Science.gov

Sample records for diagnostic probe system

  1. Ion beam probe diagnostic system

    NASA Astrophysics Data System (ADS)

    Hickok, R. L.; Jennings, W. C.; Woo, J. T.; Connor, K. A.

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  2. Evaluation of the NDP (neutron diagnostic probe) system

    SciTech Connect

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  3. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  4. Development of coaxial ultrasonic probe for fatty liver diagnostic system using ultrasonic velocity change

    NASA Astrophysics Data System (ADS)

    Hori, Makoto; Yokota, Daiki; Aotani, Yuhei; Kumagai, Yuta; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2017-07-01

    A diagnostic system for fatty liver at an early stage is needed because fatty liver is linked to metabolic syndrome. We have already proposed a fatty liver diagnosis method based on the temperature coefficient of ultrasonic velocity. In this study, we fabricated a coaxial ultrasonic probe by integrating two kinds of transducers for warming and signal detection. The diagnosis system equipped with the coaxial probe was applied to tissue-mimicking phantoms including the fat area. The fat content rates corresponding to the set rates of the phantoms were estimated by the ultrasonic velocity-change method.

  5. A compact and portable PC-based Gundestrup-Langmuir probe diagnostic system

    SciTech Connect

    Sicard, P.; Boucher, C.; Litnovsky, A.; St-Germain, J.-P.

    2005-01-01

    A compact Gundestrup-Langmuir probe diagnostics system capable of data acquisition as well as data analysis was conceived at INRS-EMT, Canada, and used at IPP-FZJ, Germany. Data acquisition and analysis can be done with this system using several types of probes (Langmuir, double-Langmuir, Mach, Gundestrup,...). The versatility as to the different types of probe that one can use and the relative small size of the whole system makes it advantageous. Using a laptop computer makes the system small size and highly portable. The system acquires data at 1000 scans/s at 12 bit resolution on two probe systems simultaneously, using a total of 12 input channels. Bias is done by a DAC-ADC card and is amplified to give a {+-}100 V sweeping range. Measured temperatures ranged from 0.75 eV to 6.0 eV with densities observed as low as 1x10{sup 10} cm{sup -3} up to 5x10{sup 11} cm{sup -3}, which are the range of conditions to be found in our experimental device. This system is also easy to reproduce since the hardware is commercially available and the scripts can be duplicated and modified according to the specifics of the hardware.

  6. Advanced development of particle-beam-probe diagnostic systems. Technical progress report, 1 July 1980-30 April 1981

    SciTech Connect

    Hickok, R.L.; Jennings, W.C.; Woo, J.T.; Connor, K.A.

    1981-05-01

    The heavy ion beam probe system on the RENTOR tokamak has been reinstalled with considerably improved performance. The heavy neutral beam probe system on the ALEX baseball facility has demonstrated the capability of measuring space potential in minimum-B geometry. A large amount of data were obtained from the highly successful TMX beam probe system and are presently being analyzed. Technological improvements were made on both the RENTOR and ALEX diagnostic systems, new ion sources and extraction configurations were investigated, and the superiority of off-line processing techniques for beam probe data has been demonstrated. The development of high energy probing beams for application to major confinement experiments has been initiated and cross-over sweep systems to improve spatial resolution, differential pumping, and reduce energy requirements have been designed.

  7. Diagnostic applications of DNA probes.

    PubMed

    Pfaller, M A

    1991-02-01

    This review has described several of the most common molecular biologic techniques that are, or will be, employed in the diagnostic laboratory. The potential advantages of these DNA probe assays in the diagnosis of infectious diseases include: rapid detection and identification of infectious agents; the ability to screen selected specimens using batteries of probes; and the detection of nonviable or difficult-to-culture organisms. The potential disadvantages of DNA probe assays include: the use of isotopic detection methods for optimum sensitivity; limited diagnostic sensitivity of current assays; slow turna-round time for some assay formats; expense of current reagents; limited availability of many probes; lack of technical expertise in most diagnostic laboratories; and the requirement for antimicrobial susceptibility testing (requires culture). Given the above advantages and disadvantages, there are several key issues that must be considered before adopting DNA probe technology in the diagnostic laboratory; the cost of performing routine culture and identification versus the cost of screening with probes--both the number and type of specimens and the time savings that may be realized by eliminating routine cultures; the prevalence of the infectious agent--even the best DNA probe assay may not be useful or practical in a low-prevalence situation; the need for additional equipment and space; and the interpretation of false-positive and false-negative results--additional research is needed in this area. However, laboratories must consider these issues when using a test other than the current gold standard (i.e., culture). DNA probe technology is with us and expanding rapidly. The intelligent application of this new technology will require communication between laboratorians and clinicians and careful consideration of the many advantages and disadvantages discussed above.

  8. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.

    PubMed

    Herman, Daniel A; Gallimore, Alec D

    2008-01-01

    Extensive resources have been allocated to diagnose and minimize lifetime-limiting factors in gridded ion thrusters. While most of this effort has focused on grid erosion, results from wear tests indicate that discharge cathode erosion may also play an important role in limiting the lifetime of ring-cusp ion thrusters proposed for future large flagship missions. The detailed characterization of the near-cathode discharge plasma is essential for mitigating discharge cathode erosion. However, severe difficulty is encountered when attempting to measure internal discharge plasma parameters during thruster operation with conventional probing techniques. These difficulties stem from the high-voltage, high-density discharge cathode plume, which is a hostile environment for probes. A method for interrogating the discharge chamber plasma of a working ion thruster over a two-dimensional grid is demonstrated. The high-speed axial reciprocating probe positioning system is used to minimize thruster perturbation during probe insertion and to reduce heating of the probe. Electrostatic probe measurements from a symmetric double Langmuir probe are presented over a two-dimensional spatial array in the near-discharge cathode assembly region of a 30-cm-diameter ring-cusp ion thruster. Electron temperatures, 2-5 eV, and number density contours, with a maximum of 8 x 10(12) cm(-3) on centerline, are measured. These data provide detailed electron temperature and number density contours which, when combined with plasma potential measurements, may shed light on discharge cathode erosion processes and the effect of thruster operating conditions on erosion rates.

  9. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  10. Ramp generator circuit for probe diagnostics using microcontroller for LHCD system

    NASA Astrophysics Data System (ADS)

    Virani, C. G.; Sharma, P. K.; Lhcd Group

    2010-02-01

    It is well known that in LHCD system, the rf power coupling between antenna and plasma strongly depends on the edge plasma parameter. Thus it is mandatory to monitor edge plasma parameter to establish proper impedance matching condition when LHCD power is launched into the plasma. For SST1 LHCD system, we intend to monitor the edge plasma parameter employing electric probes, connected to the grill antenna sides for the said purpose. In SST1, initially LHCD system would couple rf power to plasmas lasting for small durations. Gradually the power and pulse length would be increased to eventually get 1000 seconds plasma. To monitor the edge plasma parameter, over such a wide spectrum (say few millisecond to seconds) during the above campaign, a flexible measurement scheme is desired which would cater to entire spectrum of operation. Normally a ramp is utilized to bias the electric probe, which yields various plasma parameters. To cater our requirement, the ramp generator must have facility to change ramp-up rate to meet our pulse length requirement. Further during SST operation, the human access near the machine would not be permitted and ramp circuit might not be accessible for manual settings. Thus remote setting facility to change ramp-up rate is also desired. Keeping these constraints in mind, a ramp circuit has been designed using Analog Device micro-controller ADuC842. The circuit has both manual and remote setting facility. Ramp generator parameters like Ramp-up rate, Trigger mode, number of cycles, etc. can be set from PC through RS-485 serial link. Initially low voltage (0-5V) ramp signal is generated using micro-controller and inbuilt DAC. This low voltage ramp is then amplified with PA-85 op-amp to get desired probe biasing voltage (-110V to +110V). The ramp period can be change form (1ms to 1000 ms) to cater to different plasma pulse length. Programming for micro-controller is done in structured language-C with the help of "Keil" IDE. In this paper, a

  11. The development of a universal diagnostic probe system for Tokamak fusion test reactor

    NASA Technical Reports Server (NTRS)

    Mastronardi, R.; Cabral, R.; Manos, D.

    1982-01-01

    The Tokamak Fusion Test Reactor (TFTR), the largest such facility in the U.S., is discussed with respect to instrumentation in general and mechanisms in particular. The design philosophy and detailed implementation of a universal probe mechanism for TFTR is discussed.

  12. Enthalpy probe for arc heater flow diagnostics

    NASA Astrophysics Data System (ADS)

    Graves, Craig M.; Moody, Henry L.; Mitchell, James D.; Horn, Dennis D.

    1993-07-01

    This paper describes accomplishments made in the research and development of a dual sonic nozzle enthalpy probe for arc heater flow diagnostics. The primary concern and focus for the study presented herein, was the fabrication of an internally cooled structure that can survive a steady-state dwell in a severe heating environment. This structure is the housing and thermal protection system for the instrumentation necessary to measure gas enthalpy. The structure was constructed from photochemical etched metal foils that were laminated and diffusion bonded to form a controlled porosity housing with high internal cooling effectiveness. Selected prototypes were successfully tested to evaluate structural and heat extraction capabilities. Structural integrity at coolant pressures exceeding 3000 psi was demonstrated. An arc heater test evaluation was conducted in a Mach 2.8 flow with a stagnation pressure and enthalpy of 14 atm and 4500 Btu/lb, respectively. The probe survived the arc heater test, both in a sweep mode and an 0.83 second dwell in the flow, with no evidence of over-heating. These demonstrations have resulted in further development of the structure into a fully instrumented enthalpy probe.

  13. Development of a transient internal probe diagnostic

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas R.; Mattick, Arthur T.

    1994-12-01

    A research effort was carried out to develop and test key components of the transient internal probe, a diagnostic tool for measuring internal magnetic fields in a plasma. A gasdynamic sabot separation method was developed for discarding the sabot upstream of the plasma. Separation is effected in a vented 50-caliber gun barrel, and the sabot is deflected upstream of the plasma, reliably removing the sabot without disrupting the probe trajectory. A vacuum interface was constructed to isolate the plasma from gun gases, which uses a very fast trap-door valve to prevent gas from entering the plasma chamber. A full-up test of the diagnostic was made using a 2.2 km/sec probe to measure a static field in a vacuum. This yielded excellent agreement with Hall probe measurements, with a resolution of 20 Gauss, and the gun gas entering the measurement chamber is to be acceptably small for application to plasma devices.

  14. Universal microbial diagnostics using random DNA probes

    PubMed Central

    Aghazadeh, Amirali; Lin, Adam Y.; Sheikh, Mona A.; Chen, Allen L.; Atkins, Lisa M.; Johnson, Coreen L.; Petrosino, Joseph F.; Drezek, Rebekah A.; Baraniuk, Richard G.

    2016-01-01

    Early identification of pathogens is essential for limiting development of therapy-resistant pathogens and mitigating infectious disease outbreaks. Most bacterial detection schemes use target-specific probes to differentiate pathogen species, creating time and cost inefficiencies in identifying newly discovered organisms. We present a novel universal microbial diagnostics (UMD) platform to screen for microbial organisms in an infectious sample, using a small number of random DNA probes that are agnostic to the target DNA sequences. Our platform leverages the theory of sparse signal recovery (compressive sensing) to identify the composition of a microbial sample that potentially contains novel or mutant species. We validated the UMD platform in vitro using five random probes to recover 11 pathogenic bacteria. We further demonstrated in silico that UMD can be generalized to screen for common human pathogens in different taxonomy levels. UMD’s unorthodox sensing approach opens the door to more efficient and universal molecular diagnostics. PMID:27704040

  15. Development of transient internal probe (TIP) magnetic field diagnostic

    SciTech Connect

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1994-12-31

    The Transient Internal Probe (TIP) is designed to permit measurement of internal magnetic fields, in hot, high density plasmas. The concept consists of accelerating a probe to high velocities (2.2 Km/s) in order to minimize probe exposure time to plasma. Faraday rotation within the probe is used to measure the local magnetic field. An Argon laser illuminates the probe consisting of a Faraday-rotator material with a retro-reflector that returns the incident light to the detection system. Performance results of the light gas gun and optical detection system will be shown. To date, the gas gun has been extensively tested consistently achieving velocities between 2 and 3 km/s. The probe and detection scheme have been tested by dropping the probe through a static magnetic field. Magnetic field resolution of 20 gauss and spatial resolution of 5 mm has been achieved. System frequency response is 10Mhz. Work is currently being conducted to integrate the diagnostic system with laboratory plasma experiments. Specifically a gas interfaced system has been developed to prevent helium muzzle gas from entering the plasma chamber with the probe. Additionally the probe must be separated from the sabot which protects the probe during acceleration in the gas gun. Data will be presented showing the results of various separation techniques.

  16. A comparative study of electrical probe techniques for plasma diagnostics

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1972-01-01

    Techniques for using electrical probes for plasma diagnostics are reviewed. Specific consideration is given to the simple Langmuir probe, the symmetric double probe of Johnson and Malter, the variable-area probe of Fetz and Oeschsner, and a floating probe technique. The advantages and disadvantages of each technique are discussed.

  17. A simple and cost-effective molecular diagnostic system and DNA probes synthesized by light emitting diode photolithography

    NASA Astrophysics Data System (ADS)

    Oleksandrov, Sergiy; Kwon, Jung Ho; Lee, Ki-chang; Sujin-Ku; Paek, Mun Cheol

    2014-09-01

    This work introduces a novel chip to be used in the future as a simple and cost-effective method for creating DNA arrays using light emission diode (LED) photolithography. The DNA chip platform contains 24 independent reaction sites, which allows for the testing of a corresponding amount of patients' samples in hospital. An array of commercial UV LEDs and lens systems was combined with a microfluidic flow system to provide patterning of 24 individual reaction sites, each with 64 independent probes. Using the LED array instead of conventional laser exposure systems or micro-mirror systems significantly reduces the cost of equipment. The microfluidic system together with microfluidic flow cells drastically reduces the amount of used reagents, which is important due to the high cost of commercial reagents. The DNA synthesis efficiency was verified by fluorescence labeling and conventional hybridization.

  18. Ion beam probe diagnostic system. Technical progress report, 1 January 1979-30 June 1980. RPDL report No. 80-17

    SciTech Connect

    Hickok, R L; Jennings, W C; Woo, J T; Connor, K A

    1980-07-01

    Tokomak plasmas suitable for diagnostic development were produced during this period in RENTOR following technological improvements in the vacuum chamber and discharge cleaning systems. Secondary ion signals were obtained from the heavy ion beam probe on RENTOR leading to initial estimates of the plasma space potential, which appears to vary by several hundred volts during the plasma pulse. The principle of measuring space potential in a minimum-B geometry was established using an ion gun mounted at the center of the ALEX baseball coil. The neutral beam probe was installed for measuring the space potential using actual secondary ion signals from a hollow cathode arc in ALEX and preliminary tests have begun. The ion beam test stand was significantly altered to allow more flexibility in testing energy analyzers, ion guns, and ion focusing concepts.

  19. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  20. Development of an otolaryngological interferometric fiber optic diagnostic probe

    NASA Astrophysics Data System (ADS)

    Conerty, Michelle D.; Castracane, James; Saravia, Eduardo; Parnes, Steven M.; Cacace, Anthony T.

    1992-08-01

    Current medical instrumentation research at InterScience, Inc. is aimed at utilizing state of the art electro-optics in the development of a diagnostic fiber optic instrument capable of quantifying vibration patterns in real time. This work is in collaboration with the Division of Otolaryngology of the Albany Medical College. The innovative diagnostic probe system design involves the miniaturization of an electronic speckle pattern interferometry (ESPI) system through the use of fiber optic elements coupled with high speed image acquisition from a solid state matrix detector. Subsequent frame by frame processing produces a high quality three-dimensional spatial representation of the vibrational pattern. The diagnostic probe system is being developed for quantitative tympanic membrane and vocal cord vibration analysis. The significance of the introduction of this instrument to the medical community is the contribution it could make in the efficiency and effectiveness of the diagnosis of otolaryngological disorders. Specific applications include the evaluation of tympanosclerosis, stiffness related middle ear disorders, ossicular chain abnormalities, tympanic membrane replacement, vocal dysphonias, and early detection of laryngeal carcinomas, cysts, and phenomenological properties of mucosal wave dynamics. The current instrumentation research is focused on the production of a prototype system for clinical trials. This research is based in ESPI optical system development and miniaturization, system hardware and software development, and clinical design of the probe heads within anatomical limitations. Significant advantages of this diagnostic tool over currently used instrumentation and procedures are the real time capabilities of the instrument, the ability to quantify the vibrational pattern in time and space, and the possibility of establishing a database of patient history and disorder characteristics. Once fully developed and integrated into the clinical

  1. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  2. Scintillator Probe Alpha-loss diagnostic for JET*

    NASA Astrophysics Data System (ADS)

    Baeumel, S.; Werner, A.; Darrow, D.; Ellis, R.; Cecil, F. E.; Kiptily, V.; Altmann, H.; Pedrick, L.

    2003-10-01

    Currently two fast ion loss diagnostics are under design for future JET experimental campaigns - a Faraday cup system(see contribution by F.E. Cecil et al. at this meeting) and a scintillator probe diagnostic. These diagnostics will investigate the physics of fusion products, the ion cyclotron resonance heated tail ions and losses induced by magnetohydrodynamic instabilities. The scintillator probe will consist of a scintillator plate which is viewed simultaneously by a CCD camera with a time resolution of 20 ms and an array of 10-20 photomultipliers with a time resolution of 3 ms, the latter being limited by the decay time of the scintillator (P56). The image will allow measurements of the particles striking the scintillator with a gyroradius resolution of 15angle resolution of 5plasma edge imposes significant physical constraints on the design by virtue of the heat loads and the forces due to plasma halo and eddy currents during disruptions. The physics goals and the technical realization of the diagnostic will be described.

  3. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam.

    PubMed

    Davies, A; Haberberger, D; Boni, R; Ivancic, S; Brown, R; Froula, D H

    2014-11-01

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  4. Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Davies, A. Haberberger, D.; Boni, R.; Ivancic, S.; Brown, R.; Froula, D. H.

    2014-11-15

    A polarimetry diagnostic was built and characterized for magnetic-field measurements in laser-plasma experiments on the OMEGA EP laser. This diagnostic was built into the existing 4ω (263-nm) probe system that employs a 10-ps laser pulse collected with an f/4 imaging system. The diagnostic measures the rotation of the probe beam's polarization. The polarimeter uses a Wollaston prism to split the probe beam into orthogonal polarization components. Spatially localized intensity variations between images indicate polarization rotation. Magnetic fields can be calculated by combining the polarimetry data with the measured plasma density profile obtained from angular filter refractometry.

  5. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  6. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  7. Probing the Solar System

    ERIC Educational Resources Information Center

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  8. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  9. SERS gene probe for DNA diagnostics

    NASA Astrophysics Data System (ADS)

    Stokes, David L.; Allain, Leonardo R.; Isola, Narayana R.; Vo-Dinh, Tuan

    2003-07-01

    We describe the development of a surface-enhanced Raman scattering gene (SERGen) probe technology for rapid screening for diseases and pathogens through DNA hybridization assays. The technology combines the use of gene probes labeled with SERS-active markers, and nanostructured metallic platforms for inducing the SERS effect. As a result, SERGen-based methods can offer the spectral selectivity and sensitivity of SERS as well as the molecular specificity of DNA sequence hybridization. Furthermore, these new probe s preclude the use of radioactive labels. As illustrated herein, SERGen probes have been used as primers in polymerase chain reaction (PCR) amplifications of specific DNA sequences, hence further boosting the sensitivity of the technology. We also describe several approaches to developing SERS-active DNA assay platforms, addressing the challenges of making the SERGen technology accessible and practical for clinical settings. The usefulness of the SERGen approach has been demonstrated in the detection of HIV, BRCA1 breast cancer, and BAX genes. There is great potential for the use of numerous SERGen probes for multiplexed detection of multiple biological targets.

  10. New developments in APSTNG neutron probe diagnostics

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.

    1995-12-31

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. The gamma-ray dector and neutron generator can be located on the same side of the interrogated object, so spaces behind walls and other confirmed areas can be inspected. No collimators or radiation shielding are needed, the neutron generator is relatively simple and small, and commercial-grade electronics are employed. A complete system could be transported in an automotive van. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Inspection applications have been investigated for presence of cocaine in propane tanks, uranium and plutonium smuggling, and radioactive and toxic waste characterization. An advanced APSTNG tube is being designed and constructed that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  11. Langmuir Probe Diagnostics of the VASIMR Engine

    DTIC Science & Technology

    2005-12-01

    experiment is more concerned with finding the ion flux of the engine. The equation to find flux ( particles/cm2 ) from current is ionI e+ Γ = 59...where e is merely the charge of a single ion, 1.6x10+ -19 C. The ion current, ionI , comes from the probe ion saturation current. Unlike current

  12. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    The general theme of the research my NASA colleague and I have planned is "Optical and probe diagnostics applied to reacting flows". We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Having demonstrated the viability of the technique for nanotube synthesis, we seek to understand the details of this reacting system which are important to its practical application. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Despite the impact of soot on engine performance, fire safety and pollution, models for its oxidation are inhibited by uncertainty in the values of the oxidation rate. We plan to employ both optical and microscopic measurements to refine this rate. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. These data will be benchmarked against changes in soot nanostructures as revealed by transmission electron microscopic images from directly sampled material.

  13. Application of cylindrical Langmuir probes to streaming plasma diagnostics.

    NASA Technical Reports Server (NTRS)

    Segall, S. B.; Koopman, D. W.

    1973-01-01

    The current-voltage characteristics of cylindrical probes in a high velocity collisionless plasma flow have been investigated experimentally and theoretically. The plasma was generated by a focused laser pulse incident on a metallic target in vacuum. An analysis, developed from a stationary plasma analog to the flowing case, demonstrated a failure of plasma shielding of probe potential in the electron attracting region. Modifications of relatively simple previous treatments were found to be valid for computing electron current to a probe. The electron characteristics derived from the present analysis agree well with experimental results. The ion and electron portions of the characteristics are consistent with each other and with independent diagnostic measurements.

  14. A Miniature Sweeping Impedance Probe for Ionospheric Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Martin-Hidalgo, J.; Swenson, C.

    2013-12-01

    The impedance of a probe immersed in ionospheric plasma at radio frequencies is an important technique for determining absolute electron density. Building on 50 years of history in developing and flying RF probes for plasma diagnostics at Utah State, a new SIP (Sweeping Impedance Probe) design has been completed which will obtain qualitative improvement over previous instruments in terms of accuracy and sweep rate. This instrument will provide a continuous measurement of the plasma impedance magnitude and phase with an expected accuracy of 1% and 1 degree respectively over the 1 to 20 MHz range. This new SIP will be launched in January 2014 onboard the Auroral Spatial Structures Probe (ASSP) NASA sounding rocket mission using a short monopole probe. The rocket apogee of 600 km will allow the characterization of the plasma in the E and F layers at auroral latitudes and the study of short term and spatial variations along the high-altitude profile of the sounding rocket. Although this SIP design has been developed for a sounding rocket, it can be optimized and miniaturized for Cubesat's and included along other ionospheric diagnostic instruments such as double and Langmuir probes. This presentation is focused on the overall design of the instrument, the tests results for the ASSP instrument and conceptual designs for future CubeSat mission similar to the NSF DICE mission.

  15. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  16. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    NASA Astrophysics Data System (ADS)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  17. Langmuir probe diagnostic suite in the C-2 field-reversed configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; Sun, X.; Armstrong, S.; Knapp, K.; Slepchenkov, M.

    2014-11-01

    Several in situ probes have been designed and implemented into the diagnostic array of the C-2 field-reversed configuration (FRC) at Tri Alpha Energy [M. Tuszewski et al. (the TAE Team), Phys. Rev. Lett. 108, 255008 (2012)]. The probes are all variations on the traditional Langmuir probe. They include linear arrays of triple probes, linear arrays of single-tipped swept probes, a multi-faced Gundestrup probe, and an ion-sensitive probe. The probes vary from 5 to 7 mm diameter in size to minimize plasma perturbations. They also have boron nitride outer casings that prevent unwanted electrical breakdown and reduce the introduction of impurities. The probes are mounted on motorized linear-actuators allowing for programmatic scans of the various plasma parameters over the course of several shots. Each probe has a custom set of electronics that allows for measurement of the desired signals. High frequency ( > 5MHz) analog optical-isolators ensure that plasma parameters can be measured at sub-microsecond time scales while providing electrical isolation between machine and data acquisition systems. With these probes time-resolved plasma parameters (temperature, density, spatial potential, flow, and electric field) can be directly/locally measured in the FRC jet and edge/scrape-off layer.

  18. Micro-Particles as Electrostatic Probes for Plasma Sheath Diagnostic

    SciTech Connect

    Wolter, Matthias; Haass, Moritz; Ockenga, Taalke; Kersten, Holger; Blazec, Joseph; Basner, Ralf

    2008-09-07

    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles of different sizes with the surrounding plasma for diagnostic purpose. In the plasma micro-disperse particles are negatively charged and confined in the sheath. The particles are trapped by an equilibrium of gravity, electric field force and ion drag force. From the behavior, local electric fields can be determined, e.g. particles are used as electrostatic probes. In combination with additional measurements of the plasma parameters with Langmuir probes and thermal probes as well as by comparison with an analytical sheath model, the structure of the sheath can be described. In the present work we focus on the behavior of micro-particles of different sizes and several plasma parameters e.g. the gas pressure and the rf-power.

  19. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications.

    PubMed

    Greenstein, Gary

    2005-06-01

    Probing depth assessments are the backbone of a periodontal evaluation. However, they should be interpreted with respect to current information regarding their diagnostic and therapeutic implications. Controlled clinical trials and review papers that related probing depth determinations to diagnosing periodontal disease or assessments of therapy were selected for evaluation. The literature indicates that increased probing depths usually are related to loss of clinical attachment; however, they may not reflect periodontal disease or disease progression. When characteristics pertaining to deep and shallow sites are compared, deep sites have more bleeding on probing, elevated bacterial levels, reduced ability of oral hygiene to alter subgingival microflora, less effective root instrumentation, and a greater percentage of pockets that experience disease progression in treated and untreated sites. However, individual deep sites are not good predictors of disease progression. The preponderance of information indicates that it is preferable, but not always essential, to have shallow sites around teeth to attain and maintain periodontal health. Ultimately, therapeutic decisions based on probing depths are influenced by the medical and dental history of the patient, a practical interpretation of the literature, and clinical experience.

  20. Adaptive Embedded Digital System for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    González, Angel; Rodríguez, Othoniel; Mangual, Osvaldo; Ponce, Eduardo; Vélez, Xavier

    2014-05-01

    An Adaptive Embedded Digital System to perform plasma diagnostics using electrostatic probes was developed at the Plasma Engineering Laboratory at Polytechnic University of Puerto Rico. The system will replace the existing instrumentation at the Laboratory, using reconfigurable hardware to minimize the equipment and software needed to perform diagnostics. The adaptability of the design resides on the possibility of replacing the computational algorithm on the fly, allowing to use the same hardware for different probes. The system was prototyped using Very High Speed Integrated Circuits Hardware Description Language (VHDL) into an Field Programmable Gate Array (FPGA) board. The design of the Embedded Digital System includes a Zero Phase Digital Filter, a Derivative Unit, and a Computational Unit designed using the VHDL-2008 Support Library. The prototype is able to compute the Plasma Electron Temperature and Density from a Single Langmuir probe. The system was tested using real data previously acquired from a single Langmuir probe. The plasma parameters obtained from the embedded system were compared with results computed using matlab yielding excellent matching. The new embedded system operates on 4096 samples versus 500 on the previous system, and completes its computations in 26 milliseconds compared with about 15 seconds on the previous system.

  1. Intelligent diagnostics systems

    NASA Technical Reports Server (NTRS)

    Mcquiston, Barbara M.; Dehoff, Ronald L.

    1992-01-01

    Intelligent systems have been applied to today's problems and could also be applied to space operations integrity. One of these systems is the XMAN tool designed for 'troubleshooting' jet engines. XMAN is the eXpert MAiNtenance tool developed to be an expert information analysis tool which stores trending and diagnostic data on Air Force engines. XMAN operates with a 'network topology' which follows a flow chart containing engine management information reports required by the governments technical order procedures. With XMAN technology, the user is able to identify engine problems by presenting the assertions of the fault isolation logic and attempting to satisfy individual assertions by referring to the databases created by an engine monitoring system. The troubleshooting process requires interaction between the technician and the computer to acquire new evidence form auxiliary maintenance tests corroboration of analytical results to accurately diagnose equipment malfunctions. This same technology will be required for systems which are functioning in space either with an onboard crew, or with an unmanned system. The technology and lessons learned developing this technology while suggesting definite applications for its use with developing space systems are addressed.

  2. Thioaptamer Diagnostic System (TDS)

    NASA Technical Reports Server (NTRS)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  3. A signal amplification probe enhances sensitivity of antibodies and aptamers based Immuno-diagnostic assays.

    PubMed

    Nussbaum, Ofer; Bar Oz, Michal; Tilayov, Tal; Atiya, Helly; Dagan, Shlomo

    2017-09-01

    One major unmet need is improving the sensitivity of immune-diagnostic assays. This is particularly important in the field of biomarker discoveries and monitoring. We have established a novel signal amplification probe system enabling a highly sensitive target detection platform to be used in immuno-assays. The probe consists of a double stranded DNA that can carry a large number of signaling elements such as biotin or fluorescent molecules. The DNA probe anchors to the recognition unit, whether an antibody or an aptamer, by covalent conjugation or by a simple and rapid molecular association process. Binding curves obtained by using the DNA amplification probe are dose dependent and linear over a wide range of antigen concentration. The optimal slopes are characterized by high signals and low background increasing the assay sensitivity and reducing the limit of detection by up to 10-fold compared to biotinylated antibodies commonly used in ELISA systems. When using aptamers in combination with the amplification probe for antigen recognition, the limit of detection is comparable to that obtained by biotinylated antibodies. Biotin labeled aptamers practically cannot be used for detection of low target levels. The DNA amplification probe system enables to expand the range of diagnostic assays including clinical samples and meet research needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  5. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  6. Plasma wakefield diagnostics using probe electron beam and microchannel plates

    SciTech Connect

    Fainberg, Ya.B.; Balakirev, V.A.; Berezin, A.K.

    1996-12-31

    The analytical and numerical investigations of trajectories of the probe beam electrons in the two dimensional wakefield, excited in plasma by a dense bunch of relativistic electrons with Gauss longitudinal and transverse distribution of density is carried out. On basis of calculations of probe beam deviations the diagnostic instruments is developed for parameters of experiments conducted in NSC KIPT. The diagnostic instruments consist of an electron gun forming the electron beam with energy 10KeV, current 10{mu}A and diameter 2mm which passes through the chamber of interaction and falls on collector of diameter 10mm. Collector (screen) is placed in front of the first plate of microchannel amplifier which consists of three microchannel plates (MCP) with sizes 20 - 30mm, The voltage 3kV was applied to the each plate. Total amplification of MCP amplifier is 10{sup 4} - 10{sup 5} in dependence on quantity of particles, falling on the first plate. As a result the deviations of probe beam by excited wakefield the electrons fall on first plate of amplifier and are registered by anode of amplifier, located behind the third plates. Calculated probe beam deviations and obtained amplification of MCP amplifier permit to find out and to investigate the electrical wakefields, excited by the sequence of relativistic bunches (number of particles in bunch is 2x10{sup 9}, energy is 14MeV) in plasma of density 10{sup 11} - 10{sup 13} cm{sup {minus}3}. The maximal value of the fields registered by such technique is not less 2kv/cm.

  7. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  8. Modeling Formamide Denaturation of Probe-Target Hybrids for Improved Microarray Probe Design in Microbial Diagnostics

    PubMed Central

    Yilmaz, L. Safak; Loy, Alexander; Wright, Erik S.; Wagner, Michael; Noguera, Daniel R.

    2012-01-01

    Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu. PMID:22952791

  9. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  10. Tissue classification and diagnostics using a fiber probe for combined Raman and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Crisci, Alfonso; Giordano, Flavio; Rossari, Susanna; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2015-07-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnostic purposes on various tissues in a good agreement with common routine histology. This study included skin, brain and bladder tissues and in particular the classification of: malignant melanoma against melanocytic lesions and healthy skin; urothelial carcinoma against healthy bladder mucosa; brain tumor against dysplastic brain tissue. The diagnostic capabilities were determined using a cross-validation method with a leave-one-out approach, finding very high sensitivity and specificity for all the examined tissues. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  11. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A.; Park, Y.T.

    1994-12-31

    A knowledge-based diagnostic system called CP Diagnostic has been developed for troubleshooting sacrificial and impressed current cathodic protection systems. The expert system is designed to work in conjunction with the CP Diagnostic database system, which stores inventory and field measurement information for CP systems and flags problem areas. When a malfunction is detected, the expert system queries the user and the companion inventory and field measurement databases to determine its symptoms. The system will be described and examples of troubleshooting using the system will be presented.

  12. System diagnostic builder

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Burke, Roger

    1992-01-01

    The System Diagnostic Builder (SDB) is an automated software verification and validation tool using state-of-the-art Artificial Intelligence (AI) technologies. The SDB is used extensively by project BURKE at NASA-JSC as one component of a software re-engineering toolkit. The SDB is applicable to any government or commercial organization which performs verification and validation tasks. The SDB has an X-window interface, which allows the user to 'train' a set of rules for use in a rule-based evaluator. The interface has a window that allows the user to plot up to five data parameters (attributes) at a time. Using these plots and a mouse, the user can identify and classify a particular behavior of the subject software. Once the user has identified the general behavior patterns of the software, he can train a set of rules to represent his knowledge of that behavior. The training process builds rules and fuzzy sets to use in the evaluator. The fuzzy sets classify those data points not clearly identified as a particular classification. Once an initial set of rules is trained, each additional data set given to the SDB will be used by a machine learning mechanism to refine the rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional operator time. The evaluation component of the SDB can be used to validate a single software system using some number of different data sets, such as a simulator. Moreover, it can be used to validate software systems which have been re-engineered from one language and design methodology to a totally new implementation.

  13. New diagnostic systems on HL-2A

    SciTech Connect

    Ding, X. T.; Zhou, Y.; Deng, Z. C.; Xiao, W. W.; Liu, Z. T.; Shi, Z. B.; Yan, L. W.; Hong, W. Y.; Yang, Q. W.

    2006-10-15

    Three new diagnostic systems have been presented in this article: (1) the pulse molecular beam injection as a modulated particle source and microwave reflectometry for investigation of the particle transport, (2) a new three-step electrostatic probe array for zonal flow studying, and (3) eight-channel laser interferometer with 6 m HCN laser for electron density profile measurement with good spatial resolution. The main experimental results have also been shown briefly.

  14. The Huygens Probe System Design

    NASA Astrophysics Data System (ADS)

    Clausen, K. C.; Hassan, H.; Verdant, M.; Couzin, P.; Huttin, G.; Brisson, M.; Sollazzo, C.; Lebreton, J.-P.

    2002-07-01

    The Huygens Probe is the ESA-provided element of the joint NASA/ESA Cassini/Huygens mission to Saturn and its largest moon Titan. Huygens is an entry probe designed to enter Titan's atmosphere and descend under parachute down to the surface. The Probe is carried to Titan on board the Cassini Saturn Orbiter. Huygens is dormant for 7.2 years, during the interplanetary journey and during the first 6 months around Saturn. It is activated about every 6 months for an in-flight checkout to verify and monitor its health and to perform a periodic maintenance and calibration of the payload instruments. The Probe will be targeted to Titan and released from the Orbiter about 3 weeks before the Titan encounter on the third Orbit around Saturn. During the 3-week coast phase the Probe is ‘OFF’, except a timer unit that has the task to awaken Huygens before it enters Titan's atmosphere. The Probe's aeroshell will decelerate it in less than 2 minutes from the entry speed of about 6 km s-1 to 400 m s-1 (Mach 1.5) at an altitude of 150 180 km. From that point onwards, a pre-programmed sequence will trigger the parachute deployment and the heat-shield ejection. The main part of the scientific mission will then start, lasting for a descent of 2 21/2 hours. The Orbiter will listen to the Probe for a total duration of at least 3 hours, which includes time to receive data from the surface, should the Probe continue to transmit data after touchdown. Huygens' transmissions are received and stored aboard the Orbiter for later retransmission to the Earth. This paper presents a technical description of the elements of the Huygens Probe System. The reader is invited to refer to the companion paper (Lebreton and Matson, 2002) for further background information about the Huygens mission, and the payload. The early in-flight performance of the Probe is briefly discussed. During in-flight testing in 2000, a technical anomaly was found with the Probe-to-Orbiter telecommunication system that

  15. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity.

    PubMed

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-21

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.

  16. PEGylated hybrid ytterbia nanoparticles as high-performance diagnostic probes for in vivo magnetic resonance and X-ray computed tomography imaging with low systemic toxicity

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Pu, Fang; Liu, Jianhua; Jiang, Liyan; Yuan, Qinghai; Li, Zhengqiang; Ren, Jinsong; Qu, Xiaogang

    2013-05-01

    Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material. Compared with routinely used Iobitridol in clinic, our PEG-Yb2O3:Gd nanoparticles could provide much significantly enhanced contrast upon various clinical voltages ranging from 80 kVp to 140 kVp owing to the high atomic number and well-positioned K-edge energy of ytterbium. By the doping of gadolinium, our nanoparticulate contrast agent could perform perfect MR imaging simultaneously, revealing similar organ enrichment and bio-distribution with the CT imaging results. The super improvement in imaging efficiency was mainly attributed to the high content of Yb and Gd in a single nanoparticle, thus making these nanoparticles suitable for dual-modal diagnostic imaging with a low single-injection dose. In addition, detailed toxicological study in vitro and in vivo indicated that uniformly sized PEG-Yb2O3:Gd nanoparticles possessed excellent biocompatibility and revealed overall safety.Novel nanoparticulate contrast agents with low systemic toxicity and inexpensive character have exhibited more advantages over routinely used small molecular contrast agents for the diagnosis and prognosis of disease. Herein, we designed and synthesized PEGylated hybrid ytterbia nanoparticles as high-performance nanoprobes for X-ray computed tomography (CT) imaging and magnetic resonance (MR) imaging both in vitro and in vivo. These well-defined nanoparticles were facile to prepare and cost-effective, meeting the criteria as a biomedical material

  17. Cathodic protection diagnostic expert system

    SciTech Connect

    Van Blaricum, V.L.; Kumar, A. ); Park, Y.T. . Dept. of Computer Science)

    1994-12-01

    A knowledge-based diagnostic system has been developed for troubleshooting cathodic protection systems. The expert system is designed to work in conjunction with a database that stores inventory and field measurement information and flags problem areas. The system is described, and examples of troubleshooting using the system are presented.

  18. Diagnostic of plasma streams from ion thrusters for space propulsion using emissive probes

    NASA Astrophysics Data System (ADS)

    Conde, L.; Tierno, S. P.; Domenech-Garret, J. L.; Donoso, J. M.; Castillo, M. A.; Eíriz, I.; Sáez de Ocáriz, I.

    2016-10-01

    The emissive probes are employed for the determination of the local plasma potential of plasma streams produced by ion thrusters. Its operation basically relies on electron collection and emission and are less sensitive to the ion motion than collecting probes. The diagnostic using emissive probes is reviewed with emphasis in low density plasmas. Our results support the conclusion that potential structures around the probe, as virtual cathodes, would be responsible for the operation of emissive probes in low density plasmas.

  19. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  20. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  1. Diagnostic systems for assessing alveolar bone loss.

    PubMed

    Ivanusa, T; Babic, A; Petelin, M

    1997-01-01

    Radiological diagnostics serves as a basic monitoring technique for alveolar bone loss which is a severe consequence of periodontal disease. To evaluate efficacy of Conventional Visual Radiography (CVR), and to assess a complete clinical status, we had used two more diagnostic systems. These are Digital Subtraction Radiography (DSR) and Probing Pocket Depth (PPD). Experimental Periodontitis was studied in 20 beagle dogs based on the measurements taken in the beginning (baseline), and before (11th month) and after the medical treatment (12th month). Data analyses pointed out the same clinical trend, i.e. a significant bone loss prior to medical treatment and its recovery to the initial state. Differences in metrics and measurement errors could be identified as causes for discrepancies between the systems, but a relationship between the CVR and PPD is worth of further research, as these systems do not appear to be entirely compatible, but rather complementary to each other.

  2. Multimodal fiber probe spectroscopy for tissue diagnostics applications: a combined Raman-fluorescence approach

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2014-03-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnosing melanocytic lesions in a good agreement with common routine histology. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. Further investigations were performed on colon and brain tissue samples in order to have a benchmark for diagnosing a broader range of tissue lesions and malignancies. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  3. Non-invasive tissue diagnostics using a multimodal spectroscopic device based on fiber probe

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Anand, Suresh; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco Saverio

    2014-05-01

    Two different optical fiber probes for combined Raman and fluorescence spectroscopic measurements were designed, developed and used for tissue diagnostics. Two visible laser diodes were used for fluorescence spectroscopy, whereas a laser diode emitting in the NIR was used for Raman spectroscopy. The two probes were based on fiber bundles with a central multimode optical fiber, used for delivering light to the tissue, and 24 surrounding optical fibers for signal collection. Both fluorescence and Raman spectra were acquired using the same detection unit, based on a cooled CCD camera, connected to a spectrograph. The two probes were successfully employed for diagnosing melanocytic lesions in a good agreement with common routine histology. The obtained results demonstrated that the multimodal approach is crucial for improving diagnostic capabilities. Further investigations were performed on colon and brain tissue samples in order to have a benchmark for diagnosing a broader range of tissue lesions and malignancies. The system presented here can improve diagnostic capabilities on a broad range of tissues and has the potential of being used for endoscopic inspections in the near future.

  4. Magnetic-probe diagnostics for railgun plasma armatures

    SciTech Connect

    Parker, J.V.

    1989-06-01

    Magnetic probes were employed on the first plasma armature railgun experiments, and they have been used continuously since then for position determination and qualitative determination of the armature current. In the last few years, improvements in experimental technique and analysis have permitted more accurate measurements of the plasma-armature current distribution. This paper reviews the various probe configurations in use today and presents analytic approximations for the dependence of the probe signal on probe location and railgun geometry. Rail current and armature current probes are compared and contrasted with respect to resolution and accuracy. Further improvements in measurement accuracy are predicted for close-spaced magnetic-probe arrays.

  5. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  6. Galileo probe battery systems design

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Van Ess, J. S.; Marcoux, L. S.

    1986-01-01

    NASA's Galileo mission to Jupiter will consist of a Jovian orbiter and an atmospheric entry probe. The power for the probe will be derived from two primary power sources. The main source is composed of three Li-SO2 battery modules containing 13 D-size cell strings per module. These are required to retain capacity for 7.5 years, support a 150 day clock, and a 7 hour mission sequence of increasing loads from 0.15 to 9.5 amperes for the last 30 minutes. This main power source is supplemented by two thermal batteries (CaCrO4-Ca) for use in firing the pyrotechnic initiators during the atmospheric staging events. This paper describes design development and testing of these batteries at the system level.

  7. Air injection system diagnostic

    SciTech Connect

    Kotzan, J.M.; Labus, G.E.

    1992-05-19

    This patent describes a method for diagnosing failures in an air control system that controls a quantity of air admitted into an exhaust path of an internal combustion engine. It comprises sensing the oxygen content of the exhaust gas of the engine at predetermined time intervals at a first predetermined point in the exhaust path of the engine, the oxygen content normally oscillating between a rich oxygen condition and a lean oxygen condition in the absence of air injected into the exhaust path above the first predetermined point; injecting a quantity of air into the exhaust path of the engine at a second predetermined point in the exhaust port, the second predetermined point being above the first predetermined point; counting the number of intervals at which the sensed oxygen content indicates a rich oxygen condition over a predetermined period of time; comparing the counted number of rich oxygen intervals to a predetermined threshold value, the threshold value being greater than a counted number of rich oxygen intervals over the predetermined period of time resulting from the normal oscillations between rich and lean oxygen conditions in the absence of air injected into the exhaust path; indicating the existence of a fault in the air control system when the number of rich oxygen intervals does not exceed the predetermined threshold value.

  8. Diagnostic Prescriptive Reading System (DPRS).

    ERIC Educational Resources Information Center

    Kuchinskas, Gloria

    The purpose of this diagnostic-prescriptive reading system (DPRS), proposed by Palm Beach County and the Florida Atlantic University and sponsored by the Florida Department of Education, was to provide classroom teachers with resources which would enable them to more effectively meet the individual reading needs of their students. This report…

  9. Monoclonals and DNA probes in diagnostic and preventative medicine

    SciTech Connect

    Gallo, R.C.; Della Povta, G.; Albertini, A.

