Science.gov

Sample records for diagnostic real-time pcr

  1. Real-time PCR in Food Science: PCR Diagnostics.

    PubMed

    Rodriguez-Lazaro, David; Cook, Nigel; Hernandez, Marta

    2013-01-01

    A principal consumer demand is a guarantee of the safety and quality of food. The presence of foodborne pathogens and their potential hazard, the use of genetically modified organisms (GMOs) in food production, and the correct labelling in foods suitable for vegetarians are among the subjects where society demands total transparency. The application of controls within the quality assessment programmes of the food industry is a way to satisfy these demands, and is necessary to ensure efficient analytical methodologies are possessed and correctly applied by the Food Sector. The use of real-time PCR has become a promising alternative approach in food diagnostics. It possesses a number of advantages over conventional culturing approaches, including rapidity, excellent analytical sensitivity and selectivity, and potential for quantification. However, the use of expensive equipment and reagents, the need for qualified personnel, and the lack of standardized protocols are impairing its practical implementation for food monitoring and control.

  2. Overcoming inhibition in real-time diagnostic PCR.

    PubMed

    Hedman, Johannes; Rådström, Peter

    2013-01-01

    PCR is an important and powerful tool in several fields, including clinical diagnostics, food analysis, and forensic analysis. In theory, PCR enables the detection of one single cell or DNA molecule. However, the presence of PCR inhibitors in the sample affects the amplification efficiency of PCR, thus lowering the detection limit, as well as the precision of sequence-specific nucleic acid quantification in real-time PCR. In order to overcome the problems caused by PCR inhibitors, all the steps leading up to DNA amplification must be optimized for the sample type in question. Sampling and sample treatment are key steps, but most of the methods currently in use were developed for conventional diagnostic methods and not for PCR. Therefore, there is a need for fast, simple, and robust sample preparation methods that take advantage of the accuracy of PCR. In addition, the thermostable DNA polymerases and buffer systems used in PCR are affected differently by inhibitors. During recent years, real-time PCR has developed considerably and is now widely used as a diagnostic tool. This technique has greatly improved the degree of automation and reduced the analysis time, but has also introduced a new set of PCR inhibitors, namely those affecting the fluorescence signal. The purpose of this chapter is to view the complexity of PCR inhibition from different angles, presenting both molecular explanations and practical ways of dealing with the problem. Although diagnostic PCR brings together scientists from different diagnostic fields, end-users have not fully exploited the potential of learning from each other. Here, we have collected knowledge from archeological analysis, clinical diagnostics, environmental analysis, food analysis, and forensic analysis. The concept of integrating sampling, sample treatment, and the chemistry of PCR, i.e., pre-PCR processing, will be addressed as a general approach to overcoming real-time PCR inhibition and producing samples optimal for PCR

  3. Real time PCR in childhood tuberculosis: a valuable diagnostic tool.

    PubMed

    Dayal, Rajeshwar; Kashyap, Haripal; Pounikar, Gajanand; Kamal, Raj; Yadav, Neeraj Kumar; Singh, Manoj Kumar; Chauhan, Devendra Singh; Goyal, Ankur

    2015-02-01

    The present study was conducted to detect and quantitate Mycobacterium tuberculosis from various body fluid specimens of cases of tuberculosis by real time PCR technique and compare results with conventional PCR technique and culture. One hundred fifteen children (<18 y) with tuberculosis (diagnosed as per IAP guidelines) and 32 disease matched controls from the Department of Pediatrics, S.N. Medical College, Agra, were included in the study. Different body fluids (CSF, gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate) were subjected to culture, conventional PCR targeting insertion sequence 1S6110 and Real time PCR targeting 16srRNA of Mycobacterium tuberculosis. Real time PCR showed significantly better results than culture in all body fluids (p < 0.05). It was superior to conventional PCR in CSF (p < 0.05) but showed comparable results in gastric aspirate, pleural fluid, ascitic fluid and lymph node aspirate (p > 0.05). Hence, real time PCR is a promising diagnostic tool for childhood tuberculosis, particularly tubercular meningitis.

  4. Lab-on-a-chip PCR: real time PCR in miniaturized format for HLA diagnostics

    NASA Astrophysics Data System (ADS)

    Gaertner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Sewart, René; Frank, Rainer; Willems, Andreas

    2014-05-01

    In case of transplantation or the identification of special metabolic diseases like coeliac disease, HLA typing has to be done fast and reliably with easy-to-handle devices by using limited amount of sample. Against this background a lab-on-a-chip device was realized enabling a fast HLA typing via miniaturized Real-time PCR. Hereby, two main process steps were combined, namely the extraction of DNA from whole blood and the amplification of the target DNA by Real-time PCR giving rise-to a semi-quantitative analysis. For the implementation of both processes on chip, a sample preparation and a real-time module were used. Sample preparation was carried out by using magnetic beads that were stored directly on chip as dry powder, together with all lysis reagents. After purification of the DNA by applying a special buffer regime, the sample DNA was transferred into the PCR module for amplification and detection. Coping with a massively increased surface-to-volume ratio, which results in a higher amount of unspecific binding on the chip surface, special additives needed to be integrated to compensate for this effect. Finally the overall procedure showed a sensitivity comparable to standard Real-time PCR but reduced the duration of analysis to significantly less than one hour. The presented work demonstrates that the combination of lab-on-a-chip PCR with direct optical read-out in a real-time fashion is an extremely promising tool for molecular diagnostics.

  5. A Basic Guide to Real Time PCR in Microbial Diagnostics: Definitions, Parameters, and Everything

    PubMed Central

    Kralik, Petr; Ricchi, Matteo

    2017-01-01

    Real time PCR (quantitative PCR, qPCR) is now a well-established method for the detection, quantification, and typing of different microbial agents in the areas of clinical and veterinary diagnostics and food safety. Although the concept of PCR is relatively simple, there are specific issues in qPCR that developers and users of this technology must bear in mind. These include the use of correct terminology and definitions, understanding of the principle of PCR, difficulties with interpretation and presentation of data, the limitations of qPCR in different areas of microbial diagnostics and parameters important for the description of qPCR performance. It is not our intention in this review to describe every single aspect of qPCR design, optimization, and validation; however, it is our hope that this basic guide will help to orient beginners and users of qPCR in the use of this powerful technique. PMID:28210243

  6. Statistical diagnostics emerging from external quality control of real-time PCR.

    PubMed

    Marubini, E; Verderio, P; Raggi, Casini C; Pazzagli, M; Orlando, C

    2004-01-01

    Besides the application of conventional qualitative PCR as a valuable tool to enrich or identify specific sequences of nucleic acids, a new revolutionary technique for quantitative PCR determination has been introduced recently. It is based on real-time detection of PCR products revealed as a homogeneous accumulating signal generated by specific dyes. However, as far as we know, the influence of the variability of this technique on the reliability of the quantitative assay has not been thoroughly investigated. A national program of external quality assurance (EQA) for real-time PCR determination involving 42 Italian laboratories has been developed to assess the analytical performance of real-time PCR procedures. Participants were asked to perform a conventional experiment based on the use of an external reference curve (standard curve) for real-time detection of three cDNA samples with different concentrations of a specific target. In this paper the main analytical features of the standard curve have been investigated in an attempt to produce statistical diagnostics emerging from external quality control. Specific control charts were drawn to help biochemists take technical decisions aimed at improving the performance of their laboratories. Overall, our results indicated a subset of seven laboratories whose performance appeared to be markedly outside the limits for at least one of the standard curve features investigated. Our findings suggest the usefulness of the approach presented here for monitoring the heterogeneity of results produced by different laboratories and for selecting those laboratories that need technical advice on their performance.

  7. Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Evrard, A.; Boulle, N.; Lutfalla, G. S.

    Over the past few years there has been a considerable development of DNA amplification by polymerase chain reaction (PCR), and real-time PCR has now superseded conventional PCR techniques in many areas, e.g., the quantification of nucleic acids and genotyping. This new approach is based on the detection and quantification of a fluorescent signal proportional to the amount of amplicons generated by PCR. Real-time detection is achieved by coupling a thermocycler with a fluorimeter. This chapter discusses the general principles of quantitative real-time PCR, the different steps involved in implementing the technique, and some examples of applications in medicine. The polymerase chain reaction (PCR) provides a way of obtaining a large number of copies of a double-stranded DNA fragment of known sequence. This DNA amplification technique, developed in 1985 by K. Mullis (Cetus Corporation), saw a spectacular development over the space of a few years, revolutionising the methods used up to then in molecular biology. Indeed, PCR has many applications, such as the detection of small amounts of DNA, cloning, and quantitative analysis (assaying), each of which will be discussed further below.

  8. Development of two quantitative real-time PCR diagnostic kits for HPV isolates from Korea.

    PubMed

    Jeeva, Subbiah; Kim, Nam-Il; Jang, In-Kwon; Choi, Tae-Jin

    2012-10-01

    Viral pathogens, alongside other pathogens, have major effects on crustacean aquaculture. Hepatopancreatic parvovirus (HPV) is an emerging virus in the shrimp industry and has been detected in shrimp farms worldwide. The HPV genome has greater diversity than other shrimp viruses owing to its wide host range and geographical distribution. Therefore, developing diagnostic tools is essential to detect even small copy numbers from the target region of native HPV isolates. We have developed two easy to use quantitative real-time PCR kits, called Green Star and Dual Star, which contain all of the necessary components for real-time PCR, including HPV primers, using the primers obtained from the sequences of HPV isolates from Korea, and analyzed their specificity, efficiency, and reproducibility. These two kits could detect from 1 to 1 × 10(9) copies of cloned HPV DNA. The minimum detection limits obtained from HPV-infected shrimp were 7.74 × 10(1) and 9.06 × 10(1) copies in the Green Star and Dual Star assay kits, respectively. These kits can be used for rapid, sensitive, and efficient screening for HPV isolates from Korea before the introduction of postlarval stages into culture ponds, thereby decreasing the incidence of early development of the disease.

  9. Harmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012.

    PubMed

    Williams, Margaret M; Taylor, Thomas H; Warshauer, David M; Martin, Monte D; Valley, Ann M; Tondella, M Lucia

    2015-01-01

    Real-time PCR (rt-PCR) is an important diagnostic tool for the identification of Bordetella pertussis, Bordetella holmesii, and Bordetella parapertussis. Most U.S. public health laboratories (USPHLs) target IS481, present in 218 to 238 copies in the B. pertussis genome and 32 to 65 copies in B. holmesii. The CDC developed a multitarget PCR assay to differentiate B. pertussis, B. holmesii, and B. parapertussis and provided protocols and training to 19 USPHLs. The 2012 performance exercise (PE) assessed the capability of USPHLs to detect these three Bordetella species in clinical samples. Laboratories were recruited by the Wisconsin State Proficiency Testing program through the Association of Public Health Laboratories, in partnership with the CDC. Spring and fall PE panels contained 12 samples each of viable Bordetella and non-Bordetella species in saline. Fifty and 53 USPHLs participated in the spring and fall PEs, respectively, using a variety of nucleic acid extraction methods, PCR platforms, and assays. Ninety-six percent and 94% of laboratories targeted IS481 in spring and fall, respectively, in either singleplex or multiplex assays. In spring and fall, respectively, 72% and 79% of USPHLs differentiated B. pertussis and B. holmesii and 68% and 72% identified B. parapertussis. IS481 cycle threshold (CT) values for B. pertussis samples had coefficients of variation (CV) ranging from 10% to 28%. Of the USPHLs that differentiated B. pertussis and B. holmesii, sensitivity was 96% and specificity was 95% for the combined panels. The 2012 PE demonstrated increased harmonization of rt-PCR Bordetella diagnostic protocols in USPHLs compared to that of the previous survey.

  10. Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia.

    PubMed

    Schär, Fabian; Odermatt, Peter; Khieu, Virak; Panning, Marcus; Duong, Socheat; Muth, Sinuon; Marti, Hanspeter; Kramme, Stefanie

    2013-05-01

    Diagnosis of soil-transmitted helminths such as Strongyloides stercoralis and hookworms (Ancylostoma duodenale and Necator americanus) is challenging due to irregular larval and egg output in infected individuals and insensitive conventional diagnostic procedures. Sensitive novel real-time PCR assays have been developed. Our study aimed to evaluate the real-time PCR assays as a diagnostic tool for detection of Strongyloides spp. and hookworms in a random stool sample of 218 asymptomatic schoolchildren in Cambodia. Overall prevalence of 17.4% (38/218) and 34.9% (76/218) were determined by real-time PCR for S. stercoralis and hookworms, respectively. Sensitivity and specificity of S. stercoralis specific real-time PCR as compared to the combination of Baermann/Koga Agar as gold standard were 88.9% and 92.7%, respectively. For hookworm specific real-time PCR a sensitivity of 78.9% and specificity of 78.9% were calculated. Co-infections were detectable by PCR in 12.8% (28/218) of individuals. S. stercoralis real-time PCR applied in asymptomatic cases showed a lower sensitivity compared to studies undertaken with symptomatic patients with the same molecular tool, yet it proved to be a valid supplement in the diagnosis of STH infection in Cambodia.

  11. Real Time Polymerase Chain Reaction (rt-PCR): A New Patent to Diagnostic Purposes for Paracoccidioidomycosis.

    PubMed

    Rocha-Silva, Fabiana; Gomes, Luciana I; Gracielle-Melo, Cidiane; Goes, Alfredo M; Caligiorne, Rachel B

    2017-01-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis caused by dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. It is prevalent in Latin American, mainly in Brazil. Therefore, PCM has fundamental impact on the Brazilian global economy, especially in public health system, since it is affecting economical active population in different country regions. The present study aimed to standardize the Real Time-Polymerase Chain Reaction (rt-PCR) for an efficient and safe PCM diagnosis amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. To standardize a methodology of rt-PCR using species-specific primers and probe designed for annealing in this specific region of the fungi´s genome, amplifying the recombinant protein PB27 gene, only expressed by specimens of Paracoccidioides genus. Followed by design in silico, experiments were performed in vitro to determine rt-PCR specificity, efficiency and genome detection limit. The primers and probe sequences were deposited in Brazilian Coordination of Technological Innovation and Transfer (CTIT), under patent reference number BR1020160078830. The present study demonstrated the rt-PCR applicability for support on diagnosis of paracoccidioidomycosis, presenting low cost, which makes it affordable for public health services in developing countries as Brazil. It is noteworthy that it is necessary to validate this methodology using clinical samples before to use as a safe method of diagnosis. A review of all patents related to this topic was performed and it was shown that, to date, there are no records of patent on kits for paracoccidioidomycosis´s diagnostic. Indeed, there is still a lot to go to reach this goal. The reaction developed was standardized and patented, opening perspectives to molecular diagnosis development for paracoccidioidomycosis, since rt-PCR can be applied to a broad spectrum of infectious diseases. It would need to be tested in biological

  12. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene.

    PubMed

    Mirhendi, Hossein; Motamedi, Marjan; Makimura, Koichi; Satoh, Kazuo

    2016-08-01

    Early differentiation of dermatophytosis from other cutaneous mycoses is essential to avoid inaccurate therapy. DNA-based techniques including real-time PCR have increasingly been considered for detection of fungal elements in clinical specimens. In this study, after partial sequence analysis of beta tubulin (BT2) gene in 13 common and rare pathogenic dermatophyte species, a pan-dermatophyte primer and probe set was designed in a TaqMan probe-based PCR format. The sensitivity and specificity of the system was tested with 22 reference strains of dermatophytes, 234 positive clinical specimens, 32 DNA samples extracted from normal nails, several fungi other than dermatophytes and human DNAs. Analytical detection limit of the designed PCR on serially diluted DNAs of prepared recombinant plasmid indicated that only five molecules per sample are the minimum number for reliable detection by the assay. A total of 226 out of 234 (96.5%) DNAs extracted from clinical samples, but none of the 32 nail samples, from healthy volunteers were positive in PCR. The real-time PCR targeted beta tubulin gene established in this study could be a sensitive diagnostic tool which is significantly faster than the conventional culture method and should be useful in the clinical settings, in large-scale epidemiological studies and in clinical trials of antifungal therapy.

