PCR assay will be an important tool to assess the distribution and spread of notoedric mange in bobcats and could be validated to test other wild felids such as mountain lions (Puma concolor). The assay could also be used to detect notoedric mange in domestic cats (Felis catus), particularly feral cats, which may also suffer from mange and could represent an important contributor to mange in periurban bobcat populations. PMID:23568905

  14. Development and validation of a fecal PCR assay for Notoedres cati and application to notoedric mange cases in bobcats (Lynx rufus) in Northern California, USA.

    PubMed

    Stephenson, Nicole; Clifford, Deana; Worth, S Joy; Serieys, Laurel E K; Foley, Janet

    2013-04-01

    Notoedric mange in felids is a devastating disease caused by a hypersensitivity reaction to the mite Notoedres cati. The burrowing of the mite causes intense pruritis resulting in self-mutilation, secondary bacterial infection, and often death of affected felids if left untreated. Our understanding of how notoedric mange is maintained in felid populations, and the true geographic extent of infestations, has been hampered because wild felids are elusive and, thus, traditional diagnostic methods are difficult to implement. To create a noninvasive diagnostic test, we developed and validated a novel PCR assay to detect N. cati DNA in fecal samples of bobcats (Lynx rufus) and used this assay to investigate a recent outbreak of mange in northern California, United States. Although the fecal PCR assay was 100% specific and could detect as few as 1.9 mites/200 μg of feces, it had a moderate sensitivity of 52.6%, potentially due to intermittent shedding of mites in feces or fecal PCR inhibitors. In a field investigation, 12% (95% confidence interval [CI]: 0.06, 0.23) of fecal samples (n=65) collected from Rancho San Antonia County Park and Open Space Preserve in Santa Clara County, California were PCR-positive for N. cati. When this estimate was adjusted for test sensitivity, the corrected proportion for fecal samples containing N. cati was 23% (95% CI: 0.14, 0.36), suggesting widespread mange in this area. This novel PCR assay will be an important tool to assess the distribution and spread of notoedric mange in bobcats and could be validated to test other wild felids such as mountain lions (Puma concolor). The assay could also be used to detect notoedric mange in domestic cats (Felis catus), particularly feral cats, which may also suffer from mange and could represent an important contributor to mange in periurban bobcat populations.

  15. Ultra-sensitive detection of two garlic potyviruses using a real-time fluorescent (Taqman) RT-PCR assay.

    PubMed

    Lunello, Pablo; Mansilla, Carmen; Conci, Vilma; Ponz, Fernando

    2004-06-01

    A method for the detection of Onion yellow dwarf virus (OYDV) and Leek yellow stripe virus (LYSV), the two most prevalent garlic potyviruses, has been developed that combines IC-RT-PCR/RT-PCR with the use of TaqMan probes. Comparisons with ELISA results obtained with identical OYDV and LYSV infected samples showed sensitivity in detecting these viruses increased up to 10(6)-fold. OYDV and LYSV were detected using different fluorochromes in the probe, thus allowing unequivocal diagnosis for each of them. The polyvalence of the designed virus-specific primers and probes was shown through their application to the detection of three isolates from very different geographical areas and from different hosts. A second version of the method avoids the need for an immunocapture step through the performance of a TaqMan RT-PCR assay directly on extracts of garlic cloves. This modification on the proposed basic method allows the analysis of bulb samples in 3-4h but did not give reproducible results with leaves. Both versions of the new diagnostic method bear great potential for their implementation in virus-free certification schemes in garlic, a vegetatively propagated crop for which such a certification is critical for a high-quality product.

  16. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia.

    PubMed

    Dangerfield, Benjamin; Chung, Andrew; Webb, Brandon; Seville, Maria Teresa

    2014-01-01

    Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) is associated with poor outcomes and frequently merits empirical antibiotic consideration despite its relatively low incidence. Nasal colonization with MRSA is associated with clinical MRSA infection and can be reliably detected using the nasal swab PCR assay. In this study, we evaluated the performance of the nasal swab MRSA PCR in predicting MRSA pneumonia. A retrospective cohort study was performed in a tertiary care center from January 2009 to July 2011. All patients with confirmed pneumonia who had both a nasal swab MRSA PCR test and a bacterial culture within predefined time intervals were included in the study. These data were used to calculate sensitivity, specificity, positive predictive value, and negative predictive value for clinically confirmed MRSA pneumonia. Four hundred thirty-five patients met inclusion criteria. The majority of cases were classified as either health care-associated (HCAP) (54.7%) or community-acquired (CAP) (34%) pneumonia. MRSA nasal PCR was positive in 62 (14.3%) cases. MRSA pneumonia was confirmed by culture in 25 (5.7%) cases. The MRSA PCR assay demonstrated 88.0% sensitivity and 90.1% specificity, with a positive predictive value of 35.4% and a negative predictive value of 99.2%. In patients with pneumonia, the MRSA PCR nasal swab has a poor positive predictive value but an excellent negative predictive value for MRSA pneumonia in populations with low MRSA pneumonia incidence. In cases of culture-negative pneumonia where initial empirical antibiotics include an MRSA-active agent, a negative MRSA PCR swab can be reasonably used to guide antibiotic de-escalation.

  17. Serial Quantitative PCR Assay for Detection, Species Discrimination, and Quantification of Leishmania spp. in Human Samples▿

    PubMed Central

    Weirather, Jason L.; Jeronimo, Selma M. B.; Gautam, Shalini; Sundar, Shyam; Kang, Mitchell; Kurtz, Melissa A.; Haque, Rashidul; Schriefer, Albert; Talhari, Sinésio; Carvalho, Edgar M.; Donelson, John E.; Wilson, Mary E.

    2011-01-01

    The Leishmania species cause a variety of human disease syndromes. Methods for diagnosis and species differentiation are insensitive and many require invasive sampling. Although quantitative PCR (qPCR) methods are reported for leishmania detection, no systematic method to quantify parasites and determine the species in clinical specimens is established. We developed a serial qPCR strategy to identify and rapidly differentiate Leishmania species and quantify parasites in clinical or environmental specimens. SYBR green qPCR is mainly employed, with corresponding TaqMan assays for validation. The screening primers recognize kinetoplast minicircle DNA of all Leishmania species. Species identification employs further qPCR set(s) individualized for geographic regions, combining species-discriminating probes with melt curve analysis. The assay was sufficient to detect Leishmania parasites, make species determinations, and quantify Leishmania spp. in sera, cutaneous biopsy specimens, or cultured isolates from subjects from Bangladesh or Brazil with different forms of leishmaniasis. The multicopy kinetoplast DNA (kDNA) probes were the most sensitive and useful for quantification based on promastigote standard curves. To test their validity for quantification, kDNA copy numbers were compared between Leishmania species, isolates, and life stages using qPCR. Maxicircle and minicircle copy numbers differed up to 6-fold between Leishmania species, but the differences were smaller between strains of the same species. Amastigote and promastigote leishmania life stages retained similar numbers of kDNA maxi- or minicircles. Thus, serial qPCR is useful for leishmania detection and species determination and for absolute quantification when compared to a standard curve from the same Leishmania species. PMID:22042830

  18. A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera).

    PubMed

    Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto; Goodwin, Paul H

    2010-10-01

    Correct identification of the microsporidia, Nosema apis and Nosema ceranae, is key to the study and control of Nosema disease of honey bees (Apis mellifera). A rapid DNA extraction method combined with multiplex PCR to amplify the 16S rRNA gene with species-specific primers was compared with a previously published assay requiring spore-germination buffer and a DNA extraction kit. When the spore germination-extraction kit method was used, 10 or more bees were required to detect the pathogens, whereas the new extraction method made it possible to detect the pathogens in single bees. Approx. 4-8 times better detection of N. ceranae was found with the new method compared to the spore germination-extraction kit method. In addition, the time and cost required to process samples was lower with the proposed method compared to using a kit. Using the new DNA extraction method, a spore quantification procedure was developed using a triplex PCR involving co-amplifying the N. apis and N. ceranae 16S rRNA gene with the ribosomal protein gene, RpS5, from the honey bee. The accuracy of this semi-quantitative PCR was determined by comparing the relative band intensities to the number of spores per bee determined by microscopy for 23 samples, and a high correlation (R(2)=0.95) was observed. This method of Nosema spore quantification revealed that spore numbers as low as 100 spores/bee could be detected by PCR. The new semi-quantitative triplex PCR assay is more sensitive, economical, rapid, simple, and reliable than previously published standard PCR-based methods for detection of Nosema and will be useful in laboratories where real-time PCR is not available.

  19. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products. PMID:22475946

  20. Real-time PCR assays for detection and quantification of aflatoxin-producing molds in foods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Luque, M Isabel; Martín, Alberto; Córdoba, Juan J

    2012-08-01

    Aflatoxins are among the most toxic mycotoxins. Early detection and quantification of aflatoxin-producing species is crucial to improve food safety. In the present work, two protocols of real-time PCR (qPCR) based on SYBR Green and TaqMan were developed, and their sensitivity and specificity were evaluated. Primers and probes were designed from the o-methyltransferase gene (omt-1) involved in aflatoxin biosynthesis. Fifty-three mold strains representing aflatoxin producers and non-producers of different species, usually reported in food products, were used as references. All strains were tested for aflatoxins production by high-performance liquid chromatography-mass spectrometry (HPLC-MS). The functionality of the proposed qPCR method was demonstrated by the strong linear relationship of the standard curves constructed with the omt-1 gene copy number and Ct values for the different aflatoxin producers tested. The ability of the qPCR protocols to quantify aflatoxin-producing molds was evaluated in different artificially inoculated foods. A good linear correlation was obtained over the range 4 to 1 log cfu/g per reaction for all qPCR assays in the different food matrices (peanuts, spices and dry-fermented sausages). The detection limit in all inoculated foods ranged from 1 to 2 log cfu/g for SYBR Green and TaqMan assays. No significant effect was observed due to the different equipment, operator, and qPCR methodology used in the tests of repeatability and reproducibility for different foods. The proposed methods quantified with high efficiency the fungal load in foods. These qPCR protocols are proposed for use to quantify aflatoxin-producing molds in food products.

  1. Comparison of cell-based and PCR-based assays as methods for measuring infectivity of Tulane virus.

    PubMed

    Shan, Lei; Yang, David; Wang, Dapeng; Tian, Peng

    2016-05-01

    In this study, we used Tulane virus (TV) as a surrogate for HuNoV to evaluate for correlation between two cell-based assays and three PCR-based assays. Specifically, the cell-based plaque and TCID50 assays measure for infectious virus particles, while the PCR-based RNase exposure, porcine gastric mucin in-situ-capture qRT-PCR (PGM-ISC-qRT-PCR), and antibody in-situ-capture qRT-PCR (Ab-ISC-qRT-PCR) assays measure for an amplicon within encapsidated viral genome. Ten batches of viral stocks ranging from 3.41 × 10(5) to 6.67 × 10(6) plaque forming units (PFUs) were used for side by side comparison with PFU as a reference. The results indicate that one PFU was equivalent to 6.69 ± 2.34 TCID50 units, 9.75 ± 10.87 RNase-untreated genomic copies (GCs), 2.87 ± 3.05 RNase-treated GCs, 0.07 ± 0.07 PGM-ISC-qRT-PCR GCs, and 0.52 ± 0.39 Ab-ISC-qRT-PCR GCs. We observed that while the cell-based assays were consistent with each other, the TCID50 assay was more sensitive than the plaque assay. In contrast, the PCR-based assays were not always consistent with the cell-based assays. The very high variations in GCs as measured by both ISC-RT-qPCR assays made them difficult to correlate against the relatively small variations (<20-fold) in the PFUs or TCID50 units as measured by the cell-based assays.

  2. Novel Light-Upon-Extension Real-Time PCR Assay for Simultaneous Detection, Quantification, and Genogrouping of Group A Rotavirus▿ †

    PubMed Central

    Nordgren, Johan; Bucardo, Filemón; Svensson, Lennart; Lindgren, Per-Eric

    2010-01-01

    We have developed a light-upon-extension (LUX) real-time PCR assay for detection, quantification, and genogrouping of group A rotavirus (RV), the most common cause of acute gastroenteritis in children. The LUX system uses a fluorophore attached to one primer and having a self-quenching hairpin structure, making it cost-effective and specific. We designed genogroup-specific primers having different fluorophores, making it possible to differentiate between the two main genogroups of human group A RVs. The assay was applied on clinical stool specimens from Sweden and Central America (n = 196) and compared to immunological and conventional PCR assays. The genogrouping ability was further validated against a subset of clinical specimens, which had been genogrouped using monoclonal antibodies. Our real-time PCR assay detected and quantified all positive specimens (n = 145) and exhibited higher sensitivity than immunological assays and conventional PCR. The assay exhibited a wide dynamic range, detecting from 5 to >107 genes per PCR, resulting in a theoretical lower detection limit of <10,000 viruses per gram of stool. No cross-reaction was observed with specimens containing norovirus, sapovirus, astrovirus, or adenovirus. In total, 22 (15%) of the positive clinical specimens were identified as genogroup I, 122 (84%) were identified as genogroup II, and 1 specimen was found to contain a mix of both genogroups. All genogroup I-positive specimens were associated with capsid glycoprotein 2 (G2). No significant difference in viral load was found between genogroups or geographic region. The detection and quantification, combined with the genogrouping ability, make this assay a valuable tool both for diagnostics and for molecular epidemiological investigations. PMID:20220154

  3. Development of a SYBR-Green Ⅰ quantitative PCR assay for the detection and genotyping of different hantaviruses.

    PubMed

    Liu, Ziyu; Wang, Fang; Yuan, Lijuan; Zhang, Xiaoxiao; Ying, Qikang; Yu, Lan; Zhang, Liang; Cheng, Linfeng; Zhang, Fanglin; Lu, Jianguo; Wu, Xing'an

    2016-09-01

    Hemorrhagic fever with renal syndrome (HFRS) is a severe, viral zoonotic disease which occurs worldwide, particularly in Asia and Europe. In China, the Hantaan virus (HTNV) and the Seoul virus (SEOV) are known to be the most prevalent causative agents of HFRS. Since no protective vaccines or effective treatments are available for human use, accurate and reliable diagnostic methods are essential for disease surveillance. In the present study, the viral loads in cell culture supernatant, infected mice blood and clinical serum samples were quantified using the SYBR‑Green I-based reverse transcription-quantitiative polymerase chain reaction (RT-qPCR) assay, which targeted the S gene sequence of the HTNV and SEOV genomes. The cRNA of these two viruses were synthesized as a positive control and 10-fold serially diluted from 1x105 to 1x100 copies/µl. Standard curves were generated by plotting the mean cycle threshold (Ct) values versus copy numbers. The standard curve of HTNV had a correlation coefficient (R2) of 0.994, efficiency of amplification (E) of 101.9%, and the slope of -3.278, whereas that of SEOV had an R2 of 0.993, E of 104.8%, and the slope of -3.212. The minimum detection limit of the RT-qPCR assay for HTNV and SEOV was 101 copies/µl. Two qPCR assays were successfully established for the detection of HTNV and SEOV, respectively. Taken together, these findings demonstrate that using the SYBR‑Green I-based RT-qPCR assay, the HTNV and SEOV may be genotyped precisely without cross-reactivity. Furthermore, viral RNA may be detected and quantified in cells, mice and infected individuals, which may be useful in epidemiological studies as well as for early monitoring and further preventative treatment against SEOV and HTNV-induced diseases.

  4. Development of a SYBR-Green Ⅰ quantitative PCR assay for the detection and genotyping of different hantaviruses.

    PubMed

    Liu, Ziyu; Wang, Fang; Yuan, Lijuan; Zhang, Xiaoxiao; Ying, Qikang; Yu, Lan; Zhang, Liang; Cheng, Linfeng; Zhang, Fanglin; Lu, Jianguo; Wu, Xing'an

    2016-09-01

    Hemorrhagic fever with renal syndrome (HFRS) is a severe, viral zoonotic disease which occurs worldwide, particularly in Asia and Europe. In China, the Hantaan virus (HTNV) and the Seoul virus (SEOV) are known to be the most prevalent causative agents of HFRS. Since no protective vaccines or effective treatments are available for human use, accurate and reliable diagnostic methods are essential for disease surveillance. In the present study, the viral loads in cell culture supernatant, infected mice blood and clinical serum samples were quantified using the SYBR‑Green I-based reverse transcription-quantitiative polymerase chain reaction (RT-qPCR) assay, which targeted the S gene sequence of the HTNV and SEOV genomes. The cRNA of these two viruses were synthesized as a positive control and 10-fold serially diluted from 1x105 to 1x100 copies/µl. Standard curves were generated by plotting the mean cycle threshold (Ct) values versus copy numbers. The standard curve of HTNV had a correlation coefficient (R2) of 0.994, efficiency of amplification (E) of 101.9%, and the slope of -3.278, whereas that of SEOV had an R2 of 0.993, E of 104.8%, and the slope of -3.212. The minimum detection limit of the RT-qPCR assay for HTNV and SEOV was 101 copies/µl. Two qPCR assays were successfully established for the detection of HTNV and SEOV, respectively. Taken together, these findings demonstrate that using the SYBR‑Green I-based RT-qPCR assay, the HTNV and SEOV may be genotyped precisely without cross-reactivity. Furthermore, viral RNA may be detected and quantified in cells, mice and infected individuals, which may be useful in epidemiological studies as well as for early monitoring and further preventative treatment against SEOV and HTNV-induced diseases. PMID:27430149

  5. Development and Validation of a Quantitative, One-Step, Multiplex, Real-Time Reverse Transcriptase PCR Assay for Detection of Dengue and Chikungunya Viruses.

    PubMed

    Simmons, Monika; Myers, Todd; Guevara, Carolina; Jungkind, Donald; Williams, Maya; Houng, Huo-Shu

    2016-07-01

    Dengue virus (DENV) and chikungunya virus (CHIKV) are important human pathogens with common transmission vectors and similar clinical presentations. Patient care may be impacted by the misdiagnosis of DENV and CHIKV in areas where both viruses cocirculate. In this study, we have developed and validated a one-step multiplex reverse transcriptase PCR (RT-PCR) to simultaneously detect, quantify, and differentiate between four DENV serotypes (pan-DENV) and chikungunya virus. The assay uses TaqMan technology, employing two forward primers, three reverse primers, and four fluorophore-labeled probes in a single-reaction format. Coextracted and coamplified RNA was used as an internal control (IC), and in vitro-transcribed DENV and CHIKV RNAs were used to generate standard curves for absolute quantification. The diagnostic 95% limits of detection (LOD) within the linear range were 50 and 60 RNA copies/reaction for DENV (serotypes 1 to 4) and CHIKV, respectively. Our assay was able to detect 53 different strains of DENV, representing four serotypes, and six strains of CHIKV. No cross-reactivity was observed with related flaviviruses and alphaviruses, To evaluate diagnostic sensitivity and specificity, 89 clinical samples positive or negative for DENV (serotypes 1 to 4) and CHIKV by the standard virus isolation method were tested in our assay. The multiplex RT-PCR assay showed 95% sensitivity and 100% specificity for DENV and 100% sensitivity and specificity for CHIKV. With an assay turnaround time of less than 2 h, including extraction of RNA, the multiplex quantitative RT-PCR assay provides rapid diagnosis for the differential detection of two clinically indistinguishable diseases, whose geographical occurrence is increasingly overlapping. PMID:27098955

  6. Real-time PCR assay for detection of a new simulant for poxvirus biothreat agents.

    PubMed

    Garnier, Laurence; Gaudin, Jean-Christophe; Bensadoun, Paul; Rebillat, Isabelle; Morel, Yannick

    2009-03-01

    Research and financial efforts spent on biodefense technologies highlight the current concern for biothreat event preparedness. Nonhazardous but relevant "simulant" microorganisms are typically used to simplify technological developments, testing, and staff training. The bacteriophage MS2, a small RNA virus, is classically used as the reference simulant for biothreat viruses within the biodefense community. However, variola virus, considered a major threat, displays very different features (size, envelope, and double-stranded DNA genome). The size parameter is critical for aerosol sampling, detection, and protection/filtration technologies. Therefore, a panel of relevant simulants should be used to cover the diversity of biothreat agents. Thus, we investigated a new virus model, the Cydia pomonella granulovirus (baculovirus), which is currently used as a biopesticide. It displays a size similar to that of poxviruses, is enveloped, and contains double-stranded DNA. To provide a molecular tool to detect and quantify this model virus, we developed an assay based on real-time PCR, with a limit of detection ranging from roughly 10 to a few tens of target copies per microl according to the sample matrix. The specificity of the assay against a large panel of potential cross-reactive microorganisms was checked, and the suitability of the assay for environmental samples, especially aerosol studies, was determined. In conclusion, we suggest that our PCR assay allows Cydia pomonella granulovirus to be used as a simulant for poxviruses. This assay may also be useful for environmental or crop treatment studies. PMID:19168659

  7. Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay

    SciTech Connect

    Delahunty, C.; Ankener, W.; Deng, Qiang

    1996-06-01

    The use of DNA typing in human genome analysis is increasing and finding widespread application in the area of forensic and paternity testing. In this report, we explore the feasibility of typing single nucleotide polymorphisms (SNPs) by using a semiautomated method for analyzing human DNA samples. In this approach, PCR is used to amplify segments of human DNA containing a common SNP. Allelic nucleotides in the amplified product are then typed by a calorimetric implementation of the oligonucleotide ligation assay (OLA). The results of the combined assay, PCR/OLA, are read directly by a spectrophotometer; the absorbances are compiled and the genotypes are automatically determined. A panel of 20 markers has been developed for DNA typing and has been tested using a sample panel from the CEPH pedigrees (CEPH parents). The results of this typing, as well as the potential to apply this method to larger populations, are discussed. 62 refs., 2 figs., 4 tabs.

  8. Direct-multiplex PCR assay for meat species identification in food products.

    PubMed

    Kitpipit, Thitika; Sittichan, Kuangtiwa; Thanakiatkrai, Phuvadol

    2014-11-15

    This is the first time that direct PCR - DNA amplification without prior DNA extraction - was successfully developed and fully validated for rapid and economical simultaneous identification of six commonly consumed meat species. To achieve this, six species-specific primers were selected from previous reports and newly designed from the mitochondrial cytochrome b (cyt b), cytochrome oxidase I (COI), and 12s rRNA gene. The assay generated PCR products of 100, 119, 133, 155, 253, and 311 bp for pork, lamb/mutton, chicken, ostrich meat, horsemeat and beef, respectively. Validation showed that the assay is robust, rapid, economical, reproducible, specific, and sensitive down to 12,500 mitochondrial copy (equating to seven fg). It could be used with a variety of raw meats and products, including highly degraded and processed food samples. This proposed method will be greatly beneficial to the consumers, food industry, and law enforcement.

  9. Development of a Quantitative PCR Assay for Thermophilic Spore-Forming Geobacillus stearothermophilus in Canned Food.

    PubMed

    Nakano, Miyo

    2015-01-01

    The thermophilic spore forming bacteria Geobacillus stearothermophilus is recognized as a major cause of spoilage in canned food. A quantitative real-time PCR assay was developed to specifically detect and quantify the species G. stearothermophilus in samples from canned food. The selected primer pairs amplified a 163-bp fragment of the 16S rRNA gene in a specific PCR assay with a detection limit of 12.5 fg of pure culture DNA, corresponding to DNA extracted from approximately 0.7 CFU/mL of G. stearothermophilus. Analysis showed that the bacterial species G. stearothermophilus was not detected in any canned food sample. Our approach presented here will be useful for tracking or quantifying species G. stearotethermophilus in canned food and ingredients. PMID:26412704

  10. Advances in Microfluidic PCR for Point-of-Care Infectious Disease Diagnostics

    PubMed Central

    Park, Seungkyung; Zhang, Yi; Lin, Shin; Wang, Tza-Huei; Yang, Samuel

    2011-01-01

    Global burdens from existing or emerging infectious diseases emphasize the need for point-of-care (POC) diagnostics to enhance timely recognition and intervention. Molecular approaches based on PCR methods have made significant inroads by improving detection time and accuracy but are still largely hampered by resource-intensive processing in centralized laboratories, thereby precluding their routine bedside- or field-use. Microfluidic technologies have enabled miniaturization of PCR processes onto a chip device with potential benefits including speed, cost, portability, throughput, and automation. In this review, we provide an overview of recent advances in microfluidic PCR technologies and discuss practical issues and perspectives related to implementing them into infectious disease diagnostics. PMID:21741465

  11. Quantitative multiplex real-time PCR assay for shrimp allergen: comparison of commercial master mixes and PCR platforms in rapid cycling.

    PubMed

    Eischeid, Anne C; Kasko, Sasha M

    2015-01-01

    Real-time PCR has been used widely in numerous fields. In food safety, it has been applied to detection of microbes and other contaminants, including food allergens. Interest in rapid (fast) cycling real-time PCR has grown because it yields results in less time than does conventional cycling. However, fast cycling can adversely affect assay performance. Here we report on tests of commercial master mixes specifically designed for fast real-time PCR using a shrimp allergen assay we previously developed and validated. The objective of this work was to determine whether specialized commercial master mixes lead to improved assay performance in rapid cycling. Real-time PCR assays were carried out using four different master mixes and two different rapid cycling protocols. Results indicated that specialized master mixes did yield quality results. In many cases, linear ranges spanned up to 7 orders of magnitude, R(2) values were at least 0.95, and reaction efficiencies were within or near the optimal range of 90 to 110%. In the faster of the two rapid cycling protocols tested, assay performance and PCR amplification were markedly better for the shorter PCR product. In conclusion, specialized commercial master mixes were effective as part of rapid cycling protocols, but conventional cycling as used in our previous work is more reliable for the shrimp assay tested.

  12. Development of PCR assays for detection of Trichomonas vaginalis in urine specimens.

    PubMed

    Bandea, Claudiu I; Joseph, Kahaliah; Secor, Evan W; Jones, Laurie A; Igietseme, Joseph U; Sautter, Robert L; Hammerschlag, Margaret R; Fajman, Nancy N; Girardet, Rebecca G; Black, Carolyn M

    2013-04-01

    Trichomonas vaginalis infections are usually asymptomatic or can result in nonspecific clinical symptoms, which makes laboratory-based detection of this protozoan parasite essential for diagnosis and treatment. We report the development of a battery of highly sensitive and specific PCR assays for detection of T. vaginalis in urine, a noninvasive specimen, and development of a protocol for differentiating among Trichomonas species that commonly infect humans.