    1987-01-01

    This book contains 24 selections. Some of the titles are: Use of DNA Probes for Prenatal and Carrier Diagnosis of Hemophilia and Fragile X Mental Retardation; The Application of DNA Probes to Diagnosis and Research of Duchenne Muscular Dystrophy: Clinical Trial, New Probes and Deletion Mapping; Molecular Genetics of the Human Collagens; Molecular Genetics of Human Steroid 21-Hydroxylase Genes; Detection of Hepatitis B Virus DNA and Hepatitis Delta Virus RNA: Implications in Diagnosis and Pathogenesis; and DNA Probes to Evaluate the Possible Association of Papovaviruses with Human Tumors.

  10. Optical and Probe Diagnostics Applied to Reacting Flows

    NASA Technical Reports Server (NTRS)

    Ticich, Thomas M.

    2003-01-01

    We plan to explore three major threads during the fellowship period. The first interrogates the flame synthesis of carbon nanotubes using aerosol catalysts. Laser light scattering will reveal changes in particle size at various heights above the burner. Analysis of the flame gas by mass spectroscopy will reveal the chemical composition of the mixture. Finally, absorption measurements will map the nanotube concentration within the flow. The second thread explores soot oxidation kinetics. Cavity ring-down absorption measurements of the carbonaceous aerosol can provide a measure of the mass concentration with time and, hence, an oxidation rate. Spectroscopic and direct probe measurements will provide the temperature of the system needed for subsequent modeling. The third thread will explore the details of turbulent flame dynamics. Laser induced incandescence will be applied to measurements of soot volume fraction in a 2-d configuration. Analysis of seed tracer particles by planar laser light MIE scattering will reveal the elemental fuel mixture fraction in the flames. Cavity ring-down spectroscopy, a pulsed transient absorption method, will determine the instantaneous mass loading and its fluctuation. Finally, fluorescence measurements will investigate the formation of PAH's in these flames.

  11. Three axis velocity probe system

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.; Utt, Carroll E.

    1992-01-01

    A three-axis velocity probe system for determining three-axis positional velocities of small particles in fluidized bed systems and similar applications. This system has a sensor head containing four closely-spaced sensing electrodes of small wires that have flat ends to establish a two axis plane, e.g. a X-Y plane. Two of the sensing electrodes are positioned along one of the axes and the other two are along the second axis. These four sensing electrodes are surrounded by a guard electrode, and the outer surface is a ground electrode and support member for the sensing head. The electrodes are excited by, for example, sinusoidal voltage having a peak-to-peak voltage of up to 500 volts at a frequency of 2 MHz. Capacitive currents flowing between the four sensing electrodes and the ground electrode are influenced by the presence and position of a particle passing the sensing head. Any changes in these currents due to the particle are amplified and synchronously detected to produce positional signal values that are converted to digital form. Using these digital forms and two values of time permit generation of values of the three components of the particle vector and thus the total velocity vector.

  12. Flamedoctor™: Nonlinear Burner Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bailey, Ralph; Daw, Stuart; Finney, Charles; Flynn, Tom; Fuller, Tim

    2003-08-01

    Utility power plants are employing advanced control systems to improve performance over the load range. The performance of the boiler combustion system is critical to the overall performance. Flame Doctor™, which has been developed by McDermott Technology, Inc. and Oak Ridge National Laboratory under sponsorship of Electric Power Research Institute, performs diagnostics on an individual burner basis. The system consists of analogue-to-digital signal conversion and conditioning hardware, analysis software, and a graphical user interface. Time varying voltage signals from all of the burner flame scanners on a boiler are analyzed simultaneously. Nonlinear techniques such as symbolization and time asymmetry along with linear techniques such as power spectral analysis are used. The nonlinear techniques discriminate stability features in the combustion dynamics not possible with the linear techniques alone. The assessments for a variety of flame conditions are collected in a reference library. Libraries have been created for a number of flame scanners types. The Flame Doctor™ burner diagnostic system is described. Results from the first utility installation at Ameren UE Meramec power plant are shown. A live hook-up to the power plant is demonstrated. Flame Doctor™ is being offered commercially under alpha and beta demonstrations through the Electric Power Research Institute and Babcock & Wilcox.

  13. Development of a diagnostic test for Johne's disease using a DNA hybridization probe.

    PubMed Central

    Hurley, S S; Splitter, G A; Welch, R A

    1989-01-01

    A DNA probe, M13 mpHAW71, that detects Mycobacterium paratuberculosis in the fecal material of infected animals was developed for use in the diagnosis of Johne's disease. The probe detected as few as 10(5) M. paratuberculosis when hybridized under stringent conditions to total genomic DNA purified from bovine fecal material. When the probe was used diagnostically, it did not differentiate members of the Mycobacterium avium-M. intracellulare-M. paratuberculosis complex. Compared with culturing, the DNA probe identified 34.4% more mycobacterium-containing fecal samples, and testing took only 72 h to complete. Images PMID:2768445

  14. Compact endocavity diagnostic probes for nuclear radiation detection

    DOEpatents

    Cui, Yonggang; James, Ralph; Bolotnikov, Aleksey

    2014-08-26

    This invention relates to the field of radiation imaging. In particular, the invention relates to an apparatus and a method for imaging tissue or an inanimate object using a novel probe that has an integrated solid-state semiconductor detector and complete readout electronics circuitry.

  15. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  16. DDS: The Dental Diagnostic Simulation System.

    ERIC Educational Resources Information Center

    Tira, Daniel E.

    The Dental Diagnostic Simulation (DDS) System provides an alternative to simulation systems which represent diagnostic case studies of relatively limited scope. It may be used to generate simulated case studies in all of the dental specialty areas with case materials progressing through the gamut of the diagnostic process. The generation of a…

  17. Heavy ion beam probe advances from the first installation of the diagnostic on an RFP (invited)

    SciTech Connect

    Demers, D. R.; Fimognari, P. J.

    2012-10-15

    Heavy ion beam probes have been installed on a variety of toroidal devices, but the first and only application on a reversed field pinch is the diagnostic on the Madison Symmetric Torus. Simultaneous measurements of spatially localized equilibrium potential and fluctuations of density and potential, previously inaccessible in the core of the reversed field pinch (RFP), are now attainable. These measurements reflect the unique strength of the heavy ion beam probe (HIBP) diagnostic. They will help determine the characteristics and evolution of electrostatic fluctuations and their role in transport, and determine the relation of the interior electric field and flows. Many aspects of the RFP present original challenges to HIBP operation and inference of plasma quantities. The magnetic field contributes to a number of the issues: the comparable magnitudes of the toroidal and poloidal fields and edge reversal result in highly three-dimensional beam trajectories; partial generation of the magnetic field by plasma current cause it and hence the beam trajectories to vary with time; and temporal topology and amplitude changes are common. Associated complications include strong ultraviolet radiation and elevated particle losses that can alter functionality of the electrostatic systems and generate noise on the detectors. These complexities have necessitated the development of new operation and data analysis techniques: the implementation of primary and secondary beamlines, adoption of alternative beam steering methods, development of higher precision electrostatic system models, refinement of trajectory calculations and sample volume modeling, establishment of stray particle and noise reduction methods, and formulation of alternative data analysis techniques. These innovative methods and the knowledge gained with this system are likely to translate to future HIBP operation on large scale stellarators and tokamaks.

  18. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam.

    PubMed

    Froula, D H; Boni, R; Bedzyk, M; Craxton, R S; Ehrne, F; Ivancic, S; Jungquist, R; Shoup, M J; Theobald, W; Weiner, D; Kugland, N L; Rushford, M C

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  19. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-01

    A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - μm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 104 with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

  20. Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam

    SciTech Connect

    Froula, D. H.; Boni, R.; Bedzyk, M.; Craxton, R. S.; Ehrne, F.; Ivancic, S.; Jungquist, R.; Shoup, M. J.; Theobald, W.; Weiner, D.; Kugland, N. L.; Rushford, M. C.

    2012-10-15

    A 10-ps, 263-nm (4{omega}) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution ({approx}1 -{mu}m full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10{sup 4} with respect to all wavelengths outside of the 263 {+-} 2 nm measurement range.

  1. High-energy laser plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Zhao, Mingjun M.; Aye, Tin M.; Fruehauf, Norbert; Savant, Gajendra D.; Erwin, Daniel A.; Smoot, Brayton E.; Loose, Richard W.

    2000-07-01

    This paper describes the development of a non-contact diagnosis system for analyzing the plasma density profile, temperature profile, and ionic species of a high energy laser-generated plasma. The system was developed by Physical Optics Corporation in cooperation with the U.S. Army Space and Missile Defense Command, High Energy Laser Systems Test Facility at White Sands Missile Range, New Mexico. The non- contact diagnostic system consists of three subsystems: an optical fiber-based interferometer, a plasma spectrometer, and a genetic algorithm-based fringe-image processor. In the interferometer subsystem, the transmitter and the receiver are each packaged as a compact module. A narrow notch filter rejects strong plasma light, passing only the laser probing beam, which carries the plasma density information. The plasma spectrum signal is collected by an optical fiber head, which is connected to a compact spectrometer. Real- time genetic algorithm-based data processing/display permits instantaneous analysis of the plasma characteristics. The research effort included design and fabrication of a vacuum chamber, and high-energy laser plasma generation. Compactness, real-time operation, and ease of use make the laser plasma diagnosis system well suited for dual use applications such as diagnosis of electric arc and other industrial plasmas.

  2. Probing Signal Design for Power System Identification

    SciTech Connect

    Pierre, John W.; Zhou, Ning; Tuffner, Francis K.; Hauer, John F.; Trudnowski, Daniel J.; Mittelstadt, William

    2010-05-31

    This paper investigates the design of effective input signals for low-level probing of power systems. In 2005, 2006, and 2008 the Western Electricity Coordinating Council (WECC) conducted four large-scale system wide tests of the western interconnected power system where probing signals were injected by modulating the control signal at the Celilo end of the Pacific DC intertie. A major objective of these tests is the accurate estimation of the inter-area electromechanical modes. A key aspect of any such test is the design of an effective probing signal that leads to measured outputs rich in information about the modes. This paper specifically studies low-level probing signal design for power-system identification. The paper describes the design methodology and the advantages of this new probing signal which was successfully applied during these tests. This probing input is a multi-sine signal with its frequency content focused in the range of the inter-area modes. The period of the signal is over two minutes providing high-frequency resolution. Up to 15 cycles of the signal are injected resulting in a processing gain of 15. The resulting system response is studied in the time and frequency domains. Because of the new probing signal characteristics, these results show significant improvement in the output SNR compared to previous tests.

  3. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications†

    PubMed Central

    Xu, Chenjie; Sun, Shouheng

    2009-01-01

    Superparamagnetic nanoparticles (NPs) have been attractive for medical diagnostics and therapeutics due to their unique magnetic properties and their ability to interact with various biomolecules of interest. The solution phase based chemical synthesis provides a near precise control on NP size, and monodisperse magnetic NPs with standard deviation in diameter of less than 10% are now routinely available. Upon controlled surface functionalization and coupling with fragments of DNA strands, proteins, peptides or antibodies, these NPs can be well-dispersed in biological solutions and used for drug delivery, magnetic separation, magnetic resonance imaging contrast enhancement and magnetic fluid hyperthermia. This Perspective reviews the common syntheses and controlled surface functionalization of monodisperse Fe3O4-based superparamagnetic NPs. It further outlines the exciting application potentials of these NPs in magnetic resonance imaging and drug delivery. PMID:20449070

  4. A combined Raman-fluorescence spectroscopic probe for tissue diagnostics applications

    NASA Astrophysics Data System (ADS)

    Cicchi, Riccardo; Cosci, Alessandro; Rossari, Susanna; Sturiale, Alessandro; Giordano, Flavio; De Giorgi, Vincenzo; Maio, Vincenza; Massi, Daniela; Nesi, Gabriella; Buccoliero, Anna Maria; Tonelli, Francesco; Guerrini, Renzo; Pimpinelli, Nicola; Pavone, Francesco S.

    2013-06-01

    We designed and developed two different optical fibre probes for combined Raman and fluorescence spectroscopic measurements on human tissues. The experimental setup combines fluorescence spectroscopy and Raman spectroscopy in a multimodal approach. Two laser diodes, respectively emitting in the UV (378 nm) and in the visible (445 nm), were used for fluorescence spectroscopy. An additional laser diode emitting in the NIR (785 nm) was used for Raman spectroscopy. Laser light was delivered to the tissue under examination through a multimode optical fibre located in the centre of the fibre bundle probe. The surrounding 24 optical fibres were used for collection of the signal of interest and for delivering light to a common detection unit. Both fluorescence and Raman spectra were acquired on a cooled CCD camera, connected to a spectrograph. The device was successfully used for diagnosing melanocytic lesions in a good agreement with common routine histology. Additional measurements were performed on other human tissue samples, such as colon tissue and brain tissue in order to test the capability of the device for diagnosing a broader range of tissue lesions and malignancies. The system has the potential to improve diagnostic capabilities on a broad range of tissues and to be used for endoscopic inspections in the near future.

  5. Non-contact high resolution Bessel beam probe for diagnostic imaging of cornea and trabecular meshwork region in eye

    NASA Astrophysics Data System (ADS)

    Murukeshan, V. M.; Jesmond, Hong Xun J.; Shinoj, V. K.; Baskaran, M.; Tin, Aung

    2015-07-01

    Primary angle closure glaucoma is a major form of disease that causes blindness in Asia and worldwide. In glaucoma, irregularities in the ocular aqueous outflow system cause an elevation in intraocular pressure (IOP) with subsequent death of retinal ganglion cells, resulting in loss of vision. High resolution visualization of the iridocorneal angle region has great diagnostic value in understanding the disease condition which enables monitoring of surgical interventions that decrease IOP. None of the current diagnostic techniques such as goniophotography, ultrasound biomicroscopy (UBM), anterior segment optical coherence tomography (AS-OCT) and RetCam™ can image with molecular specificity and required spatial resolution that can delineate the trabecular meshwork structures. This paper in this context proposes new concepts and methodology using Bessel beams based illumination and imaging for such diagnostic ocular imaging applications. The salient features using Bessel beams instead of the conventional Gaussian beam, and the optimization challenges in configuring the probe system will be illustrated with porcine eye samples.

  6. Advanced valve motor operator diagnostic system

    SciTech Connect

    Thibault, C.

    1989-01-01

    A brief summary of the current use of diagnostic applications to motor-operated valves (MOVs) to satisfy the requirements of IE Bulletin 85-03, IE 85-03 (Supplement 1), and preventive maintenance applications is presented in this paper. This paper explains a new system for diagnostics, signature analysis, and direct measurement of actual load on MOV in the closed direction. This advanced valve motor operator diagnostic system (AVMODS) system comprises two complementary segments: (1) valve motor operator diagnostic system (V-MODS) and (2) motor current signature analysis (MCSA). AVMODS technical considerations regarding V-MODS and MCSA are discussed.

  7. Intrusive multi-probe system

    SciTech Connect

    Green, R.A.; Hester, L.R.; Bouchillon, C.W.

    1995-02-01

    The Diagnostic Instrumentation and Analysis Laboratory (DIAL) in the College of Engineering at Mississippi State University is the result of the efforts of several faculty members in the Aerospace and Chemical Engineering Departments obtaining funding in 1976. At that time, an initial research project was begun which was funded by the US Department of Energy as part of the national magnetohydrodynamic (MHD) program. Initial research efforts concentrated in heat recovery and seed recovery (HRSR) from the MHD combustion process as well as some materials investigations. Over the years, efforts at DIAL were shifted from HRSR studies to the development of optical based, microprocessor controlled instrumentation for use in the harsh MHD environment.

  8. Characterization of Fiber Optic CMM Probe System

    SciTech Connect

    K.W.Swallow

    2007-05-15

    This report documents a study completed on the fiber optic probe system that is a part of the Werth optical CMM. This study was necessary due to a lack of documentation from the vendor for the proper use and calibration of the fiber probe, and was performed in support of the Lithographie Galvanoformung Abformung (LIGA) development program at the FM&T. As a result of this study, a better understanding of the fiber optic probe has been developed, including guidelines for its proper use and calibration.

  9. ATA diagnostic data handling system: an overview

    SciTech Connect

    Chambers, F.W.; Kallman, J.; McDonald, J.; Slominski, M.

    1984-06-14

    The functions to be performed by the ATA diagnostic data handling system are discussed. The capabilities of the present data acquisition system (System 0) are presented. The goals for the next generation acquisition system (System 1), currently under design, are discussed. Facilities on the Octopus system for data handling are reviewed. Finally, we discuss what has been learned about diagnostics and computer based data handling during the past year.

  10. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  11. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  12. Raman spectroscopy system with hollow fiber probes

    NASA Astrophysics Data System (ADS)

    Liu, Bing-hong; Shi, Yi-Wei

    2012-11-01

    A Raman remote spectroscopy system was realized using flexible hollow optical fiber as laser emittion and signal collection probes. A silver-coated hollow fiber has low-loss property and flat transmission characteristics in the visible wavelength regions. Compared with conventional silica optical fiber, little background fluorescence noise was observed with optical fiber as the probe, which would be of great advantages to the detection in low frequency Raman shift region. The complex filtering and focusing system was thus unnecessary. The Raman spectra of CaCO3 and PE were obtained by using the system and a reasonable signal to noise ratio was attained without any lens. Experiments with probes made of conventional silica optical fibers were also conducted for comparisons. Furthermore, a silver-coated hollow glass waveguide was used as sample cell to detect liquid phase sample. We used a 6 cm-long hollow fiber as the liquid cell and Butt-couplings with emitting and collecting fibers. Experiment results show that the system obtained high signal to noise ratio because of the longer optical length between sample and laser light. We also give the elementary theoretical analysis for the hollow fiber sample cell. The parameters of the fiber which would affect the system were discussed. Hollow fiber has shown to be a potential fiber probe or sample cell for Raman spectroscopy.

  13. Electromagnetic diagnostic system for the Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Tu, Cui; Liu, Adi; Li, Zichao; Tan, Mingsheng; Luo, Bing; You, Wei; Li, Chenguang; Bai, Wei; Fu, Chenshuo; Huang, Fangcheng; Xiao, Bingjia; Shen, Biao; Shi, Tonghui; Chen, Dalong; Mao, Wenzhe; Li, Hong; Xie, Jinglin; Lan, Tao; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2017-09-01

    A system for electromagnetic measurements was designed and installed on the Keda Torus eXperiment (KTX) reversed field pinch device last year. Although the unique double-C structure of the KTX, which allows the machine to be opened easily without disassembling the poloidal field windings, makes the convenient replacement and modification of the internal inductive coils possible, it can present difficulties in the design of flux coils and magnetic probes at the two vertical gaps. Moreover, the KTX has a composite shell consisting of a 6 mm stainless steel vacuum chamber and a 1.5 mm copper shell, which results in limited space for the installation of saddle sensors. Therefore, the double-C structure and composite shell should be considered, especially during the design and installation of the electromagnetic diagnostic system (EDS). The inner surface of the vacuum vessel includes two types of probes. One type is for the measurement of the global plasma parameters, and the other type is for studying the local behavior of the plasma and operating the new saddle coils. In addition, the probes on the outer surface of the composite shell are used for measurements of eddy currents. Finally, saddle sensors for radial field measurements for feedback control were installed between the conducting shell and the vacuum vessel. The entire system includes approximately 1100 magnetic probes, 14 flux coils, 4 ×26 ×2 saddle sensors, and 16 Rogowski coils. Considering the large number of probes and limited space available in the vacuum vessel, the miniaturization of the probes and optimization of the probe distribution are necessary. In addition, accurate calibration and careful mounting of the probes are also required. The frequency response of the designed magnetic probes is up to 200 kHz, and the resolution is 1 G. The EDS, being spherical and of high precision, is one of the most basic and effective diagnostic tools of the KTX and meets the demands imposed by requirements on

  14. Biomolecular analysis and cancer diagnostics by negative mode probe electrospray ionization.

    PubMed

    Mandal, Mridul Kanti; Saha, Subhrakanti; Yoshimura, Kentaro; Shida, Yasuo; Takeda, Sen; Nonami, Hiroshi; Hiraoka, Kenzo

    2013-03-21

    We have examined several combinations of solvents and probes with the aim of optimizing the ionization conditions for biomolecules e.g., proteins, peptides and lipids by negative mode probe electrospray ionization mass spectrometry (PESI-MS). With the data presented in this study, negative-mode PESI-MS can be considered as a potential tool for biomolecular analysis and cancer diagnostics because of its simplicity in instrumental configuration. A sharper sampling probe was found to be better for obtaining high quality mass spectra because it can generate stable electrospray without the occurrence of gas breakdown. Although the best conditions may depend on each sample, aqueous organic solvent solutions, especially isopropanol-H(2)O (1/1) with a pH of ≥7, are shown to be preferable for negative-mode PESI-MS, which was successfully applied to colon cancer diagnosis.

  15. Saturn Probe: Revealing Solar System Origins

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2015-12-01

    Comparative studies of the gas giant and ice giant planets are needed to reliably discriminate among competing theories of the origin and evolution of giant planets and the solar system, but we lack critical measurements. A Saturn atmospheric entry probe mission would fill a vital part of that gap, allowing comparative studies of Jupiter and Saturn, providing the basis for later comparisons with the ice giants Uranus and Neptune, and informing studies of extrasolar planetary systems now being characterized. The Galileo Probe mission provided the first in situ studies of Jupiter's atmosphere. Similar measurements at Saturn, Uranus and Neptune would provide an important comparative planetology context for the Galileo results. Cassini's "Proximal Orbits" in 2017 will reveal Saturn's internal structure to complement the Juno mission's similar measurements at Jupiter. A Saturn entry probe, complementing the Galileo Probe investigations at Jupiter, would complete a solid basis for improved understanding of both Jupiter and Saturn, an important stepping stone to understanding Uranus and Neptune and solar system formation and evolution. The 2012 Decadal Survey ("DS") added Saturn Probe science objectives to NASA's New Frontiers Program: highest-priority Tier 1 objectives any New Frontiers implementation must achieve, and Tier 2, high priority but lower than Tier 1. A DS mission concept study using extremely conservative assumptions concluded that a Saturn Probe project could fit within New Frontiers resource constraints, giving a PI confidence that they could pursue some Tier 2 objectives, customizing for the proper balance of science return, science team composition, procured or contributed instruments, etc. Contributed instruments could significantly enhance the payload and the science team for greater science return. They also provide international collaboration opportunities, with science benefits well demonstrated by missions such as Cassini-Huygens and Rosetta.

  16. Outer planet entry probe system study. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    General mission considerations and science prospectus, which are of a general nature that applies to several or all planetary applications, are presented. Five probe systems are defined: nominal Jupiter probe system, and Jupiter probe-dedicated alternative probe system, Jupiter spacecraft radiation-compatible alternative probe system, Saturn probe system, and Saturn probe applicability for Uranus. Parametric analysis is summarized for mission analysis of a general nature, and then for specific missions to Jupiter, Saturn, Uranus, and Neptune. The program is also discussed from the hardware availability viewpoint and the aspect of commonality.

  17. Robust diagnostic system: structural redundancy approach

    NASA Astrophysics Data System (ADS)

    Misra, Amit; Sztipanovitz, Janos; Carnes, James R.

    1994-03-01

    We have developed and field tested a real-time robust diagnostic system, which uses hierarchical, multiple-aspect models of plants. The models include the functional structure, timed failure propagation graphs, physical component structure, and component failure modes. The diagnostic reasoning applies structural and temporal constraints for the generation and validation of fault hypotheses using the `predictor-corrector' principle. The diagnosis is generated in real time, amid an evolving alarm scenario, and uses progressive deepening control strategy. The robust diagnostic system has been tested and demonstrated using ECLSS models obtained from the Boeing Company.

  18. SSME Post Test Diagnostic System: Systems Section

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy

    1995-01-01

    An assessment of engine and component health is routinely made after each test firing or flight firing of a Space Shuttle Main Engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project - the SSME Post Test Diagnostic System (PTDS) - is to develop a computer program which automates the analysis of test data from the SSME in order to detect and diagnose anomalies. This report primarily covers work on the Systems Section of the PTDS, which automates the analyses performed by the systems/performance group at the Propulsion Branch of NASA Marshall Space Flight Center (MSFC). This group is responsible for assessing the overall health and performance of the engine, and detecting and diagnosing anomalies which involve multiple components (other groups are responsible for analyzing the behavior of specific components). The PTDS utilizes several advanced software technologies to perform its analyses. Raw test data is analyzed using signal processing routines which detect features in the data, such as spikes, shifts, peaks, and drifts. Component analyses are performed by expert systems, which use 'rules-of-thumb' obtained from interviews with the MSFC data analysts to detect and diagnose anomalies. The systems analysis is performed using case-based reasoning. Results of all analyses are stored in a relational database and displayed via an X-window-based graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  19. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    SciTech Connect

    Xu, J. C.; Jia, M. N.; Feng, W.; Deng, G. Z.; Wang, L. Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-15

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  20. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Xu, J. C.; Wang, L.; Xu, G. S.; Luo, G. N.; Yao, D. M.; Li, Q.; Cao, L.; Chen, L.; Zhang, W.; Liu, S. C.; Wang, H. Q.; Jia, M. N.; Feng, W.; Deng, G. Z.; Hu, L. Q.; Wan, B. N.; Li, J.; Sun, Y. W.; Guo, H. Y.

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  1. Upgrade of Langmuir probe diagnostic in ITER-like tungsten mono-block divertor on experimental advanced superconducting tokamak.

    PubMed

    Xu, J C; Wang, L; Xu, G S; Luo, G N; Yao, D M; Li, Q; Cao, L; Chen, L; Zhang, W; Liu, S C; Wang, H Q; Jia, M N; Feng, W; Deng, G Z; Hu, L Q; Wan, B N; Li, J; Sun, Y W; Guo, H Y

    2016-08-01

    In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

  2. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    SciTech Connect

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.

    2014-08-21

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  3. Synthetic aperture microwave imaging with active probing for fusion plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir F.; Freethy, Simon J.; Huang, Billy K.; Vann, Roddy G. L.

    2014-08-01

    A Synthetic Aperture Microwave Imaging (SAMI) system has been designed and built to obtain 2-D images at several frequencies from fusion plasmas. SAMI uses a phased array of linearly polarised antennas. The array configuration has been optimised to achieve maximum synthetic aperture beam efficiency. The signals received by antennas are down-converted to the intermediate frequency range and then recorded in a full vector form. Full vector signals allow beam focusing and image reconstruction in both real time and a post-processing mode. SAMI can scan over 16 pre-programmed frequencies in the range of 10-35GHz with a switching time of 300ns. The system operates in 2 different modes simultaneously: both a 'passive' imaging of plasma emission and also an 'active' imaging of the back-scattered signal of the radiation launched by one of the antennas from the same array. This second mode is similar to so-called Doppler backscattering (DBS) reflectometry with 2-D resolution of the propagation velocity of turbulent structures. Both modes of operation show good performance in fusion plasma experiments on Mega Amp Spherical Tokamak (MAST). We have obtained the first ever 2-D images of BXO mode conversion windows. With active probing, first ever turbulence velocity maps have been obtained. We present an overview of the diagnostic and discuss recent results. In contrast to quasi-optical microwave imaging systems SAMI requires neither big aperture viewing ports nor large 2-D detector arrays to achieve the desired imaging resolution. The number of effective 'pixels' of the synthesized image is proportional to the number of receiving antennas squared. Thus only a small number of optimised antennas is sufficient for the majority of applications. Possible implementation of SAMI on ITERand DEMO is discussed.

  4. Expert Systems and Diagnostic Monitors in Psychiatry

    PubMed Central

    Gelernter, David; Gelernter, Joel

    1984-01-01

    We argue that existing expert systems for medical diagnosis have not satisfactorily addressed an important problem: how are such systems to be integrated into the clinical environment? This problem should be addressed before and not after a working system is developed, because its solution might well determine important aspects of the ultimate system structure. We propose as one solution the online diagnostic monitor, which is a diagnostic expert system designed for interactive use by a clinican during the course of a patient interview. The exchange between a diagnostic monitor and its clinican user is guided by the user, not the system, and the monitor functions as a passive advisor rather than an active decision-maker. We discuss why a system of this sort might be particularly well-suited to psychiatric diagnosis, and describe preliminary work on an experimental prototype.

  5. Diagnostics of wear in aeronautical systems

    NASA Technical Reports Server (NTRS)

    Wedeven, L. D.

    1979-01-01

    The use of appropriate diagnostic tools for aircraft oil wetted components is reviewed, noting that it can reduce direct operating costs through reduced unscheduled maintenance, particularly in helicopter engine and transmission systems where bearing failures are a significant cost factor. Engine and transmission wear modes are described, and diagnostic methods for oil and wet particle analysis, the spectrometric oil analysis program, chip detectors, ferrography, in-line oil monitor and radioactive isotope tagging are discussed, noting that they are effective over a limited range of particle sizes but compliment each other if used in parallel. Fine filtration can potentially increase time between overhauls, but reduces the effectiveness of conventional oil monitoring techniques so that alternative diagnostic techniques must be used. It is concluded that the development of a diagnostic system should be parallel and integral with the development of a mechanical system.

  6. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  7. TFTR diagnostic control and data acquisition system

    SciTech Connect

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  8. Galileo probe battery system -- An update

    SciTech Connect

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    1996-11-01

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisions made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.

  9. A Diagnostic HIV-1 Tropism System Based on Sequence Relatedness

    PubMed Central

    Edwards, Suzanne; Stucki, Heinz; Bader, Joëlle; Vidal, Vincent; Kaiser, Rolf; Battegay, Manuel

    2014-01-01

    Key clinical studies for HIV coreceptor antagonists have used the phenotyping-based Trofile test. Meanwhile various simpler-to-do genotypic tests have become available that are compatible with standard laboratory equipment and Web-based interpretation tools. However, these systems typically analyze only the most prominent virus sequence in a specimen. We present a new diagnostic HIV tropism test not needing DNA sequencing. The system, XTrack, uses physical properties of DNA duplexes after hybridization of single-stranded HIV-1 env V3 loop probes to the clinical specimen. Resulting “heteroduplexes” possess unique properties driven by sequence relatedness to the reference and resulting in a discrete electrophoretic mobility. A detailed optimization process identified diagnostic probe candidates relating best to a large number of HIV-1 sequences with known tropism. From over 500 V3 sequences representing all main HIV-1 subtypes (Los Alamos database), we obtained a small set of probes to determine the tropism in clinical samples. We found a high concordance with the commercial TrofileES test (84.9%) and the Web-based tool Geno2Pheno (83.0%). Moreover, the new system reveals mixed virus populations, and it was successful on specimens with low virus loads or on provirus from leukocytes. A replicative phenotyping system was used for validation. Our data show that the XTrack test is favorably suitable for routine diagnostics. It detects and dissects mixed virus populations and viral minorities; samples with viral loads (VL) of <200 copies/ml are successfully analyzed. We further expect that the principles of the platform can be adapted also to other sequence-divergent pathogens, such as hepatitis B and C viruses. PMID:25502529

  10. The Multiple Resonance Probe: A Novel Device for Industry Compatible Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Storch, Robert; Lapke, Martin; Oberrath, Jens; Schulz, Christian; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona

    2012-10-01

    To be useful for the supervision or control of technical plasmas, a diagnostic method must be i) robust and stable, ii) insensitive to perturbation by the process, iii) itself not perturbing the process, iv) clearly and easily interpretable without the need for calibration, v) compliant with the requirements of process integration, and, last but not least, vi) economical in terms of investment, footprint, and maintenance. Plasma resonance spectroscopy, exploiting the natural ability of plasmas to resonate on or near the electron plasma frequency, provides a good basis for such an ``industry compatible'' plasma diagnostics. The contribution will describe the general idea of active plasma resonance spectroscopy and introduce a mathematical formalism for its analysis. It will then focus on the novel multipole resonance probe (MRP), where the excited resonances can be classified explicitly and the connection between the probe response and the desired electron density can be cast as a simple formula. The current state of the MRP project will be described, including the experimental characterization of a prototype in comparison with Langmuir probes, and the development of a specialized measurement circuit.

  11. Racine Feedback and Diagnostic System.

    ERIC Educational Resources Information Center

    Racine Unified School District 1, WI.

    The system is a comprehensive set of computer programs and procedures for assisting in the preparation, scoring and analysis of multiple choice test batteries. The system may be used with either standardized or locally developed tests. For the upper grades the system accepts pupil responses on mark-sense answer sheets. For lower grades pupil…

  12. An ontology-driven, diagnostic modeling system.

    PubMed

    Haug, Peter J; Ferraro, Jeffrey P; Holmen, John; Wu, Xinzi; Mynam, Kumar; Ebert, Matthew; Dean, Nathan; Jones, Jason

    2013-06-01

    To present a system that uses knowledge stored in a medical ontology to automate the development of diagnostic decision support systems. To illustrate its function through an example focused on the development of a tool for diagnosing pneumonia. We developed a system that automates the creation of diagnostic decision-support applications. It relies on a medical ontology to direct the acquisition of clinic data from a clinical data warehouse and uses an automated analytic system to apply a sequence of machine learning algorithms that create applications for diagnostic screening. We refer to this system as the ontology-driven diagnostic modeling system (ODMS). We tested this system using samples of patient data collected in Salt Lake City emergency rooms and stored in Intermountain Healthcare's enterprise data warehouse. The system was used in the preliminary development steps of a tool to identify patients with pneumonia in the emergency department. This tool was compared with a manually created diagnostic tool derived from a curated dataset. The manually created tool is currently in clinical use. The automatically created tool had an area under the receiver operating characteristic curve of 0.920 (95% CI 0.916 to 0.924), compared with 0.944 (95% CI 0.942 to 0.947) for the manually created tool. Initial testing of the ODMS demonstrates promising accuracy for the highly automated results and illustrates the route to model improvement. The use of medical knowledge, embedded in ontologies, to direct the initial development of diagnostic computing systems appears feasible.

  13. Wall current probe: A non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement

    SciTech Connect

    Baude, R.; Gaboriau, F.; Hagelaar, G. J. M.

    2013-08-15

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  14. Wall current probe: a non-invasive in situ plasma diagnostic for space and time resolved current density distribution measurement.

    PubMed

    Baude, R; Gaboriau, F; Hagelaar, G J M

    2013-08-01

    In the context of low temperature plasma research, we propose a wall current probe to determine the local charged particle fluxes flowing to the chamber walls. This non-intrusive planar probe consists of an array of electrode elements which can be individually biased and for which the current can be measured separately. We detail the probe properties and present the ability of the diagnostic to be used as a space and time resolved measurement of the ion and electron current density at the chamber walls. This diagnostic will be relevant to study the electron transport in magnetized low-pressure plasmas.

  15. High bandwidth vapor density diagnostic system

    DOEpatents

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  16. Multimodal optical biopsy probe to improve the safety and diagnostic yield of brain needle biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Desroches, Joannie; Pichette, Julien; Goyette, Andréanne; Tremblay, Marie-Andrée.; Jermyn, Michael; Petrecca, Kevin; Leblond, Frédéric

    2016-03-01

    Brain needle biopsy (BNB) is performed to collect tissue when precise neuropathological diagnosis is required to provide information about tumor type, grade, and growth patterns. The principal risks associated with this procedure are intracranial hemorrhage (due to clipping blood vessels during tissue extraction), incorrect tumor typing/grading due to non-representative or non-diagnostic samples (e.g. necrotic tissue), and missing the lesion. We present an innovative device using sub-diffuse optical tomography to detect blood vessels and Raman spectroscopy to detect molecular differences between tissue types, in order to reduce the risks of misdiagnosis, incorrect tumour grading, and non-diagnostic samples. The needle probe integrates optical fibers directly onto the external cannula of a commercial BNB needle, and can perform measurements for both optical techniques through the same fibers. This integrated optical spectroscopy system uses diffuse reflectance signals to perform a 360-degree reconstruction of the tissue adjacent to the biopsy needle, based on the optical contrast associated with hemoglobin light absorption, thereby localizing blood vessels. Raman spectra measurements are also performed interstitially for tissue characterization. A detailed sensitivity of the system is presented to demonstrate that it can detect absorbers with diameters <300 µm located up to ˜2 mm from the biopsy needle core, for bulk optical properties consistent with brain tissue. Results from animal experiments are presented to validate blood vessel detection and Raman spectrum measurement without disruption of the surgical workflow. We also present phantom measurements of Raman spectra with the needle probe and a comparison with a clinically validated Raman spectroscopy probe.

  17. Gravity Probe B gyroscope readout system

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Lockhart, J.; Aljabreen, H.; Clarke, B.; Gutt, G.; Luo, M.

    2015-11-01

    We describe the Gravity Probe B London-moment readout system successfully used on-orbit to measure two gyroscope spin axis drift rates predicted by general relativity. The system couples the magnetic signal of a spinning niobium-coated rotor into a low noise superconducting quantum interference device. We describe the multi-layered magnetic shield needed to attenuate external fields that would otherwise degrade readout performance. We discuss the ∼35 nrad/yr drift rate sensitivity that was achieved on-orbit.

  18. Outer planet entry probe system study. Volume 4: Common Saturn/Uranus probe studies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Results are summarized of a common scientific probe study to explore the atmospheres of Saturn and Uranus. This was a three-month follow-on effort to the Outer Planet Entry Probe System study. The report presents: (1) a summary, conclusions and recommendations of this study, (2) parametric analysis conducted to support the two system definitions, (3) common Saturn/Uranus probe system definition using the Science Advisory Group's exploratory payload and, (4) common Saturn/Uranus probe system definition using an expanded science complement. Each of the probe system definitions consists of detailed discussions of the mission, science, system and subsystems including telecommunications, data handling, power, pyrotechnics, attitude control, structures, propulsion, thermal control and probe-to-spacecraft integration. References are made to the contents of the first three volumes where it is feasible to do so.

  19. TV-acquired optical diagnostics systems on ATA

    SciTech Connect

    Kalibjian, R.; Chong, Y.P.; Cornish, J.P.; Jackson, C.H.; Fessenden, T.J.

    1984-06-01

    The purpose of this paper is to report on optical system developments on the ATA and their applications to ATA beam characterization. Television (TV)-acquired optical diagnostics data provide spatial and temporal properties of the ATA beam that complements recorded information from other types of sensors, such as, beam-wall current monitors, x-ray probes, and rf probes. The ATA beam operates: (1) in the normal mode at 50-MeV, 10-kA at a 1-Hz rate; and (2) in the 1-KHz burst mode (for 10-pulses) at a 0.5 Hz rate. The beam has a 70-ns pulse width in vacuum propagation; however, beam-head erosion will occur in atmospheric propagation, thus limiting the pulse width to less than 50-ns. Various optical systems are used for ATA diagnostics. Optical-imaging provides a convenient measurement in a single pulse of the 2-dimensional profile of the beam intensity. It can also provide multiple 2-D framing in a single pulse. In some studies it may be desirable to study optical events with temporal resolution less than 100-ps with 1-dimensional streak cameras. Spatially integrated data from phototube cameras can also be used for background measurement applications as well as for single pixel monitoring. The optical line-of-sight (LOS) configurations have been made versatile to accommodate a large number of options for the various optical systems.

  20. Systemic Candidiasis, A Diagnostic Challenge

    PubMed Central

    Hughes, James M.; Remington, Jack S.

    1972-01-01

    The serious and increasing problem of deep-seated Candida infection and the difficulties encountered in diagnosis of this entity prompted review of all well-documented cases of systemic candidiasis in a 39-month period at Stanford Medical Center. In only 19 of the 40. cases (47.5 percent) was the diagnosis suspected premortem; in 15 (37.5 percent) of these, the diagnosis was established. Thirty-three (82.5 percent) of the 40 patients died, and in 12 (39.4 percent) of them Candida infection was considered to be the primary cause of death or a major contributing factor. The seven survivors were treated either by specific chemotherapy or drainage of abscesses and empyema cavities. When the data were assessed in relation to underlying diseases and other possible predisposing factors, surgery was implicated in 50 percent of the total. In a study to define the prevalence of Candida in the saliva of patients with severe underlying illnesses receiving antibiotics or immunosuppressive therapy at the Stanford Medical Center, a significantly higher prevalence was noted in the multiple therapeutic modality group than in controls. In a review of reported data on methods for serological diagnosis of systemic candidiasis, only the precipitin and agglutinin methods appear promising. PMID:5031746

  1. Bay integrated power system control and diagnostics

    SciTech Connect

    Beierl, O.

    1996-03-01

    The paper presents new concepts for control and diagnostic systems for high voltage switchgear (123-kV and above). Air insulated and gas insulated (SF6) switchgear is considered. The new aspect is the integration of monitoring and diagnostic concepts in digital control and protection systems. Communication concepts for sensors and actuators with digital process busses at bay level are discussed. The paper covers integration concepts for circuit breaker monitoring (AIS, GIS) and for GIS the integration of on-line partial discharge measurement, on-line arc detection and on-line monitoring of the gas conditions. Finally, the advantages, disadvantages and the applicability of integrated diagnostic and control concepts are discussed by means of technical and commercial aspects.

  2. Causal Reasoning In Diagnostic Expert Systems

    NASA Astrophysics Data System (ADS)

    Torasso, Pietro; Console, Luca

    1987-05-01

    In order to deal efficiently with difficult diagnostic problems, deep models (based on causal knowledge) have been adopted in some experimental diagnostic expert system. This paper describes a two levels architecture for a diagnostic expert system: CHECK (Combining HEuristic and Causal Knowledge). CHECK is based on the close interaction of two levels of knowledge representation, heuristic and causal respectively. In the heuristic (shallow) level knowledge is represented by means of a hybrid formalism combining at various levels frames and production rules; in the deep level knowledge is represented by means of causal networks in which (physical or physiological) states are connected via cause-effect relations. The two levels strictly cooperate in the diagnostic process, in particular the heuristic level is used to focus reasoning, generating diagnostic hypotheses to be refined, confirmed (disconfirmed) and explained by the deep level. Heuristic (surface) level knowledge is invoked first to generate diagnostic hypotheses. These hypotheses are then passed to the underlying level for a deep confirmation (so that they are used to focus reasoning in the causal network). If a hypothesis can be confirmed, a precise explanation is generated, unaccounted and/or unexpected data are taken into account and correlated hypotheses suggested. If a hypothesis is rejected, alternative hypotheses to be considered are suggested to the surface level. Deep level knowledge can be used also to provide general explanations about the causal model of the domain, independently from the data of a particular consultation. As an example for validating the architectural choices of CHECK we have implemented a version of it for diagnostic reasoning in the field of hepatology. Production rules, frames and causal networks are described by the knowledge engineer in a knowledge representation language we have designed and then coded, through the use of a preprocessing tool, in Prolog. Particular object

  3. The EMMA Accelerator, a Diagnostic Systems Overview

    SciTech Connect

    Kalinin, A.; Berg, J.; Bliss, N. Cox, G.; Dufau, M.; Gallagher, A.; Hill, C.; Jones, J.; Ma, L.; McIntosh, P.; Muratori, B.; Oates, A.; Shepherd B.; Smith, R.; Hock, K.; Holder, D.; Ibison, M., Kirkman I.; Borrell, R.; Crisp, J.; Fellenz, B.; Wendt, M.

    2011-09-04

    The 'EMMA' Non-Scaling Fixed Field Alternating Gradient (ns-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyze the single bunch beams. An upgrade still to implement includes the installation of wall current monitors. This paper gives an overview of these systems and shows some data and results from the diagnostics that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.

  4. MicroProbe Small Unmanned Aerial System

    NASA Technical Reports Server (NTRS)

    Bland, Geoffrey; Miles, Ted

    2012-01-01

    The MicroProbe unmanned aerial system (UAS) concept incorporates twin electric motors mounted on the vehicle wing, thus enabling an aerodynamically and environmentally clean nose area for atmospheric sensors. A payload bay is also incorporated in the fuselage to accommodate remote sensing instruments. A key feature of this concept is lightweight construction combined with low flying speeds to minimize kinetic energy and associated hazards, as well as maximizing spatial resolution. This type of aerial platform is needed for Earth science research and environmental monitoring. There were no vehicles of this type known to exist previously.

  5. A heavy ion beam probe system for investigation of a modified Penning discharge

    NASA Technical Reports Server (NTRS)

    Kambic, G. X.; Krawczonek, W. M.

    1977-01-01

    An ion beam probe diagnostic system can measure time- and space-resolved profiles of plasma space potential and electron density. In combination with a computer iterative technique, the ion beam probe can determine both the space potential profile in plasmas containing strong electric fields and potentials comparable in magnitude to the energy of the probing ion beam. During ion beam probing of a modified Penning discharge, several groups of secondary ions were observed coming from the plasma with a fixed primary beam energy and momentum. The energies of these ions were within 10 percent of the values predicted by a computer-generated model of the potential profile in the plasma. The mechanical and electronic components of the system are described, with particular emphasis on those features required to probe plasma potentials comparable in magnitude to the ion beam energy.