  13. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    PubMed

    Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A

    2010-06-28

    Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  14. Accurate, Fast and Cost-Effective Diagnostic Test for Monosomy 1p36 Using Real-Time Quantitative PCR

    PubMed Central

    Cunha, Pricila da Silva; Pena, Heloisa B.; D'Angelo, Carla Sustek; Koiffmann, Celia P.; Rosenfeld, Jill A.; Shaffer, Lisa G.; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5–0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs. PMID:24839341

  15. Accurate, fast and cost-effective diagnostic test for monosomy 1p36 using real-time quantitative PCR.

    PubMed

    Cunha, Pricila da Silva; Pena, Heloisa B; D'Angelo, Carla Sustek; Koiffmann, Celia P; Rosenfeld, Jill A; Shaffer, Lisa G; Stofanko, Martin; Gonçalves-Dornelas, Higgor; Pena, Sérgio Danilo Junho

    2014-01-01

    Monosomy 1p36 is considered the most common subtelomeric deletion syndrome in humans and it accounts for 0.5-0.7% of all the cases of idiopathic intellectual disability. The molecular diagnosis is often made by microarray-based comparative genomic hybridization (aCGH), which has the drawback of being a high-cost technique. However, patients with classic monosomy 1p36 share some typical clinical characteristics that, together with its common prevalence, justify the development of a less expensive, targeted diagnostic method. In this study, we developed a simple, rapid, and inexpensive real-time quantitative PCR (qPCR) assay for targeted diagnosis of monosomy 1p36, easily accessible for low-budget laboratories in developing countries. For this, we have chosen two target genes which are deleted in the majority of patients with monosomy 1p36: PRKCZ and SKI. In total, 39 patients previously diagnosed with monosomy 1p36 by aCGH, fluorescent in situ hybridization (FISH), and/or multiplex ligation-dependent probe amplification (MLPA) all tested positive on our qPCR assay. By simultaneously using these two genes we have been able to detect 1p36 deletions with 100% sensitivity and 100% specificity. We conclude that qPCR of PRKCZ and SKI is a fast and accurate diagnostic test for monosomy 1p36, costing less than 10 US dollars in reagent costs.

  16. Development of a pan-Simbu real-time reverse transcriptase PCR for the detection of Simbu serogroup viruses and comparison with SBV diagnostic PCR systems

    PubMed Central

    2013-01-01

    Background Schmallenberg virus (SBV), a novel orthobunyavirus of the Simbu serogroup, was first identified in October 2011 in dairy cattle in Germany, where it caused fever, diarrhea and a drop in milk yield. Since then, SBV additionally has been detected in adult sheep and goats. Although symptoms of acute infection were not observed, infection during a vulnerable phase of pregnancy caused congenital malformations and stillbirths. In view of the current situation and the possible emergence of further Simbu serogroup members, a pan-Simbu real-time reverse transcriptase (RT) PCR system for the reliable detection of Simbu serogroup viruses should be developed. Methods In this study a pan-Simbu real-time RT-PCR system was established and compared to several SBV real-time RT-PCR assays. All PCR-systems were tested using a panel of different Simbu serogroup viruses as well as several field samples from diseased cattle, sheep and goats originating from all over Germany. Several pan-Simbu real-time RT-PCR products were sequenced via Sanger sequencing. Furthermore, in silico analyses were performed to investigate suitability for the detection of further orthobunyaviruses. Results All tested members of the Simbu serogroup (n = 14) as well as most of the field samples were successfully detected by the pan-Simbu real-time RT-PCR system. The comparison of this intercalating dye assay with different TaqMan probe-based assays developed for SBV diagnostics confirmed the functionality of the pan-Simbu assay for screening purposes. However, the SBV-TaqMan-assay SBV-S3 delivered the highest analytical sensitivity of less than ten copies per reaction for duplex systems including an internal control. In addition, for confirmation of SBV-genome detection the highly specific SBV-M1 assay was established. Conclusion The pan-Simbu real-time RT-PCR system was able to detect all tested members of the Simbu serogroup, most of the SBV field samples as well as three tested Bunyamwera

  17. 3D printing and milling a real-time PCR device for infectious disease diagnostics.

    PubMed

    Mulberry, Geoffrey; White, Kevin A; Vaidya, Manjusha; Sugaya, Kiminobu; Kim, Brian N

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device's operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria.

  18. 3D printing and milling a real-time PCR device for infectious disease diagnostics

    PubMed Central

    Mulberry, Geoffrey; White, Kevin A.; Vaidya, Manjusha; Sugaya, Kiminobu

    2017-01-01

    Diagnosing infectious diseases using quantitative polymerase chain reaction (qPCR) offers a conclusive result in determining the infection, the strain or type of pathogen, and the level of infection. However, due to the high-cost instrumentation involved and the complexity in maintenance, it is rarely used in the field to make a quick turnaround diagnosis. In order to provide a higher level of accessibility than current qPCR devices, a set of 3D manufacturing methods is explored as a possible option to fabricate a low-cost and portable qPCR device. The key advantage of this approach is the ability to upload the digital format of the design files on the internet for wide distribution so that people at any location can simply download and feed into their 3D printers for quick manufacturing. The material and design are carefully selected to minimize the number of custom parts that depend on advanced manufacturing processes which lower accessibility. The presented 3D manufactured qPCR device is tested with 20-μL samples that contain various concentrations of lentivirus, the same type as HIV. A reverse-transcription step is a part of the device’s operation, which takes place prior to the qPCR step to reverse transcribe the target RNA from the lentivirus into complementary DNA (cDNA). This is immediately followed by qPCR which quantifies the target sequence molecules in the sample during the PCR amplification process. The entire process of thermal control and time-coordinated fluorescence reading is automated by closed-loop feedback and a microcontroller. The resulting device is portable and battery-operated, with a size of 12 × 7 × 6 cm3 and mass of only 214 g. By uploading and sharing the design files online, the presented low-cost qPCR device may provide easier access to a robust diagnosis protocol for various infectious diseases, such as HIV and malaria. PMID:28586401

  19. Diagnostic value of a "wide-range" quantitative nested real-time PCR assay for varicella zoster virus myelitis.

    PubMed

    Takahashi, Teruyuki; Tamura, Masato; Takasu, Toshiaki

    2013-11-01

    Myelitis is one of the rarest neurological complications of varicella zoster virus (VZV) infection. In this study, the authors remodeled the "wide-range" quantitative nested real-time (QNRT) polymerase chain reaction (PCR) assay to quantitatively detect a small amount of VZV-DNA in cerebrospinal fluid (CSF). For use as a specific internal control "calibrator," an original mutation-VZV (MZ) plasmid was developed. The initial copy number of VZV-DNA in CSF specimens was measured by the amplification rate of the MZ-plasmid. For 17 consecutive CSF specimens collected from three elderly patients with VZV myelitis, the diagnostic value of the wide-range QNRT-PCR assay was evaluated and compared with other conventional PCR assays and enzyme immunoassay (EIA). The MZ-plasmid demonstrated statistically uniform amplifications (F=1.016) against a wide range (1-100,000) of copy numbers of mimic VZV-DNA. The wide-range QNRT-PCR assay quantitatively and rapidly (within 48 hr) detected 5,863, 3,052, 958, and 6,721 copies/ml of VZV-DNA in the CSF specimens collected from all patients in the acute phase. Additionally, there was a significant difference (*P=0.023) in the copy number of VZV-DNA between before and after acyclovir treatment. Other conventional single PCR assays all revealed negative results, but were nevertheless time-consuming (7 days). The IgG EIA-value for VZV was continually elevated throughout the clinical course of all patients. The MZ-plasmid was thus regarded as an appropriate "calibrator" in the wide-range QNRT-PCR assay. This assay is a novel, rapid, accurate, quantitative, and highly sensitive technique, and will contribute as a reliable and useful clinical examination for the rapid diagnosis of VZV infection to central nervous system. © 2013 Wiley Periodicals, Inc.

  20. Diagnostic accuracy of quantitative real-time PCR assay versus clinical and Gram stain identification of bacterial vaginosis.

    PubMed

    Menard, J-P; Mazouni, C; Fenollar, F; Raoult, D; Boubli, L; Bretelle, F

    2010-12-01

    The purpose of this investigation was to determine the diagnostic accuracy of quantitative real-time polymerase chain reaction (PCR) assay in diagnosing bacterial vaginosis versus the standard methods, the Amsel criteria and the Nugent score. The Amsel criteria, the Nugent score, and results from the molecular tool were obtained independently from vaginal samples of 163 pregnant women who reported abnormal vaginal symptoms before 20 weeks gestation. To determine the performance of the molecular tool, we calculated the kappa value, sensitivity, specificity, and positive and negative predictive values. Either or both of the Amsel criteria (≥3 criteria) and the Nugent score (score ≥7) indicated that 25 women (15%) had bacterial vaginosis, and the remaining 138 women did not. DNA levels of Gardnerella vaginalis or Atopobium vaginae exceeded 10(9) copies/mL or 10(8) copies/mL, respectively, in 34 (21%) of the 163 samples. Complete agreement between both reference methods and high concentrations of G. vaginalis and A. vaginae was found in 94.5% of women (154/163 samples, kappa value = 0.81, 95% confidence interval 0.70-0.81). The nine samples with discordant results were categorized as intermediate flora by the Nugent score. The molecular tool predicted bacterial vaginosis with a sensitivity of 100%, a specificity of 93%, a positive predictive value of 73%, and a negative predictive value of 100%. The quantitative real-time PCR assay shows excellent agreement with the results of both reference methods for the diagnosis of bacterial vaginosis.

  1. [Evaluation of COBAS TaqMan: a real-time PCR-based diagnostic kit for mycobacteria].

    PubMed

    Yonemaru, Makoto; Horiba, Masahide; Tada, Atsuhiko; Nagai, Takayuki

    2009-12-01

    The real-time PCR-based diagnostic kits, COBAS TaqMan MTB and COBAS TaqMan MAI (Roche Diagnostics, Tokyo, Japan), were developed to detect Mycobacterium tuberculosis (MTB) and M. avium (MAV)/M. intracellulare (MIN), respectively. The TaqMan kits simultaneously perform amplification and detection of mycobacterial DNA to reduce assay time. We evaluated the diagnostic accuracy of both TaqMan kits in 781 clinical specimens, and compared the results with those obtained from the AMPLICOR MTB and MAI kits. With smear-positive specimens, the TaqMan kits showed 100% concordance with AMPLICOR in MTB, MAV and MIN. With all specimens, the concordances of TaqMan with AMPLICOR were 99.1%, 99.0%, and 99.7% in MTB, MAV and MIN, respectively. Four specimens for MTB and one for MAV were AMPLICOR positive/TaqMan negative. Among them, two specimens were culture-positive for MTB and one for MAV. Three specimens for MTB, seven for MAV, and two for MIN were AMPLICOR negative/TaqMan positive. Among them, two specimens were culture-positive for MTB, seven for MAV, and one for MIN. In twelve out of 21 specimens in which AMPLICOR failed to activate PCR, TaqMan successfully determined the results which were in concordance with those of mycobacterial culture. Thus, our data suggest that the accuracy of TaqMan in detecting mycobacterial DNA is superior to that of AMPLICOR. We conclude that TaqMan, which is an easy and rapid DNA amplification test, is useful for detecting MTB, MAV and MIN.

  2. Evaluation of inhibitor-resistant real-time PCR methods for diagnostics in clinical and environmental samples.

    PubMed

    Trombley Hall, Adrienne; McKay Zovanyi, Ashley; Christensen, Deanna Rose; Koehler, Jeffrey William; Devins Minogue, Timothy

    2013-01-01

    Polymerase chain reaction (PCR) is commonly used for pathogen detection in clinical and environmental samples. These sample matrices often contain inhibitors of PCR, which is a primary reason for sample processing; however, the purification process is highly inefficient, becoming unacceptable at lower signature concentrations. One potential solution is direct PCR assessment without sample processing. Here, we evaluated nine inhibitor-resistant PCR reagents for direct detection of Francisella tularensis in seven different clinical and environmental samples using an established real-time PCR assay to assess ability to overcome PCR inhibition. While several of these reagents were designed for standard PCR, the described inhibitor resistant properties (ex. Omni Klentaq can amplify target DNA samples of up to 20% whole blood or soil) led to our evaluation with real-time PCR. A preliminary limit of detection (LOD) was determined for each chemistry in whole blood and buffer, and LODs (20 replicates) were determined for the top five chemistries in each matrix (buffer, whole blood, sputum, stool, swab, soil, and sand). Not surprisingly, no single chemistry performed the best across all of the different matrices evaluated. For instance, Phusion Blood Direct PCR Kit, Phire Hot Start DNA polymerase, and Phire Hot Start DNA polymerase with STR Boost performed best for direct detection in whole blood while Phire Hot Start DNA polymerase with STR Boost were the only reagents to yield an LOD in the femtogram range for soil. Although not the best performer across all matrices, KAPA Blood PCR kit produced the most consistent results among the various conditions assessed. Overall, while these inhibitor resistant reagents show promise for direct amplification of complex samples by real-time PCR, the amount of template required for detection would not be in a clinically relevant range for most matrices.

  3. O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis.

    PubMed

    Mekonnen, Solomon A; Beissner, Marcus; Saar, Malkin; Ali, Solomon; Zeynudin, Ahmed; Tesfaye, Kassahun; Adbaru, Mulatu G; Battke, Florian; Poppert, Sven; Hoelscher, Michael; Löscher, Thomas; Bretzel, Gisela; Herbinger, Karl-Heinz

    2017-10-02

    Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis.

  4. Detection of malaria infection in blood transfusion: a comparative study among real-time PCR, rapid diagnostic test and microscopy: sensitivity of Malaria detection methods in blood transfusion.

    PubMed

    Hassanpour, Gholamreza; Mohebali, Mehdi; Raeisi, Ahmad; Abolghasemi, Hassan; Zeraati, Hojjat; Alipour, Mohsen; Azizi, Ebrahim; Keshavarz, Hossein

    2011-06-01

    The transmission of malaria by blood transfusion was one of the first transfusion-transmitted infections recorded in the world. Transfusion-transmitted malaria may lead to serious problems because infection with Plasmodium falciparum may cause rapidly fatal death. This study aimed to compare real-time polymerase chain reaction (real-time PCR) with rapid diagnostic test (RDT) and light microscopy for the detection of Plasmodium spp. in blood transfusion, both in endemic and non-endemic areas of malaria disease in Iran. Two sets of 50 blood samples were randomly collected. One set was taken from blood samples donated in blood bank of Bandar Abbas, a city located in a malarious-endemic area, and the other set from Tehran, a non-endemic one. Light microscopic examination on both thin and thick smears, RDTs, and real-time PCR were performed on the blood samples and the results were compared. Thin and thick light microscopic examinations of all samples as well as RDT results were negative for Plasmodium spp. Two blood samples from endemic area were positive only with real-time PCR. It seems that real-time PCR as a highly sensitive method can be helpful for the confirmation of malaria infection in different units of blood transfusion organization especially in malaria-endemic areas where the majority of donors may be potentially infected with malaria parasites.

  5. Application of real time PCR for diagnosis of Swine Dysentery.

    PubMed

    Akase, Satoru; Uchitani, Yumi; Sohmura, Yoshiko; Tatsuta, Keikichi; Sadamasu, Kenji; Adachi, Yoshikazu

    2009-03-01

    Evaluation of a genetic diagnostic technique using real time PCR of Swine Dysentery (SD) was performed using nox primers. Culture, ordinary PCR and real time PCR were compared in this experiment. Sixty-seven specimens from pigs with clinical signs of SD brought to a slaughterhouse in Shibaura, Tokyo, were used. B. hyodysenteriae was isolated from 49 of the pigs, was detected by ordinary PCR in 49 of the pigs and was detected by real time PCR in 54 of the pigs. Furthermore, we were able to determine the numbers of B. hyodysenteriae cells in all positive specimens by real time PCR. The rapid diagnostic technique established in this experiment was useful for detection of B. hyodysenteriae because it was more effective than ordinary PCR and culture.

  6. Simultaneous detection of five different DNA targets by real-time Taqman PCR using the Roche LightCycler480: Application in viral molecular diagnostics.

    PubMed

    Molenkamp, Richard; van der Ham, Alwin; Schinkel, Janke; Beld, Marcel

    2007-05-01

    One of the most interesting aspects of real-time PCR based on the detection of fluorophoric labeled oligonucleotides is the possibility of being able to detect conveniently multiple targets in the same PCR reaction. Recently, Roche Diagnostics launched a real-time PCR platform, the LightCycler480 (LC480), which should be well suited for multiplex real-time PCR analysis. In this paper the performance of the LC480 and accompanying software for the detection of five different targets was analyzed. Target DNAs mixed at equimolar concentrations were detected reproducibly and quantitatively. In addition, mixing different concentrations of the five targets demonstrated that the LC480 is capable of providing quantitative results for a mixture of DNA sequences without losing sensitivity. When applied to the practice of molecular diagnosis of four respiratory viral infections the multiplex assay showed almost complete concordance with corresponding single-target PCRs. The application of multiplex PCR for the detection of multiple pathogens within the same sample will provide a major contribution to the efficiency, logistics and cost-effectiveness of molecular diagnostics.

  7. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children.