  13. Rapid diagnosis of human brucellosis by peripheral-blood PCR assay.

    PubMed Central

    Queipo-Ortuño, M I; Morata, P; Ocón, P; Manchado, P; Colmenero, J D

    1997-01-01

    A single-step PCR assay with genus-specific primers for the amplification of a 223-bp region of the sequence encoding a 31-kDa immunogenetic Brucella abortus protein (BCSP31) was used for the rapid diagnosis of human brucellosis. We examined peripheral blood from 47 patients, with a total of 50 cases of brucellosis, and a group of 60 control subjects, composed of patients with febrile syndromes of several etiologies other than brucellosis, asymptomatic subjects seropositive for Brucella antibodies, and healthy subjects. Diagnosis of brucellosis was established in 35 cases (70%) by isolation of Brucella in blood culture and in the other 15 cases (30%) by clinical and serological means. The sensitivity of our PCR assay was 100%, since it correctly identified all 50 cases of brucellosis, regardless of the duration of the disease, the positivity of the blood culture, or the presence of focal forms. The specificity of the test was 98.3%, and the only false-positive result was for a patient who had had brucellosis 2 months before and possibly had a self-limited relapse. In those patients who relapsed, the results of our PCR assay were positive for both the initial infection and the relapse, becoming negative once the relapse treatment was completed and remaining negative in the follow-up tests at 2, 4, and 6 months. In conclusion, these results suggest that the PCR assay is rapid and easy to perform and highly sensitive and specific, and it may therefore be considered a useful tool for diagnosis of human brucellosis. PMID:9350761

  14. Real-time immuno-PCR assay for detecting PCBs in soil samples.

    PubMed

    Chen, Han-Yu; Zhuang, Hui-Sheng

    2009-06-01

    A fast and robust assay, based on immuno-polymerase chain reaction (IPCR) techniques, was developed for the detection of polychlorinated biphenyls (PCBs) in soil samples. Real-time IPCR (rt-IPCR) is a powerful technique that combines enzyme-linked immunosorbent assay (ELISA) with the specificity and sensitivity of PCR. In our assay, indirect ELISAs based on immobilization of PCB37 hapten-ovalbumin conjugates was used for evaluation of the immune response. The effect of optimal reagent concentrations to reduce background fluorescence was also investigated. Using the optimized assay, the linear sensitivity range of the assay covered more than six orders of magnitude, and the minimum detection limits reached 5 fg ml(-1) antigen. Rt-IPCR was tested for its cross-reactivity profiles using four selected congeners and four Aroclor products. The assays were highly specific for congeners but less specific for Aroclor1242. We took four soil samples to validate the method, and the results were confirmed by gas chromatography/mass spectrometry (GC/MS). The rt-IPCR results for soil samples correlated well with the concentrations of PCBs obtained by GC/MS (r = 0.99, n = 6). These data indicate that this highly specific, sensitive, and robust assay can be modified for detecting PCB compounds in the environment.

  15. Monitoring toxic Ostreopsis cf. ovata in recreational waters using a qPCR based assay.

    PubMed

    Casabianca, Silvia; Perini, Federico; Casabianca, Anna; Battocchi, Cecilia; Giussani, Valentina; Chiantore, Mariachiara; Penna, Antonella

    2014-11-15

    Ostreopsis sp. is a toxic marine benthic dinoflagellate that causes high biomass blooms, posing a threat to human health, marine biota and aquaculture activities, and negatively impacting coastal seawater quality. Species-specific identification and enumeration is fundamental because it can allow the implementation of all the necessary preventive measures to properly manage Ostreopsis spp. bloom events in recreational waters and aquaculture farms. The aim of this study was to apply a rapid and sensitive qPCR method to quantify Ostreopsis cf. ovata abundance in environmental samples collected from Mediterranean coastal sites and to develop site-specific environmental standard curves. Similar PCR efficiencies of plasmid and environmental standard curves allowed us to estimate the LSU rDNA copy number per cell. Moreover, we assessed the effectiveness of mitochondrial COI and cob genes as alternative molecular markers to ribosomal genes in qPCR assays for Ostreopsis spp. quantification.

  16. Monitoring toxic Ostreopsis cf. ovata in recreational waters using a qPCR based assay.

    PubMed

    Casabianca, Silvia; Perini, Federico; Casabianca, Anna; Battocchi, Cecilia; Giussani, Valentina; Chiantore, Mariachiara; Penna, Antonella

    2014-11-15

    Ostreopsis sp. is a toxic marine benthic dinoflagellate that causes high biomass blooms, posing a threat to human health, marine biota and aquaculture activities, and negatively impacting coastal seawater quality. Species-specific identification and enumeration is fundamental because it can allow the implementation of all the necessary preventive measures to properly manage Ostreopsis spp. bloom events in recreational waters and aquaculture farms. The aim of this study was to apply a rapid and sensitive qPCR method to quantify Ostreopsis cf. ovata abundance in environmental samples collected from Mediterranean coastal sites and to develop site-specific environmental standard curves. Similar PCR efficiencies of plasmid and environmental standard curves allowed us to estimate the LSU rDNA copy number per cell. Moreover, we assessed the effectiveness of mitochondrial COI and cob genes as alternative molecular markers to ribosomal genes in qPCR assays for Ostreopsis spp. quantification. PMID:25282181

  17. Diagnosis of gastric cryptosporidiosis in birds using a duplex real-time PCR assay.

    PubMed

    Nakamura, Alex A; Homem, Camila G; da Silva, Adriana M J; Meireles, Marcelo V

    2014-09-15

    Three species and several genotypes of Cryptosporidium can infect the epithelial surface of the bursa of Fabricius, the respiratory tract, the proventriculus, the intestine, and the urinary tract in birds. There is reason to believe that gastric cryptosporidiosis in birds is caused by Cryptosporidium galli and Cryptosporidium avian genotype III, resulting in a chronic illness of the proventriculus that can lead to a debilitating and fatal clinical condition in birds of the orders Passeriformes and Psittaciformes. The objectives of the present study were to develop a duplex real-time polymerase chain reaction (PCR) that targets the 18S rRNA gene to simultaneously detect C. galli and Cryptosporidium avian genotype III DNA and to compare the duplex real-time PCR results to those of nested PCR targeting a partial fragment of the 18S rRNA gene, followed by sequencing of the amplified products (nPCR/S). A total of 1027 fecal samples were collected from birds of the orders Psittaciformes and Passeriformes originating either from captivity or the wild. Duplex real-time PCR results were positive in 580 (56.47%) and 21 (2.04%) samples, respectively, for C. galli and Cryptosporidium avian genotype III, whereas nPCR/S was positive in 28 (2.73%) and three (0.29%) samples, respectively, for C. galli and Cryptosporidium avian genotype III. Novel host birds were identified for both of the above gastric species, and it was also possible to identify Cryptosporidium baileyi and, for the first time in Brazil, Cryptosporidium avian genotype V. The duplex real-time PCR assay developed in the present study represents a sensitive and specific method for the detection of C. galli and Cryptosporidium avian genotype III in bird fecal samples. Moreover, this method may serve as an alternative to nPCR/S as a gold standard for the diagnosis of gastric cryptosporidiosis in birds.

  18. Evaluation of Various Campylobacter-Specific Quantitative PCR (qPCR) Assays for Detection and Enumeration of Campylobacteraceae in Irrigation Water and Wastewater via a Miniaturized Most-Probable-Number–qPCR Assay

    PubMed Central

    Banting, Graham S.; Braithwaite, Shannon; Scott, Candis; Kim, Jinyong; Jeon, Byeonghwa; Ashbolt, Nicholas; Ruecker, Norma; Tymensen, Lisa; Charest, Jollin; Pintar, Katarina; Checkley, Sylvia

    2016-01-01

    ABSTRACT Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)–quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053–1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari. Campylobacters in raw sewage were present at ∼102/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease

  19. Development of Nested PCR, Multiplex PCR, and Loop-Mediated Isothermal Amplification Assays for Rapid Detection of Cylindrocladium scoparium on Eucalyptus

    PubMed Central

    Qiao, Tian-Min; Zhang, Jing; Li, Shu-Jiang; Han, Shan; Zhu, Tian-Hui

    2016-01-01

    Eucalyptus dieback disease, caused by Cylindrocladium scoparium, has occurred in last few years in large Eucalyptus planting areas in China and other countries. Rapid, simple, and reliable diagnostic techniques are desired for the early detection of Eucalyptus dieback of C. scoparium prior to formulation of efficient control plan. For this purpose, three PCR-based methods of nested PCR, multiplex PCR, loop-mediated isothermal amplification (LAMP) were developed for detection of C. scoparium based on factor 1-alpha (tef1) and beta-tubulin gene in this study. All of the three methods showed highly specific to C. scoparium. The sensitivities of the nested PCR and LAMP were much higher than the multiplex PCR. The sensitivity of multiplex PCR was also higher than regular PCR. C. scoparium could be detected within 60 min from infected Eucalyptus plants by LAMP, while at least 2 h was needed by the rest two methods. Using different Eucalyptus tissues as samples for C. scoparium detection, all of the three PCR-based methods showed much better detection results than regular PCR. Base on the results from this study, we concluded that any of the three PCR-based methods could be used as diagnostic technology for the development of efficient strategies of Eucalyptus dieback disease control. Particularly, LAMP was the most practical method in field application because of its one-step and rapid reaction, simple operation, single-tube utilization, and simple visualization of amplification products. PMID:27721691

  20. Development of a one-step SYBR Green I real-time RT-PCR assay for the detection and quantitation of Araraquara and Rio Mamore hantavirus.

    PubMed

    Machado, Alex Martins; de Souza, William Marciel; de Pádua, Michelly; da Silva Rodrigues Machado, Aline Rafaela; Figueiredo, Luiz Tadeu Moraes

    2013-09-19

    Hantaviruses are members of the family Bunyaviridae and are an emerging cause of disease worldwide with high lethality in the Americas. In Brazil, the diagnosis for hantaviruses is based on immunologic techniques associated with conventional RT-PCR. A novel one-step SYBR Green real-time RT-PCR was developed for the detection and quantitation of Araraquara (ARAV) and Rio Mamore hantavirus (RIOMV). The detection limit of assay was 10 copies/μL of RNA in vitro transcribed of segment S. The specificity of assay was evaluated by melting curve analysis, which showed that the Araraquara virus amplified product generated a melt peak at 80.83 ± 0.89 °C without generating primer-dimers or non-specific products. The assay was more sensitive than conventional RT-PCR and we detected two samples undetected by conventional RT-PCR. The one-step SYBR Green real-time quantitative RT-PCR is specific, sensible and reproducible, which makes it a powerful tool in both diagnostic applications and general research of ARAV and RIOMV and possibly other Brazilian hantaviruses.

  1. [Study of real-time PCR assays for rapid detection of food-borne pathogens].

    PubMed

    Fukushima, Hiroshi; Tsunomori, Yoshie

    2005-09-01

    A duplex real-time SYBR Green LightCycler PCR (LC-PCR) assay with DNA extraction using QIAamp DNA Stool Minikit was evaluated for detection of 8 of 19 species of food-borne pathogens, including Plesiomonas shigelloides, Providencia alcalifaciens, in five stool specimens. The time frame was within 2h or less. The protocol used the same LC-PCR with 22 pairs of specific primers. The rapid amplification and reliable detection of specific genes were determined by this LC-PCR assay from 10 cases of food-borne outbreaks in Shimane Prefecture from 2002 to 2005. These cases included Campylobacter jejuni (4), Clostridium perfringens (2), enteropathogenic Escherichia coli and astA positive E. coli (1), and astA positive E. coli, enterohemorrhagic E. coli 026, and Bacillus cereus (1 each). Rapid amplification and reliable detection of specific genes of food-or water-borne pathogenic bacteria in fecal samples should facilitate the diagnosis and management of food-borne outbreaks.

  2. Rapid duplex PCR assay for the detection of pathogenic Yersinia enterocolitica strains.

    PubMed

    Aarts, H J; Joosten, R G; Henkens, M H; Stegeman, H; van Hoek, A H

    2001-11-01

    For the detection of pathogenic Yersinia enterocolitica strains, a duplex PCR has been developed based on differences observed between the fingerprint profiles of pathogenic and non-pathogenic strains. The profiles were obtained by using a primer derived from the Enterobacterial Repetitive Intergenic Consensus (ERIC) sequences. From the sequence of one pathogen-specific amplified fragment, a discriminative primer has been designed bridging the sequence of the highly conserved core region and 3' end of the ERIC element. In combination with three other primers, all located within the detected open reading frame that resembled the sequence of the bipA gene, this primer was applied in a duplex PCR assay to simultaneously detect Y. enterocolitica and to discriminate between pathogenic and non-pathogenic strains. The same primer combinations were used in an on line rapid cycling real-time PCR assay. The used SYBR Green I format allowed for the easy translation of the PCR conditions and confirmation of the resulting amplicons. The time of analysis was reduced to approximately 60 min. PMID:11576685

  3. High prevalence of Helicobacter pylori in saliva demonstrated by a novel PCR assay.

    PubMed Central

    Li, C; Musich, P R; Ha, T; Ferguson, D A; Patel, N R; Chi, D S; Thomas, E

    1995-01-01

    AIMS--To investigate the prevalence of Helicobacter pylori in the saliva of patients infected with this bacterium. METHODS--A novel polymerase chain reaction (PCR) assay was developed to detect H pylori in saliva and gastric biopsy specimens from patients undergoing endoscopy. RESULTS--Our PCR assay amplified a 417 base pair fragment of DNA from all 21 DNAs derived from H pylori clinical isolates but did not amplify DNA from 23 non-H pylori strains. Sixty three frozen gastric biopsy and 56 saliva specimens were tested. H pylori specific DNA was detected by PCR in all 39 culture positive biopsy specimens and was also identified from another seven biopsy specimens which were negative by culture but positive by histology. H pylori specific DNA was identified by PCR in saliva specimens from 30 (75%) of 40 patients with H pylori infection demonstrated by culture or histological examination, or both, and in three patients without H pylori infection in the stomach. CONCLUSION--The results indicate that the oral cavity harbours H pylori and may be the source of infection and transmission. Images PMID:7560176

  4. Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential.

    PubMed

    Chen, Q; Yu, H Q; Lun, Z R; Chen, X G; Song, H Q; Lin, R Q; Zhu, X Q

    2008-12-01

    Based on the sequences of the internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) for six taxa of anisakids, namely, Anisakis simplex (s.s.), Anisakis typica, Anisakis pegreffii, Hysterothylacium aduncum, Hysterothylacium sp, and Contracaccum osculatum C, specific primers were designed in the ITS-1 and/or ITS-2 for each of the six anisakid taxa. These specific primers were used to develop polymerase chain reaction (PCR) tools for the identification of these anisakid taxa of sea fish by amplifying partial ITS-1 and/or ITS-2 of rDNA from anisakid nematodes. This approach allowed their specific identification, with no amplicons being amplified from heterogeneous DNA samples, and sequencing confirmed the identity of the DNA fragments amplified. The minimum amounts of DNA detectable using the PCR assays were 0.5-1 ng. These PCR tools were then applied to ascertain the specific identity of 143 anisakid larval samples collected from fish in China, Canada, Thailand, and Indonesia, and these anisakid samples were identified to represent one of the six anisakid taxa. These PCR assays based on ITS sequences should provide useful molecular tools for the accurate identification and molecular epidemiological investigations of anisakid infections in humans and fish. PMID:18758823

  5. Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential.

    PubMed

    Chen, Q; Yu, H Q; Lun, Z R; Chen, X G; Song, H Q; Lin, R Q; Zhu, X Q

    2008-12-01

    Based on the sequences of the internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA) for six taxa of anisakids, namely, Anisakis simplex (s.s.), Anisakis typica, Anisakis pegreffii, Hysterothylacium aduncum, Hysterothylacium sp, and Contracaccum osculatum C, specific primers were designed in the ITS-1 and/or ITS-2 for each of the six anisakid taxa. These specific primers were used to develop polymerase chain reaction (PCR) tools for the identification of these anisakid taxa of sea fish by amplifying partial ITS-1 and/or ITS-2 of rDNA from anisakid nematodes. This approach allowed their specific identification, with no amplicons being amplified from heterogeneous DNA samples, and sequencing confirmed the identity of the DNA fragments amplified. The minimum amounts of DNA detectable using the PCR assays were 0.5-1 ng. These PCR tools were then applied to ascertain the specific identity of 143 anisakid larval samples collected from fish in China, Canada, Thailand, and Indonesia, and these anisakid samples were identified to represent one of the six anisakid taxa. These PCR assays based on ITS sequences should provide useful molecular tools for the accurate identification and molecular epidemiological investigations of anisakid infections in humans and fish.

  6. Improved HF183 Quantitative Real-Time PCR Assay for Characterization of Human Fecal Pollution in Ambient Surface Water Samples

    PubMed Central

    Green, Hyatt C.; Haugland, Richard A.; Varma, Manju; Millen, Hana T.; Borchardt, Mark A.; Field, Katharine G.; Walters, William A.; Knight, R.; Sivaganesan, Mano; Kelty, Catherine A.

    2014-01-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters. PMID:24610857

  7. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples.

    PubMed

    Green, Hyatt C; Haugland, Richard A; Varma, Manju; Millen, Hana T; Borchardt, Mark A; Field, Katharine G; Walters, William A; Knight, R; Sivaganesan, Mano; Kelty, Catherine A; Shanks, Orin C

    2014-05-01

    Quantitative real-time PCR (qPCR) assays that target the human-associated HF183 bacterial cluster within members of the genus Bacteroides are among the most widely used methods for the characterization of human fecal pollution in ambient surface waters. In this study, we show that a current TaqMan HF183 qPCR assay (HF183/BFDrev) routinely forms nonspecific amplification products and introduce a modified TaqMan assay (HF183/BacR287) that alleviates this problem. The performance of each qPCR assay was compared in head-to-head experiments investigating limits of detection, analytical precision, predicted hybridization to 16S rRNA gene sequences from a reference database, and relative marker concentrations in fecal and sewage samples. The performance of the modified HF183/BacR287 assay is equal to or improves upon that of the original HF183/BFDrev assay. In addition, a qPCR chemistry designed to combat amplification inhibition and a multiplexed internal amplification control are included. In light of the expanding use of PCR-based methods that rely on the detection of extremely low concentrations of DNA template, such as qPCR and digital PCR, the new TaqMan HF183/BacR287 assay should provide more accurate estimations of human-derived fecal contaminants in ambient surface waters.

  8. A PCR-based assay for discriminating Cervus and Rangifer (Cervidae) antlers with mitochondrial DNA polymorphisms.

    PubMed

    Kim, Young Hwa; Kim, Eung Soo; Ko, Byong Seob; Oh, Seung-Eun; Ryuk, Jin-Ah; Chae, Seong Wook; Lee, Hye Won; Choi, Go Ya; Seo, Doo Won; Lee, Mi Young

    2012-07-01

    This study describes a method for discriminating Rangifer antlers from true Cervus antlers using agarose gel electrophoresis, capillary electrophoresis, quantitative real-time PCR, and allelic discrimination. Specific primers labeled with fluorescent tags were designed to amplify fragments from the mitochondrial D-loop genes for various Cervus subspecies and Rangifer tarandus differentially. A 466-bp fragment that was observed for both Cervus and Rangifer antlers served as a positive control, while a 270-bp fragment was specifically amplified only from Rangifer antlers. Allelic discrimination was used to differentiate between Cervus and Rangifer antlers, based on the amplification of specific alleles for both types of antlers. These PCR-based assays can be used for forensic and quantitative analyses of Cervus and Rangifer antlers in a single step, without having to obtain any sequence information. In addition, multiple PCR-based assays are more accurate and reproducible than a single assay for species-specific analysis and are especially useful in this study for the identification of original Cervus deer products from fraudulent Rangifer antlers.

  9. Molecular biological identification of Babesia, Theileria, and Anaplasma species in cattle in Egypt using PCR assays, gene sequence analysis and a novel DNA microarray.

    PubMed

    El-Ashker, Maged; Hotzel, Helmut; Gwida, Mayada; El-Beskawy, Mohamed; Silaghi, Cornelia; Tomaso, Herbert

    2015-01-30

    In this preliminary study, a novel DNA microarray system was tested for the diagnosis of bovine piroplasmosis and anaplasmosis in comparison with microscopy and PCR assay results. In the Dakahlia Governorate, Egypt, 164 cattle were investigated for the presence of piroplasms and Anaplasma species. All investigated cattle were clinically examined. Blood samples were screened for the presence of blood parasites using microscopy and PCR assays. Seventy-one animals were acutely ill, whereas 93 were apparently healthy. In acutely ill cattle, Babesia/Theileria species (n=11) and Anaplasma marginale (n=10) were detected. Mixed infections with Babesia/Theileria spp. and A. marginale were present in two further cases. A. marginale infections were also detected in apparently healthy subjects (n=23). The results of PCR assays were confirmed by DNA sequencing. All samples that were positive by PCR for Babesia/Theileria spp. gave also positive results in the microarray analysis. The microarray chips identified Babesia bovis (n=12) and Babesia bigemina (n=2). Cattle with babesiosis were likely to have hemoglobinuria and nervous signs when compared to those with anaplasmosis that frequently had bloody feces. We conclude that clinical examination in combination with microscopy are still very useful in diagnosing acute cases of babesiosis and anaplasmosis, but a combination of molecular biological diagnostic assays will detect even asymptomatic carriers. In perspective, parallel detection of Babesia/Theileria spp. and A. marginale infections using a single microarray system will be a valuable improvement.

  10. The Validation and Clinical Implementation of BRCAplus: A Comprehensive High-Risk Breast Cancer Diagnostic Assay

    PubMed Central

    Chong, Hansook Kim; Wang, Tao; Lu, Hsiao-Mei; Seidler, Sara; Lu, Hong; Keiles, Steven; Chao, Elizabeth C.; Stuenkel, A. J.; Li, Xiang; Elliott, Aaron M.

    2014-01-01

    Breast cancer is the most commonly diagnosed cancer in women, with 10% of disease attributed to hereditary factors. Although BRCA1 and BRCA2 account for a high percentage of hereditary cases, there are more than 25 susceptibility genes that differentially impact the risk for breast cancer. Traditionally, germline testing for breast cancer was performed by Sanger dideoxy terminator sequencing in a reflexive manner, beginning with BRCA1 and BRCA2. The introduction of next-generation sequencing (NGS) has enabled the simultaneous testing of all genes implicated in breast cancer resulting in diagnostic labs offering large, comprehensive gene panels. However, some physicians prefer to only test for those genes in which established surveillance and treatment protocol exists. The NGS based BRCAplus test utilizes a custom tiled PCR based target enrichment design and bioinformatics pipeline coupled with array comparative genomic hybridization (aCGH) to identify mutations in the six high-risk genes: BRCA1, BRCA2, PTEN, TP53, CDH1, and STK11. Validation of the assay with 250 previously characterized samples resulted in 100% detection of 3,025 known variants and analytical specificity of 99.99%. Analysis of the clinical performance of the first 3,000 BRCAplus samples referred for testing revealed an average coverage greater than 9,000X per target base pair resulting in excellent specificity and the sensitivity to detect low level mosaicism and allele-drop out. The unique design of the assay enabled the detection of pathogenic mutations missed by previous testing. With the abundance of NGS diagnostic tests being released, it is essential that clinicians understand the advantages and limitations of different test designs. PMID:24830819

  11. Comparison between a Broad-Range Real-Time and a Broad-Range End-Point PCR Assays for the Detection of Bacterial 16S rRNA in Clinical Samples.

    PubMed

    Meddeb, Mariam; Koebel, Christelle; Jaulhac, Benoît; Schramm, Frédéric

    2016-01-01

    Broad range PCR targeting the 16S rRNA gene is widely used to test clinical samples for the presence of bacterial DNA. End-point 16S PCR is both time-consuming and at high risk of cross-contamination. Prior to the replacement of the 16S end-point PCR assay routinely used in our clinical laboratory by a new 16S real-time PCR assay, we aimed to compare the performances of both techniques for the direct diagnosis of bacterial infections in clinical samples. In this prospective study, 129 clinical samples were included for direct comparison of both techniques. The sensitivity of 16S real-time PCR assay (76%) was significantly higher than that of end-point 16S PCR assay (41%) (p<0.01). Specificities of both PCR assays did not differ significantly (p=0.43). The 16S real-time PCR assay yielded an etiological diagnosis in 19% of culture-negative samples. It constitutes a reliable and complementary diagnostic tool to the bacterial culture.

  12. Evaluation of a rapid and completely automated real-time reverse transcriptase PCR assay for diagnosis of enteroviral meningitis.

    PubMed

    Nolte, Frederick S; Rogers, Beverly B; Tang, Yi-Wei; Oberste, M Steven; Robinson, Christine C; Kehl, K Sue; Rand, Kenneth A; Rotbart, Harley A; Romero, Jose R; Nyquist, Ann-Christine; Persing, David H

    2011-02-01

    Nucleic acid amplification tests (NAATs) for enterovirus RNA in cerebrospinal fluid (CSF) have emerged as the new gold standard for diagnosis of enteroviral meningitis, and their use can improve the management and decrease the costs for caring for children with enteroviral meningitis. The Xpert EV assay (Cepheid, Sunnyvale, CA) is a rapid, fully automated real-time PCR test for the detection of enterovirus RNA that was approved by the U.S. Food and Drug Administration for in vitro diagnostic use in March 2007. In this multicenter trial we established the clinical performance characteristics of the Xpert EV assay in patients presenting with meningitis symptoms relative to clinical truth. Clinical truth for enteroviral meningitis was defined as clinical evidence of meningitis, the absence of another detectable pathogen in CSF, and detection of enterovirus in CSF either by two reference NAATs or by viral culture. A total of 199 prospectively and 235 retrospectively collected specimens were eligible for inclusion in this study. The overall prevalence of enteroviral meningitis was 26.04%. The Xpert EV assay had a sensitivity of 94.69% (90% confidence interval [CI] = 89.79 to 97.66%), specificity of 100% (90% CI = 99.07 to 100%), positive predictive value of 100%, negative predictive value of 98.17, and an accuracy of 98.62% relative to clinical truth. The Xpert EV assay demonstrated a high degree of accuracy for diagnosis of enteroviral meningitis. The simplicity and on-demand capability of the Xpert EV assay should prove to be a valuable adjunct to the evaluation of suspected meningitis cases.

  13. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells.

    PubMed

    Wang, Xiao; Peden, Keith; Murata, Haruhiko

    2015-12-16

    Human cytomegalovirus (HCMV) is a leading cause of congenital infection that can result in serious disabilities in affected children. To facilitate HCMV vaccine development, a microscale neutralization assay based on reverse transcription quantitative PCR (RT-qPCR) was developed to quantify HCMV-neutralizing antibodies. Our approach relies on the generation of crude lysates from virus-infected cells that are amenable to direct analysis by RT-qPCR, thereby circumventing rate-limiting procedures associated with sample RNA extraction and purification. By serial passaging of the laboratory HCMV strain AD169 in epithelial cells (ARPE-19), a revertant virus with restored epithelial cell tropism, designated AD169(wt131), was obtained. AD169 and AD169(wt131) were evaluated in both epithelial cells (ARPE-19) and fibroblasts (MRC-5) by one-step RT-qPCR targeting the immediate-early gene IE1 transcript of HCMV. Expression kinetics indicated that RT-qPCR assessment could be conducted as early as 6h post-infection. Human serum samples (n=30) from healthy donors were tested for HCMV-specific IgG using a commercially available ELISA and for HCMV-neutralizing activity using our RT-qPCR-based neutralization assay. In agreement with the ELISA results, higher neutralizing activity was observed in the HCMV IgG seropositive group when compared with the HCMV IgG seronegative group. In addition, HCMV IgG seropositive human sera exhibited higher neutralizing titers using epithelial cells compared with using fibroblasts (geometric mean titers of 344 and 8 in ARPE-19 cells and MRC-5 cells, respectively). Our assay was robust to variation in input virus dose. In addition, a simple lysis buffer containing a non-ionic detergent was successfully demonstrated to be a less costly alternative to commercial reagents for cell-lysate preparation. Thus, our rapid HCMV neutralization assay may be a straightforward and flexible high-throughput tool for measuring antibody responses induced by vaccination

  14. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    PubMed Central

    Bode, Elizabeth; Hurtle, William; Norwood, David

    2004-01-01

    Real-time PCR has become an important method for the rapid identification of Bacillus anthracis since the 2001 anthrax mailings. Most real-time PCR assays for B. anthracis have been developed to detect virulence genes located on the pXO1 and pXO2 plasmids. In contrast, only two published chromosomal targets exist, the rpoB gene and the gyrA gene. In the present study, subtraction-hybridization with a plasmid-cured B. anthracis tester strain and a Bacillus cereus driver was used to find a unique chromosomal sequence. By targeting this region, a real-time assay was developed with the Ruggedized Advanced Pathogen Identification Device. Further testing has revealed that the assay has 100% sensitivity and 100% specificity, with a limit of detection of 50 fg of DNA. The results of a search for sequences with homology with the BLAST program demonstrated significant alignment to the recently published B. anthracis Ames strain, while an inquiry for protein sequence similarities indicated homology with an abhydrolase from B. anthracis strain A2012. The importance of this chromosomal assay will be to verify the presence of B. anthracis independently of plasmid occurrence. PMID:15583318

  15. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained.