  6. Next generation of optical diagnostics for bladder cancer using probe-based confocal laser endomicroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jen-Jane; Chang, Timothy C.; Pan, Ying; Hsiao, Shelly T.; Mach, Kathleen E.; Jensen, Kristin C.; Liao, Joseph C.

    2012-02-01

    Real-time imaging with confocal laser endomicroscopy (CLE) probes that fit in standard endoscopes has emerged as a clinically feasible technology for optical biopsy of bladder cancer. Confocal images of normal, inflammatory, and neoplastic urothelium obtained with intravesical fluorescein can be differentiated by morphologic characteristics. We compiled a confocal atlas of the urinary tract using these diagnostic criteria to be used in a prospective diagnostic accuracy study. Patients scheduled to undergo transurethral resection of bladder tumor underwent white light cystoscopy (WLC), followed by CLE, and histologic confirmation of resected tissue. Areas that appeared normal by WLC were imaged and biopsied as controls. We imaged and prospectively analyzed 135 areas in 57 patients. We show that CLE improves the diagnostic accuracy of WLC for diagnosing benign tissue, low and high grade cancer. Interobserver studies showed a moderate level of agreement by urologists and nonclinical researchers. Despite morphologic differences between inflammation and cancer, real-time differentiation can still be challenging. Identification of bladder cancer-specific contrast agents could provide molecular specificity to CLE. By using fluorescently-labeled antibodies or peptides that bind to proteins expressed in bladder cancer, we have identified putative molecular contrast agents for targeted imaging with CLE. We describe one candidate agent - anti-CD47 - that was instilled into bladder specimens. The tumor and normal urothelium were imaged with CLE, with increased fluorescent signal demonstrated in areas of tumor compared to normal areas. Thus, cancer-specificity can be achieved using molecular contrast agents ex vivo in conjunction with CLE.

  7. Proposed Solar Probe telecommunications system concept

    NASA Technical Reports Server (NTRS)

    Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.

    1992-01-01

    A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.

  8. Proposed Solar Probe telecommunications system concept

    NASA Technical Reports Server (NTRS)

    Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.

    1992-01-01

    A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.

  9. [Development of the lung cancer diagnostic system].

    PubMed

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  10. FIDEX: An expert system for satellite diagnostics

    NASA Technical Reports Server (NTRS)

    Durkin, John; Tallo, Donald; Petrik, Edward J.

    1991-01-01

    A Fault Isolation and Diagnostic Expert system (FIDEX) was developed for communication satellite diagnostics. It was designed specifically for the 30/20 GHz satellite transponder. The expert system was designed with a generic structure and features that make it applicable to other types of space systems. FIDEX is a frame based system that enjoys many of the inherent frame base features, such as hierarchy that describes the transponder's components, with other hierarchies that provide structural and fault information about the transponder. This architecture provides a flexible diagnostic structure and enhances maintenance of the system. FIDEX also includes an inexact reasoning technique and a primitive learning ability. Inexact reasoning was an important feature for this system due to the sparse number of sensors available to provide information on the transponder's performance. FIDEX can determine the most likely faulted component under the constraint of limited information. FIDEX learns about the most likely faults in the transponder by keeping a record of past established faults. FIDEX also has the ability to detect anomalies in the sensors that provide information on the transponders performance.

  11. Video integrated measurement system. [Diagnostic display devices

    SciTech Connect

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  12. Advanced Light Source beam diagnostics systems

    SciTech Connect

    Hinkson, J.

    1993-10-01

    The Advanced Light Source (ALS), a third-generation synchrotron light source, has been recently commissioned. Beam diagnostics were very important to the success of the operation. Each diagnostic system is described in this paper along with detailed discussion of its performance. Some of the systems have been in operation for two years. Others, in the storage ring, have not yet been fully commissioned. These systems were, however, working well enough to provide the essential information needed to store beam. The devices described in this paper include wall current monitors, a beam charge monitor, a 50 ohm Faraday cup, DC current transformers, broad-hand striplines, fluorescence screens, beam collimators and scrapers, and beam position monitors. Also, the means by which waveforms are digitized and displayed in the control room is discussed.

  13. Gravity Probe B data system description

    NASA Astrophysics Data System (ADS)

    Bennett, Norman R.

    2015-11-01

    The Gravity Probe B data system, developed, integrated, and tested by Lockheed Missiles & Space Company, and later Lockheed Martin Corporation, included flight and ground command, control, and communications software. The development was greatly facilitated, conceptually and by the transfer of key personnel, through Lockheed’s earlier flight and ground test software development for the Hubble Space Telescope (HST). Key design challenges included the tight mission timeline (17 months, 9 days of on-orbit operation), the need to tune the system once on-orbit, and limited 2 Kbps real-time data rates and ground asset availability. The result was a completely integrated space vehicle and Stanford mission operations center, which successfully collected and archived 97% of the ‘guide star valid’ data to support the science analysis. Lessons learned and incorporated from the HST flight software development and on-orbit support experience, and Lockheed’s independent research and development effort, will be discussed.

  14. The fast reciprocating magnetic probe system on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Li, Fuming; Chen, Zhipeng; Zhuang, Ge; Liu, Hai; Zhu, Lizhi

    2016-11-01

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnostics show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.

  15. The fast reciprocating magnetic probe system on the J-TEXT tokamak.

    PubMed

    Li, Fuming; Chen, Zhipeng; Zhuang, Ge; Liu, Hai; Zhu, Lizhi

    2016-11-01

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnostics show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.

  16. The fast reciprocating magnetic probe system on the J-TEXT tokamak

    SciTech Connect

    Li, Fuming; Chen, Zhipeng Zhuang, Ge; Liu, Hai; Zhu, Lizhi

    2016-11-15

    The fast reciprocating magnetic probe (FRMP) system is newly developed on the Joint Texas Experimental Tokamak (J-TEXT) to measure the local magnetic fluctuations at the plasma edge. The magnetic probe array in the FRMP consists of four 2-dimensional magnetic probes arranged at different radial locations to detect local poloidal and radial magnetic fields. These probes are protected by a graphite and boron nitride casing to improve the frequency response of each probe; they are mounted on the head of a movable rod, which is oriented along radial direction at the top of the torus. In the experiments, multiple core diagnostics show that the insertion of the FRMP has little impact on the equilibrium of the plasma. Local magnetic fluctuations inside the last closed flux surface are successfully measured by the FRMP.

  17. Development of a fiber-based Raman probe for clinical diagnostics

    NASA Astrophysics Data System (ADS)

    Latka, Ines; Dochow, Sebastian; Krafft, Christoph; Dietzek, Benjamin; Bartelt, Hartmut; Popp, Jürgen

    2011-07-01

    A basic problem intrinsic to many clinical diagnostic procedures as well as minimally invasive surgeries is the online invivo classification of tissue. Associated with this problem is the task to determine the boundaries between tissue sections of various degrees of disease progression, which cannot be identified easily. This problem is partly founded in the imaging modalities conventionally used, i.e., white-light endoscopy or fluorescence-based endoscopic imaging. These techniques allow for extracting of only a limited parameter set for judging the physiological or pathological state of tissue. Furthermore, fluorescence-based endoscopy relies on the administration of external labels, which principally disturbs the native tissue. These problems can be circumvented using Raman microspectroscopy as a diagnostic tool. Raman microscopy allows to record vibrational spectra at each sampling point. Therefore the molecular fingerprint of the sample can be deciphered with spatial resolution. It has been shown that Raman spectroscopy in combination with advanced statistical methods can be used to identify and grade tissue samples. However, the conventional approach of judging excised tissue sections by Raman microscopy does not present an approach which can be readily used in the clinics. Here we present our recent progress towards designing a fiber-based Raman probe, which - in perspective - might be incorporated into the working channel of a surgical endoscope. Thereby, it is anticipated to contribute to the clinical routine. We will review the general design principle of such a device and the specific design strategy for our Raman probe in concert with comparative measurements employing a set of home-built and commercially-available devices.

  18. Hyperspectral fluorescence imaging system for biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Martin, Matthew E.; Wabuyele, Musundi B.; Panjehpour, Masoud; Phan, Mary N.; Overholt, Bergein F.; Vo-Dinh, Tuan

    2006-02-01

    An advanced hyper-spectral imaging (HSI) system has been developed for use in medical diagnostics. One such diagnostic, esophageal cancer is diagnosed currently through biopsy and subsequent pathology. The end goal of this research is to develop an optical-based technique to assist or replace biopsy. In this paper, we demonstrate an instrument that has the capability to optically diagnose cancer in laboratory mice. We have developed a real-time HSI system based on state-of-the-art liquid crystal tunable filter (LCTF) technology coupled to an endoscope. This unique HSI technology is being developed to obtain spatially resolved images of the slight differences in luminescent properties of normal versus tumorous tissues. In this report, an in-vivo mouse study is shown. A predictive measure of cancer for the mice studied is developed and shown. It is hoped that the results of this study will lead to advances in the optical diagnosis of esophageal cancer in humans.

  19. Nike Facility Diagnostics and Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Chan, Yung; Aglitskiy, Yefim; Karasik, Max; Kehne, David; Obenschain, Steve; Oh, Jaechul; Serlin, Victor; Weaver, Jim

    2013-10-01

    The Nike laser-target facility is a 56-beam krypton fluoride system that can deliver 2 to 3 kJ of laser energy at 248 nm onto targets inside a two meter diameter vacuum chamber. Nike is used to study physics and technology issues related to laser direct-drive ICF fusion, including hydrodynamic and laser-plasma instabilities, material behavior at extreme pressures, and optical and x-ray diagnostics for laser-heated targets. A suite of laser and target diagnostics are fielded on the Nike facility, including high-speed, high-resolution x-ray and visible imaging cameras, spectrometers and photo-detectors. A centrally-controlled, distributed computerized data acquisition system provides robust data management and near real-time analysis feedback capability during target shots. Work supported by DOE/NNSA.

  20. The upgraded heavy ion beam probe diagnostics on the T-10 tokamak

    NASA Astrophysics Data System (ADS)

    Drabinskii, M. A.; Khabanov, P. O.; Melnikov, A. V.; Krupnik, L. I.; Kozachek, A. S.; Komarov, A. D.; Zhezhera, A. I.

    2016-09-01

    The upgraded Heavy Ion Beam Probe (HIBP) diagnostics on the T-10 tokamak (National Research Center ‘Kurchatov Institute’) is presented. HIBP is a powerful tool to study electric potential in the core and edge plasmas along with broadband turbulence and quasicoherent modes such as Geodesic Acoustic Mode (GAM) and Alfven Eigenmode (AE). To study broadband turbulence and AEs, which can be driven by fast electrons in regimes with auxiliary Electron Cyclotron Resonance Heating the frequency range of about several hundred kHz is needed. The upgrade is focused on the extension of the frequency range of HIBP signals up to 500 kHz, and on increasing of density operating limit up to 5-1019 m-3. It becomes possible due to a newly designed emitter-extractor unit of HIBP accelerator aiming to provide the primary beam with the current of 300 pA at the energy of 300 keV and diameter of 7-10 mm. The new in-vessel elements of a primary beamline - wire sensor and Faraday cup - were upgraded accordingly to be able to deliver the probing beam with advanced parameters to the plasma.

  1. Experience report with the Alignment Diagnostic System

    SciTech Connect

    Gassner, Georg; /SLAC

    2011-03-03

    Since 2009 an Alignment Diagnostic System (ADS) has been operating at the undulator of the new Linac Coherent Light Source at SLAC National Accelerator Laboratory. The undulator spans a distance of 132 meters and is structured into 33 segments. Each segment is equipped with four hydrostatic leveling sensors and four wire position monitors. This report describes the set up and reflects the experience gained with the ADS.

  2. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  3. Characterization of a theta-pinch plasma using triple probe diagnostic

    SciTech Connect

    Jung, S.; Suria, V; Andruczyk, D; Ruzic, D. N.

    2011-01-01

    Plasma diagnostics were carried out in a theta-pinch device to investigate the applicability for plasma-material interaction under fusion-like conditions. A series of triple probe diagnostics show that the plasma is sustained for approximately 80 {micro}s at each pulse, with 3.0 (10){sup 21} m{sup -3} plasma density and up to 40 eV electron temperature when a 32 {micro}F main capacitor is discharged at 20 kV. In order to increase plasma density and temperature, an RF antenna is installed near one end of a Pyrex tube and a 50 {micro}F preionization capacitor is connected to an electrode placed at the same end as the antenna. In this configuration, several time delays between the main and preionization capacitors are tested. When the preionization capacitor was triggered 45 {micro}s before the main bank discharge, it resulted in high energetic plasma being obtained with a few density spikes at 10{sup 22} m{sup -3} and electron temperature around 100 eV.

  4. Galileo Atmospheric Entry Probe System - Design, development, and test

    NASA Technical Reports Server (NTRS)

    Givens, J. J.; Nolte, L. J.; Pochettino, L. R.

    1983-01-01

    The overall development of the Galileo Atmospheric Entry Probe System is described. The Probe will be carried to Jupiter by the Galileo Orbiter and released on an entry trajectory 150 days before entry. A complement of seven science instruments will measure the near-Jupiter radiation field and the characteristics of the Jovian atmosphere from a distance of about 5 Jupiter radii above the 1-bar level down to levels in the 10-20-bar range. Probe data are to be transmitted to earth via the Orbiter. System requirements are discussed. Probe design features and those features of the development test program peculiar to entry probes are described.

  5. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    PubMed

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy.

  6. Diagnostic systems in DEMO: Engineering design issues

    SciTech Connect

    Todd, T. N.

    2014-08-21

    The diagnostic systems of DEMO that are mounted on or near the torus, whether intended for the monitoring and control functions of the engineering aspects or the physics behaviour of the machine, will have to be designed to suit the hostile nuclear environment. This will be necessary not just for their survival and correct functioning but also to satisfy the pertinent regulatory bodies, especially where any of them relate to machine protection or the prevention or mitigation of accidents foreseen in the safety case. This paper aims to indicate the more important of the reactor design considerations that are likely to apply to diagnostics for DEMO, drawn from experience on JET, the provisions in hand for ITER and modelling results for the wall erosion and neutron damage effects in DEMO.

  7. Diagnostics of polymeric materials coloring systems

    NASA Astrophysics Data System (ADS)

    Golunov, A. V.; Golunova, A. S.; Fedorova, M. A.; Trapeznikova, O. V.; Nagornova, I. V.

    2017-08-01

    The diagnostics of the color formation systems of thermosetting plastics LasilCast4, Synthene PR 403, Synthene PR 2000 was carried out. The process of selection the concentrations of coloring media for coloring thermosetting plastics in bulk is considered. An approach for improving the coloring of polymers using colour management systems based on the use of subtractive coloring media (CMY + K) is proposed. The cause-effect relationships of the influence of colorimetric parameters of pigment pastes on the process of polymers coloring were established. To describe the reproducible colors, it is proposed to construct a body of color gamut based on the data on the color-forming components. The results of the color gamut of the multicomponent polyurethane color formation system using viscous pigment pastes are presented. The technique of diagnostics coloring systems for polymers-thermosetting plastics is proposed, which provides visual clarity and high accuracy in predicting color reproduction during polymer coloring. The accuracy is confirmed by the experimental data and the calculated values of the color difference. It is shown that the system of color formation on the basis of the Synthene PR 403 polymer has the broadest color gamut.

  8. Study of new systems concepts for a Titan atmospheric probe

    NASA Technical Reports Server (NTRS)

    Bernard, Doug; Citron, Todd; Drean, Robert; Lewis, Scott; Lo, Martin; Mccarthy, John; Soderblom, Robert; Steffy, Dave; Vargas, Tina; Wolff, Marty

    1986-01-01

    Results of a systems concepts study for a Titan Probe were examined. The key tradeoffs performed are described in detail. Mass breakdown of each Probe subsystem or major element were given. The mission analysis performed to determine compliance with the high altitude sampling and descent time requirements are described. The baseline Descent Module design was derived. The element of the Probe System left on the Carrier after separation were described.

  9. Efficient Probabilistic Diagnostics for Electrical Power Systems

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Chavira, Mark; Cascio, Keith; Poll, Scott; Darwiche, Adnan; Uckun, Serdar

    2008-01-01

    We consider in this work the probabilistic approach to model-based diagnosis when applied to electrical power systems (EPSs). Our probabilistic approach is formally well-founded, as it based on Bayesian networks and arithmetic circuits. We investigate the diagnostic task known as fault isolation, and pay special attention to meeting two of the main challenges . model development and real-time reasoning . often associated with real-world application of model-based diagnosis technologies. To address the challenge of model development, we develop a systematic approach to representing electrical power systems as Bayesian networks, supported by an easy-to-use speci.cation language. To address the real-time reasoning challenge, we compile Bayesian networks into arithmetic circuits. Arithmetic circuit evaluation supports real-time diagnosis by being predictable and fast. In essence, we introduce a high-level EPS speci.cation language from which Bayesian networks that can diagnose multiple simultaneous failures are auto-generated, and we illustrate the feasibility of using arithmetic circuits, compiled from Bayesian networks, for real-time diagnosis on real-world EPSs of interest to NASA. The experimental system is a real-world EPS, namely the Advanced Diagnostic and Prognostic Testbed (ADAPT) located at the NASA Ames Research Center. In experiments with the ADAPT Bayesian network, which currently contains 503 discrete nodes and 579 edges, we .nd high diagnostic accuracy in scenarios where one to three faults, both in components and sensors, were inserted. The time taken to compute the most probable explanation using arithmetic circuits has a small mean of 0.2625 milliseconds and standard deviation of 0.2028 milliseconds. In experiments with data from ADAPT we also show that arithmetic circuit evaluation substantially outperforms joint tree propagation and variable elimination, two alternative algorithms for diagnosis using Bayesian network inference.

  10. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  11. C3H2 observations as a diagnostic probe for molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  12. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  13. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  14. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    SciTech Connect

    Hartlein, Rick; Hampton, Nigel; Perkel, Josh; Hernandez, JC; Elledge, Stacy; del Valle, Yamille; Grimaldo, Jose; Deku, Kodzo

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  15. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    NASA Astrophysics Data System (ADS)

    Yeates, P.; Kennedy, E. T.

    2010-11-01

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t <100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t >160 ns) resulted in sustained "decay," i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (Ne) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  16. Spectroscopic, imaging, and probe diagnostics of laser plasma plumes expanding between confining surfaces

    SciTech Connect

    Yeates, P.; Kennedy, E. T.

    2010-11-15

    Laser plasma plumes were generated in aluminum rectangular cavities of fixed depth (6 mm) and varying height (2.0, 1.5, and 1.0 mm). Space and time resolved visible emission spectroscopy, gated intensified visible imaging, and Langmuir probe diagnostics were utilized to diagnose the evolution of the confined plasma plumes in comparison to freely expanding plasma plume generated from ablation of a planar target. The constrained plasma behavior displayed a multiphase history. Early stage interactions (t<100 ns) resulted in enhanced continuum and line emission, shockwave formation and plasma plume rebound. Later phase, long duration plasma-surface interactions (t>160 ns) resulted in sustained 'decay', i.e., a rapid termination of continuum emission, in concert with decreases in peak electron density (N{sub e}) and plasma temperature (T). This later phase originates from loss mechanisms which bleed the plasma plume of thermal energy and charged particles. These loss mechanisms increase in magnitude as the duration of the plasma-surface interaction increases. The transition from enhancement phase, originating from hydrodynamic containment, and plasma-surface collisions, to decay phase is described and occurs for each cavity at a different point in the space time history.

  17. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    SciTech Connect

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  18. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  19. Beyond Sedna: Probing the Distant Solar System

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.

    This thesis presents studies in observational planetary astronomy probing the structure of the Kuiper belt and beyond. The discovery of Sedna on a highly eccentric orbit beyond Neptune challenges our understanding of the solar system and suggests the presence of a population of icy bodies residing past the Kuiper belt. With a perihelion of 76 AU, Sedna is well beyond the reach of the gas-giants and could not be scattered onto its highly eccentric orbit from interactions with Neptune alone. Sedna's aphelion at ˜1000 AU is too far from the edge of the solar system to feel the perturbing effects of passing stars or galactic tides in the present-day solar neighborhood. Sedna must have been emplaced in its orbit at an earlier time when massive unknown bodies were present in or near the solar system. The orbits of distant Sedna-like bodies are dynamically frozen and serve as the relics of their formation process. We have performed two surveys to search for additional members of the Sedna population. In order to find the largest and brightest Sedna-like bodies we have searched ˜12,000 deg² within +/-30 degrees of the ecliptic to a limiting R magnitude of 21.3 using the QUEST camera on the 1.2m Samuel Oschin Telescope. To search for the fainter, more common members of this distant class of solar system bodies, we have performed an deep survey using the Subaru Prime Focus Camera on the 8.2m Subaru telescope covering 43 deg² to a limiting R magnitude of 25.3. Searching over a two-night baseline, we were sensitive to motions out to distances of approximately 1000 AU. We present the results of these surveys. We discuss the implications for a distant Sedna-like population beyond the Kuiper belt and discuss future prospects for detecting and studying these distant bodies, focusing in particular on the constraints we can place on the embedded stellar cluster environment the early Sun may have been born in, where the location and distribution of Sedna-like orbits sculpted by

  20. On-line diagnostic system for power generators

    SciTech Connect

    Skormin, V.A.; Goodenough, G.S.; Huber, R.K.

    1996-12-31

    A novel approach to diagnostics of a power generator is developed. It utilizes readily available data acquired by the existing computer-based monitoring/control system. Diagnostic procedures detect various trends in the generator data and interpret these trends in the generator data and interpret these trends as changes in the generator performance caused by incipient failures. Results of trend analyses, subjected to statistical validation, facilitate failure prediction and identification thus providing the justification for service when needed. The procedures are incorporated in a diagnostic system implemented in a PC interfaced with the existing VAX-based process monitoring and control system. The diagnostic system provides graphical display of the diagnostic messages.

  1. System control module diagnostic Expert Assistant

    NASA Technical Reports Server (NTRS)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  2. System control module diagnostic Expert Assistant

    NASA Technical Reports Server (NTRS)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  3. Thomson scattering diagnostic systems in ITER

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.

    2016-01-01

    Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8systems installed, therefore substantial experience has been accumulated worldwide on practical methods for the optimization of the technique. However the ITER environment is imposing specific loads (e.g. gamma and neutron radiation, temperatures, disruption-induced stresses) and also access and reliability constraints that require new designs for many of the sub-systems. The challenges and the proposed solutions for all three TS systems are presented.

  4. A Langmuir Probe Diagnostic for Use in Inhomogeneous, Time-Varying Plasmas Produced by High-Energy Laser Ablation

    SciTech Connect

    Patterson, J R; Emig, J A; Fournier, K B; Jenkins, P P; Trautz, K M; Seiler, S W; Davis, J F

    2012-05-01

    Langmuir probes (LP) are used extensively to characterize plasma environments produced by radio frequency, pulsed plasma thrusters, and laser ablation. We discuss here the development of a LP diagnostic to examine high-density, high-temperature inhomogeneous plasmas such as those that can be created at the University of Rochester's Laboratory for Laser Energetics OMEGA facility. We have configured our diagnostic to examine the velocity of the plasma expanding from the target. We observe velocities of approximately 16-17 cm/{micro}s, with individual LP currents displaying complex structures, perhaps due to the multiple atomic species and ionization states that exist.

  5. Neuropsychiatric Systemic Lupus Erythematosus: A Diagnostic Conundrum

    PubMed Central

    Joseph, Vivek; Anil, Rahul; Aristy, Sary

    2016-01-01

    A 70-year-old man presented with complaints of rapid cognitive decline and new onset leukopenia. The patient had a 17-year history of refractory seizures. Detailed review of symptoms and investigations revealed the patient met American College of Rheumatology (ACR) diagnostic criteria for systemic lupus erythematosus (SLE). The patient had high titer ANA with a strongly positive dsDNA. Immunosuppressive therapy with hydroxychloroquine and mycophenolate mofetil led to significant improvement in cognition and seizures. Neuropsychiatric SLE should be considered a potential differential diagnosis for patients presenting with seizures or cognitive decline. Moreover, neuropsychiatric manifestations especially seizures are an early event in the disease course of SLE. Hence, we believe that early diagnosis of SLE by neuropsychiatric manifestations will not only lead to better control of CNS symptoms but early immunosuppressive therapy could control the progression of the underlying autoimmune disease. PMID:27635183

  6. Plasma diagnostic x-ray tomography system

    NASA Astrophysics Data System (ADS)

    Eshelman, C. D.; Tseng, H. K.; Dolan, T. J.; Prelas, M. A.

    1991-03-01

    A radiation-hardened 60-channel x-ray tomography system has been developed to determine the two-dimensional distribution of x-ray emissivity from magnetically confined plasmas. In order to maximize their field of view, the diode arrays are mounted in re-entrant tubes inside the plasma chamber diagnostic ports. Metal foil vacuum windows serve as x-ray filters and permit the diodes and cables to be at atmospheric pressure. Preamplifiers are mounted at the outside end of the re-entrant tubes. The diode arrays and preamplifiers are protected from the harsh radiation environment by lead shielding. Image reconstruction is done using the harmonic expansion method or the linear algebraic method. For plasmas with some cylindrical symmetry the harmonic expansion method is superior, but for small discrete objects the Cartesian algebraic method is better. Preliminary data from the Missouri Magnetic Mirror plasma with electron cyclotron resonance heating show evidence of a hot electron ring.

  7. System of polarization phasometry of polycrystalline blood plasma networks in mammary gland pathology diagnostics

    NASA Astrophysics Data System (ADS)

    Zabolotna, Natalia I.; Oliinychenko, Bogdan P.; Radchenko, Kostiantyn O.; Krasnoshchoka, Anastasiia K.; Shcherba, Olga K.

    2015-09-01

    The polarizing phase meter system of polycrystalline networks of human blood plasma which is used for the mammary gland pathology diagnostics was proposed in this paper. Increasing the accuracy of the phase value determination was achieved using a combination of low coherent source of radiation and circularly polarized probing of biological object. Thus, high informativity of polarizing phase meter system for the diagnosis of breast pathology using the phase mapping of the human blood plasma films were determined, thereafter statistical, correlational, fractal structure analysis of the obtained phase maps was carried out and the quantitative criterias of the phase diagnostics and differentiation of the breast pathological conditions were determined too.

  8. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  9. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma.

    PubMed

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  10. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Wiewior, P. P.; Chalyy, O.

    2015-11-01

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  11. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    SciTech Connect

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O.; Papp, D.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  12. Characterizing Water Quenching Systems with a Quench Probe

    NASA Astrophysics Data System (ADS)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  13. E-probe Diagnostic Nucleic acid Analysis (EDNA): A theoretical approach for handling of next generation sequencing data for diagnostics

    USDA-ARS?s Scientific Manuscript database

    There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...

  14. A diagnostic system for organic brain disorders: critique and suggestion.

    PubMed

    Fauman, M A

    1977-01-01

    Organic brain disorders (OBD) are among the most complex psychiatric diagnostic problems. A critique of the American Psychiatric Association's Diagnostic and Statistical Manual (DSM II) and the proposed DSM III suggests that the diagnostic outline for organic brain disorders contained in these publications (Organic Brain Syndromes in the DSM II; Organic Mental Syndromes in the proposed DSM III) is inadequate to describe the potential range of organic-based behavioral disorders and their possible organic etiologies. A new diagnostic system is proposed, with examples, of its use, which should fit in with the DSM II and the proposed DSM III and be flexible enough to overcome the problems of the present diagnostic system.

  15. Power spectra as a diagnostic tool in probing statistical/nonstatistical behavior in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.

    1992-11-01

    The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will

  16. Embedding CLIPS in a database-oriented diagnostic system

    NASA Technical Reports Server (NTRS)

    Conway, Tim

    1990-01-01

    This paper describes the integration of C Language Production Systems (CLIPS) into a powerful portable maintenance aid (PMA) system used for flightline diagnostics. The current diagnostic target of the system is the Garrett GTCP85-180L, a gas turbine engine used as an Auxiliary Power Unit (APU) on some C-130 military transport aircraft. This project is a database oriented approach to a generic diagnostic system. CLIPS is used for 'many-to-many' pattern matching within the diagnostics process. Patterns are stored in database format, and CLIPS code is generated by a 'compilation' process on the database. Multiple CLIPS rule sets and working memories (in sequence) are supported and communication between the rule sets is achieved via the export and import commands. Work is continuing on using CLIPS in other portions of the diagnostic system and in re-implementing the diagnostic system in the Ada language.

  17. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Tartz, M.; Scholze, F.; Leiter, H. J.; Scortecci, F.; Gnizdor, R. Y.; Neumann, H.

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  18. Note: An advanced in situ diagnostic system for characterization of electric propulsion thrusters and ion beam sources.

    PubMed

    Bundesmann, C; Tartz, M; Scholze, F; Leiter, H J; Scortecci, F; Gnizdor, R Y; Neumann, H

    2010-04-01

    We present an advanced diagnostic system for in situ characterization of electric propulsion thrusters and ion beam sources. The system uses a high-precision five-axis positioning system with a modular setup and the following diagnostic tools: a telemicroscopy head for optical imaging, a triangular laser head for surface profile scanning, a pyrometer for temperature scanning, a Faraday probe for current density mapping, and an energy-selective mass spectrometer for beam characterization (energy and mass distribution, composition). The capabilities of our diagnostic system are demonstrated with a Hall effect thruster SPT-100D EM1.

  19. A Universal Spring-Probe System for Reliable Probing of Electrochemical Lab-on-a-Chip Devices

    PubMed Central

    Lee, Moon-Keun; Lee, Tae Jae; Choi, Ho Woon; Shin, Su Jeong; Park, Jung Youn; Lee, Seok Jae

    2014-01-01

    For achieve sensitivity in lab-on-a-chip electrochemical detection, more reliable probing methods are required, especially for repeated measurements. Spring-probes are a promising candidate method which can replace needle-like probes and alligator clips that usually produce scratches on the surface of gold electrodes due to the strong physical contacts needed for electrochemical measurements. The superior reliability of amperometric measurements by a spring-probe system was compared with results by conventional probing methods. We demonstrated that a universal spring-probe system would be potentially suitable to achieve high performance in lab-on-a-chip devices using electrochemical detection. PMID:24406857

  20. Autoinductive exponential signal amplification: a diagnostic probe for direct detection of fluoride.

    PubMed

    Perry-Feigenbaum, Rotem; Sella, Eran; Shabat, Doron

    2011-10-17

    A new example of an exponential signal amplification strategy for the direct detection of fluoride is demonstrated. The amplification occurred through reaction of fluoride with a responsive chromogenic probe. The probe activity is based on a unique dendritic chain reaction that generates a fluoride anion, which is the analyte of interest, during the disassembly pathway of the dendritic probe. This autoinductive amplification mechanism may be applied for detection of other analytes by coupling activity of a modified probe with that of the fluoride amplifier. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface properties of graphite and LaB6 materials used for laser heated emissive probe diagnostic

    NASA Astrophysics Data System (ADS)

    Mehta, P.; Sarma, A.; Sivagami, A. D.; HariPrakash, N.; Gopi, S.; Sarma, B.; Ghosh, J.

    2017-02-01

    Laser heated emissive probe (LHEP) has been used as an alternative diagnostics to measure direct plasma potential. In this case, surface properties of LHEP materials have been studied before and after exposing it to high power laser. A high density small diameter (0.5 mm) laser light of variable power density is used to heat the probe tip. Two types of probe tip material are used in this experiment, viz, Graphite (Coarse grain and HOPG) and LaB6. Purity of material is dependent on the constituents of the same. Surface properties of these materials before and after laser exposure and plasma conditions have been characterized by scanning electron microscopy (SEM) and the energy dispersive X-ray spectroscopy. In order to achieve higher sensitivity on carbon surface and other layers the low-energy probing ( 1.0 keV), the energy dispersive spectroscopy is used. Data of the energy dispersive X-ray spectroscopy allows us to obtain the structure of the materials as well as different elements present in these materials. To understand the surface morphology more critically, open source software named Gwyddion ( version 2.35) has been used for processing of the SEM images. The 3-D visualization of the probe tip at different experimental conditions has been made using the Interactive 3-D surface plot plug-in of Gwyddion. Optical properties are also analyzed using diffusion reflectance spectroscopy and from which band gap energy of the same has been estimated.

  2. A design and implementation methodology for diagnostic systems

    NASA Technical Reports Server (NTRS)

    Williams, Linda J. F.

    1988-01-01

    A methodology for design and implementation of diagnostic systems is presented. Also discussed are the advantages of embedding a diagnostic system in a host system environment. The methodology utilizes an architecture for diagnostic system development that is hierarchical and makes use of object-oriented representation techniques. Additionally, qualitative models are used to describe the host system components and their behavior. The methodology architecture includes a diagnostic engine that utilizes a combination of heuristic knowledge to control the sequence of diagnostic reasoning. The methodology provides an integrated approach to development of diagnostic system requirements that is more rigorous than standard systems engineering techniques. The advantages of using this methodology during various life cycle phases of the host systems (e.g., National Aerospace Plane (NASP)) include: the capability to analyze diagnostic instrumentation requirements during the host system design phase, a ready software architecture for implementation of diagnostics in the host system, and the opportunity to analyze instrumentation for failure coverage in safety critical host system operations.

  3. Systems vaccinology: probing humanity's diverse immune systems with vaccines.

    PubMed

    Pulendran, Bali

    2014-08-26

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such "systems vaccinology" approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity's diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations.

  4. Evaluating Detection and Diagnostic Decision Support Systems for Bioterrorism Response

    PubMed Central

    Sundaram, Vandana; McDonald, Kathryn M.; Smith, Wendy M.; Szeto, Herbert; Schleinitz, Mark D.; Owens, Douglas K.

    2004-01-01

    We evaluated the usefulness of detection systems and diagnostic decision support systems for bioterrorism response. We performed a systematic review by searching relevant databases (e.g., MEDLINE) and Web sites for reports of detection systems and diagnostic decision support systems that could be used during bioterrorism responses. We reviewed over 24,000 citations and identified 55 detection systems and 23 diagnostic decision support systems. Only 35 systems have been evaluated: 4 reported both sensitivity and specificity, 13 were compared to a reference standard, and 31 were evaluated for their timeliness. Most evaluations of detection systems and some evaluations of diagnostic systems for bioterrorism responses are critically deficient. Because false-positive and false-negative rates are unknown for most systems, decision making on the basis of these systems is seriously compromised. We describe a framework for the design of future evaluations of such systems. PMID:15078604

  5. A new classification system for lesbians: the Dyke Diagnostic Manual.

    PubMed

    Eliason, Michele J

    2010-01-01

    There has been a long-standing need for a diagnostic manual that documents the unique pathological behaviors of lesbians. The Dyke Diagnostic Manual (DDM) is meant to supplement mainstream classification systems used to identify problematic behaviors in heterosexuals. This article presents thirteen uniquely lesbian conditions that are nowhere to be found in heterosexist diagnostic systems. The DDM may help to reduce the pain and suffering found in many lesbian relationships where one or both partners are afflicted.

  6. AC motor diagnostics system based on complex parametric analysis

    NASA Astrophysics Data System (ADS)

    Korolev, N. A.; Solovev, S. V.

    2017-02-01

    The article deals with the principle of evaluation of technical condition, based on a comprehensive analysis of the motor parameters which is a main unit in mechanical engineering. Diagnostics system and residential life assessment of electromechanical equipment is presented based on the AC engine and algorithms of its work. The important challenge of diagnostics remains the well-timed faults detection and maintenance and repair organization. The solution of such challenge remains accuracy and reliability of diagnostic systems.

  7. REDEX: The ranging equipment diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Luczak, Edward C.; Gopalakrishnan, K.; Zillig, David J.

    1989-01-01

    REDEX, an advanced prototype expert system that diagnoses hardware failures in the Ranging Equipment (RE) at NASA's Ground Network tracking stations is described. REDEX will help the RE technician identify faulty circuit cards or modules that must be replaced, and thereby reduce troubleshooting time. It features a highly graphical user interface that uses color block diagrams and layout diagrams to illustrate the location of a fault. A semantic network knowledge representation technique was used to model the design structure of the RE. A catalog of generic troubleshooting rules was compiled to represent heuristics that are applied in diagnosing electronic equipment. Specific troubleshooting rules were identified to represent additional diagnostic knowledge that is unique to the RE. Over 50 generic and 250 specific troubleshooting rules have been derived. REDEX is implemented in Prolog on an IBM PC AT-compatible workstation. Block diagram graphics displays are color-coded to identify signals that have been monitored or inferred to have nominal values, signals that are out of tolerance, and circuit cards and functions that are diagnosed as faulty. A hypertext-like scheme is used to allow the user to easily navigate through the space of diagrams and tables. Over 50 graphic and tabular displays have been implemented. REDEX is currently being evaluated in a stand-alone mode using simulated RE fault scenarios. It will soon be interfaced to the RE and tested in an online environment. When completed and fielded, REDEX will be a concrete example of the application of expert systems technology to the problem of improving performance and reducing the lifecycle costs of operating NASA's communications networks in the 1990's.

  8. REDEX - The ranging equipment diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Luczak, Edward C.; Gopalakrishnan, K.; Zillig, David J.

    1989-01-01

    REDEX, an advanced prototype expert system that diagnoses hardware failures in the Ranging Equipment (RE) at NASA's Ground Network tracking stations is described. REDEX will help the RE technician identify faulty circuit cards or modules that must be replaced, and thereby reduce troubleshooting time. It features a highly graphical user interface that uses color block diagrams and layout diagrams to illustrate the location of a fault. A semantic network knowledge representation technique was used to model the design structure of the RE. A catalog of generic troubleshooting rules was compiled to represent heuristics that are applied in diagnosing electronic equipment. Specific troubleshooting rules were identified to represent additional diagnostic knowledge that is unique to the RE. Over 50 generic and 250 specific troubleshooting rules have been derived. REDEX is implemented in Prolog on an IBM PC AT-compatible workstation. Block diagram graphics displays are color-coded to identify signals that have been monitored or inferred to have nominal values, signals that are out of tolerance, and circuit cards and functions that are diagnosed as faulty. A hypertext-like scheme is used to allow the user to easily navigate through the space of diagrams and tables. Over 50 graphic and tabular displays have been implemented. REDEX is currently being evaluated in a stand-alone mode using simulated RE fault scenarios. It will soon be interfaced to the RE and tested in an online environment. When completed and fielded, REDEX will be a concrete example of the application of expert systems technology to the problem of improving performance and reducing the lifecycle costs of operating NASA's communications networks in the 1990s.

  9. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  10. Systems Engineering of an On-Line Diagnostic System

    DTIC Science & Technology

    1996-04-01

    and low-pressure air compressors (HPAC and LPAC ) [1]. The primary goal of automated diagnostic systems like IDD is to reduce machinery life-cycle...addition, logistical tasks can be automated as part of the response to the detected failure. The HPAC and LPAC versions of ACDS are two of several...the additional data. No existing fault-insertion test data is available for the LPAC , therefore Dresser-Rand Company supplied similar artificial data

  11. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  12. Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Jensen, David; Poll, Scott

    2009-01-01

    Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.

  13. Numerical experiment to estimate the validity of negative ion diagnostic using photo-detachment combined with Langmuir probing

    SciTech Connect

    Oudini, N.; Sirse, N.; Ellingboe, A. R.; Benallal, R.; Taccogna, F.; Bendib, A.

    2015-07-15

    This paper presents a critical assessment of the theory of photo-detachment diagnostic method used to probe the negative ion density and electronegativity α = n{sub -}/n{sub e}. In this method, a laser pulse is used to photo-detach all negative ions located within the electropositive channel (laser spot region). The negative ion density is estimated based on the assumption that the increase of the current collected by an electrostatic probe biased positively to the plasma is a result of only the creation of photo-detached electrons. In parallel, the background electron density and temperature are considered as constants during this diagnostics. While the numerical experiments performed here show that the background electron density and temperature increase due to the formation of an electrostatic potential barrier around the electropositive channel. The time scale of potential barrier rise is about 2 ns, which is comparable to the time required to completely photo-detach the negative ions in the electropositive channel (∼3 ns). We find that neglecting the effect of the potential barrier on the background plasma leads to an erroneous determination of the negative ion density. Moreover, the background electron velocity distribution function within the electropositive channel is not Maxwellian. This is due to the acceleration of these electrons through the electrostatic potential barrier. In this work, the validity of the photo-detachment diagnostic assumptions is questioned and our results illustrate the weakness of these assumptions.

  14. Computational characterization of cutoff probe system for the measurement of electron density

    SciTech Connect

    Na, Byung-Keun; Kim, Dae-Woong; Kwon, Jun-Hyuk; Chang, Hong-Young; Kim, Jung-Hyung; You, Shin-Jae

    2012-05-15

    The wave cutoff probe, a precise measurement method for measuring the electron density, was recently proposed. To characterize the cutoff probe system, in this paper, the microwave simulations of a cutoff probe system were performed at various configurations of the cutoff probe system. The influence of the cutoff probe spectrum stemming from numerous parametric elements such as the probe tip length, probe tip distance, probe tip plane orientation, chamber volume/geometry, and coaxial cable length is presented and discussed. This article is expected to provide qualitative and quantitative insight into cutoff probe systems and its optimization process.

  15. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces

    NASA Technical Reports Server (NTRS)

    Guevorkian, Karine; Wurzel, Sam; Mihalusova, Mariana; Valles, Jim

    2003-01-01

    At Brown University, we are developing the use of magnetic body forces as a means to simulate variable gravity body forces on biological systems. This tool promises new means to probe gravi-sensing and the gravi-response of biological systems. It also has the potential as a technique for screening future systems for space flight experiments.

  16. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  17. A Compact Fiber Optic Eye Diagnostic System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-01-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  18. A Compact Fiber Optic Eye Diagnostics System

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; DellaVecchia, Michael A.; Dubin, Stephen; Zigler, J. Samuel, Jr.

    1995-01-01

    A new fiber optic probe development for determining transport properties of sub-micron particles in fluids experiments in a microgravity environment has been applied to study different parts of the eye. The probe positioned in front of an eye, delivers a low power (approximately a few mu W) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. For a clinical use, the probe is mounted on a standard slit-lamp apparatus simply using Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  19. A compact fiber optic eye diagnostic system

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dubin, Stephen; Dellavecchia, Michael A.

    1995-11-01

    A new fiber optic probe developed for determining transport properties of sub-micron particles in fluid experiments in a microgravity environment has been applied to study different parts of an eye. The probe positioned in front of an eye, delivers a low power (approximately few microW) light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like materials in the vitreous humor. In a clinical setting, the probe can be mounted on a standard slit-lamp apparatus simply using a Hruby lens holder. The capability of detecting cataracts, both nuclear and cortical, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before the surgery becomes necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous detachment and diabetic retinopathy.

  20. Mechanical design control and implementation of a new movable diagnostic probe for the TRIUMF cyclotron

    SciTech Connect

    Ries, T.C.

    1994-10-10

    A new movable probe has been installed into the TRIUMF H{sup {minus}} cyclotron. It is intended to measure the distribution of betatron amplitudes, in the vertical plane, of the circulating beam and to scrape halo. The probe, however, may also be scanned in the radial direction. The head may be positioned vertically and horizontally to an accuracy of 0.002{double_prime}. The device is mechanically modular to facilitate fast and easy handling for maintenance in a radioactive area. The beam sensor on the probe head is a 1.25{double_prime}{times}3{double_prime}{times}0.003{double_prime} tantalum foil and its overall coverage is 3.00{double_prime}{times}7.25{double_prime} in a vertical plane orthogonal to, and crossing through the beam orbit plane. Presently its radial center line location corresponds to a proton beam energy of about 430 MeV at radius 296{double_prime}, however, the probe device may be easily relocated to operate from any 4{double_prime} port, and, with an adaptor port flange, may be installed into any port in the cyclotron vacuum tank. A stationary catcher below the probe path collects those electrons stripped from the H{sup {minus}} beam and scattered out from the probe head. The probe axis is vertical and the tank aperture is narrow so a worm gear arrangement combined with a modified ``Evans``-parallel linkage mechanism is used to transform vertical rotary motion into horizontal linear motion. The actuators are dc servo motors with tachometers driven by pulse width modulated servo amplifiers. Position sensing is done by variable reluctance type absolute rotary encoders and the higher level positioning is performed by TRIMAC based control software. The precision of movement and jitter was measured in the laboratory. Examples will be given of the probe use with beam.

  1. Mechanical design control and implementation of a new movable diagnostic probe for the TRIUMF cyclotron

    NASA Astrophysics Data System (ADS)

    Ries, Thomas C.