    PubMed

    Pierce, Virginia M; Hodinka, Richard L

    2012-11-01

    A novel eSensor respiratory viral panel (eSensor RVP) multiplexed nucleic acid amplification test (GenMark Diagnostics, Inc., Carlsbad, CA) was compared to laboratory-developed real-time PCR assays for the detection of various respiratory viruses. A total of 250 frozen archived pediatric respiratory specimens previously characterized as either negative or positive for one or more viruses by real-time PCR were examined using the eSensor RVP. Overall agreement between the eSensor RVP and corresponding real-time PCR assays for shared analytes was 99.2% (kappa = 0.96 [95% confidence interval {CI}, 0.94 to 0.98]). The combined positive percent agreement was 95.4% (95% CI, 92.5 to 97.3); the negative percent agreement was 99.7% (95% CI, 99.4 to 99.8). The mean real-time PCR threshold cycle (C(T)) value for specimens with discordant results was 39.73 (95% CI, 38.03 to 41.43). Detection of coinfections and correct identification of influenza A virus subtypes were comparable between methods. Of note, the eSensor RVP rhinovirus assay was found to be more sensitive and specific than the corresponding rhinovirus real-time PCR. In contrast, the eSensor RVP adenovirus B, C, and E assays demonstrated some cross-reactivity when tested against known adenovirus serotypes representing groups A through F. The eSensor RVP is robust and relatively easy to perform, it involves a unique biosensor technology for target detection, and its multiplexed design allows for efficient and simultaneous interrogation of a single specimen for multiple viruses. Potential drawbacks include a slower turnaround time and the need to manipulate amplified product during the protocol, increasing the possibility of contamination.

  8. [Diagnostic value of R-banding Technique, Dual-color Fluore- scence In Situ Hybridization and Quantitative Real-time PCR in Acute Promyelocytic Leukemia].

    PubMed

    Peng, You-Fan; Liu, Yang; Zhang, Qiong; Zhang, Zhao-Xia

    2015-10-01

    To explore the diagnostic value of R-banding technique (RT), dual-color fluorescence in situ hybridization (D-FISH) and quantitative real-time PCR (RT-PCR) for acute promyelocytic leukemia. The cytogenetic characteristics and PML/RARα fusion gene in 340 patients with suspectable APL were analyzed by using 3 detection methods. MICM (morphology, immunology, cytogenetic and molecular biology) was used as diagnostic standard of APL, and the diagnostic value of RT, D-FISH and RT-PCR was evaluated by comparing the detection results of RT, D-FISH and RT-PCR as well as their combination. For the diagnosis of APL, the sensitivity of RT, D-FISH and RT-PCR was 81.3% (78/96), 95.0% (91/96) and 96.9% (93/96) respectively. RT failed to detect 18 cases, the results of D-FISH showed 5 cases with false positive and 2 cases with false negative, the RT-PCR showed 4 cases with false positive, 3 cases with false negative. The sensitivity and specificity of combined detection of 3 methods were 99.97% and 100% respectively. The 3 detection methods alone all have certain defects for diagnosis of APL, but their combined detection is helpful to improve the definitive diagnostic rate and can decrease misdiagnosis rate and missed diagnostic rate.

  9. Assessment of the Usefulness of Multiplex Real-Time PCR Tests in the Diagnostic and Therapeutic Process of Pneumonia in Hospitalized Children: A Single-Center Experience

    PubMed Central

    Bartkowska-Śniatkowska, Alicja; Jończyk-Potoczna, Katarzyna; Wysocka-Leszczyńska, Joanna; Bobkowski, Waldemar; Fichna, Piotr; Sobkowiak, Paulina; Mazur-Melewska, Katarzyna; Bręborowicz, Anna; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta

    2017-01-01

    The aim of the study was assessment of the usefulness of multiplex real-time PCR tests in the diagnostic and therapeutic process in children hospitalized due to pneumonia and burdened with comorbidities. Methods. The study group included 97 children hospitalized due to pneumonia at the Karol Jonscher Teaching Hospital in Poznań, in whom multiplex real-time PCR tests (FTD respiratory pathogens 33; fast-track diagnostics) were used. Results. Positive test results of the test were achieved in 74 patients (76.3%). The average age in the group was 56 months. Viruses were detected in 61 samples (82% of all positive results); bacterial factors were found in 29 samples (39% of all positive results). The presence of comorbidities was established in 90 children (92.78%). On the basis of the obtained results, 5 groups of patients were established: viral etiology of infection, 34 patients; bacterial etiology, 7 patients; mixed etiology, 23 patients; pneumocystis, 9 patients; and no etiology diagnosed, 24 patients. Conclusions. Our analysis demonstrated that the participation of viruses in causing severe lung infections is significant in children with comorbidities. Multiplex real-time PCR tests proved to be more useful in establishing the etiology of pneumonia in hospitalized children than the traditional microbiological examinations. PMID:28182108

  10. Assessment of the Usefulness of Multiplex Real-Time PCR Tests in the Diagnostic and Therapeutic Process of Pneumonia in Hospitalized Children: A Single-Center Experience.

    PubMed

    Gowin, Ewelina; Bartkowska-Śniatkowska, Alicja; Jończyk-Potoczna, Katarzyna; Wysocka-Leszczyńska, Joanna; Bobkowski, Waldemar; Fichna, Piotr; Sobkowiak, Paulina; Mazur-Melewska, Katarzyna; Bręborowicz, Anna; Wysocki, Jacek; Januszkiewicz-Lewandowska, Danuta

    2017-01-01

    The aim of the study was assessment of the usefulness of multiplex real-time PCR tests in the diagnostic and therapeutic process in children hospitalized due to pneumonia and burdened with comorbidities. Methods. The study group included 97 children hospitalized due to pneumonia at the Karol Jonscher Teaching Hospital in Poznań, in whom multiplex real-time PCR tests (FTD respiratory pathogens 33; fast-track diagnostics) were used. Results. Positive test results of the test were achieved in 74 patients (76.3%). The average age in the group was 56 months. Viruses were detected in 61 samples (82% of all positive results); bacterial factors were found in 29 samples (39% of all positive results). The presence of comorbidities was established in 90 children (92.78%). On the basis of the obtained results, 5 groups of patients were established: viral etiology of infection, 34 patients; bacterial etiology, 7 patients; mixed etiology, 23 patients; pneumocystis, 9 patients; and no etiology diagnosed, 24 patients. Conclusions. Our analysis demonstrated that the participation of viruses in causing severe lung infections is significant in children with comorbidities. Multiplex real-time PCR tests proved to be more useful in establishing the etiology of pneumonia in hospitalized children than the traditional microbiological examinations.

  11. PCR und Real-Time PCR

    NASA Astrophysics Data System (ADS)

    Konrad, Regina; Busch, Ulrich

    Die vielfältigen Anwendungsmöglichkeiten der Polymerasekettenreaktion (polymerase chain reaction, PCR) machen sie zu einer der wichtigsten und am häufigsten eingesetzten Methoden in der molekularbiologischen Forschung und Diagnostik. Für diese Technologie wurde der Erfinder der Methode, Kary Mullis, 1993 mit dem Nobelpreis ausgezeichnet. Die PCR erlaubt einen hochsensitiven und spezifischen in-vitro-Nachweis von Desoxyribonukleinsäuren (DNA), da im Zuge der Reaktion Sequenzabschnitte gezielt vermehrt werden. Innerhalb weniger Stunden können aus einem einzigen Zielmolekül 1012 identische Moleküle entstehen [1].

  12. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  13. The Power of Real-Time PCR

    ERIC Educational Resources Information Center

    Valasek, Mark A.; Repa, Joyce J.

    2005-01-01

    In recent years, real-time polymerase chain reaction (PCR) has emerged as a robust and widely used methodology for biological investigation because it can detect and quantify very small amounts of specific nucleic acid sequences. As a research tool, a major application of this technology is the rapid and accurate assessment of changes in gene…

  14. Real-time PCR in microfluidic devices

    NASA Astrophysics Data System (ADS)

    Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Hansen-Hagge, Thomas; Gärtner, Claudia

    2014-03-01

    A central method in a standard biochemical laboratory is represented by the polymerase chain reaction (PCR), therefore many attempts have been performed so far to implement this technique in lab-on-a-chip (LOC) devices. PCR is an ideal candidate for miniaturization because of a reduction of assay time and decreased costs for expensive bio-chemicals. In case of the "classical" PCR, detection is done by identification of DNA fragments electrophoretically separated in agarose gels. This method is meanwhile frequently replaced by the so-called Real-Time-PCR because here the exponential increase of amplificates can be observed directly by measurement of DNA interacting fluorescent dyes. Two main methods for on-chip PCRs are available: traditional "batch" PCR in chambers on a chip using thermal cycling, requiring about 30 minutes for a typical PCR protocol and continuous-flow PCR, where the liquid is guided over stationary temperature zones. In the latter case, the PCR protocol can be as fast as 5 minutes. In the presented work, a proof of concept is demonstrated for a real-time-detection of PCR products in microfluidic systems.

  15. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens

    PubMed Central

    Fabian, Andrew W.; Barrette, Roger W.; Sayed, Abu

    2016-01-01

    Senecavirus A (SV-A), formerly, Seneca Valley virus (SVV), has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD), a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88%) were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18%) or without (6%) vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates. PMID:26757142

  16. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens.

    PubMed

    Bracht, Alexa J; O'Hearn, Emily S; Fabian, Andrew W; Barrette, Roger W; Sayed, Abu

    2016-01-01

    Senecavirus A (SV-A), formerly, Seneca Valley virus (SVV), has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD), a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD), swine vesicular disease (SVD), and vesicular stomatitis (VS), that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88%) were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18%) or without (6%) vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates.

  17. Real-time PCR in Food Science: Introduction.

    PubMed

    Rodriguez-Lazaro, David; Hernandez, Marta

    2013-01-01

    Food safety and quality control programmes are increasingly applied throughout the production food chain in order to guarantee added value products as well as to minimize the risk of infection for the consumer. The development of real-time PCR has represented one of the most significant advances in food diagnostics as it provides rapid, reliable and quantitative results. These aspects become increasingly important for the agricultural and food industry. Different strategies for real-time PCR diagnostics have been developed including unspecific detection independent of the target sequence using fluorescent dyes such as SYBR Green, or by sequence-specific fluorescent oligonucleotide probes such as TaqMan probes or molecular beacons.

  18. Modification of two capripoxvirus quantitative real-time PCR assays to improve diagnostic sensitivity and include beta-actin as an internal positive control.

    PubMed

    Das, Amaresh; Deng, Ming Y; Babiuk, Shawn; McIntosh, Michael T

    2017-05-01

    Capripoxviruses (CaPVs), consisting of Sheeppox virus (SPV), Goatpox virus (GPV), and Lumpy skin disease virus (LSDV) species, cause economically significant diseases in sheep, goats, and cattle, respectively. Quantitative real-time polymerase chain reaction (qPCR) assays are routinely used for rapid detection of CaPVs in surveillance and outbreak management programs. We further modified and optimized 2 previously published CaPV qPCR assays, referred to as the Balinsky and Bowden assays, by changing commercial PCR reagents used in the tests. The modified assays displayed 100% analytical specificity and showed no apparent changes in analytical sensitivities for detection of CaPVs compared with the original assays. Diagnostic sensitivities, assessed using 50 clinical reference samples from experimentally infected sheep, goats, and cattle, improved from 82% to 92% for the modified Balinsky assay and from 58% to 82% for the modified Bowden assay. The modified qPCR assays were multiplexed for detection of beta-actin as an indicator for potential false-negative results. The multiplex modified qPCR assays exhibited the same diagnostic sensitivities as the singleplex assays suggesting their utility in the detection of CaPVs.

  19. Real-Time PCR for Diagnosing Helicobacter pylori Infection in Patients with Upper Gastrointestinal Bleeding: Comparison with Other Classical Diagnostic Methods

    PubMed Central

    Saez, Jesús; Belda, Sofía; Santibáñez, Miguel; Sola-Vera, Javier; Galiana, Antonio; Ruiz-García, Montserrat; Brotons, Alicia; López-Girona, Elena; Girona, Eva; Sillero, Carlos; Royo, Gloria

    2012-01-01

    The aim of this study was to determine the diagnostic usefulness of quantification of the H. pylori genome in detection of infection in patients with upper gastrointestinal bleeding (UGB). A total of 158 consecutive patients with digestive disorders, 80 of whom had clinical presentation of UGB, were studied. The number of microorganisms was quantified using a real-time PCR system which amplifies the urease gene with an internal control for eliminating the false negatives. A biopsy sample from the antrum and corpus of each patient was processed. The rapid urease test, culture, histological study, stool antigen test, and breath test were done. The gold standard was a positive culture or positive results in at least two of the other techniques. When a positive result was defined as any number of microorganisms/human cell, the sensitivity of real-time PCR was greater in bleeding patients, especially in the gastric corpus: 68.4% (95% confidence interval [CI], 52.3 to 84.5%) in non-UGB patients versus 91.5% (95% CI, 79.6 to 97.6%) in UGB patients. When a positive result was defined as a number of microorganisms/human cell above the optimal value that maximizes the Youden index (>3.56 microorganisms/human cell in the antrum and >2.69 in the corpus), the sensitivity and specificity in UGB patients were over 80% in both antrum and corpus. Our findings suggest that some bleeding patients with infection caused by H. pylori may not be correctly diagnosed by classical methods, and such patients could benefit from the improved diagnosis provided by real-time PCR. However, the clinical significance of a small number of microorganisms in patients with negative results in classical tests should be evaluated. PMID:22837325

  20. The investigation of the truncated mbtA gene within the mycobactin cluster of Mycobacterium avium subspecies paratuberculosis as a novel diagnostic marker for real-time PCR.

    PubMed

    de Kruijf, Marcel; Coffey, Aidan; O'Mahony, Jim

    2017-05-01

    The inability of Mycobacterium avium subspecies paratuberculosis (MAP) to produce endogenous mycobactin in-vitro is most likely due to the presence of a truncated mbtA gene within the mycobactin cluster of MAP. The main goal of this study was to investigate this unique mbtA truncation as a potential novel PCR diagnostic marker for MAP. Novel primers were designed that were located within the truncated region and the contiguous MAP2179 gene. Primers were evaluated against non-MAP isolates and no amplicons were generated. The detection limit of this mbtA-MAP2179 target was evaluated using a range of MAP DNA concentrations, MAP inoculated faecal material and 20 MAP isolates. The performance of mbtA-MAP2179 was compared to the established f57 target. The detection limits recorded for MAP K-10 DNA and from MAP K-10 inoculated faecal samples were 0.34pg and 10(4)CFU/g respectively for both f57 and mbtA-MAP2179. A detection limit of 10(3)CFU/g was recorded for both targets, but not achieved consistently. The detection limit of MAP from inoculated faecal material was successful at 10(3)CFU/g for mbtA-MAP2179 when FAM probe real-time PCR was used. A MAP cell concentration of 10(2)CFU/g was detected successfully, but again not consistently achieved. All 20 mycobacterial isolates were successfully identified as MAP by f57 and mbtA-MAP2179. Interestingly, the mbtA-MAP2179 real-time PCR assay resulted in the formation of a unique melting curve profile that contained two melting curve peaks rather than one single peak. This melting curve phenomenon was attributed towards the asymmetrical GC% distribution within the mbtA-MAP2179 amplicon. This study investigated the implementation of the mbtA-MAP2179 target as a novel diagnostic marker and the detection limits obtained with mbtA-MAP2179 were comparable to the established f57 target, making the mbtA-MAP2179 an adequate confirmatory target. Moreover, the mbtA-MAP2179 target could be implemented in multiplex real-time PCR assays and

  1. Handheld Real-Time PCR Device

    PubMed Central

    Ahrberg, Christian D.; Ilic, Bojan Robert; Manz, Andreas; Neužil, Pavel

    2016-01-01

    Here we report one of the smallest real-time polymerase chain reaction (PCR) system up to date with approximate size of 100 mm × 60 mm × 33 mm. The system is an autonomous unit requiring an external 12 V power supply. Four simultaneous reactions are performed in form of virtual reaction chambers (VRC) where a ≈ 200 nL sample is covered with mineral oil and placed on a glass cover slip. Fast, 40 cycle amplification of an amplicon from the H7N9 gene was used to demonstrate PCR performance. The standard curve slope was (−3.02 ± 0.16) cycles at threshold per decade (mean ± standard deviation) corresponding to an amplification efficiency of (0.91 ± 0.05) per cycle (mean ± standard deviation). The PCR device was capable of detecting a single deoxyribonucleic acid (DNA) copy. These results further suggest that our handheld PCR device may have broad, technologically-relevant applications extending to rapid detection of infectious diseases in small clinics. PMID:26753557

  2. Diagnostic Accuracy of Real-Time PCR Assays Targeting 16S rRNA and lipl32 Genes for Human Leptospirosis in Thailand: A Case-Control Study

    PubMed Central

    Thaipadunpanit, Janjira; Chierakul, Wirongrong; Wuthiekanun, Vanaporn; Limmathurotsakul, Direk; Amornchai, Premjit; Boonslip, Siriphan; Smythe, Lee D.; Limpaiboon, Roongrueng; Hoffmaster, Alex R.; Day, Nicholas P. J.; Peacock, Sharon J.