  16. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. PMID:24128588

  17. Edesign: Primer and Enhanced Internal Probe Design Tool for Quantitative PCR Experiments and Genotyping Assays

    PubMed Central

    Kasahara, Naoko; Delobel, Diane; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J. L.; Hayashizaki, Yoshihide; Usui, Kengo; Harbers, Matthias

    2016-01-01

    Analytical PCR experiments preferably use internal probes for monitoring the amplification reaction and specific detection of the amplicon. Such internal probes have to be designed in close context with the amplification primers, and may require additional considerations for the detection of genetic variations. Here we describe Edesign, a new online and stand-alone tool for designing sets of PCR primers together with an internal probe for conducting quantitative real-time PCR (qPCR) and genotypic experiments. Edesign can be used for selecting standard DNA oligonucleotides like for instance TaqMan probes, but has been further extended with new functions and enhanced design features for Eprobes. Eprobes, with their single thiazole orange-labelled nucleotide, allow for highly sensitive genotypic assays because of their higher DNA binding affinity as compared to standard DNA oligonucleotides. Using new thermodynamic parameters, Edesign considers unique features of Eprobes during primer and probe design for establishing qPCR experiments and genotyping by melting curve analysis. Additional functions in Edesign allow probe design for effective discrimination between wild-type sequences and genetic variations either using standard DNA oligonucleotides or Eprobes. Edesign can be freely accessed online at http://www.dnaform.com/edesign2/, and the source code is available for download. PMID:26863543

  18. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    SciTech Connect

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  19. Development of a Single-Reaction Multiplex PCR Toxin Typing Assay for Staphylococcus aureus Strains

    PubMed Central

    Sharma, Naresh K.; Rees, Catherine E. D.; Dodd, Christine E. R.

    2000-01-01

    We describe here the development of a single-reaction multiplex PCR assay for the enterotoxin genes from Staphylococcus aureus that utilizes a universal toxin gene primer in combination with toxin-specific primers to amplify characteristic toxin gene products. In combination with a new DNA purification method, the assay can detect enterotoxin genes A to E from a pure culture within 3 to 4 h. The test was used to characterize a diverse set of environmental S. aureus isolates, and a 99% correlation with toxin typing using standard immunological tests was found. The design of the assay allows it to be extended to include both newly characterized and as-yet-unknown toxin genes. PMID:10742210

  20. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods.

    PubMed

    Ali, Md Eaqub; Razzak, Md Abdur; Hamid, Sharifah Bee Abd; Rahman, Md Mahfujur; Amin, Md Al; Rashid, Nur Raifana Abd; Asing

    2015-06-15

    Food falsification has direct impact on public health, religious faith, fair-trades and wildlife. For the first time, here we described a multiplex polymerase chain reaction assay for the accurate identification of five meat species forbidden in Islamic foods in a single assay platform. Five pairs of species-specific primers were designed targeting mitochondrial ND5, ATPase 6, and cytochrome b genes to amplify 172, 163, 141, 129 and 108 bp DNA fragments from cat, dog, pig, monkey and rat meats, respectively. All PCR products were identified in gel-images and electrochromatograms obtained from Experion Bioanalyzer. Species-specificity checking against 15 important meat and fish and 5 plant species detected no cross-species amplification. Screening of target species in model and commercial meatballs reflected its application to detect target species in process foods. The assay was tested to detect 0.01-0.02 ng DNA under raw states and 1% suspected meats in meatball formulation.

  1. A PCR-based microwell-plate hybrid capture assay for high-risk human papillomavirus.

    PubMed

    Wang, Yumei; Liu, Yan; Ding, Yaping; Sun, Nan; Gong, Yafang; Gao, Shangxian

    2014-12-01

    Human papillomavirus (HPV) is associated with cervical cancer. In this study, we developed a high-throughput microwell-plate hybrid capture (MPHC) method for epidemiological studies of high-risk HPV (HRHPV). The results with 1238 cervical specimens from female outpatients showed a concordance rate of 94.3 % between the MPHC and Hybrid Capture II assay. The MPHC assay showed an average HRHPV rate of 29.3 % for high-risk populations in populous cities of China. The established MPHC assay could sensitively and specifically detect 13 types of HRHPV and is suitable for large-scale screening, especially in areas where real-time PCR or fluorescence equipment is unavailable.

  2. Audit and improve! Evaluation of a real-time probe-based PCR assay with internal control for the direct detection of Mycobacterium tuberculosis complex.

    PubMed

    Inoue, M; Tang, W Y; Wee, S Y; Barkham, T

    2011-01-01

    We retrospectively audited the performance of the commercial kit in use in our laboratory for the detection of Mycobacterium tuberculosis complex (MTBC) and found the sensitivity to be unacceptably low at 69% (52/75). We developed an in-house end-point polymerase chain reaction (PCR) detecting IS6110, an IS-like element of MTBC, and achieved a sensitivity of 90% (66/73) with the same DNA samples, re-emphasising the poor performance of the commercial kit. In order to avoid specificity issues surrounding gel-based PCR, we developed a probe-based real-time PCR assay with an internal control and achieved a sensitivity of 84%, specificity of 97% and diagnostic odds ratio (DOR) of 207. The evaluation was performed on clinically requested samples, so we expect the performance of the assay in real life to match the data from this evaluation. Centers for Disease Control and Prevention (CDC) guidelines recommending nucleic acid tests for the investigation of possible cases of tuberculosis are expected to promote the use of molecular assays. It is important that clinical laboratories do not assume that assays, in-house or commercial, will perform well or that they will continue to perform well. Audit at regular intervals is necessary to maintain confidence and to demonstrate that the assay works to specification in the real test population.

  3. Suitability of stx-PCR directly from fecal samples in clinical diagnostics of STEC.

    PubMed

    Tunsjø, Hege S; Kvissel, Anne K; Follin-Arbelet, Benoit; Brotnov, Beth-Marie; Ranheim, Trond E; Leegaard, Truls M

    2015-10-01

    PCR-based testing for Shiga toxin producing Escherichia coli (STEC) directly from fecal samples is increasingly being implemented in routine diagnostic laboratories. These methods aim to detect clinically relevant amounts of microbes and not stx-carrying phages or low backgrounds of STEC. We present a diagnostic procedure and results from 1 year of stx-targeted real-time PCR of fecal samples from patients with gastrointestinal symptoms in Norway. A rapid stx2 subtyping strategy is described, which aims to quickly reveal the virulence potential of the microbe. stx was detected in 22 of 3320 samples, corresponding to a PCR positive rate of 0.66%. STEC were cultured from 72% of the PCR positive samples. Four stx1 isolates, eight stx2 isolates, and four isolates with both stx1 and stx2 were identified. With the method presented, stx-carrying phages are not commonly detected. Our results support the use of molecular testing combined with classical culture techniques for routine diagnostic purposes.

  4. A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli.

    PubMed

    Boureau, T; Kerkoud, M; Chhel, F; Hunault, G; Darrasse, A; Brin, C; Durand, K; Hajri, A; Poussier, S; Manceau, C; Lardeux, F; Saubion, F; Jacques, M-A

    2013-01-01

    In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred. PMID:23142341

  5. Development and validation of a quantitative real time PCR assay for BK virus.

    PubMed

    Mitui, Midori; Leos, N Kristine; Lacey, Damon; Doern, Christopher; Rogers, Beverly B; Park, Jason Y

    2013-01-01

    Several studies have shown that BK viral load in plasma and urine are reliable markers for the detection of BK virus associated nephropathy (BKVAN) in renal transplant patients. We developed a quantitative real time PCR assay based on TaqMan technology for the measurement of BK viral load in plasma and urine. Considering the high similarity of the nucleotide sequence of the BK virus (BKV) with the JC virus (JCV), we designed this assay to specifically amplify BKV. We determined the viral DNA recovery rate on manual (QIAGEN's QIAamp DNA Blood Mini Kit) and automated (BioMerieux's NucliSENS EasyMAG) extraction methods. The comparison showed a higher viral DNA recovery rate on the automated extraction (61-76% in plasma and 52-65% in urine) as compared to the manual method (49-52% in plasma and 33-56% in urine). Quantitation of the viral load was performed using an external standard curve that was constructed with serial dilution of a plasmid containing the full length of the BKV genome. Commercially available quantitative BKV standards showed good correlation with the plasmid standard. The reproducibility of the assay was determined based on the Ct values of the amplified products as well as in BK copies per milliliter of sample. This assay is linear over a 7 log range (10 to 1 × 10(7) copies per reaction), no cross-reactivity was detected with the closest-related polyomavirus JCV, as well as other viruses that may be found in immunocompromised patients, and human genomic DNA. The limit of detection of the assay is 300 copies per milliliter in both plasma and urine and the limit of quantitation is 1000 copies per milliliter using the NATtrol BK Virus Linearity Panel (ZeptoMetrix). This real time PCR assay provides a reliable and sensitive method for the quantitation of BKV in plasma and urine samples.

  6. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes

    PubMed Central

    2013-01-01

    Background A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars ‘Florina’ and ‘Gala’. Results We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. Conclusion The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy. PMID:23522122

  7. High diagnostic yield by CSF-PCR for entero- and herpes simplex viruses and TBEV serology in adults with acute aseptic meningitis in Stockholm.

    PubMed

    Franzen-Rohl, Elisabeth; Larsson, Kenny; Skoog, Eva; Tiveljung-Lindell, Annika; Grillner, Lena; Aurelius, Elisabeth; Glimåker, Martin

    2008-01-01

    Acute aseptic meningitis (AAM) affects 10-20/100,000 inhabitants per years in Sweden. Up to the beginning of the 1980s the diagnoses were made by virus isolation and/or determination of viral antibodies in serum. The development of PCR for detection of viruses in CSF samples has increased the sensitivity and diagnostic efficiency considerably. We investigated the aetiology of AAM and the diagnostic efficiency in an adult population in Stockholm, using a limited first-line combination of microbiological assays. CSF and serum samples, consecutively collected in 419 patients with clinical symptoms of AAM in northern Stockholm during 1999-2004, were included. PCR assays for herpes simplex virus (HSV) DNA and enterovirus (EV) RNA in the CSF as well as ELISA for IgM in serum to tick-borne encephalitis virus (TBEV) were performed routinely. A viral diagnosis was obtained in 255 of the 419 cases (62%) with these routinely performed assays. Clinical findings in combination with additional diagnostic tests resulted in an overall aetiological yield of 72%. EV was the major causative agent (27%) followed by TBEV (21%) and HSV-2 (19%). We conclude that consistent use of CSF-PCR for EV and HSV and TBEV serology established a diagnosis in the majority of AAM patients.

  8. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  9. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  10. Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.

    PubMed

    Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R

    2015-11-17

    Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.

  11. A Family-Wide RT-PCR Assay for Detection of Paramyxoviruses and Application to a Large-Scale Surveillance Study

    PubMed Central

    van Boheemen, Sander; Bestebroer, Theo M.; Verhagen, Josanne H.; Osterhaus, Albert D. M. E.; Pas, Suzan D.; Herfst, Sander; Fouchier, Ron A. M.

    2012-01-01

    Family-wide molecular diagnostic assays are valuable tools for initial identification of viruses during outbreaks and to limit costs of surveillance studies. Recent discoveries of paramyxoviruses have called for such assay that is able to detect all known and unknown paramyxoviruses in one round of PCR amplification. We have developed a RT-PCR assay consisting of a single degenerate primer set, able to detect all members of the Paramyxoviridae family including all virus genera within the subfamilies Paramyxovirinae and Pneumovirinae. Primers anneal to domain III of the polymerase gene, with the 3′ end of the reverse primer annealing to the conserved motif GDNQ, which is proposed to be the active site for nucleotide polymerization. The assay was fully optimized and was shown to indeed detect all available paramyxoviruses tested. Clinical specimens from hospitalized patients that tested positive for known paramyxoviruses in conventional assays were also detected with the novel family-wide test. A high-throughput fluorescence-based RT-PCR version of the assay was developed for screening large numbers of specimens. A large number of samples collected from wild birds was tested, resulting in the detection of avian paramyxoviruses type 1 in both barnacle and white-fronted geese, and type 8 in barnacle geese. Avian metapneumovirus type C was found for the first time in Europe in mallards, greylag geese and common gulls. The single round family-wide RT-PCR assay described here is a useful tool for the detection of known and unknown paramyxoviruses, and screening of large sample collections from humans and animals. PMID:22496880

  12. Allele Specific Locked Nucleic Acid Quantitative PCR (ASLNAqPCR): An Accurate and Cost-Effective Assay to Diagnose and Quantify KRAS and BRAF Mutation

    PubMed Central

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes. PMID:22558339

  13. Allele specific locked nucleic acid quantitative PCR (ASLNAqPCR): an accurate and cost-effective assay to diagnose and quantify KRAS and BRAF mutation.

    PubMed

    Morandi, Luca; de Biase, Dario; Visani, Michela; Cesari, Valentina; De Maglio, Giovanna; Pizzolitto, Stefano; Pession, Annalisa; Tallini, Giovanni

    2012-01-01

    The use of tyrosine kinase inhibitors (TKIs) requires the testing for hot spot mutations of the molecular effectors downstream the membrane-bound tyrosine kinases since their wild type status is expected for response to TKI therapy. We report a novel assay that we have called Allele Specific Locked Nucleic Acid quantitative PCR (ASLNAqPCR). The assay uses LNA-modified allele specific primers and LNA-modified beacon probes to increase sensitivity, specificity and to accurately quantify mutations. We designed primers specific for codon 12/13 KRAS mutations and BRAF V600E, and validated the assay with 300 routine samples from a variety of sources, including cytology specimens. All were analyzed by ASLNAqPCR and Sanger sequencing. Discordant cases were pyrosequenced. ASLNAqPCR correctly identified BRAF and KRAS mutations in all discordant cases and all had a mutated/wild type DNA ratio below the analytical sensitivity of the Sanger method. ASLNAqPCR was 100% specific with greater accuracy, positive and negative predictive values compared with Sanger sequencing. The analytical sensitivity of ASLNAqPCR is 0.1%, allowing quantification of mutated DNA in small neoplastic cell clones. ASLNAqPCR can be performed in any laboratory with real-time PCR equipment, is very cost-effective and can easily be adapted to detect hot spot mutations in other oncogenes.

  14. A Multiplex Real-Time PCR Assay for Screening Gypsy Moths (Lepidoptera: Erebidae) in the United States for Evidence of an Asian Genotype.

    PubMed

    Islam, M S; Barr, N B; Braswell, W E; Martinez, M; Ledezma, L A; Molongoski, J; Mastro, V; Schuenzel, E L

    2015-10-01

    European gypsy moth populations (Lymantria dispar L.) are well established and a proven destructive force in hardwood trees throughout the United States and Canada. Introduction of the exotic Asian gypsy moth into North America would be even more impactful, as Asian gypsy moth populations have wider host ranges, and are capable of naturally dispersing more rapidly due to female flight ability. To support early detection and exclusion of Asian gypsy moth, the U.S. Department of Agriculture (USDA) uses molecular techniques to screen moths trapped in North America for evidence of common Asian genotype. In order to strengthen U.S. domestic capacity to screen moths quickly and efficiently, we report a real-time PCR assay for this pest. A probe system using TaqMan 5' nuclease chemistry is reported for detection of an allele associated with common Asian gypsy moth genotypes. The targeted allele is located at the nuclear FS1 locus currently used by the USDA in conventional PCR tests to screen for evidence of Asian gypsy moth introductions or introgression. The diagnostic probe is successfully multiplexed with a conserved 18S probe system to detect reaction failure due to poor sample quality or quantity. The specificity, sensitivity, and repeatability of the FS1-18S multiplex real-time PCR assay were tested on laboratory-reared and field-collected moths to demonstrate diagnostic utility. Implications of the new assay as a screening tool for evidence of Asian gypsy moth introgression and introduction are discussed.

  15. A Multiplex Real-Time PCR Assay for Screening Gypsy Moths (Lepidoptera: Erebidae) in the United States for Evidence of an Asian Genotype.

    PubMed

    Islam, M S; Barr, N B; Braswell, W E; Martinez, M; Ledezma, L A; Molongoski, J; Mastro, V; Schuenzel, E L

    2015-10-01

    European gypsy moth populations (Lymantria dispar L.) are well established and a proven destructive force in hardwood trees throughout the United States and Canada. Introduction of the exotic Asian gypsy moth into North America would be even more impactful, as Asian gypsy moth populations have wider host ranges, and are capable of naturally dispersing more rapidly due to female flight ability. To support early detection and exclusion of Asian gypsy moth, the U.S. Department of Agriculture (USDA) uses molecular techniques to screen moths trapped in North America for evidence of common Asian genotype. In order to strengthen U.S. domestic capacity to screen moths quickly and efficiently, we report a real-time PCR assay for this pest. A probe system using TaqMan 5' nuclease chemistry is reported for detection of an allele associated with common Asian gypsy moth genotypes. The targeted allele is located at the nuclear FS1 locus currently used by the USDA in conventional PCR tests to screen for evidence of Asian gypsy moth introductions or introgression. The diagnostic probe is successfully multiplexed with a conserved 18S probe system to detect reaction failure due to poor sample quality or quantity. The specificity, sensitivity, and repeatability of the FS1-18S multiplex real-time PCR assay were tested on laboratory-reared and field-collected moths to demonstrate diagnostic utility. Implications of the new assay as a screening tool for evidence of Asian gypsy moth introgression and introduction are discussed. PMID:26453734

  16. Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer

    PubMed Central

    Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas

    2016-01-01

    Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227

  17. Evaluation of a commercially developed semiautomated PCR-surface-enhanced raman scattering assay for diagnosis of invasive fungal disease.

    PubMed

    White, P Lewis; Hibbitts, Samantha J; Perry, Michael D; Green, Julie; Stirling, Emma; Woodford, Luke; McNay, Graeme; Stevenson, Ross; Barnes, Rosemary A

    2014-10-01

    Nonculture-based tests are gaining popularity in the diagnosis of invasive fungal disease (IFD), but PCR is excluded from disease-defining criteria because of limited standardization and a lack of commercial assays. Commercial PCR assays may have a standardized methodology while providing quality assurance. The detection of PCR products by a surface-enhanced Raman scattering (SERS) assay potentially provides superior analytical sensitivity and multiplexing capacity compared to that of real-time PCR. Using this approach, the RenDx Fungiplex assay was developed to detect Candida and Aspergillus. Analytical and clinical evaluations of the assay were undertaken using extraction methods according to European Aspergillus PCR Initiative (EAPCRI) recommendations. A total of 195 previously extracted samples (133 plasma, 49 serum, and 13 whole blood) from 112 patients (29 with proven/probable IFD) were tested. The 95% limit of detection of Candida and Aspergillus was 200 copies per reaction, with an overall reproducibility of 92.1% for detecting 20 input copies per PCR, and 89.8% for the nucleic acid extraction-PCR-SERS process for detecting fungal burdens of <20 genome equivalents per sample. A clinical evaluation showed that assay positivity significantly correlated with IFD (P < 0.0001). The sensitivity of the assay was 82.8% and was similar for both Candida (80.0%) and Aspergillus (85.7%). The specificity was 87.5% and was increased (97.5%) by using a multiple (≥ 2 samples) PCR-positive threshold. In summary, the RenDx Fungiplex assay is a PCR-SERS assay for diagnosing IFD and demonstrates promising clinical performance on a variety of samples. This was a retrospective clinical evaluation, and performance is likely to be enhanced through a prospective analysis of clinical validity and by determining clinical utility. PMID:25031443

  18. Quantification of substance p mRNA in human immune cells by real-time reverse transcriptase PCR assay.

    PubMed

    Lai, Jian-Ping; Douglas, Steven D; Shaheen, Farida; Pleasure, David E; Ho, Wen-Zhe

    2002-01-01

    We have applied a newly developed real-time reverse transcriptase (RT) PCR (RT-PCR) assay for quantification of substance P (SP) mRNA expression (the SP real-time RT-PCR assay) in human blood monocyte-derived macrophages, peripheral blood lymphocytes, and microglia isolated from fetal brain. The SP real-time RT-PCR assay had a sensitivity of 60 mRNA copies, with a dynamic range of detection between 60 and 600,000 copies of the SP gene transcript per reaction mixture. The coefficient of variation of the threshold cycle number between the SP real-time RT-PCR assays was less than 1.16%. This assay with an SP-specific primer pair efficiently recognizes all four isoforms of preprotachykinin A (the SP precursor) gene transcripts. In order to use this assay to measure the levels of SP mRNA in the human immune cells quantitatively, we designed a specific probe (molecular beacon) derived from exon 3 of the SP gene. We demonstrated that the real-time RT-PCR quantitatively detected SP mRNA in the human immune cells, among which the microglia isolated from fetal brain had the highest levels of SP mRNA. The SP real-time PCR assay yielded reproducible data, as the intra-assay variation was less than 1%. Thus, it is feasible to apply the real-time RT-PCR assay for quantification of SP mRNA levels in human immune cells, as well as in other nonneuronal cells. Since SP is a major modulator of neuroimmunoregulation, this assay has the potential for widespread application for basic and clinical investigations.

  19. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis.

    PubMed

    Sales, Mariana L; Fonseca Júnior, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Soares Filho, Paulo Martins; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 - 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% - 100%) and 100% (CI = 93.98% - 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.

  20. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis

    PubMed Central

    Sales, Mariana L.; Fonseca, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Filho, Paulo Martins Soares; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 – 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% – 100%) and 100% (CI = 93.98% – 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method. PMID:25763042

  1. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR. PMID:27143320

  2. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR.

  3. The IRIDICA PCR/Electrospray Ionization–Mass Spectrometry Assay on Bronchoalveolar Lavage for Bacterial Etiology in Mechanically Ventilated Patients with Suspected Pneumonia

    PubMed Central

    Ehn, Fredrik; Giske, Christian G.; Ullberg, Måns; Hedlund, Jonas; Petersson, Johan; Spindler, Carl; Özenci, Volkan

    2016-01-01

    We studied the diagnostic performance of the IRIDICA PCR/electrospray ionization–mass spectrometry (PCR/ESI-MS) assay applied on bronchoalveolar lavage (BAL) samples, from 51 mechanically ventilated patients with suspected pneumonia, in a prospective study. In 32 patients with X-ray verified pneumonia, PCR/ESI-MS was positive in 66% and BAL culture was positive in 38% (p = 0.045), and either of the methods was positive in 69%. The following BAL result combinations were noted: PCR/ESI-MS+/culture+, 34%; PCR/ESI-MS+/culture-, 31%; PCR/ESI-MS-/culture+, 3.1%; PCR/ESI-MS-/culture-, 31%; kappa 0.36 (95% confidence interval (CI), 0.10–0.63). In pneumonia patients without prior antibiotic treatment, optimal agreement was noted with 88% PCR/ESI-MS+/culture+ and 12% PCR/ESI-MS-/culture- (kappa 1.0). However, in patients with prior antibiotic treatment, the test agreement was poor (kappa 0.16; 95% CI, -0.10–0.44), as 10 patients were PCR/ESI-MS+/culture-. In 8/10 patients the pathogens detected by PCR/ESI-MS could be detected by other conventional tests or PCR tests on BAL. Compared with BAL culture, PCR/ESI-MS showed specificities and negative predictive values of ≥87% for all individual pathogens, an overall sensitivity of 77% and positive predictive value (PPV) of 42%. When other conventional tests and PCR tests were added to the reference standard, the overall PPV increased to 87%. The PCR/ESI-MS semi-quantitative level tended to be higher for PCR/ESI-MS positive cases with pneumonia compared with cases without pneumonia (p = 0.074). In conclusion, PCR/ESI-MS applied on BAL showed a promising performance and has potential to be clinically useful in mechanically ventilated patients with suspected pneumonia. The usefulness of the method for establishment of pneumonia etiology and selection of antibiotic therapy should be further studied. PMID:27463099

  4. Evaluation of a nested-PCR assay for Streptococcus pneumoniae detection in pediatric patients with community-acquired pneumonia.

    PubMed

    Mayoral, C; Noroña, M; Baroni, M R; Giani, R; Zalazar, F

    2005-01-01

    The aim of the present work was to evaluate the usefulness of a simplified method for DNA extraction coupled to a nested-PCR protocol, based on the amplification of pneumolysin gene fragments for the diagnosis of pneumococcal pneumonia in pediatric patients with clinical and radiological evidence of bacterial infection. Bacterial DNA was extracted from sera by boiling and used without further purification in the PCR for the pneumolysin gene. None toxic reagents were used and the necessary steps to obtain the DNA were left at a minimum; furthermore, it overcomes the use of expensive commercial kits for DNA purification. The total procedure can be completed the same day of sampling and, most important, it avoids the use of sophisticated technology. Both in vitro analytical specificity and sensitivity (10 CFU/ml) of the assay were similar to those previously reported. When clinical samples were tested, the rate of positivity was shown to be 83.3% and 71% in pediatric patients with positive (group a) and negative blood cultures (group b), respectively. In group a, DNA detection was successful in samples from children without treatment or with less than 48 h of antibiotic therapy. None amplification was obtained from sera patients with viral infection or in samples from healthy controls. The application of the strategy described in this paper substantially seems to improve the diagnostic process in a determinate group: blood culture-negative children with pneumonia.

  5. Development and Evaluation of Serotype- and Group-Specific Fluorogenic Reverse Transcriptase PCR (TaqMan) Assays for Dengue Virus

    PubMed Central

    Callahan, Johnny D.; Wu, Shuenn-Jue L.; Dion-Schultz, Amanda; Mangold, Beverly E.; Peruski, Leonard F.; Watts, Douglas M.; Porter, Kevin R.; Murphy, Gerald R.; Suharyono, Wuryadi; King, Chwan-Chuen; Hayes, Curtis G.; Temenak, Joseph J.