    1994-10-01

    A new movable probe has been installed into the TRIUMF H- cyclotron. It is intended to measure the distribution of betatron amplitudes, in the vertical plane, of the circulating beam and to scrape halo. The probe, however, may also be scanned in the radial direction. The head may be positioned vertically and horizontally to an accuracy of 0.002`. The device is mechanically modular to facilitate fast and easy handling for maintenance in a radioactive area. The beam sensor on the probe head is a 1.25`×3`×0.003` tantalum foil and its overall coverage is 3.00`×7.25` in a vertical plane orthogonal to, and crossing through the beam orbit plane. Presently its radial center line location corresponds to a proton beam energy of about 430 MeV at radius 296`, however, the probe device may be easily relocated to operate from any 4` port, and, with an adaptor port flange, may be installed into any port in the cyclotron vacuum tank. A stationary catcher below the probe path collects those electrons stripped from the H- beam and scattered out from the probe head. The probe axis is vertical and the tank aperture is narrow so a worm gear arrangement combined with a modified ``Evans''-parallel linkage mechanism is used to transform vertical rotary motion into horizontal linear motion. The actuators are dc servo motors with tachometers driven by pulse width modulated servo amplifiers. Position sensing is done by variable reluctance type absolute rotary encoders and the higher level positioning is performed by TRIMAC based control software. The precision of movement and jitter was measured in the laboratory. Examples will be given of the probe use with beam.

  2. Probe diagnostics of electron distributions in plasma with spatial and angular resolution

    SciTech Connect

    Demidov, V. I.; Kudryavtsev, A. A.

    2014-09-15

    This paper discusses the spatial resolution that is required to study inhomogeneous, low-temperature plasmas and is based on a review of low-temperature plasma electron kinetics and methods for probe measurements of electron energy distribution functions (EEDFs). It is stated that EEDFs can be extracted from probe measurements by applying an appropriate probe theory. The Druyvesteyn formula is most commonly used for this extraction and has been used in numerous publications, but more general theory can be used for a wider range of gas pressures. It is demonstrated that the Druyvesteyn formula can be obtained from the general theory as a limiting case. This paper justifies the application of wall probes in plasma studies of an energetic part of EEDFs. This justification is made for an idealized probe. We briefly review the methods for studying anisotropic plasmas and their usefulness in plasma research. It is demonstrated that to determine anisotropic electron energy distribution functions, a planar, one-sided probe is most convenient.

  3. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications†

    PubMed Central

    Guenther, Dale C.; Anderson, Grace H.; Karmakar, Saswata; Anderson, Brooke A.; Didion, Bradley A.; Guo, Wei; Verstegen, John P.; Hrdlicka, Patrick J.

    2015-01-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures – varying in the position, number, and distance between the intercalator zippers – are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology. PMID:26240741

  4. Invader probes: Harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications.

    PubMed

    Guenther, Dale C; Anderson, Grace H; Karmakar, Saswata; Anderson, Brooke A; Didion, Bradley A; Guo, Wei; Verstegen, John P; Hrdlicka, Patrick J

    2015-08-01

    Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers. Here, probes with different chemistries and architectures - varying in the position, number, and distance between the intercalator zippers - are studied with respect to hybridization energetics and DNA-targeting properties. Experiments with model DNA targets demonstrate that optimized probes enable efficient (C50 < 1 μM), fast (t50 < 3h), kinetically stable (> 24h), and single nucleotide specific recognition of DNA targets at physiologically relevant ionic strengths. Optimized probes were used in non-denaturing fluorescence in situ hybridization experiments for detection of gender-specific mixed-sequence chromosomal DNA target regions. These probes present themselves as a promising strategy for recognition of chromosomal DNA, which will enable development of new tools for applications in molecular biology, genomic engineering and nanotechnology.

  5. Adaptation and validation of E-probe diagnostic nucleic acid analysis for detection of Escherichia coli O157:H7 in metagenomic data of complex food matrices

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens are an increasing problem threatening the US food supply. The need for rapid sensitive diagnostic tools that can address multiple types and taxonomic classes of foodbourne pathogens is growing. This paper describes the adaptation of E-probe Diagnostic Nucleic acid Analysis (EDNA)...

  6. Climate Model Diagnostic Analyzer Web Service System

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2013-12-01

    The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use

  7. WE-AB-BRB-03: Investigation of a Small Photomultiplier-Based Probe for Use in Beam Diagnostics and Medical Dosimetry

    SciTech Connect

    Bateman, F; Tosh, R

    2015-06-15

    Purpose: Investigate the use of a small photomultiplier-based probe as a possible beam diagnostic and medical dosimetry tool. Methods: Cerenkov emission produced by clinical accelerator beams was detected by a small photomultiplier tube (PMT). Measurements of Clinac beams were made both in air and by inserting the PMT directly into a water phantom. A conical collimator placed in front of the PMT reduced the angular acceptance and the detection of scattered light. With this arrangement, we obtained response curves as a function of depth along the central axis similar in shape and magnitude to those obtained with ionization chambers. Subsequent measurements were made with the PMT covered in aluminum foil, obtaining a signal arising primarily from direct Cerenkov light produced in the glass entrance window. With an oscilloscope and amplifier/MCA system, we were able to monitor the response to individual beam pulses and observe variations in the beam pulse shape and magnitude as a function of dose rate. Results: Using Cerenkov signals detected by a PMT, we were able to obtain reasonable beam quality metrics, and the response was found to be linear over a range of dose rates. The fast response of the PMT allowed for the observation of small changes in the shape and magnitude of the beam pulse. With this system we were able to detect small changes in the dose per pulse delivered by the accelerator. Conclusion: A small PMT probe has shown promise as a beam diagnostic and medical dosimetry tool. Its fast response allows for real time beam pulse monitoring, and the integrated response can yield relative and perhaps even absolute dose information with a properly calibrated system. For accelerator diagnostics, monitoring of the beam pulse shape can aid in beam tuning, particularly in electron mode, where no target current pulse is available.

  8. Advances in associated-particle neutron probe diagnostics for substance detection

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Dickerman, Charles E.; Frey, Manfred

    1995-09-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate course tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally, no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  9. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    SciTech Connect

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-07-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux.

  10. Situ soil sampling probe system with heated transfer line

    DOEpatents

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  11. Fast reciprocating probe system on the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Chang, J. F.; Wan, B. N.; Xu, G. S.; Xiao, C. J.; Li, B.; Xu, C. S.; Yan, N.; Wang, L.; Liu, S. C.; Jiang, M.; Liu, P.

    2010-11-01

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  12. Fast reciprocating probe system on the EAST superconducting tokamak.

    PubMed

    Zhang, W; Chang, J F; Wan, B N; Xu, G S; Xiao, C J; Li, B; Xu, C S; Yan, N; Wang, L; Liu, S C; Jiang, M; Liu, P

    2010-11-01

    A new fast reciprocating probe system (FRPS) has been built and installed on the outer midplane of the EAST tokamak to investigate the profiles of the boundary plasma parameters such as electron density and temperature. The system consists of a two-stage motion drive mechanism: slow motion and fast motion. The fast motion is powered by a servo motor, which drives the probe horizontally up to 50 cm to scan the edge region of the EAST tokamak. The maximum velocity achieved is 2 m/s. High velocity and flexible control of the fast motion are the remarkable features of this FRPS. A specially designed connector installed at the front end of the probe shaft makes it easy to install or replace the probe head on FRPS. During the latest experimental campaign in the spring of 2010, a probe head with seven tips, including two tips for a Mach probe, has been used. An example is given for simultaneous profile measurements of the plasma temperature, plasma density, and the plasma flow velocity.

  13. Diagnostics Systems for Permanent Hall Thrusters Development

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  14. Overcoming limitations of model-based diagnostic reasoning systems

    NASA Technical Reports Server (NTRS)

    Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.

    1989-01-01

    The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.

  15. Overcoming limitations of model-based diagnostic reasoning systems

    NASA Technical Reports Server (NTRS)

    Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.

    1989-01-01

    The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.

  16. Probe diagnostics in low pressure dc discharge. Does the Langmuir Paradox exist?

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Ben; Rahman, Abdur

    2006-10-01

    Maxwellian electron energy distributions in a highly non-equilibrium plasma of low pressure dc discharges is one the oldest and fascinating mysteries of gas discharge physics. There is extensive literature and many hypotheses attempting to explain this paradox, but the problem still remains unsolved. In this report we present results on the EEDF measurement in the positive column of a dc discharge in mercury vapor with differently oriented probes placed along the positive column over a wide range of discharge current showed that: a) - the EEDF is not Maxwellian, b) - is essentially anisotropic, c) - is not in equilibrium with discharge current (i.e. EEDF changes along the positive column), d) - the electron temperature inferred from the measured EEDF and that determined by the slope of the probe characteristic in semi-log scale are essentially different, e) - the linearity of the probe characteristic in semi-log scale (the sign of a Maxwellian EEDF) may occurs at essentially nonlinear dependence of the second derivative of the probe characteristic on the probe voltage in semi-log scale. The main conclusions of this study are: a) - the absence of Maxwellian EEDF in the low pressure dc discharge and b) - the Druyvesteyn method is not applicable for measurement of highly anisotropic EEDF typical for the Langmuir Paradox condition.

  17. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  18. Microfluidics-Enabled Diagnostic Systems: Markets, Challenges, and Examples.

    PubMed

    Becker, Holger; Gärtner, Claudia

    2017-01-01

    Microfluidics has become an important tool for the commercial product development in diagnostics. This article will focus on current technical demands during the development process such as material and integration challenges. Furthermore, we present data on the diagnostics market as well as examples of microfluidics-enabled systems currently under commercial development or already on the market.

  19. Regulation and quality evaluation system for HIV diagnostics in China.

    PubMed

    Xu, Sihong; Huang, Weijin; Zhang, Li; An, Juanjuan; Li, Xiuhua; Song, Aijing; Nie, Jianhui; Zhang, Chuntao; Wang, Youchun

    2016-03-01

    A sophisticated regulatory framework has been constructed for Human immunodeficiency virus (HIV) diagnostics in China, which have developed over the past 30 years. China National Institutes for Food and Drug Control acts as the legal institution in this regulatory framework, launching important activities to ensure the quality of HIV diagnostics. These include the analysis of the main problems faced in developing domestic HIV diagnostics, by investigating the quality of HIV diagnostics and their development; exploring the key factors affecting the quality of HIV diagnostics, to determine the criteria for screening national reference samples; the development of new technologies and methods for preparing reference samples; and the establishment of nine types of national reference panels and nine national standards to evaluate the quality of HIV diagnostics. Based on these researches, a quality evaluation system was established, including nine types of national reference panels, nine national standards for HIV diagnostics, and five sample banks (HIV-positive sample bank, HIV-negative sample bank, common international genotype sample bank, seroconversion series sample bank, HIV virus bank) to evaluate the quality of HIV diagnostics in China. The regulatory framework and the quality evaluation system are pivotal in ensuring the quality of the HIV diagnostics licensed in China.

  20. Target diagnostic system for the National Ignition Facility (NIF)

    SciTech Connect

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.

    1996-07-01

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  1. Surface moisture measurement system electromagnetic induction probe calibration technique

    SciTech Connect

    Crowe, R.D., Westinghouse Hanford

    1996-07-08

    The Surface Moisture Measurement System (SMMS) is designed to measure the moisture concentration near the surfaces of the wastes located in the Hanford Site tank farms. This document describes a calibration methodology to demonstrate that the Electromagnetic Induction (EMI) moisture probe meets relevant requirements in the `Design Requirements Document (DRD) for the Surface Moisture Measurement System.` The primary purpose of the experimental tests described in this methodology is to make possible interpretation of EMI in-tank surface probe data to estimate the surface moisture.

  2. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  3. Probing CPT violation in B systems

    SciTech Connect

    Kundu, Anirban; Patra, Sunando Kumar; Nandi, Soumitra

    2010-04-01

    We discuss how a possible violation of the combined symmetry CPT in the B meson system can be investigated at the LHC. We show how a tagged and an untagged analysis of the decay modes of both B{sub d} and B{sub s} mesons can lead not only to a possible detection of a CPT-violating new physics but also to an understanding of its precise nature. The implication of CPT violation to a large mixing phase in the B{sub s} system is also discussed.

  4. Plasma diagnostics with Langmuir probes in the equatorial ionosphere: II. Evaluation of DEOS flight F06

    NASA Astrophysics Data System (ADS)

    Hirt, M.; Steigies, C. T.; Piel, A.

    2001-09-01

    The flight data of an ionospheric sounding rocket (DEOS campaign flight F06) are evaluated with respect to electron density and temperature profiles. The probe characteristic is analysed in the frame of a model that takes the influence of the geomagnetic field and of a contamination layer into account, as described in part I (Piel et al 2001 J. Phys. D: Appl. Phys.). The electron temperature of the night-time ionosphere is found to be higher (1300 K) than that predicted by the IRI-95 model (Bilitza D 1999 J. Atmos. Terr. Phys. 61 167), but in general agreement with the model of Watanabe et al (Watanabe et al 1995 J. Geophys. Res. 100 14 581). It is also found that the electron temperature in depleted plasma regions (plasma bubbles) is lower than in the unperturbed plasma. This is a hint at the action of the Rayleigh-Taylor mechanism that convects cold low-density plasma from the bottomside of the F-layer to higher altitudes inside the plasma bubbles. An absolute comparison of the electron density profiles from the analysis of the Langmuir probe and by an independent impedance probe is performed. Excellent agreement of the profile shape and of absolute density values can be achieved over the entire altitude regime. It is demonstrated which steps in the evaluation procedure of the probe characteristic may lead to systematic errors in electron density.

  5. Ophthalmic diagnostics using a new dynamic light scattering fiber optic probe

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen

    1995-11-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  6. Ophthalmic Diagnostics Using a New Dynamic Light Scattering Fiber Optic Probe

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Suh, Kwang I.; Dellavecchia, Michael A.; Dubin, Stephen

    1995-01-01

    A new fiber optic probe is developed to study different parts of the eye. The probe positioned in front of an eye, delivers a low power light from a laser diode into the eye and guides the light which is back scattered by different components (aqueous humor, lens, and vitreous humor) of the eye through a receiving optical fiber to a photo detector. The probe provides rapid determination of macromolecular diffusivities and their respective size distributions in the eye lens and the gel-like material in the vitreous humor. We report alpha-crystalline size distributions, as a function of penetration depth, inside the lens and hyaluronic acid molecular size distribution in the vitreous body. In a clinical setting, the probe can be mounted on a slit-lamp apparatus simply by using a H-ruby lens holder. The capability of detecting cataracts, both nuclear and peripheral, in their early stages of formation, in a non invasive and quantitative fashion, has the potential in patient monitoring and in developing and testing new drugs or diet therapies to 'dissolve' or slow down the cataract formation before surgery is necessary. The ability to detect biochemical and macromolecular changes in the vitreous structure can be very useful in identifying certain diseases of the posterior chamber, e.g., posterior vitreous detachment.

  7. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    SciTech Connect

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    2012-09-15

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processes inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.

  8. Laboratory Information Systems in Molecular Diagnostics: Why Molecular Diagnostics Data are Different.

    PubMed

    Lee, Roy E; Henricks, Walter H; Sirintrapun, Sahussapont J

    2016-03-01

    Molecular diagnostic testing presents new challenges to information management that are yet to be sufficiently addressed by currently available information systems for the molecular laboratory. These challenges relate to unique aspects of molecular genetic testing: molecular test ordering, informed consent issues, diverse specimen types that encompass the full breadth of specimens handled by traditional anatomic and clinical pathology information systems, data structures and data elements specific to molecular testing, varied testing workflows and protocols, diverse instrument outputs, unique needs and requirements of molecular test reporting, and nuances related to the dissemination of molecular pathology test reports. By satisfactorily addressing these needs in molecular test data management, a laboratory information system designed for the unique needs of molecular diagnostics presents a compelling reason to migrate away from the current paper and spreadsheet information management that many molecular laboratories currently use. This paper reviews the issues and challenges of information management in the molecular diagnostics laboratory.

  9. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  10. Resilient Actions in the Diagnostic Process and System Performance

    PubMed Central

    Smith, Michael W.; Giardina, Traber Davis; Murphy, Daniel R.; Laxmisan, Archana; Singh, Hardeep

    2013-01-01

    Objectives Systemic issues can adversely affect the diagnostic process. Many system-related barriers can be masked by ‘resilient’ actions of frontline providers (ie, actions supporting the safe delivery of care in the presence of pressures that the system cannot readily adapt to). We explored system barriers and resilient actions of primary care providers (PCPs) in the diagnostic evaluation of cancer. Methods We conducted a secondary data analysis of interviews of PCPs involved in diagnostic evaluation of 29 lung and colorectal cancer cases. Cases covered a range of diagnostic timeliness and were analyzed to identify barriers for rapid diagnostic evaluation, and PCPs’ actions involving elements of resilience addressing those barriers. We rated these actions according to whether they were usual or extraordinary for typical PCP work. Results Resilient actions and associated barriers were found in 59% of the cases, in all ranges of timeliness, with 40% involving actions rated as beyond typical. Most of the barriers were related to access to specialty services and coordination with patients. Many of the resilient actions involved using additional communication channels to solicit cooperation from other participants in the diagnostic process. Discussion Diagnostic evaluation of cancer involves several resilient actions by PCPs targeted at system deficiencies. PCPs’ actions can sometimes mitigate system barriers to diagnosis, and thereby impact the sensitivity of ‘downstream’ measures (eg, delays) in detecting barriers. While resilient actions might enable providers to mitigate system deficiencies in the short run, they can be resource intensive and potentially unsustainable. They complement, rather than substitute for, structural remedies to improve system performance. Measures to detect and fix system performance issues targeted by these resilient actions could facilitate diagnostic safety. PMID:23813210

  11. Target Diagnostic Control System Implementation for the National Ignition Facility

    SciTech Connect

    Shelton, R T; Kamperschroer, J H; Lagin, L J; Nelson, J R; O'Brien, D W

    2010-05-12

    The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.

  12. Screening metagenomic data for viruses using the E-Probe Diagnostic Nucleic Acid Assay (EDNA)

    USDA-ARS?s Scientific Manuscript database

    There are many plant pathogen-specific diagnostic assays, based on PCR and immune-detection. However, the ability to test for large numbers of pathogens simultaneously is lacking. Next generation sequencing (NGS) allows one to detect all organisms within a given sample, but has computational limitat...

  13. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    SciTech Connect

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.; Zubarev, P.V.; Kvashnin, A.N.; Puryga, E.A.; Ivanova, A.A.; Kotelnikov, A.I.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used to form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)

  14. QUAWDS: A Composite Diagnostic System for Gait Analysis

    PubMed Central

    Weintraub, Michael A.; Bylander, Tom

    1989-01-01

    QUAWDS is a system for analyzing human gait. QUAWDS integrates associational and qualitative models of knowledge into a diagnostic system, taking advantage of the tasks each kind of model can determine efficiently and effectively. An abductive assembler is used to coordinate the different models. The result is a diagnostic solution that is “locally best,” i.e, no single change to the answer will produce a better solution. We believe QUAWDS' architecture is suitable for many complex domains.

  15. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  16. Sound separation probes for flowing duct noise measurements. [jet engine diagnostics

    NASA Technical Reports Server (NTRS)

    Moore, M. T.

    1977-01-01

    In order to understand the propagation of broadband sound from a device such as a jet engine, it is necessary to make fluctuating pressure measurements in the ducted airstream. However, in a flowing duct, fluctuating pressure energy can be due to both turbulence and sound travelling in the duct. By using the principal that sound waves and turbulent flow pressure perturbations travel at different velocities, a probe has been developed that provides the data necessary to separate the energy due to sound from that due to turbulence. A mini-computer based FFT analysis of the probe measurements provides the overall level of the broadband sound in the duct as well as the spectral distribution of the sound energy.

  17. Molecular hybridization with DNA-probes as a laboratory diagnostic test for influenza viruses.

    PubMed

    Pljusnin, A Z; Rozhkova, S A; Nolandt, O V; Bryantseva, E A; Kuznetsov, O K; Noskov, F S

    1987-01-01

    The possibilities of using DNA-copies of different influenza A virus genes cloned with recombinant bacterial plasmids for the detection of virus-specific RNA by molecular dot-hybridization were analyzed. High specificity of RNA identification has been demonstrated and it has been shown expedient to use DNA-probes with high-conservative virus genes (polymerase, nucleoprotein, or matrix) for the detection of influenza A virus subtypes (H1N1, H2N2, H3N2) and probes with corresponding hemagglutinin genes for the differentiation of the subtypes H3N2 and H1N1. The results of nasopharyngeal specimens testing proved the effectiveness of molecular dot-hybridization in epidemiological studies of influenza outbreaks, especially of mixed etiology.

  18. Probing and mapping plasmonic systems by spectroscopic methods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noginova, Natalia; Hussain, Rabia; Mashhadi, Soheila

    2016-09-01

    Rare earth ions having both electric and magnetic dipole transitions in emission spectra can be used as local probe to provide information on degree of modification and local distribution of optical electric and magnetic fields in plasmonic systems. In our research, we use highly luminescent organic systems with Eu3+ to study and analyze modification of magnetic and electric dipoles emission in different environment, including systems having plasmonic electric resonance or magnetic resonance in the range of Eu3+ emission, and flat metal. Experimental setup based on selective detection of the particular transition was built and used for probing and mapping of electric and magnetic fields in plasmonic systems and metasurfaces. The method developed can find applications in characterization of plasmonic systems and metamaterials, and engineering of emission properties of rare earth ions and other emitters.

  19. Transient internal probe

    NASA Astrophysics Data System (ADS)

    Jarboe, Thomas R.; Mattick, Arthur T.

    1993-12-01

    The Transient Internal Probe (TIP) diagnostic is a novel method for probing the interior of hot magnetic fusion plasmas that are inaccessible with ordinary stationary probes. A small probe of magneto-optic (Verdet) material is fired through a plasma at speeds of several km/sec, illuminated by a laser beam. The beam's polarization is rotated in the probe by the local magnetic field and retroreflection back to a polarimetry detector allows determination of the B-field profile across the diameter of a plasma at a spatial resolution of better than 1-cm and an absolute B-field resolution of a few tens of Gauss. The principal components of a TIP diagnostic system were developed and tested. A two-stage light gas gun was constructed that accelerates 30-caliber projectiles to 3 km/sec, and methods were examined for stripping a lexan sabot from a probe prior to entry into a plasma. Probes of CdMnTe and FR-5 Verdet glass were fabricated, and a polarimetry system was constructed for resolving polarization to within 0.25 deg. The diagnostic was validated by measuring a static B-field with a moving (dropped) TIP probe, and finding agreement with Hall-probe measurements to within experimental accuracy (40 Gauss).

  20. System Related Interventions to Reduce Diagnostic Error: A Narrative Review

    PubMed Central

    Singh, Hardeep; Graber, Mark L.; Kissam, Stephanie M.; Sorensen, Asta V.; Lenfestey, Nancy F.; Tant, Elizabeth M.; Henriksen, Kerm; LaBresh, Kenneth A.

    2013-01-01

    Background Diagnostic errors (missed, delayed, or wrong diagnosis) have gained recent attention and are associated with significant preventable morbidity and mortality. We reviewed the recent literature to identify interventions that have been, or could be, implemented to address systems-related factors that contribute directly to diagnostic error. Methods We conducted a comprehensive search using multiple search strategies. We first identified candidate articles in English between 2000 and 2009 from a PubMed search that exclusively evaluated for articles related to diagnostic error or delay. We then sought additional papers from references in the initial dataset, searches of additional databases, and subject matter experts. Articles were included if they formally evaluated an intervention to prevent or reduce diagnostic error; however, we also included papers if interventions were suggested and not tested in order to inform the state-of-the science on the topic. We categorized interventions according to the step in the diagnostic process they targeted: patient-provider encounter, performance and interpretation of diagnostic tests, follow-up and tracking of diagnostic information, subspecialty and referral-related; and patient-specific. Results We identified 43 articles for full review, of which 6 reported tested interventions and 37 contained suggestions for possible interventions. Empirical studies, though somewhat positive, were non-experimental or quasi-experimental and included a small number of clinicians or health care sites. Outcome measures in general were underdeveloped and varied markedly between studies, depending on the setting or step in the diagnostic process involved. Conclusions Despite a number of suggested interventions in the literature, few empirical studies have tested interventions to reduce diagnostic error in the last decade. Advancing the science of diagnostic error prevention will require more robust study designs and rigorous definitions

  1. Dynamic Force Sensing Using an Optically Trapped Probing System

    PubMed Central

    Huang, Yanan; Cheng, Peng; Menq, Chia-Hsiang

    2013-01-01

    This paper presents the design of an adaptive observer that is implemented to enable real-time dynamic force sensing and parameter estimation in an optically trapped probing system. According to the principle of separation of estimation and control, the design of this observer is independent of that of the feedback controller when operating within the linear range of the optical trap. Dynamic force sensing, probe steering/clamping, and Brownian motion control can, therefore, be developed separately and activated simultaneously. The adaptive observer utilizes the measured motion of the trapped probe and input control effort to recursively estimate the probe–sample interaction force in real time, along with the estimation of the probing system’s trapping bandwidth. This capability is very important to achieving accurate dynamic force sensing in a time-varying process, wherein the trapping dynamics is nonstationary due to local variations of the surrounding medium. The adaptive estimator utilizes the Kalman filter algorithm to compute the time-varying gain in real time and minimize the estimation error for force probing. A series of experiments are conducted to validate the design of and assess the performance of the adaptive observer. PMID:24382944

  2. RF-Compensated Langmuir Probe Measurements in an IPVD System

    NASA Astrophysics Data System (ADS)

    Juliano, Daniel R.; Ruzic, David N.

    1998-10-01

    The experimental apparatus consists of a commercial-scale magnetron with an RF coil between the target and substrate holder. This coil creates a secondary inductive plasma that ionizes a significant portion of the sputter flux en route from target to substrate. In order to understand and predict the ionization of the sputter flux arriving at the substrate, Langmuir probe measurements of this secondary inductive plasma were made under various combinations of powers (magnetron and RF), pressures, and working gas mixtures. The probe apparatus is RF-compensated in order to keep the voltage difference between the probe tip and plasma constant throughout the RF cycle. In order to yield accurate measurements in the dirty depositing environment of the IPVD system, the back of probe tip is recessed in a small ceramic tube, preventing shorting. Further, the potential on the probe tip is kept low except during the data-collecting voltage sweeps in order to continuously clean it and maintain stable electrical characterisitics.

  3. Diagnostic timing system for the TMX-Upgrade

    SciTech Connect

    Bell, H.H. Jr.; Coutts G.W.; Hinz, A.F.

    1981-10-13

    This system provides trigger signals at various times and clock signals at various frequencies for the CAMAC transient recorders of the plasma diagnostics system for the TMX-Upgrade. The timing system is designed so that all clocks are in fixed-phase relation to their corresponding triggers and to each other. Therefore, data recorded from the different diagnostics can be directly time compared. Trigger signals can be generated in 100-ns increments, with an uncertainty of 500 ps. The clock signals have a time uncertainty of less than 1 ns. The system is arranged so that these accuracies are maintained over the entire diagnostic room. The timing system is modular and uses mostly digital delay generators, signal fan outs, and frequency dividers. Because of the modular approach, the system can be arranged in several ways (producing many possible trigger times and sample rate clocks) and still maintain a system in which all clocks and triggers are in a fixed-phase relationship.

  4. Probing peripheral and central cholinergic system responses.

    PubMed Central

    Naranjo, C A; Fourie, J; Herrmann, N; Lanctôt, K L; Birt, C; Yau, K K

    2000-01-01

    OBJECTIVE: The pharmacological response to drugs that act on the cholinergic system of the iris has been used to predict deficits in central cholinergic functioning due to diseases such as Alzheimer's disease, yet correlations between central and peripheral responses have not been properly studied. This study assessed the effect of normal aging on (1) the tropicamide-induced increase in pupil diameter, and (2) the reversal of this effect with pilocarpine. Scopolamine was used as a positive control to detect age-dependent changes in central cholinergic functioning in the elderly. DESIGN: Randomized double-blind controlled trial. PARTICIPANTS: Ten healthy elderly (mean age 70) and 9 young (mean age 33) volunteers. INTERVENTIONS: Pupil diameter was monitored using a computerized infrared pupillometer over 4 hours. The study involved 4 sessions. In 1 session, tropicamide (20 microL, 0.01%) was administered to one eye and placebo to the other. In another session, tropicamide (20 microL, 0.01%) was administered to both eyes, followed 23 minutes later by the application of pilocarpine (20 microL, 0.1%) to one eye and placebo to the other. All eye drops were given in a randomized order. In 2 separate sessions, a single dose of scopolamine (0.5 mg, intravenously) or placebo was administered, and the effects on word recall were measured using the Buschke Selective Reminding Test over 2 hours. OUTCOME MEASURES: Pupil size at time points after administration of tropicamide and pilocarpine; scopolamine-induced impairment in word recall. RESULTS: There was no significant difference between elderly and young volunteers in pupillary response to tropicamide at any time point (p > 0.05). The elderly group had a significantly greater pilocarpine-induced net decrease in pupil size 85, 125, 165 and 215 minutes after administration, compared with the young group (p < 0.05). Compared with the young group, the elderly group had greater scopolamine-induced impairment in word recall 60, 90

  5. Probing the Physics of Burning DT Capsules Using Gamma-ray Diagnostics

    SciTech Connect

    Hayes-Sterbenz, Anna Catherine; Hale, Gerald M.; Jungman, Gerard; Paris, Mark W.

    2015-02-01

    The Gamma Reaction History (GRH) diagnostic developed and lead by the Los Alamos National Laboratory GRH Team is used to determine the bang time and burn width of imploded inertial confinement fusion capsules at the National Ignition Facility. The GRH team is conceptualizing and designing a new Gamma-­to-Electron Magnetic Spectrometer (GEMS), that would be capable of an energy resolution ΔE/E~3-­5%. In this whitepaper we examine the physics that could be explored by the combination of these two gamma-ray diagnostics, with an emphasis on the sensitivity needed for measurements. The main areas that we consider are hydrodynamical mixing, ablator areal density and density profile, and temporal variations of the density of the cold fuel and the ablator during the DT burn of the capsule.

  6. Development of a Computer Control System for Heavy Ion Beam Probes

    NASA Astrophysics Data System (ADS)

    Andersen, J. K.; Roberts, S. L.; Westervelt, E. R.; Schoch, P. M.; Schatz, J. G.

    1996-11-01

    Enhanced computer control of heavy ion beam probes would increase the reproducability of experimental conditions by automation and feedback control of some system parameters. Also, operation from a remote site would then be feasible. Computer control has been implemented on a variety of Rensselaer heavy ion beam probe systems. However, no system to date has allowed complete remote operation. This has been primarily due to the limitations of the user interface. The next generation of HIBP control systems software is being created with National Instruments' graphical language, LabVIEW. The virtual instruments allow detailed monitoring and control of the injected beam conditions. The control and monitoring of the ion beam, including filament current and Pierce, focusing, quadrupole lens, and sweep electrodes' voltages has been tested on RPI's vertical test stand. A feedback routine to focus the beam using the quadrupole lens is currently being developed. When this capability is available, it will be implemented on a heavy ion beam probe diagnostic operating on a magnetic confinement device.

  7. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    SciTech Connect

    Vargas, Alex M.; Gülder, Ömer L.

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  8. A Parasitic Effect in Neutral Particle Diagnostic Using a Helium Probing Beam

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Kusama, Yoshinori; Itoh, Takao; Nemoto, Masahiro; Takeuchi, Hiroshi; Tsukahara, Yoshimitsu

    1990-04-01

    This paper describes the characteristic and the physical picture of a parasitic disturbance, which can occur because of the drift motion of probing beam ions trapped at the plasma edge, in active neutral particle measurements for magnetically confined fusion devices. In the JT-60 experiments, the disturbance is observed under the condition in which a neutral particle analyzer views the high recycling region, i.e., the divertor, and the occurrence of the parasitic effect is substantially dependent on the safety factor at the plasma boundary. Also discussed are the validity of our interpretation and some measures for avoiding the disturbance.

  9. Systemic and Nonsystemic Diagnostic Processes: An Empirical Comparison.

    ERIC Educational Resources Information Center

    McGuirk, James G.; And Others

    1987-01-01

    Examined how systemic and nonsystemic clinicians differ in diagnostic processes. Experienced therapists, with family systems or psychodynamic orientations viewed a stimulus film of a family session and individual interviews with parent and patients. Compared to nonsystems clinicians systemic clinicians identified as clinically relevant more…

  10. Application of cancer‐associated glycoforms and glycan‐binding probes to an in vitro diagnostic multivariate index assay for precise diagnoses of cancer

    PubMed Central

    Kang, Jeong Gu

    2016-01-01

    Personalized medicine has emerged as a widely accepted trend in medicine for the efficacious and safe treatment of various diseases. It covers every medical treatment tailored according to various properties of individuals. Cancer‐associated glycosylation mirrors cancer states more precisely, and this “sweet side of cancer” is thus intended to spur the development of an advanced in vitro diagnostic system. The changes of glyco‐codes are often subtle and thus not easy to trace, thereby making it difficult to discriminate changes from various compounding factors. Special glycan‐binding probes, often lectins, can be paired with aglycosylated antibodies to enable quantitative and qualitative measurements of glycoforms. With the in vitro diagnosis multivariate index assay (IVDMIA) considered to be capable of yielding patient‐specific results, the combinatorial use of multiple glycoproteins may be a good modality to ensure disease‐specific, personalized diagnoses. PMID:27005968

  11. A specialized framework for medical diagnostic knowledge-based systems.

    PubMed

    Lanzola, G; Stefanelli, M

    1992-08-01

    For a knowledge-based system (KBS) to exhibit an intelligent behavior, it must be endowed with knowledge enabling it to represent the expert's strategies. The elicitation task is inherently difficult for strategic knowledge, because strategy is often tacit, and, even when it has been made explicit, it is not an easy task to describe it in a form which may be directly translated and implemented into a program. This paper describes a Specialized Framework for Medical Diagnostic Knowledge-Based Systems that can help an expert in the process of building KBSs in a medical domain. The framework is based on an epistemological model of diagnostic reasoning which has proven to be helpful in describing the diagnostic process in terms of the tasks that it is composed of. It allows a straightforward modeling of diagnostic reasoning at the knowledge level by the domain expert, thus helping to convey domain-dependent strategies into the target KBS.

  12. Direct thermal hard copy system for medical diagnostic applications

    NASA Astrophysics Data System (ADS)

    De Langhe, Dirk; De Clerck, Marc; Kaerts, Erik; Horsten, Bart; Defieuw, Geert; Borremans, Karel

    1997-05-01

    A new dry system based on a direct thermal technology with diagnostic properties has been developed. This paper discusses the major improvements in printer and film required to achieve the image quality needed to meet the diagnostic requirements. The concept of the printer and the film rate both explained. The image quality achieved in terms of contrast, resolution, noise and other parameters is discussed. The results of archivability and shelf life testing and the physical properties of the material are also presented. To validate the technology for diagnostic purposes, a hospital test has been performed for ultrasound, CT, MRI, R and F and vascular studies. The method and results of this testing are presented in the paper. The hospital tests showed that the images obtained with the dry system materials can be used for diagnostic purposes.

  13. Advanced Diagnostic System on Earth Observing One

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth

    2004-01-01

    In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.

  14. Analytical investigation of microwave resonances of a curling probe for low and high-pressure plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Arshadi, Ali; Brinkmann, Ralf Peter

    2017-01-01

    The concept of ‘active plasma resonance spectroscopy’ (APRS) has attracted greater interest in recent years as an established plasma diagnostic technique. The APRS describes a class of related methods utilizing the intrinsic ability of plasma to resonate at or near the electron plasma frequency {ω\\text{pe}} . The Curling probe (CP) as a novel realization of the APRS idea, is a miniaturized spiral slot embedded flatly in the chamber wall. Consequently, a plasma diagnostic technique with minimum disturbance and without metal contamination can be developed. To measure the plasma parameters the CP is fed with a weak frequency-swept signal from the exterior of the plasma chamber by a network analyzer which also records the response of the plasma versus the frequency. The resonance behavior is strongly dependent on the electron density and the gas pressure. The CP has also the advantage of resonating at a frequency greater than {ω\\text{pe}} which is dependent on the spiral’s length. The double resonance characteristic gives the CP the ability to be applied in varying plasma regimes. Assuming that the spiralization does not have a considerable effect on the resonances, a ‘straightened’ infinite length CP has recently been investigated (Arshadi and Brinkmann 2016 Plasma Sources Sci. Technol. 25 045014) to obtain the surface wave resonances. This work generalizes the approach and models the CP by a rectangular slot-type resonator located between plasma and quartz. Cold plasma theory and Maxwell’s equations are utilized to compute the electromagnetic fields propagating into the plasma by the diffraction of an incident plane wave at the slot. A mathematical model is employed and both kinds of resonances are derived. The analytical study of this paper shows good agreement with the numerical results of the probe inventors.

  15. Development of a New Diagnostic System for Human Liver Diseases Based on Conventional Ultrasonic Diagnostic Equipment

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tsuneo; Nakazawa, Toshihiro; Harada, Akimitsu; Sato, Hiroaki; Maruyama, Yukio; Sato, Sojun

    2001-05-01

    In this paper, the authors present the experimental results of using a quantitative ultrasonic diagnosis technique for human liver diseases using the fractal dimension (FD) of the shape of the power spectra (PS) of RF signals. We have developed an experimental system based on a conventional ultrasonic diagnostic system. As a result, we show that normal livers, fatty livers and liver cirrhosis can be identified using the FD values.

  16. Benchmarking Diagnostic Algorithms on an Electrical Power System Testbed

    NASA Technical Reports Server (NTRS)

    Kurtoglu, Tolga; Narasimhan, Sriram; Poll, Scott; Garcia, David; Wright, Stephanie

    2009-01-01

    Diagnostic algorithms (DAs) are key to enabling automated health management. These algorithms are designed to detect and isolate anomalies of either a component or the whole system based on observations received from sensors. In recent years a wide range of algorithms, both model-based and data-driven, have been developed to increase autonomy and improve system reliability and affordability. However, the lack of support to perform systematic benchmarking of these algorithms continues to create barriers for effective development and deployment of diagnostic technologies. In this paper, we present our efforts to benchmark a set of DAs on a common platform using a framework that was developed to evaluate and compare various performance metrics for diagnostic technologies. The diagnosed system is an electrical power system, namely the Advanced Diagnostics and Prognostics Testbed (ADAPT) developed and located at the NASA Ames Research Center. The paper presents the fundamentals of the benchmarking framework, the ADAPT system, description of faults and data sets, the metrics used for evaluation, and an in-depth analysis of benchmarking results obtained from testing ten diagnostic algorithms on the ADAPT electrical power system testbed.

  17. Laser-ablation-plume thermalization dynamics in background gases studied by time-resolved imaging, spectroscopic, and ion probe diagnostics

    NASA Astrophysics Data System (ADS)

    Geohegan, David B.; Puretzky, Alexander A.

    1995-04-01

    A combination of fast plasma diagnostics are utilized to probe the propagation of laser ablation plumes in vacuum and low-pressure background gases in order to understand key gas dynamic processes relevant to film growth by pulsed laser deposition. During expansion into low-pressure background gases, the ion flux in the plasma plume splits into fast and slow components over a limited range of distances and times. This general effect is presented here for the case of yttrium ablation into argon, a single-element target into an inert gas. Time- resolved optical absorption spectroscopy and optical emission spectroscopy are employed to simultaneously view the populations of both excited and ground states of Y and Y+ for comparison with intensified-CCD photography of the visible plume luminescence and ion flux measurements made with fast ion probes during this phenomenon. These measurements indicate that plume-splitting in background gases is consistent with momentum transfer from an initial, vacuum velocity distribution into a second, slowed velocity distribution initiated by scattering collisions between plume and background gas atoms. The fast distribution is exponentially attenuated in accordance with Beer's law, and the second, slowed distribution coalesces into a stable, propagating shock structure.

  18. Multi-function diamond film fiber optic probe and measuring system employing same

    DOEpatents

    Young, J.P.

    1998-11-24

    A fused fiber optic probe having a protective cover, a fiber optic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiber optic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 9 figs.

  19. Multi-function diamond film fiberoptic probe and measuring system employing same

    DOEpatents

    Young, Jack P.

    1998-01-01

    A fused fiberoptic probe having a protective cover, a fiberoptic probe system, and embodiments thereof for conducting electromagnetic spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica, with a protective cover disposed over at least a portion of the probe tip. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  20. Chirped Probe Pulse Femtosecond Coherent Anti-Stokes Raman Scattering for Turbulent Combustion Diagnostics

    NASA Astrophysics Data System (ADS)

    Fineman, Claresta N.; Lucht, Robert P.

    2014-06-01

    Chirped probe pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) thermometry at 5 kHz has been successfully applied for single-laser-shot flame temperature measurements in a mildly turbulent hydrogen-air jet diffusion flame, sooting methane-air jet diffusion flame, and most recently a turbulent combustor of practical interest. Measurements were performed at various heights and radial locations within each flame and resulted in temperatures ranging from 300 K to 2400 K. In the turbulent combustor every laser shot produced some resonant CARS signal; no loss of signal due to beam steering, pressure fluctuations, or shear layer density gradients was noticeable. Furthermore, the measurement volume spatial resolution is better than has previously been reported for other CARS experiments. Flame temperature measurements compare well with those previously reported in similar flames. These results indicate high repetition rate CPP fs-CARS is an excellent technique for the study of turbulent combustion.

  1. Detection of bovine trichomoniasis with a specific DNA probe and PCR amplification system.

    PubMed

    Ho, M S; Conrad, P A; Conrad, P J; LeFebvre, R B; Perez, E; BonDurant, R H

    1994-01-01

    Trichomoniasis is a widespread, economically important venereal disease of cattle which causes infertility and abortion. Effective control of trichomoniasis has been impeded by the insensitivity of traditional diagnostic procedures, which require the isolation and cultivation of the parasite, Tritrichomonas foetus, from infected cattle. We developed a 0.85-kb T. foetus DNA probe by identifying conserved sequences in DNAs from T. foetus that were isolated from cattle in California, Idaho, Nevada, and Costa Rica. The probe hybridized specifically to DNAs of T. foetus isolates from different geographic areas but not to DNA preparations of Trichomonas vaginalis, bovine cells, or a variety of bacteria from cattle. The probe detected DNA from a minimum of 10(5) T. foetus organisms. To improve sensitivity, a partial sequence of the probe was used to identify oligonucleotide primers (TF1 and TF2) which could be used to amplify a 162-bp product from T. foetus DNAs by PCR. A chemiluminescent internal T. foetus sequence probe was hybridized to Southern blots of the amplification product. This system detected as few as one T. foetus organism in culture media or 10 parasites in samples containing bovine preputial smegma. Analysis of 52 clinical samples showed that 47 (90.4%) of the 52 samples were correctly identified, with no false-positive reactions. In comparison, the traditional cultivation method detected 44 (84.6%) of the 52 samples from T. foetus-infected and uninfected bulls. These results indicate that the PCR-based amplification system could be a useful alternative method for the diagnosis of bovine trichomoniasis.

  2. An easy-to-use diagnostic system development shell

    NASA Technical Reports Server (NTRS)

    Tsai, L. C.; Ross, J. B.; Han, C. Y.; Wee, W. G.

    1987-01-01

    The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS.

  3. Yet another plasma diagnostic with He-like triplet: Probing energetic electrons behind SNR shocks with ASTRO-H SXS

    NASA Astrophysics Data System (ADS)

    Sawada, Makoto; Kaastra, Jelle

    We present a new X-ray line diagnostic to probe energetic electrons behind SNR shocks. SNR shocks are believed to be acceleration sites of the Galactic cosmic rays up to knee energy. In the early stage of acceleration, particles must have sufficient energies to cross the shock to enter diffusive shock acceleration. This requires supra-thermal energies for electrons, however, we currently do not know how electrons depart from the thermal pool to attain such energies. Hence observational constraints on the amount and energy distribution of supra-thermal electrons are awaited. Here we propose a new X-ray line diagnostic using the He-like triplet to detect and characterise the energy distribution of supra-thermal electrons. We simulate X-ray spectra of SNR plasma interacting with energetic electrons and find that the forbidden line of the He-like triplet is enhanced via inner-shell ionisation process of Li-like ions. Such an effect can be precisely measured by high-resolution spectroscopy with the coming ASTRO-H SXS instrument.

  4. Wire-rope emplacement of diagnostics systems

    SciTech Connect

    Burden, W.L.

    1982-05-07

    The study reported here was initiated to determine if, with the Cable Downhole System (CDS) currently under development, there is an advantage to using continuous wire rope to lower the emplacement package to the bottom of the hole. A baseline design using two wire ropes as well as several alternatives are discussed in this report. It was concluded that the advantages of the wire-rope emplacement system do not justify the cost of converting to such a system, especially for LLNL's maximum emplacement package weights.