    2011-01-01

    Background Rapid PCR-based tests for the diagnosis of leptospirosis can provide information that contributes towards early patient management, but these have not been adopted in Thailand. Here, we compare the diagnostic sensitivity and specificity of two real-time PCR assays targeting rrs or lipL32 for the diagnosis of leptospirosis in northeast Thailand. Methods/Principal Findings A case-control study of 266 patients (133 cases of leptospirosis and 133 controls) was constructed to evaluate the diagnostic sensitivity and specificity (DSe & DSp) of both PCR assays. The median duration of illness prior to admission of cases was 4 days (IQR 2–5 days; range 1–12 days). DSe and DSp were determined using positive culture and/or microscopic agglutination test (MAT) as the gold standard. The DSe was higher for the rrs assay than the lipL32 assay (56%, (95% CI 47–64%) versus 43%, (95% CI 34–52%), p<0.001). No cases were positive for the lipL32 assay alone. There was borderline evidence to suggest that the DSp of the rrs assay was lower than the lipL32 assay (90% (95% CI 83–94%) versus 93%, (95%CI 88–97%), p = 0.06). Nine controls gave positive reactions for both assays and 5 controls gave a positive reaction for the rrs assay alone. The DSe of the rrs and lipL32 assays were high in the subgroup of 39 patients who were culture positive for Leptospira spp. (95% and 87%, respectively, p = 0.25). Conclusions/Significance Early detection of Leptospira using PCR is possible for more than half of patients presenting with leptospirosis and could contribute to individual patient care. PMID:21283633

  3. Immunohistochemistry and real-time PCR as diagnostic tools for detection of Borrelia burgdorferi sensu lato in ticks collected from humans.

    PubMed

    Briciu, Violeta T; Sebah, Daniela; Coroiu, Georgiana; Lupşe, Mihaela; Cârstina, Dumitru; Ţăţulescu, Doina F; Mihalca, Andrei D; Gherman, Călin M; Leucuţa, Daniel; Meyer, Fabian; Hizo-Teufel, Cecilia; Fingerle, Volker; Huber, Ingrid

    2016-05-01

    The objective of this study was to evaluate different methods used for detection of Borrelia burgdorferi sensu lato (s.l.) in ticks: immunohistochemistry followed by focus floating microscopy (FFM) and real-time polymerase chain reaction (real-time PCR) targeting the ospA and hbb genes. Additionally, an optimized ospA real-time PCR assay was developed with an integrated internal amplification control (IAC) for the detection of inhibition in the PCR assay and was validated as an improved screening tool for B. burgdorferi. One hundred and thirty-six ticks collected from humans in a hospital from Cluj-Napoca, Romania, were investigated regarding genus, stage of development and sex, and then tested by all three assays. A poor quality of agreement was found between FFM and each of the two real-time PCR assays, as assessed by concordance analysis (Cohen's kappa), whereas the agreement between the two real-time PCR assays was moderate. The present study argues for a low sensitivity of FFM and underlines that discordant results of different assays used for detection of B. burgdorferi in ticks are frequent.

  4. Optimising the diagnostic strategy for onychomycosis from sample collection to FUNGAL identification evaluation of a diagnostic kit for real-time PCR.

    PubMed

    Petinataud, Dimitri; Berger, Sibel; Ferdynus, Cyril; Debourgogne, Anne; Contet-Audonneau, Nelly; Machouart, Marie

    2016-05-01

    Onychomycosis is a common nail disorder mainly due to dermatophytes for which the conventional diagnosis requires direct microscopic observation and culture of a biological sample. Nevertheless, antifungal treatments are commonly prescribed without a mycological examination having been performed, partly because of the slow growth of dermatophytes. Therefore, molecular biology has been applied to this pathology, to support a quick and accurate distinction between onychomycosis and other nail damage. Commercial kits are now available from several companies for improving traditional microbiological diagnosis. In this paper, we present the first evaluation of the real-time PCR kit marketed by Bio Evolution for the diagnosis of dermatophytosis. Secondly, we compare the efficacy of the kit on optimal and non-optimal samples. This study was conducted on 180 nails samples, processed by conventional methods and retrospectively analysed using this kit. According to our results, this molecular kit has shown high specificity and sensitivity in detecting dermatophytes, regardless of sample quality. On the other hand, and as expected, optimal samples allowed the identification of a higher number of dermatophytes by conventional mycological diagnosis, compared to non-optimal samples. Finally, we have suggested several strategies for the practical use of such a kit in a medical laboratory for quick pathogen detection.

  5. Real-time PCR-based analysis of the human bile microRNAome identifies miR-9 as a potential diagnostic biomarker for biliary tract cancer.

    PubMed

    Shigehara, Kengo; Yokomuro, Shigeki; Ishibashi, Osamu; Mizuguchi, Yoshiaki; Arima, Yasuo; Kawahigashi, Yutaka; Kanda, Tomohiro; Akagi, Ichiro; Tajiri, Takashi; Yoshida, Hiroshi; Takizawa, Toshihiro; Uchida, Eiji

    2011-01-01

    Biliary tract cancer (BTC) is often difficult to diagnose definitively, even through histological examination. MicroRNAs (miRNAs) regulate a variety of physiological processes. In recent years, it has been suggested that profiles for circulating miRNAs, as well as those for tissue miRNAs, have the potential to be used as diagnostic biomarkers for cancer. The aim of this study was to confirm the existence of miRNAs in human bile and to assess their potential as clinical biomarkers for BTC. We sampled bile from patients who underwent biliary drainage for biliary diseases such as BTC and choledocholithiasis. PCR-based miRNA detection and miRNA cloning were performed to identify bile miRNAs. Using high-throughput real-time PCR-based miRNA microarrays, the expression profiles of 667 miRNAs were compared in patients with malignant disease (n = 9) and age-matched patients with the benign disease choledocholithiasis (n = 9). We subsequently characterized bile miRNAs in terms of stability and localization. Through cloning and using PCR methods, we confirmed that miRNAs exist in bile. Differential analysis of bile miRNAs demonstrated that 10 of the 667 miRNAs were significantly more highly expressed in the malignant group than in the benign group at P<0.0005. Setting the specificity threshold to 100% showed that some miRNAs (miR-9, miR-302c*, miR-199a-3p and miR-222*) had a sensitivity level of 88.9%, and receiver-operating characteristic analysis demonstrated that miR-9 and miR-145* could be useful diagnostic markers for BTC. Moreover, we verified the long-term stability of miRNAs in bile, a characteristic that makes them suitable for diagnostic use in clinical settings. We also confirmed that bile miRNAs are localized to the malignant/benign biliary epithelia. These findings suggest that bile miRNAs could be informative biomarkers for hepatobiliary disease and that some miRNAs, particularly miR-9, may be helpful in the diagnosis and clinical management of BTC.

  6. Real-Time PCR-Based Analysis of the Human Bile MicroRNAome Identifies miR-9 as a Potential Diagnostic Biomarker for Biliary Tract Cancer

    PubMed Central

    Shigehara, Kengo; Yokomuro, Shigeki; Ishibashi, Osamu; Mizuguchi, Yoshiaki; Arima, Yasuo; Kawahigashi, Yutaka; Kanda, Tomohiro; Akagi, Ichiro; Tajiri, Takashi; Yoshida, Hiroshi; Takizawa, Toshihiro; Uchida, Eiji

    2011-01-01

    Biliary tract cancer (BTC) is often difficult to diagnose definitively, even through histological examination. MicroRNAs (miRNAs) regulate a variety of physiological processes. In recent years, it has been suggested that profiles for circulating miRNAs, as well as those for tissue miRNAs, have the potential to be used as diagnostic biomarkers for cancer. The aim of this study was to confirm the existence of miRNAs in human bile and to assess their potential as clinical biomarkers for BTC. We sampled bile from patients who underwent biliary drainage for biliary diseases such as BTC and choledocholithiasis. PCR-based miRNA detection and miRNA cloning were performed to identify bile miRNAs. Using high-throughput real-time PCR-based miRNA microarrays, the expression profiles of 667 miRNAs were compared in patients with malignant disease (n = 9) and age-matched patients with the benign disease choledocholithiasis (n = 9). We subsequently characterized bile miRNAs in terms of stability and localization. Through cloning and using PCR methods, we confirmed that miRNAs exist in bile. Differential analysis of bile miRNAs demonstrated that 10 of the 667 miRNAs were significantly more highly expressed in the malignant group than in the benign group at P<0.0005. Setting the specificity threshold to 100% showed that some miRNAs (miR-9, miR-302c*, miR-199a-3p and miR-222*) had a sensitivity level of 88.9%, and receiver-operating characteristic analysis demonstrated that miR-9 and miR-145* could be useful diagnostic markers for BTC. Moreover, we verified the long-term stability of miRNAs in bile, a characteristic that makes them suitable for diagnostic use in clinical settings. We also confirmed that bile miRNAs are localized to the malignant/benign biliary epithelia. These findings suggest that bile miRNAs could be informative biomarkers for hepatobiliary disease and that some miRNAs, particularly miR-9, may be helpful in the diagnosis and clinical management of BTC. PMID

  7. Molecular diagnostic of cytomegalovirus, Epstein Barr virus and Herpes virus 6 infections among blood donors by multiplex real-time PCR in Ouagadougou, Burkina Faso.

    PubMed

    Traore, Lassina; Tao, Issoufou; Bisseye, Cyrille; Diarra, Birama; Compaore, Tegwindé Rebeca; Nebie, Yacouba; Assih, Maleki; Ouedraogo, Alice; Zohoncon, Theodora; Djigma, Florencia; Ouermi, Djénéba; Barro, Nicolas; Sanou, Mahamoudou; Ouedraogo, Rasmata Traore; Simpore, Jacques

    2016-01-01

    In most developing countries, Cytomegalovirus (CMV), Epstein Barr virus (EBV) and Herpes virus 6 (HHV-6) are not diagnosed in blood donors. The aim of this study is to determine the prevalence of these viruses in blood donors from the city of Ouagadougou, Burkina Faso. The study included 198 blood donors of the Regional Blood Transfusion Centre of Ouagadougou. Multiplex real time PCR was used to diagnose the three viruses. Statistical analysis was performed with the software EpiInfo version 6 and SPSS version 17. P values ≤ 0.05 were considered significant. Of 198 samples tested, 18 (9.1%) were positive to at least one of the three viruses. In fact, 10 (5.1%) were positive for EBV, 10 (5.1%) positive for CMV and 12 (6.1%) positive for HHV-6. Viral infections were higher in women than in men, EBV (8,6% versus 4.3%), CMV (8.6% versus 3.7%) and HHV-6 (11.4% versus 4.9%). EBV / CMV / HHV-6 co-infection was found in 3.5% (7/198) of blood donors. The prevalence recorded in this study is low compared to those found in previous studies from the sub-region among blood donors. The molecular diagnostic test used in our study could explain the differences with previous studies.

  8. Polymeric LabChip Real-Time PCR as a Point-of-Care-Potential Diagnostic Tool for Rapid Detection of Influenza A/H1N1 Virus in Human Clinical Specimens

    PubMed Central

    Song, Hyun-Ok; Kim, Je-Hyoung; Ryu, Ho-Sun; Lee, Dong-Hoon; Kim, Sun-Jin; Kim, Deog-Joong; Suh, In Bum; Choi, Du Young; In, Kwang-Ho; Kim, Sung-Woo; Park, Hyun

    2012-01-01

    It is clinically important to be able to detect influenza A/H1N1 virus using a fast, portable, and accurate system that has high specificity and sensitivity. To achieve this goal, it is necessary to develop a highly specific primer set that recognizes only influenza A viral genes and a rapid real-time PCR system that can detect even a single copy of the viral gene. In this study, we developed and validated a novel fluidic chip-type real-time PCR (LabChip real-time PCR) system that is sensitive and specific for the detection of influenza A/H1N1, including the pandemic influenza strain A/H1N1 of 2009. This LabChip real-time PCR system has several remarkable features: (1) It allows rapid quantitative analysis, requiring only 15 min to perform 30 cycles of real-time PCR. (2) It is portable, with a weight of only 5.5 kg. (3) The reaction cost is low, since it uses disposable plastic chips. (4) Its high efficiency is equivalent to that of commercially available tube-type real-time PCR systems. The developed disposable LabChip is an economic, heat-transferable, light-transparent, and easy-to-fabricate polymeric chip compared to conventional silicon- or glass-based labchip. In addition, our LabChip has large surface-to-volume ratios in micro channels that are required for overcoming time consumed for temperature control during real-time PCR. The efficiency of the LabChip real-time PCR system was confirmed using novel primer sets specifically targeted to the hemagglutinin (HA) gene of influenza A/H1N1 and clinical specimens. Eighty-five human clinical swab samples were tested using the LabChip real-time PCR. The results demonstrated 100% sensitivity and specificity, showing 72 positive and 13 negative cases. These results were identical to those from a tube-type real-time PCR system. This indicates that the novel LabChip real-time PCR may be an ultra-fast, quantitative, point-of-care-potential diagnostic tool for influenza A/H1N1 with a high sensitivity and specificity

  9. Quantitative Real-Time PCR: Recent Advances.

    PubMed

    Singh, Charanjeet; Roy-Chowdhuri, Sinchita

    2016-01-01

    Quantitative real-time polymerase chain reaction is a technique for simultaneous amplification and product quantification of a target DNA as the process takes place in real time in a "closed-tube" system. Although this technique can provide an absolute quantification of the initial template copy number, quantification relative to a control sample or second sequence is typically adequate. The quantification process employs melting curve analysis and/or fluorescent detection systems and can provide amplification and genotyping in a relatively short time. Here we describe the properties and uses of various fluorescent detection systems used for quantification.

  10. Real-time PCR for detection of Strongyloides stercoralis in human stool samples from Côte d'Ivoire: diagnostic accuracy, inter-laboratory comparison and patterns of hookworm co-infection.

    PubMed

    Becker, Sören L; Piraisoody, Nivetha; Kramme, Stefanie; Marti, Hanspeter; Silué, Kigbafori D; Panning, Marcus; Nickel, Beatrice; Kern, Winfried V; Herrmann, Mathias; Hatz, Christoph F; N'Goran, Eliézer K; Utzinger, Jürg; von Müller, Lutz

    2015-10-01

    Human infections with the helminth species Strongyloides stercoralis encompass a wide clinical spectrum, ranging from asymptomatic carriage to life-threatening disease. The diagnosis of S. stercoralis is cumbersome and the sensitivity of conventional stool microscopy is low. New molecular tools have been developed to increase sensitivity. We compared the diagnostic accuracy of real-time PCR with microscopy for the detection of S. stercoralis and hookworm in human stool samples, and investigated the inter-laboratory agreement of S. stercoralis-specific real-time PCR in two European laboratories. Stool specimens from 256 randomly selected individuals in rural Côte d'Ivoire were examined using three microscopic techniques (i.e. Kato-Katz, Koga agar plate (KAP) and Baermann (BM)). Additionally, ethanol-fixed stool aliquots were subjected to molecular diagnosis. The prevalence of S. stercoralis and hookworm infection was 21.9% and 52.0%, respectively, whilst co-infections were detected in 35 (13.7%) participants. The diagnostic agreement between real-time PCR and microscopy was excellent when both KAP and BM tested positive for S. stercoralis, but was considerably lower when only one microscopic technique was positive. The sensitivity of KAP, BM and real-time PCR for detection of S. stercoralis as compared to a combination of all diagnostic techniques was 21.4%, 37.5% and 76.8%, respectively. The inter-laboratory agreement of S. stercoralis-specific PCR was substantial (κ=0.63, p<0.001). We conclude that a combination of real-time PCR and stool microscopy shows high accuracy for S. stercoralis diagnosis. Besides high sensitivity, PCR may also enhance specificity by reducing microscopic misdiagnosis of morphologically similar helminth larvae (i.e. hookworm and S. stercoralis) in settings where both helminth species co-exist.

  11. A study of PCR inhibition mechanisms using real time PCR.

    PubMed

    Opel, Kerry L; Chung, Denise; McCord, Bruce R

    2010-01-01

    In this project, real time polymerase chain reaction (PCR) was utilized to study the mechanism of PCR inhibition through examination of the effect of amplicon length, melting temperature, and sequence. Specifically designed primers with three different amplicon lengths and three different melting temperatures were used to target a single homozygous allele in the HUMTH01 locus. The effect on amplification efficiency for each primer pair was determined by adding different concentrations of various PCR inhibitors to the reaction mixture. The results show that a variety of inhibition mechanisms can occur during the PCR process depending on the type of co-extracted inhibitor. These include Taq inhibition, DNA template binding, and effects on reaction efficiency. In addition, some inhibitors appear to affect the reaction in more than one manner. Overall we find that amplicon size and melting temperature are important in some inhibition mechanisms and not in others and the key issue in understanding PCR inhibition is determining the identity of the interfering substance.

  12. Bartonellae in domestic and stray cats from Israel: comparison of bacterial cultures and high-resolution melt real-time PCR as diagnostic methods.