    2001-01-01

    Five fluorogenic probe hydrolysis (TaqMan) reverse transcriptase PCR (RT-PCR) assays were developed for serotypes 1 to 4 and group-specific detection of dengue virus. Serotype- and group-specific oligonucleotide primers and fluorogenic probes were designed against conserved regions of the dengue virus genome. The RT-PCR assay is a rapid single-tube method consisting of a 30-min RT step linked to a 45-cycle PCR at 95 and 60°C that generates a fluorogenic signal in positive samples. Assays were initially evaluated against cell culture-derived dengue stock viruses and then with 67 dengue viremic human sera received from Peru, Indonesia, and Taiwan. The TaqMan assays were compared to virus isolation using C6/36 cells followed by an immunofluorescence assay using serotype-specific monoclonal antibodies. Viral titers in sera were determined by plaque assay in Vero cells. The serotype-specific TaqMan RT-PCR assay detected 62 of 67 confirmed dengue virus-positive samples, for a sensitivity of 92.5%, while the group-specific assay detected 66 of 67 confirmed dengue virus-positive samples, for a sensitivity of 98.5%. The TaqMan RT-PCR assays have a specificity of 100% based on the serotype concordance of all assays compared to cell culture isolation and negative results obtained when 21 normal human sera and plasma samples were tested. Our results demonstrate that the dengue virus TaqMan RT-PCR assays may be utilized as rapid, sensitive, and specific screening and serotyping tools for epidemiological studies of dengue virus infections. PMID:11682539

  6. A common 1317TC polymorphism in MTHFR can lead to erroneous 1298AC genotyping by PCR-RE and TaqMan probe assays.

    PubMed

    Allen, Richard A; Gatalica, Zoran; Knezetic, Joseph; Hatcher, Lori; Vogel, John S; Dunn, S Terence

    2007-01-01

    Multiple polymorphisms of the methylenetetrahydrofolate reductase gene (MTHFR) have been documented, and some are associated with decreased enzyme activity. One polymorphism, 677CT, is commonly tested in the context of thrombosis. Recently, consideration has also been extended to 1298AC, which is also associated with reduced catalytic activity. This report describes problems arising during the development of a PCR restriction enzyme assay for 1298AC. In the process of validating a PCR-MboII assay, it was realized that a nearby 1317TC polymorphism rendered a restriction fragment length polymorphism (RFLP) pattern that was virtually indistinguishable from a 1298A allele. An alternate approach, involving primer mutagenesis and Fnu4HI digestion, resolved the problem. To validate the latter assay, samples were obtained from a CLIA-approved facility that had developed a multiplexed real-time PCR using TaqMan probes for simultaneous assessment of 677CT and 1298AC. Interlaboratory results concurred for 10 out of 11 samples; however, one sample was consistently heterozygous by PCR-Fnu4HI and homozygous 1298CC by real-time PCR. Bidirectional sequencing confirmed that the sample was a compound 1298AC/1317TC heterozygote. It is likely that the 1317C variant, residing with 1298A on one chromosome, disrupted primer annealing in the TaqMan assay, leading to preferential amplification of the 1298C/1317T chromosome and hence an aberrant homozygous 1298CC genotype. This validation exercise emphasizes the need for comprehensive appraisal and continual reassessment of the optimal performance of molecular diagnostic assays. It is hoped that laboratories offering MTHFR 1298AC testing are cognizant of some of the inherent problems in published methods.

  7. A real-time PCR assay for detection and quantification of Verticillium dahliae in spinach seed.

    PubMed

    Duressa, Dechassa; Rauscher, Gilda; Koike, Steven T; Mou, Beiquan; Hayes, Ryan J; Maruthachalam, Karunakaran; Subbarao, Krishna V; Klosterman, Steven J

    2012-04-01

    Verticillium dahliae is a soilborne fungus that causes Verticillium wilt on multiple crops in central coastal California. Although spinach crops grown in this region for fresh and processing commercial production do not display Verticillium wilt symptoms, spinach seeds produced in the United States or Europe are commonly infected with V. dahliae. Planting of the infected seed increases the soil inoculum density and may introduce exotic strains that contribute to Verticillium wilt epidemics on lettuce and other crops grown in rotation with spinach. A sensitive, rapid, and reliable method for quantification of V. dahliae in spinach seed may help identify highly infected lots, curtail their planting, and minimize the spread of exotic strains via spinach seed. In this study, a quantitative real-time polymerase chain reaction (qPCR) assay was optimized and employed for detection and quantification of V. dahliae in spinach germplasm and 15 commercial spinach seed lots. The assay used a previously reported V. dahliae-specific primer pair (VertBt-F and VertBt-R) and an analytical mill for grinding tough spinach seed for DNA extraction. The assay enabled reliable quantification of V. dahliae in spinach seed, with a sensitivity limit of ≈1 infected seed per 100 (1.3% infection in a seed lot). The quantification was highly reproducible between replicate samples of a seed lot and in different real-time PCR instruments. When tested on commercial seed lots, a pathogen DNA content corresponding to a quantification cycle value of ≥31 corresponded with a percent seed infection of ≤1.3%. The assay is useful in qualitatively assessing seed lots for V. dahliae infection levels, and the results of the assay can be helpful to guide decisions on whether to apply seed treatments.

  8. Application of statistical process control to qualitative molecular diagnostic assays.

    PubMed

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data. PMID:25988159

  9. Real-time FRET PCR assay for Salmonella enterica serotype detection in food.

    PubMed

    Olsen, Eric V; Gibbins, Carl S; Grayson, J Kevin

    2009-09-01

    Salmonella enterica subsp. enterica serotypes are leading etiological agents of food-borne gastroenteritis. Traditional identification is laborious and time intensive. Faster molecular methods may allow early identification in contaminated food products. We developed a real-time, fluorescence resonance energy transfer hybridization probe polymerase chain reaction (PCR) assay for S. enterica serotypes on the basis of the exclusive presence of the apeE gene in Salmonella Typhimurium. Assay sensitivity for 12 S. enterica serotypes was as low as 1.87 x 10(2) genomic equivalents per milliliter. PCR efficiency was 94% and the dynamic range was linear over six orders of magnitude from 10(0) to 10(6) copies. The lower limit of detection for 12 different food matrices was between 1.5 x 10(2) and 1.5 x 10(5) CFU/mL without pre-enrichment. When combined with high-throughput automated DNA extraction, 32 food specimens were processed and assayed in less than 2 hours, allowing rapid, specific, sensitive detection of S. enterica serotypes in food products.

  10. Specific detection of Aspergillus parasiticus in wheat flour using a highly sensitive PCR assay.

    PubMed

    Sardiñas, Noelia; Vázquez, Covadonga; Gil-Serna, Jessica; González-Jaen, M Teresa; Patiño, Belén

    2010-06-01

    Aspergillus parasiticus is one of the most important aflatoxin-producing species that contaminates foodstuffs and beverages for human consumption. In this work, a specific and highly sensitive PCR protocol was developed to detect A. parasiticus using primers designed on the multicopy internal transcribed region of the rDNA unit (ITS1-5.8S-ITS2 rDNA). The assay proved to be highly specific for A. parasiticus when tested on a wide range of related and other fungal species commonly found in commodities, and allowing discrimination from the closely related A. flavus. Accuracy of detection and quantification by conventional PCR were tested with genomic DNA obtained from wheat flour artificially contaminated with spore suspensions of known concentrations. Spore concentrations equal or higher than 10(6) spore/g could be detected by the assay directly without prior incubation of the samples. The assay described is suitable for incorporation in routine analyses at critical points of the food chain within HACCP strategies. PMID:20486001

  11. Development of a reliable dual-gene amplification RT-PCR assay for the detection of Turkey Meningoencephalitis virus in Turkey brain tissues.

    PubMed

    Davidson, Irit; Raibstein, Israel; Al-Tori, Amira; Khinich, Yevgeny; Simanov, Michael; Yuval, Chanoch; Perk, Shimon; Lublin, Avishai

    2012-11-01

    The Turkey Meningoencephalitis virus (TMEV) causes neuroparalytic signs, paresis, in-coordination, morbidity and mortality in turkeys. In parallel to the increased worldwide scientific interest in veterinary avian flaviviruses, including the Bagaza, Tembusu and Tembusu-related BYD virus, TMEV-caused disease also reemergence in commercial turkeys during late summer of 2010. While initially TMEV was detected by NS5-gene RT-PCR, subsequently, the env-gene RT-PCR was employed. As lately several inconsistencies were observed between the clinical, serological and molecular detection of the TMEV env gene, this study evaluated whether genetic changes occurred in the recently isolated viruses, and sought to optimize and improve the direct TMEV amplification from brain tissues of affected turkeys. The main findings indicated that no changes occurred during the years in the TMEV genome, but the PCR detection sensitivities of the env and NS5 genes differed. The RT-PCR and RNA purification were optimized for direct amplification from brain tissues without pre-replication of clinical samples in tissue cultures or in embryonated eggs. The amplification sensitivity of the NS5-gene was 10-100 times more than the env-gene when separate. The new dual-gene amplification RT-PCR was similar to that of the NS5 gene, therefore the assay can be considered as a reliable diagnostic assay. Cases where one of the two amplicons would be RT-PCR negative would alert and warn on the virus identity, and possible genetic changes. In addition, the biochemical environment of the dual-gene amplification reaction seemed to contribute in deleting non-specific byproducts that occasionally appeared in the singular RT-PCR assays on RNA purified from brain tissues.

  12. Development of allele-specific PCR and RT-PCR assays for clustered resistance genes using a potato late blight resistance transgene as a model.

    PubMed

    Millett, B P; Bradeen, J M

    2007-02-01

    Members of the NBS-LRR gene family impart resistance to a wide variety of pathogens and are often found clustered within a plant genome. This clustering of homologous sequences can complicate PCR-based characterizations, especially the study of transgenes. We have developed allele-specific PCR and RT-PCR assays for the potato late blight resistance gene RB. Our assay utilizes two approaches toward primer design, allowing discrimination between the RB transgene and both the endogenous RB gene and numerous RB homeologs. First, a reverse primer was designed to take advantage of an indel present in the RB transgene but absent in rb susceptibility alleles, enhancing specificity for the transgene, though not fully discriminating against RB homeologs. Second, a forward primer was designed according to the principles of mismatch amplification mutation assay (MAMA) PCR, targeting SNPs introduced during the cloning of RB. Together, the indel reverse primer and the MAMA forward primer provide an assay that is highly specific for the RB transgene, being capable of distinguishing the transgene from all RB endogenous gene copies and from all RB paralogs in a diverse collection of wild and cultivated potato genotypes. These primers have been successfully multiplexed with primers of an internal control. The multiplexed assay is useful for both PCR and RT-PCR applications. Double MAMA-PCR, in which both PCR primers target separate transgene-specific SNPs, was also tested and shown to be equally specific for the RB transgene. We propose extending the use of MAMA for the characterization of resistance transgenes. PMID:17177064

  13. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants.

    PubMed

    Dai, Jin; Cheng, Julong; Huang, Ting; Zheng, Xuan; Wu, Yunfeng

    2012-07-01

    Tobacco viruses including Tobacco mosaic virus (TMV), Cucumber mosaic virus (CMV), Tobacco etch virus (TEV), Potato virus Y (PVY) and Tobacco vein banding mosaic virus (TVBMV) are major viruses infecting tobacco and can cause serious crop losses. A multiplex reverse transcription polymerase chain reaction assay was developed to detect simultaneously and differentiate all five viruses. The system used specific primer sets for each virus producing five distinct fragments 237, 273, 347, 456 and 547 bp, representing TMV, CMV subgroup I, TEV, PVY(O) and TVBMV, respectively. These primers were used for detection of the different viruses by single PCR and multiplex PCR and the results were confirmed by DNA sequencing analysis. The protocol was used to detect viruses from different parts of China. The simultaneous and sensitive detection of different viruses using the multiplex PCR is more efficient and economical than other conventional methods for tobacco virus detection. This multiplex PCR provides a rapid and reliable method for the detection and identification of major tobacco viruses, and will be useful for epidemiological studies.

  14. Multiplex SYBR Green Real-Time PCR Assay for Detection of Respiratory Viruses

    PubMed Central

    Sultani, Mozhdeh; Mokhtari Azad, Talat; Eshragian, Mohammadreza; Shadab, Azadeh; Naseri, Maryam; Eilami, Owrang; Yavarian, Jila

    2015-01-01

    Background: It is often difficult for a physician to distinguish between viral and bacterial causes of respiratory infections and this may result in overuse of antibiotics. In many cases of community-acquired respiratory infections, clinicians treat patients empirically. The development of molecular methods for direct detection of viruses has been progressed recently. Objectives: The objective of this study was recognizing the panel of respiratory RNA viruses by multiplex SYBR Green real-time polymerase chain reaction (PCR). Materials and Methods: Randomized 172 influenza-negative respiratory specimens of all age groups of hospitalized patients were collected. After RNA extraction, cDNA was synthesized. Three SYBR Green multiplex real-time PCR assays were developed for simultaneous detection of 12 respiratory RNA viruses. Each set of multiplex methods detected four viruses, the first set: respiratory syncytial virus, human metapneumovirus, rhinovirus, enterovirus; the second set: parainfluenza viruses 1 - 4 (PIV1-4); the third set: coronaviruses NL63, 229E, severe acute respiratory syndrome (SARS), and OC43. Results: Application of the multiplex SYBR Green real-time PCR in clinical samples from 172 patients in a one-year study resulted in detection of 19 (11.04%) PIV3, 9 (5.23%) PIV4, and 1 (0.58%) coronavirus NL63. All the positive samples were detected during December to March (2011 - 2012). Conclusions: Multiplex SYBR Green real-time PCR is a rapid and relatively inexpensive method for detection of respiratory viruses. PMID:26468358

  15. Considerations for optimization of microRNA PCR assays for molecular diagnosis.

    PubMed

    Dellett, Margaret; Simpson, David Arthur

    2016-01-01

    The remarkable stability of microRNAs in biofluids underlies their potential as biomarkers, but their small size presents challenges for detection by RT-qPCR. The heterogeneity of microRNAs, with each one comprising a series of variants or 'isomiRs', adds additional complexity. Presented here are the key considerations for use of RT-qPCR to measure microRNAs and their isomiRs, with a focus on plasma. Modified nucleotides can be incorporated into primer sequences to enhance affinity and provide increased specificity and sensitivity for RT-qPCR assays. Approaches based upon polyA tailing and use of a common oligo(dT)-based reverse transcription oligonucleotide will detect most isomiRs. Conversely, stem-loop RT oligonucleotides and sequence specific probes can enable detection of specific isomiRs of interest. Next generation sequencing of all the products of a microRNA RT-PCR reaction is a promising new approach for both microRNA quantification and characterization. PMID:26854938

  16. Development and Validation of a Multiplex, Real-Time RT PCR Assay for the Simultaneous Detection of Classical and African Swine Fever Viruses

    PubMed Central

    Haines, Felicity J.; Hofmann, Martin A.; King, Donald P.; Drew, Trevor W.; Crooke, Helen R.

    2013-01-01

    A single-step, multiplex, real-time polymerase chain reaction (RT-PCR) was developed for the simultaneous and differential laboratory diagnosis of Classical swine fever virus (CSFV) and African swine fever virus (ASFV) alongside an exogenous internal control RNA (IC-RNA). Combining a single extraction methodology and primer and probe sets for detection of the three target nucleic acids CSFV, ASFV and IC-RNA, had no effect on the analytical sensitivity of the assay and the new triplex RT-PCR was comparable to standard PCR techniques for CSFV and ASFV diagnosis. After optimisation the assay had a detection limit of 5 CSFV genome copies and 22 ASFV genome copies. Analytical specificity of the triplex assay was validated using a panel of viruses representing 9 of the 11 CSFV subgenotypes, at least 8 of the 22 ASFV genotypes as well as non-CSFV pestiviruses. Positive and negative clinical samples from animals infected experimentally, due to field exposure or collected from the UK which is free from both swine diseases, were used to evaluate the diagnostic sensitivity and specificity for detection of both viruses. The diagnostic sensitivity was 100% for both viruses whilst diagnostic specificity estimates were 100% for CSFV detection and 97.3% for ASFV detection. The inclusion of a heterologous internal control allowed identification of false negative results, which occurred at a higher level than expected. The triplex assay described here offers a valuable new tool for the differential detection of the causative viruses of two clinically indistinguishable porcine diseases, whose geographical occurrence is increasingly overlapping. PMID:23923045

  17. A multiplex real-time PCR assay for identification of Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii in samples from AIDS patients with opportunistic pneumonia.

    PubMed

    Gago, Sara; Esteban, Cristina; Valero, Clara; Zaragoza, Oscar; Puig de la Bellacasa, Jorge; Buitrago, María José

    2014-04-01

    A molecular diagnostic technique based on real-time PCR was developed for the simultaneous detection of three of the most frequent causative agents of fungal opportunistic pneumonia in AIDS patients: Pneumocystis jirovecii, Histoplasma capsulatum, and Cryptococcus neoformans/Cryptococcus gattii. This technique was tested in cultured strains and in clinical samples from HIV-positive patients. The methodology used involved species-specific molecular beacon probes targeted to the internal transcribed spacer regions of the rDNA. An internal control was also included in each assay. The multiplex real-time PCR assay was tested in 24 clinical strains and 43 clinical samples from AIDS patients with proven fungal infection. The technique developed showed high reproducibility (r(2) of >0.98) and specificity (100%). For H. capsulatum and Cryptococcus spp., the detection limits of the method were 20 and 2 fg of genomic DNA/20 μl reaction mixture, respectively, while for P. jirovecii the detection limit was 2.92 log10 copies/20 μl reaction mixture. The sensitivity in vitro was 100% for clinical strains and 90.7% for clinical samples. The assay was positive for 92.5% of the patients. For one of the patients with proven histoplasmosis, P. jirovecii was also detected in a bronchoalveolar lavage sample. No PCR inhibition was detected. This multiplex real-time PCR technique is fast, sensitive, and specific and may have clinical applications.

  18. Development of a rapid, sensitive, and field-deployable razor ex BioDetection system and quantitative PCR assay for detection of Phymatotrichopsis omnivora using multiple gene targets.

    PubMed

    Arif, M; Fletcher, J; Marek, S M; Melcher, U; Ochoa-Corona, F M

    2013-04-01

    A validated, multigene-based method using real-time quantitative PCR (qPCR) and the Razor Ex BioDetection system was developed for detection of Phymatotrichopsis omnivora. This soilborne fungus causes Phymatotrichopsis root rot of cotton, alfalfa, and other dicot crops in the southwestern United States and northern Mexico, leading to significant crop losses and limiting the range of crops that can be grown in soils where the fungus is established. It is on multiple lists of regulated organisms. Because P. omnivora is difficult to isolate, accurate and sensitive culture-independent diagnostic tools are needed to confirm infections by this fungus. Specific PCR primers and probes were designed based on P. omnivora nucleotide sequences of the genes encoding rRNA internal transcribed spacers, beta-tubulin, and the second-largest subunit of RNA polymerase II (RPB2). PCR products were cloned and sequenced to confirm their identity. All primer sets allowed early detection of P. omnivora in infected but asymptomatic plants. A modified rapid DNA purification method, which facilitates a quick (∼30-min) on-site assay capability for P. omnivora detection, was developed. Combined use of three target genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a multigene-based, field-deployable, rapid, and reliable identification method for a fungal plant pathogen and should serve as a model for the development of field-deployable assays of other phytopathogens.

  19. Development and Evaluation of a Novel Single-Nucleotide-Polymorphism Real-Time PCR Assay for Rapid Detection of Fluoroquinolone-Resistant Mycoplasma bovis▿ †

    PubMed Central

    Ben Shabat, M.; Mikula, I.; Gerchman, I.; Lysnyansky, I.

    2010-01-01

    Monitoring of the susceptibility of Mycoplasma bovis field isolates to antibiotics is important for the appropriate choice of treatment. However, in vitro susceptibility testing of mycoplasmas is technically demanding and time-consuming, especially for clinical isolates, and is rarely performed in mycoplasma diagnostic laboratories. Thus, the development of methods allowing rapid real-time detection of resistant strains of M. bovis in clinical samples is a high priority for successful treatment. In this study, a novel TaqMan single-nucleotide-polymorphism (SNP) real-time PCR assay, which enables the rapid identification of M. bovis strains with different susceptibilities to fluoroquinolones, was developed and evaluated. The TaqMan SNP real-time PCR assay is based on the amplification of a 97-bp fragment of the parC quinolone resistance-determining region (QRDR) and allows the specific detection of four possible genotypes: GAC or GAT (susceptible to fluoroquinolones) and AAC or AAT (resistant to fluoroquinolones). Four TaqMan minor groove binder (MGB) probes identifying 1-base mismatches were designed and applied in a dual-probe assay with two reaction tubes. The TaqMan SNP real-time PCRs developed are highly specific for M. bovis, with a detection limit of 5 fg/μl (about 5 M. bovis genomes). In addition, all four SNP real-time PCR tests have almost the same efficiency (97.7% [GAC], 94% [AAC], 99.99% [GAT], and 98% [AAT]). Taken together, the data suggest that this SNP real-time PCR assay has potential as a routine diagnostic test for the detection of decreased susceptibility of M. bovis to fluoroquinolones. PMID:20534803

  20. Limitations of automated remnant lipoprotein cholesterol assay for diagnostic use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    I wish to comment on the limitations of automated remnant lipoprotein cholesterol (RemL-C) assay reported in Clinical Chemistry. Remnants are lipoprotein particles produced after newly formed triglyceride-rich lipoproteins (TRLs) of either hepatic or intestinal origin enter the plasma space and unde...

  1. Low cost HIV-1 quantitative RT-PCR assay in resource-limited settings: improvement and implementation.

    PubMed

    Fibriani, Azzania; Farah, Nadya; Kusumadewi, Inri; Pas, Suzan D; van Crevel, Reinout; van der Ven, Andre; Boucher, Charles A B; Schutten, Martin

    2012-10-01

    Monitoring of HIV viral load in low and middle income settings is limited by high cost of the commercial assays. Therefore, we developed a novel RT-PCR quantitative assay was developed. This assay targets the HIV-1 pol integrase gene (INT). Subsequently, the performance of the INT assay, described previously as a Long Terminal Repeat (LTR) assay and a combined INT/LTR dual target RT-PCR assay was compared. The LTR-assay was found to be sensitive and cost-effective (50-70% cheaper than commercial assays) with the lowest coefficient of variation (%CV). Introduction of an internal standard further improved assay reliability. Therefore, this LTR assay was implemented in West Java, Indonesia. Linearity and precision of the LTR assay were good: %CV ranged from 1.0% to 10.4%. The limit of quantitation was 616 copies/ml. Performance was comparable with the commercial assay (Abbott assay) (r(2)=0.01), although on average the viral loads were 0.39 log(10)copies/ml lower. In clinical practice, it had excellent capability for monitoring treatment failure, the positive predictive value was 99% and the negative predictive value was 93%. In conclusion, the implementation of the improved HIV-1 viral load LTR-assay for routine diagnosis in resource poor settings can be a good alternative when commercial assays are unaffordable.

  2. Comparative analysis of two broad-range PCR assays for pathogen detection in positive-blood-culture bottles: PCR-high-resolution melting analysis versus PCR-mass spectrometry.

    PubMed

    Jeng, Kevin; Gaydos, Charlotte A; Blyn, Lawrence B; Yang, Samuel; Won, Helen; Matthews, Heather; Toleno, Donna; Hsieh, Yu-Hsiang; Carroll, Karen C; Hardick, Justin; Masek, Billy; Kecojevic, Alexander; Sampath, Rangarajan; Peterson, Stephen; Rothman, Richard E

    2012-10-01

    Detection of pathogens in bloodstream infections is important for directing antimicrobial treatment, but current culture-based approaches can be problematic. Broad-range PCR assays which target conserved genomic motifs for postamplification amplicon analysis permit detection of sepsis-causing pathogens. Comparison of different broad-range assays is important for informing future implementation strategies. In this study, we compared positive-blood-culture bottles processed by PCR coupled to high-resolution melting curve analysis (PCR/HRMA) and PCR coupled to electrospray ionization-mass spectrometry (PCR/ESI-MS) to microbiology culture results. Genus-level concordance was 90% (confidence interval [CI], 80 to 96%) for PCR/HRMA and 94% (CI, 85 to 98%) for PCR/ESI-MS. Species-level concordance was 90% (CI, 80 to 96%) for PCR/HRMA and 86% (CI, 75 to 93%) for PCR/ESI-MS. Unlike PCR/HRMA, PCR/ESI-MS was able to resolve polymicrobial samples. Our results demonstrated that the two assays have similar overall concordance rates but may have different roles as potential adjunctive tests with standard blood culture, since each method has different capabilities, advantages, and disadvantages.

  3. A real time RT-PCR assay for the specific detection of Peste des petits ruminants virus.

    PubMed

    Batten, Carrie A; Banyard, Ashley C; King, Donald P; Henstock, Mark R; Edwards, Lorraine; Sanders, Anna; Buczkowski, Hubert; Oura, Chris C L; Barrett, Tom

    2011-02-01

    Peste des petits ruminants virus (PPRV) causes a devastating disease of small ruminants present across much of Africa and Asia. Recent surveillance activities and phylogenetic analyses have suggested that the virus is an emerging problem as it is now being detected in areas previously free of the disease. As such, the virus not only is threatening small ruminant production and agricultural stability in the developing world, but also poses an economic threat to livestock in the European Union (EU) through introduction from European Turkey and North Africa. This report describes the development of a high throughput, rapid, real time RT-PCR method for the sensitive and specific detection of PPRV using robotic RNA extraction. This assay targets the nucleocapsid (N) gene of PPRV and has been shown to detect all four genetic lineages of PPRV in tissues, ocular and nasal swabs and blood samples collected in the field. The lowest detection limit achieved was approximately 10 genome copies/reaction, making this assay an ideal tool for the sensitive and rapid detection of PPRV in diagnostic laboratories.

  4. Inhibition controls for qualitative real-time PCR assays: are they necessary for all specimen matrices?

    PubMed

    Buckwalter, S P; Sloan, L M; Cunningham, S A; Espy, M J; Uhl, J R; Jones, M F; Vetter, E A; Mandrekar, J; Cockerill, F R; Pritt, B S; Patel, R; Wengenack, N L

    2014-06-01

    A retrospective analysis of 386,706 specimens representing a variety of matrix types used in qualitative real-time PCR assays determined the overall inhibition rate to be 0.87% when the inhibition control was added preextraction to 5,613 specimens and 0.01% when the inhibition control was added postextraction but preamplification in 381,093 specimens. Inhibition rates of ≤ 1% were found for all specimen matrix types except urine and formalin-fixed, paraffin-embedded tissue.