  5. High resolution imaging systems for spin-stabilized Probe spacecraft

    NASA Astrophysics Data System (ADS)

    Danielson, G. E.; Malin, M. C.; Delamere, W. A.

    1981-01-01

    A novel design for a high-resolution imaging system which includes on-board data editing and optical navigation, suggests high quality images can be acquired from spin-stabilized spacecraft oriented towards high velocity, short duration planetary missions ('Probes'). The approach to designing imaging systems requires that mission objectives be met within the physical and fiscal constraints imposed by the spacecraft and mission design. Severe constraints imposed on a Comet Halley probe (for example, 57 km/sec encounter velocity with a small, 10 km diameter, object) coupled with a great uncertainty in encounter time and distance, were overcome by innovative use of existing technology. Such designs suggest that 3-axis stabilization or nonspinning platforms are not necessary to acquire high resolution, high quality planetary images.

  6. Saliva as a diagnostic tool for oral and systemic diseases

    PubMed Central

    Javaid, Mohammad A.; Ahmed, Ahad S.; Durand, Robert; Tran, Simon D.

    2015-01-01

    Early disease detection is not only vital to reduce disease severity and prevent complications, but also critical to increase success rate of therapy. Saliva has been studied extensively as a potential diagnostic tool over the last decade due to its ease and non-invasive accessibility along with its abundance of biomarkers, such as genetic material and proteins. This review will update the clinician on recent advances in salivary biomarkers to diagnose autoimmune diseases (Sjogren's syndrome, cystic fibrosis), cardiovascular diseases, diabetes, HIV, oral cancer, caries and periodontal diseases. Considering their accuracy, efficacy, ease of use and cost effectiveness, salivary diagnostic tests will be available in dental offices. It is expected that the advent of sensitive and specific salivary diagnostic tools and the establishment of defined guidelines and results following rigorous testing will allow salivary diagnostics to be used as chair-side tests for several oral and systemic diseases in the near future. PMID:26937373

  7. A Comparison of Particle Diagnostic Systems

    DTIC Science & Technology

    1981-08-01

    Figs. 3a and b) consists of a flowmetering venturi , plenum chamber, water spray system, belimouth, removable inlet connecting ducts, and a test...Supply ~ _ _ X C2~ X X ~ FBcl lm°uth . - c . . . . ~=, , ~ - ~ \\ \\ \\ 1 / A1 r Supplp~y Venturi Throat Diam) Plenum Chamber Ins t rumenta t...34 l 7 ~ (Optics ¥ Electronics Y Mask Oscillator \\ 60 deg m o Do o Mask Lens Figure 11. AEDC<leveloped PSI optical system. Tubo

  8. Reactor coolant pump monitoring and diagnostic system

    SciTech Connect

    Singer, R.M.; Gross, K.C.; Walsh, M. ); Humenik, K.E. )

    1990-01-01

    In order to reliably and safely operate a nuclear power plant, it is necessary to continuously monitor the performance of numerous subsystems to confirm that the plant state is within its prescribed limits. An important function of a properly designed monitoring system is the detection of incipient faults in all subsystems (with the avoidance of false alarms) coupled with an information system that provides the operators with fault diagnosis, prognosis of fault progression and recommended (either automatic or prescriptive) corrective action. In this paper, such a system is described that has been applied to reactor coolant pumps. This system includes a sensitive pattern-recognition technique based upon the sequential probability ratio test (SPRT) that detects incipient faults from validated signals, an expert system embodying knowledge bases on pump and sensor performance, extensive hypertext files containing operating and emergency procedures as well as pump and sensor information and a graphical interface providing the operator with easily perceived information on the location and character of the fault as well as recommended corrective action. This system is in the prototype stage and is currently being validated utilizing data from a liquid-metal cooled fast reactor (EBR-II). 3 refs., 4 figs.

  9. Correlating Log Messages for System Diagnostics

    SciTech Connect

    Gunasekaran, Raghul; Dillow, David A; Shipman, Galen M; Maxwell, Don E; Hill, Jason J; Park, Byung H; Geist, Al

    2010-01-01

    In large-scale computing systems, the sheer volume of log data generated presents daunting challenges for debugging and monitoring of these systems. The Oak Ridge Leadership Computing Facility s premier simulation platform, the Cray XT5 known as Jaguar, can generate a few hundred thousand log entries in less than a minute for many system level events. Determining the root cause of such system events requires analyzing and interpretation of a large number of log messages. Most often, the log messages are best understood when they are interpreted collectively rather than individually. In this paper, we present our approach to interpreting log messages by identifying their commonalities and grouping them into clusters. Given a set of log messages within a time interval, we group the messages based on source, target, and/or error type, and correlate the messages with hardware and application information. We monitor the Lustre log messages in the XT5 console log and show that such grouping of log messages assists in detecting the source of system events. By intelligent grouping and correlation of events in the log, we are able to provide system administrators with meaningful information in a concise format for root cause analysis.

  10. Electrically heated particulate filter diagnostic systems and methods

    SciTech Connect

    Gonze, Eugene V

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  11. Two-axis probing system for atomic force microscopy.

    PubMed

    Jayanth, G R; Jhiang, Sissy M; Menq, Chia-Hsiang

    2008-02-01

    A novel two-axis probing system is proposed for multiaxis atomic force microscopy (AFM). It employs a compliant manipulator that is optimally designed in terms of geometries and kinematics, and is actuated by multiple magnetic actuators to simultaneously control tip position and change tip orientation to achieve greater accessibility of the sample surface when imaging surfaces having large geometric variations. It leads to the creation of a multiaxis AFM system, which is a three-dimensional surface tool rather than a two-dimensional planar surface tool. The use of the system to scan the bottom corner of a grating step is reported.

  12. SA-SVM based automated diagnostic system for skin cancer

    NASA Astrophysics Data System (ADS)

    Masood, Ammara; Al-Jumaily, Adel

    2015-03-01

    Early diagnosis of skin cancer is one of the greatest challenges due to lack of experience of general practitioners (GPs). This paper presents a clinical decision support system aimed to save time and resources in the diagnostic process. Segmentation, feature extraction, pattern recognition, and lesion classification are the important steps in the proposed decision support system. The system analyses the images to extract the affected area using a novel proposed segmentation method H-FCM-LS. The underlying features which indicate the difference between melanoma and benign lesions are obtained through intensity, spatial/frequency and texture based methods. For classification purpose, self-advising SVM is adapted which showed improved classification rate as compared to standard SVM. The presented work also considers analyzed performance of linear and kernel based SVM on the specific skin lesion diagnostic problem and discussed corresponding findings. The best diagnostic rates obtained through the proposed method are around 90.5 %.

  13. Automatic system for corneal ulcer diagnostic

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; de Sousa, Sidney J. F.

    1997-05-01

    Corneal Ulcer is a very common disease in agricultural countries and it is responsible for 10% of the blindness causes. One of the main aspects to be observed in these cases is the increasing or decreasing of the affected area. We have been developing an automatic optical system in order to evaluate the affected area (the ulcer) to be implemented in a public hospital (400 patients per week are analyzed). The optical system is implemented in a Slit Lamp and connected to a CCD detector. The image is displayed in a PC monitor by a commercial frame grabber and a dedicated software for determining the area of the ulcer has been developed.

  14. Test, Measurement, and Diagnostic Equipment (System Peculiar)

    DTIC Science & Technology

    2007-11-02

    Potential Fault Detection and Isolation Test 4 4.6 Standard Design Characteristics. .. . . . . . 5 4.7 TMDE Interface Tests . . . . . . . . .. . 6 4.8...within purchase description requirements. (3) Any di,crepancies between the TMDE and the "calibrated’ system. 4.5 Potential Fault Detection and Isolation Te

  15. Racine Feedback and Diagnostic System Users Guide.

    ERIC Educational Resources Information Center

    Racine Unified School District 1, WI.

    The primary objective of the system is to make the testing process a valuable learning experience for the student and the teacher. The guide gives insight into the application of computerized test scoring and reporting. Information related to preparing test answer sheets, processing the completed answer sheets and a description of the various…

  16. STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS

    SciTech Connect

    Blokland, Willem; Purcell, J David; Patton, Jeff; Pelaia II, Tom; Sundaram, Madhan; Pennisi, Terry R

    2007-01-01

    The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of the SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.

  17. Diagnostic library support system for medical practice.

    PubMed

    Grams, R R; Massey, J K; Hickey, S; Jin, Z M

    1985-12-01

    Here is a tragic case where the diagnosis was missed on three separate occasions over a 19-month period. Both terminal conditions are treatable and potentially separable if discovered and aggressively managed. It is not the intent of this presentation to criticize the evaluation of this patient, but rather to point out the need and, also, the potential benefits of an alternate approach, which could have significantly changed the course of this particular patient's evaluation. We have conducted similar analyses with other CPC cases with almost equivalent specificity. These same evaluations have been performed in a real clinical setting with live patient data. What we have learned so far we think will be extremely helpful in extending the potential application of this technology: A text-based decision support tool is only as good as its practitioner. It takes practice and training to learn to use this system effectively. There are many traps in logic, and the use of words and terms within the text must be understood to effectively utilize this tool. There are shortcuts in logical analysis which we mentally use all the time but which cannot be accepted using this system (e.g., you must not rely on your memory or any specific associations to circumvent the system). The system will only become clinically relevant when the entire field of medicine is included in the data base. This is one of our current limitations with only two-thirds of the Merck medical text available for reference. This makes it difficult to apply to a general medical problem since we are not sure which direction the case might take, and often these are multisystem diseases or problems that put us at a severe disadvantage if we don't have the necessary data base. The structure and integrity of the data base are critical to the success of the system. Since numbers are ubiquitous, these cannot be used for key word elements. Techniques must be introduced to create word-oriented numbers that can be

  18. Diagnostic neutral beam injector and associated diagnostic systems for the TJ-II stellarator device

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Balbín, R.; López-Fraguas, A.; García, A.; Carmona, J. M.; Sánchez, J.; Ivanov, A. A.

    2004-10-01

    A diagnostic neutral beam injector, based on the DINA-5F injector, is under development for the highly flexible TJ-II stellarator. The principal goals are to obtain spatially resolved charge-exchange recombination spectroscopy and neutral particle analysis measurements along the plasma minor radius and to stimulate opportunities for new physics studies. We first summarize relevant TJ-II characteristics and the considerations addressed when defining this compact system, for instance, the steps taken to minimize the impact of ferromagnetic shielding on magnetic configurations. We then outline the main aspects of the system and associated diagnostics. In particular, we highlight a bidirectional fiber-optic based multichannel spectrometer for obtaining Doppler measurements with high spatial resolution.

  19. Modeling and Simulation for Nanoparticle Plasma Jet Diagnostic Probe for Runaway Electron Beam-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.

    2016-10-01

    The C60 nanoparticle plasma jet (NPPJ) rapid injection into a tokamak major disruption is followed by C60 gradual fragmentation along plasma-traversing path. The result is abundant C ion concentration in the core plasma enhancing the potential to probe and diagnose the runaway electrons (REs) during different phases of their dynamics. A C60/C NPPJ of 75 mg, high-density (>1023 m-3) , hyper-velocity (>4 km/s), and uniquely fast response-to-delivery time ( 1 ms) has been demonstrated on a test bed. It can rapidly and deeply deliver enough mass to increase electron density to 2.4x1021 m-3, 60 times larger than typical DIII-D pre-disruption value. We will present the results of our on-going work on: 1) self-consistent model for RE current density evolution (by Dreicer mechanism and ``avalanche'') focused on the effect of fast and deep deposition of C ions, 2) improvement of single C60q+ fragmenting ion penetration model through tokamak B(R)-field and post-TQ plasma, and 3) simulation of C60q+ PJ penetration through the DIII-D characteristic 2 T B-field to the RE beam central location by using the Hybrid Electro-Magnetic 2D code (HEM-2D. Work supported by US DOE DE-SC0015776 Grant.

  20. Automatic system for corneal ulcer diagnostic: II

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; Faria de Sousa, Sidney J.

    1998-06-01

    Corneal Ulcer is a deepithelization of the cornea and it is a very common disease in agricultural countries. The clinician most used parameter in order to identify a favorable ulcer evolution is the regress of the affected area. However, this kind of evaluation is subjective, once just the horizontal and vertical axes are measured based on a graduated scale and the affected area is estimated. Also, the registration of the disease is made by photographs. In order to overcome the subjectiveness and to register the images in a more accessible way (hard disks, floppy disks, etc.), we have developed an automatic system in order to evaluate the affected area (the ulcer). An optical system is implemented in a Slit Lamp (SL) and connected to a CCD detector. The image is displayed in PC monitor by a commercial frame grabber and a dedicated software for determining the area of the ulcer (precision of 20 mm) has been developed.

  1. Progress of development of Thomson scattering diagnostic system on COMPASS

    SciTech Connect

    Bilkova, P.; Melich, R.; Aftanas, M.; Boehm, P.; Sestak, D.; Jares, D.; Weinzettl, V.; Stoeckel, J.; Hron, M.; Panek, R.; Walsh, M. J.

    2010-10-15

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  2. Progress of development of Thomson scattering diagnostic system on COMPASS.

    PubMed

    Bilkova, P; Melich, R; Aftanas, M; Böhm, P; Sestak, D; Jares, D; Weinzettl, V; Stöckel, J; Hron, M; Panek, R; Scannell, R; Walsh, M J

    2010-10-01

    A new Thomson scattering diagnostic system has been designed and is being built now on the COMPASS tokamak at the Institute of Plasma Physics ASCR in Prague (IPP Prague) in the Czech Republic. This contribution focuses on design, development, and installation of the light collection and detection system. High spatial resolution of 3 mm will be achieved by a combination of design of collection optics and connected polychromators. Imaging characteristics of both core and edge plasma collection objectives are described and fiber backplane design is presented. Several calibration procedures are discussed. The operational deployment of the Thomson scattering diagnostic is planned by the end of 2010.

  3. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  4. The oral-systemic connection: role of salivary diagnostics

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2013-05-01

    Utilizing saliva instead of blood for diagnosis of both local and systemic health is a rapidly emerging field. Recognition of oral-systemic interrelationships for many diseases has fostered collaborations between medicine and dentistry, and many of these collaborations rely on salivary diagnostics. The oral cavity is easily accessed and contains most of the analytes present in blood. Saliva and mucosal transudate are generally utilized for oral diagnostics, but gingival crevicular fluid, buccal swabs, dental plaque and volatiles may also be useful depending on the analyte being studied. Examples of point-of-care devices capable of detecting HIV, TB, and Malaria targets are being developed and discussed in this overview.

  5. A sequential decision-theoretic model for medical diagnostic system.

    PubMed

    Li, Aiping; Jin, Songchang; Zhang, Lumin; Jia, Yan

    2015-01-01

    Although diagnostic expert systems using a knowledge base which models decision-making of traditional experts can provide important information to non-experts, they tend to duplicate the errors made by experts. Decision-Theoretic Model (DTM) is therefore very useful in expert system since they prevent experts from incorrect reasoning under uncertainty. For the diagnostic expert system, corresponding DTM and arithmetic are studied and a sequential diagnostic decision-theoretic model based on Bayesian Network is given. In the model, the alternative features are categorized into two classes (including diseases features and test features), then an arithmetic for prior of test is provided. The different features affect other features weights are also discussed. Bayesian Network is adopted to solve uncertainty presentation and propagation. The model can help knowledge engineers model the knowledge involved in sequential diagnosis and decide evidence alternative priority. A practical example of the models is also presented: at any time of the diagnostic process the expert is provided with a dynamically updated list of suggested tests in order to support him in the decision-making problem about which test to execute next. The results show it is better than the traditional diagnostic model which is based on experience.

  6. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  7. Method and system for diagnostics of apparatus

    NASA Technical Reports Server (NTRS)

    Gorinevsky, Dimitry (Inventor)

    2012-01-01

    Proposed is a method, implemented in software, for estimating fault state of an apparatus outfitted with sensors. At each execution period the method processes sensor data from the apparatus to obtain a set of parity parameters, which are further used for estimating fault state. The estimation method formulates a convex optimization problem for each fault hypothesis and employs a convex solver to compute fault parameter estimates and fault likelihoods for each fault hypothesis. The highest likelihoods and corresponding parameter estimates are transmitted to a display device or an automated decision and control system. The obtained accurate estimate of fault state can be used to improve safety, performance, or maintenance processes for the apparatus.

  8. The Microwave Anisotropy Probe (MAP) Attitude Control System

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.

  9. Preliminary consideration of CFETR ITER-like case diagnostic system

    SciTech Connect

    Li, G. S.; Liu, Y. K.; Gao, X.; Yang, Y. Wang, Y. M.; Ming, T. F.; Han, X.; Liu, S. C.; Wang, E. H.; Yang, W. J.; Li, G. Q.; Hu, Q. S.

    2016-11-15

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  10. Preliminary consideration of CFETR ITER-like case diagnostic system

    NASA Astrophysics Data System (ADS)

    Li, G. S.; Yang, Y.; Wang, Y. M.; Ming, T. F.; Han, X.; Liu, S. C.; Wang, E. H.; Liu, Y. K.; Yang, W. J.; Li, G. Q.; Hu, Q. S.; Gao, X.

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  11. A specialized framework for Medical Diagnostic Knowledge Based Systems.

    PubMed

    Lanzola, G; Stefanelli, M

    1991-01-01

    To have a knowledge based system (KBS) exhibiting an intelligent behavior, it must be endowed even with knowledge able to represent the expert's strategies, other than with domain knowledge. The elicitation task is inherently difficult for strategic knowledge, because strategy is often tacit, and, even when it has been made explicit, it is not an easy task to describe it in a form that may be directly translated and implemented into a program. This paper describes a Specialized Framework for Medical Diagnostic Knowledge Based Systems able to help an expert in the process of building KBSs in a medical domain. The framework is based on an epistemological model of diagnostic reasoning which has proved to be helpful in describing the diagnostic process in terms of the tasks by which it is composed of.

  12. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    SciTech Connect

    Xu, Z.; Wu, C. R.; Yao, X. J.; Zhang, P. F.; Jin, Z.; Hou, Y. M.; Wu, Z. W.; Gao, W. Chen, Y. J.; Zhang, L.; Huang, J.; Chang, J. F.; Gao, W.; Guo, H. Y.

    2016-11-15

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including D{sub α} (656.1 nm), D{sub γ} (433.9 nm), He II (468.5 nm), Li I (670.8 nm), Li II (548.3 nm), C III (465.0 nm), O II (441.5 nm), Mo I (386.4 nm), W I (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  13. Preliminary consideration of CFETR ITER-like case diagnostic system.

    PubMed

    Li, G S; Yang, Y; Wang, Y M; Ming, T F; Han, X; Liu, S C; Wang, E H; Liu, Y K; Yang, W J; Li, G Q; Hu, Q S; Gao, X

    2016-11-01

    Chinese Fusion Engineering Test Reactor (CFETR) is a new superconducting tokamak device being designed in China, which aims at bridging the gap between ITER and DEMO, where DEMO is a tokamak demonstration fusion reactor. Two diagnostic cases, ITER-like case and towards DEMO case, have been considered for CFETR early and later operating phases, respectively. In this paper, some preliminary consideration of ITER-like case will be presented. Based on ITER diagnostic system, three versions of increased complexity and coverage of the ITER-like case diagnostic system have been developed with different goals and functions. Version A aims only machine protection and basic control. Both of version B and version C are mainly for machine protection, basic and advanced control, but version C has an increased level of redundancy necessary for improved measurements capability. The performance of these versions and needed R&D work are outlined.

  14. A large distributed digital camera system for accelerator beam diagnostics

    NASA Astrophysics Data System (ADS)

    Catani, L.; Cianchi, A.; Di Pirro, G.; Honkavaara, K.

    2005-07-01

    Optical diagnostics, providing images of accelerated particle beams using radiation emitted by particles impinging a radiator, typically a fluorescent screen, has been extensively used, especially on electron linacs, since the 1970's. Higher intensity beams available in the last decade allow extending the use of beam imaging techniques to perform precise measurements of important beam parameters such as emittance, energy, and energy spread using optical transition radiation (OTR). OTR-based diagnostics systems are extensively used on the superconducting TESLA Test Facility (TTF) linac driving the vacuum ultraviolet free electron laser (VUV-FEL) at the Deutsches Elektronen-Synchrotron facility. Up to 30 optical diagnostic stations have been installed at various positions along the 250-m-long linac, each equipped with a high-performance digital camera. This paper describes the new approach to the design of the hardware and software setups required by the complex topology of such a distributed camera system.

  15. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST).

    PubMed

    Xu, Z; Wu, Z W; Gao, W; Chen, Y J; Wu, C R; Zhang, L; Huang, J; Chang, J F; Yao, X J; Gao, W; Zhang, P F; Jin, Z; Hou, Y M; Guo, H Y

    2016-11-01

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including Dα (656.1 nm), Dγ (433.9 nm), He ii (468.5 nm), Li i (670.8 nm), Li ii (548.3 nm), C iii (465.0 nm), O ii (441.5 nm), Mo i (386.4 nm), W i (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucial role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.

  16. Development of the Diagnostic Expert System for Tea Processing

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Hitoshi; Yamaguchi, Yuichi

    A diagnostic expert system for tea processing which can presume the cause of the defect of the processed tea was developed to contribute to the improvement of tea processing. This system that consists of some programs can be used through the Internet. The inference engine, the core of the system adopts production system which is well used on artificial intelligence, and is coded by Prolog as the artificial intelligence oriented language. At present, 176 rules for inference have been registered on this system. The system will be able to presume better if more rules are added to the system.

  17. Spacelab Life Sciences-1 electrical diagnostic expert system

    NASA Technical Reports Server (NTRS)

    Kao, C. Y.; Morris, W. S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous, real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  18. Spacelab Life Sciences-1 electrical diagnostics expert system

    NASA Technical Reports Server (NTRS)

    Kao, Cheng Y.; Morris, William S.

    1989-01-01

    The Spacelab Life Sciences-1 (SLS-1) Electrical Diagnostic (SLED) expert system is a continuous real time knowledge-based system to monitor and diagnose electrical system problems in the Spacelab. After fault isolation, the SLED system provides corrective procedures and advice to the ground-based console operator. The SLED system updates its knowledge about the status of Spacelab every 3 seconds. The system supports multiprocessing of malfunctions and allows multiple failures to be handled simultaneously. Information which is readily available via a mouse click includes: general information about the system and each component, the electrical schematics, the recovery procedures of each malfunction, and an explanation of the diagnosis.

  19. A method for knowledge acquisition in diagnostic expert system.

    PubMed

    Li, Weishi; Li, Aiping; Li, Shudong

    2015-01-01

    Knowledge acquisition plays very important role in the diagnostic expert system. It usually takes a long period to acquire disease knowledge using the traditional methods. To solve this problem, this paper describes relations between rough set theory and rule-based description of diseases, which corresponds to the process of knowledge acquisition of diagnostic expert system. Then the exclusive rules, inclusive rules and disease images of disease are built based on the PDES diagnosis model, and the definition of probability rule is put forward. At last, the paper presents the rule-based automated induction reasoning method, including exhaustive search, post-processing procedure, estimation for statistic test and the bootstrap and resampling methods. We also introduce automated induction of the rule-based description, which is used in our diseases diagnostic expert system. The experimental results not only show that rough set theory gives a very suitable framework to represent processes of uncertain knowledge extraction, but also that this method induces diagnostic rules correctly. This method can act as the assistant tool for development of diagnosis expert system, and has an extensive application in intelligent information systems.

  20. Alignment and diagnostics on the National Ignition Facility laser system

    SciTech Connect

    Bliss, E S; Boege, S J; Boyd, B; Demaret, R D; Feldman, M; Gates, A J; Holdener, F R; Hollis, J; Knopp, C F; McCarville, T J; Miller-Kamm; Rivera, W E; Salmon, J T; Severyn, J R; Thompson, C E; V J; Wang, D Y; Zacharias, R A

    1999-07-01

    The NIF laser system will be capable of delivering 1.8MJ of 351nm energy in 192 beams. Diagnostics instruments must measure beam energy, power vs. time, wavefront quality, and beam intensity profile to characterize laser performance. Alignment and beam diagnostics are also used to set the laser up for the high power shots and to isolate problems when performance is less than expected. Alignment and beam diagnostics are multiplexed to keep the costs under control. At the front-end the beam is aligned and diagnosed in an input sensor package. The output 1053nm beam is sampled by collecting a 0.1% reflection from an output beam sampler and directing it to the output sensor package (OSP). The OSP also gets samples from final focus lens reflection and samples from the transport spatial filter pinhole plane. The output 351nm energy is measured by a calorimeter collecting the signal from an off-axis diffractive beam-sampler. Detailed information on the focused beam in the high-energy target focal plane region is gathered in the precision diagnostics. This paper describes the design of the alignment and diagnostics on the NIF laser system.

  1. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOEpatents

    Vo-Dinh, Tuan

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  2. Development and application of diagnostic systems to achieve fault tolerance

    SciTech Connect

    King, R.W.; Singer, R.M.

    1989-01-01

    Much work is currently being done to develop and apply diagnostic systems that are tolerant to faulted conditions in the process being monitored and in the sensors that measure the critical parameters associated with the process. A fault-tolerant diagnostic system based on state-determination, pattern-recognition techniques is currently undergoing testing and evaluation in certain applications at the EBR-II reactor. Testing and operational experience with the system to date has shown a high degree of tolerance to sensor failures, while being sensitive to very slight changes in the plant operational state. This paper briefly mentions related work being done by others, and describes in more detail the pattern-recognition system and the results of the testing and operational experience with the system at EBR-II. 9 refs., 10 figs.

  3. Model-Based Assurance of Diagnostic Procedures for Complex Systems

    DTIC Science & Technology

    2010-10-01

    this knowledge for fault detection and isolation . In parallel developments, different communities have found value in analytic state-based models...that are used for fault detection and isolation . Figure 2. The schematic of the Electrical Power System (EPS) in the Advanced Diagnostics and

  4. Development of a Diagnostic System for Information Ethics Education

    ERIC Educational Resources Information Center

    Shiota, Shingo; Sakai, Kyohei; Kobayashi, Keita

    2016-01-01

    This paper presents a new diagnostic system for information ethics education. In order to educate children about information ethics, it is necessary to know the stage at which they currently are in terms of their knowledge of the same. Some actual condition surveys have been conducted by the Cabinet Office and the National Police Agency to gauge…

  5. Investigating reading disabilities using the rauding diagnostic system.

    PubMed

    Carver, R P; Clark, S W

    1998-01-01

    Should a measure of intelligence be replaced by a measure of listening in discrepancy definitions of reading disability? This question was answered using a newly developed diagnostic system, which is based on "rauding" theory and a causal model of reading achievement. In Study 1, diagnostic results were analyzed from 122 students in Grades 3 through 7 who took, via computer, a battery of tests called the computer Assisted Reading Diagnosis (CARD). In Study 2, 44 university students were given the CARD. In Study 3, the CARD was administered to 128 students in reading improvement classes at a suburban community college. From the results, it was concluded that the rauding diagnostic system consistently diagnoses disabilities in listening, decoding, and naming speed when they are theoretically needed to explain accuracy and rate disabilities of children and adults who are poor readers. It was recommended that (a) general intelligence, fluid intelligence, or IQ not be used to measure potential or to diagnose reading disabilities; (b) listening not be used to measure potential; (c) verbal knowledge aptitude, pronunciation aptitude, and cognitive speed aptitude be used to measure potential; and (d) the new rauding diagnostic system replace the system of diagnosing dyslexics, hyperlexics, and garden-variety poor readers.

  6. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  7. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  8. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... computer memory all incidents of engine operation with inadequate reductant injection or reductant...

  9. Treating childrens' severe behavior disorders: a behavioral diagnostic system.

    PubMed

    Cipani, E

    1994-12-01

    This paper presents a behaviorally-oriented four-category diagnostic system for assessing and diagnosing severe behavior disorders. The model categorizes problem behavior in terms of its environmental function. The possibility of behaviors serving multiple functions and the ramifications for treatment prescription are discussed.

  10. Mechanical considerations for MFTF-B plasma-diagnostic system

    SciTech Connect

    Thomas, S.R. Jr.; Wells, C.W.

    1981-10-19

    The reconfiguration of MFTF to a tandem mirror machine with thermal barriers has caused a significant expansion in the physical scope of plasma diagnostics. From a mechanical perspective, it complicates the plasma access, system interfaces, growth and environmental considerations. Conceptual designs characterize the general scope of the design and fabrication which remains to be done.

  11. Diagnostic Systems Approach to Watershed Management

    SciTech Connect

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to address unrelated

  12. A modern diagnostic approach for automobile systems condition monitoring

    NASA Astrophysics Data System (ADS)

    Selig, M.; Shi, Z.; Ball, A.; Schmidt, K.

    2012-05-01

    An important topic in automotive research and development is the area of active and passive safety systems. In general, it is grouped in active safety systems to prevent accidents and passive systems to reduce the impact of a crash. An example for an active system is ABS while a seat belt tensioner represents the group of passive systems. Current developments in the automotive industry try to link active with passive system components to enable a complete event sequence, beginning with the warning of the driver about a critical situation till the automatic emergency call after an accident. The cross-linking has an impact on the current diagnostic approach, which is described in this paper. Therefore, this contribution introduces a new diagnostic approach for automotive mechatronic systems. The concept is based on monitoring the messages which are exchanged via the automotive communication systems, e.g. the CAN bus. According to the authors' assumption, the messages on the bus are changing between faultless and faulty vehicle condition. The transmitted messages of the sensors and control units are different depending on the condition of the car. First experiments are carried and in addition, the hardware design of a suitable diagnostic interface is presented. Finally, first results will be presented and discussed.

  13. Final design of thermal diagnostic system in SPIDER ion source

    SciTech Connect

    Brombin, M. Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-11-15

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  14. Final design of thermal diagnostic system in SPIDER ion source

    NASA Astrophysics Data System (ADS)

    Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.

    2016-11-01

    The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.

  15. Performance of four computer-based diagnostic systems.

    PubMed

    Berner, E S; Webster, G D; Shugerman, A A; Jackson, J R; Algina, J; Baker, A L; Ball, E V; Cobbs, C G; Dennis, V W; Frenkel, E P

    1994-06-23

    Computer-based diagnostic systems are available commercially, but there has been limited evaluation of their performance. We assessed the diagnostic capabilities of four internal medicine diagnostic systems: Dxplain, Iliad, Meditel, and QMR. Ten expert clinicians created a set of 105 diagnostically challenging clinical case summaries involving actual patients. Clinical data were entered into each program with the vocabulary provided by the program's developer. Each of the systems produced a ranked list of possible diagnoses for each patient, as did the group of experts. We calculated scores on several performance measures for each computer program. No single computer program scored better than the others on all performance measures. Among all cases and all programs, the proportion of correct diagnoses ranged from 0.52 to 0.71, and the mean proportion of relevant diagnoses ranged from 0.19 to 0.37. On average, less than half the diagnoses on the experts' original list of reasonable diagnoses were suggested by any of the programs. However, each program suggested an average of approximately two additional diagnoses per case that the experts found relevant but had not originally considered. The results provide a profile of the strengths and limitations of these computer programs. The programs should be used by physicians who can identify and use the relevant information and ignore the irrelevant information that can be produced.

  16. Remote network control plasma diagnostic system for Tokamak T-10

    NASA Astrophysics Data System (ADS)

    Troynov, V. I.; Zimin, A. M.; Krupin, V. A.; Notkin, G. E.; Nurgaliev, M. R.

    2016-09-01

    The parameters of molecular plasma in closed magnetic trap is studied in this paper. Using the system of molecular diagnostics, which was designed by the authors on the «Tokamak T-10» facility, the radiation of hydrogen isotopes at the plasma edge is investigated. The scheme of optical radiation registration within visible spectrum is described. For visualization, identification and processing of registered molecular spectra a new software is developed using MatLab environment. The software also includes electronic atlas of electronic-vibrational-rotational transitions for molecules of protium and deuterium. To register radiation from limiter cross-section a network control system is designed using the means of the Internet/Intranet. Remote control system diagram and methods are given. The examples of web-interfaces for working out equipment control scenarios and viewing of results are provided. After test run in Intranet, the remote diagnostic system will be accessible through Internet.

  17. A nonlinear filtering process diagnostic system for the Space Station

    NASA Technical Reports Server (NTRS)

    Yoel, Raymond R.; Buchner, M.; Loparo, K.; Cubukcu, Arif

    1988-01-01

    A nonlinear filtering process diagnostic system, terrestrial simulation and real time implementation studies is presented. Possible applications to Space Station subsystem elements are discussed. A process diagnostic system using model based nonlinear filtering for systems with random structure was shown to provide improvements in stability, robustness, and overall performance in comparison to linear filter based systems. A suboptimal version of the nonlinear filter (zero order approximation filter, or ZOA filter) was used in simulation studies, initially, with a pressurized water reactor model and then with water/steam heat exchanger models. Finally, a real time implementation for leak detection in a water/steam heat exchanger was conducted using the ZOA filter and heat exchanger models.

  18. Measuring correlations of cold-atom systems using multiple quantum probes

    NASA Astrophysics Data System (ADS)

    Streif, Michael; Buchleitner, Andreas; Jaksch, Dieter; Mur-Petit, Jordi

    2016-11-01

    We present a nondestructive method to probe a complex quantum system using multiple-impurity atoms as quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its coupling to the probes. In particular, we show that measurements with two probes reveal the system's nonlocal two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic and numerical calculations for the Bose-Hubbard model in the weakly and strongly interacting regimes, under conditions relevant to ongoing experiments in cold-atom systems.

  19. Optical real-time defect-enhancement diagnostic system.

    PubMed

    Gaeta, C J; Mitchell, P V; Pepper, D M

    1992-12-15

    We have demonstrated an all-optical diagnostic system that enhances the observation of defects in periodic structures. This real-time technique employs a spatial light modulator as a smart-pixel array for information processing in the Fourier transform plane of a lens. The system also includes a phase-conjugate mirror for autoalignment and for correction of optical wave-front aberrations that are imparted on the object light by the smart-pixel processor and its associated optical train.

  20. IRMA: A tunable infrared multicomponent acquisition system for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Röpcke, J.; Mechold, L.; Käning, M.; Anders, J.; Wienhold, F. G.; Nelson, D.; Zahniser, M.

    2000-10-01

    A compact and transportable infrared multicomponent acquisition (IRMA) system based on infrared absorption spectroscopy has been developed for plasma diagnostics and control. The IRMA system contains four independent tunable diode lasers which can be temporally multiplexed and directed into plasma reactors or into a multipass cell for exhaust gas detection. Rapid scan software with real-time line shape analysis provides simultaneous measurements of the absolute concentrations of several molecular species.

  1. Probing TRAPPIST-1-like Systems with K2

    NASA Astrophysics Data System (ADS)

    Demory, Brice-Olivier; Queloz, Didier; Alibert, Yann; Gillen, Ed; Gillon, Michael

    2016-07-01

    The search for small planets orbiting late M dwarfs holds the promise of detecting Earth-size planets for which their atmospheres could be characterized within the next decade. The recent discovery of TRAPPIST-1 entertains hope that these systems are common around hosts located at the bottom of the main sequence. In this Letter, we investigate the ability of the repurposed Kepler mission (K2) to probe planetary systems similar to TRAPPIST-1. We perform a consistent data analysis of 189 spectroscopically confirmed M5.5 to M9 late M dwarfs from Campaigns 1-6 to search for planet candidates and inject transit signals with properties matching TRAPPIST-1b and c. We find no transiting planet candidates across our K2 sample. Our injection tests show that K2 is able to recover both TRAPPIST-1 planets for 10% of the sample only, mainly because of the inefficient throughput at red wavelengths resulting in Poisson-limited performance for these targets. Increasing injected planetary radii to match GJ 1214b’s size yields a recovery rate of 70%. The strength of K2 is its ability to probe a large number of cool hosts across the different campaigns, out of which the recovery rate of 10% may turn into bona fide detections of TRAPPIST-1-like systems within the next two years.

  2. Tumor homing peptides as molecular probes for cancer therapeutics, diagnostics and theranostics.

    PubMed

    Gautam, A; Kapoor, P; Chaudhary, K; Kumar, R; Raghava, G P S

    2014-01-01

    Cancer is one of the leading causes of mortality worldwide, with more than 10 million new cases each year. Despite the presence of several anticancer agents, cancer treatment is still not very effective. Main reasons behind this high mortality rate are the lack of screening tests for early diagnosis, and non-availability of tumor specific drug delivery system. Most of the current anticancer drugs are unable to differentiate between cancerous and normal cells, leading to systemic toxicity, and adverse side effects. In order to tackle this problem, a considerable progress has been made over the years to identify peptides, which specifically bind to the tumor cells, and tumor vasculature (tumor homing peptides). With the advances in phage display technology, and combinatorial libraries like one-bead one-compound library, several hundreds of tumor homing peptides, and their derivatives, which have potential to detect tumor in vivo, and deliver anticancer agents specifically to the tumor site, have been discovered. Currently, many tumor homing peptide-based therapies for cancer treatment and diagnosis are being tested in various phases of clinical trials. In this review, we have discussed the progress made so far in the identification of tumor homing peptides, and their applications in cancer therapeutics, diagnosis, and theranostics. In addition, a brief discussion on tumor homing peptide resource, and in silico designing of tumor homing peptides has also been provided.

  3. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  4. A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    Finger, J.T.; Mansure, A.J.; Prairie, M.R.

    1999-07-12

    In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

  5. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  6. Diagnostic probes for particle and molecule distributions in laser-generated plumes

    SciTech Connect

    Kimbrell, S.M.

    1990-10-17

    Laser microprobe analysis (LMA) offers good spatial and depth resolution for solid sampling of virtually any material. Coupled with numerous optical spectroscopic and mass spectrometric detection methods, LMA is a powerful analytical tool. Yet, fundamental understanding of the interaction between the laser and the sample surface leading to the formation of the high temperature plasma (plume) is far from complete. To better understand the process of plume formation, an imaging method based on acousto-optic laser beam deflection has been coupled with light scattering methods and absorption methods to record temporal and spatial maps of the particle and molecule distributions in the plume with good resolution. Because particles can make up a major fraction of the vaporized material under certain operating conditions, they can reflect a large loss of atomic signal for elemental analysis, even when using auxiliary excitation to further vaporized the particles. Characterization of the particle size distributions in plumes should provide insight into the vaporization process and information necessary for studies of efficient particle transfer. Light scattering methods for particle size analysis based on the Mie Theory are used to determine the size of particles in single laser-generated plumes. The methods used, polarization ratio method and dissymmetry ratio method, provide good estimates of particle size with good spatial and temporal resolution for this highly transient system. Large particles, on the order of 0.02-0.2{mu}m in radius, were observed arising directly from the sample surface and from condensation.

  7. ISHM-oriented adaptive fault diagnostics for avionics based on a distributed intelligent agent system

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Zhong, Zhengqiang; Xu, Lei

    2015-10-01

    In this paper, an integrated system health management-oriented adaptive fault diagnostics and model for avionics is proposed. With avionics becoming increasingly complicated, precise and comprehensive avionics fault diagnostics has become an extremely complicated task. For the proposed fault diagnostic system, specific approaches, such as the artificial immune system, the intelligent agents system and the Dempster-Shafer evidence theory, are used to conduct deep fault avionics diagnostics. Through this proposed fault diagnostic system, efficient and accurate diagnostics can be achieved. A numerical example is conducted to apply the proposed hybrid diagnostics to a set of radar transmitters on an avionics system and to illustrate that the proposed system and model have the ability to achieve efficient and accurate fault diagnostics. By analyzing the diagnostic system's feasibility and pragmatics, the advantages of this system are demonstrated.

  8. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    NASA Astrophysics Data System (ADS)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  9. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    SciTech Connect

    Xiao, Shumei; Zang, Qing Han, Xiaofeng; Wang, Tengfei; Zhao, Junyu; Yu, Jin

    2016-07-15

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  10. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    PubMed

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  11. Automatization of hardware configuration for plasma diagnostic system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R. D.; Zabolotny, W.; Linczuk, P.; Chernyshova, M.; Czarski, T.; Malinowski, K.

    2016-09-01

    Soft X-ray plasma measurement systems are mostly multi-channel, high performance systems. In case of the modular construction it is necessary to perform sophisticated system discovery in parallel with automatic system configuration. In the paper the structure of the modular system designed for tokamak plasma soft X-ray measurements is described. The concept of the system discovery and further automatic configuration is also presented. FCS application (FMC/ FPGA Configuration Software) is used for running sophisticated system setup with automatic verification of proper configuration. In order to provide flexibility of further system configurations (e.g. user setup), common communication interface is also described. The approach presented here is related to the automatic system firmware building presented in previous papers. Modular construction and multichannel measurements are key requirement in term of SXR diagnostics with use of GEM detectors.

  12. Hard real-time beam scheduler enables adaptive images in multi-probe systems

    NASA Astrophysics Data System (ADS)

    Tobias, Richard J.

    2014-03-01

    Real-time embedded-system concepts were adapted to allow an imaging system to responsively control the firing of multiple probes. Large-volume, operator-independent (LVOI) imaging would increase the diagnostic utility of ultrasound. An obstacle to this innovation is the inability of current systems to drive multiple transducers dynamically. Commercial systems schedule scanning with static lists of beams to be fired and processed; here we allow an imager to adapt to changing beam schedule demands, as an intelligent response to incoming image data. An example of scheduling changes is demonstrated with a flexible duplex mode two-transducer application mimicking LVOI imaging. Embedded-system concepts allow an imager to responsively control the firing of multiple probes. Operating systems use powerful dynamic scheduling algorithms, such as fixed priority preemptive scheduling. Even real-time operating systems lack the timing constraints required for ultrasound. Particularly for Doppler modes, events must be scheduled with sub-nanosecond precision, and acquired data is useless without this requirement. A successful scheduler needs unique characteristics. To get close to what would be needed in LVOI imaging, we show two transducers scanning different parts of a subjects leg. When one transducer notices flow in a region where their scans overlap, the system reschedules the other transducer to start flow mode and alter its beams to get a view of the observed vessel and produce a flow measurement. The second transducer does this in a focused region only. This demonstrates key attributes of a successful LVOI system, such as robustness against obstructions and adaptive self-correction.

  13. Periodontal probing systems: a review of available equipment.

    PubMed

    Ramachandra, Srinivas Sulugodu; Mehta, Dhoom Singh; Sandesh, Nagarajappa; Baliga, Vidya; Amarnath, Janardhan

    2011-03-01

    The periodontal pocket, one of the definitive signs of periodontal disease, is the most common parameter to be assessed by dental clinicians. Periodontal probes have been the instruments most commonly used to locate and measure these pockets. Regular use of periodontal probes in routine dental practice facilitates and increases the accuracy of the process of diagnosing the condition, formulating the treatment, and predicting the outcome of therapy. Advances in the field of periodontal probing have led to the development of probes that may help reduce errors in determining this parameter used to define the state of active periodontal disease. One such advance is the emergence of probes that purportedly assess periodontal disease activity noninvasively. The selection of periodontal probe depends on the type of dental practice: a general dental practitioner would require first- or second-generation probes, while third- through fifth-generation probes generally are used in academic and research institutions as well as specialty practices.

  14. Diagnostic scoring system of Hirschsprung's disease in the neonatal period.

    PubMed

    Guo, Weihong; Zhang, Qinming; Chen, Yongwei; Hou, Dawei

    2006-07-01

    Eighty to ninety percent of Hirschsprung's disease (HD) patients present in newborns. However, the diagnosis of HD in the neonatal period remains difficult. Our present study aims to propose a diagnostic scoring system and hope this will increase early diagnosis of HD and avoid unnecessary rectal biopsy. In the first study period, 57 suspected HD patients (0-3 months) completed our predetermined study protocol in which barium enema (BE), rectal manometry (RM) and full-thickness rectal biopsy were performed. Symptoms, signs and investigations were analysed for their correlation with HD diagnosis. A HD diagnostic scoring system was developed according to the statistical results and was assessed in 74 patients in the second study period. Forty-five patients were diagnosed with HD in the first study period. A HD scoring system was developed in which delayed meconium, tight anus, BE and RM were diagnostic factors. A cut-off point of 3 provided 84% of HD patients score >3, whereas 75% non-HD patients score system may help to select patients for further invasive investigation so that unnecessary biopsy can be avoided.

  15. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    NASA Astrophysics Data System (ADS)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  16. The Diagnostic Value of Skin Disease Diagnosis Expert System.