    PubMed

    Gutiérrez, Ricardo; Morick, Danny; Gross, Ifat; Winkler, Ronen; Abdeen, Ziad; Harrus, Shimon

    2013-12-01

    To determine the occurrence of feline bartonellosis in Israel, blood samples were collected from 179 stray and 155 domestic cats from 18 cities or villages in central and northcentral Israel. Samples were screened for Bartonella infection by culture isolation and molecular detection using high-resolution melt (HRM) real-time PCR assay targeting the 16S-23S rRNA internal transcribed spacer (ITS). All positive samples were confirmed by two additional HRM real-time PCR assays targeting two fragments of the β-subunit of RNA polymerase (rpoB) and the 16S rRNA genes. The prevalence of Bartonella spp. infection in the general tested population was 25.1% (84/334). A higher prevalence was detected in the stray (30.7%; 55/179) than the domestic cats (18.7%; 29/155). Bartonella henselae, Bartonella clarridgeiae, and Bartonella koehlerae were highly prevalent in both cat populations, however their distribution among the two populations varied significantly (p=0.016). B. clarridgeiae and B. koehlerae were found to be more prevalent in stray than domestic cats, whereas B. henselae was evenly distributed. Co-infection with two or more different Bartonella spp. was determined in 2.1% (7) of the cats. The ITS HRM real-time PCR assay used in this study was shown to have a greater screening power than bacterial isolation, detecting 94.0% (79/84) compared to 35.7% (30/84), respectively, of all positive samples. The high prevalence of these zoonotic Bartonella species, coupled with the overpopulation of stray cats, and increased numbers of domestic cats in the major urban centers in Israel represent a significant threat for the public health in this country.

  13. Absolute quantification by droplet digital PCR versus analog real-time PCR

    PubMed Central

    Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh

    2014-01-01

    Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387

  14. [Epidemics of schistosomiasis in military staff assigned to endemic areas: standard diagnostic techniques and the development of real-time PCR techniques].

    PubMed

    Biance-Valero, E; De Laval, F; Delerue, M; Savini, H; Cheinin, S; Leroy, P; Soullié, B

    2013-05-01

    The authors report the results of molecular biology techniques for the early diagnosis of cases (invasion phase) of schistosomiasis during two epidemics occurring during French military projects in the Central African Republic and Madagascar. The use of these techniques in real time for subjects not residing in the endemic area significantly improves the sensitivity of screening. The attack rates of these episodes, according to a case definition that took positive specific PCR results into account, were 59% and 26%. These results are a concrete illustration of the proverb that "yaws begin where the trail stops".

  15. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  16. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  17. Electrochemistry-based real-time PCR on a microchip.

    PubMed

    Yeung, Stephen S W; Lee, Thomas M H; Hsing, I-Ming

    2008-01-15

    The development of handheld instruments for point-of-care DNA analysis can potentially contribute to the medical diagnostics and environmental monitoring for decentralized applications. In this work, we demonstrate the implementation of a recently developed electrochemical real-time polymerase chain reaction (ERT-PCR) technique on a silicon-glass microchip for simultaneous DNA amplification and detection. This on-chip ERT-PCR process requires the extension of an oligonucleotide in both solution and at solid phases and intermittent electrochemical signal measurement in the presence of all the PCR reagents. Several important parameters, related to the surface passivation and electrochemical scanning of working electrodes, were investigated. It was found that the ERT-PCR's onset thermal cycle ( approximately 3-5), where the analytical signal begins to be distinguishable from the background, is much lower than that of the fluorescence-based counterparts for high template DNA situations (3 x 10(6) copies/microL). By carefully controlling the concentrations of the immobilized probe and the enzyme polymerase, improvements have been made in obtaining a meaningful electrochemical signal using a lower initial template concentration. This ERT-PCR technique on a microchip platform holds significant promise for rapid DNA detection for point-of-care testing applications.

  18. Multiplex real-time PCR assay for Legionella species.

    PubMed

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies.

  19. Broad-range real time PCR and DNA sequencing for the diagnosis of bacterial meningitis.

    PubMed

    Deutch, Susanna; Pedersen, Lisbeth N; Pødenphant, Lone; Olesen, Rikke; Schmidt, Michael B; Møller, Jens K; Ostergaard, Lars

    2006-01-01

    Rapid aetiological diagnosis of bacterial meningitis is crucial for the early targeting of antimicrobial and adjuvant therapy. Broad-range polymerase chain reaction (PCR) targeting the 16S rRNA gene allows aetiological diagnosis of bacterial meningitis when applied to cerebrospinal fluid (CSF). We assessed the additional diagnostic effect of applying a novel broad-range real time PCR and subsequent DNA sequencing to culture, microscopy, and broad-range conventional PCR on CSF in patients with suspected bacterial meningitis. Broad-range conventional PCR and broad-range real time PCR with subsequent DNA sequencing were applied to 206 CSF specimens collected consecutively from 203 patients aged 6 d to 86 y. Patients' charts were reviewed for clinical information. 17 pathogens were identified by PCR and DNA sequencing or culture. Three specimens were negative by culture but positive by broad-range real time PCR. Three specimens were positive by culture but negative by broad-range real time PCR. Compared with culture, the sensitivity of broad-range real time PCR was 86%, and the specificity 98%. Conventional PCR resulted in a sensitivity of 64% and specificity of 98%. Broad-range real time PCR was generally comparable to culture of CSF and may be a useful supplement, particularly when antimicrobial therapy has been administered. Broad-range real time PCR was more sensitive than broad-range conventional PCR and microscopy.

  20. Correlation between Clostridium difficile bacterial load, commercial real-time PCR cycle thresholds, and results of diagnostic tests based on enzyme immunoassay and cell culture cytotoxicity assay.

    PubMed

    Dionne, Léa-Laurence; Raymond, Frédéric; Corbeil, Jacques; Longtin, Jean; Gervais, Philippe; Longtin, Yves

    2013-11-01

    The impact of Clostridium difficile fecal loads on diagnostic test results is poorly understood, but it may have clinical importance. In this study, we investigated the relationship between C. difficile fecal load and the results of four assays: a glutamate dehydrogenase (GDH) enzyme immunoassay (EIA), a toxin A/B antigen EIA (ToxAB), a cell culture cytotoxicity assay (CCA), and PCR targeting the tcdB gene. We also compared the PCR cycle threshold (CT) with the results of quantitative culture using Spearman's rank correlation coefficient. Finally, we sequenced the genomes of 24 strains with different detection profiles. A total of 203 clinical samples harboring toxigenic C. difficile were analyzed and sorted into one of four groups: 17 PCR(+) (group 1), 37 PCR(+) GDH(+) (group 2), 24 PCR(+) GDH(+) CCA(+) (group 3), and 125 PCR(+) GDH(+) ToxAB(+) (group 4). The overall median fecal load in log10 CFU/g was 6.67 (interquartile range [IQR], 5.57 to 7.54). The median fecal bacterial load of groups 1, 2, 3, and 4 were 4.15 (IQR, 3.00 to 4.98), 5.74 (IQR, 4.75 to 6.16), 6.20 (IQR, 5.23 to 6.80), and 7.08 (IQR, 6.35 to 7.83), respectively. Group 1 samples had lower fecal loads than those from each of the other groups (P < 0.001). Group 2 samples had lower fecal loads than those from groups 3 and 4 (P < 0.001). There was a significant correlation between PCR CT and fecal loads (ρ = -0.697; P < 0.001). NAP1 strains were associated with the detection of toxins by EIA or CCA (P = 0.041). This study demonstrates an association between C. difficile fecal load and the results of routinely used diagnostic tests.

  1. Lab-on-a-chip enabled HLA diagnostic: combined sample preparation and real time PCR for HLA-B57 diagnosis

    NASA Astrophysics Data System (ADS)

    Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas

    2015-05-01

    The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.

  2. Real-time PCR and PCR-tandem Mass Spectrometry for Biodetection

    DTIC Science & Technology

    2005-10-01

    Real - time PCR and PCR- tandem mass spectrometry for biodetection Alvin Fox, University of South Carolina, School of Medicine Report Documentation...TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR and PCRtandem mass spectrometry for biodetection 5a. CONTRACT NUMBER 5b...interspace region Bacillus subtilis W23 standard Blank Barn dust House dust Cycle Real - time PCR (16s rRNA) - environmental samples Real - time

  3. [REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].

    PubMed

    Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A

    2015-01-01

    Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.

  4. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance.

    PubMed

    Khairnar, Krishna; Martin, Donald; Lau, Rachel; Ralevski, Filip; Pillai, Dylan R

    2009-12-09

    Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R(2) = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/microl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference microscopy. These data suggest that

  5. Multiplex real-time quantitative PCR, microscopy and rapid diagnostic immuno-chromatographic tests for the detection of Plasmodium spp: performance, limit of detection analysis and quality assurance

    PubMed Central

    2009-01-01

    Background Accurate laboratory diagnosis of malaria species in returning travelers is paramount in the treatment of this potentially fatal infectious disease. Materials and methods A total of 466 blood specimens from returning travelers to Africa, Asia, and South/Central America with suspected malaria infection were collected between 2007 and 2009 at the reference public health laboratory. These specimens were assessed by reference microscopy, multipex real-time quantitative polymerase chain reaction (QPCR), and two rapid diagnostic immuno-chromatographic tests (ICT) in a blinded manner. Key clinical laboratory parameters such as limit of detection (LOD) analysis on clinical specimens by parasite stage, inter-reader variability of ICTs, staffing implications, quality assurance and cost analysis were evaluated. Results QPCR is the most analytically sensitive method (sensitivity 99.41%), followed by CARESTART (sensitivity 88.24%), and BINAXNOW (sensitivity 86.47%) for the diagnosis of malaria in returning travelers when compared to reference microscopy. However, microscopy was unable to specifically identify Plasmodia spp. in 18 out of 170 positive samples by QPCR. Moreover, the 17 samples that were negative by microscopy and positive by QPCR were also positive by ICTs. Quality assurance was achieved for QPCR by exchanging a blinded proficiency panel with another reference laboratory. The Kappa value of inter-reader variability among three readers for BINAXNOW and CARESTART was calculated to be 0.872 and 0.898 respectively. Serial dilution studies demonstrated that the QPCR cycle threshold correlates linearly with parasitemia (R2 = 0.9746) in a clinically relevant dynamic range and retains a LOD of 11 rDNA copies/μl for P. falciparum, which was several log lower than reference microscopy and ICTs. LOD for QPCR is affected not only by parasitemia but the parasite stage distribution of each clinical specimen. QPCR was approximately 6-fold more costly than reference

  6. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  7. Real-time PCR for Strongyloides stercoralis-associated meningitis.

    PubMed

    Nadir, Eyal; Grossman, Tamar; Ciobotaro, Pnina; Attali, Malka; Barkan, Daniel; Bardenstein, Rita; Zimhony, Oren

    2016-03-01

    Four immunocompromised patients, immigrants from Ethiopia, presented with diverse clinical manifestations of meningitis associated with Strongyloides stercoralis dissemination as determined by identification of intestinal larvae. The cerebrospinal fluid of 3 patients was tested by a validated (for stool) real-time PCR for S. stercoralis and was found positive, establishing this association. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Citrus stubborn disease incidence determined by quantitative real time PCR

    USDA-ARS?s Scientific Manuscript database

    Quantitative real-time (q) PCR was developed for detection of Spiroplasma citri, the causal agent of citrus stubborn disease (CSD), using the DNA binding fluorophore SYBR Green I. The primer pair, P58-3f/4r, developed based on sequences from the P58 putative adhesin multigene of the pathogen result...

  9. DETECTION OF FECAL ENTEROCOCCI USING A REAL TIME PCR METHOD

    EPA Science Inventory

    In spite of their importance in public health, the detection of fecal enterococci is performed via culturing methods that are time consuming and that are subject to inaccuracies that relate to their culturable status. In order to address these problems, a real time PCR (TaqMan) ...

  10. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  11. Introducing Undergraduate Students to Real-Time PCR

    ERIC Educational Resources Information Center

    Hancock, Dale; Funnell, Alister; Jack, Briony; Johnston, Jill

    2010-01-01

    An experiment is conducted, which in four 3 h laboratory sessions, introduces third year undergraduate Biochemistry students to the technique of real-time PCR in a biological context. The model used is a murine erythroleukemia cell line (MEL cells). These continuously cycling, immature red blood cells, arrested at an early stage in erythropoiesis,…

  12. Real-Time PCR Quantification of Methanobrevibacter oralis in Periodontitis

    PubMed Central

    Bringuier, Amélie; Khelaifia, Saber; Richet, Hervé; Aboudharam, Gérard

    2013-01-01

    A real-time PCR assay developed to quantify Methanobrevibacter oralis indicated that its inoculum significantly correlated with periodontitis severity (P = 0.003), despite a nonsignificant difference in prevalence between controls (3/10) and patients (12/22) (P = 0.2, Fisher test). The M. oralis load can be used as a biomarker for periodontitis. PMID:23254133

  13. Sequence polymorphism can produce serious artifacts in real-time PCR assays: lessons from Pacific oysters

    USDA-ARS?s Scientific Manuscript database

    Since it was first described in the mid-1990s, quantitative real time PCR (Q-PCR) has been widely used in many fields of biomedical research and molecular diagnostics. This method is routinely used to validate whole transcriptome analyses such as DNA microarrays, suppressive subtractive hybridizati...

  14. Diagnostic performance of a multiple real-time PCR assay in patients with suspected sepsis hospitalized in an internal medicine ward.

    PubMed

    Pasqualini, Leonella; Mencacci, Antonella; Leli, Christian; Montagna, Paolo; Cardaccia, Angela; Cenci, Elio; Montecarlo, Ines; Pirro, Matteo; di Filippo, Francesco; Cistaro, Emma; Schillaci, Giuseppe; Bistoni, Francesco; Mannarino, Elmo

    2012-04-01

    Early identification of causative pathogen in sepsis patients is pivotal to improve clinical outcome. SeptiFast (SF), a commercially available system for molecular diagnosis of sepsis based on PCR, has been mostly used in patients hospitalized in hematology and intensive care units. We evaluated the diagnostic accuracy and clinical usefulness of SF, compared to blood culture (BC), in 391 patients with suspected sepsis, hospitalized in a department of internal medicine. A causative pathogen was identified in 85 patients (22%). Sixty pathogens were detected by SF and 57 by BC. No significant differences were found between the two methods in the rates of pathogen detection (P = 0.74), even after excluding 9 pathogens which were isolated by BC and were not included in the SF master list (P = 0.096). The combination of SF and BC significantly improved the diagnostic yield in comparison to BC alone (P < 0.001). Compared to BC, SF showed a significantly lower contamination rate (0 versus 19 cases; P < 0.001) with a higher specificity for pathogen identification (1.00, 95% confidence interval [CI] of 0.99 to 1.00, versus 0.94, 95% CI of 0.90 to 0.96; P = 0.005) and a higher positive predictive value (1.00, 95% CI of 1.00 to 0.92%, versus 0.75, 95% CI of 0.63 to 0.83; P = 0.005). In the subgroup of patients (n = 191) who had been receiving antibiotic treatment for ≥24 h, SF identified more pathogens (16 versus 6; P = 0.049) compared to BC. These results suggest that, in patients with suspected sepsis, hospitalized in an internal medicine ward, SF could be a highly valuable adjunct to conventional BC, particularly in patients under antibiotic treatment.

  15. High-throughput pooling and real-time PCR-based strategy for malaria detection.

    PubMed

    Taylor, Steve M; Juliano, Jonathan J; Trottman, Paul A; Griffin, Jennifer B; Landis, Sarah H; Kitsa, Paluku; Tshefu, Antoinette K; Meshnick, Steven R

    2010-02-01

    Molecular assays can provide critical information for malaria diagnosis, speciation, and drug resistance, but their cost and resource requirements limit their application to clinical malaria studies. This study describes the application of a resource-conserving testing algorithm employing sample pooling for real-time PCR assays for malaria in a cohort of 182 pregnant women in Kinshasa. A total of 1,268 peripheral blood samples were collected during the study. Using a real-time PCR assay that detects all Plasmodium species, microscopy-positive samples were amplified individually; the microscopy-negative samples were amplified after pooling the genomic DNA (gDNA) of four samples prior to testing. Of 176 microscopy-positive samples, 74 were positive by the real-time PCR assay; the 1,092 microscopy-negative samples were initially amplified in 293 pools, and subsequently, 35 samples were real-time PCR positive (3%). With the real-time PCR result as the referent standard, microscopy was 67.9% sensitive (95% confidence interval [CI], 58.3% to 76.5%) and 91.2% specific (95% CI, 89.4% to 92.8%) for malaria. In total, we detected 109 parasitemias by real-time PCR and, by pooling samples, obviated over 50% of reactions and halved the cost of testing. Our study highlights both substantial discordance between malaria diagnostics and the utility and parsimony of employing a sample pooling strategy for molecular diagnostics in clinical and epidemiologic malaria studies.