  5. A real-time ARMS PCR/high-resolution melt curve assay for the detection of the three primary mitochondrial mutations in Leber’s hereditary optic neuropathy

    PubMed Central

    Ryan, Fergus; O’Dwyer, Veronica; Neylan, Derek

    2016-01-01

    Purpose Approximately 95% of patients who are diagnosed with Leber’s hereditary optic neuropathy (LHON) have one of three mitochondrial point mutations responsible for the disease, G3460A, G11778A, and T14484C. The purpose of this study was to develop a novel multiplex real-time amplification-refractory mutation system (ARMS) PCR combined with high-resolution melt curves to identify the individual mutations involved. The study aimed to provide a more robust, cost- and time-effective mutation detection strategy than that offered with currently available methods. The assay reported in this study will allow diagnostic laboratories to avoid costly next-generation sequencing (NGS) assays for most patients with LHON and to focus resources on patients with unknown mutations that require further analysis. Methods The test uses a combination of multiplex allele-specific PCR (ARMS PCR) in combination with a high-resolution melt curve analysis to detect the presence of the mutations in G3460A, G11778A, and T14484C. PCR primer sets were designed to produce a control PCR product and PCR products only in the presence of the mutations in 3460A, 11778A, and 14484C in a multiplex single tube format. Products produce discrete well-separated melt curves to clearly detect the mutations. Results This novel real-time ARMS PCR/high-resolution melt curve assay accurately detected 95% of the mutations that cause LHON. The test has proved to be robust, cost- and time-effective with the real-time closed tube system taking approximately 1 h to complete. Conclusions A novel real-time ARMS PCR/high-resolution melt curve assay is described for the detection of the three primary mitochondrial mutations in LHON. This test provides a simple, robust, easy-to-read output that is cost- and time-effective, thus providing an alternative method to individual endpoint PCR-restriction fragment length polymorphism (RFLP), PCR followed by Sanger sequencing or pyrosequencing, and next-generation sequencing

  6. Assessment of a novel multiplex real-time PCR assay for the detection of the CBPP agent Mycoplasma mycoides subsp. mycoides SC through experimental infection in cattle

    PubMed Central

    2011-01-01

    Background Mycoplasma mycoides subsp. mycoides SC is the pathogenic agent of contagious bovine pleuropneumonia (CBPP), the most important disease of cattle in Africa causing significant economic losses. The re-emergence of CBPP in Europe in the 1980s and 1990s illustrates that it is still a threat also to countries that have successfully eradicated the disease in the past. Nowadays, probe-based real-time PCR techniques are among the most advanced tools for a reliable identification and a sensitive detection of many pathogens, but only few protocols have been published so far for CBPP diagnosis. Therefore we developed a novel TaqMan®-based real-time PCR assay comprising the amplification of two independent targets (MSC_0136 and MSC_1046) and an internal exogenous amplification control in a multiplex reaction and evaluated its diagnostic performance with clinical samples. Results The assays detected 49 MmmSC strains from diverse temporal and geographical origin, but did not amplify DNA from 82 isolates of 20 non-target species confirming a specificity of 100%. The detection limit was determined to be 10 fg DNA per reaction for the MSC_0136 assay and 100 fg per reaction for the MSC_1046 assay corresponding to 8 and 80 genome equivalents, respectively. The diagnostic performance of the assay was evaluated with clinical samples from 19 experimentally infected cattle and from 20 cattle without CBPP and compared to those of cultivation and a conventional PCR protocol. The two rt-PCR tests proved to be the most sensitive methods and identified all 19 infected animals. The different sample types used were not equally suitable for MmmSC detection. While 94.7% of lung samples from the infected cohort were positively tested in the MSC_0136 assay, only 81% of pulmonal lymph nodes, 31% of mediastinal lymph nodes and 25% of pleural fluid samples gave a positive result. Conclusions The developed multiplex rt-PCR assay is recommended as an efficient tool for rapid confirmation of

  7. Dual-probe real-time PCR assay for detection of variola or other orthopoxviruses with dried reagents.

    PubMed

    Aitichou, Mohamed; Saleh, Sharron; Kyusung, Park; Huggins, John; O'Guinn, Monica; Jahrling, Peter; Ibrahim, Sofi

    2008-11-01

    A real-time, multiplexed polymerase chain reaction (PCR) assay based on dried PCR reagents was developed. Only variola virus could be specifically detected by a FAM (6-carboxyfluorescein)-labeled probe while camelpox, cowpox, monkeypox and vaccinia viruses could be detected by a TET (6-carboxytetramethylrhodamine)-labeled probe in a single PCR reaction. Approximately 25 copies of cloned variola virus DNA and 50 copies of genomic orthopoxviruses DNA could be detected with high reproducibility. The assay exhibited a dynamic range of seven orders of magnitude with a correlation coefficient value greater than 0.97. The sensitivity and specificity of the assay, as determined from 100 samples that contained nucleic acids from a multitude of bacterial and viral species were 96% and 98%, respectively. The limit of detection, sensitivity and specificity of the assay were comparable to standard real-time PCR assays with wet reagents. Employing a multiplexed format in this assay allows simultaneous discrimination of the variola virus from other closely related orthopoxviruses. Furthermore, the implementation of dried reagents in real-time PCR assays is an important step towards simplifying such assays and allowing their use in areas where cold storage is not easily accessible.

  8. Novel Real-Time PCR Assay for Simultaneous Detection and Differentiation of Clostridium chauvoei and Clostridium septicum in Clostridial Myonecrosis▿

    PubMed Central

    Halm, Anna; Wagner, Martin; Köfer, Josef; Hein, Ingeborg

    2010-01-01

    A real-time PCR assay based on the 16S rRNA gene sequence was designed for differentiation of blackleg-causing Clostridium chauvoei and Clostridium septicum, a phylogenetically closely related bacterium responsible for malignant edema. In order to exclude false-negative results, an internal amplification control was included in the assay. A set of three probes, one specific for C. chauvoei, one specific for C. septicum, and one specific for both species, permitted unequivocal detection of C. chauvoei in tests of 32 Clostridium sp. strains and 10 non-Clostridium strains. The assay proved to be sensitive, detecting one genome of C. chauvoei or C. septicum per PCR and 1.79 × 103 C. chauvoei cells/g artificially contaminated muscle tissue. In tests of 11 clinical specimens, the real-time PCR assay yielded the same results as an established conventional PCR method. PMID:20129968

  9. Single-tube real-time PCR assay for differentiation of Ixodes affinis and Ixodes scapularis

    PubMed Central

    Wright, Chelsea L.; Hynes, Wayne L.; White, Breanna T.; Marshall, Mindy N.; Gaff, Holly D.; Gauthier, David T.

    2013-01-01

    Ixodes affinis Neumann (1899) and Ixodes scapularis Say (1821) are tick vectors of the etiologic agent of Lyme disease, Borrelia burgdorferi sensu stricto. Ixodes affinis and I. scapularis are morphologically very similar, and as they are sympatric in the mid- and south-Atlantic U.S. coastal states, their accurate identification is crucial to studies of disease and vector ecology in this area. This work describes a rapid, single-tube SYBR® Green-based real-time PCR assay for differentiation of I. affinis and I. scapularis at all life stages. The assay employs 2 pairs of species-specific primers directed against the internal transcribed spacer 2 (ITS2) region of the nuclear rRNA operon. Amplification products for these primer pairs differ in size and may be differentiated with a melt curve analysis. This tool is intended as a supplement to morphological methods for accurate identification of these ticks. PMID:24192510

  10. Development and evaluation of the internal-controlled real-time PCR assay for Rhodococcus equi detection in various clinical specimens

    PubMed Central

    STEFAŃSKA, Ilona; WITKOWSKI, Lucjan; RZEWUSKA, Magdalena; DZIECIĄTKOWSKI, Tomasz

    2015-01-01

    Rhodococcus equi is the causative agent of rhodococcosis in horses, resulting in significant morbidity and mortality in foals. This bacterium has also been isolated from a variety of animals and is being increasingly reported as a cause of infection in humans, mainly in immunosuppressed individuals. Laboratory diagnostics of R. equi infections based only on conventional microbiological methods shows low accuracy and can lead to misidentification. The objective of the study was to develop and evaluate a real-time PCR assay for direct detection of R. equi in various clinical specimens, including tissue samples. The species-specific region of the gene encoding R. equi cholesterol oxidase, choE, was used as a qPCR-target. The diagnostic applicability of the assay was confirmed by testing various tissue specimens obtained from horses with clinical signs of rhodoccocal infection and swine submaxillary lymph nodes. The rate of R. equi detection in clinical specimens by the developed assay was higher in comparison to the culture method (90% vs. 60.0% of positive samples) and conventional PCR (90.0% vs. 20.0% of positive samples). In case of 13 samples that were negative in the culture-based method, R. equi was detected by the developed assay. Only in one case, it gave negative result for culture-positive sample. The assay may provide a simple and rapid tool to complement the classical methods of R. equi detection based on culture and phenotypic identification of isolates, as the performed evaluation indicated a high specificity and accuracy of the results. PMID:26655770

  11. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    PubMed Central

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  12. Development of Real-Time PCR Assays for Rapid Detection of Pfiesteria piscicida and Related Dinoflagellates†

    PubMed Central

    Bowers, Holly A.; Tengs, Torstein; Glasgow, Howard B.; Burkholder, JoAnn M.; Rublee, Parke A.; Oldach, David W.

    2000-01-01

    Pfiesteria complex species are heterotrophic and mixotrophic dinoflagellates that have been recognized as harmful algal bloom species associated with adverse fish and human health effects along the East Coast of North America, particularly in its largest (Chesapeake Bay in Maryland) and second largest (Albermarle-Pamlico Sound in North Carolina) estuaries. In response to impacts on human health and the economy, monitoring programs to detect the organism have been implemented in affected areas. However, until recently, specific identification of the two toxic species known thus far, Pfiesteria piscicida and P. shumwayae (sp. nov.), required scanning electron microscopy (SEM). SEM is a labor-intensive process in which a small number of cells can be analyzed, posing limitations when the method is applied to environmental estuarine water samples. To overcome these problems, we developed a real-time PCR-based assay that permits rapid and specific identification of these organisms in culture and heterogeneous environmental water samples. Various factors likely to be encountered when assessing environmental samples were addressed, and assay specificity was validated through screening of a comprehensive panel of cultures, including the two recognized Pfiesteria species, morphologically similar species, and a wide range of other estuarine dinoflagellates. Assay sensitivity and sample stability were established for both unpreserved and fixative (acidic Lugol's solution)-preserved samples. The effects of background DNA on organism detection and enumeration were also explored, and based on these results, we conclude that the assay may be utilized to derive quantitative data. This real-time PCR-based method will be useful for many other applications, including adaptation for field-based technology. PMID:11055905

  13. Multiplex PCR Assay for Detection of Vibrio vulnificus Biotype 2 and Simultaneous Discrimination of Serovar E Strains▿

    PubMed Central

    Sanjuán, Eva; Amaro, Carmen

    2007-01-01

    In the present work we develop a multiplex PCR assay for the detection and identification of the fish pathogen Vibrio vulnificus biotype 2 with discriminating potential for zoonotic strains (serovar E). The PCR assay allowed the identification of two new biotype 2 serovar E human isolates from culture collections. Finally, the multiplex was successfully applied to both diagnosis and carrier detection in field samples. PMID:17277209

  14. Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology.

    PubMed

    Takahashi, Teruyuki; Tamura, Masato; Asami, Yukihiro; Kitamura, Eiko; Saito, Kosuke; Suzuki, Tsukasa; Takahashi, Sachiko Nonaka; Matsumoto, Koichi; Sawada, Shigemasa; Yokoyama, Eise; Takasu, Toshiaki

    2008-05-01

    Previously, we designed an internally controlled quantitative nested real-time (QNRT) PCR assay for Mycobacterium tuberculosis DNA in order to rapidly diagnose tuberculous meningitis. This technique combined the high sensitivity of nested PCR with the accurate quantification of real-time PCR. In this study, we attempted to improve the original QNRT-PCR assay and newly developed the wide-range QNRT-PCR (WR-QNRT-PCR) assay, which is more accurate and has a wider detection range. For use as an internal-control "calibrator" to measure the copy number of M. tuberculosis DNA, an original new-mutation plasmid (NM-plasmid) was developed. It had artificial random nucleotides in five regions annealing specific primers and probes. The NM-plasmid demonstrated statistically uniform amplifications (F = 1.086, P = 0.774) against a range (1 to 10(5)) of copy numbers of mimic M. tuberculosis DNA and was regarded as appropriate for use as a new internal control in the WR-QNRT-PSR assay. In addition, by the optimization of assay conditions in WR-QNRT-PCR, two-step amplification of target DNA was completely consistent with the standard curve of this assay. Due to the development of the NM-plasmid as the new internal control, significantly improved quantitative accuracy and a wider detection range were realized with the WR-QNRT-PCR assay. In the next study, we will try to use this novel assay method with actual clinical samples and examine its clinical usefulness.

  15. Cell culture-Taqman PCR assay for evaluation of Cryptosporidium parvum disinfection.

    PubMed

    Keegan, Alexandra R; Fanok, Stella; Monis, Paul T; Saint, Christopher P

    2003-05-01

    Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log(10) units) with LP-UV (20 mJ/cm(2)) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with <0.1 log(10) unit being inactivated. These results demonstrate the inability of MIOX to inactivate Cryptosporidium. The assay is a valuable tool for the evaluation of disinfection systems for drinking water and recycled water.

  16. Diagnostic accuracy of an IgM enzyme-linked immunosorbent assay and comparison with 2 polymerase chain reactions for early diagnosis of human leptospirosis.

    PubMed

    Vanasco, N B; Jacob, P; Landolt, N; Chiani, Y; Schmeling, M F; Cudos, C; Tarabla, H; Lottersberger, J

    2016-04-01

    Enzyme-linked immunosorbent assay (ELISA) tests and polymerase chain reaction (PCR) may play a key role for early detection and treatment of human leptospirosis in developing countries. The aims of this study were to develop and validate an IgM ELISA under field conditions and to compare the diagnostic accuracy among IgG, IgM ELISAs, conventional PCR (cPCR), and real-time PCR (rtPCR) for early detection of human leptospirosis. Overall accuracy of IgM ELISA was sensitivity of 87.9%, specificity of 97.0%, and area under the curve of 0.940. When the 4 methods were compared, IgM ELISA showed the greatest diagnostic accuracy (J=0.6) followed by rtPCR (J=0.4), cPCR (J=0.2) and IgG ELISA (J=0.1). Our results support the use of IgM ELISA and rtPCR for early diagnosis of the disease. Moreover, due to their high specificity, they could be also useful to replace or supplement microscopic agglutination test as a confirmatory test, allowing more confirmations.

  17. Diagnostic accuracy of an IgM enzyme-linked immunosorbent assay and comparison with 2 polymerase chain reactions for early diagnosis of human leptospirosis.

    PubMed

    Vanasco, N B; Jacob, P; Landolt, N; Chiani, Y; Schmeling, M F; Cudos, C; Tarabla, H; Lottersberger, J

    2016-04-01

    Enzyme-linked immunosorbent assay (ELISA) tests and polymerase chain reaction (PCR) may play a key role for early detection and treatment of human leptospirosis in developing countries. The aims of this study were to develop and validate an IgM ELISA under field conditions and to compare the diagnostic accuracy among IgG, IgM ELISAs, conventional PCR (cPCR), and real-time PCR (rtPCR) for early detection of human leptospirosis. Overall accuracy of IgM ELISA was sensitivity of 87.9%, specificity of 97.0%, and area under the curve of 0.940. When the 4 methods were compared, IgM ELISA showed the greatest diagnostic accuracy (J=0.6) followed by rtPCR (J=0.4), cPCR (J=0.2) and IgG ELISA (J=0.1). Our results support the use of IgM ELISA and rtPCR for early diagnosis of the disease. Moreover, due to their high specificity, they could be also useful to replace or supplement microscopic agglutination test as a confirmatory test, allowing more confirmations. PMID:26867967

  18. Development of PCR and TaqMan PCR Assays to Detect Pseudomonas coronafaciens, a Causal Agent of Halo Blight of Oats

    PubMed Central

    An, Ji-Hye; Noh, Young-Hee; Kim, Yong-Eon; Lee, Hyok-In; Cha, Jae-Soon

    2015-01-01

    Pseudomonas coronafaciens causes halo blight on oats and is a plant quarantine bacterium in many countries, including the Republic of Korea. Using of the certificated seed is important for control of the disease. Since effective detection method of P. coronafaciens is not available yet, PCR and TaqMan PCR assays for specific detection of P. coronafaciens were developed in this study. PCR primers were designed from the draft genome sequence of P. coronafaciens LMG 5060 which was obtained by the next-generation sequencing in this study. The PCR primer set Pc-12-F/Pc-12-R specifically amplified 498 bp from the 13 strains of P. coronafaciens isolated in the seven different countries (Canada, Japan, United Kingdom, Zimbabwe, Kenya, Germany, and New Zealand) and the nested primer set Pc-12-ne-F/Pc-12-ne-R specifically amplified 298 bp from those strains. The target-size PCR product was not amplified from the non-target bacteria with the PCR and nested primer sets. TaqMan PCR with Pc-12-ne-F/Pc-12-ne-R and a TaqMan probe, Pc-taqman, which were designed inside of the nested PCR amplicon, generated Ct values which in a dose-dependent manner to the amount of the target DNA and the Ct values of all the P. coronafaciens strains were above the threshold Ct value for positive detection. The TaqMan PCR generated positive Ct values from the seed extracts of the artificially inoculated oat seeds above 10 cfu/ml inoculation level. PCR and TaqMan PCR assays developed in this study will be useful tools to detect and identify the plant quarantine pathogen, P. coronafaciens. PMID:25774107

  19. A multiplex PCR assay for the simultaneous identification of three mealybug species (Hemiptera: Pseudococcidae).

    PubMed

    Saccaggi, D L; Krüger, K; Pietersen, G

    2008-02-01

    Molecular species identification is becoming more wide-spread in diagnostics and ecological studies, particularly with regard to insects for which morphological identification is difficult or time-consuming. In this study, we describe the development and application of a single-step multiplex PCR for the identification of three mealybug species (Hemiptera: Pseudococcidae) associated with grapevine in South Africa: Planococcus ficus (vine mealybug), Planococcus citri (citrus mealybug) and Pseudococcus longispinus (longtailed mealybug). Mealybugs are pests on many commercial crops, including grapevine, in which they transmit viral diseases. Morphological identification of mealybug species is usually time-consuming, requires a high level of taxonomic expertise and usually only adult females can be identified. The single-step multiplex PCR developed here, based on the mitochondrial cytochrome c oxidase subunit 1 (CO I) gene, is rapid, reliable, sensitive, accurate and simple. The entire identification protocol (including DNA extraction, PCR and electrophoresis) can be completed in approximately four hours. Successful DNA extraction from laboratory and unparasitized field-collected individuals stored in absolute ethanol was 97%. Specimens from which DNA could be extracted were always correctly identified (100% accuracy). The technique developed is simple enough to be implemented in any molecular laboratory. The principles described here can be extended to any organism for which rapid, reliable identification is needed.

  20. Multi-laboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification and quantification of Fusarium virguliforme, the cause of sudden death syndrome (SDS) in soybean, within root tissue and soil are important tasks. Several quantitative PCR (qPCR) assays have been developed but there are no reports comparing their use in sensitive and specific...

  1. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method ...

  2. Single Laboratory Comparison of Quantitative Real-Time PCR Assays for the Detection of Human Fecal Pollution - Poster

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) methods available to detect and enumerate human fecal pollution in ambient waters. Each assay employs distinct primers and/or probes and many target different genes and microorganisms leading to potential variations in method p...

  3. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    PubMed

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001).

  4. Accurate Detection and Quantification of the Fish Viral Hemorrhagic Septicemia virus (VHSv) with a Two-Color Fluorometric Real-Time PCR Assay

    PubMed Central

    Palsule, Vrushalee V.; Yeo, Jiyoun; Shepherd, Brian S.; Crawford, Erin L.; Stepien, Carol A.

    2013-01-01

    Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain – IVb – appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR) assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02) and a linear dynamic range that spans seven orders of magnitude (R2 = 0.99), ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/106 actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics. PMID:23977162

  5. RAPHIDOPHYCEAE [CHADEFAUD EX SILVA] SYSTEMATICS AND RAPID IDENTIFICATION: SEQUENCE ANALYSES AND REAL-TIME PCR ASSAYS

    PubMed Central

    Bowers, Holly A.; Tomas, Carmelo; Tengs, Torstein; Kempton, Jason W.; Lewitus, Alan J.; Oldach, David W.

    2010-01-01

    Species within the class Raphidophyceae were associated with fish kill events in Japanese, European, Canadian, and U.S. coastal waters. Fish mortality was attributable to gill damage with exposure to reactive oxygen species (peroxide, superoxide, and hydroxide radicals), neurotoxins, physical clogging, and hemolytic substances. Morphological identification of these organisms in environmental water samples is difficult, particularly when fixatives are used. Because of this difficulty and the continued global emergence of these species in coastal estuarine waters, we initiated the development and validation of a suite of real-time polymerase chain reaction (PCR) assays. Sequencing was used to generate complete data sets for nuclear encoded small-subunit ribosomal RNA (SSU rRNA; 18S); internal transcribed spacers 1 and 2, 5.8S; and plastid encoded SSU rRNA (16S) for confirmed raphidophyte cultures from various geographic locations. Sequences for several Chattonella species (C. antiqua, C. marina, C. ovata, C. subsalsa, and C. verruculosa), Heterosigma akashiwo, and Fibrocapsa japonica were generated and used to design rapid and specific PCR assays for several species including C. verruculosa Hara et Chihara, C. subsalsa Biecheler, the complex comprised of C. marina Hara et Chihara, C. antiqua Ono and C. ovata, H. akashiwo Ono, and F. japonica Toriumi et Takano using appropriate loci. With this comprehensive data set, we were also able to perform phylogenetic analyses to determine the relationship between these species. PMID:20411032

  6. Quantitative real-time PCR assay for Clostridium septicum in poultry gangrenous dermatitis associated samples.

    PubMed

    Neumann, A P; Dunham, S M; Rehberger, T G; Siragusa, G R

    2010-08-01

    Clostridium septicum is a spore-forming anaerobe frequently implicated in cases of gangrenous dermatitis (GD) and other spontaneously occurring myonecrotic infections of poultry. Although C. septicum is readily cultured from diseased tissues it can be difficult to enumerate due to its tendency to swarm over the surface of agar plates. In this study a quantitative real-time PCR assay was developed in order to more accurately measure the levels of C. septicum in healthy as well as GD associated poultry samples. The assay was specifically designed to target the C. septicum alpha toxin gene, csa, which is, to our knowledge, carried by all strains of C. septicum and has been shown to be essential for virulence. Genomic DNAs from a diverse collection of bacterial species, including closely related Clostridium chauvoei, Clostridium carnis, Clostridium tertium as well as several strains of Clostridium perfringens, all failed to produce a positive reaction. An approximate reproducible limit of detection in spiked extracts of at least 10(3) cfu/g of C. septicum was observed for a variety of different sample types. C. septicum levels in broiler chicken field samples estimated from the results of qPCR were statistically correlated to culture based enumerations obtained from those same tissues.

  7. An epidemiological survey on the determination of Taenia saginata cysticercosis in Iran, using a PCR assay.

    PubMed

    Hosseinzadeh, S; Setayesh, A; Shekarforoush, S S; Fariman, S H

    2013-04-27

    Bovine cysticercosis caused by Taenia saginata is a zoonotic disease affirming routine inspection measures for the postmortem detection of cysticerci (cysts) in beef destined for human consumption. Detection is based on gross examination of traditional carcase predilection sites; although there is evidence to suggest that examination of other sites may offer improvements in sensitivity. In the current study, a biomolecular-based assay was employed to confirm and differentiate T saginata cysticercosis from other comparable parasitic infection in cattle carcases. Out of 7371 cattle carcases routinely inspected, 72 (0.97 per cent) were initially detected, from which 57 (79.16 per cent), 11(15.27 per cent) and 4 (5.55 per cent) were recorded in masseter muscle, heart and diaphragm, respectively. The PCR assay was also conducted to confirm different stages of the cysts, being able to detect the cyst, and to discriminate its various degenerative stages with other parasitic structures. The technique was proposed as a reliable tool to differentiate the cysticerci and, thus, could be used in further epidemiological studies as there was no difference in view of negative PCR results in lesions found by routine inspection. PMID:23571031

  8. Utilizing Low-Volume Aqueous Acoustic Transfer with the Echo 525 to Enable Miniaturization of qRT-PCR Assay.

    PubMed

    Agrawal, Sony; Cifelli, Steven; Johnstone, Richard; Pechter, David; Barbey, Deborah A; Lin, Karen; Allison, Tim; Agrawal, Shree; Rivera-Gines, Aida; Milligan, James A; Schneeweis, Jonathan; Houle, Kevin; Struck, Alice J; Visconti, Richard; Sills, Matthew; Wildey, Mary Jo

    2016-02-01

    Quantitative reverse transcription PCR (qRT-PCR) is a valuable tool for characterizing the effects of inhibitors on viral replication. The amplification of target viral genes through the use of specifically designed fluorescent probes and primers provides a reliable method for quantifying RNA. Due to reagent costs, use of these assays for compound evaluation is limited. Until recently, the inability to accurately dispense low volumes of qRT-PCR assay reagents precluded the routine use of this PCR assay for compound evaluation in drug discovery. Acoustic dispensing has become an integral part of drug discovery during the past decade; however, acoustic transfer of microliter volumes of aqueous reagents was time consuming. The Labcyte Echo 525 liquid handler was designed to enable rapid aqueous transfers. We compared the accuracy and precision of a qPCR assay using the Labcyte Echo 525 to those of the BioMek FX, a traditional liquid handler, with the goal of reducing the volume and cost of the assay. The data show that the Echo 525 provides higher accuracy and precision compared to the current process using a traditional liquid handler. Comparable data for assay volumes from 500 nL to 12 µL allowed the miniaturization of the assay, resulting in significant cost savings of drug discovery and process streamlining.

  9. Performance of 3 real-time PCR assays for direct detection of Staphylococcus aureus and MRSA from clinical samples.

    PubMed

    Mehta, Maitry S; McClure, J T; Mangold, Kathy; Peterson, Lance R

    2015-11-01

    We compared 3 real-time PCR assays: off-label use of 2 commercial assays (BD-GeneOhm™ MRSA assay for methicillin-resistant Staphylococcus aureus [MRSA] detection and BD-GeneOhm StaphSR™ for MRSA and methicillin-susceptible S. aureus detection) and an in-house real-time PCR assay for detection of total S. aureus from clinical specimens. Testing was performed on 200 distinct specimens. Sensitivity, specificity, positive predictive value, and negative predictive value were calculated using culture as the gold standard. The prevalence of S. aureus in the samples was 44.5%, and MRSA was 20%. For total S. aureus, the StaphSR-PCR and the in-house PCR assays had a sensitivity and specificity of 94.4% and 96.4% and 93.3% and 99.1%, respectively. For MRSA detection, the StaphSR and the BD GeneOhm assay had a sensitivity and specificity of 92.5% and 98.8% and 92.5% and 96.3%, respectively. This study demonstrates the potential use of tests like the StaphSR-PCR assay for rapid detection of S. aureus and MRSA directly from clinical specimens; however, culture follow-up would be needed to identify other potential pathogens in the specimen.