    PubMed

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Arabkermany, Zahra; Gilasi, Hamidreza

    2016-02-01

    Evaluation is a necessary measure to ensure the effectiveness and efficiency of all systems, including expert systems. The aim of this study was to determine the diagnostic value of expert system for diagnosis of complex skin diseases. A case-control study was conducted in 2015 to determine the diagnostic value of an expert system. The study population included patients who were referred to Razi Specialized Hospital, affiliated to Tehran University of Medical Sciences. The control group was selected from patients without the selected skin diseases. Data collection tool was a checklist of clinical signs of diseases including pemphigus vulgaris, lichen planus, basal cell carcinoma, melanoma, and scabies. The sample size formula estimated 400 patients with skin diseases selected by experts and 200 patients without the selected skin diseases. Patient selection was undertaken with randomized stratified sampling and their sign and symptoms were logged into the system. Physician's diagnosis was determined as the gold standard and was compared with the diagnosis of expert system by SPSS software version 16 and STATA. Kappa statistics, indicators of sensitivity, specificity, accuracy and confidence intervals were calculated for each disease. An accuracy of 90% was considered appropriate. Comparing the results of expert system and physician's diagnosis at the evaluation stage showed an accuracy of 97.1%, sensitivity of 97.5% and specificity of 96.5% The Kappa test indicated a high agreement of 93.6%. The expert system can diagnose complex skin diseases. Development of such systems is recommended to identify all skin diseases.

  17. Computer Vision Malaria Diagnostic Systems-Progress and Prospects.

    PubMed

    Pollak, Joseph Joel; Houri-Yafin, Arnon; Salpeter, Seth J

    2017-01-01

    Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.

  18. The Jupiter System Observer: Probing the Foundations of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Senske, D.; Prockter, L.; Collins, G.; Cooper, J.; Hendrix, A.; Hibbitts, K.; Kivelson, M.; Orton, G.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.; Kwok, J.; Spilker, T.; Tan-Wang, G.

    2007-12-01

    Galileo's observations in the 1600's of the dynamic system of Jupiter and its moons launched a revolution in understanding the way planetary systems operate. Now, some 400 years later, the discovery of extra solar planetary systems with Jupiter-sized bodies has led to a similar revolution in thought regarding how these systems form and evolve. From the time of Galileo, the Jovian system has been viewed as a solar system in miniature, providing a laboratory to study, diverse and dynamic processes in a single place. The icy Galilean satellites provide a window into solar system history by preserving in their cratering records a chronology dating back nearly 4.5 By and extending to the present. The continuously erupting volcanoes of Io may provide insight into the era when magma oceans were common. The discovery of an internally generated magnetic field at Ganymede, one of only three terrestrial bodies to possess such a field, is a place to gain insight as to how dynamos work. The confirmation and characterization of icy satellite subsurface oceans impacts the way habitability is considered. Understanding the composition and volatile inventory of Jupiter can shed light into how planets accrete from the solar nebulae. Finally, like our sun, Jupiter influences its system through its extensive magnetic field. In early 2007, NASA's Science Mission Directorate formed four Science Definition Teams (SDTs) to formulate science goals and objectives in anticipation of the initiation of a flagship-class mission to the outer solar system (Europa, Jupiter system, Titan and Enceladus). The Jupiter System Observer (JSO) mission concept emphasizes overall Jupiter system science: 1) Jupiter and its atmosphere, 2) the geology and geophysics of the Galilean satellites (Io, Europa, Ganymede and Callisto), 3) the magnetosphere environment - both Jupiter's and Ganymede's&pand 4) interactions within the system. Focusing on the unique geology, presence of an internal magnetic field and

  19. Programmable bio-nano-chip system for saliva diagnostics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Nicolaos; De La Garza, Richard; Simmons, Glennon W.; McRae, Michael P.; Wong, Jorge; Kosten, Thomas R.; Miller, Craig S.; Ebersole, Jeffrey L.; McDevitt, John

    2014-06-01

    This manuscript describes programmable Bio-Nano-Chip (p-BNC) approach that serves as miniaturized assay platform designed for the rapid detection and quantitation of multiple analytes in biological fluids along with the specific applications in salivary diagnostics intended for the point of need (PON). Included here are oral fluid-based tests for local periodontal disease, systemic cardiac disease and multiplexed tests for drugs of abuse.

  20. ISABELLE accelerator software, control system, and beam diagnostic philosophy

    SciTech Connect

    Cornacchia, M.; Humphrey, J.W.; Niederer, J.; Poole, J.H.

    1981-01-01

    The ISABELLE Project combines two large proton accelerators with two storage rings in the same facility using superconducting magnet technology. This combination leads to severe constraints on beam loss in magnets and involves complex treatment of magnetic field imperfections and correction elements. The consequent demands placed upon beam diagnostics, accelerator model programs, and the computer oriented control system are discussed in terms of an illustrative operation scenario.

  1. Synthetic fluorescent probes for studying copper in biological systems

    PubMed Central

    Cotruvo, Joseph A.; Aron, Allegra T.; Ramos-Torres, Karla M.; Chang, Christopher J.

    2015-01-01

    The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals. PMID:25692243

  2. Radial diagnostics in the system of ecological monitoring in trauma

    NASA Astrophysics Data System (ADS)

    Siniakova, Olga G.; Ishmuhametov, Airat I.; Proscurina, Gulnar B.; Sharifullin, Faad A.

    1997-08-01

    Both creating of effective identification and evaluation mechanisms of environmental factors hazardous for health, and revealing their influence degree on the human health play an important role in ecological monitoring. The grate importance in a solution of many ecological problems belongs to medicine, first of all, to its social-preventive brunch. In this reference trauma remains the extremely important problem. Annually more than 10 million persons sustain traumas. Alongside with occupational, transport trauma, a significant number of trauma cases occur due to the impact of various ecological factors, including natural disasters, mass poisonings and other reasons. Trauma results in severe changes in human body organs and systems; the timely detection and correct evaluation of these changes are the key points for the choice of treatment. Among diagnostic methods used for this purpose, the methods of radial diagnostics play an important role. Various radial methods-- x-ray, radionuclide, ultrasonic, magnetic resonance imaging, computer tomography (CT)--are used to detect the functional and structural changes of vital organs and systems in trauma. Each of these methods has its advantages and shortages. The reported study was devoted to the analysis of using the photon systems (gamma-camera and computer tomography) in application of radionuclide and CT methods of radial diagnostics in trauma.

  3. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    SciTech Connect

    Zhu, Y. L.; Xie, J. L. Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-15

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  4. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  5. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited).

    PubMed

    Zhu, Y L; Xie, J L; Yu, C X; Zhao, Z L; Gao, B X; Chen, D X; Liu, W D; Liao, W; Qu, C M; Luo, C; Hu, X; Spear, A G; Luhmann, N C; Domier, C W; Chen, M; Ren, X; Tobias, B J

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  6. Diagnostic reasoning in digital systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thearling, Kurt Henry

    1987-01-01

    Described is an efficient method for fault diagnosis in digital systems based on the technique of reasoning. The methodology operates on the observed erroneous behavior and the structure of the system. The behavior consists of the error(s) observed on the circuit's output lines and specific values on the circuit's input lines. The techniques described improve on previously published research on diagnostic reasoning in two ways. Previous work has stressed system independent techniques which could be used to diagnose any faulty system whose structure can be represented. By concentrating on the specific case of diagnosing faulty digital circuits, it is possible to simplify the representation of the structure of the system. This representation, in the form of an AND/OR fault tree, efficiently abstracts the structure of a faulty digital system. More importantly, a method for partitioning the digital system is introduced which can considerably reduce the runtime complexity of a diagnosis.

  7. [Development of expert diagnostic system for common respiratory diseases].

    PubMed

    Xu, Wei-hua; Chen, You-ling; Yan, Zheng

    2014-03-01

    To develop an internet-based expert diagnostic system for common respiratory diseases. SaaS system was used to build architecture; pattern of forward reasoning was applied for inference engine design; ASP.NET with C# from the tool pack of Microsoft Visual Studio 2005 was used for website-interview medical expert system.The database of the system was constructed with Microsoft SQL Server 2005. The developed expert system contained large data memory and high efficient function of data interview and data analysis for diagnosis of various diseases.The users were able to perform this system to obtain diagnosis for common respiratory diseases via internet. The developed expert system may be used for internet-based diagnosis of various respiratory diseases,particularly in telemedicine setting.

  8. Diagnostic reasoning in digital systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Thearling, Kurt Henry

    1987-01-01

    Described is an efficient method for fault diagnosis in digital systems based on the technique of reasoning. The methodology operates on the observed erroneous behavior and the structure of the system. The behavior consists of the error(s) observed on the circuit's output lines and specific values on the circuit's input lines. The techniques described improve on previously published research on diagnostic reasoning in two ways. Previous work has stressed system independent techniques which could be used to diagnose any faulty system whose structure can be represented. By concentrating on the specific case of diagnosing faulty digital circuits, it is possible to simplify the representation of the structure of the system. This representation, in the form of an AND/OR fault tree, efficiently abstracts the structure of a faulty digital system. More importantly, a method for partitioning the digital system is introduced which can considerably reduce the runtime complexity of a diagnosis.

  9. Application of ELN cosmid probes using fluorescence in situ hybridization (FISH) towards a clinical diagnostic test for Williams syndrome

    SciTech Connect

    Lowery, M.; Brothman, L.; Leonard, C.

    1994-09-01

    Williams syndrome (WS) is characterized by mental deficiency, gregarious personalities, dysmorphic facies, supravalvular aortic stenosis (SVAS), and idiopathic infantile hypercalcemia. Expression of the phenotype is variable. Deletions including an elastin allele (ELN) are thought to be the basis of the connective tissue and vascular abnormalities in WS patients. Patients with WS are hemizygous for ELN, exhibiting a submicroscopic deletion at 7q11.23 detected by FISH. To substantiate the hemizygosity hypothesis and define molecular cytogenetics in patients with familial and sporadic WS, a series of 71 patients were evaluated. EBV-transformed lymphocytes from 48 selected patients were cultured and harvested according to cytogenetic protocol. Cosmids containing ELN were biotinylated and hybridized to metaphase cells by routine procedures. In addition, an alpha-satellite probe for chromosome 7 was included in hybridizations as an internal control. Thirty-one of these 48 patients (65%) showed a deletion in one ELN allele by FISH. Negative patients were shown to be non-affected family members or patients in the {open_quotes}uncertain{close_quotes} category (expressing some, but not all features characteristic of WS). The FISH data were consistent with molecular analyses of ELN deletions. Twenty-three additional patients were referred to confirm or rule out a diagnosis of WS. Nine patients (39%) showed a deletion of ELN by FISH. Correlations between phenotype and FISH results are in progress. These results suggest that a rapid, accurate diagnostic technique for WS using FISH can be implemented in the cytogenetics laboratory as a routine clinical service. Identification of the deletion in patients suspected of having WS will facilitate classification of these patients and improve clinical management.

  10. Laboratory plasma probe studies

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    Diagnostic experiments performed in a collisionless plasma using CO2 as the working gas are described. In particular, simultaneous measurements that have been performed by means of Langmuir- and RF-probes are presented. A resonance occurring above the parallel resonance in the frequency characteristic of a two electrode system is interpreted as being due to the resonant excitation of electroacoustic waves.

  11. Expert system applications in support of system diagnostics and prognostics at EBR-II

    SciTech Connect

    Lehto, W.K.; Gross, K.C.; Argonne National Lab., IL )

    1989-01-01

    Expert systems have been developed to aid in the monitoring and diagnostics of the Experimental Breeder Reactor-II (EBR-II) at the Idaho National Engineering Laboratory (INEL) in Idaho Falls, Idaho. Systems have been developed for failed fuel surveillance and diagnostics and reactor coolant pump monitoring and diagnostics. A third project is being done jointly by ANL-W and EG G Idaho to develop a transient analysis system to enhance overall plant diagnostic and prognostic capability. The failed fuel surveillance and diagnosis system monitors, processes, and interprets information from nine key plant sensors. It displays to the reactor operator diagnostic information needed to make proper decisions regarding technical specification conformance during reactor operation with failed fuel. 8 refs., 9 figs., 2 tabs.

  12. A local area network diagnostic assistant expert system

    SciTech Connect

    Mniszewski, S.M.; Peter, E.A.; Lloyd, S.C.

    1988-01-01

    We are currently developing a stand-alone Local Area Network (LAN) Diagnostic Assistant expert system to assist system managers in diagnosing network-related hardware and software malfunctions. The goal of this system is to aid in identifying malfunctions associated with a single workstation, a group of workstations, communications between workstations, and general statements of the ''Ethernet not working'' type of problems. The system consists of a geographical editor for data entry and modification of LAN information and a diagnostic environment for solving problems. Much work has been done in laying the initial framework for the system in the areas of LAN representation, the problem-solving strategy, and the user interface. We used a hierarchical frame-based representation for the LAN. Information for the strategy mechanism was gathered through case studies and background information. Ideas from heuristic classification were incorporated into the strategy mechanism. As in any system development, a majority of the time was spent developing a good user interface. We used graphics renditions wherever natural and minimized keyboard input by using mouse-selectable buttons and menus. Currently, a prototype version of the system is available that assists with some single-workstation problems. 7 refs., 10 figs.

  13. Design of Thomson scattering diagnostic system on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  14. Design of Thomson scattering diagnostic system on J-TEXT.

    PubMed

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  15. Design of Thomson scattering diagnostic system on J-TEXT

    SciTech Connect

    Zhou, Yinan; Gao, Li Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-15

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  16. Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System

    NASA Astrophysics Data System (ADS)

    Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.

  17. The Impact of a Line Probe Assay Based Diagnostic Algorithm on Time to Treatment Initiation and Treatment Outcomes for Multidrug Resistant TB Patients in Arkhangelsk Region, Russia.

    PubMed

    Eliseev, Platon; Balantcev, Grigory; Nikishova, Elena; Gaida, Anastasia; Bogdanova, Elena; Enarson, Donald; Ornstein, Tara; Detjen, Anne; Dacombe, Russell; Gospodarevskaya, Elena; Phillips, Patrick P J; Mann, Gillian; Squire, Stephen Bertel; Mariandyshev, Andrei

    2016-01-01

    In the Arkhangelsk region of Northern Russia, multidrug-resistant (MDR) tuberculosis (TB) rates in new cases are amongst the highest in the world. In 2014, MDR-TB rates reached 31.7% among new cases and 56.9% among retreatment cases. The development of new diagnostic tools allows for faster detection of both TB and MDR-TB and should lead to reduced transmission by earlier initiation of anti-TB therapy. The PROVE-IT (Policy Relevant Outcomes from Validating Evidence on Impact) Russia study aimed to assess the impact of the implementation of line probe assay (LPA) as part of an LPA-based diagnostic algorithm for patients with presumptive MDR-TB focusing on time to treatment initiation with time from first-care seeking visit to the initiation of MDR-TB treatment rather than diagnostic accuracy as the primary outcome, and to assess treatment outcomes. We hypothesized that the implementation of LPA would result in faster time to treatment initiation and better treatment outcomes. A culture-based diagnostic algorithm used prior to LPA implementation was compared to an LPA-based algorithm that replaced BacTAlert and Löwenstein Jensen (LJ) for drug sensitivity testing. A total of 295 MDR-TB patients were included in the study, 163 diagnosed with the culture-based algorithm, 132 with the LPA-based algorithm. Among smear positive patients, the implementation of the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 50 and 66 days compared to the culture-based algorithm (BacTAlert and LJ respectively, p<0.001). In smear negative patients, the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 78 days when compared to the culture-based algorithm (LJ, p<0.001). However, several weeks were still needed for treatment initiation in LPA-based algorithm, 24 days in smear positive, and 62 days in smear negative patients. Overall treatment outcomes were better in LPA-based algorithm

  18. The Impact of a Line Probe Assay Based Diagnostic Algorithm on Time to Treatment Initiation and Treatment Outcomes for Multidrug Resistant TB Patients in Arkhangelsk Region, Russia

    PubMed Central

    Eliseev, Platon; Balantcev, Grigory; Nikishova, Elena; Gaida, Anastasia; Bogdanova, Elena; Enarson, Donald; Ornstein, Tara; Detjen, Anne; Dacombe, Russell; Gospodarevskaya, Elena; Phillips, Patrick P. J.; Mann, Gillian; Squire, Stephen Bertel; Mariandyshev, Andrei

    2016-01-01

    Background In the Arkhangelsk region of Northern Russia, multidrug-resistant (MDR) tuberculosis (TB) rates in new cases are amongst the highest in the world. In 2014, MDR-TB rates reached 31.7% among new cases and 56.9% among retreatment cases. The development of new diagnostic tools allows for faster detection of both TB and MDR-TB and should lead to reduced transmission by earlier initiation of anti-TB therapy. Study Aim The PROVE-IT (Policy Relevant Outcomes from Validating Evidence on Impact) Russia study aimed to assess the impact of the implementation of line probe assay (LPA) as part of an LPA-based diagnostic algorithm for patients with presumptive MDR-TB focusing on time to treatment initiation with time from first-care seeking visit to the initiation of MDR-TB treatment rather than diagnostic accuracy as the primary outcome, and to assess treatment outcomes. We hypothesized that the implementation of LPA would result in faster time to treatment initiation and better treatment outcomes. Methods A culture-based diagnostic algorithm used prior to LPA implementation was compared to an LPA-based algorithm that replaced BacTAlert and Löwenstein Jensen (LJ) for drug sensitivity testing. A total of 295 MDR-TB patients were included in the study, 163 diagnosed with the culture-based algorithm, 132 with the LPA-based algorithm. Results Among smear positive patients, the implementation of the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 50 and 66 days compared to the culture-based algorithm (BacTAlert and LJ respectively, p<0.001). In smear negative patients, the LPA-based algorithm was associated with a median decrease in time to MDR-TB treatment initiation of 78 days when compared to the culture-based algorithm (LJ, p<0.001). However, several weeks were still needed for treatment initiation in LPA-based algorithm, 24 days in smear positive, and 62 days in smear negative patients. Overall treatment outcomes

  19. Diagnostic FISH probes for del(17)(p11.2p11.2) associated with Smith-Magenis syndrome should contain the RAI1 gene.

    PubMed

    Vlangos, Christopher N; Wilson, Meredith; Blancato, Jan; Smith, Ann C M; Elsea, Sarah H

    2005-01-30

    Smith-Magenis syndrome (SMS) is a mental retardation syndrome with distinctive behavioral characteristics, dysmorphic features, and congenital anomalies usually associated with an interstitial deletion of chromosome 17p11.2. While high quality G-banding will identify most SMS patients, fluorescent in situ hybridization (FISH) is the recommended test for confirmation of an SMS diagnosis. Recently, haploinsufficiency of the RAI1 gene due to deletion or mutation was determined to be the likely cause of SMS. All diagnostic FISH probes available commercially contain the FLII gene and are approximately 580 kb centromeric to RAI1. We present two patients with SMS who have interstitial deletions at 17p11.2 but are not deleted for currently available commercial FISH probes that include FLII; both patients have deletions that are demonstrated with probes containing the RAI1 gene. We recommend that for diagnostic accuracy, all future FISH tests for SMS be performed with probes containing the RAI1 gene, as some atypical deletions in the region critical to the SMS phenotype will otherwise be missed.

  20. Portable Knowledge-Based Diagnostic And Maintenance Systems

    NASA Astrophysics Data System (ADS)

    Darvish, John; Olson, Noreen S.

    1989-03-01

    It is difficult to diagnose faults and maintain weapon systems because (1) they are highly complex pieces of equipment composed of multiple mechanical, electrical, and hydraulic assemblies, and (2) talented maintenance personnel are continuously being lost through the attrition process. To solve this problem, we developed a portable diagnostic and maintenance aid that uses a knowledge-based expert system. This aid incorporates diagnostics, operational procedures, repair and replacement procedures, and regularly scheduled maintenance into one compact, 18-pound graphics workstation. Drawings and schematics can be pulled up from the CD-ROM to assist the operator in answering the expert system's questions. Work for this aid began with the development of the initial knowledge-based expert system in a fast prototyping environment using a LISP machine. The second phase saw the development of a personal computer-based system that used videodisc technology to pictorially assist the operator. The current version of the aid eliminates the high expenses associated with videodisc preparation by scanning in the art work already in the manuals. A number of generic software tools have been developed that streamlined the construction of each iteration of the aid; these tools will be applied to the development of future systems.

  1. Initial Evaluation of a Subjective Bayesian Diagnostic System

    PubMed Central

    Gustafson, David H.; Kestly, John J.; Greist, John H.; Jensen, Norman M.

    1971-01-01

    A computer-aided diagnostic system using subjectively estimated probabilities for symptom—disease relationships is described and applied to a sample of 200 cases divided among hypothyroid, euthyroid, and hyperthyroid diagnoses. The subjective system is evaluated by comparing it with one using actuarial probabilities developed in standard fashion and one using separate actuarial probabilities for suspected hypothyroid and suspected hyperthyroid categories. Analysis of the data indicates that the subjective model's developmental cost and time requirement is much lower, while it performs as well as either actuarial model. PMID:4937847

  2. Development of a reciprocating probe servomotor control system with real-time feedback on plasma position for the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Kuang, A. Q.; Labombard, B.; Burke, W.

    2015-11-01

    Reciprocating probe drives are one of the diagnostic workhorses in the boundary of magnetic confinement fusion experiments. The probe is scanned into an exponentially increasing heat flux, which demands a prompt and precise turn around to maintain probe integrity. A new linear servomotor controlled reciprocating drive utilizing a commercial linear servomotor and drive controller has been developed for the Alcator C-Mod tokamak. The quick response of the controller (able to apply an impulse of 50A in about 1ms) along with real-time plasma measurements from a Mirror Langmuir Probe (MLP) allows for real-time control of the probe trajectory based on plasma conditions at the probe tip. Since the primary concern for probe operation is overheating, an analog circuit has been created that computes the surface temperature of the probe from the MLP measurements. The probe can be programmed to scan into the plasma at various times and then turns around when the computed surface temperature reaches a set threshold, maximizing the scan depth into the plasma while avoiding excessive heating. Design, integration, and first measurements with this new system will be presented. This work was supported by U.S. Department of Energy award DE-FC02-99ER54512, using Alcator C-Mod, A DOE SC User Facility.

  3. Development of a system for aerodynamic fast-response probe measurements

    NASA Astrophysics Data System (ADS)

    Gossweiler, C.; Humm, H.; Kupferschmied, P.

    This paper describes the development of a fast-response probe measurement system. Small pressure probes have been equipped with up to 4 miniature pressure sensors. The high frequency response of such sensors allied to minimized cavities between the flow and the sensing diaphragm enables the probe system to take measurements up to 40 kHz bandwidth (typical blade passing frequency: 2-10 kHz). First results of investigations on the aerodynamic of high frequency response measurement probes are presented including experiments in a water towing channel with unsteady flows around different probe geometries. The packaging of the sensor chip into the probe, the properties of the sensors and the measurement errors are examined. Probe calibration methods and aerodynamic evaluation procedures are discussed, followed by a presentation of the data acquisition system and of the data evaluation software. Measurements in a radial compressor test rig and in a fully developed pipe flow are shown as applications.

  4. Process diagnostics and monitoring using the multipole resonance probe in an inhomogeneous plasma for ion-assisted deposition of optical coatings

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Harhausen, J.; Lapke, M.; Storch, R.; Brinkmann, R. P.; Foest, R.; Ohl, A.; Awakowicz, P.

    2013-08-01

    The application of a multipole resonance probe (MRP) for diagnostic and monitoring purposes in a plasma ion-assisted deposition (PIAD) process is reported. Recently, the MRP was proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2011 Plasma Sources Sci. Technol. 20 042001). The major advantages of the MRP are its robustness against dielectric coating and its high sensitivity to measure the electron density. The PIAD process investigated is driven by the advanced plasma source (APS), which generates an ion beam in the deposition chamber for the production of high performance optical coatings. With a background neutral pressure of p0 ˜ 20 mPa the plasma expands from the source region into the recipient, leading to an inhomogeneous spatial distribution. Electron density and electron temperature vary over the distance from substrate (ne ˜ 109 cm-3 and Te,eff ˜ 2 eV) to the APS (ne ≳ 1012 cm-3 and Te,eff ˜ 20 eV) (Harhausen et al 2012 Plasma Sources Sci. Technol. 21 035012). This huge variation of the plasma parameters represents a big challenge for plasma diagnostics to operate precisely for all plasma conditions. The results obtained by the MRP are compared to those from a Langmuir probe chosen as reference diagnostics. It is demonstrated that the MRP is suited for the characterization of the PIAD plasma as well as for electron density monitoring. The latter aspect offers the possibility to develop new control schemes for complex industrial plasma environments.

  5. ORION OPTICAL DIAGNOSTIC SYSTEMS Construction and commissioning progress

    NASA Astrophysics Data System (ADS)

    Palmer, J. B. A.; Drew, D.; Fyrth, J.; Hill, M. P.; Kemshall, P.; Oades, K.; Harvey, E.; Gumbrell, E. T.

    2012-10-01

    The Orion facility provides a unique combined long- and short-pulse laser capability. We report on the progress in constructing a comprehensive plasma optical diagnostic suite for the facility, developed for a range of warm dense matter and other materials' properties experiments. The first VISAR imaging line for the suite is due to be commissioned in 2012 and its progress will be reported. The system consists of configurable optical elements mounted on a TIM, relay optics to an optical table, optics to direct the light through a VISAR bed onto an optical streak camera and the infrastructure systems to provide remote control and services. Due to the operational model of Orion the diagnostic must have comprehensive remote control for its set up and alignment. This makes the system design more complicated than otherwise. The sub-systems required to give the degree of remote control required will be described. A modified version of the suite's ASBO imaging line was used in 2011 to support the commissioning of Orion's long- and short-pulse laser beam lines by imaging optical emission from laser targets. The set up of this system and the data it recorded with an optical streak camera during a short pulse experiment will be presented.

  6. Model-based diagnostics of gas turbine engine lubrication systems

    SciTech Connect

    Byington, C.S.

    1998-09-01

    The objective of the current research was to develop improved methodology for diagnosing anomalies and maintaining oil lubrication systems for gas turbine engines. The effort focused on the development of reasoning modules that utilize the existing, inexpensive sensors and are applicable to on-line monitoring within the full-authority digital engine controller (FADEC) of the engine. The target application is the Enhanced TF-40B gas turbine engine that powers the Landing Craft Air Cushion (LCAC) platform. To accomplish the development of the requisite data fusion algorithms and automated reasoning for the diagnostic modules, Penn State ARL produced a generic Turbine Engine Lubrication System Simulator (TELSS) and Data Fusion Workbench (DFW). TELSS is a portable simulator code that calculates lubrication system parameters based upon one-dimensional fluid flow resistance network equations. Validation of the TF- 40B modules was performed using engineering and limited test data. The simulation model was used to analyze operational data from the LCAC fleet. The TELSS, as an integral portion of the DFW, provides the capability to experiment with combinations of variables and feature vectors that characterize normal and abnormal operation of the engine lubrication system. The model-based diagnostics approach is applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication systems.

  7. Model-Based Diagnostics for Propellant Loading Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Foygel, Michael; Smelyanskiy, Vadim N.

    2011-01-01

    The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are necessary to quickly identify when a fault occurs, so that recovery actions can be taken or an abort procedure can be initiated. Model-based diagnosis solutions, established using an in-depth analysis and understanding of the underlying physical processes, offer the advanced capability to quickly detect and isolate faults, identify their severity, and predict their effects on system performance. We develop a physics-based model of a cryogenic propellant loading system, which describes the complex dynamics of liquid hydrogen filling from a storage tank to an external vehicle tank, as well as the influence of different faults on this process. The model takes into account the main physical processes such as highly nonequilibrium condensation and evaporation of the hydrogen vapor, pressurization, and also the dynamics of liquid hydrogen and vapor flows inside the system in the presence of helium gas. Since the model incorporates multiple faults in the system, it provides a suitable framework for model-based diagnostics and prognostics algorithms. Using this model, we analyze the effects of faults on the system, derive symbolic fault signatures for the purposes of fault isolation, and perform fault identification using a particle filter approach. We demonstrate the detection, isolation, and identification of a number of faults using simulation-based experiments.

  8. Assembly and characterization of a fluorescence lifetime spectroscopy system for skin lesions diagnostic

    NASA Astrophysics Data System (ADS)

    Saito Nogueira, Marcelo; Texiera Rosa, Ramon Gabriel; Pratavieira, Sebastião.; D´Almeida, Camila de Paula; Kurachi, Cristina

    2015-06-01

    The fluorescence spectra and fluorescence lifetime analysis in biological tissues has been presented as a technique of a great potential for tissue characterization for diagnostic purposes. The objective of this study is to assemble and characterize a fluorescence lifetime spectroscopy system for diagnostic of clinically similar skin lesions in vivo. The fluorescence lifetime measurements were performed using the Time Correlated Single Photon Counting (Becker & Hickl, Berlin, Germany) technique. Two lasers, one emitting at 378 nm and another at 445 nm, are used for excitation with 20, 50 and 80 MHz repetition rate. A bifurcated optical fiber probe conducts the excitation light to the sample, the collected light is transmitted through bandpass filters and delivered to a hybrid photomultiplier tube detector. The fluorescence spectra were obtained by using a portable spectrometer (Ocean Optics USB-2000-FLG) with the same excitation sources. An instrument response function of about 300 ps was obtained and the spectrum and fluorescence lifetime of a standard fluorescent molecule (Rhodamine 6G) was measured for the calibration of the system ((4.1 +/- 0.3) ns). The assembled system was considered robust, well calibrated and will be used for clinical measurements of skin lesions.

  9. Transportation System Options For The Interstellar Probe Mission

    NASA Technical Reports Server (NTRS)

    Johnson, Charles Les

    2000-01-01

    NASA is considering a mission to explore near-interstellar space early in the next decade as the first step toward a vigorous interstellar exploration program. A key enabling technology for such an ambitious science and exploration effort is the development of propulsion systems capable of providing fast trip times. Advanced propulsion technologies that might support an interstellar precursor mission early in the next century include some combination of solar sails, nuclear electric propulsion systems, and aerogravity assists. For years, the scientific community has been interested in the development of solar sail technology to support exploration of the inner and outer planets. Progress in thin-film technology and the development of technologies that may enable the remote assembly of lar2e sails in space are only now maturing to the point where ambitious interstellar precursor missions can be considered. Electric propulsion is now being demonstrated for planetary exploration by the Deep Space I mission. The primary issues for it's adaptation to interstellar precursor applications include the nuclear reactor that would be required and the engine lifetime. A propulsion system concept for the proposed Interstellar Probe mission will be described for each.

  10. Optical Diagnostic System for Solar Sails: Phase 1 Final Report

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Blandino, Joseph R.; Caldwell, Douglas W.; Carroll, Joseph A.; Jenkins, Christopher H. M.; Pollock, Thomas C.

    2004-01-01

    NASA's In-Space Propulsion program recently selected AEC-ABLE Engineering and L'Garde, Inc. to develop scale-model solar sail hardware and demonstrate its functionality on the ground. Both are square sail designs with lightweight diagonal booms (<100 g/m) and ultra-thin membranes (<10 g/sq m). To support this technology, the authors are developing an integrated diagnostics instrumentation package for monitoring solar sail structures such as these in a near-term flight experiment. We refer to this activity as the "Optical Diagnostic System (ODS) for Solar Sails" project. The approach uses lightweight optics and photogrammetric techniques to measure solar sail membrane and boom shape and dynamics, thermography to map temperature, and non-optical sensors including MEMS accelerometers and load cells. The diagnostics package must measure key structural characteristics including deployment dynamics, sail support tension, boom and sail deflection, boom and sail natural frequencies, sail temperature, and sail integrity. This report summarizes work in the initial 6-month Phase I period (conceptual design phase) and complements the final presentation given in Huntsville, AL on January 14, 2004.

  11. The Diagnostic Value of Skin Disease Diagnosis Expert System

    PubMed Central

    Jeddi, Fatemeh Rangraz; Arabfard, Masoud; Arabkermany, Zahra; Gilasi, Hamidreza

    2016-01-01

    Background: Evaluation is a necessary measure to ensure the effectiveness and efficiency of all systems, including expert systems. The aim of this study was to determine the diagnostic value of expert system for diagnosis of complex skin diseases. Methods: A case-control study was conducted in 2015 to determine the diagnostic value of an expert system. The study population included patients who were referred to Razi Specialized Hospital, affiliated to Tehran University of Medical Sciences. The control group was selected from patients without the selected skin diseases. Data collection tool was a checklist of clinical signs of diseases including pemphigus vulgaris, lichen planus, basal cell carcinoma, melanoma, and scabies. The sample size formula estimated 400 patients with skin diseases selected by experts and 200 patients without the selected skin diseases. Patient selection was undertaken with randomized stratified sampling and their sign and symptoms were logged into the system. Physician’s diagnosis was determined as the gold standard and was compared with the diagnosis of expert system by SPSS software version 16 and STATA. Kappa statistics, indicators of sensitivity, specificity, accuracy and confidence intervals were calculated for each disease. An accuracy of 90% was considered appropriate. Results: Comparing the results of expert system and physician’s diagnosis at the evaluation stage showed an accuracy of 97.1%, sensitivity of 97.5% and specificity of 96.5% The Kappa test indicated a high agreement of 93.6%. Conclusion: The expert system can diagnose complex skin diseases. Development of such systems is recommended to identify all skin diseases. PMID:27046943

  12. Spectroscopic diagnostics of active screen plasma nitriding processes: on the interplay of active screen and model probe plasmas

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Röpcke, J.

    2015-09-01

    .e. the intensity of the \\text{N}2+ -(0-0) band of the first negative system, increases strongly in relation to the intensity of the neutral component, represented by the N2-(0-0) band of the second positive system. In addition, the behavior of the emission of the plasma at the model probe has been studied during the off phase of the plasma of the active screen leading to a direct comparison of the emission characteristics of both plasma sources.

  13. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, Donald C.

    1996-01-01

    A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.

  14. Reactor protection system with automatic self-testing and diagnostic

    DOEpatents

    Gaubatz, D.C.

    1996-12-17

    A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.

  15. Systems biology and the discovery of diagnostic biomarkers.

    PubMed

    Wang, Kai; Lee, Inyoul; Carlson, George; Hood, Leroy; Galas, David

    2010-01-01

    Systems biology is an approach to the science that views biology as an information science, studies biological systems as a whole and their interactions with the environment. This approach, for the reasons described here, has particular power in the search for informative diagnostic biomarkers of diseases because it focuses on the fundamental causes and keys on the identification and understanding of disease- perturbed molecular networks. In this review, we describe some recent developments that have used systems biology to address complex diseases - prion disease and drug induced liver injury- and use these as examples to illustrate the importance of understanding network structure and dynamics. The knowledge of network dynamics through in vitro experimental perturbation and modeling allows us to determine the state of the networks, to identify molecular correlates, and to derive new disease treatment approaches to reverse the pathology or prevent its progress into a more severe state through the manipulation of network states. This general approach, including diagnostics and therapeutics, is becoming known as systems medicine.

  16. How to Use the DX SYSTEM of Diagnostic Testing. Methodology Project.

    ERIC Educational Resources Information Center

    McArthur, David; Cabello, Beverly

    The DX SYSTEM of Diagnostic Testing is an easy-to-use computerized system for developing and administering diagnostic tests. A diagnostic test measures a student's mastery of a specific domain (skill or content area). It examines the necessary subskills hierarchically from the most to the least complex. The DX SYSTEM features tailored testing with…

  17. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-08-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter.

  18. Design and characterization of a novel multimodal fiber-optic probe and spectroscopy system for skin cancer applications

    PubMed Central

    Sharma, Manu; Marple, Eric; Reichenberg, Jason; Tunnell, James W.

    2014-01-01

    The design and characterization of an instrument combining Raman, fluorescence, and reflectance spectroscopic modalities is presented. Instrument development has targeted skin cancer applications as a novel fiber-optic probe has been specially designed to interrogate cutaneous lesions. The instrument is modular and both its software and hardware components are described in depth. Characterization of the fiber-optic probe is also presented, which details the probe's ability to measure diagnostically important parameters such as intrinsic fluorescence and absorption and reduced scattering coefficients along with critical performance metrics such as high Raman signal-to-noise ratios at clinically practical exposure times. Validation results using liquid phantoms show that the probe and system can extract absorption and scattering coefficients with less than 10% error. As the goal is to use the instrument for the clinical early detection of skin cancer, preliminary clinical data are also presented, which indicates our system's ability to measure physiological quantities such as relative collagen and nicotinamide adenine dinucleotide concentration, oxygen saturation, blood volume fraction, and mean vessel diameter. PMID:25173240

  19. Validation of break-apart and fusion MYC probes using a digital fluorescence in situ hybridization capture and imaging system

    PubMed Central

    Liew, Michael; Rowe, Leslie; Clement, Parker W.; Miles, Rodney R.; Salama, Mohamed E.

    2016-01-01

    Introduction: Detection of MYC translocations using fluorescence in situ hybridization (FISH) is important in the evaluation of lymphomas, in particular, Burkitt lymphoma and diffuse large B-cell lymphoma. Our aim was to validate a digital FISH capture and imaging system for the detection of MYC 8q24 translocations using LSI-MYC (a break-apart probe) and MYC 8;14 translocation using IGH-MYC (a fusion probe). Materials and Methods: LSI-MYC probe was evaluated using tissue sections from 35 patients. IGH-MYC probe was evaluated using tissue sections from forty patients. Sections were processed for FISH and analyzed using traditional methods. FISH slides were then analyzed using the GenASIs capture and analysis system. Results: Results for LSI-MYC had a high degree of correlation between traditional method of FISH analysis and digital FISH analysis. Results for IGH-MYC had a 100% concordance between traditional method of FISH analysis and digital FISH analysis. Conclusion: Annotated whole slide images of H and E and FISH sections can be digitally aligned, so that areas of tumor within a section can be matched and evaluated with a greater degree of accuracy. Images can be archived permanently, providing a means for examining the results retrospectively. Digital FISH imaging of the MYC translocations provides a better diagnostic tool compared to traditional methods for evaluating lymphomas. PMID:27217970

  20. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  1. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade.

    PubMed

    Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M

    2015-11-01

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.

  2. All-optical photoacoustic imaging system using fiber ultrasound probe and hollow optical fiber bundle.

    PubMed

    Miida, Yusuke; Matsuura, Yuji

    2013-09-23

    An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

  3. Intelligent Tutoring for Diagnostic Problem Solving in Complex Dynamic Systems

    DTIC Science & Technology

    1991-09-01

    tre cOllecti0n Of ormtio. n he r n tmt or er e Of this C ,ollectof of inorma o. Icluding suggeiont for reducing tis burden. to Watiington N _dgar i...AND SUBTITLE S. FUNDING NUMBERS Intelligent Tutoring for Diagnostic Problem Solving in Complex Dynamic Systems C : N00014-87-K-0482 6. AUTHOR(S) PE...Chronister, Sally Cohen, Ed Crowther, Kelly Deyoe, Suzanne Dilley, Brenda Downs, Janet Fath, Dick Henneman , Patty Jones, Merrick Kossack, Steve Krosner

  4. F100 engine diagnostic system status to date

    NASA Technical Reports Server (NTRS)

    Boyless, J. A.

    1981-01-01

    An engine diagnostic system, proposed for the F100 engine, was tested in five specially modified Tactical Air Command F-15 aircraft during a 16-month flight evaluation. After more than 3300 engine operating hours encompassing almost 900 flights during the flight evaluation, these aircraft provided a data base, still being analyzed, that has shown successful demonstration of the original functional characteristics. Four general design requirements, recording engine operating time/low cycle fatigue event detection, engine trim, and trend and performance data collection were demonstrated. Also, validation of maintenance actions taken and indicated needed maintenance were successfully demonstrated.

  5. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  6. Diagnostic Imaging of the Hepatobiliary System: An Update.

    PubMed

    Marolf, Angela J

    2017-05-01

    Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Attitude Control System for the Wilkinson Microwave Anisotropy Probe

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.

    2003-01-01

    The Wilkinson Microwave Anisotropy Probe mission produces a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an inertial reference unit, two star trackers, a digital sun sensor, twelve coarse sun sensors, three reaction wheel assemblies, and a propulsion system. Sufficient attitude knowledge is provided to yield instrument pointing to a standard deviation (l sigma) of 1.3 arc-minutes per axis. In addition, the spacecraft acquires and holds the sunline at initial acquisition and in the event of a failure, and slews to the proper orbit adjust orientations and to the proper off-sunline attitude to start the compound spin. This paper presents an overview of the design of the attitude control system to carry out this mission and presents some early flight experience.

  8. Restoring Redundancy to the Wilkinson Microwave Anisotrophy Probe Propulsion System

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Davis, Gary T.; Ward, David K.

    2004-01-01

    The Wilkinson Microwave Anisotropy Probe is a follow-on to the Differential Microwave Radiometer instrument on the Cosmic Background Explorer. Attitude control system engineers discovered sixteen months before launch that configuration changes after the critical design review had resulted in a significant migration of the spacecraft's center of mass. As a result, the spacecraft no longer had a viable backup control mode in the event of a failure of the negative pitch-axis thruster. A tiger team was formed and identified potential solutions to this problem, such as adding thruster-plume shields to redirect thruster torque, adding or removing mass from the spacecraft, adding an additional thruster, moving thrusters, bending thruster nozzles or propellant tubing, or accepting the loss of redundancy. The project considered the impacts on mass, cost, fuel budget, and schedule for each solution, and decided to bend the propellant tubing of the two roll-control thrusters to allow the pair to be used for backup control in the negative pitch axis. This paper discusses the problem and the potential solutions, and documents the hardware and software changes and verification performed. Flight data are presented to show the on-orbit performance of the propulsion system and lessons learned are described.

  9. Development of an intelligent diagnostic system for reusable rocket engine control

    NASA Technical Reports Server (NTRS)

    Anex, R. P.; Russell, J. R.; Guo, T.-H.

    1991-01-01

    A description of an intelligent diagnostic system for the Space Shuttle Main Engines (SSME) is presented. This system is suitable for incorporation in an intelligent controller which implements accommodating closed-loop control to extend engine life and maximize available performance. The diagnostic system architecture is a modular, hierarchical, blackboard system which is particularly well suited for real-time implementation of a system which must be repeatedly updated and extended. The diagnostic problem is formulated as a hierarchical classification problem in which the failure hypotheses are represented in terms of predefined data patterns. The diagnostic expert system incorporates techniques for priority-based diagnostics, the combination of analytical and heuristic knowledge for diagnosis, integration of different AI systems, and the implementation of hierarchical distributed systems. A prototype reusable rocket engine diagnostic system (ReREDS) has been implemented. The prototype user interface and diagnostic performance using SSME test data are described.

  10. The DIII-D lithium beam edge diagnostic system (abstract)

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Lee, R. L.; Patterson, R. M.; Brooks, N. H.; Robinson, J.; McChesney, J. M.

    1992-10-01

    We are installing a diagnostic system based on a neutral lithium beam to investigate plasma behavior in the edge region of DIII-D discharges [D. M. Thomas et al., Rev. Sci. Instrum. 61, 3040 (1990]. The system will provide neutral equivalent current densities of several mA/cm2 at beam energies from 5 to 30 keV, sufficient to penetrate several centimeters past the last closed flux surface in most of the DIII-D operating regime. Fluorescence of the beam atoms is induced by collisions with plasma particles and is a sensitive measure of the edge density behavior. The emitted 670.8-nm fluorescence is collected and coupled via fiber optics to a multichannel high-speed data acquisition system based on silicon diode detectors. Because of the favorable atomic properties of lithium (i.e., high electron impact excitation cross section, resonance wavelength well separated from Hα) we should be able to study density fluctuations in this region from an analysis of the associated fluctuations in the beam fluorescence. A description of the installed diagnostic, test stand measurements of intrinsic beam fluctuations and any initial operating experience on DIII-D will be presented. This work supported by U. S. Department of Energy Grant No. DE-FG03-90ER5408 and Contract DE-AC03-89ER51114, which support does not constitute an endorsement by DOE of views expressed in this publication.

  11. Aerospike Engine Post-Test Diagnostic System Delivered to Rocketdyne

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.

  12. Modeling and Measurement Constraints in Fault Diagnostics for HVAC Systems

    SciTech Connect

    Najafi, Massieh; Auslander, David M.; Bartlett, Peter L.; Haves, Philip; Sohn, Michael D.

    2010-05-30

    Many studies have shown that energy savings of five to fifteen percent are achievable in commercial buildings by detecting and correcting building faults, and optimizing building control systems. However, in spite of good progress in developing tools for determining HVAC diagnostics, methods to detect faults in HVAC systems are still generally undeveloped. Most approaches use numerical filtering or parameter estimation methods to compare data from energy meters and building sensors to predictions from mathematical or statistical models. They are effective when models are relatively accurate and data contain few errors. In this paper, we address the case where models are imperfect and data are variable, uncertain, and can contain error. We apply a Bayesian updating approach that is systematic in managing and accounting for most forms of model and data errors. The proposed method uses both knowledge of first principle modeling and empirical results to analyze the system performance within the boundaries defined by practical constraints. We demonstrate the approach by detecting faults in commercial building air handling units. We find that the limitations that exist in air handling unit diagnostics due to practical constraints can generally be effectively addressed through the proposed approach.