  16. Species identification in meat products using real-time PCR.

    PubMed

    Jonker, K M; Tilburg, J J H C; Hagele, G H; de Boer, E

    2008-05-01

    One of the most convenient methods for the identification of animal species in processed meat products is the examination of DNA sequences. Real-time polymerase chain reaction (qPCR) techniques are particularly suitable because even small fragments of DNA formed during heat processing of the meat can be amplified and identified. A real-time PCR method has been developed and evaluated for the identification of processed meat products. In test mixtures containing beef, pork, horse, mutton, chicken and turkey, it was possible to identify these species down to a level of 0.05%. By adjusting the number of cycles, it was possible to detect levels as low as 0.01% of these species. Cross-reactivity between these species was not found, except for pure horsemeat (250 ng DNA) in the assay for turkey meat. Cross-reactivity of deer, roe, ostrich, kangaroo, goat, domestic duck, mallard, goose, pigeon, guinea fowl, quail and pheasant was also investigated and it was found that amounts as high as 250 ng DNA of these species in the reaction vial did not result in (false) positive signals except for amounts higher than 125 ng deer DNA and higher than 50 ng pigeon DNA in the determination of chicken and beef, respectively. More than 150 meat samples were examined using DNA hybridization and real-time PCR. A comparison of the results showed a better performance of the real-time procedure compared to DNA hybridization.

  17. Multicolor combinatorial probe coding for real-time PCR.

    PubMed

    Huang, Qiuying; Zheng, Linlin; Zhu, Yumei; Zhang, Jiafeng; Wen, Huixin; Huang, Jianwei; Niu, Jianjun; Zhao, Xilin; Li, Qingge

    2011-01-14

    The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed "Multicolor Combinatorial Probe Coding" (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2(n)-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy.

  18. Development of a highly sensitive one-tube nested real-time PCR for detecting Mycobacterium tuberculosis.

    PubMed

    Choi, Yeonim; Jeon, Bo-Young; Shim, Tae Sun; Jin, Hyunwoo; Cho, Sang-Nae; Lee, Hyeyoung

    2014-12-01

    Rapid, accurate detection of Mycobacterium tuberculosis is crucial in the diagnosis of tuberculosis (TB), but conventional diagnostic methods have limited sensitivity and specificity or are time consuming. A new highly sensitive nucleic acid amplification test, combined nested and real-time polymerase chain reaction (PCR) in a single tube (one-tube nested real-time PCR), was developed for detecting M. tuberculosis, which takes advantage of two PCR techniques, i.e., nested PCR and real-time PCR. One-tube nested real-time PCR was designed to have two sequential reactions with two sets of primers and dual probes for the insertion sequence (IS) 6110 sequence of M. tuberculosis in a single closed tube. The minimum limits of detection of IS6110 real-time PCR and IS6110 one-tube nested real-time PCR were 100 fg/μL and 1 fg/μL of M. tuberculosis DNA, respectively. AdvanSure TB/non-tuberculous mycobacteria (NTM) real-time PCR, IS6110 real-time PCR, and two-tube nested real-time PCR showed 100% sensitivity and 100% specificity for clinical M. tuberculosis isolates and NTM isolates. In comparison, the sensitivities of AdvanSure TB/NTM real-time PCR, single IS6110 real-time PCR, and one-tube nested real-time PCR were 91% (152/167), 94.6% (158/167), and 100% (167/167) for sputum specimens, respectively. In conclusion, IS6110 one-tube nested real-time PCR is useful for detecting M. tuberculosis due to its high sensitivity and simple manipulation.

  19. High-throughput quantitative real-time PCR.

    PubMed

    Arany, Zoltan P

    2008-07-01

    Recent technical advances in quantitative real-time PCR (qRT-PCR) have allowed for extensive miniaturization, thereby rendering the technique amenable to high-throughput assays. Large numbers of different nucleic acids can now rapidly be measured quantitatively. Many investigations can benefit from this approach, including determination of gene expression in hundreds of samples, determination of hundreds of genes in a few samples, or even quantification of nucleic acids other than mRNA. A simple technique is described here to quantify 1880 transcripts of choice from any number of starting RNA samples.

  20. Detection of Leishmania infantum in animals and their ectoparasites by conventional PCR and real time PCR.

    PubMed

    de Morais, Rayana Carla Silva; Gonçalves, Suênia da Cunha; Costa, Pietra Lemos; da Silva, Kamila Gaudêncio; da Silva, Fernando José; Silva, Rômulo Pessoa E; de Brito, Maria Edileuza Felinto; Brandão-Filho, Sinval Pinto; Dantas-Torres, Filipe; de Paiva-Cavalcanti, Milena

    2013-04-01

    Visceral leishmaniosis (VL) is a parasitic disease caused by Leishmania infantum, which is primarily transmitted by phlebotomine sandflies. However, there has been much speculation on the role of other arthropods in the transmission of VL. Thus, the aim of this study was to assess the presence of L. infantum in cats, dogs and their ectoparasites in a VL-endemic area in northeastern Brazil. DNA was extracted from blood samples and ectoparasites, tested by conventional PCR (cPCR) and quantitative real time PCR (qPCR) targeting the L. infantum kinetoplast DNA. A total of 280 blood samples (from five cats and 275 dogs) and 117 ectoparasites from dogs were collected. Animals were apparently healthy and not previously tested by serological or molecular diagnostic methods. Overall, 213 (76.1 %) animals and 51 (43.6 %) ectoparasites were positive to L. infantum, with mean parasite loads of 795.2, 31.9 and 9.1 fg in dogs, cats and ectoparasites, respectively. Concerning the positivity between dogs and their ectoparasites, 32 (15.3 %) positive dogs were parasitized by positive ectoparasites. The overall concordance between the PCR protocols used was 59.2 %, with qPCR being more efficient than cPCR; 34.1 % of all positive samples were exclusively positive by qPCR. The high number of positive animals and ectoparasites also indicates that they could serve as sentinels or indicators of the circulation of L. infantum in risk areas.

  1. Real-Time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei

    DTIC Science & Technology

    2005-10-01

    1 Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B. pseudomallei Vipin K. Rastogi1, Tu-chen Cheng1, Lisa Collins1 and Jennifer Bagley2 1...A 3. DATES COVERED - 4. TITLE AND SUBTITLE Real - time PCR (RT-PCR) Assays for Burkholderia mallei and B.pseudomallei 5a. CONTRACT NUMBER 5b...risk. There is currently no real - time PCR assay for detection of both of these pathogens. Primers and probes corresponding to specific genomic regions

  2. Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR.

    PubMed

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna; Fach, Patrick

    2012-11-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPR(O104:H4)) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPR(O104:H4) PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwC(O104), wzx(O104), and wzy(O104)). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPR(O104:H4) target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPR(O104:H4) locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPR(O104:H4) PCR (99.06% specificity).

  3. Specific Detection of Enteroaggregative Hemorrhagic Escherichia coli O104:H4 Strains by Use of the CRISPR Locus as a Target for a Diagnostic Real-Time PCR

    PubMed Central

    Delannoy, Sabine; Beutin, Lothar; Burgos, Ylanna

    2012-01-01

    In 2011, a large outbreak of an unusual bacterial strain occurred in Europe. This strain was characterized as a hybrid of an enteroaggregative Escherichia coli (EAEC) and a Shiga toxin-producing E. coli (STEC) strain of the serotype O104:H4. Here, we present a single PCR targeting the clustered regularly interspaced short palindromic repeats locus of E. coli O104:H4 (CRISPRO104:H4) for specific detection of EAEC STEC O104:H4 strains from different geographical locations and time periods. The specificity of the CRISPRO104:H4 PCR was investigated using 1,321 E. coli strains, including reference strains for E. coli O serogroups O1 to O186 and flagellar (H) types H1 to H56. The assay was compared for specificity using PCR assays targeting different O104 antigen-encoding genes (wbwCO104, wzxO104, and wzyO104). The PCR assays reacted with all types of E. coli O104 strains (O104:H2, O104:H4, O104:H7, and O104:H21) and with E. coli O8 and O9 strains carrying the K9 capsular antigen and were therefore not specific for detection of the EAEC STEC O104:H4 type. A single PCR developed for the CRISPRO104:H4 target was sufficient for specific identification and detection of the 48 tested EAEC STEC O104:H4 strains. The 35 E. coli O104 strains expressing H types other than H4 as well as 8 E. coli strains carrying a K9 capsular antigen tested all negative for the CRISPRO104:H4 locus. Only 12 (0.94%) of the 1,273 non-O104:H4 E. coli strains (serotypes Ont:H2, O43:H2, O141:H2, and O174:H2) reacted positive in the CRISPRO104:H4 PCR (99.06% specificity). PMID:22895033

  4. PCR real time assays for the early detection of BKV-DNA in immunocompromised patients.

    PubMed

    Marinelli, Katia; Bagnarelli, Patrizia; Gaffi, Gianni; Trappolini, Silvia; Leoni, Pietro; Paggi, Alessandra Mataloni; Della Vittoria, Agnese; Scalise, Giorgio; Varaldo, Pietro Emanuele; Menzo, Stefano

    2007-07-01

    Testing for viral BKV-DNA in urine is a non-invasive early detection and monitoring tool in the diagnostic of BKV-related pathologies: quantitative analysis by Real-Time PCR can provide useful information in addition to cytologic analysis, although our study suggests that high BKV viruria is not necessarily associated with kidney or bladder damage.

  5. [Development of uncompetitive exogenous internal amplification control for real-time PCR based on UFA method].

    PubMed

    Ivanov, M K; Bragin, A G; Prasolova, M A; Vedernikov, V E; Dymshits, G M

    2009-01-01

    An uncompetitive exogenous internal amplification control method (EIAC) was developed on the basis of short synthetic DNA segment, whose amplification can be detected in real time by UFA spectroscopy principle. The EIAC was shown to be useful as internal control in diagnostic test systems based on DNA or RNA detection by multiplex real-time PCR. It can be applied to assess the quality of extracted DNA or RNA, and also to detect and study the factors causing PCR inhibition and earlier plateau effect.

  6. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections.

    PubMed

    Reddington, Kate; Schwenk, Stefan; Tuite, Nina; Platt, Gareth; Davar, Danesh; Coughlan, Helena; Personne, Yoann; Gant, Vanya; Enne, Virve I; Zumla, Alimuddin; Barry, Thomas

    2015-09-01

    Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens.

  7. Comparison of Established Diagnostic Methodologies and a Novel Bacterial smpB Real-Time PCR Assay for Specific Detection of Haemophilus influenzae Isolates Associated with Respiratory Tract Infections

    PubMed Central

    Reddington, Kate; Schwenk, Stefan; Tuite, Nina; Platt, Gareth; Davar, Danesh; Coughlan, Helena; Personne, Yoann; Gant, Vanya; Enne, Virve I.; Zumla, Alimuddin

    2015-01-01

    Haemophilus influenzae is a significant causative agent of respiratory tract infections (RTI) worldwide. The development of a rapid H. influenzae diagnostic assay that would allow for the implementation of infection control measures and also improve antimicrobial stewardship for patients is required. A number of nucleic acid diagnostics approaches that detect H. influenzae in RTIs have been described in the literature; however, there are reported specificity and sensitivity limitations for these assays. In this study, a novel real-time PCR diagnostic assay targeting the smpB gene was designed to detect all serogroups of H. influenzae. The assay was validated using a panel of well-characterized Haemophilus spp. Subsequently, 44 Haemophilus clinical isolates were collected, and 36 isolates were identified as H. influenzae using a gold standard methodology that combined the results of matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and a fucK diagnostic assay. Using the novel smpB diagnostic assay, 100% concordance was observed with the gold standard, demonstrating a sensitivity of 100% (95% confidence interval [CI], 90.26% to 100.00%) and a specificity of 100% (95% CI, 63.06% to 100.00%) when used on clinical isolates. To demonstrate the clinical utility of the diagnostic assay presented, a panel of lower RTI samples (n = 98) were blindly tested with the gold standard and smpB diagnostic assays. The results generated were concordant for 94/98 samples tested, demonstrating a sensitivity of 90.91% (95% CI, 78.33% to 97.47%) and a specificity of 100% (95% CI, 93.40% to 100.00%) for the novel smpB assay when used directly on respiratory specimens. PMID:26109443

  8. Application of Real-Time PCR for Determination of Antiviral Drug Susceptibility of Herpes Simplex Virus

    PubMed Central

    Stránská, Růŏzena; van Loon, Anton M.; Polman, Merjo; Schuurman, Rob

    2002-01-01

    A quantitative real-time PCR (TaqMan) assay was developed for determination of antiviral drug susceptibility of herpes simplex virus (HSV). After short-time culture of the virus, the antiviral drug susceptibility of HSV isolates for acyclovir (ACV) was determined by measuring the reduction of the HSV type 1 (HSV-1) DNA levels in culture supernatants using real-time PCR. The 50% inhibitory concentration was reported as the concentration of antiviral drug that reduced the number of HSV-1 DNA copies by 50%. A total of 15 well-characterized ACV-sensitive or -resistant strains and clinical isolates were used for assay evaluation. The new assay with real-time PCR readout permitted rapid (3 days), objective, and reproducible determination of HSV-1 drug susceptibilities with no need for stringent control of initial multiplicity of infection. Furthermore, the real-time PCR assay results showed good correlation (r = 0.86) with those for the plaque reduction assay. In conclusion, the real-time PCR assay described here is a suitable quantitative method for determination of antiviral susceptibility of HSV-1, amenable for use in the routine diagnostic virology laboratory. PMID:12183251

  9. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  10. Real-Time PCR (qPCR) Primer Design Using Free Online Software

    ERIC Educational Resources Information Center

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most…

  11. Performance of Bordetella pertussis IS481 real-time PCR in a vaccine trial setting.

    PubMed

    Gullsby, Karolina; Hallander, Hans O; Bondeson, Kåre

    2007-12-01

    A real-time PCR method targeting the Bordetella pertussis IS481 gene fragment was evaluated in a vaccine trial setting in which real-time PCR results could be validated against culture and serology results. Two commonly used DNA extraction methods, Amplicor Respiratory Preparation kit and the QIAamp DNA Mini Kit, were compared. An approximately 50-fold higher sensitivity was achieved using the Amplicor kit. 89 of 276 aspirates analysed with the IS481 real-time PCR were positive. Interestingly, six of these were culture negative and came from serology-negative patients. Defining true positive cases either as culture-positive or as PCR-positive cases that had been confirmed with a serology-positive result or verified with a newly constructed recA PCR, the sensitivity and specificity of the IS481 real-time PCR were 89% and 98%, respectively. This study confirms the specificity and high diagnostic sensitivity of IS481-based PCR methods for diagnosis of B. pertussis.

  12. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    PubMed

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2017-05-17

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  13. [Detection of human enteroviruses with real-time PCR assay using TaqMan fluorescent probe].

    PubMed

    Leś, Katarzyna; Przybylski, Maciej; Dzieciatkowski, Tomasz; Młynarczyk, Grazyna

    2010-01-01

    Infections with human enteroviruses are common worldwide and cause a wide range of signs and symptoms. Nowadays in current diagnostics procedures older virological methods, such virus isolation in a cell cultures and seroneutralisation assay, are replaced with molecular biology tests. The aim of the study was development of real-time PCR assay for detection of human adenoviruses. DNA isolated from MK2 cell line infected with nineteen different enterovirus strains was used for development of a qualitative real-time PCR assay using primers targeting a conserved region of the 5'UTR region and a specific TaqMan probe. The analytical sensitivity of real-time PCR assay was tested using serial dilutions of Coxackie A9 cDNA in range between 10 degrees and 10(-8). For comparison typical end-point detected RT-PCR for enterovirus detection with the same cDNA dilutions was made. The sensitivity of novel method was about ten thousand-fold higher than older one. The conclusion is that real-time PCR is very advisable in diagnostics of diseases caused with enteroviruses. The high level of sensitivity, specificity, accuracy, and rapidity provided by this assay are favorable for the use in the detection of enteroviral RNA in clinical specimens, especially from neuroinfections.

  14. Development of real-time PCR assay for differential detection of Bordetella bronchiseptica and Bordetella parapertussis.

    PubMed

    Tizolova, Anette; Brun, Delphine; Guiso, Nicole; Guillot, Sophie

    2014-04-01

    Bordetella parapertussis is a causative agent of whooping cough in humans, and B. bronchiseptica is causing wide variety of respiratory infections in mammals, including humans. Specific diagnostic tests are not currently available. Our first objective was to develop a real-time PCR test for the specific detection of B. bronchiseptica based on the previously described end-point PCR, targeting an intergenomic sequence of the fla gene locus, but it has not been reached. However, there is cross-reactivity between B. parapertussis and B. bronchiseptica. Therefore, the targeted region of several clinical isolates of both species was sequenced, and alignment of the sequences allowed the development of a 2-step real-time PCR assay. The first PCR assay detected the DNA of all clinical isolates of both B. bronchiseptica and B. parapertussis tested. The second PCR assay detected only the DNA of B. parapertussis clinical isolates, thereby allowing discrimination between B. parapertussis and B. bronchiseptica.