  10. Laboratory utility of coproscopy, copro immunoassays and copro nPCR assay targeting Hsp90 gene for detection of Cryptosporidium in children, Cairo, Egypt.

    PubMed

    Ghallab, Marwa M I; Aziz, Inas Z Abdel; Shoeib, Eman Y; El-Badry, Ayman A

    2016-09-01

    Cryptosporidium is a significant cause of diarrhea worldwide especially in children. Infection may end fatally in immunocompromised patients. Multi-attribute analysis was used to determine the lab utility of 4 diagnostics; coproscopy of AF stained fecal smear, fecal immunoassays by ICT and ELISA and copro-nPCR assay targeting Hsp90 gene, for detection of Cryptosporidium in stool of 250 Egyptian children (150 diarrheic and 100 non-diarrhaeic children). Also, to determine Cryptosporidium molecular prevalence. Cryptosporidium was an important enteric pathogen among both diarrheic and non-diarrheic study children with a clearly high prevalence of 16.4 % (n = 41). Conventional methods had perfect specificity (100 %) but couldn`t be used as a consistent single detection method due to their lowered sensitivities. Multi-attribute analysis ranked nPCR the highest test for lab use. Being the test with the best diagnostic yield, nPCR is a reliable diagnostic test and is going to replace conventional methods for reliable detection of Cryptosporidium. PMID:27605806

  11. Development of a caseinase assay for PCR independent detection of esp gene carriage among enterococci

    NASA Astrophysics Data System (ADS)

    Dada, Ayokunle Christopher; Asmat, Ahmad; Lee, Yook Heng; Usup, Gires

    2013-11-01

    Currently, there is no known relationship between caseinase and carriage of esp gene. Also, no breakpoints exist for phenotypic assays that are used to infer virulence characteristics among Enterococci. In the present study, caseinase activity was measured by a radial diffusion assay for 113 enterococci isolates. A standard curve with predictive r2 value of 0.939 was produced by dispensing several doubling dilutions of proteinase K into 3% skimmed milk agar wells. Caseinase activity for all tested enterococci was subsequently converted into proteinase K activity, using the obtained chart. Caseinase activity ranged from 1.74 × 10-8 to 4.47 × 10-7ug/ml and 6.37 × 10-8 to 8.82 × 10-8 ug/ml per colony of environmental and clinical enterocococci tested, proportionate to proteinase K activity. Caseinase activity among environmental strains was five-fold higher than was observed among clinical strains. Fishers exact test revealed significant associations between esp gene carriage and caseinase activity (diameter on skimmed milk, z=8 to 13mm) at p<0.1. However, the probability of association was strongest at z=13 mm (p=0.033) suggesting a range of diameter cut-offs that was exclusive to and may be used to predict the presence of environmental enterococci strains harbouring esp gene. Results obtained from sensitivity analysis showed increasing assay sensitivity from cut-off of 9 mm (61.54%) up to 84.62% (13 mm). Specificity of the caseinase assay slightly decreased from 50% to 42.86% as cut-off increased from 9 to 13 mm. The caseinase assay described here potentially proves useful in preliminary PCR independent screening of environmental enterococci isolates for the detection of strains which carry the esp gene known to increase the severity of enterococcal infections.

  12. Rapid Detection of Acquired and Inducible Clarithromycin Resistance in Mycobacterium abscessus Group by a Simple Real-Time PCR Assay.

    PubMed

    Luo, Robert F; Curry, Cheyenne; Taylor, Nathan; Budvytiene, Indre; Banaei, Niaz

    2015-07-01

    By targeting the erm(41) and rrl genes in the Mycobacterium abscessus group, a multiplex real-time PCR assay for clarithromycin resistance showed 95% (38/40) concordance with nucleic acid testing and 95% (37/39) concordance with phenotypic testing. This assay provides a simple and rapid alternative to extended incubation or erm(41) sequencing. PMID:25903572

  13. Rapid Detection of Ceratocystis platani Inoculum by Quantitative Real-Time PCR Assay

    PubMed Central

    Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-01-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management. PMID:23811499

  14. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation.

  15. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat.

    PubMed

    Brusa, Victoria; Galli, Lucía; Linares, Luciano H; Ortega, Emanuel E; Lirón, Juan P; Leotta, Gerardo A

    2015-12-01

    Shiga toxin-producing Escherichia coli (STEC) are recognized as food-borne pathogens. We developed and validated two SYBR green PCR (SYBR-PCR) and a real-time multiplex PCR (RT-PCR) to detect stx1 and stx2 genes in meat samples, and compared these techniques in ground beef samples from retail stores. One set of primers and one hydrolysis probe were designed for each stx gene. For RT-PCR, an internal amplification control (IAC) was used. All PCR intra-laboratory validations were performed using pure strains and artificially contaminated ground beef samples. A total of 50 STEC and 30 non-STEC strains were used. Naturally contaminated ground beef samples (n=103) were obtained from retail stores and screened with SYBR-PCR and RT-PCR, and stx-positive samples were processed for STEC isolation. In the intra-laboratory validation, each PCR obtained a 1×10(2) CFU mL(-1) limit of detection and 100% inclusivity and exclusivity. The same results were obtained when different laboratory analysts in alternate days performed the assay. The level of agreement obtained with SYBR-PCR and RT-PCR was kappa=0.758 and 0.801 (P<0.001) for stx1 and stx2 gene detection, respectively. Two PCR strategies were developed and validated, and excellent performance with artificially contaminated ground beef samples was obtained. However, the efforts made to isolate STEC from retail store samples were not enough. Only 11 STEC strains were isolated from 35 stx-positive ground beef samples identically detected by all PCRs. The combination of molecular approaches based on the identification of a virulence genotypic profile of STEC must be considered to improve isolation. PMID:26410309

  16. Development of molecular approach based on PCR assay for detection of histamine producing bacteria.

    PubMed

    Wongsariya, Karn; Bunyapraphatsara, Nuntavan; Yasawong, Montri; Chomnawang, Mullika Traidej

    2016-01-01

    Histamine fish poisoning becomes highly concern not only in public health but also economic aspect. Histamine is produced from histidine in fish muscles by bacterial decarboxylase enzyme. Several techniques have been developed to determine the level of histamine in fish and their products but the effective method for detecting histamine producing bacteria is still required. This study was attempted to detect histamine producing bacteria by newly developed PCR condition. Histamine producing bacteria were isolated from scombroid fish and determined the ability to produce histamine of isolated bacteria by biochemical and TLC assays. PCR method was developed to target the histidine decarboxylase gene (hdc). The result showed that fifteen histamine producing bacterial isolates and three standard strains produced an amplicon at the expected size of 571 bp after amplified by PCR using Hdc_2F/2R primers. Fifteen isolates of histamine producing bacteria were classified as M. morganii, E. aerogenes, and A. baumannii. The lowest detection levels of M. morganii and E. aerogenes were 10(2) and 10(5) Cfu/mL in culture media and 10(3) and 10(6) Cfu/mL in fish homogenates, respectively. The limit of detection by this method was clearly shown to be sensitive because the primers could detect the presence of M. morganii and E. aerogenes before the histamine level reached the regulation level at 50 ppm. Therefore, this PCR method exhibited the potential efficiency for detecting the hdc gene from histamine producing bacteria and could be used to prevent the proliferation of histamine producing bacteria in fish and fish products.

  17. Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease.

    PubMed

    Gorna, K; Relmy, A; Romey, A; Zientara, S; Blaise-Boisseau, S; Bakkali-Kassimi, L

    2016-09-01

    Two duplex one-step TaqMan-based RT-PCR protocols for detection of foot-and-mouth disease virus (FMDV) were established and validated. Each RT-PCR test consists of a ready-to-use master mix for simultaneous detection of the well established 3D or IRES FMDV targets and incorporates the host β-actin mRNA as an internal control target, in a single-tube assay. The two real-time RT-PCR 3D/β-actin and IRES/β-actin tests are highly sensitive and able to detect up to 7TCID50/ml of FMDV and 10 copies/1μl of viral RNA. In field epithelium samples, the diagnostic sensitivity was 100% (95% CI; 91-100%) for the 3D/β-actin test and 97% (95% CI; 87-100%) for the IRES/β-actin test. The diagnostic specificity was 100% (95% CI; 95-100%) for both RT-PCRs. In addition, the two protocols proved to be robust, showing inter-assay coefficients of variation ranging from 1.94% to 6.73% for the IRES target and from 2.33% to 5.42% for the 3D target for different RNA extractions and different RT-PCR conditions. The internally controlled one-step real-time RT-PCR protocols described in this study provide a rapid, effective and reliable method for the detection of FMDV and thus may improve the routine diagnosis for foot-and-mouth disease. PMID:27317973

  18. Establishment and validation of two duplex one-step real-time RT-PCR assays for diagnosis of foot-and-mouth disease.

    PubMed

    Gorna, K; Relmy, A; Romey, A; Zientara, S; Blaise-Boisseau, S; Bakkali-Kassimi, L

    2016-09-01

    Two duplex one-step TaqMan-based RT-PCR protocols for detection of foot-and-mouth disease virus (FMDV) were established and validated. Each RT-PCR test consists of a ready-to-use master mix for simultaneous detection of the well established 3D or IRES FMDV targets and incorporates the host β-actin mRNA as an internal control target, in a single-tube assay. The two real-time RT-PCR 3D/β-actin and IRES/β-actin tests are highly sensitive and able to detect up to 7TCID50/ml of FMDV and 10 copies/1μl of viral RNA. In field epithelium samples, the diagnostic sensitivity was 100% (95% CI; 91-100%) for the 3D/β-actin test and 97% (95% CI; 87-100%) for the IRES/β-actin test. The diagnostic specificity was 100% (95% CI; 95-100%) for both RT-PCRs. In addition, the two protocols proved to be robust, showing inter-assay coefficients of variation ranging from 1.94% to 6.73% for the IRES target and from 2.33% to 5.42% for the 3D target for different RNA extractions and different RT-PCR conditions. The internally controlled one-step real-time RT-PCR protocols described in this study provide a rapid, effective and reliable method for the detection of FMDV and thus may improve the routine diagnosis for foot-and-mouth disease.

  19. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    PubMed Central

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification

  20. Detection and quantification by PCR assay of the biocontrol agent Pantoea agglomerans CPA-2 on apples.

    PubMed

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Torres, Rosario

    2014-04-01

    The registration of biological control agents requires the development of monitoring systems to detect and quantify the agent in the environment. Pantoea agglomerans CPA-2 is an effective biocontrol agent for postharvest diseases of citrus and pome fruits. The monitoring of CPA-2 in postharvest semi-commercial trials was evaluated by Rodac impression plates and the colonies isolated were confirmed by conventional PCR using the SCAR primers PAGA1 and PAGB1. Samples were taken from different surfaces that had contact with CPA-2, the surrounding environment and working clothes worn by handlers. Moreover, population dynamics of the strain CPA-2 were determined on apple surfaces using both the classical plating technique and real-time quantitative PCR (qPCR). A qPCR assay using a 3'-minor groove-binding (MGB) probe was developed for the specific detection and quantification of P. agglomerans strain CPA-2. Based on the nucleotide sequence of a SCAR fragment of CPA-2, one primer set and TaqMan MGB probe were designed. The primers SP2-F/SP2-R and the TaqMan MGB probe showed a specific detection of strain CPA-2 on apple surfaces, which was verified tested against purified DNA from 17 strains of P. agglomerans, 4 related Pantoea species, and 21 bacterial strains from other genera isolated from whole and also freshly-cut fruit and vegetables. The detection level was approximately 10(3) cells per reaction, and the standard curve was linear within a range of 5log units. Results from semi-commercial trials showed that CPA-2 had a low impact. The maximum persistence of P. agglomerans CPA-2 was not longer than 5days in plastic boxes stored at 0°C. Significant differences in CPA-2 population level dynamics were observed in results obtained by qPCR and dilution plating. These differences may indicate the presence of non-degraded DNA from non-viable cells. In conclusion, qPCR is a novel potential tool to quickly and specifically monitor recent surface colonisation by CPA-2

  1. Detection and quantification by PCR assay of the biocontrol agent Pantoea agglomerans CPA-2 on apples.

    PubMed

    Soto-Muñoz, Lourdes; Teixidó, Neus; Usall, Josep; Viñas, Inmaculada; Torres, Rosario

    2014-04-01

    The registration of biological control agents requires the development of monitoring systems to detect and quantify the agent in the environment. Pantoea agglomerans CPA-2 is an effective biocontrol agent for postharvest diseases of citrus and pome fruits. The monitoring of CPA-2 in postharvest semi-commercial trials was evaluated by Rodac impression plates and the colonies isolated were confirmed by conventional PCR using the SCAR primers PAGA1 and PAGB1. Samples were taken from different surfaces that had contact with CPA-2, the surrounding environment and working clothes worn by handlers. Moreover, population dynamics of the strain CPA-2 were determined on apple surfaces using both the classical plating technique and real-time quantitative PCR (qPCR). A qPCR assay using a 3'-minor groove-binding (MGB) probe was developed for the specific detection and quantification of P. agglomerans strain CPA-2. Based on the nucleotide sequence of a SCAR fragment of CPA-2, one primer set and TaqMan MGB probe were designed. The primers SP2-F/SP2-R and the TaqMan MGB probe showed a specific detection of strain CPA-2 on apple surfaces, which was verified tested against purified DNA from 17 strains of P. agglomerans, 4 related Pantoea species, and 21 bacterial strains from other genera isolated from whole and also freshly-cut fruit and vegetables. The detection level was approximately 10(3) cells per reaction, and the standard curve was linear within a range of 5log units. Results from semi-commercial trials showed that CPA-2 had a low impact. The maximum persistence of P. agglomerans CPA-2 was not longer than 5days in plastic boxes stored at 0°C. Significant differences in CPA-2 population level dynamics were observed in results obtained by qPCR and dilution plating. These differences may indicate the presence of non-degraded DNA from non-viable cells. In conclusion, qPCR is a novel potential tool to quickly and specifically monitor recent surface colonisation by CPA-2

  2. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    PubMed

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples. PMID:26142386

  3. Viral Multiplex Quantitative PCR Assays for Tracking Sources of Fecal Contamination▿

    PubMed Central

    Wolf, Sandro; Hewitt, Joanne; Greening, Gail E.

    2010-01-01

    Human and animal fecal pollution of the environment presents a risk to human health because of the presence of pathogenic viruses and bacteria. To distinguish between human and animal sources of pollution, we designed specific real-time reverse transcription (RT)-PCR assays for human and animal enteric viruses, including norovirus genogroups I, II, and III; porcine adenovirus types 3 and 5; ovine adenovirus; atadenovirus; and human adenovirus species C and F, which are excreted by infected humans, pigs, cattle, sheep, deer, and goats, and for the detection of F+ RNA bacteriophage genogroups I to IV, which are associated with human and animal wastes. The sensitivity of this viral toolbox (VTB) was tested against 10-fold dilution series of DNA plasmids that carry the target sequences of the respective viruses and was shown to detect at least 10 plasmid copies for each assay. A panel of human and animal enteric and respiratory viruses showed these assays to be highly sensitive and specific to their respective targets. The VTB was used to detect viruses in fecal and environmental samples, including raw sewage and biosolids from municipal sewage treatment plants, abattoir sewage, and fecally contaminated shellfish and river water, which were likely to contain animal or human viruses. PMID:20061455

  4. Real time PCR assay for detection of all known lineages of West Nile virus.

    PubMed

    Vázquez, Ana; Herrero, Laura; Negredo, Anabel; Hernández, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio

    2016-10-01

    West Nile virus (WNV) is one of the most widespread arbovirus and a large variety of WNV strains and lineages have been described. The molecular methods for the diagnosis of WNV target mainly lineages 1 and 2, which have caused outbreaks in humans, equines and birds. But the last few years new and putative WNV lineages of unknown pathogenicity have been described. Here we describe a new sensitive and specific real-time PCR assay for the detection and quantification of all the WNV lineages described until now. Primers and probe were designed in the 3'-untranslated region (3'-UTR) of the WNV genome and were designed to match all sequenced WNV strains perfectly. The sensitivity of the assay ranged from 1,5 to 15 copies per reaction depending on the WNV lineage tested. The method was validated for WNV diagnosis using different viral strains, human samples (cerebrospinal fluid, biopsies, serum and plasma) and mosquito pools. The assay did not amplify any other phylogenetically or symptomatically related viruses. All of the above make it a very suitable tool for the diagnosis of WNV and for surveillance studies. PMID:27481597

  5. Improved PCR assay for the species-specific identification and quantitation of Legionella pneumophila in water.

    PubMed

    Cho, Min Seok; Ahn, Tae-Young; Joh, Kiseong; Lee, Eui Seok; Park, Dong Suk

    2015-11-01

    Legionellosis outbreak is a major global health care problem. However, current Legionella risk assessments may be compromised by uncertainties in Legionella detection methods, infectious dose, and strain infectivity. These limitations may place public health at significant risk, leading to significant monetary losses in health care. However, there are still unmet needs for its rapid identification and monitoring of legionellae in water systems. Therefore, in the present study, a primer set was designed based on a LysR-type transcriptional regulator (LTTR) family protein gene of Legionella pneumophila subsp. pneumophila str. Philadelphia 1 because it was found that this gene is structurally diverse among species through BLAST searches. The specificity of the primer set was evaluated using genomic DNA from 6 strains of L. pneumophila, 5 type strains of other related Legionella species, and other 29 reference pathogenic bacteria. The primer set used in the PCR assay amplified a 264-bp product for only targeted six strains of L. pneumophila. The assay was also able to detect at least 1.39 × 10(3) copies/μl of cloned amplified target DNA using purified DNA or 7.4 × 10(0) colony-forming unit per reaction when using calibrated cell suspension. In addition, the sensitivity and specificity of this assay were confirmed by successful detection of Legionella pneumophila in environmental water samples.

  6. Determination of phenanthrene by antibody-coated competitive real-time immuno-PCR assay.

    PubMed

    Zhou, Chun; Wang, Qiong-E; Zhuang, Hui-Sheng

    2008-08-01

    A reliable selective and sensitive antibody-coated competitive real-time immuno-PCR (RT-IPCR) assay for the determination of phenanthrene (PH) was developed. Phenanthrene butanoic acid (gamma-oxo-PHA) was synthesized as the hapten of PH. An active ester method was used to couple the PHA to bovine serum albumin to form an artificial immune antigen. Male New Zealand white rabbits were immunized with immune antigen to obtain polyclonal antibodies, with which a novel RT-IPCR assay for determination of PH was developed. Under the optimized assay conditions, PH can be determined in the concentration range from 10 fg/mL to 100 pg/mL with a detection limit of 5 fg/mL. The cross-reactivities of the anti-PH antibody to seven structurally related compounds were below 12.5%. Some environmental water samples were analyzed with satisfactory results, which showed good accuracy and suitability to analyze PH in environmental water. Compared with high-performance liquid chromatography, the recovery was lower or higher with agitation but would still be acceptable for use in an on-site field test to provide rapid, semiquantitative, and reliable test results for making environmental decisions. PMID:18587564

  7. Development of a highly specific assay for rapid identification of pathogenic strains of Yersinia enterocolitica based on PCR amplification of the Yersinia heat-stable enterotoxin gene (yst).

    PubMed

    Ibrahim, A; Liesack, W; Griffiths, M W; Robins-Browne, R M

    1997-06-01

    The chromosomal gene yst, which encodes a heat-stable enterotoxin of Yersinia enterocolitica, is a useful diagnostic marker because it occurs only in invasive strains of this species. A homologous gene also occurs in some strains of Yersinia kristensenii. Sequence analysis of the yst genes from two different strains of Y. enterocolitica and from Y. kristensenii revealed a substantial number of mismatches at the 3' ends of the yst genes of the so-called American and European biotypes of Y. enterocolitica. Moreover, several mismatches and a deletion of 5 codons were found in the yst of Y. kristensenii. These findings were used to develop a PCR-based assay for yst of Y. enterocolitica which yielded a detectable product in as little as 50 min. The assay was 100% specific in terms of its ability to identify potentially pathogenic strains of Y. enterocolitica regardless of biotype or serotype. The PCR yielded an amplicon that was visible on agarose gel electrophoresis from as few as 100 CFU, or 10 CFU when the PCR was combined with dot blot hybridization with a digoxigenin-labeled oligonucleotide probe that corresponded to an internal sequence of yst. These results establish the value of the yst gene as a target for the identification of pathogenic bioserotypes of Y. enterocolitica and the usefulness of PCR for this purpose.

  8. Development of a highly specific assay for rapid identification of pathogenic strains of Yersinia enterocolitica based on PCR amplification of the Yersinia heat-stable enterotoxin gene (yst).

    PubMed Central

    Ibrahim, A; Liesack, W; Griffiths, M W; Robins-Browne, R M

    1997-01-01

    The chromosomal gene yst, which encodes a heat-stable enterotoxin of Yersinia enterocolitica, is a useful diagnostic marker because it occurs only in invasive strains of this species. A homologous gene also occurs in some strains of Yersinia kristensenii. Sequence analysis of the yst genes from two different strains of Y. enterocolitica and from Y. kristensenii revealed a substantial number of mismatches at the 3' ends of the yst genes of the so-called American and European biotypes of Y. enterocolitica. Moreover, several mismatches and a deletion of 5 codons were found in the yst of Y. kristensenii. These findings were used to develop a PCR-based assay for yst of Y. enterocolitica which yielded a detectable product in as little as 50 min. The assay was 100% specific in terms of its ability to identify potentially pathogenic strains of Y. enterocolitica regardless of biotype or serotype. The PCR yielded an amplicon that was visible on agarose gel electrophoresis from as few as 100 CFU, or 10 CFU when the PCR was combined with dot blot hybridization with a digoxigenin-labeled oligonucleotide probe that corresponded to an internal sequence of yst. These results establish the value of the yst gene as a target for the identification of pathogenic bioserotypes of Y. enterocolitica and the usefulness of PCR for this purpose. PMID:9163505

  9. Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

    PubMed Central

    Back, Chang-Gi; Lee, Seung-Yeol; Lee, Boo-Ja; Yea, Mi-Chi; Kim, Sang-Mok; Kang, In-Kyu; Cha, Jae-Soon; Jung, Hee-Young

    2015-01-01

    In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of 1 pg/μl per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases. PMID:26361469

  10. An examination of the utility of a nuclear DNA/mitochondrial DNA duplex qPCR assay to assess surface decontamination of hair.

    PubMed

    Date-Chong, Mavis; Buoncristiani, Martin R; Aceves, Margaret; Orrego, Cristián

    2013-05-01

    The goal of this study was to compare two commonly used methods for the surface decontamination of human hair shafts, and to evaluate the use of a duplex real-time qPCR assay to assess decontamination effectiveness for the purpose of mitochondrial DNA typing. Hair shafts of known mitochondrial DNA haplotype were coated with undiluted saliva, semen or blood, each of known mitochondrial haplotype distinct from the test hair. Surface decontamination was conducted by enzymatic treatment with Terg-a-zyme™ and by chemical treatment with dilutions of sodium hypochlorite (NaClO, bleach). Following DNA extraction, a duplex (nuclear and mitochondrial DNA) real-time qPCR assay was used to quantify mitochondrial DNA and to test for surface contamination by quantifying the exogenous nuclear DNA not removed from the hair shaft. The NaClO treatment was found to be more effective for removing surface contamination than the Terg-a-zyme™ treatment, and it was procedurally simpler to implement, resulting in a significant savings of sample processing time. Exposure to 3% NaClO for up to two minutes had no detrimental effect on quantity or typing of the mitochondrial DNA belonging to the hair. In addition, we demonstrated that the duplex real-time PCR assay is a convenient early-warning diagnostic method for the detection of the presence of external DNA contamination, providing an assessment of the purity of the sample prior to embarking on further analysis by more laborious mitochondrial DNA typing methods.

  11. Simultaneous detection of influenza viruses A, B, and swine origin influenza A using multiplex one-step real-time RT-PCR assay.

    PubMed

    Monavari, S H R; Mollaie, H R; Fazlalipour, M

    2014-01-01

    Every year, seasonal epidemics of influenza viruses are causing considerable morbidity and mortality worldwide. Also infrequent novel and rearranged strains of influenza viruses have caused quick, acute universal pandemics resulting in millions of mortalities. The usage of efficient and accurate detection is superior for infection control, effective treatment, and epidemiological supervision. Therefore, evaluation of useful real-time PCR molecular tests for the detection of pandemic viruses is important before the next wave of the pandemic. A novel quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers was used successfully for detection and monitoring of the influenza A, B, and swine influenza. The newly designed primers target highly conserved regions in influenza viruses. Our qRT-PCR assay is highly specific for detecting influenza A, B, and swine influenza viruses. The cutoff CT value was determined <38 for domestic human diagnostic test, under conditions of FDA emergency, and the reaction efficiency of the InfA, swInfA, and InfB assays were thereby estimated to be 97.9 % (R2 = 0.998), 98.3 % (R2 = 0.986), and 99.5 % (R2 = 0.995), respectively. Interestingly, based on our finding, there is no cross reactivity of detecting other viruses.

  12. Rapid detection of drug-resistant mutations in hepatitis B virus by the PCR-Invader assay.

    PubMed

    Tadokoro, Kenichi; Suzuki, Fumitaka; Kobayashi, Mariko; Yamaguchi, Toshikazu; Nagano, Makoto; Egashira, Toru; Kumada, Hiromitsu

    2011-01-01

    Early detection of resistant mutations of hepatitis B virus (HBV) is important for patients on nucleos(t)ide analog therapy. An assay based on the PCR-Invader technology was developed to detect resistant mutations with high sensitivity. The assay specifically detects mutations at codons 180, 181, 184, 202, 204, and 250 of the HBV polymerase reverse transcriptase domain. These mutations result in resistance to lamivudine and entecavir. In mixtures of plasmids containing wild-type and resistant mutants, fold-over-zero values for resistant mutations were detected in 2% of the total. Seventy-five serum samples from patients, whose treatment had been switched from lamivudine to entecavir, were examined by the PCR-Invader assay and direct sequencing. The PCR-Invader assay detected all resistant mutations that were detected by direct sequencing and even detected the presence of mutants that direct sequencing could not. Cloning sequencing confirmed those mutations found by the PCR-Invader assay and not by direct sequencing. The PCR-Invader assay is a useful tool for the early detection of drug-resistant mutations. PMID:20950650

  13. Rapid real-time PCR assay for detecting Salmonella in raw and ready-to-eat meats.

    PubMed

    Patel, Jitu R; Bhagwat, Arvind A

    2008-12-01

    A real-time PCR assay was evaluated for the rapid detection (10 h) of Salmonella in meats using molecular beacon probes available as a commercial kit (iQ-Check, Bio-Rad laboratories). Raw (chicken, pork) and ready-to-eat (RTE) meats were artificially contaminated with Salmonella enterica serovar Typhimurium at the estimated level of 2 to 4 cells per 25 g. After 8 h of pre-enrichment in buffered peptone water, a molecular beacon-based PCR assay was performed to detect contamination in raw and RTE meats. The sensitivity and accuracy of the assay were compared with the conventional USDA microbiological procedure. Comparative evaluation of the USDA procedure with the rapid PCR assay for meat samples (n = 63) revealed 1 false negative pork sample with the PCR assay. All uninoculated controls (n = 34) but one sample were negative by both the 10-h PCR assay and the USDA procedure. Developing rapid pathogen detection methods with shorter pre-enrichment times (8-h) and real-time data monitoring capabilities will benefit the industry in preventing recall of contaminated meats by stopping the contaminated products from being introduced into the marketplace.