  13. [Colloidal carbon particles in the noninstrumental diagnostic systems].

    PubMed

    Raev, M B

    2008-02-01

    A technology has been developed to design test systems based on the one-stage determination of the conjugate containing the ligand-determined stereospecific compound that is covalently conjugated with colloidal carbon particles. Due to the high optical density of such conjugates in the visible light spectrum region, a ligand may be directly visually inspected as black spots (dots), stripes, or the arbitrary pattern ("+", "-") onto the work surface of a solid phase, which forms after a short (minutes) time of addition of a conjugate regardless of the format of analytical system. These systems may be effectively used in various tests in the ambulatory, hospital, and prehospital settings, including extreme clinical and epidemiological cases, as well as in various household and field diagnostic kits.

  14. Status of the heavy ion beam probe system in the Large Helical Device

    SciTech Connect

    Nishiura, M.; Ido, T.; Shimizu, A.; Nakano, H.; Kato, T.; Kato, S.; Hamada, Y.; Shevelko, V. P.; Janev, R. K.; Wada, M.

    2008-02-15

    A heavy ion beam probe (HIBP) system has been installed into the Large Helical Device (LHD) to measure the spatial profile of the plasma potential and density fluctuations. The optimization of the HIBP system, especially the beam injector, is described. The negative ion beam is required for the MeV beam production in a tandem accelerator. A sputter-type heavy negative ion source has been developed as an intense Au{sup -} beam source to produce Au{sup +} beams with energy in the MeV range. The extraction electrodes and the Einzel lens system of the ion source have been designed taking into account the beam optics, and installed into the real machine. Throughout the plasma diagnostics on LHD experiments, the consumptions of vaporized caesium and gold target are being characterized for practical operations. In addition, the experimental charge fractions are compared with the theoretical fractions for understanding the charge-changing behavior of Au{sup -} ions and optimizing the fraction of Au{sup +} ions at the exit of the tandem accelerator of the HIBP system.

  15. Intelligent approach to prognostic enhancements of diagnostic systems

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, George; Wang, Peng; Khiripet, Noppadon; Thakker, Ash; Galie, Thomas R.

    2001-07-01

    This paper introduces a novel methodology to prognostics based on a dynamic wavelet neural network construct and notions from the virtual sensor area. This research has been motivated and supported by the U.S. Navy's active interest in integrating advanced diagnostic and prognostic algorithms in existing Naval digital control and monitoring systems. A rudimentary diagnostic platform is assumed to be available providing timely information about incipient or impending failure conditions. We focus on the development of a prognostic algorithm capable of predicting accurately and reliably the remaining useful lifetime of a failing machine or component. The prognostic module consists of a virtual sensor and a dynamic wavelet neural network as the predictor. The virtual sensor employs process data to map real measurements into difficult to monitor fault quantities. The prognosticator uses a dynamic wavelet neural network as a nonlinear predictor. Means to manage uncertainty and performance metrics are suggested for comparison purposes. An interface to an available shipboard Integrated Condition Assessment System is described and applications to shipboard equipment are discussed. Typical results from pump failures are presented to illustrate the effectiveness of the methodology.

  16. Diagnostic system for measuring temperature, pressure, CO2 concentration and H2O concentration in a fluid stream

    DOEpatents

    Partridge, Jr., William P.; Jatana, Gurneesh Singh; Yoo, Ji-Hyung; Parks, II, James E.

    2017-01-10

    A diagnostic system for measuring temperature, pressure, CO.sub.2 concentration and H.sub.2O concentration in a fluid stream is described. The system may include one or more probes that sample the fluid stream spatially, temporally and over ranges of pressure and temperature. Laser light sources are directed down pitch optical cables, through a lens and to a mirror, where the light sources are reflected back, through the lens to catch optical cables. The light travels through the catch optical cables to detectors, which provide electrical signals to a processer. The processer utilizes the signals to calculate CO.sub.2 concentration based on the temperatures derived from H.sub.2O vapor concentration. A probe for sampling CO.sub.2 and H.sub.2O vapor concentrations is also disclosed. Various mechanical features interact together to ensure the pitch and catch optical cables are properly aligned with the lens during assembly and use.

  17. Intelligent, Self-Diagnostic Thermal Protection System for Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Hyers, Robert W.; SanSoucie, Michael P.; Pepyne, David; Hanlon, Alaina B.; Deshmukh, Abhijit

    2005-01-01

    The goal of this project is to provide self-diagnostic capabilities to the thermal protection systems (TPS) of future spacecraft. Self-diagnosis is especially important in thermal protection systems (TPS), where large numbers of parts must survive extreme conditions after weeks or years in space. In-service inspections of these systems are difficult or impossible, yet their reliability must be ensured before atmospheric entry. In fact, TPS represents the greatest risk factor after propulsion for any transatmospheric mission. The concepts and much of the technology would be applicable not only to the Crew Exploration Vehicle (CEV), but also to ablative thermal protection for aerocapture and planetary exploration. Monitoring a thermal protection system on a Shuttle-sized vehicle is a daunting task: there are more than 26,000 components whose integrity must be verified with very low rates of both missed faults and false positives. The large number of monitored components precludes conventional approaches based on centralized data collection over separate wires; a distributed approach is necessary to limit the power, mass, and volume of the health monitoring system. Distributed intelligence with self-diagnosis further improves capability, scalability, robustness, and reliability of the monitoring subsystem. A distributed system of intelligent sensors can provide an assurance of the integrity of the system, diagnosis of faults, and condition-based maintenance, all with provable bounds on errors.

  18. Bi-photon imaging and diagnostics using ultra-small diagnostic probes engineered from semiconductor nanocrystals and single-domain antibodies

    NASA Astrophysics Data System (ADS)

    Hafian, Hilal; Sukhanova, Alyona; Chames, Patrick; Baty, Daniel; Pluot, Michel; Cohen, Jacques H. M.; Nabiev, Igor R.; Millot, Jean-Marc

    2012-10-01

    Semiconductor fluorescent quantum dots (QDs) have just demonstrated their numerous advantages over organic dyes in bioimaging and diagnostics. One of characteristics of QDs is a very large cross section of their twophoton absorption. A common approach to biodetection by means of QDs is to use monoclonal antibodies (mAbs) for targeting. Recently, we have engineered ultrasmall diagnostic nanoprobes (sdAb-QD) based on highly oriented conjugates of QDs with the single-domain antibodies (sdAbs) against cancer biomarkers. With a molecular weight of only 13 kDa (12-fold smaller than full-size mAbs) and extreme stability and capacity to refolding, sdAbs are the smallest functional Ab fragments capable of binding antigens with affinities comparable to those of conventional Abs. Ultrasmall diagnostic sdAb-QD nanoprobes were engineered through oriented conjugation of QDs with sdAbs. This study is the first to demonstrate the possibility of immunohistochemical imaging of colon carcinoma biomarkers with sdAb-QD conjugates by means of two-photon excitation. The optimal excitation conditions for imaging of the markers in clinical samples with sdAb-QD nanoprobes have been determined. The absence of sample autofluorescence significantly improves the sensitivity of biomarker detection with the use of the two-photon excitation diagnostic setup.

  19. Probe diagnostics of argon-oxygen-tetramethyltin capacitively coupled plasmas for the deposition of tin oxide thin films

    SciTech Connect

    Pulpytel, J.; Morscheidt, W.; Arefi-Khonsari, F.

    2007-04-01

    Langmuir probe measurements in nondepositing and depositing rf capacitively coupled (CCP) plasmas are briefly reviewed and compared to the results obtained in our rf system used for the deposition of tin oxide (SnO{sub 2}) thin films from argon-oxygen-tetamethyltin [Sn(CH{sub 3}){sub 4}] plasmas. Typically in our experimental conditions for tin oxide deposition, values of kT{sub eff}= 1.2-1.5 eV and n{sub e}=3-5x10{sup 9} cm{sup -3} were measured. These values are consistent with those generally reported in other depositing discharges. The shape of the electron energy probability function (EEPF), obtained from the Druyvesteyn procedure, was discussed too. As a consequence of the two electron heating mechanisms in capacitively coupled discharges, that is, ohmic and stochastic heating, the electrons have a bi-Maxwellian EEPF at low pressure (in the range of 10-100 mTorr). Moreover, a deep 'hole' appears in the EEPF at the energy which could correspond to the resonant peak of the vibrational excitation cross section of some molecules which can be present in the discharge, such as N{sub 2}, CH{sub 4}, or CO.

  20. Mach-Zehnder Recording Systems for Pulsed Power Diagnostics

    SciTech Connect

    Miller, E K; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as Z-R at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History (GRH) diagnostic at OMEGA and NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  1. Materials issues in diagnostic systems for BPX and ITER

    SciTech Connect

    Clinard, F.W. Jr.; Farnum, E.H. ); Griscom, D.L. ); Mattas, R.F. ); Medley, S.S.; Young, K. M. . Plasma Physics Lab.); Wiffen, F.W. ); Wojtowicz, S.S. (General Atomics, San Diego, CA (Unit

    1991-01-01

    Diagnostic systems in advanced D-T-burning fusion devices will be subjected to intense fluxes and fluences of high-energy neutrons and gamma rays. Materials used in these systems may suffer significant degradation of structural, optical, and electrical properties, either promptly upon irradiation or after accumulation of structural damage. Of particular concern are windows, optical fibers, reflectors, and insulators. Many materials currently specified for these components are known to degrade under anticipated operating conditions. However, careful materials selection and modification based on an appropriate irradiation testing program, when combined with optimization of design-sensitive factors such as location, shielding, and ease of replacement, should help to alleviate these materials problems. 30 refs., 2 figs., 1 tab.

  2. Wearable diagnostic system for age-related macular degeneration.

    PubMed

    Mohaghegh, N; Zadeh, E Ghafar; Magierowski, S

    2016-08-01

    This paper presents a novel head-mounted point-of-care diagnostic system for detection and continuous monitoring of Age-related Macular Degeneration (AMD). This wearable embedded open-source platform enables accurate monitoring of AMD by taking advantage of multiple standard graphical interface techniques such as Amsler Grid, Threshold Amsler Grid, Macular Computerized Psychophysical Test and Preferential Hyperacuity Perimeter (PHP). Here, we describe the proposed multi-Grid or so-called NGRID software and elaborate on the hardware prototype. This prototype includes a commercially available Oculus HMD incorporated with a single board computer. As the first step towards a fully integrated wearable system, this paper successfully proves the functionality of head-mounted graphical interface device ready for a live demonstration. Participants can experience this device and take a 10-minute AMD eye-exam. Furthermore, NGRID has been approved and permitted for an in-hospital clinical trial.

  3. Mach-Zehnder recording systems for pulsed power diagnostics.

    PubMed

    Miller, E K; Abbott, R Q; McKenna, I; Macrum, G; Baker, D; Tran, V; Rodriguez, E; Kaufman, M I; Tibbits, A; Silbernagel, C T; Waltman, T B; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; Caldwell, S E; Evans, S C; Sedillo, T J; Stoeffl, W; Grafil, E; Liebman, J; Beeman, B; Watts, P; Carpenter, A; Horsfied, C J; Rubery, M S; Chandler, G A; Torres, J A; Smelser, R M

    2012-10-01

    Fiber-optic transmission and recording systems, based on Mach-Zehnder modulators, have been developed and installed at the National Ignition Facility (NIF), and are being developed for other pulsed-power facilities such as the Z accelerator at Sandia, with different requirements. We present the design and performance characteristics for the mature analog links, based on the system developed for the Gamma Reaction History diagnostic at the OMEGA laser and at NIF. For a single detector channel, two Mach-Zehnders are used to provide high dynamic range at the full recording bandwidth with no gaps in the coverage. We present laboratory and shot data to estimate upper limits on the radiation effects as they impact recorded data quality. Finally, we will assess the technology readiness level for mature and developing implementations of Mach-Zehnder links for these environments.

  4. Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system

    NASA Technical Reports Server (NTRS)

    Popp, R. L.; Brown, O. R.; Harrison, D. C.

    1975-01-01

    An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.

  5. Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system

    NASA Technical Reports Server (NTRS)

    Popp, R. L.; Brown, O. R.; Harrison, D. C.

    1975-01-01

    An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.

  6. Computer-Aided Diagnostic System For Mass Survey Chest Images

    NASA Astrophysics Data System (ADS)

    Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi

    1988-06-01

    In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.

  7. Diagnostic Health Monitoring System Development for Army Vehicle Reliability

    DTIC Science & Technology

    2011-07-01

    TCN 10009 10/7/2011 5 Approach The previous year’s effort focused on the modeling and testing of a rubberized diagnostic speed bump, which is...bump enabled some faults to be detected; however, the inherent variability in diagnostic testing using this narrow speed bump required that several...error was not conducive for providing sensitive or repeatable diagnostic measurements2. Figure 1. Diagnostic speed bump configuration tested

  8. Probe based confocal laser endomicroscopy of the pancreatobiliary system

    PubMed Central

    Almadi, Majid A; Neumann, Helmut

    2015-01-01

    AIM: To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. METHODS: A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. RESULTS: In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. CONCLUSION: The role of pCLE in the evaluation of

  9. Probe based confocal laser endomicroscopy of the pancreatobiliary system.

    PubMed

    Almadi, Majid A; Neumann, Helmut

    2015-11-28

    To review applications of confocal laser endomicroscopy (CLE) in pancreatobiliary lesions and studies that assessed training and interpretation of images. A computerized literature search was performed using OVID MEDLINE, EMBASE, Cochrane library, and the ISI Web of Knowledge from 1980 to October 2014. We also searched abstracts from major meetings that included the Digestive Disease Week, Canadian Digestive Disease Week and the United European Gastroenterology Week using a combination of controlled vocabulary and text words related to pCLE, confocal, endomicroscopy, probe-based confocal laser endomicroscopy, and bile duct to identify reports of trials. In addition, recursive searches and cross-referencing was performed, and manual searches of articles identified after the initial search was also completed. We included fully published articles and those in abstract form. Given the relatively recent introduction of CLE we included randomized trials and cohort studies. In the evaluation of indeterminate pancreatobiliary strictures CLE with ERCP compared to ERCP alone can increase the detection of cancerous strictures with a sensitivity of (98% vs 45%) and has a negative predictive value (97% vs 69%), but decreased the specificity (67% vs 100%) and the positive predictive value (71% vs 100%) when compared to index pathology. Modifications in the classification systems in indeterminate biliary strictures have increased the specificity of pCLE from 67% to 73%. In pancreatic cystic lesions there is a need to develop similar systems to interpret and characterize lesions based on CLE images obtained. The presence of superficial vascular network predicts serous cystadenomas accurately. Also training in acquiring and interpretation of images is feasible in those without any prior knowledge in CLE in a relatively simple manner and computer-aided diagnosis software is a promising innovation. The role of pCLE in the evaluation of pancreatobiliary disorders might be better

  10. Comparative guide to emerging diagnostic tools for large commercial HVAC systems

    SciTech Connect

    Friedman, Hannah; Piette, Mary Ann

    2001-05-01

    This guide compares emerging diagnostic software tools that aid detection and diagnosis of operational problems for large HVAC systems. We have evaluated six tools for use with energy management control system (EMCS) or other monitoring data. The diagnostic tools summarize relevant performance metrics, display plots for manual analysis, and perform automated diagnostic procedures. Our comparative analysis presents nine summary tables with supporting explanatory text and includes sample diagnostic screens for each tool.

  11. SYN-PEDS: SYNtactical Pediatric Evaluation and Diagnostic System

    PubMed Central

    Witten, Matthew; Maloney, David

    1980-01-01

    SYN-PEDS is a multimodular system which is designed to be an inhome interactive access to a neonatal and pediatric diagnostic information database. This system is designed to assist a parent in assessing his child's condition, as well as in determining whether or not the child needs immediate medical attention. This system is not designed to replace the pediatrician but rather, it is designed as a preventative and health maintenance information system which has the unusually nice side benefit if helping to reduce medical system costs by cutting down on the number of unnecessary visits to private and local clinics as well as private physicians. The current version of SYN-PEDS is composed of of four operative modules: CRITICAL, TREAT, CLINFO, and DIAGNOSE/SYMPTM. These four modules allow the parent/user to interact with the SYN-PEDS system in various modes. As an example, CLINFO is the module which provides clinical information on a variety of subjects. This module is for a parent who wishes information on a particular subject of interest.

  12. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  13. Performance Assessment of a New Variable Stiffness Probing System for Micro-CMMs.

    PubMed

    Alblalaihid, Khalid; Kinnell, Peter; Lawes, Simon; Desgaches, Dorian; Leach, Richard

    2016-04-08

    When designing micro-scale tactile probes, a design trade-off must be made between the stiffness and flexibility of the probing element. The probe must be flexible enough to ensure sensitive parts are not damaged during contact, but it must be stiff enough to overcome attractive surface forces, ensure it is not excessively fragile, easily damaged or sensitive to inertial loads. To address the need for a probing element that is both flexible and stiff, a novel micro-scale tactile probe has been designed and tested that makes use of an active suspension structure. The suspension structure is used to modulate the probe stiffness as required to ensure optimal stiffness conditions for each phase of the measurement process. In this paper, a novel control system is presented that monitors and controls stiffness, allowing two probe stiffness values ("stiff" and "flexible") to be defined and switched between. During switching, the stylus tip undergoes a displacement of approximately 18 µm, however, the control system is able ensure a consistent flexible mode tip deflection to within 12 nm in the vertical axis. The overall uncertainty for three-dimensional displacement measurements using the probing system is estimated to be 58 nm, which demonstrates the potential of this innovative variable stiffness micro-scale probe system.

  14. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  15. Development and Testing of Prototype Giant Magnetoresistive (GMR) Rotating Probe System

    NASA Astrophysics Data System (ADS)

    Wincheski, Buzz; Simpson, John; Namkung, Min; Perey, Dan; Callahan, John

    2003-03-01

    Continued development of the giant magnetoresistive based rotating probe system has resulted in the fabrication of a fieldable prototype instrument. The system, designed for the detection of deeply buried flaws under installed fasteners, utilizes a giant magnetoresistive sensor within the self-nulling probe design for improved low frequency capabilities. The prototype unit incorporates a new probe design for deep penetration and reduced edge effects along with new electronics and system software. Testing of the prototype system has been performed at SANDIA National Laboratories Aging Aircraft NDI Validation Center. The complete system configuration along with field testing results are presented.

  16. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  17. A new beam diagnostic system for the MASHA setup

    NASA Astrophysics Data System (ADS)

    Motycak, S.; Rodin, A. M.; Novoselov, A. S.; Podshibyakin, A. V.; Krupa, L.; Belozerov, A. V.; Vedeneyev, V. Yu.; Gulyaev, A. V.; Gulyaeva, A. V.; Kliman, J.; Salamatin, V. S.; Stepantsov, S. V.; Chernysheva, E. V.; Yuchimchuk, S. A.; Komarov, A. B.; Kamas, D.

    2016-09-01

    A new beam diagnostic system based on the PXI standard was developed, tested, and used in the MASHA setup experiment. The beam energy and beam current measurements were carried out using several methods. The online time-of-flight energy measurements were carried out using three pick-up detectors. We used two electronic systems to measure the time between the pick-ups. The first system was based on fast Agilent digitizers (2-channel, 4-GHz sampling rate), and the second one was based on a constant fraction discriminator (CFD) connected to a time-to-digital converter (TDC, 5-ps resolution). A new graphical interface to monitor the electronic devices and to perform the online calculations of energy was developed using MFC C++. The second system based on microchannel plate (time-of-flight) and silicon detectors for the determination of beam energy and the type of accelerated particles was also used. The beam current measurements were carried out with two different sensors. The first sensor is a rotating Faraday cup placed in front of the target, and the second one is an emission detector installed at the rear of the target. This system is now used in experiments for the synthesis of superheavy elements at the U400M cyclotron of the Flerov Laboratory of Nuclear Reactions (FLNR).

  18. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  19. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T.; Story-Held, K.; Glickman, R.D.; Conn, R.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  20. Langmuir probe diagnostics of electron energy distributions with optical emission spectroscopy in capacitively coupled rf discharge in nitrogen

    SciTech Connect

    Abdel-Fattah, E.; Bazavan, M.; Sugai, H.

    2011-12-01

    Measurements with a rf compensated Langmuir probe and optical emission spectroscopy are carried out in capacitively coupled rf (13.56 MHz) pure nitrogen N{sub 2} discharges at fixed rf voltage over a wide range of pressure, 30 to 400 mTorr. The electron energy probability function (EEPF) measured below 100 mTorr resembles a bi-Maxwellian-type distribution. At pressure range of 100-200 mTorr, the EEPF has non-Maxwellian distribution with a ''dip'' near 4.5 eV. At the highest pressure of 400 mTorr, the EEPF evolves into a Druyvestein-like distribution and the ''dip'' disappears. The electron density significantly decreases with increase in the N{sub 2} pressure. On the other hand, the electron temperatures gradually decrease with an increase in N{sub 2} pressure, reaching minimum at 150 mTorr, beyond which it abruptly increases. Such evolution of the EEPFs shape with gas pressure has been discussed in terms of non-local electron kinetics and heating mode transition. The emission intensities of nitrogen (0-0) band of second positive system at 337.1 nm and (0-0) band of first negative systems at 391.4 nm are used to determine the dependence of their radiative states N{sub 2}(C{sup 3}{Pi}{sub u}) and N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}) with nitrogen pressure. It is observed that the pressure influences the radiative states differently owing to their different populating mechanisms. The vibrational temperature T{sub {nu}ib} and rotational temperature T{sub rot} are measured for the sequence ({Delta}{nu}=-2) of N{sub 2} second positive system (C{sup 3}{Pi}{yields}B{sup 3}{Pi}{sub g}) using the method of comparing the measured and calculated spectra with a chi-squared minimization procedure. It was found that both T{sub {nu}ib} and T{sub rot} have similar dependences with N{sub 2} pressure; peaked at 100 mTorr beyond which it monotonically decreases with increase in the N{sub 2} pressure. The correlation between the observed maximum value of T{sub {nu}ib} around

  1. An automated computerized auscultation and diagnostic system for pulmonary diseases.

    PubMed

    Abbas, Ali; Fahim, Atef

    2010-12-01

    Respiratory sounds are of significance as they provide valuable information on the health of the respiratory system. Sounds emanating from the respiratory system are uneven, and vary significantly from one individual to another and for the same individual over time. In and of themselves they are not a direct proof of an ailment, but rather an inference that one exists. Auscultation diagnosis is an art/skill that is acquired and honed by practice; hence it is common to seek confirmation using invasive and potentially harmful imaging diagnosis techniques like X-rays. This research focuses on developing an automated auscultation diagnostic system that overcomes the limitations inherent in traditional auscultation techniques. The system uses a front end sound signal filtering module that uses adaptive Neural Networks (NN) noise cancellation to eliminate spurious sound signals like those from the heart, intestine, and ambient noise. To date, the core diagnosis module is capable of identifying lung sounds from non-lung sounds, normal lung sounds from abnormal ones, and identifying wheezes from crackles as indicators of different ailments.

  2. Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis

    1994-01-01

    The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.

  3. Saturn Uranus atmospheric entry probe mission spacecraft system definition study

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The modifications required of the Pioneer F/G spacecraft design for it to deliver an atmospheric entry probe to the planets Saturn and Uranus are investigated. It is concluded that it is feasible to conduct such a mission within the constraints and interfaces defined. The spacecraft required to perform the mission is derived from the Pioneer F/G design, and the modifications required are generally routinely conceived and executed. The entry probe is necessarily a new design, although it draws on the technology of past, present, and imminent programs of planetary atmospheric investigations.

  4. MFTF-B plasma-diagnostics-system instrumentation and data-acquisition system

    SciTech Connect

    Goerz, D.A.; Lau, N.H.C.; Mead, J.E.; Throop, A.L.

    1981-10-21

    The change of scope for MFTF from a simple mirror to a tandem mirror configuration utilizing thermal barriers has expanded the range of plasma parameters and increased the requirements of the plasma diagnostics system. The instrument set that is needed for start-up operation has been identified and conceptual design work is proceeding. This paper describes the diagnostic instrumentation as presently envisioned for start-up operation, with a summary of the detectors and data channels. Also presented is an overview of the current conceptual design for the Local Control and Data Acquisition System and the Data Processing and Display system. As more detailed design is done, the exact number and nature of instruments may change, but overall, the system described here is one expected to satisfy the requirements for start-up and be expandable to the basic set of diagnostics.

  5. AuNP-CTG based probing system targeting CAG repeat DNA and RNA sequences.

    PubMed

    Le, Binh Huy; Joo, Han Na; Hwang, Do Won; Kim, Kyu Wan; Seo, Young Jun

    2017-08-15

    We have developed a AuNP-CTG based probing system that is applicable to the detection of many units of CAG repeat sequences which was synthesized by a rolling circle amplification (RCA) system with changes in fluorescence. We also demonstrate that our AuNP-CTG based probing system could transfect without using transfection reagent and detect target CAG repeat sequences in HeLa cells with dramatic changes in fluorescence. This AuNP-CTG based probing system could also be used, in conjunction with the CAG repeat RCA system, to detect target DNA. This system was so sensitive to the target DNA that it could detect even picomolar amounts with amplification of the fluorescence signal. Furthermore, we have used our gold-based CAG probing system for the detection of RNA CAG repeat sequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Volatiles in comets as probes to the early solar system

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi

    2014-03-01

    Comets are considered as the remnants of the planetesimals (building blocks of the planets) formed in the proto-planetary disk of the Sun. They have retained the information about the formation and evolutional history of the early solar system. To investigate the chemical and physical conditions of the proto-planetary disk, comets have been studied as probes to the solar system formation. In the last two decades, thanks to advances in technology, near-infrared (NIR) observations have been carried out to detect the various kinds of molecules (with and without permanent electric dipole moments) released directly from the nucleus. As the physical temperature could control chemical reactions, we expect to find chemical diversity among comets that have different dynamical origins. To investigate chemical diversity in the proto-planetary disk, we have observed several comets with NIR high-dispersion spectrometry. Although the number of samples is still small relative to the number of samples obtained by optical studies, the HCN, C2H2, CH4, C2H6, CH3OH, H2CO, and CO content in more than 10 comets have been measured. We compared our samples with other samples obtained by NIR observations and found no clear differences in the chemical compositions of the comets, even though the comets originated in different dynamical reservoirs (i.e., the Oort Cloud and the trans-Neptunian regions). Although there was a small variation in the mixing ratios among the OC comets, all the samples were consistent within error limits. This variation (if it exists) may be supporting evidence for the Nice model. The sublimation temperature of H2O is relatively higher than that of other hyper volatiles, such as CO, CO2, and CH4. Thus, in the proto-planetary disk, there was a region where H2O could exist as ice and be incorporated into the planetesimals, while other hyper volatiles were in gas phase and could not be incorporated into the planetesimals. Alternatively, the differences in the chemical

  7. Outer planet entry probe system study. Volume 2: Supporting technical studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.

  8. Fibre Fabry - Perot cavity-based aperture probe for near-field optical microscopy systems

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Bezverbnyi, A V; Pustovalov, E V; Kuchmizhak, A A; Nepomnyashchii, A V

    2011-03-31

    We report a theoretical analysis and experimental study of the possibility of producing a novel type of interferometric near-field aperture probe for near-field optical microscopy systems using a fibre Fabry - Perot microcavity with a nanometre-scale aperture made in one of its output mirrors. The probe ensures a spatial resolution no worse than {lambda}/14. (fibre optics)

  9. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, J.; Wei, T.Y.C.

    1993-11-23

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system. 5 figures.

  10. System diagnostics using qualitative analysis and component functional classification

    DOEpatents

    Reifman, Jaques; Wei, Thomas Y. C.

    1993-01-01

    A method for detecting and identifying faulty component candidates during off-normal operations of nuclear power plants involves the qualitative analysis of macroscopic imbalances in the conservation equations of mass, energy and momentum in thermal-hydraulic control volumes associated with one or more plant components and the functional classification of components. The qualitative analysis of mass and energy is performed through the associated equations of state, while imbalances in momentum are obtained by tracking mass flow rates which are incorporated into a first knowledge base. The plant components are functionally classified, according to their type, as sources or sinks of mass, energy and momentum, depending upon which of the three balance equations is most strongly affected by a faulty component which is incorporated into a second knowledge base. Information describing the connections among the components of the system forms a third knowledge base. The method is particularly adapted for use in a diagnostic expert system to detect and identify faulty component candidates in the presence of component failures and is not limited to use in a nuclear power plant, but may be used with virtually any type of thermal-hydraulic operating system.

  11. Optical Design of ECEI Diagnostic System for HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wen, Yizhi; Yu, Changxuan; Wan, Baonian; N, C. Luhmann; Wang, Jian; Z, G. Xia

    2004-02-01

    Electron cyclotron emission imaging system in the frequency range of 95 GHz-125 GHz is going to be constructed for a two-dimensional diagnosis of the electron temperature profiles and fluctuations on the HT-7 Tokamak. The optical design for the ECEI diagnostic system is completed. Because of the superconducting technology used in HT-7, the vacuum chamber is rather thick (630 mm), the height of the horizontal windows is limited (maximum 450 mm), which constrains greatly the ECE imaging Gaussian beam that passing through the windows. We here comes to make a design compromise between the number of the beams that can pass through the windows and the spatial resolution (around 1.1 cm). We also find that due to the field curvature of the optical system, the gaussian beams of edge channels are always overlapped. To flatten the field curvature, it is needed to insert a concave made of a material with a low refractive index (compared with the one used in the convex). But the suitable material has not been available so far, therefore the deterioration of the resolution in some channels (e.g. the edge channels) is acceptable.

  12. Acoustic imaging for diagnostics of chemically reacting systems

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.; Seshan, P.

    1983-01-01

    The concept of local diagnostics, in chemically reacting systems, with acoustic imaging is developed. The elements of acoustic imaging through ellipsoidal mirrors are theoretically discussed. In a general plan of the experimental program, the first system is chosen in these studies to be a simple open jet, non premixed turbulent flame. Methane is the fuel and enriched air is the oxidizer. This simple chemically reacting flow system is established at a Reynolds number (based on cold viscosity) of 50,000. A 1.5 m diameter high resolution acoustic mirror with an f-number of 0.75 is used to map the acoustic source zone along the axis of the flame. The results are presented as acoustic power spectra at various distances from the nozzle exit. It is seen that most of the reaction intensity is localized in a zone within 8 diameters from the exit. The bulk reactions (possibly around the periphery of the larger eddies) are evenly distributed along the length of the flame. Possibilities are seen for locally diagnosing single zones in a multiple cluster of reaction zones that occur frequently in practice. A brief outline is given of the future of this work which will be to apply this technique to chemically reacting flows not limited to combustion.

  13. SEALED COMBUSTION SYSTEM WITH DIAGNOSTIC SELF-TUNING.

    SciTech Connect

    KRISHNA,C.R.

    2004-09-30

    This task grew out of a proposal to develop a ''concept'' oil-fired heating system that would incorporate advanced technologies available and suitable for a residential system. Discussions among the program and project personnel resulted in the identification of a sealed combustion system as of programmatic interest and the objective was to develop an approach to a sealed system with diagnostic self-tuning. The major conclusion with regard to the specific objective for this task is that a measurement of the static pressure in the input pipe can be used to provide a measure of the excess air for a limit control. Its implementation would require a suitable pressure sensor, and a circuit to combine its output signal, at the appropriate time in the operating cycle, to the burner control. The sensor and control combination will also have to be tested successfully under all conceivable contingencies that can cause the airflow to decrease. It could also be implemented, possibly even more reliably, if a mass flow sensor, such as is used in automobile engines and hence may be cheap, could be used. The pressure measurements reported here, both steady and transient, represent only the subset of a much larger set that gave a useful answer to meet the objective. These measurements suggest that they can provide useful insights into both the combustion and gas flow performance of the system. Of course, this could be extended to other types of heating systems, such as those with natural draft, those with different burners, burners with different atomization schemes (air atomization etc.), blue flame burners etc.

  14. Genotype MTBDRsl line probe assay shortens time to diagnosis of extensively drug-resistant tuberculosis in a high-throughput diagnostic laboratory.

    PubMed

    Barnard, Marinus; Warren, Rob; Gey Van Pittius, Nico; van Helden, Paul; Bosman, Marlein; Streicher, Elizabeth; Coetzee, Gerrit; O'Brien, Richard

    2012-12-15

    Conventional culture-based drug susceptibility testing (DST) for the second-line antituberculosis drugs is slow, leading to diagnostic delay with associated exacerbation of transmission, amplification of resistance, and increased mortality. To assess the diagnostic performance of the GenoType MTBDRsl line probe assay (LPA) for the rapid detection of mutations conferring resistance to ofloxacin (OFX), amikacin (AMK), and ethambutol and to determine the impact of implementation on the turnaround time in a high-throughput diagnostic laboratory. Six hundred and fifty-seven direct patient acid-fast bacilli smear-positive specimens resistant to isoniazid, rifampin, or both according to the GenoType MTBDRplus assay were consecutively tested, using the GenoType MTBDRsl LPA. The diagnostic performance was assessed relative to the "gold standard" culture-based method, and the laboratory turnaround times for both methods were determined. A total of 516 of 657 patient specimens had valid results for both tests. The sensitivity for detecting OFX, AMK, and extensive drug resistance, using the GenoType MTBDRsl LPA, was 90.7% (95% confidence interval [CI], 80.1-96.0%), 100% (95% CI, 91.8-100%), and 92.3% (95% CI, 75.9-97.9%), respectively, and the specificity for detection was 98.1% (95% CI, 96.3-99.0%), 99.4% (95% CI, 98.2-99.8%), and 99.6% (95% CI, 98.5-99.9%), respectively. Implementation of this test significantly reduced the turnaround time by 93.3% (P < 0.001), calculated from the date that the specimen was received at the laboratory to reporting second-line results. In addition, a significant increase in diagnostic yield of 20.1% and 19.3% (P < 0.001) for OFX and AMK resistance, respectively, was obtained for isolates that were either contaminated or had lost viability. The GenoType MTBDRsl LPA is a rapid and reliable DST that can be easily incorporated into the diagnostic algorithm. This assay significantly improved diagnostic yield (P < 0.001) while simultaneously

  15. Sungrazing comets: Probing the inner extremes of the Solar System

    NASA Astrophysics Data System (ADS)

    Knight, M.

    2014-07-01

    /Machholz 1. The third group, Meyer, has not been linked to any known solar system object and has an unknown orbital period. The remaining known sungrazing comets have a variety of orbits and, with the notable exception of ISON, are generally not observed extensively. Due to their extreme orbits, sungrazing comets offer unique opportunities for understanding evolutionary processes in our solar system. During their perihelion passages they experience equilibrium temperatures exceeding 1500 K, resulting in sublimation of their dust and potentially allowing the least volatile components of our solar system to be cataloged. In fact, while all of the near-Sun objects discovered by SOHO and STEREO are designated ''comets'', many of those not associated with other known cometary objects may be asteroids or defunct comets whose apparent activity at these distances is due to sublimation of their bare surfaces. Sungrazing comets also experience strong tidal forces, resulting in frequent fragmentation. Such breakups expose the unprocessed interiors, potentially allowing intercomparison of the compositions of discrete fragments and revealing the size distribution of the planetessimals out of which the parent comet formed. Finally, it has recently become possible to use comets as ''solar probes'', treating them as test particles that can reveal properties of the solar environment such as the coronal temperature and density, magnetic field strength, and solar wind speed and direction.

  16. A new B-dot probe-based diagnostic for amplitude, polarization, and wavenumber measurements of ion cyclotron range-of frequency fields on ASDEX Upgrade

    SciTech Connect

    Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.

    2015-11-15

    A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k{sub //}) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k{sub tor}). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k{sub //} as strap phasing is moved away from the dipole configuration. This result is the opposite of the k{sub tor} trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k{sub //}, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas’ operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to

  17. The analysis of diagnostics possibilities of the Dual- Drive electric power steering system using diagnostics scanner and computer method

    NASA Astrophysics Data System (ADS)

    Szczypiński-Sala, W.; Dobaj, K.

    2016-09-01

    The article presents the analysis of diagnostics possibilities of electric power steering system using computer diagnostics scanner. Several testing attempts were performed. There were analyzed the changes of torque moment exerted on steering wheel by the driver and the changes of the angle of rotation steering wheel accompanying them. The tests were conducted in variable conditions comprising wheel load and the friction coefficient of tyre road interaction. Obtained results enabled the analysis of the influence of changeable operations conditions, possible to acquire in diagnostics scanners of chosen parameters of electric power steering system. Moreover, simulation model of operation, electric drive power steering system with the use of the Matlab simulation software was created. The results of the measurements obtained in road conditions served to verify this model. Subsequently, model response to inputs change of the device was analyzed and its reaction to various constructional and exploitative parameters was checked. The entirety of conducted work constitutes a step to create a diagnostic monitor possible to use in self-diagnosis of electric power steering system.

  18. Systems-level study of a nonsurvivable Jupiter turbopause probe. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Wiltshire, R. S.

    1972-01-01

    The design of a space probe to explore the atmosphere of the planet Jupiter is discussed. Five major areas were considered: (1) definition of science requirements, (2) mission evaluation, (3) definition of probe system, (4) definition of spacecraft support requirements, and (5) nonequilibrium flow field analysis for communications blackout evaluation. The overall mission and system design are emphasized. The integration of the various technologies into complete systems designs is described. Results showed that a nonsurvivable turbopause probe mission to Jupiter with adequate data return to meet the science objectives is feasible and practical.

  19. Development of a diagnostic system for an axial-plunger pump

    NASA Astrophysics Data System (ADS)

    Vakulich, E. A.; Gamov, S. V.; Zhukovskii, A. E.; Mordvintsev, E. Iu.

    An algorithm for diagnosing axial-plunger pumps operating as part of an oil pump station is described. The algorithm has been used in developing a technical diagnostic system for axial-plunger pumps. The system consists of pressure fluctuation transducers, a signal amplifier, a diagnostic module, a controller, an analog-to-digital converter, and a microcomputer. The operation of the diagnostic system is briefly described.

  20. ITER diagnostic systems in development in Ioffe Institute

    SciTech Connect

    Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.

    2014-08-21

    Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.

  1. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  2. An expert systems approach to automated fault diagnostics

    NASA Technical Reports Server (NTRS)

    Lance, N.; Malin, J. T.

    1985-01-01

    The implementation of the life support function on the Space Station will probably have to be based on regenerative life support techniques. It is essential that the regenerative subsystems operate with minimum attendance from the crew. However, the results of extensive testing show that uninterrupted subsystem operation over long periods of time (e.g., months) is not easy to achieve. In order to achieve longer periods of time on line for these subsystems, it is necessary that the Environmental Control and Life Support System (ECLSS) designers focus their attention on technologies which will permit both increasing the mean time between shutdowns and decreasing the time for which a subsystem is down for fault diagnosis and maintenance. With the aim to be able to perform the fault diagnosis on line rather than after the subsystem has shut down, an expert systems approach to automated fault diagnostics is considered. A description is given of a program, designated CS-1 'FIXER' for fault isolation expert to enhance reliability.

  3. TROUBLE 3: A fault diagnostic expert system for Space Station Freedom's power system

    NASA Technical Reports Server (NTRS)

    Manner, David B.

    1990-01-01

    Designing Space Station Freedom has given NASA many opportunities to develop expert systems that automate onboard operations of space based systems. One such development, TROUBLE 3, an expert system that was designed to automate the fault diagnostics of Space Station Freedom's electric power system is described. TROUBLE 3's design is complicated by the fact that Space Station Freedom's power system is evolving and changing. TROUBLE 3 has to be made flexible enough to handle changes with minimal changes to the program. Three types of expert systems were studied: rule-based, set-covering, and model-based. A set-covering approach was selected for TROUBLE 3 because if offered the needed flexibility that was missing from the other approaches. With this flexibility, TROUBLE 3 is not limited to Space Station Freedom applications, it can easily be adapted to handle any diagnostic system.

  4. Ultrasonic probe system for the bore-side inspection of tubes and welds therein

    DOEpatents

    Cook, K. Von; Koerner, Dan W.; Cunningham, Jr., Robert A.; Murrin, Jr., Horace T.

    1977-07-26

    A probe system is provided for the bore-side inspection of tube-to-header welds and the like for small diameter tubes. The probe head of the system includes an ultrasonic transmitter-receiver transducer, a separate ultrasonic receiver, a reflector associated with the transducer to properly orient the ultrasonic signal with respect to a tube wall, a baffle to isolate the receiver from the transducer, and means for maintaining the probe head against the tube wall under investigation. Since the probe head must rotate to inspect along a helical path, special ultrasonic signal connections are employed. Through the use of the probe, flaws at either the inner or outer surfaces may be detected.

  5. Initial density fluctuation measurements from the NSTX Beam Emission Spectroscopy diagnostic system*

    NASA Astrophysics Data System (ADS)

    Smith, D. R.; Fonck, R. J.; McKee, G. R.; Schoenbeck, N. L.; Thompson, D.; Uzun-Kaymak, I. U.; Stratton, B. C.

    2010-11-01

    Density fluctuation measurements on the ion gyroscale have been obtained on NSTX with a newly commissioned beam emission spectroscopy (BES) diagnostic system. The BES system measures red-shifted Dα emission near 660 nm from deuterium neutral beams with high throughput optics and high efficiency detectors. The system presently employs 16 detection channels arranged in radial and poloidal arrays, and an expansion to 32 channels is planned. Radial arrays can measure fluctuations from r/a 0.1 to beyond the last closed flux surface and resolve fluctuations with kρi<=1.5. Initial BES measurements reveal broadband turbulence and coherent modes below 300 kHz for r/a>=0.4. The broadband turbulence appears in high gradient regions and increases at H-L transitions. The frequency characteristics of the coherent modes correlate with Alfvén/energetic particle modes in Mirnov probe measurements, but some coherent modes appear in BES measurements only. *Supported by the U.S. Department of Energy under Contract Nos. DE-FG02-89ER53296, DE-AC02-09CH11466 and DE-SC0001288.

  6. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R.; Conn, R.; Bohorfoush, A.

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  7. Probing nanoscale oxygen ion motion in memristive systems

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Zhang, Xiaoxian; Qin, Liang; Zeng, Qibin; Qiu, Xiaohui; Huang, Ru

    2017-05-01

    Ion transport is an essential process for various applications including energy storage, sensing, display, memory and so on, however direct visualization of oxygen ion motion has been a challenging task, which lies in the fact that the normally used electron microscopy imaging mainly focuses on the mass attribute of ions. The lack of appropriate understandings and analytic approaches on oxygen ion motion has caused significant difficulties in disclosing the mechanism of oxides-based memristors. Here we show evidence of oxygen ion migration and accumulation in HfO2 by in situ measurements of electrostatic force gradient between the probe and the sample, as systematically verified by the charge duration, oxygen gas eruption and controlled studies utilizing different electrolytes, field directions and environments. At higher voltages, oxygen-deficient nano-filaments are formed, as directly identified employing a CS-corrected transmission electron microscope. This study could provide a generalized approach for probing ion motions at the nanoscale.

  8. Probing nanoscale oxygen ion motion in memristive systems

    PubMed Central

    Yang, Yuchao; Zhang, Xiaoxian; Qin, Liang; Zeng, Qibin; Qiu, Xiaohui; Huang, Ru

    2017-01-01

    Ion transport is an essential process for various applications including energy storage, sensing, display, memory and so on, however direct visualization of oxygen ion motion has been a challenging task, which lies in the fact that the normally used electron microscopy imaging mainly focuses on the mass attribute of ions. The lack of appropriate understandings and analytic approaches on oxygen ion motion has caused significant difficulties in disclosing the mechanism of oxides-based memristors. Here we show evidence of oxygen ion migration and accumulation in HfO2 by in situ measurements of electrostatic force gradient between the probe and the sample, as systematically verified by the charge duration, oxygen gas eruption and controlled studies utilizing different electrolytes, field directions and environments. At higher voltages, oxygen-deficient nano-filaments are formed, as directly identified employing a CS-corrected transmission electron microscope. This study could provide a generalized approach for probing ion motions at the nanoscale. PMID:28469257

  9. Probing nanoscale oxygen ion motion in memristive systems.

    PubMed

    Yang, Yuchao; Zhang, Xiaoxian; Qin, Liang; Zeng, Qibin; Qiu, Xiaohui; Huang, Ru

    2017-05-04

    Ion transport is an essential process for various applications including energy storage, sensing, display, memory and so on, however direct visualization of oxygen ion motion has been a challenging task, which lies in the fact that the normally used electron microscopy imaging mainly focuses on the mass attribute of ions. The lack of appropriate understandings and analytic approaches on oxygen ion motion has caused significant difficulties in disclosing the mechanism of oxides-based memristors. Here we show evidence of oxygen ion migration and accumulation in HfO2 by in situ measurements of electrostatic force gradient between the probe and the sample, as systematically verified by the charge duration, oxygen gas eruption and controlled studies utilizing different electrolytes, field directions and environments. At higher voltages, oxygen-deficient nano-filaments are formed, as directly identified employing a CS-corrected transmission electron microscope. This study could provide a generalized approach for probing ion motions at the nanoscale.