  15. Comparison of Droplet Digital PCR to Real-Time PCR for Quantitative Detection of Cytomegalovirus

    PubMed Central

    Gu, Z.; Ingersoll, J.; Abdul-Ali, D.; Shi, L.; Pounds, S.; Caliendo, A. M.

    2013-01-01

    Quantitative real-time PCR (QRT-PCR) has been widely implemented for clinical viral load testing, but a lack of standardization and relatively poor precision have hindered its usefulness. Digital PCR offers highly precise, direct quantification without requiring a calibration curve. Performance characteristics of real-time PCR were compared to those of droplet digital PCR (ddPCR) for cytomegalovirus (CMV) load testing. Tenfold serial dilutions of the World Health Organization (WHO) and the National Institute of Standards and Technology (NIST) CMV quantitative standards were tested, together with the AcroMetrix CMV tc panel (Life Technologies, Carlsbad, CA) and 50 human plasma specimens. Each method was evaluated using all three standards for quantitative linearity, lower limit of detection (LOD), and accuracy. Quantitative correlation, mean viral load, and variability were compared. Real-time PCR showed somewhat higher sensitivity than ddPCR (LODs, 3 log10 versus 4 log10 copies/ml and IU/ml for NIST and WHO standards, respectively). Both methods showed a high degree of linearity and quantitative correlation for standards (R2 ≥ 0.98 in each of 6 regression models) and clinical samples (R2 = 0.93) across their detectable ranges. For higher concentrations, ddPCR showed less variability than QRT-PCR for the WHO standards and AcroMetrix standards (P < 0.05). QRT-PCR showed less variability and greater sensitivity than did ddPCR in clinical samples. Both digital and real-time PCR provide accurate CMV load data over a wide linear dynamic range. Digital PCR may provide an opportunity to reduce the quantitative variability currently seen using real-time PCR, but methods need to be further optimized to match the sensitivity of real-time PCR. PMID:23224089

  16. Enumeration of Mycobacterium leprae Using Real-Time PCR

    PubMed Central

    Truman, Richard W.; Andrews, P. Kyle; Robbins, Naoko Y.; Adams, Linda B.; Krahenbuhl, James L.; Gillis, Thomas P.

    2008-01-01

    Mycobacterium leprae is not cultivable in axenic media, and direct microscopic enumeration of the bacilli is complex, labor intensive, and suffers from limited sensitivity and specificity. We have developed a real-time PCR assay for quantifying M. leprae DNA in biological samples. Primers were identified to amplify a shared region of the multicopy repeat sequence (RLEP) specific to M. leprae and tested for sensitivity and specificity in the TaqMan format. The assay was specific for M. leprae and able to detect 10 fg of purified M. leprae DNA, or approximately 300 bacteria in infected tissues. We used the RLEP TaqMan PCR to assess the short and long-term growth results of M. leprae in foot pad tissues obtained from conventional mice, a gene knock-out mouse strain, athymic nude mice, as well as from reticuloendothelial tissues of M. leprae–infected nine-banded armadillos. We found excellent correlative results between estimates from RLEP TaqMan PCR and direct microscopic counting (combined r = 0.98). The RLEP TaqMan PCR permitted rapid analysis of batch samples with high reproducibility and is especially valuable for detection of low numbers of bacilli. Molecular enumeration is a rapid, objective and highly reproducible means to estimate the numbers of M. leprae in tissues, and application of the technique can facilitate work with this agent in many laboratories. PMID:18982056

  17. Genus identification of toxic plant by real-time PCR.

    PubMed

    Matsuyama, Shuji; Nishi, Katsuji

    2011-03-01

    Some plants have toxicities that are dangerous for humans. In the case of poisoning by toxic plants, a rapid and easy screening test is required for accurate medical treatment or forensic investigation. In this study, we designed specific primer pairs for identification of toxic plants, such as subgenus Aconitum, genus Ricinus, genus Illicium, and genus Scopolia, by internal transcribed spacer sequences of nuclear ribosomal DNA. Allied species of target plants, foods, and human DNA were not detected, but each primer pair provided a specific PCR product from the target plant using real-time PCR. This method can detect the subgenus Aconitum, genus Ricinus, and genus Scopolia with template DNA of 10 pg, respectively, and genus Illicium with 1 pg. Furthermore, each primer pair provided the exact PCR product from digested target plants in artificial gastric fluid. When a trace unknown plant sample in forensic investigation is collected from stomach contents, this PCR assay may be useful for screening toxic plants.

  18. Diagnosis of aerobic vaginitis by quantitative real-time PCR.

    PubMed

    Rumyantseva, T A; Bellen, G; Savochkina, Y A; Guschin, A E; Donders, G G G

    2016-07-01

    To evaluate a real-time PCR-based technique to quantify bacteria associated with aerobic vaginitis (AV) as a potential test. Vaginal samples from 100 women were tested by wet-mount microscopy, gram stain and quantitative real-time PCR targeting Enterobacteriacea, Staphylococcus spp., Streptococcus spp., Enterococcus spp., Escherichia coli, Streptococcus agalactiae, S. aureus; Lactobacillus spp. AV diagnosis obtained by wet-mount microscopy was used as reference. Some level of AV was diagnosed in 23 (23.7 %) cases. Various concentrations of Enterobacteriacea, Staphylococcus spp., Streptococcus spp. were detected an all patients. Enterococcus spp. were detected in 76 (78.3 %) cases. Summarized concentrations of aerobes were tenfold higher in AV-positive compared to AV-negative cases [7.30lg vs 6.06lg (p = 0.02)]. Concentrations of aerobes in severe, moderate and light AV cases did not vary significantly (p = 0.14). Concentration of lactobacilli was 1000-fold lower in AV-positive cases compared to normal cases (5.3lg vs 8.3lg, p < 0.0001). Streptococcus spp. dominated in the majority of AV-positive cases [19/22 (86.4 %) samples]. The relation of high loads of aerobes to the low numbers of Lactobacilli are a reliable marker for the presence of AV and could substitute microscopy as a test. PCR may be a good standardized substitution for AV diagnosis in settings where well-trained microscopists are lacking.

  19. A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: a diagnostic tool for STR typing.

    PubMed

    Hudlow, William R; Chong, Mavis Date; Swango, Katie L; Timken, Mark D; Buoncristiani, Martin R

    2008-03-01

    A quadruplex real-time qPCR assay was developed to simultaneously assess total human DNA, human male DNA, DNA degradation and PCR inhibitors in forensic samples. Specifically, the assay utilizes a approximately 170-190bp target sequence that spans the TH01 STR locus to quantify total human DNA (nuTH01), a 137 bp target sequence directly adjacent to the SRY gene to quantify human male DNA (nuSRY), a 67 bp target sequence flanking the CSF1PO STR locus (nuCSF) to assess degradation (nuCSF:nuTH01 ratio) and a 77 bp synthetic DNA template used as an internal PCR control target sequence (IPC) for the assessment of PCR inhibition. Validation studies, performed on an ABI 7500 SDS instrument using TaqMan and TaqManMGB detection, indicate each of the targets in the quadruplex assay performs effectively and is informative even when challenged with DNase-degraded and hematin-inhibited samples. The nuTH01-nuSRY-nuCSF-IPC quadruplex qPCR assay is envisioned to assist in the choice of the most informative DNA typing system available, which may include standard autosomal STR typing when the results indicate the presence of non-degraded, single gender DNA or non-degraded, male:female mixtures at ratios expected to yield probative alleles; Y STR typing in samples containing a male component that is overwhelmed by the presence of an excess of female DNA; reduced amplicon size STR typing ("MiniSTRs") where the nuCSF:nuTH01 ratio indicates the sample is highly degraded; enhanced STR amplification with additional AmpliTaq Gold/BSA and/or sample clean-up when the presence of PCR inhibitors is suggested by a delayed IPC C(T) value or mitochondrial DNA typing in samples where little to no nuclear DNA is detected. The present study includes evaluations of species specificity, sensitivity, precision, reproducibility, male-female mixtures, population samples and applications to various casework-type samples as indicated by the Scientific Working Group on DNA Analysis Methods (SWGDAM

  20. Epidemiology of Plasmodium infections in Flores Island, Indonesia using real-time PCR.

    PubMed

    Kaisar, Maria M M; Supali, Taniawati; Wiria, Aprilianto E; Hamid, Firdaus; Wammes, Linda J; Sartono, Erliyani; Luty, Adrian J F; Brienen, Eric A T; Yazdanbakhsh, Maria; van Lieshout, Lisette; Verweij, Jaco J

    2013-05-24

    DNA-based diagnostic methods have been shown to be highly sensitive and specific for the detection of malaria. An 18S-rRNA-based, real-time polymerase chain reaction (PCR) was used to determine the prevalence and intensity of Plasmodium infections on Flores Island, Indonesia. Microscopy and real-time multiplex PCR for the detection of Plasmodium species was performed on blood samples collected in a population-based study in Nangapanda Flores Island, Indonesia. A total 1,509 blood samples were analysed. Real-time PCR revealed prevalence for Plasmodium falciparum, Plasmodium vivax, and Plasmodium malariae to be 14.5%, 13.2%, and 1.9% respectively. Sub-microscopic parasitaemia were found in more than 80% of all positive cases. The prevalence of P. falciparum and P. vivax was significantly higher in subjects younger than 20 years (p ≤ 0.01). In the present study, among non-symptomatic healthy individuals, anaemia was strongly correlated with the prevalence and load of P. falciparum infections (p ≤ 0.01; p = 0.02) and with the load of P. vivax infections (p = 0.01) as detected with real-time PCR. Subjects with AB blood group tend to have a higher risk of being infected with P. falciparum and P. vivax when compared to other blood groups. The present study has shown that real-time PCR provides more insight in the epidemiology of Plasmodium infections and can be used as a monitoring tool in the battle against malaria. The unsurpassed sensitivity of real-time PCR reveals that sub microscopic infections are common in this area, which are likely to play an important role in transmission and control. Trials number ISRCTN83830814.

  1. Applications of real-time PCR in the screening of platelet concentrates for bacterial contamination.

    PubMed

    Mohammadi, Tamimount; Savelkoul, Paul H M; Pietersz, Ruby N I; Reesink, Henk W

    2006-11-01

    Although there have been major improvements over the past few decades in detection methods for blood-borne infectious agents, platelet concentrates are still responsible for most cases of transfusion-transmitted bacterial infections. To date, real-time PCR is an indispensable tool in diagnostic laboratories to detect pathogens in a variety of biological samples. In this article, the applications of this powerful technique in the screening of platelet concentrates for bacterial contamination are discussed. Next to pathogen-specific (real-time) PCR assays, particular attention is directed to the recently developed 16S rDNA real-time PCR. This assay has been proven as a convenient way to detect bacterial contamination of platelet concentrates. The assay is sensitive and enables rapid detection of low initial numbers of bacteria in platelet concentrates. The short turnaround time of this assay allows high-throughput screening and reduction of the risk of transfusion of bacterially contaminated units. As with every method, real-time PCR has its advantages and disadvantages. These and especially limitations inherent to generation of false-positive or -negative results are emphasized. The universal nature of detection of the assay may be suitable for generalized bacterial screening of other blood components, such as red blood cells and plasma. Therefore, it is necessary to adapt and optimize detection in red blood cells and plasma with real-time PCR. Further sophistication, miniaturization and standardization of extraction and amplification methods should improve the total performance and robustness of the assay. Hence, real-time PCR is an attractive method in development as a more rapid screening test than currently used culture methods to detect bacterial contamination in blood components.

  2. Real-time PCR detection of ruminant DNA.

    PubMed

    Mendoza-Romero, Luis; Verkaar, Edward L C; Savelkoul, Paul H; Catsburg, Arnold; Aarts, Henk J M; Buntjer, Jaap B; Lenstra, Johannes A

    2004-03-01

    To control the spread of bovine spongiform encephalopathy, several DNA methods have been described for the detection of the species origin of meat and bone meal. Most of these methods are based on the amplification of a mitochondrial DNA segment. We have developed a semiquantitative method based on real-time PCR for detection of ruminant DNA, targeting an 88-bp segment of the ruminant short interspersed nuclear element Bov-A2. This method is specific for ruminants and is able to detect as little as 10 fg of bovine DNA. Autoclaving decreased the amount of detectable DNA, but positive signals were observed in feeding stuff containing 10% bovine material if this had not been rendered in accordance with the regulations, i.e., heated at 134 degrees C for 3 instead of 20 min.

  3. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  4. Clinical evaluation of β-tubulin real-time PCR for rapid diagnosis of dermatophytosis, a comparison with mycological methods.

    PubMed

    Motamedi, Marjan; Mirhendi, Hossein; Zomorodian, Kamiar; Khodadadi, Hossein; Kharazi, Mahboobeh; Ghasemi, Zeinab; Shidfar, Mohammad Reza; Makimura, Koichi

    2017-10-01

    Following our previous report on evaluation of the beta tubulin real-time PCR for detection of dermatophytosis, this study aimed to compare the real-time PCR assay with conventional methods for the clinical assessment of its diagnostic performance. Samples from a total of 853 patients with suspected dermatophyte lesions were subjected to direct examination (all samples), culture (499 samples) and real-time PCR (all samples). Fungal DNA was extracted directly from clinical samples using a conical steel bullet, followed by purification with a commercial kit and subjected to the Taq-Man probe-based real-time PCR. The study showed that among the 499 specimens for which all three methods were used, 156 (31.2%), 128 (25.6%) and 205 (41.0%) were found to be positive by direct microscopy, culture and real-time PCR respectively. Real-time PCR significantly increased the detection rate of dermatophytes compared with microscopy (288 vs 229) with 87% concordance between the two methods. The sensitivity, specificity, positive predictive value, and negative predictive value of the real-time PCR was 87.5%, 85%, 66.5% and 95.2% respectively. Although real-time PCR performed better on skin than on nail samples, it should not yet fully replace conventional diagnosis. © 2017 Blackwell Verlag GmbH.

  5. Real-Time PCR Method for Detection of Zygomycetes ▿

    PubMed Central

    Hata, D. Jane; Buckwalter, Seanne P.; Pritt, Bobbi S.; Roberts, Glenn D.; Wengenack, Nancy L.

    2008-01-01

    Zygomycete infections can be devastating in immunocompromised hosts. Difficulties in the histopathologic differentiation of this class from other filamentous fungi (e.g., Aspergillus spp., Fusarium spp.) may lead to delays in diagnosis and initiation of appropriate treatment, thereby significantly affecting patient outcome. A real-time PCR assay was developed to detect species of the zygomycete genera Absidia, Apophysomyces, Cunninghamella, Mucor, Rhizopus, and Saksenaea in culture and tissue samples. Primers and fluorescence resonance energy transfer hybridization probes were designed to detect a 167-bp conserved region of the multicopy zygomycete cytochrome b gene. A plasmid containing target sequence from Mucor racemosus was constructed as a positive control. The analytical sensitivity of the assay is 10 targets/μl, and a specificity panel consisting of other filamentous fungi, yeasts (Candida spp.), and bacteria demonstrated no cross-reactivity in the assay. The clinical sensitivity and specificity of the assay from culture isolates were 100% (39/39) and 92% (59/64), respectively. Sensitivity and specificity determined using a limited number of fresh tissue specimens were both 100% (2/2). The sensitivity seen with formalin-fixed, paraffin-embedded tissues was 56% (35/62), and the specificity was 100% (19/19). The speed, sensitivity, and specificity of the PCR assay indicate that it is useful for the rapid and accurate detection of zygomycetes. PMID:18480229

  6. Processing of gene expression data generated by quantitative real-time RT-PCR.

    PubMed

    Muller, Patrick Y; Janovjak, Harald; Miserez, André R; Dobbie, Zuzana

    2002-06-01

    Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.

  7. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    PubMed

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  8. Development of real-time PCR for detection and quantitation of Streptococcus parauberis.

    PubMed

    Nguyen, T L; Lim, Y J; Kim, D-H; Austin, B

    2016-01-01

    Streptococcus parauberis is an increasing threat to aquaculture of olive flounder, Paralichthys olivaceus Temminck & Schlegel, in South Korea. We developed a real-time polymerase chain reaction (PCR) method using the TaqMan probe assay to detect and quantify S. parauberis by targeting the gyrB gene sequences, which are effective for molecular analysis of the genus Streptococcus. Our real-time PCR assay is capable of detecting 10 fg of genomic DNA per reaction. The intra- and interassay coefficient of variation (CV) values ranged from 0.42-1.95%, demonstrating that the assay has good reproducibility. There was not any cross-reactivity to Streptococcus iniae or to other streptococcal/lactococcal fish pathogens, such as S. agalactiae and Lactococcus garvieae, indicating that the assay is highly specific to S. parauberis. The results of the real-time PCR assay corresponded well to those of conventional culture assays for S. parauberis from inoculated tissue homogenates (r = 0.957; P < 0.05). Hence, this sensitive and specific real-time PCR is a valuable tool for diagnostic quantitation of S. parauberis in clinical samples. © 2014 John Wiley & Sons Ltd.