  14. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections.

  15. A multiplex real-time PCR panel assay for simultaneous detection and differentiation of 12 common swine viruses.

    PubMed

    Shi, Xiju; Liu, Xuming; Wang, Qin; Das, Amaresh; Ma, Guiping; Xu, Lu; Sun, Qing; Peddireddi, Lalitha; Jia, Wei; Liu, Yanhua; Anderson, Gary; Bai, Jianfa; Shi, Jishu

    2016-10-01

    Mixed infection with different pathogens is common in swine production systems especially under intensive production conditions. Quick and accurate detection and differentiation of different pathogens are necessary for epidemiological surveillance, disease management and import and export controls. In this study, we developed and validated a panel of multiplex real-time PCR/RT-PCR assays composed of four subpanels, each detects three common swine pathogens. The panel detects 12 viruses or viral serotypes, namely, VSV-IN, VSV-NJ, SVDV, CSFV, ASFV, FMDV, PCV2, PPV, PRV, PRRSV-NA, PRRSV-EU and SIV. Correlation coefficients (R(2)) and PCR amplification efficiencies of all singular and triplex real-time PCR reactions are within the acceptable range. Comparison between singular and triplex real-time PCR assays of each subpanel indicates that there is no significant interference on assay sensitivities caused by multiplexing. Specificity tests on 226 target clinical samples or 4 viral strains and 91 non-target clinical samples revealed that the real-time PCR panel is 100% specific, and there is no cross amplification observed. The limit of detection of each triplex real-time PCR is less than 10 copies per reaction for DNA, and less than 16 copies per reaction for RNA viruses. The newly developed multiplex real-time PCR panel also detected different combinations of co-infections as confirmed by other means of detections. PMID:27506582

  16. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters.

    PubMed

    Riedel, Timothy E; Zimmer-Faust, Amity G; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T; Ebentier, Darcy L; Byappanahalli, Muruleedhara; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B; Griffith, John F; Holden, Patricia A; Shanks, Orin C; Weisberg, Stephen B; Jay, Jennifer A

    2014-04-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  17. Detection limits and cost comparisons of human- and gull-associated conventional and quantitative PCR assays in artificial and environmental waters

    USGS Publications Warehouse

    Riedel, Timothy E.; Zimmer-Faust, Amity G.; Thulsiraj, Vanessa; Madi, Tania; Hanley, Kaitlyn T.; Ebentier, Darcy L.; Byappanahalli, Muruleedhara N.; Layton, Blythe; Raith, Meredith; Boehm, Alexandria B.; Griffith, John F.; Holden, Patricia A.; Shanks, Orin C.; Weisberg, Stephen B.; Jay, Jennifer A.

    2014-01-01

    Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.

  18. Development of a PCR Assay for Detection of Yersinia ruckeri in Tissues of Inoculated and Naturally Infected Trout

    PubMed Central

    Gibello, A.; Blanco, M. M.; Moreno, M. A.; Cutuli, M. T.; Domenech, A.; Domínguez, L.; Fernández-Garayzábal, J. F.

    1999-01-01

    A PCR-based method was developed for the specific detection of Yersinia ruckeri in tissues of inoculated trout and naturally infected trout. No amplification products were obtained with other yersiniae, bacterial fish pathogens, or phylogenetically related bacteria (n = 34). The sensitivity of PCR detection was 60 to 65 bacterial cells per PCR tube, which was decreased to 10 to 20 cells by hybridization with a nonradioactive probe. The PCR assay proved to be as reliable as and faster than the conventional culture method for the detection of Y. ruckeri in infected trout tissues. PMID:9872807

  19. Evaluation of a Multiplex Real-time PCR Assay for the Detection of Respiratory Viruses in Clinical Specimens

    PubMed Central

    Rheem, Insoo; Park, Joowon; Kim, Tae-Hyun

    2012-01-01

    Background In this study, we evaluated the analytical performance and clinical potential of a one-step multiplex real-time PCR assay for the simultaneous detection of 14 types of respiratory viruses using the AdvanSure RV real-time PCR Kit (LG Life Sciences, Korea). Methods Three hundred and twenty clinical specimens were tested with the AdvanSure RV real-time PCR Kit and conventional multiplex reverse transcription (RT)-PCR assay. The assay results were analyzed and the one-step AdvanSure RV real-time PCR Kit was compared with the conventional multiplex RT-PCR assay with respect to the sensitivity and specificity of the detection of respiratory viruses. Results The limit of detection (LOD) was 1.31 plaque-forming units (PFU)/mL for human rhinoviruses (hRVs), 4.93 PFU/mL for human coronavirus HCoV-229E/NL63, 2.67 PFU/mL for human coronavirus HCoV-OC43, 18.20 PFU/mL for parainfluenza virus 1 (PIV)-1, 24.57 PFU/mL for PIV-2, 1.73 PFU/mL for PIV-3, 1.79 PFU/mL for influenza virus group (Flu) A, 59.51 PFU/mL for FluB, 5.46 PFU/mL for human respiratory syncytial virus (hRSV)-A, 17.23 PFU/mL for hRSV-B, 9.99 PFU/mL for human adenovirus (ADVs). The cross-reactivity test for this assay against 23 types of non-respiratory viruses showed negative results for all viruses tested. The agreement between the one-step AdvanSure multiplex real-time PCR assay and the conventional multiplex RT-PCR assay was 98%. Conclusions The one-step AdvanSure RV multiplex real-time PCR assay is a simple assay with high potential for specific, rapid and sensitive laboratory diagnosis of respiratory viruses compared to conventional multiplex RT-PCR. PMID:23130338

  20. [Contribution of the PCR assay to the diagnosis of Mansonella ozzardi in endemic areas of Argentina].

    PubMed

    Degese, María F; Cabrera, Marta G; Krivokapich, Silvio J; Irazu, Lucia E; Rodríguez, Marcelo A; Guarnera, Eduardo A

    2012-01-01

    Mansonella ozzardi is a tissue-dwelling parasitic nematode, the causative agent of mansonelliasis in almost all Latin American countries. It has been described along the Argentine Yungas region. The microscopic diagnosis can yield false-negative test results at low microfilaremia levels. The aim of this study was to optimize the molecular diagnostic technique and compare it with the Knott's method and standard blood smear procedures (thin blood films and thick smears) in 92 blood samples of individuals from an endemic area. The PCR technique followed by the sequencing of the amplified product yielded 100 % sensitivity compared to the Knott's test, which is considered a reference method. Seven more cases of this parasitosis could only be identified with the molecular technique. PMID:22997768

  1. Evaluation of a gp63–PCR Based Assay as a Molecular Diagnosis Tool in Canine Leishmaniasis in Tunisia

    PubMed Central

    Guerbouj, Souheila; Djilani, Fattouma; Bettaieb, Jihene; Lambson, Bronwen; Diouani, Mohamed Fethi; Ben Salah, Afif; Ben Ismail, Riadh; Guizani, Ikram

    2014-01-01

    A gp63PCR method was evaluated for the detection and characterization of Leishmania (Leishmania) (L.) parasites in canine lymph node aspirates. This tool was tested and compared to other PCRs based on the amplification of 18S ribosomal genes, a L. infantum specific repetitive sequence and kinetoplastic DNA minicircles, and to classical parasitological (smear examination and/or culture) or serological (IFAT) techniques on a sample of 40 dogs, originating from different L. infantum endemic regions in Tunisia. Sensitivity and specificity of all the PCR assays were evaluated on parasitologically confirmed dogs within this sample (N = 18) and control dogs (N = 45) originating from non–endemic countries in northern Europe and Australia. The gp63 PCR had 83.5% sensitivity and 100% specificity, a performance comparable to the kinetoplast PCR assay and better than the other assays. These assays had comparable results when the gels were southern transferred and hybridized with a radioactive probe. As different infection rates were found according to the technique, concordance of the results was estimated by (κ) test. Best concordance values were between the gp63PCR and parasitological methods (74.6%, 95% confidence intervals CI: 58.8–95.4%) or serology IFAT technique (47.4%, 95% CI: 23.5–71.3%). However, taken together Gp63 and Rib assays covered most of the samples found positive making of them a good alternative for determination of infection rates. Potential of the gp63PCR-RFLP assay for analysis of parasite genetic diversity within samples was also evaluated using 5 restriction enzymes. RFLP analysis confirmed assignment of the parasites infecting the dogs to L. infantum species and illustrated occurrence of multiple variants in the different endemic foci. Gp63 PCR assay thus constitutes a useful tool in molecular diagnosis of L. infantum infections in dogs in Tunisia. PMID:25153833

  2. Molecular diagnostics via mass spectrometry of PCR-amplified DNA products

    SciTech Connect

    Buchanan, M.; Doktycz, M.; Hurst, G.

    1995-12-31

    Identifying the presence of a specific DNA fragment is becoming increasingly critical to many applications in medical, clinical, forensic and other research laboratories. At present, regions of interest in DNA are amplified using the Polymerase Chain Reaction (PCR) or other reactions to produce fragments containing a specific number of nucleotide units that are diagnostic for the targeted genetic disease, person, or pathogen. These fragments are then typically analyzed by slab gel electrophoresis. Mass spectrometry has the potential of characterizing the DNA fragments faster and more confidently than chromatography-based methods. The authors have evaluated matrix assisted laser desorption (MALDI) time-of-flight (TOF) and electrospray (ES) quadrupole ion trap (QIT) mass spectrometry for the rapid analysis of PCR fragments.

  3. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification.

    PubMed

    Hammond, Rosemarie W; Zhang, Shulu

    2016-10-01

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39°C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in infected leaf and seed tissues. The performance of the AmplifyRP(®) Acceler8™ RT-RPA diagnostic assay, utilizing a lateral flow strip contained within an amplicon detection chamber, was evaluated and the results were compared with a standard RT-PCR assay. The AmplifyRP(®) Acceler8™ assay was specific for TCDVd in leaf and seed tissues, its sensitivity was comparable to conventional RT-PCR in leaf tissues, and it does not require extensive sample purification, specialized equipment, or technical expertise. This is the first report utilizing an RT-RPA assay to detect viroids and the assay can be used both in the laboratory and in the field for TCDVd detection.

  4. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification.

    PubMed

    Hammond, Rosemarie W; Zhang, Shulu

    2016-10-01

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39°C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in infected leaf and seed tissues. The performance of the AmplifyRP(®) Acceler8™ RT-RPA diagnostic assay, utilizing a lateral flow strip contained within an amplicon detection chamber, was evaluated and the results were compared with a standard RT-PCR assay. The AmplifyRP(®) Acceler8™ assay was specific for TCDVd in leaf and seed tissues, its sensitivity was comparable to conventional RT-PCR in leaf tissues, and it does not require extensive sample purification, specialized equipment, or technical expertise. This is the first report utilizing an RT-RPA assay to detect viroids and the assay can be used both in the laboratory and in the field for TCDVd detection. PMID:27427473

  5. DEVELOPMENT OF SEMI-QUANTITATIVE PCR ASSAYS FOR THE DETECTION AND ENUMERATION OF GAMBIERDISCUS SPECIES (GONYAULACALES, DINOPHYCEAE)(1).

    PubMed

    Vandersea, Mark W; Kibler, Steven R; Holland, William C; Tester, Patricia A; Schultz, Thomas F; Faust, Maria A; Holmes, Michael J; Chinain, Mirelle; Wayne Litaker, R

    2012-08-01

    Ciguatera fish poisoning (CFP) is a serious health problem in tropical regions and is caused by the bioaccumulation of lipophilic toxins produced by dinoflagellates in the genus Gambierdiscus. Gambierdiscus species are morphologically similar and are difficult to distinguish from one another even when using scanning electron microscopy. Improved identification and detection methods that are sensitive and rapid are needed to identify toxic species and investigate potential distribution and abundance patterns in relation to incidences of CFP. This study presents the first species-specific, semi-quantitative polymerase chain reaction (qPCR) assays that can be used to address these questions. These assays are specific for five Gambierdiscus species and one undescribed ribotype. The assays utilized a SYBR green format and targeted unique sequences found within the SSU, ITS, and the D1/D3 LSU ribosomal domains. Standard curves were constructed using known concentrations of cultured cells and 10-fold serial dilutions of rDNA PCR amplicons containing the target sequence for each specific assay. Assay sensitivity and accuracy were tested using DNA extracts purified from known concentrations of multiple Gambierdiscus species. The qPCR assays were used to assess Gambierdiscus species diversity and abundance in samples collected from nearshore areas adjacent to Ft. Pierce and Jupiter, Florida USA. The results indicated that the practical limit of detection for each assay was 10 cells per sample. Most interestingly, the qPCR analysis revealed that as many as four species of Gambierdiscus were present in a single macrophyte sample.

  6. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.

  7. Development and evaluation of a quantitative PCR assay targeting sandhill crane (Grus canadensis) fecal pollution.

    PubMed

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas; Santo Domingo, Jorge

    2012-06-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  8. Development and Evaluation of a Quantitative PCR Assay Targeting Sandhill Crane (Grus canadensis) Fecal Pollution

    PubMed Central

    Ryu, Hodon; Lu, Jingrang; Vogel, Jason; Elk, Michael; Chávez-Ramírez, Felipe; Ashbolt, Nicholas

    2012-01-01

    While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics. PMID:22492437

  9. Real-Time TaqMan PCR Assay for the Detection of Heat-Labile and Heat-Stable Enterotoxin Genes in a Geographically Diverse Collection of Enterotoxigenic Escherichia coli Strains and Stool Specimens.

    PubMed

    Pattabiraman, Vaishnavi; Parsons, Michele B; Bopp, Cheryl A

    2016-04-01

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in children under the age of 5 years in developing countries and are the leading bacterial agent of traveler's diarrhea in persons traveling to these countries. ETEC strains secrete heat-labile (LT) and/or heat-stable (ST) enterotoxins that induce diarrhea by causing water and electrolyte imbalance. We describe the validation of a real-time TaqMan PCR (RT-PCR) assay to detect LT, ST1a, and ST1b enterotoxin genes in E. coli strains and in stool specimens. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay using a conventional PCR assay as a gold standard with 188 ETEC strains and 42 non-ETEC strains. We validated LT/ST1b duplex and ST1a single-plex RT-PCR assay in stool specimens (n = 106) using traditional culture as the gold standard. RT- PCR assay sensitivities for LT, ST1a, and ST1b detection in strains were 100%, 100%, and 98%; specificities were 95%, 98%, and 99%, and Pearson correlation coefficient r was 0.9954 between RT-PCR assay and the gold standard. In stool specimens, RT-PCR assay sensitivities for LT, ST1a, and ST1b detection were 97%, 100%, and 97%; and specificities were 99%, 94%, and 97%. Pearson correlation coefficient r was 0.9975 between RT-PCR results in stool specimens and the gold standard. Limits of detection of LT, ST1a, and ST1b by RT-PCR assay were 0.1 to1.0 pg/μL and by conventional PCR assay were 100 to1000 pg/μL. The accuracy, rapidity and sensitivity of this RT-PCR assay is promising for ETEC detection in public health/clinical laboratories and for laboratories in need of an independent method to confirm results of other culture independent diagnostic tests.

  10. A comparative study of culture methods and PCR assay for Salmonella detection in poultry drinking water.

    PubMed

    Soria, M C; Soria, M A; Bueno, D J

    2013-01-01

    The present work compared 2 culture methods and PCR assays for motile and nonmotile Salmonella detection using artificially contaminated poultry drinking water. The specificity was 1 for all methods studied. The accuracy and sensitivity were 1 for all motile strains, whereas these parameters were between 0 and 0.7 for nonmotile Salmonella strains. The positive predictive value and negative predictive value were 1 for all motile Salmonella strains in the 3 methods used. Nonmotile Salmonella strains showed a positive predictive value of 1 in the PCR method. However, the positive predictive value was indeterminate in the tetrathionate (TT) methods for both strains tested and in the modified semisolid Rappaport-Vassiliadis (MSRV) method for Salmonella Pullorum. On the other hand, the negative predictive value was between 0.20 and 0.43 for the 3 methods. The detection level of motile strains was 4 to 7 cfu/25 mL for all methods. Nonmotile Salmonella strains could not be detected in the TT method, whereas only Salmonella Gallinarum could be recovered from 1.1 × 10(1) cfu/25 mL in the MSRV method. In relation to the molecular methods, PCR could detect these strains from 1.1 × 10(4) cfu/25 mL. Extending incubation time of the enrichment medium to 6 d in the TT method did not improve the isolation rates. In general, all selective plating media did not show any statistical differences in the parameters of performance studied. The kappa coefficient showed that there was an excellent agreement between the 3 methods for motile strains. For nonmotile strains, the agreement was poor between the MSRV and the PCR; there was no agreement when the TT method was compared with the MSRV and the PCR methods. The difference in detection levels obtained with the methods used for motile and nonmotile Salmonella strains and the difficulty in detecting these last strains represents a potential problem when a poultry water sample is considered negative for the presence of Salmonella.

  11. Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus and azole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid.

    PubMed

    Chong, Ga-Lai M; van de Sande, Wendy W J; Dingemans, Gijs J H; Gaajetaan, Giel R; Vonk, Alieke G; Hayette, Marie-Pierre; van Tegelen, Dennis W E; Simons, Guus F M; Rijnders, Bart J A

    2015-03-01

    Azole resistance in Aspergillus fumigatus is increasingly reported. Here, we describe the validation of the AsperGenius, a new multiplex real-time PCR assay consisting of two multiplex real-time PCRs, one that identifies the clinically relevant Aspergillus species, and one that detects the TR34, L98H, T289A, and Y121F mutations in CYP51A and differentiates susceptible from resistant A. fumigatus strains. The diagnostic performance of the AsperGenius assay was tested on 37 bronchoalveolar lavage (BAL) fluid samples from hematology patients and 40 BAL fluid samples from intensive care unit (ICU) patients using a BAL fluid galactomannan level of ≥1.0 or positive culture as the gold standard for detecting the presence of Aspergillus. In the hematology and ICU groups combined, there were 22 BAL fluid samples from patients with invasive aspergillosis (IA) (2 proven, 9 probable, and 11 nonclassifiable). Nineteen of the 22 BAL fluid samples were positive, according to the gold standard. The optimal cycle threshold value for the presence of Aspergillus was <36. Sixteen of the 19 BAL fluid samples had a positive PCR (2 Aspergillus species and 14 A. fumigatus samples). This resulted in a sensitivity, specificity, and positive and negative predictive values of 88.9%, 89.3%, 72.7%, and 96.2%, respectively, for the hematology group and 80.0%, 93.3%, 80.0%, and 93.3%, respectively, in the ICU group. The CYP51A real-time PCR confirmed 12 wild-type and 2 resistant strains (1 TR34-L98H and 1 TR46-Y121F-T289A mutant). Voriconazole therapy failed for both patients. The AsperGenius multiplex real-time PCR assay allows for sensitive and fast detection of Aspergillus species directly from BAL fluid samples. More importantly, this assay detects and differentiates wild-type from resistant strains, even if BAL fluid cultures remain negative.

  12. Development of novel AllGlo-probe-based one-step multiplex qRT-PCR assay for rapid identification of avian influenza virus H7N9.

    PubMed

    Zhang, Yanjun; Mao, Haiyan; Yan, Juying; Wang, Xinying; Zhang, Lei; Guus, Koch; Li, Hui; Li, Zhen; Chen, Yin; Gong, Liming; Chen, Zhiping; Xia, Shichang

    2014-07-01

    Recently, human deaths have resulted from infection with low-pathogenicity avian influenza virus H7N9 strains that have emerged recently in China. To strengthen H7N9 surveillance and outbreak control, rapid and reliable diagnostic methods are needed. To develop a sensitive quantitative real-time RT-PCR assay for rapid detection of H7N9 viral RNA, primers and AllGlo probes were designed to target the HA and NA genes of H7N9. Conserved sequences in the HA and NA genes were identified by phylogenic analysis and used as targets for H7N9 virus detection. The similarities of the targeted HA and NA gene sequences from different H7 and N9 influenza virus strains were 93.2-99.9 % and 96.0-99.6 %, respectively The specificity and sensitivity of the new multiplex real-time qRT-PCR was established. The test was used for the detection of viral RNA in human pharyngeal swabs and environmental samples. The detection limit of the multiplex qRT-PCR was estimated to be about 10(-1) TCID50/reaction. Finally, the diagnostic sensitivities of the multiplex qRT-PCR, virus isolation and TaqMan qRT-PCR were compared using pharyngeal swabs and environmental samples. These analyses yielded positive results in 46.7 %, 43.3 % and 20.0 % of the samples, respectively. The novel multiplex AllGlo qRT-PCR is a rapid and sensitive method to identify H7N9 virus in clinical and environmental samples and can be used to facilitate studies on the epidemiology of H7N9 virus.

  13. Detection of Anaplasma marginale and A. phagocytophilum in bovine peripheral blood samples by duplex real-time reverse transcriptase PCR assay.

    PubMed

    Reinbold, James B; Coetzee, Johann F; Sirigireddy, Kamesh R; Ganta, Roman R

    2010-07-01

    Insufficient diagnostic sensitivity and specificity coupled with the potential for cross-reactivity among closely related Anaplasma species has made the accurate determination of infection status problematic. A method for the development of simplex and duplex real-time quantitative reverse transcriptase PCR (qRT-PCR) assays for the detection of A. marginale and A. phagocytophilum 16S rRNA in plasma-free bovine peripheral blood samples is described. The duplex assay was able to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. The ratio of 16S rRNA to 16S DNA copies for A. marginale was determined to be 117.9:1 (95% confidence interval [95% CI], 100.7:1, 135.2:1). Therefore, the detection limit is the minimum infective unit of one A. marginale bacterium. The duplex assay detected nonequivalent molar ratios as high as 100-fold. Additionally, the duplex assay and a competitive enzyme-linked immunosorbent assay (cELISA) were used to screen 237 samples collected from herds in which anaplasmosis was endemic. When the cELISA was evaluated by the results of the qRT-PCR, its sensitivity and specificity for the detection of A. marginale infection were found to be 65.2% (95% CI, 55.3%, 75.1%) and 97.3% (95% CI, 94.7%, 99.9%), respectively. A. phagocytophilum infection was not detected in the samples analyzed. One- and two-way receiver operator characteristic curves were constructed in order to recommend the optimum negative cutoff value for the cELISA. Percentages of inhibition of 20 and 15.3% were recommended for the one- and two-way curves, respectively. In conclusion, the duplex real-time qRT-PCR assay is a highly sensitive and specific diagnostic tool for the accurate and precise detection of A. marginale and A. phagocytophilum infections in cattle.

  14. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto.

    PubMed

    Kulik, Tomasz; Ostrowska, Anna; Buśko, Maciej; Pasquali, Matias; Beyer, Marco; Stenglein, Sebastian; Załuski, Dariusz; Sawicki, Jakub; Treder, Kinga; Perkowski, Juliusz

    2015-10-01

    An ascomycete fungus, Fusarium graminearum sensu stricto (s.s.), is the major cause of Fusarium head blight (FHB), a devastating disease of cereals worldwide. The fungus contaminates crops with mycotoxins, which pose a serious threat to food and feed safety. In this study, we developed a highly sensitive mitochondrial based qPCR assay (FgMito qPCR) for quantification of F. graminearum s.s. To ensure high sensitivity of the assay, primers and a Minor-groove binding (MGB) probe were designed based on multi-copy mitochondrial DNA. The FgMito assay was successfully validated against a range of geographically diverse F. graminearum s.s. strains to ensure uniformity of the assay at an intraspecific level, as well as with other fungal species to ensure specificity. The assay was further evaluated in terms of efficiency and sensitivity against a test panel of different F. graminearum s.s. strains with various levels of pure fungal DNA and in the presence of wheat background DNA. The results showed a high efficiency of the assay developed, ranging from 93% to 101% with r(2)-values of >0.99. We further showed that three low concentrations of fungal template 2 pg, 0.6 pg and 0.2 pg could be reliably quantified in the presence of wheat background DNA. The FgMito assay was used to quantify F. graminearum s.s. DNA on 65 field samples from a range of hosts with defined levels of trichothecenes. We revealed a significant positive correlation between fungal DNA quantity and the sum of trichothecenes. Lastly, we showed a higher sensitivity of the FgMito assay than the nuclear based qPCR assay for F. graminearum s.s. by comparing Ct-values from both assays.

  15. Development of an FgMito assay: A highly sensitive mitochondrial based qPCR assay for quantification of Fusarium graminearum sensu stricto.

    PubMed

    Kulik, Tomasz; Ostrowska, Anna; Buśko, Maciej; Pasquali, Matias; Beyer, Marco; Stenglein, Sebastian; Załuski, Dariusz; Sawicki, Jakub; Treder, Kinga; Perkowski, Juliusz

    2015-10-01

    An ascomycete fungus, Fusarium graminearum sensu stricto (s.s.), is the major cause of Fusarium head blight (FHB), a devastating disease of cereals worldwide. The fungus contaminates crops with mycotoxins, which pose a serious threat to food and feed safety. In this study, we developed a highly sensitive mitochondrial based qPCR assay (FgMito qPCR) for quantification of F. graminearum s.s. To ensure high sensitivity of the assay, primers and a Minor-groove binding (MGB) probe were designed based on multi-copy mitochondrial DNA. The FgMito assay was successfully validated against a range of geographically diverse F. graminearum s.s. strains to ensure uniformity of the assay at an intraspecific level, as well as with other fungal species to ensure specificity. The assay was further evaluated in terms of efficiency and sensitivity against a test panel of different F. graminearum s.s. strains with various levels of pure fungal DNA and in the presence of wheat background DNA. The results showed a high efficiency of the assay developed, ranging from 93% to 101% with r(2)-values of >0.99. We further showed that three low concentrations of fungal template 2 pg, 0.6 pg and 0.2 pg could be reliably quantified in the presence of wheat background DNA. The FgMito assay was used to quantify F. graminearum s.s. DNA on 65 field samples from a range of hosts with defined levels of trichothecenes. We revealed a significant positive correlation between fungal DNA quantity and the sum of trichothecenes. Lastly, we showed a higher sensitivity of the FgMito assay than the nuclear based qPCR assay for F. graminearum s.s. by comparing Ct-values from both assays. PMID:26087129

  16. Performance of a real-time PCR assay for the rapid identification of Mycobacterium species.

    PubMed

    Wang, Hye-young; Kim, Hyunjung; Kim, Sunghyun; Kim, Do-kyoon; Cho, Sang-Nae; Lee, Hyeyoung

    2015-01-01

    Mycobacteria cause a variety of illnesses that differ in severity and public health implications. The differentiation of Mycobacterium tuberculosis (MTB) from nontuberculous mycobacteria (NTM) is of primary importance for infection control and choice of antimicrobial therapy. The diagnosis of diseases caused by NTM is difficult because NTM species are prevalent in the environment and because they have fastidious properties. In the present study, we evaluated 279 clinical isolates grown in liquid culture provided by The Catholic University of Korea, St. Vincent's Hospital using real-time PCR based on mycobacterial rpoB gene sequences. The positive rate of real-time PCR assay accurately discriminated 100% (195/195) and 100% (84/84) between MTB and NTM species. Comparison of isolates identified using the MolecuTech REBA Myco-ID(®) and Real Myco-ID® were completely concordant except for two samples. Two cases that were identified as mixed infection (M. intracellulare-M. massiliense and M. avium-M. massiliense co-infection) by PCRREBA assay were only detected using M. abscessus-specific probes by Real Myco-ID(®). Among a total of 84 cases, the most frequently identified NTM species were M. intracellulare (n=38, 45.2%), M. avium (n=18, 23.7%), M. massiliense (n=10, 13.2%), M. fortuitum (n=5, 6%), M. abscessus (n=3, 3.9%), M. gordonae (n=3, 3.9%), M. kansasii (n=2, 2.4%), M. mucogenicum (n=2, 2.4%), and M. chelonae (n= 1, 1.2%). Real Myco-ID(®) is an efficient tool for the rapid detection of NTM species as well as MTB and sensitive and specific and comparable to conventional methods.