  10. Basic Questions About the Solar System: The Need for Probes

    NASA Technical Reports Server (NTRS)

    Ingersoll, Andrew P.

    2005-01-01

    Probes are an essential element in the scientific study of planets with atmospheres. In-situ measurements provide the most accurate determination of composition, winds, temperatures, clouds, and radiative fluxes. They address fundamental NASA objectives concerning volatile compounds, climate, and the origin of life. Probes also deliver landers and aerobots that help in the study of planetary surfaces. This talk focuses on Venus, Titan, and the giant planets. I review the basic science questions and discuss the recommended missions. I stress the need for a balanced program that includes an array of missions that increase in size by factors of two. Gaps in this array lead to failures and cancellations that are harmful to the program and to scientific exploration.

  11. Study of a high-resolution PET system using a Silicon detector probe

    NASA Astrophysics Data System (ADS)

    Brzeziński, K.; Oliver, J. F.; Gillam, J.; Rafecas, M.

    2014-10-01

    A high-resolution silicon detector probe, in coincidence with a conventional PET scanner, is expected to provide images of higher quality than those achievable using the scanner alone. Spatial resolution should improve due to the finer pixelization of the probe detector, while increased sensitivity in the probe vicinity is expected to decrease noise. A PET-probe prototype is being developed utilizing this principle. The system includes a probe consisting of ten layers of silicon detectors, each a 80 × 52 array of 1 × 1 × 1 mm3 pixels, to be operated in coincidence with a modern clinical PET scanner. Detailed simulation studies of this system have been performed to assess the effect of the additional probe information on the quality of the reconstructed images. A grid of point sources was simulated to study the contribution of the probe to the system resolution at different locations over the field of view (FOV). A resolution phantom was used to demonstrate the effect on image resolution for two probe positions. A homogeneous source distribution with hot and cold regions was used to demonstrate that the localized improvement in resolution does not come at the expense of the overall quality of the image. Since the improvement is constrained to an area close to the probe, breast imaging is proposed as a potential application for the novel geometry. In this sense, a simplified breast phantom, adjacent to heart and torso compartments, was simulated and the effect of the probe on lesion detectability, through measurements of the local contrast recovery coefficient-to-noise ratio (CNR), was observed. The list-mode ML-EM algorithm was used for image reconstruction in all cases. As expected, the point spread function of the PET-probe system was found to be non-isotropic and vary with position, offering improvement in specific regions. Increase in resolution, of factors of up to 2, was observed in the region close to the probe. Images of the resolution phantom showed

  12. Investigation of Radio Frequency Discharges and Langmuir Probe Diagnostic Methods in a Fast Flowing Electronegative Background Gas

    DTIC Science & Technology

    2007-12-01

    B. F. Gordiets, and A. I. Osipov, Plasma Kinetics in Atmospheric Gases. New York: Springer-Verlag, 2000. Carroll olomon, W.C., “Recent...Transition from diffusion-convection to sheath- convection of a cold Clemen lanmuir probe in a moving compressible plasma ,” J. of Phys., 14 : 1001...collisionless plasma ,” Phys. of Plasmas 12: 062109-1-062109-20 (2005). orales , C. R., J. I. Fernandez Palop, S. Borrego del Pino, and J

  13. An integrated fuzzy inference based monitoring, diagnostic, and prognostic system

    NASA Astrophysics Data System (ADS)

    Garvey, Dustin

    To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable "grab bag" of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1

  14. Molecular imaging of biothiols and in vitro diagnostics based on an organic chromophore bearing a terbium hybrid probe.

    PubMed

    Zhou, Zhan; Wang, Qianming; Zhang, Cheng Cheng; Gao, Jinwei

    2016-04-25

    In this research, a novel terbium-based luminescent hybrid inorganic/organic probe was designed and synthesized. Mesoporous silica nanospheres dispersed in water were used as the appropriate host for the covalently linked lanthanide-containing organic structures. The lanthanide structure was linked to a sulfonate ester unit, which, in the presence of biothiols, was cleaved to result in terbium emission. The hybrid probe exhibited the capabilities of quantitative determination and detection limits for biothiols were presented (36.8 nM for Cys, 32.5 nM for GSH, and 34.7 nM for Hcy). Evaluation of luminescence changes in cell culture demonstrated that this smart probe is cell membrane permeable and selectively lights up in the presence of cysteine and glutathione in human embryonic kidney cells and human lung adenocarcinoma cells. This variation in the presence of biothiols can be controlled by the treatment with N-methylmaleimide. The narrow line-like bands and long-lived excited states of this terbium luminescent sensor allows the discrimination of scattering signals and interfering fluorescence derived from biological tissues.

  15. Label-Free Imaging of Female Genital Tract Melanocytic Lesions With Pump-Probe Microscopy: A Promising Diagnostic Tool

    PubMed Central

    Robles, Francisco E.; Deb, Sanghamitra; Fischer, Martin C.; Warren, Warren S.; Selim, Maria Angelica

    2017-01-01

    Objectives Melanomas of the female genital tract present a unique clinical challenge. Not only are these lesions in an anatomically sensitive area, but also they tend to be multifocal and have high recurrence rates. Furthermore, several benign melanocytic proliferations resemble early-stage melanoma clinically and/or histopathologically. Thus, there is a significant need for additional tools that can help correctly diagnose and stage these lesions. Here, we quantitatively and nondestructively analyze the chemical composition of melanin in excised pigmented lesions of the female genital tract using pump-probe microscopy, a high-resolution optical imaging technique that is sensitive to many biochemical properties of melanin. Materials and Methods Thirty-one thin (~5 μm) tissue sections previously excised from female genital tract melanocytic lesions were imaged with pump-probe microscopy and analyzed. Results We find significant quantitative differences in melanin type and structure between melanoma and nonmalignant melanocytic proliferations. Our analysis also suggests a link between the molecular signatures of melanins and lesion-specific genetic mutations. Finally, significant differences are found between metastatic and nonmetastatic melanomas. The limitations of this work include the fact that molecular information is restricted to melanin pigment and the sample size is relatively small. Conclusions Pump-probe microscopy provides unique information regarding the biochemical composition of genital tract melanocytic lesions, which can be used to improve the diagnosis and staging of vulvar melanomas. PMID:28157824

  16. SSME HPOTP post-test diagnostic system enhancement project

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1995-01-01

    An assessment of engine and component health is routinely made after each test or flight firing of a space shuttle main engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project is to further develop a computer program which automates the analysis of test data from the SSME high-pressure oxidizer turbopump (HPOTP) in order to detect and diagnose anomalies. This program fits into a larger system, the SSME Post-Test Diagnostic System (PTDS), which will eventually be extended to assess the health and status of most SSME components on the basis of test data analysis. The HPOTP module is an expert system, which uses 'rules-of-thumb' obtained from interviews with experts from NASA Marshall Space Flight Center (MSFC) to detect and diagnose anomalies. Analyses of the raw test data are first performed using pattern recognition techniques which result in features such as spikes, shifts, peaks, and drifts being detected and written to a database. The HPOTP module then looks for combination of these features which are indicative of known anomalies, using the rules gathered from the turbomachinery experts. Results of this analysis are then displayed via a graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  17. SSME HPOTP post-test diagnostic system enhancement project

    NASA Astrophysics Data System (ADS)

    Bickmore, Timothy W.

    1995-01-01

    An assessment of engine and component health is routinely made after each test or flight firing of a space shuttle main engine (SSME). Currently, this health assessment is done by teams of engineers who manually review sensor data, performance data, and engine and component operating histories. Based on review of information from these various sources, an evaluation is made as to the health of each component of the SSME and the preparedness of the engine for another test or flight. The objective of this project is to further develop a computer program which automates the analysis of test data from the SSME high-pressure oxidizer turbopump (HPOTP) in order to detect and diagnose anomalies. This program fits into a larger system, the SSME Post-Test Diagnostic System (PTDS), which will eventually be extended to assess the health and status of most SSME components on the basis of test data analysis. The HPOTP module is an expert system, which uses 'rules-of-thumb' obtained from interviews with experts from NASA Marshall Space Flight Center (MSFC) to detect and diagnose anomalies. Analyses of the raw test data are first performed using pattern recognition techniques which result in features such as spikes, shifts, peaks, and drifts being detected and written to a database. The HPOTP module then looks for combination of these features which are indicative of known anomalies, using the rules gathered from the turbomachinery experts. Results of this analysis are then displayed via a graphical user interface which provides ranked lists of anomalies and observations by engine component, along with supporting data plots for each.

  18. Unmanned Multiple Exploratory Probe System (MEPS) for Mars observation. Volume 2: Calculations and derivations

    NASA Technical Reports Server (NTRS)

    Adams, Daniel E.; Crumbly, Christopher M.; Delp, Steve E.; Guidry, Michelle A.; Lisano, Michael E.; Packard, James D.; Striepe, Scott A.

    1988-01-01

    This volume of the final report on the unmanned Multiple Exploratory Probe System (MEPS) details all calculations, derivations, and computer programs that support the information presented in the first volume.

  19. Imaging system for hypervelocity dust injection diagnostic on NSTX

    SciTech Connect

    Dorf, L. A.; Roquemore, A. L.; Wurden, G. A.; Ticos, C. M.; Wang Zhehui

    2006-10-15

    The novel hypervelocity dust injection diagnostic will facilitate our understanding of basic aspects of dust-plasma interaction and magnetic field topology in fusion plasma devices, by observing 'comet tails' associated with the injected micron-size dust particles. A single projection of the tail onto an image plane will not provide sufficient information; therefore, we plan to use two views, with intensified DiCam-Pro cameras on two NSTX ports. Each camera can furnish up to five overlaying sequential images with gate times greater than 3 ns and 1280x1024 pixel resolution. A coherent fiber bundle with 1500x1200 fibers will relay the image from an imaging lens installed directly on the port to the camera optics. The lens receives light from the outer portion of the NSTX cross section and focuses a 1 cm tail onto at least 60 fibers for adequate resolution. The estimated number of photons received by the camera indicates signal-to-noise ratios of 10{sup 2}-10{sup 4}, with the use of a 10 nm bandwidth filter. The imaging system with one camera was successfully tested on NSTX in 2005. Photographing lithium pellets yielded bright and distinctive pictures of the tails nearly aligned with B lines. We also observed that the bright 'filaments' - plasma cords with high density and temperature - are present in both top and bottom portions of the machine.

  20. Test and Evaluation of Field-Deployable Infectious Disease Diagnostic Assays in Support of the Joint Biological Agent Identification and Diagnosis System (JBAIDS): Malaria (Plasmodium/JBAIDS)

    DTIC Science & Technology

    2012-05-31

    Disease Diagnostic Assays in Support of the Joint Biological Agent Identification and Diagnosis System 5b. GRANT NUMBER (JBAIDS): Malaria ( Plasmodium ...as plasmid control DNA. The assay was 100% (5/5) sensitive and 100% (13/13) specific in testing with a diverse panel of human malaria Plasmodium ...Assay • • .11. • • ..Tl£"’Tl _,_ • • .. _ .,,_ Tll • • • 15. SUBJECT TERMS Malaria , Plasmodium , Probe, TaqMan 16. SECURITY CLASSIFICATION OF: a

  1. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  2. Analysis of data obtained in clinical trials of optical biopsy system for breast cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Belkov, S. A.; Kochemasov, G. G.; Kulikov, S. M.; Maslov, N. V.; Bondarenko, S. V.; Shakhova, N. M.; Pavlycheva, I. Y.; Rubenchik, A.; Da Silva, L. B.

    2008-02-01

    In the clinical trials it was shown, that characteristics of optical scattering and absorption are sensitive to the tissue type and state. In the given report improved optical biopsy system will be presented, clinical trials of which have been conducted in the Regional Oncology Center of Nizhny Novgorod, Russia. During a year more than 160 patients with breast tumors were investigated using this system. Radiation from a xenon lamp through an optical fiber placed inside the probe's needle was delivered into the breast. The radiation scattered from the breast tissue was collected by another fibers also placed in the same needle and its spectrum was measured. Obtained optical data was analyzed to find general optical characteristics of scattered radiation in different types of tissue and revealing the major peculiarities in the spectral scattering coefficients of malignant tumors and their distinctions from benign tumors and healthy tissue. Using different mathematical algorithm the typical template of scattering spectrum was found for benign and malignant type of breast tumor. Then the algorithm of automatic detection of malignant spectra in the data flow was developed. Using this algorithm the datasets of all patients were processed and analyzed and the diagnoses were obtained. The automatic diagnoses were compared with those given by physicians. As a result the indexes of sensitivity and specificity for the optical biopsy diagnostic method were found equal to 96% and 80% correspondingly.

  3. Improved thermometry of low-temperature quantum systems by a ring-structure probe

    NASA Astrophysics Data System (ADS)

    Guo, Li-Sha; Xu, Bao-Ming; Zou, Jian; Shao, Bin

    2015-11-01

    The thermometry precision of a sample is a question of both fundamental and technological importance. In this paper, we consider a ring-structure system as our probe to estimate the temperature of a bath. Based on the Markovian master equation of the probe, we calculate the quantum Fisher information (QFI) of the probe at any time. We find that for the thermal equilibrium thermometry, the ferromagnetic structure can measure a lower temperature of the bath with a higher precision compared with the nonstructure probe, while for the dynamical thermometry, the antiferromagnetic structure can make the QFI of the probe in the dynamical process much larger than that in equilibrium with the bath, which is somewhat counterintuitive. Moreover, the best accuracy for the thermometry achieved in the antiferromagnetic structure case can be much higher than that in the nonstructure case. The physical mechanisms of the above phenomena are given in this paper.

  4. Evolving a Diagnostic Assessment System for Formative Use by Senior School System Executives in the USA.

    ERIC Educational Resources Information Center

    Carter, D. S. G.; And Others

    1991-01-01

    Describes the Diagnostic Executive Competency Analysis System (DECAS) developed by researchers at the University of Texas (Austin). Applies assessment center methods conventionally used for selection and screening purposes to formative needs-based professional development activities. Presents DECAS within the framework of the U.S. Multi-Site…

  5. Channel direction information probing for multi-antenna cognitive radio system

    NASA Astrophysics Data System (ADS)

    Yuan, Fang; Villardi, Gabriel Porto; Kojima, Fumihide; Yano, Hiroyuki

    2015-12-01

    This work studies the problem of channel direction information (CDI) probing for multi-antenna cognitive radio system. The CDI of the channel from the secondary transmitter (ST) to primary receiver (PR) is elementary information in designing the beamforming at the ST for mitigating the interference to the PR. However, lacking the explicit cooperation between primary and secondary systems, the CDI has to be acquired by probing at the ST, which is challenging. To solve this, we consider the line of sight (LoS) channel between the ST and the PR, and propose one CDI probing scheme for the ST. Specifically, the ST sends two types of probing signals by beamforming towards an interested region where both the secondary receiver (SR) and the PR are located and then actively learns the hidden feedback information from the primary system to acquire the CDI. The proposed scheme has a closed-form solution, and avoids the iteration between the probing and acquisition, which is desirable for practical system. Moreover, we show that the proposed probing scheme can be extended for primary systems working under multi-access channel and broadcasting channel. Simulation results demonstrate that the proposed scheme can improve the accuracy of the acquired CDI at the ST in cognitive ratio system remarkably.

  6. Fusion Propulson System Requirements for an Interstellar Probe

    NASA Technical Reports Server (NTRS)

    Spencer, D. F.

    1963-01-01

    An examination of the engine constraints for a fusion-propelled vehicle indicates that minimum flight times for a probe to a 5 light-year star will be approximately 50 years. The principal restraint on the vehicle is the radiator weight and size necessary to dissipate the heat which enters the chamber walls from the fusion plasma. However, it is interesting, at least theoretically, that the confining magnetic field strength is of reasonable magnitude, 2 to 3 x 10(exp5) gauss, and the confinement time is approximately 0.1 sec.

  7. Perturbation factors in the clinical handling of a fiber-coupled Raman probe for cutaneous in vivo diagnostic Raman spectroscopy.

    PubMed

    Schleusener, Johannes; Gluszczynska, Patrycja; Reble, Carina; Gersonde, Ingo; Helfmann, Jürgen; Cappius, Hans-Joachim; Fluhr, Joachim W; Meinke, Martina C

    2015-01-01

    The application of fiber-coupled Raman probes for the discrimination of cancerous and normal skin has the advantage of a non-invasive in vivo application, easy clinical handling, and access to the majority of body sites, which would otherwise be limited by stationary Raman microscopes. Nevertheless, including optical fibers and miniaturizing optical components, as well as measuring in vivo, involves the sensibility to external perturbation factors that could introduce artifacts to the acquired Raman spectra and thereby potentially reduce classification performance. In this study, typical perturbation factors of Raman measurements with a Raman fiber probe, optimized for clinical in vivo discrimination of skin cancer, were investigated experimentally. Measurements were performed under standardized conditions in clinical settings in vivo on human skin, as well as ex vivo on porcine ears. Raman spectra were analyzed in the fingerprint region between 1150 and 1730 cm(-1) using principal component analysis. The largest artifacts in the Raman spectra were found in measurements performed under the influence of strong ambient light conditions as well as after miscellaneous pre-treatments to the skin, such as use of a permanent marker or a sunscreen. Minor influences were also found in measurements using H2O immersion and when varying the probe contact force. The effect of reasonable variation of the fiber-bending radius was found to be of negligible impact. The influence of measurements on hairy or sun-exposed body sites, as well as inter-subject variation, was also investigated. The presented results may serve as a guide to avoid negative effects during the process of data acquisition and so avoid misclassification in tumor discrimination.

  8. Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe

    PubMed Central

    Liu, Gangjun; Kieu, Khanh; Wise, Frank W.; Chen, Zhongping

    2012-01-01

    We report on the development of a compact multiphoton microscopy (MPM) system that integrates a compact and robust fiber laser with a miniature probe. The all normal dispersion fiber femtosecond laser has a central wavelength of 1.06 μm, pulse width of 125 fs and average power of more than 1 W. A double cladding photonic crystal fiber was used to deliver the excitation beam and to collect the two-photon signal. The hand-held probe included galvanometer-based mirror scanners, relay lenses and a focusing lens. The packaged probe had a diameter of 16 mm. Second harmonic generation (SHG) images and two-photon excited fluorescence (TPEF) images of biological tissues were demonstrated using the system. MPM images of different biological tissues acquired by the compact system which integrates an FBFP laser, an DCPCF and a miniature handheld probe. PMID:20635426

  9. Autonomous power expert fault diagnostic system for Space Station Freedom electrical power system testbed

    NASA Technical Reports Server (NTRS)

    Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.

  10. Diagnostic Accuracy of Ultrasound B scan using 10 MHz linear probe in ocular trauma;results from a high burden country

    PubMed Central

    Shazlee, Muhammad Kashif; Ali, Muhammad; SaadAhmed, Muhammad; Hussain, Ammad; Hameed, Kamran; Lutfi, Irfan Amjad; Khan, Muhammad Tahir

    2016-01-01

    Objective: To study the diagnostic accuracy of Ultrasound B scan using 10 MHz linear probe in ocular trauma. Methods: A total of 61 patients with 63 ocular injuries were assessed during July 2013 to January 2014. All patients were referred to the department of Radiology from Emergency Room since adequate clinical assessment of the fundus was impossible because of the presence of opaque ocular media. Based on radiological diagnosis, the patients were provided treatment (surgical or medical). Clinical diagnosis was confirmed during surgical procedures or clinical follow-up. Results: A total of 63 ocular injuries were examined in 61 patients. The overall sensitivity was 91.5%, Specificity was 98.87%, Positive predictive value was 87.62 and Negative predictive value was 99%. Conclusion: Ultrasound B-scan is a sensitive, non invasive and rapid way of assessing intraocular damage caused by blunt or penetrating eye injuries. PMID:27182245

  11. Evaluation of probe lasers employed in optical diagnostics for phase transformation of thin films during excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Kuo, Chil-Chyuan

    2008-06-01

    The stability and reliability of probe laser is an important factor affecting the inspection of the phase transformation process of Si thin films during excimer laser crystallization using in-situ time-resolved optical measurements. The changes in 2D intensity profile, peak power density, and beam wander of the commonly used helium-neon (He-Ne) and diode laser are investigated experimentally. It is found that the peak power density of He-Ne laser is higher than that of diode laser, while the total power of He-Ne laser is lower than that of diode laser. Although the instability in the peak power density of He-Ne laser will increase with increasing the operation time, the beam stability of He-Ne laser is better than that of diode laser. For long-time operation (>24 h) of optical measurements, the diode laser is a good candidate of probe laser. Conversely, the diode laser is suitable for the short-time operation (<24 h) of optical measurements because the beam-wander is higher than that of He-Ne laser.

  12. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  13. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  14. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy

    PubMed Central

    Jung, Woonggyu; Tang, Suo; McCormic, Daniel T.; Xie, Tiquiang; Ahn, Yeh-Chan; Su, Jianping; Tomov, Ivan V.; Krasieva, Tatiana B.; Tromberg, Bruce J.; Chen, Zhongping

    2008-01-01

    A factor that limits the use of multiphoton microscopy (MPM) in clinical and preclinical studies is the lack of a compact and flexible probe. We report on a miniaturized MPM probe employing a microelectromechanical system (MEMS) scanning mirror and a double-clad photonic crystal fiber (DCPCF). The use of a MEMS mirror and a DCPCF provides many advantages, such as size reduction, rapid and precise scanning, efficient delivery of short pulses, and high collection efficiency of fluorescent signals. The completed probe was 1 cm in outer diameter and 14 cm in length. The developed probe was integrated into an MPM system and used to image fluorescent beads, paper, and biological specimens. PMID:18552946

  15. Common-path optical coherence tomography using a microelectromechanical-system-based endoscopic probe.

    PubMed

    Wang, Donglin; Duan, Can; Zhang, Xiaoyang; Yun, Zhao; Pozzi, Antonio; Xie, Huikai

    2016-09-01

    This paper presents a common-path (CP) swept-source optical coherence tomography (SSOCT) system based on a special endoscopic probe design with an in-line internal reflection as the reference and a two-axis electrothermal microelectromechanical system mirror for image scanning. The rear surface of a gradient reflective index (GRIN) lens inside the probe is set as the reference reflection plane. The length of the GRIN lens is optimized to eliminate the artifacts in SSOCT images successfully. Doppler OCT is also demonstrated based on the CP endoscopic probe. The diameter of the probe is only 2.5 mm, so it can be easily inserted into the biopsy channel of traditional endoscopes to access human internal organs for in vivo diagnoses.

  16. Compact probing system using remote imaging for industrial plant maintenance

    NASA Astrophysics Data System (ADS)

    Ito, F.; Nishimura, A.

    2014-03-01

    Laser induced breakdown spectroscopy (LIBS) and endoscope observation were combined to design a remote probing device. We use this probing device to inspect a crack of the inner wall of the heat exchanger. Crack inspection requires speed at first, and then it requires accuracy. Once Eddy Current Testing (ECT) finds a crack with a certain signal level, another method should confirm it visually. We are proposing Magnetic particle Testing (MT) using specially fabricated the Magnetic Particle Micro Capsule (MPMC). For LIBS, a multichannel spectrometer and a Q-switch YAG laser were used. Irradiation area is 270 μm, and the pulse energy was 2 mJ. This pulse energy corresponds to 5-2.2 MW/cm2. A composite-type optical fiber was used to deliver both laser energy and optical image. Samples were prepared to heat a zirconium alloy plate by underwater arc welding in order to demonstrate severe accidents of nuclear power plants. A black oxide layer covered the weld surface and white particles floated on water surface. Laser induced breakdown plasma emission was taken into the spectroscope using this optical fiber combined with telescopic optics. As a result, we were able to simultaneously perform spectroscopic measurement and observation. For MT, the MPMC which gathered in the defective area is observed with this fiber. The MPMC emits light by the illumination of UV light from this optical fiber. The size of a defect is estimated with this amount of emission. Such technology will be useful for inspection repair of reactor pipe.

  17. The three-dimensional positioning system at the VINETA.II experiment—a multipurpose tool for in situ plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Shesterikov, I.; Milojevic, D.; von Stechow, A.; Rahbarnia, K.; Grulke, O.; Klinger, T.

    2017-08-01

    The manipulator systems installed at the VINETA.II magnetic reconnection experiment are essential elements for experimental investigation of local plasma parameters. A novel three-dimensional (3D) probe manipulator has been designed, implemented and successfully operated at VINETA.II. This work presents its design and performance for three-dimensional measurements of VINETA.II plasmas. Its design consists of three vertically stacked independent and mutually perpendicular linear motion stages which allow flexible positioning of diagnostic tools such as electrical and magnetic probes or optical diagnostics within the vacuum vessel. Its design features include a wide spatial coverage, sub-millimeter positioning accuracy and the capability to operate in a harsh environment under the influence of microwaves, radio-frequency waves and direct contact with plasma. Manipulator performance is assessed by measuring a volumetric distribution of plasma parameters by a B-dot probe. A typical discharge of the magnetic reconnection setup in VINETA.II with a pulse time of τ=600 μs is chosen for this purpose. The azimuthal magnetic field distribution measured with the 3D manipulator agrees favorably with measurements obtained by the two-dimensional (2D) manipulator, used at VINETA.II as a standard reference diagnostic tool, thereby demonstrating its reliability and performance. A programmable stepper motor controller (TMCM-1110) that is operated remotely by a PC drives all possible features of the manipulator system.

  18. Thermal characteristics of sapphire contact probe delivery systems for laser angioplasty.

    PubMed

    Ashley, S; Brooks, S G; Gehani, A A; Kester, R C; Rees, M R

    1990-01-01

    Contact probes made from synthetic sapphire crystal, designed for general laser surgery, are currently being evaluated for use in laser angioplasty. Their mode of action and safety in the context of arterial recanalisation is unknown, particularly with respect to the degree of probe and catheter heating. Infrared thermal imaging was used to investigate the surface temperature rise of various rounded sapphire probes during emission of continuous wave Nd-YAG (1,064 nm) laser energy. Catheter safety was addressed by analyzing the temperature of the metal interface between the optical fiber and sapphire, as well as the catheter proximal to this junction. Transmission of Nd-YAG energy through each probe was also measured. Five rounded probes of 1.8-3.0 mm diameter (three supplied by Surgical Laser Technologies [SLT], two by Living Technology [LT]), along with their respective optical catheters, were compared. There was a large temperature gradient between the front and rim of the probes. The maximum surface temperature rise of the sapphire (at 20 W, 5-second exposure) was 314-339 degrees C (SLT) and 90-108 degrees C (LT) [P less than 0.001, 3-way ANOVA]. The reason for this difference may be related to "crazing" of the front surface of the SLT sapphires. At all energy levels sapphire temperatures were considerably lower than attained by metal laser thermal angioplasty probes. Forward transmission was slightly higher in the SLT probes (75-85%) than the LT sapphires (54-69%). With fiber perfusion at 2 ml/minute, a minor degree of heating of the metal sapphire holders was recorded (maximum rise 35 degrees C), but heating of the catheter proximal to this was negligible. Therefore, it would appear that the risk of tip detachment or arterial injury due to heating of the connecting metal interface is extremely low. Without perfusion, however, there was a greater degree of interface heating in the LT delivery system suggestive of more laser backscattering by these sapphires

  19. Fault Diagnostics in Power Electronics Based Brake-by-Wire Systems

    DTIC Science & Technology

    2006-05-22

    DC motor and a DC/DC converter. The system performance has been compared with two different fuzzy diagnostic systems and the results are presented. The hierarchical fuzzy diagnostic system trained on the simulated model has the capability of detecting certain types of faulty conditions occurring in a brake-by-wire system setup in a lab in less than 0.0009s and pinpointing to the specific type of faults within less than

  20. Diagnostic values of dual focus narrow band imaging and probe-based confocal laser endomicroscopy in FAP-related duodenal adenoma

    PubMed Central

    Pittayanon, Rapat; Rerknimitr, Rungsun; Imraporn, Boonlert; Wisedopas, Naruemon; Kullavanijaya, Pinit

    2015-01-01

    Background and study aims: Familial adenomatous polyposis (FAP) is associated with an increased risk of development of periampullary and nonampullary adenoma. Either routine biopsy or endoscopic removal of the lesion is generally required to identify the presence of adenoma. Because the risk of tissue sampling from the ampulla is high and nonampullary polyps are sometimes numerous, resection of all the lesions is time-consuming. This study aimed to evaluate the diagnostic values of duodenal adenoma by dual focus NBI (dNBI) and probe-based confocal endomicroscopy (pCLE) in FAP patients. Patients and methods: The authors conducted a diagnostic study in a single tertiary-care referral center. Surveillance esophagogastroduodenoscopy with dNBI and pCLE was performed on 26 patients with FAP for real-time adenoma diagnosis by two different endoscopists; one used dNBI and the other pCLE. Histology from the matched lesion was used as the gold standard. Results: A total of 55 matched biopsies (25 ampullas, 30 nonampullas) were performed. The sensitivity, specificity, post predictive value (PPV), negative predictive value (NPV), and accuracy of dNBI vs. pCLE from all duodenal lesions were 96.9 % vs. 93.8 %, 78.3 % vs. 81 %, 86.1 % vs. 88.2 %, 94.7 vs. 89.5 %, and 92.4 % vs. 88.6 %, respectively. Conclusions: For surveillance of periampullary and nonampullary adenoma in patients with FAP, the real-time readings provided a high degree of diagnostic value when histology was used as the gold standard. (Clinical trial registration number: NCT02162173). PMID:26528500

  1. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    SciTech Connect

    Isa, Nor Ashidi Mat

    2015-05-15

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  2. Towards intelligent diagnostic system employing integration of mathematical and engineering model

    NASA Astrophysics Data System (ADS)

    Isa, Nor Ashidi Mat

    2015-05-01

    The development of medical diagnostic system has been one of the main research fields during years. The goal of the medical diagnostic system is to place a nosological system that could ease the diagnostic evaluation normally performed by scientists and doctors. Efficient diagnostic evaluation is essentials and requires broad knowledge in order to improve conventional diagnostic system. Several approaches on developing the medical diagnostic system have been designed and tested since the earliest 60s. Attempts on improving their performance have been made which utilizes the fields of artificial intelligence, statistical analyses, mathematical model and engineering theories. With the availability of the microcomputer and software development as well as the promising aforementioned fields, medical diagnostic prototypes could be developed. In general, the medical diagnostic system consists of several stages, namely the 1) data acquisition, 2) feature extraction, 3) feature selection, and 4) classifications stages. Data acquisition stage plays an important role in converting the inputs measured from the real world physical conditions to the digital numeric values that can be manipulated by the computer system. One of the common medical inputs could be medical microscopic images, radiographic images, magnetic resonance image (MRI) as well as medical signals such as electrocardiogram (ECG) and electroencephalogram (EEG). Normally, the scientist or doctors have to deal with myriad of data and redundant to be processed. In order to reduce the complexity of the diagnosis process, only the significant features of the raw data such as peak value of the ECG signal or size of lesion in the mammogram images will be extracted and considered in the subsequent stages. Mathematical models and statistical analyses will be performed to select the most significant features to be classified. The statistical analyses such as principal component analysis and discriminant analysis as well

  3. Infrared lines as probes of solar magnetic features. VIII. MgI 12μm diagnostics of sunspots.

    NASA Astrophysics Data System (ADS)

    Bruls, J. H. M. J.; Solanki, S. K.; Rutten, R. J.; Carlsson, M.

    1995-01-01

    Due to their large Zeeman sensitivity, the MgI lines at 12μm are important diagnostics of solar magnetism. The formation of their central emission features is now understood, enabling quantitative modeling and diagnostic application of these lines. We supply the first systematic analysis of solar MgI 12μm Stokes profiles employing detailed line-profile synthesis. We compute Stokes profiles of MgI 12.32μm for the quiet Sun, for sunspot penumbrae and for the extended ("superpenumbral") magnetic canopies surrounding sunspots. We use these computations to analyze recent MgI 12μm observations by Hewagama et al. (1993). Our results are the following: (1) -Saha-Boltzmann temperature sensitivity explains that the emission peaks are stronger in penumbrae than in the quiet Sun, and that they disappear in umbrae. (2) -The formation heights of the emission features are approximately the same in penumbrae and in the quiet Sun, namely τ_500_=~10^-3^. (3) -The simple Seares formula allows relatively accurate determinations of field strength and magnetic inclination. (4) -The observed excess broadening of the σ-component peaks compared with the π component in penumbrae is well explained by primarily horizontal, smooth radial variation of the magnetic field strength. Additional small-scale variations are less than {DELTA}B =~200G. (5) -The vertical field gradients dB/dz in penumbrae range from 0.7G/km to 3G/km; the larger gradients occur near the umbra, the smaller ones near the outer edge of the penumbra. (6) -The MgI 12μm lines are well-suited to measure the base heights of superpenumbral magnetic canopies. These heights range between 300km and 500km above τ_500_=1 out to twice the sunspot radius, in excellent agreement with determinations from other infrared lines.

  4. Oxygen transport as a structure probe for heterogeneous polymeric systems

    NASA Astrophysics Data System (ADS)

    Hu, Yushan

    Although permeability of small molecules is often measured as an important performance property, deeper analysis of the transport characteristics provides insight into polymer structure, especially if used in combination with other characterization techniques. Transport of small gas molecules senses the permeable amorphous structure and probes the nature of free volume. This work focuses on oxygen transport, supplemented with other methods of physical analysis, as a probe for: (1) the nature of free volume and crystalline morphology in the crystallized glassy state, (2) the nature of free volume and hierarchical structure in liquid crystalline polymers, and (3) the role of dispersed polyamide phase geometry on oxygen barrier properties of poly(ethylene terephthalate) (PET)/polyamide blends. In the first part, the improvement in oxygen-barrier properties of glassy polyesters by crystallization was examined. Examples included poly(ethylene naphthalate) (PEN), and a copolymer based on PET in which 55 mol% terephthalate was replaced with 4,4'-bibenzoate. Explanation of the unexpectedly high solubility of crystallized PEN required a two-phase transport model consisting of an impermeable crystalline phase of constant density and a permeable amorphous phase of variable density. The resulting relationship between oxygen solubility and amorphous phase density was consistent with free volume concepts of gas sorption. In the second part, oxygen barrier properties of liquid crystalline (LC) polyesters based on poly(diethylene glycol 4,4'-bibenzoate) (PDEGBB) were studied. This study extended the 2-phase transport model for oxygen transport of non-LC crystalline polymers to a smectic LCP. It was possible to systematically vary the solid state structure of (PDEGBB) from LC glass to crystallized LC glass. The results were consistent with a liquid crystalline state intermediate between the permeable amorphous glass and the impermeable 3-dimensional crystal. In this interpretation

  5. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay.

    PubMed

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-25

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates.

  6. Evaluation of TaqMan qPCR System Integrating Two Identically Labelled Hydrolysis Probes in Single Assay

    PubMed Central

    Nagy, Alexander; Vitásková, Eliška; Černíková, Lenka; Křivda, Vlastimil; Jiřincová, Helena; Sedlák, Kamil; Horníčková, Jitka; Havlíčková, Martina

    2017-01-01

    Ongoing evolution of viral pathogens is a significant issue in diagnostic virology employing TaqMan qPCR/RT-qPCR. Specific concerns are related to false negativity due to probe binding failure. One option for compensating for such deficiency is to integrate a second identically labelled probe in the assay. However, how this alteration influences the reaction parameters has not been comprehensively demonstrated. In the present study, we evaluate a TaqMan protocol using two identically labelled hydrolysis probes (simple, LNA (locked-nucleic-acid)) and MGB (minor-groove-binder) modified probes and combinations thereof in a single assay. Our results based on a synthetic amplicon suggest that the second probe does not compromise the TaqMan qPCR/RT-qPCR parameters, which repeatedly and reproducibly remained comparable to those of the corresponding single-probe assays, irrespective of the relative probe orientation, whether opposite or tandem, and probe modifications or combinations thereof. On the other hand, the second probe additively contributed to the overall fluorescence signal. The utility of the dual-probe approach was demonstrated on practical examples by using field specimens. We hope that the present study might serve as a theoretical basis for the development or improvement of TaqMan qPCR/RT-qPCR assays for the detection of highly variable nucleic acid templates. PMID:28120891

  7. Psychoacoustic Assessment of Speech Communication Systems. The Diagnostic Discrimination Test.

    ERIC Educational Resources Information Center

    Grether, Craig Blaine

    The present report traces the rationale, development and experimental evaluation of the Diagnostic Discrimination Test (DDT). The DDT is a three-choice test of consonant discriminability of the perceptual/acoustic dimensions of consonant phonemes within specific vowel contexts. The DDT was created and developed in an attempt to provide a…

  8. Teacher's Psycho-Diagnostic Activities in School Educational System

    ERIC Educational Resources Information Center

    Minakhmetova, Albina Z.; Pyanova, Ekaterina N.; Akhmetshina, Enze M.

    2016-01-01

    The urgency of the problem stated in the article stems from the fact that in modern conditions the study of the psycho-diagnostic component of the teacher's activities is relevant in practical terms, since the functions of these activities affect the efficiency of pedagogical activity and the educational process itself, including the effectiveness…

  9. Psychoacoustic Assessment of Speech Communication Systems. The Diagnostic Discrimination Test.

    ERIC Educational Resources Information Center

    Grether, Craig Blaine

    The present report traces the rationale, development and experimental evaluation of the Diagnostic Discrimination Test (DDT). The DDT is a three-choice test of consonant discriminability of the perceptual/acoustic dimensions of consonant phonemes within specific vowel contexts. The DDT was created and developed in an attempt to provide a…

  10. RECON - A new system for probing the outer solar system with stellar occultations

    NASA Astrophysics Data System (ADS)

    Buie, M. W.; Keller, J. M.; Wasserman, L. H.

    2015-10-01

    The Research and Education Collaborative Occultation Network (RECON) is a new system for coordinated occultation observations of outer solar system objects. Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited duration of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations too small to be resolved directly. Our system takes the new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from the International Occultation Timing Association. At our minimum size, two stations will record an event while the other stations will be probing for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We have successfully completed our first TNO observation which is presented in the compainion paper by G. Rossi et al (this conference).

  11. Flight Performance of Gravity Probe B Cryogenic System

    NASA Astrophysics Data System (ADS)

    Murray, D. O.; Taber, M. A.; Burns, K. M.

    2006-04-01

    Gravity Probe B (GP-B) is a cryogenic and space-based test of Einstein's General Theory of Relativity by means of precision gyroscopes, The GP-B spacecraft was launched into a polar orbit from Vandenberg AFB on April 20, 2004. The launch and operation of GP-B represented the culmination of forty years of planning, technology development, hardware fabrication, and testing. The superfluid liquid helium became depleted on September 29, 2005, giving a lifetime of 17.3 months compared to the requirement of 16.5 months and a thermal model prediction of 16.6 months. The flight dewar contained 2320 liters of ~1.8 K superfluid helium at launch and housed the science instrument consisting of four precision gyroscopes and a telescope. A porous plug phase separator effected the venting of the helium boiloff gas. This venting helium was used to operate 16 thrusters, which are the actuators that effect precision pointing on a fixed star and adjust the orbit to be drag free or close to true zero-g.

  12. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, J. Walter; Lilie, Lyle; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper. This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 percent and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 microns were found to have a capture efficiency greater than 99 percent at all operating conditions.

  13. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper (Ref. 1). This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 micrometers were found to have a capture efficiency greater than 99 percent at all operating conditions.

  14. Use of the WECC WAMS in Wide Area Probing Tests for Validation of System Performance & Modeling

    SciTech Connect

    Hauer, John F.; Mittelstadt, William; Martin, Kenneth E.; Burns, J. W.; Lee, Harry; Pierre, John W.; Trudnowski, Daniel

    2009-02-01

    During 2005 and 2006 the Western Electricity Coordinating Council (WECC) performed three major tests of western system dynamics. These tests used a Wide Area Measurement System (WAMS) based primarily on Phasor Measurement Units (PMUs) to determine response to events including the insertion of the 1400-MW Chief Joseph braking resistor, probing signals, and ambient events. Test security was reinforced through real-time analysis of wide area effects, and high-quality data provided dynamic profiles for interarea modes across the entire western interconnection. The tests established that low-level optimized pseudo-random ±20-MW probing with the Pacific DC Intertie (PDCI) roughly doubles the apparent noise that is natural to the power system, providing sharp dynamic information with negligible interference to system operations. Such probing is an effective alternative to use of the 1400-MW Chief Joseph dynamic brake, and it is under consideration as a standard means for assessing dynamic security.

  15. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines

    PubMed Central

    Pulendran, Bali

    2014-01-01

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102

  16. Volmer-Weber growth stages of polycrystalline metal films probed by in situ and real-time optical diagnostics

    NASA Astrophysics Data System (ADS)

    Abadias, G.; Simonot, L.; Colin, J. J.; Michel, A.; Camelio, S.; Babonneau, D.

    2015-11-01

    The Volmer-Weber growth of high-mobility metal films is associated with the development of a complex compressive-tensile-compressive stress behavior as the film deposition proceeds through nucleation of islands, coalescence, and formation of a continuous layer. The tensile force maximum has been attributed to the end of the islands coalescence stage, based on ex situ morphological observations. However, microstructural rearrangements are likely to occur in such films during post-deposition, somewhat biasing interpretations solely based on ex situ analysis. Here, by combining two simultaneous in situ and real-time optical sensing techniques, based on surface differential reflectance spectroscopy (SDRS) and change in wafer curvature probed by multibeam optical stress sensor (MOSS), we provide direct evidence that film continuity does coincide with tensile stress maximum during sputter deposition of a series of metal (Ag, Au, and Pd) films on amorphous SiOx. Stress relaxation after growth interruption was testified from MOSS, whose magnitude scaled with adatom mobility, while no change in SDRS signal could be revealed, ruling out possible changes of the surface roughness at the micron scale.

  17. Modular system for measuring a speech quality in the IP telephony infrastructures using autonomous probes

    NASA Astrophysics Data System (ADS)

    Rezac, Filip; Safarik, Jakub; Macura, Lukas; Rozhon, Jan; Gresak, Erik

    2017-05-01

    The paper deals with a speech quality monitoring system using probes placed on the individual network nodes operating VoIP services. Information on speech quality is measured periodically and the results are then stored on the central server which provides visualization in a form of graph respecting a topology of the probes. Article provides overall description of the technology and algorithms used in the speech quality monitoring system and results achieved in this applied research are verified in real operation. Contribution of the work lies in a proposal of the new multi-agent system enabling speech quality monitoring and in own implementation and its verification in Czech academic network.

  18. Automated System of Diagnostic Monitoring at Bureya HPP Hydraulic Engineering Installations: a New Level of Safety

    SciTech Connect

    Musyurka, A. V.

    2016-09-15

    This article presents the design, hardware, and software solutions developed and placed in service for the automated system of diagnostic monitoring (ASDM) for hydraulic engineering installations at the Bureya HPP, and assuring a reliable process for monitoring hydraulic engineering installations. Project implementation represents a timely solution of problems addressed by the hydraulic engineering installation diagnostics section.

  19. Evaluation of Diagnostic Systems: The Selection of Students at Risk of Academic Difficulties

    ERIC Educational Resources Information Center

    Smolkowski, Keith; Cummings, Kelli D.

    2015-01-01

    Diagnostic tools can help schools more consistently and fairly match instructional resources to the needs of their students. To ensure the best educational outcome for each child, diagnostic decision-making systems seek to balance time, clarity, and accuracy. However, recent research notes that many educational decisions tend to be made using…

  20. Diagnoses and Presenting Symptoms in an Infant Psychiatry Clinic: Comparison of Two Diagnostic Systems.

    ERIC Educational Resources Information Center

    Frankel, Karen A.; Boyum, Lisa A.; Harmon, Robert J.

    2004-01-01

    Objective: To present data from a general infant psychiatry clinic, including range and frequency of presenting symptoms, relationship between symptoms and diagnoses, and comparison of two diagnostic systems, DSM-IV and Diagnostic Classification of Mental Health and Developmental Disorders of Infancy and Early Childhood (DC: 0-3). Method: A…