  17. Identification of cytoplasm types in rapeseed (Brassica napus L.) accessions by a multiplex PCR assay.

    PubMed

    Zhao, H X; Li, Z J; Hu, S W; Sun, G L; Chang, J J; Zhang, Z H

    2010-08-01

    Cytoplasmic male sterility (CMS) has widely been used as an efficient pollination control system in rapeseed hybrid production. Identification of cytoplasm type of rapeseed accessions is becoming the most important basic work for hybrid-rapeseed breeding. In this study, we report a simple multiplex PCR method to distinguish the existing common cytoplasm resources, Pol, Nap, Cam, Ogu and Ogu-NWSUAF cytoplasm, in rapeseed. Cytoplasm type of 35 F(1) hybrids and 140 rapeseed open pollinated varieties or breeding lines in our rapeseed breeding programme were tested by this method. The results indicated that 10 of 35 F(1) hybrids are the Nap, and 25 the Pol cytoplasm type, which is consistent with the information provided by the breeders. Out of 140 accessions tested, 100 (71.4%), 21 (15%) and 19 (13.6%) accessions possess Nap, Cam and Pol cytoplasm, respectively. All 19 accessions with Pol cytoplasm are from China. Pedigree analysis indicated that these accessions with Pol cytoplasm were either restorers for Pol CMS, including Shaan 2C, Huiyehui, 220, etc. or derived from hybrids with Pol CMS as female parent. Our molecular results are consistent with those of the classical testcross, suggesting the reliability of this method. The multiplex PCR assay method can be applied to CMS "three-line" breeding, selection and validation of hybrid rapeseed. PMID:20401459

  18. A nested PCR assay exhibits enhanced sensitivity for detection of Theileria parva infections in bovine blood samples from carrier animals.

    PubMed

    Odongo, David O; Sunter, Jack D; Kiara, Henry K; Skilton, Robert A; Bishop, Richard P

    2010-01-01

    Theileria parva causes East Coast fever, an economically important disease of cattle in sub-Saharan Africa. We describe a nested polymerase chain reaction (nPCR) assay for the detection of T. parva DNA in cattle blood spotted onto filter paper using primers derived from the T. parva-specific 104-kDa antigen (p104) gene. The sensitivity of this assay was compared to a previously described p104-based PCR and also the reverse line blot (RLB) technique, using serial dilutions of blood from a calf with known T. parva piroplasm parasitaemia. The relative sensitivities of the three assays were 0.4, 1.4 and 4 parasites/microl corresponding to blood parasitaemias of 9.2 x 10(-6)%, 2.8 x 10(-5)% and 8.3 x 10(-5)%, respectively. The three assays were applied to samples from two calves infected with the T. parva Muguga stock. Parasite DNA was consistently detectable by the two p104 PCR assays until 48 and 82 days post-infection, respectively, and thereafter sporadically. RLB detected parasite DNA in the two infected calves until days 43 and 45. Field samples from 151 Kenyan cattle exhibited 37.7% positivity for T. parva by regular p104 PCR and 42.3% positivity using p104 nPCR. Among 169 cattle blood samples from Southern Sudan, 36% were positive for T. parva using nPCR. The nPCR assay represents a highly sensitive tool for detection and monitoring of asymptomatic carrier state infections of T. parva in the blood of cattle. PMID:19902251

  19. Development of a rapid PCR assay specific for Staphylococcus saprophyticus and application to direct detection from urine samples.

    PubMed

    Martineau, F; Picard, F J; Ménard, C; Roy, P H; Ouellette, M; Bergeron, M G

    2000-09-01

    Staphylococcus saprophyticus is one of the most frequently encountered microorganisms associated with acute urinary tract infections (UTIs) in young, sexually active female outpatients. Conventional identification methods based on biochemical characteristics can efficiently identify S. saprophyticus, but the rapidities of these methods need to be improved. Rapid and direct identification of this bacterium from urine samples would be useful to improve time required for the diagnosis of S. saprophyticus infections in the clinical microbiology laboratory. We have developed a PCR-based assay for the specific detection of S. saprophyticus. An arbitrarily primed PCR amplification product of 380 bp specific for S. saprophyticus was sequenced and used to design a set of S. saprophyticus-specific PCR amplification primers. The PCR assay was specific for S. saprophyticus when tested with DNA from 49 gram-positive and 31 gram-negative bacterial species. This assay was also able to amplify efficiently DNA from all 60 strains of S. saprophyticus from various origins tested. This assay was adapted for direct detection from urine samples. The sensitivity levels achieved with urine samples was 19 CFU with 30 cycles of amplification and 0.5 CFU with 40 cycles of amplification. This PCR assay for the specific detection of S. saprophyticus is simple and rapid (approximately 90 min, including the time for urine specimen preparation).

  20. A new real-time RT-qPCR assay for the detection, subtyping and quantification of human respiratory syncytial viruses positive- and negative-sense RNAs.

    PubMed

    Essaidi-Laziosi, Manel; Lyon, Matthieu; Mamin, Aline; Fernandes Rocha, Mélanie; Kaiser, Laurent; Tapparel, Caroline

    2016-09-01

    Human respiratory syncytial virus (RSV) is a major health problem and the main cause of hospitalization due to bronchiolitis. RSV is divided into two antigenic subgroups, RSV-A and -B that co-circulate worldwide. Rapid and sensitive detection is desirable for proper patient handling while assessment of viral load may help to evaluate disease severity and progression. Finally RSV subtyping is needed to determine the prevalence and pathogenicity of each RSV subgroup, as well as their sensitivity to treatment. In this study, we took into account the most recent circulating RSV variants and designed two quantitative TaqMan one-step RT-PCR assays to detect and quantify both RSV subgroups separately. Standard dilutions of transcripts of positive and negative polarities were included in the assay validation to assess potential differences in sensitivity on negative-sense genomes and positive-sense RNAs. In addition, RSV detection in respiratory specimens of different types and sampled in different populations was compared to commercially available RSV diagnostic tools. Altogether, the RSV-A and -B assays revealed sensitive and quantitative over a wide range of viral loads, with a slight improved sensitivity of the RSV-B assay on positive sense transcripts, and allowed accurate RSV subtyping. We thus provide a useful tool for both RSV diagnostics and research. PMID:27180039

  1. Rapid and sensitive detection of Feline immunodeficiency virus using an insulated isothermal PCR-based assay with a point-of-need PCR detection platform.

    PubMed

    Wilkes, Rebecca Penrose; Kania, Stephen A; Tsai, Yun-Long; Lee, Pei-Yu Alison; Chang, Hsiu-Hui; Ma, Li-Juan; Chang, Hsiao-Fen Grace; Wang, Hwa-Tang Thomas

    2015-07-01

    Feline immunodeficiency virus (FIV) is an important infectious agent of cats. Clinical syndromes resulting from FIV infection include immunodeficiency, opportunistic infections, and neoplasia. In our study, a 5' long terminal repeat/gag region-based reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) was developed to amplify all known FIV strains to facilitate point-of-need FIV diagnosis. The RT-iiPCR method was applied in a point-of-need PCR detection platform--a field-deployable device capable of generating automatically interpreted RT-iiPCR results from nucleic acids within 1 hr. Limit of detection 95% of FIV RT-iiPCR was calculated to be 95 copies standard in vitro transcription RNA per reaction. Endpoint dilution studies with serial dilutions of an ATCC FIV type strain showed that the sensitivity of lyophilized FIV RT-iiPCR reagent was comparable to that of a reference nested PCR. The established reaction did not amplify any nontargeted feline pathogens, including Felid herpesvirus 1, feline coronavirus, Feline calicivirus, Feline leukemia virus, Mycoplasma haemofelis, and Chlamydophila felis. Based on analysis of 76 clinical samples (including blood and bone marrow) with the FIV RT-iiPCR, test sensitivity was 97.78% (44/45), specificity was 100.00% (31/31), and agreement was 98.65% (75/76), determined against a reference nested-PCR assay. A kappa value of 0.97 indicated excellent correlation between these 2 methods. The lyophilized FIV RT-iiPCR reagent, deployed on a user-friendly portable device, has potential utility for rapid and easy point-of-need detection of FIV in cats. PMID:26185125

  2. The Diagnostic Utility of Bact/ALERT and Nested PCR in the Diagnosis of Tuberculous Meningitis

    PubMed Central

    Sastry, Apurba Sankar; Bhat K, Sandhya; Kumudavathi

    2013-01-01

    Objective: The early laboratory diagnosis of Tuberculous Meningitis (TBM) is crucial, to start the antitubercular chemotherapy and to prevent its complications. However, the conventional methods are either less sensitive or time consuming. Hence, the diagnostic potentials of BacT/ALERT and Polymerase Chain Reaction (PCR) was evaluated in this study. Material and Method: The study group comprised of 62 cases and 33 controls. The cases were divided according to Ahuja’s criteria into the confirmed (two cases), highly probable (19 cases), probable (26 cases) and the possible (15 cases) subgroups. Ziehl Neelsen’s (ZN) and Auramine Phenol (AP) staining, Lowenstein Jensen (LJ) medium culture, BacT/ALERT and nested Polymerase Chain Reaction (PCR) which targeted IS6110 were carried out on all the patients. Observation and Results: The sensitivity of the LJ culture was 3.22%. BacT/ALERT showed a sensitivity and a specificity of 25.80% and 100% and those of nested PCR were found to be 40.32% and 96.97% respectively. The mean detection time of growth of the LJ culture was 31.28 days, whereas that of BacT/ALERT was 20.68 days. The contamination rate in the LJ culture and BacT/ALERT were 7.2% and 5.8% respectively. Conclusion: Nested PCR was found to be more sensitive, followed by BacT/ALERT as compared to the LJ culture and smear microscopy. As both false negative and false positive results have been reported for nested PCR, so it should not be used alone as a criterion for initiating or terminating the therapy, but it should be supported by clinical, radiological, cytological and other microbiological findings. PMID:23450650

  3. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    PubMed

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing. PMID:27225407

  4. Multiplex Real-Time PCR Assay with High-Resolution Melting Analysis for Characterization of Antimicrobial Resistance in Neisseria gonorrhoeae.

    PubMed

    Donà, Valentina; Kasraian, Sara; Lupo, Agnese; Guilarte, Yuvia N; Hauser, Christoph; Furrer, Hansjakob; Unemo, Magnus; Low, Nicola; Endimiani, Andrea

    2016-08-01

    Resistance to antibiotics used against Neisseria gonorrhoeae infections is a major public health concern. Antimicrobial resistance (AMR) testing relies on time-consuming culture-based methods. Development of rapid molecular tests for detection of AMR determinants could provide valuable tools for surveillance and epidemiological studies and for informing individual case management. We developed a fast (<1.5-h) SYBR green-based real-time PCR method with high-resolution melting (HRM) analysis. One triplex and three duplex reactions included two sequences for N. gonorrhoeae identification and seven determinants of resistance to extended-spectrum cephalosporins (ESCs), azithromycin, ciprofloxacin, and spectinomycin. The method was validated by testing 39 previously fully characterized N. gonorrhoeae strains, 19 commensal Neisseria species strains, and an additional panel of 193 gonococcal isolates. Results were compared with results of culture-based AMR determination. The assay correctly identified N. gonorrhoeae and the presence or absence of the seven AMR determinants. There was some cross-reactivity with nongonococcal Neisseria species, and the detection limit was 10(3) to 10(4) genomic DNA (gDNA) copies/reaction. Overall, the platform accurately detected resistance to ciprofloxacin (sensitivity and specificity, 100%), ceftriaxone (sensitivity, 100%; specificity, 90%), cefixime (sensitivity, 92%; specificity, 94%), azithromycin (sensitivity and specificity, 100%), and spectinomycin (sensitivity and specificity, 100%). In conclusion, our methodology accurately detects mutations that generate resistance to antibiotics used to treat gonorrhea. Low assay sensitivity prevents direct diagnostic testing of clinical specimens, but this method can be used to screen collections of gonococcal isolates for AMR more quickly than current culture-based AMR testing.

  5. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay.

    PubMed

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence.

  6. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay

    PubMed Central

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  7. MeltMan: Optimization, Evaluation, and Universal Application of a qPCR System Integrating the TaqMan qPCR and Melting Analysis into a Single Assay.

    PubMed

    Nagy, Alexander; Černíková, Lenka; Vitásková, Eliška; Křivda, Vlastimil; Dán, Ádám; Dirbáková, Zuzana; Jiřincová, Helena; Procházka, Bohumír; Sedlák, Kamil; Havlíčková, Martina

    2016-01-01

    In the present work, we optimised and evaluated a qPCR system integrating 6-FAM (6-carboxyfluorescein)-labelled TaqMan probes and melting analysis using the SYTO 82 (S82) DNA binding dye in a single reaction. We investigated the influence of the S82 on various TaqMan and melting analysis parameters and defined its optimal concentration. In the next step, the method was evaluated in 36 different TaqMan assays with a total of 729 paired reactions using various DNA and RNA templates, including field specimens. In addition, the melting profiles of interest were correlated with the electrophoretic patterns. We proved that the S82 is fully compatible with the FAM-TaqMan system. Further, the advantages of this approach in routine diagnostic TaqMan qPCR were illustrated with practical examples. These included solving problems with flat or other atypical amplification curves or even false negativity as a result of probe binding failure. Our data clearly show that the integration of the TaqMan qPCR and melting analysis into a single assay provides an additional control option as well as the opportunity to perform more complex analyses, get more data from the reactions, and obtain analysis results with higher confidence. PMID:27031831

  8. Detection of Brugia malayi in laboratory and wild-caught Mansonioides mosquitoes (Diptera: Culicidae) using Hha I PCR assay.

    PubMed

    Hoti, S L; Vasuki, V; Lizotte, M W; Patra, K P; Ravi, G; Vanamail, P; Manonmani, A; Sabesan, S; Krishnamoorthy, K; Williams, S A

    2001-04-01

    An Hha 1 based polymerase chain reaction (PCR) assay developed for the detection of Brugia malayi, the causative agent of Brugian lymphatic filariasis, was evaluated for its sensitivity in the laboratory and for its usefulness in measuring changes in transmission of the disease in the field. Laboratory studies showed that the new assay was highly sensitive in comparison with the standard dissection and microscopy technique. The assay can detect as little as 4 pg of parasite DNA or a single microfilaria in pools of up to 100 mosquitoes. The optimum pool size for convenience was found to be 50 mosquitoes per pool. The efficacy of PCR assay was evaluated in filariasis control programmes in operation in endemic areas of Kerala State, South India. The infection rates obtained by the Hha I PCR assay and the conventional dissection and microscopy technique were 1.2% and 1.7% respectively in operational areas and 8.3% and 4.4% respectively, in check areas, which were not significantly different (P < 0.05). Thus, the Hha I PCR assay was found to be as sensitive as the conventional technique and hence it can be used as a new epidemiological tool for assessing parasite infection in field-collected mosquitoes. PMID:11260722

  9. Evaluation of the Cepheid herpes simplex virus typing real-time PCR assay using dermal and genital specimens.

    PubMed

    Podzorski, Raymond P

    2006-10-01

    The Cepheid herpes simplex virus (HSV) (Cepheid, Sunnyvale, CA) typing multiplex real-time polymerase chain reaction (PCR) assay was evaluated for its ability to detect HSV in dermal and genital specimens stored in M5 media. Swab specimens (n = 114) for HSV testing were placed in M5 media and split between our laboratory and a highly experienced reference laboratory. Aliquots for testing with the Cepheid assay were processed using a simple boil-and-go procedure and then run in a SmartCycler II (Cepheid). Aliquots tested at the reference laboratory were processed using a MagNA Pure LC DNA extractor (Roche Molecular Systems, Alameda, CA) and tested by the Roche HSV real-time PCR assay. Both laboratories detected 35 positives. Of the positive specimens, the Cepheid assay typed 16 as HSV 1 and 19 as HSV 2; the reference laboratory typed 15 as HSV 1, 19 as HSV 2, and 1 as HSV indeterminate. Our results demonstrate that the Cepheid real-time PCR assay, using specimens subjected to minimal specimen processing, performed as well as the Roche real-time PCR assay, using DNA extracts, for the detection of HSV DNA in genital and dermal specimens.

  10. Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri.

    PubMed

    Réveiller, Fabienne L; Cabanes, Pierre-André; Marciano-Cabral, Francine

    2002-05-01

    Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis, a fatal disease of the central nervous system that is acquired while swimming or diving in freshwater. A cDNA clone designated Mp2C15 obtained from N. fowleri was used as a probe to distinguish N. fowleri from other free-living amoebae. The Mp2C15 probe hybridized to genomic DNA from pathogenic N. fowleri and antigenically related non-pathogenic N. lovaniensis. Mp2C15 was digested with the restriction enzyme XbaI, resulting in two fragments, Mp2C15.G and Mp2C15.P. Four species of Naegleria and four species of Acanthamoeba were examined for reactivity with Mp2C15.P. Mp2C15.P was specific for N. fowleri and was used in the development of a nested PCR assay which is capable of detecting as little as 5 pg of N. fowleri DNA or five intact N. fowleri amoebae. In summary, a rapid, sensitive, and specific assay for the detection of N. fowleri was developed.

  11. Semi-quantitative immunohistochemical assay versus oncotype DX(®) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study.

    PubMed

    Kraus, James A; Dabbs, David J; Beriwal, Sushil; Bhargava, Rohit

    2012-06-01

    Estrogen receptor (ER) status is a strong predictor of response to hormonal therapy in breast cancer patients. Presence of ER and level of expression have been shown to correlate with time to recurrence in patients undergoing therapy with tamoxifen or aromatase inhibitors. Risk reduction is also known to occur in ER-negative, progesterone receptor (PR)-positive patients treated with hormonal therapy. Since the 1990s, immunohistochemistry has been the primary method for assessing hormone receptor status. Recently, as a component of its oncotype DX(®) assay, Genomic Health began reporting quantitative estrogen and PR results determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of an ongoing quality assurance program at our institution, we reviewed 464 breast cancer cases evaluated by both immunohistochemistry and oncotype DX(®) assay for estrogen and PR. We found good correlation for ER status between both assays (98.9% concordance), with immunohistochemistry being slightly more sensitive. Concordance for PR was 94.2% between immunohistochemistry and qRT-PCR with immunohistochemistry again more sensitive than RT-PCR. The results also showed linear correlation between immunohistochemistry H-scores and qRT-PCR expression values for ER (correlation coefficient of 0.579), and PR (correlation coefficient of 0.685). Due to the higher sensitivity of hormone receptor immunohistochemistry and additional advantages (ie preservation of morphology, less expensive, faster, more convenient), we conclude immunohistochemistry is preferable to qRT-PCR for determination of estrogen and PR expression.

  12. PCR-Reverse Blot Hybridization Assay for Screening and Identification of Pathogens in Sepsis

    PubMed Central

    Choi, Yeonim; Wang, Hye-Young; Lee, Gyusang; Park, Soon-Deok; Jeon, Bo-Young; Uh, Young; Kim, Jong Bae

    2013-01-01

    Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections. PMID:23447637

  13. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    PubMed

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results.

  14. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis

    PubMed Central

    Peng, Jingfu; Yu, Xiaoli; Cui, Zhenling; Xue, Wenfei; Luo, Ziyi; Wen, Zilu; Liu, Minghua; Jiang, Danqing; Zheng, Heping; Wu, Hai; Zhang, Shulin; Li, Yao

    2016-01-01

    Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF) and isoniazid (INH). Methods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR) assay, 10 probes labeled with four kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC, and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST), DNA sequencing and MF-qRT-PCR assay. Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6 and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9 and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2 and 100% for RIF-resistance and 97.9 and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 M. tuberculosis complexes (MTC) from 34 Non-tuberculous mycobacteria (NTM) isolates with 100% accuracy rate. Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable, and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates. PMID:27199947

  15. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    PubMed

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  16. Development of one-step real-time PCR assay for titrating trivalent live attenuated influenza vaccines.

    PubMed

    Zang, Yang; Du, Dongchuan; Ge, Peng; Xu, Yongqing; Liu, Xintao; Zhang, Yan; Su, Weiheng; Kiseleva, Irina; Rudenko, Larisa; Xu, Fei; Kong, Wei; Jiang, Chunlai

    2014-01-01

    Traditionally, infectivity of a trivalent live attenuated influenza vaccines (LAIVs) is titrated by determining the 50% egg infectious dose assay (EID50) or plaque forming units (PFU), which requires specific monoclonal antibodies to neutralize 2 strains while estimating the titer of the non-neutralized strain. Compared to this time-consuming, laborious, subjective and variable process, reverse transcription-quantitative real-time PCR (RT-qPCR) technology has advantages of rapidity, sensitivity, reproducibility and reduced contamination, thus has been applied widely for detecting pathogens and measuring viral titers. In this study, the critical harvest time was determined to be 18 h post-infection (hpi) for type A influenza and 12 hpi for type B influenza, but no significant difference between titers at 12 hpi and 18 hpi for the type B strain was observed. In conclusion, trivalent LAIVs can be titrated simultaneously within 24 h by this one-step RT-qPCR assay, which yielded titers comparable to those obtained by the traditional EID50 assay. Therefore, the RT-qPCR assay may be used as a highly specific, sensitive, precise and rapid alternative to the EID50 assay for titering LAIVs.

  17. A multi-target real-time PCR assay for rapid identification of meningitis-associated microorganisms.

    PubMed

    Favaro, Marco; Savini, Vincenzo; Favalli, Cartesio; Fontana, Carla

    2013-01-01

    A central nervous system (CNS) infection, such as meningitis, is a serious and life-threatening condition. Bacterial meningitis can be severe and may result in brain damage, disability or even death. Rapid diagnosis of CNS infections and identification of the pathogenic microorganisms are needed to improve the patient outcome. Bacterial culture of a patient's cerebrospinal fluid (CSF) is currently considered the "gold standard" for diagnosing bacterial meningitis. From the CSF cultures researchers can assess the in vitro susceptibility of the causative microorganism to determine the best antibiotic treatment. However, many of the culture assays, such as microscopy and the latex agglutination test are not sensitive. To enhance pathogen detection in CSF samples we developed a multi-target real-time PCR assay that can rapidly identify six different microorganisms: Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Streptococcus agalactiae, Listeria monocytogenes and Cryptococcus neoformans. In this study we applied this PCR analysis to 296 CSF samples from patients who were suspected of having meningitis. Of the 296 samples that were examined, 59 samples were positive according to the CSF culture and/or molecular assays. Forty-six CSF samples were positive for both the CSF culture and our real-time PCR assay, while 13 samples were positive for the real-time PCR but negative for the traditional assays. This discrepancy may have been caused by the fact that these samples were collected from 23 patients who were treated with antimicrobials before CSF sampling.

  18. Development and validation of a quantitative real-time PCR assay for the early diagnosis of coccidioidomycosis.

    PubMed

    Gago, Sara; Buitrago, María José; Clemons, Karl V; Cuenca-Estrella, Manuel; Mirels, Laurence F; Stevens, David A

    2014-06-01

    A new real-time polymerase chain reaction (RT-PCR) assay based on a Coccidioides genus-specific molecular beacon probe was developed for the detection of coccidioidomycosis and validated with tissues from animal models and clinical samples. The assay showed high analytic reproducibility (r(2) > 0.99) and specificity for cultured strains (100%); the lower limit of detection was 1 fg of genomic DNA/μL of reaction. Fungal burdens in the organs of mice infected with Coccidioides posadasii strain Silveira were more accurately quantified by RT-PCR compared to colony-forming unit for all tissues. The RT-PCR assay was positive for 97.7% of spleen and 100% of liver or lung. Progression of infection in all organs was similar by both methods (P > 0.05). The sensitivity of the assay also was 100% for paraffin-embedded samples and samples from patients with positive cultures. Our RT-PCR assay is effective for the diagnosis and monitoring of Coccidioides infection, and its use also avoids the biohazard and time delay of identifying cultures in the clinical setting.

  19. Duplex Quantitative PCR Assay for Detection of Haemophilus influenzae That Distinguishes Fucose- and Protein D-Negative Strains.

    PubMed

    de Gier, Camilla; Pickering, Janessa L; Richmond, Peter C; Thornton, Ruth B; Kirkham, Lea-Ann S

    2016-09-01

    We have developed a specific Haemophilus influenzae quantitative PCR (qPCR) that also identifies fucose-negative and protein D-negative strains. Analysis of 100 H. influenzae isolates, 28 Haemophilus haemolyticus isolates, and 14 other bacterial species revealed 100% sensitivity (95% confidence interval [CI], 96% to 100%) and 100% specificity (95% CI, 92% to 100%) for this assay. The evaluation of 80 clinical specimens demonstrated a strong correlation between semiquantitative culture and the qPCR (P < 0.001). PMID:27335148

  20. Nested-PCR and TaqMan real-time quantitative PCR assays for human adenoviruses in environmental waters.

    PubMed

    Huang, Wen-Chien; Chou, Yi-Pen; Kao, Po-Min; Hsu, Tsui-Kang; Su, Hung-Chang; Ho, Ying-Ning; Yang, Yi-Chun; Hsu, Bing-Mu

    2016-01-01

    Human adenovirus (HAdV) infections can occur throughout the year. Cases of HAdV-associated respiratory disease have been more common in the late winter, spring, and early summer. In this study, to provide viral pollution data for further epidemiological studies and governmental actions, the presence of HAdV in the aquatic environment was quantitatively surveyed in the summer. This study was conducted to compare the efficiencies of nested-PCR (polymerase chain reaction) and qPCR (quantitative PCR) for detecting HAdV in environmental waters. A total of 73 water samples were collected from Puzi River in Taiwan and subjected to virus concentration methods. In the results, qPCR had much better efficiency for specifying the pathogen in river sample. HAdV41 was detected most frequently in the river water sample (10.9%). The estimated HAdV concentrations ranged between 6.75 × 10(2) and 2.04 × 10(9) genome copies/L. Significant difference was also found in heterotrophic plate counts, conductivity, water temperature, and water turbidity between presence/absence of HAdV. HAdV in the Puzi River may pose a significant health risk. PMID:27120637