  9. Optical real-time defect-enhancement diagnostic system.

    PubMed

    Gaeta, C J; Mitchell, P V; Pepper, D M

    1992-12-15

    We have demonstrated an all-optical diagnostic system that enhances the observation of defects in periodic structures. This real-time technique employs a spatial light modulator as a smart-pixel array for information processing in the Fourier transform plane of a lens. The system also includes a phase-conjugate mirror for autoalignment and for correction of optical wave-front aberrations that are imparted on the object light by the smart-pixel processor and its associated optical train.

  10. Real-time PCR-based identification of bacterial and fungal pathogens from blood samples.

    PubMed

    Mai, Madeleine; Müller, Iris; Maneg, Daniela; Lohr, Benedikt; Haecker, Achim; Haberhausen, Gerd; Hunfeld, Klaus-Peter

    2015-01-01

    Latest major contributions in the field of sepsis diagnostics result from advances in PCR technologies permitting new standards in speed and quality, given the fact that a timely diagnosis is the decisive factor to the survival of patients with bloodstream infections.Multiplex real-time PCR is a quantitative method for simultaneous amplification and detection of different targeted DNA molecules within hours. Nevertheless, various studies have shown a number of technical shortcomings as well as a high heterogeneity in sensitivity.The present method allows the standardized and rapid detection and identification of 25 common bacteria and fungi responsible for bloodstream infections from whole blood samples by using LightCycler(®) SeptiFast (LC-SF) test, based on real-time PCR.

  11. Real-time quantitative PCR assay for monitoring of nervous necrosis virus infection in grouper aquaculture.

    PubMed

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-03-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r(2) = 0.99) between threshold cycle (C(T)) and RNA quantities, which allowed identification of infected groupers by the C(T) value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture.

  12. Calibration-free assays on standard real-time PCR devices

    NASA Astrophysics Data System (ADS)

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-03-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration.

  13. Calibration-free assays on standard real-time PCR devices

    PubMed Central

    Debski, Pawel R.; Gewartowski, Kamil; Bajer, Seweryn; Garstecki, Piotr

    2017-01-01

    Quantitative Polymerase Chain Reaction (qPCR) is one of central techniques in molecular biology and important tool in medical diagnostics. While being a golden standard qPCR techniques depend on reference measurements and are susceptible to large errors caused by even small changes of reaction efficiency or conditions that are typically not marked by decreased precision. Digital PCR (dPCR) technologies should alleviate the need for calibration by providing absolute quantitation using binary (yes/no) signals from partitions provided that the basic assumption of amplification a single target molecule into a positive signal is met. Still, the access to digital techniques is limited because they require new instruments. We show an analog-digital method that can be executed on standard (real-time) qPCR devices. It benefits from real-time readout, providing calibration-free assessment. The method combines advantages of qPCR and dPCR and bypasses their drawbacks. The protocols provide for small simplified partitioning that can be fitted within standard well plate format. We demonstrate that with the use of synergistic assay design standard qPCR devices are capable of absolute quantitation when normal qPCR protocols fail to provide accurate estimates. We list practical recipes how to design assays for required parameters, and how to analyze signals to estimate concentration. PMID:28327545

  14. Real-time diagnostics for a reusable rocket engine

    NASA Technical Reports Server (NTRS)

    Guo, T. H.; Merrill, W.; Duyar, A.

    1992-01-01

    A hierarchical, decentralized diagnostic system is proposed for the Real-Time Diagnostic System component of the Intelligent Control System (ICS) for reusable rocket engines. The proposed diagnostic system has three layers of information processing: condition monitoring, fault mode detection, and expert system diagnostics. The condition monitoring layer is the first level of signal processing. Here, important features of the sensor data are extracted. These processed data are then used by the higher level fault mode detection layer to do preliminary diagnosis on potential faults at the component level. Because of the closely coupled nature of the rocket engine propulsion system components, it is expected that a given engine condition may trigger more than one fault mode detector. Expert knowledge is needed to resolve the conflicting reports from the various failure mode detectors. This is the function of the diagnostic expert layer. Here, the heuristic nature of this decision process makes it desirable to use an expert system approach. Implementation of the real-time diagnostic system described above requires a wide spectrum of information processing capability. Generally, in the condition monitoring layer, fast data processing is often needed for feature extraction and signal conditioning. This is usually followed by some detection logic to determine the selected faults on the component level. Three different techniques are used to attack different fault detection problems in the NASA LeRC ICS testbed simulation. The first technique employed is the neural network application for real-time sensor validation which includes failure detection, isolation, and accommodation. The second approach demonstrated is the model-based fault diagnosis system using on-line parameter identification. Besides these model based diagnostic schemes, there are still many failure modes which need to be diagnosed by the heuristic expert knowledge. The heuristic expert knowledge is

  15. Real-Time PCR Identification of Unique Bacillus anthracis Sequences.

    PubMed

    Cieślik, P; Knap, J; Kolodziej, M; Mirski, T; Joniec, J; Graniak, G; Zakowska, D; Winnicka, I; Bielawska-Drózd, A

    2015-01-01

    Bacillus anthracis is a spore-forming, Gram-positive microorganism. It is a causative agent of anthrax, a highly infectious disease. It belongs to the "Bacillus cereus group", which contains other closely related species, including Bacillus cereus, Bacillus thuringiensis, Bacillus mycoides, Bacillus weihenstephanensis, and Bacillus pseudomycoides. B. anthracis naturally occurs in soil environments. The BA5345 genetic marker was used for highly specific detection of B. anthracis with TaqMan probes. The detection limit of a real-time PCR assay was estimated at the level of 16.9 copies (CI95% - 37.4 to 37.86, SD = 0.2; SE = 0.118). Oligonucleotides designed for the targeted sequences (within the tested locus) revealed 100 % homology to B. anthracis strain reference sequences deposited in the database (NCBI) and high specificity to all tested B. anthracis strains. Additional in silico analysis of plasmid markers pag and cap genes with B. anthracis strains included in the database was carried out. Our study clearly indicates that the BA5345 marker can be used with success as a chromosomal marker in routine identification of B. anthracis; moreover, detection of plasmid markers indicates virulence of the examined strains.

  16. Evaluation of Four Commercial Real-Time PCR Assays for Detection of Bordetella spp. in Nasopharyngeal Aspirates ▿

    PubMed Central

    Lanotte, Philippe; Plouzeau, Chloé; Burucoa, Christophe; Grélaud, Carole; Guillot, Sophie; Guiso, Nicole; Garnier, Fabien

    2011-01-01

    We evaluated the performances of 4 commercial real-time PCR kits for Bordetella pertussis IS481 sequence detection in nasopharyngeal aspirates by comparison with an in-house real-time PCR assay. Among them, the Simplexa Bordetella pertussis/parapertussis assay (Focus Diagnostics), the SmartCycler Bordetella pertussis/parapertussis assay (Cepheid), and Bordetella R-gene (Argene) present sensitivities over 90%. One kit proved unsuitable for routine clinical use. PMID:21918018

  17. Utility of real-time Taqman PCR for antemortem and postmortem diagnosis of human rabies.

    PubMed

    Mani, Reeta Subramaniam; Madhusudana, Shampur Narayan; Mahadevan, Anita; Reddy, Vijayalakshmi; Belludi, Ashwin Yajaman; Shankar, Susarla Krishna

    2014-10-01

    Rabies, a fatal zoonotic viral encephalitis remains a neglected disease in India despite a high disease burden. Laboratory confirmation is essential, especially in patients with paralytic rabies who pose a diagnostic dilemma. However, conventional tests for diagnosis of rabies have several limitations. In the present study the utility of a real-time TaqMan PCR assay was evaluated for antemortem/postmortem diagnosis of rabies. Human clinical samples received for antemortem rabies diagnosis (CSF, saliva, nuchal skin biopsy, serum), and samples obtained postmortem from laboratory confirmed rabies in humans (brain tissue, CSF, serum) and animals (brain tissue) were included in the study. All CSF and sera were tested for rabies viral neutralizing antibodies (RVNA) by rapid fluorescent focus inhibition test (RFFIT) and all samples (except sera) were processed for detection of rabies viral RNA by real-time TaqMan PCR. All the 29 (100%) brain tissues from confirmed cases of human and animal rabies, and 11/14 (78.5%) CSF samples obtained postmortem from confirmed human rabies cases were positive by real-time TaqMan PCR. Rabies viral RNA was detected in 5/11 (45.4%) CSF samples, 6/10 (60%) nuchal skin biopsies, and 6/7 (85.7%) saliva samples received for antemortem diagnosis. Real-time TaqMan PCR alone could achieve antemortem rabies diagnosis in 11/13 (84.6%) cases; combined with RVNA detection in CSF antemortem rabies diagnosis could be achieved in all 13 (100%) cases. Real-time TaqMan PCR should be made available widely as an adjunctive test for diagnosis of human rabies in high disease burden countries like India.

  18. Quantitative real-time PCR eliminates false-positives in colony screening PCR.

    PubMed

    Skarratt, Kristen K; Fuller, Stephen J

    2014-01-01

    We report an alternative approach to colony screening using real-time PCR (qPCR) which can be used instead of the traditional end-point PCR to eliminate false-positives and reduce processing times. False-positive transformants can easily be distinguished from true-positives by comparing Ct values derived from qPCR amplification curves. In addition, the use of qPCR allows for more efficient processing since a gel electrophoresis step is not required and the screening process is no longer limited by the capacity of the gel apparatus.

  19. Detection of Leishmania infantum DNA in conjunctival swabs of cats by quantitative real-time PCR.

    PubMed

    Benassi, Julia Cristina; Benvenga, Graziella U; Ferreira, Helena Lage; Pereira, Vanessa F; Keid, Lara B; Soares, Rodrigo; Oliveira, Tricia Maria Ferreira de Sousa

    2017-06-01

    Although some studies have investigated the potential role of cats as a reservoir for Leishmania, their role in the epidemiology of visceral leishmaniasis (VL) is still poorly understood. Molecular diagnostic techniques are an important tool in VL diagnosis, and PCR shows high sensitivity and specificity for Leishmania spp. detection. Quantitative real-time PCR (qPCR) is a method that permits quantitative analysis of a large number of samples, resulting in more sensitive, accurate, and reproducible measurements of specific DNA present in the sample. This study compared real-time PCR (qPCR) and conventional PCR (cPCR) for detection of Leishmania spp. in blood and conjunctival swab (CS) samples of healthy cats from a non-endemic area in the state of São Paulo, Brazil. Of all CS samples, 1.85% (2/108) were positive for Leishmania spp. by both cPCR as qPCR (kappa index = 1), indicating excellent agreement between the two methods. The DNA from the two CS-cPCR- and CS-qPCR-positive samples was further tested with a PCR test amplifying the Leishmania spp. discriminative rRNA internal transcribed spacer 1 (ITS 1), of which one sample generated a 300-350-bp DNA fragment whose size varies according to the Leishmania species. Following sequencing, the fragment showed 100% similarity to a GenBank L. infantum sequence obtained from a cat in Italy. In conclusion, the association of qPCR and CS proved to be effective for detection of Leishmania in cats. Conjunctival swab samples were shown to be a practical and better alternative to blood samples and may be useful in the diagnosis and studies of feline leishmaniasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Mycoplasma bovis real-time polymerase chain reaction assay validation and diagnostic performance.

    PubMed

    Clothier, Kristin A; Jordan, Dianna M; Thompson, Curtis J; Kinyon, Joann M; Frana, Timothy S; Strait, Erin L

    2010-11-01

    Mycoplasma bovis is an important bacterial pathogen in cattle, producing a variety of clinical diseases. The organism, which requires specialized culture conditions and extended incubation times to isolate and identify, is frequently associated with concurrent infection with other pathogens which can potentially be more easily identified. Real-time polymerase chain reaction (real-time PCR) is a valuable diagnostic technique that can rapidly identify infectious agents in clinical specimens. A real-time PCR assay was designed based on the uvrC gene to identify M. bovis in diagnostic samples. Using culture as the gold standard test, the assay performed well in a variety of diagnostic matrices. Initial validation testing was conducted on 122 milk samples (sensitivity: 88.9% [95% confidence interval (CI): 68.4-100%], specificity: 100%); 154 lung tissues (sensitivity: 89.0% [95% CI: 83.1-94.9%], specificity: 97.8% [95% CI: 93.5-100%]); 70 joint tissue/fluid specimens (sensitivity: 92.3% [95% CI: 82.1-100%], specificity: 95.5% [95% CI: 89.3-100%]); and 26 nasal swabs (sensitivity: 75.0% [95% CI: 45.0-100%], specificity: 83.3% [95% CI: 66.1-100%]). Low numbers of other sample matrices showed good agreement between results of culture and PCR. A review of clinical cases from 2009 revealed that, in general, PCR was used much more frequently than culture and provided useful diagnostic information in conjunction with clinical signs, signalment, and gross and histopathologic lesions. Diagnostic performance of the real-time PCR assay developed as a testing method indicates that it is a rapid, accurate assay that is adaptable to a variety of PCR platforms and can provide reliable results on an array of clinical samples.

  1. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV).

    PubMed

    Purcell, Maureen K; Thompson, Rachel L; Garver, Kyle A; Hawley, Laura M; Batts, William N; Sprague, Laura; Sampson, Corie; Winton, James R

    2013-10-11

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  2. Universal reverse-transcriptase real-time PCR for infectious hematopoietic necrosis virus (IHNV)

    USGS Publications Warehouse

    Purcell, Maureen K.; Thompson, Rachel L.; Garver, Kyle A.; Hawley, Laura M.; Batts, William N.; Sprague, Laura; Sampson, Corie; Winton, James R.

    2013-01-01

    Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonid fishes in North America, Europe and Asia and is reportable to the World Organization for Animal Health (OIE). Phylogenetic analysis has identified 5 major virus genogroups of IHNV worldwide, designated U, M, L, E and J; multiple subtypes also exist within those genogroups. Here, we report the development and validation of a universal IHNV reverse-transcriptase real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) gene. Properties of diagnostic sensitivity (DSe) and specificity (DSp) were defined using laboratory-challenged steelhead trout Oncorhynchus mykiss, and the new assay was compared to the OIE-accepted conventional PCR test and virus isolation in cell culture. The IHNV N gene RT-rPCR had 100% DSp and DSe and a higher estimated diagnostic odds ratio (DOR) than virus culture or conventional PCR. The RT-rPCR assay was highly repeatable within a laboratory and highly reproducible between laboratories. Field testing of the assay was conducted on a random sample of juvenile steelhead collected from a hatchery raceway experiencing an IHN epizootic. The RT-rPCR detected a greater number of positive samples than cell culture and there was 40% agreement between the 2 tests. Overall, the RT-rPCR assay was highly sensitive, specific, repeatable and reproducible and is suitable for use in a diagnostic setting.

  3. Detection of Histoplasma capsulatum from clinical specimens by cycling probe-based real-time PCR and nested real-time PCR.

    PubMed

    Muraosa, Yasunori; Toyotome, Takahito; Yahiro, Maki; Watanabe, Akira; Shikanai-Yasuda, Maria Aparecida; Kamei, Katsuhiko

    2016-05-01

    We developed new cycling probe-based real-time PCR and nested real-time PCR assays for the detection of Histoplasma capsulatum that were designed to detect the gene encoding N-acetylated α-linked acidic dipeptidase (NAALADase), which we previously identified as an H. capsulatum antigen reacting with sera from patients with histoplasmosis. Both assays specifically detected the DNAs of all H. capsulatum strains but not those of other fungi or human DNA. The limited of detection (LOD) of the real-time PCR assay was 10 DNA copies when using 10-fold serial dilutions of the standard plasmid DNA and 50 DNA copies when using human serum spiked with standard plasmid DNA. The nested real-time PCR improved the LOD to 5 DNA copies when using human serum spiked with standard plasmid DNA, which represents a 10-fold higher than that observed with the real-time PCR assay. To assess the ability of the two assays to diagnose histoplasmosis, we analyzed a small number of clinical specimens collected from five patients with histoplasmosis, such as sera (n = 4), formalin-fixed paraffin-embedded (FFPE) tissue (n = 4), and bronchoalveolar lavage fluid (BALF) (n = 1). Although clinical sensitivity of the real-time PCR assay was insufficiently sensitive (33%), the nested real-time PCR assay increased the clinical sensitivity (77%), suggesting it has a potential to be a useful method for detecting H. capsulatum DNA in clinical specimens.

  4. Evaluation of IFN-γ polymorphism+874 T/A in patients with recurrent tonsillitis by PCR real time mismatch amplification mutation assay (MAMA real time PCR).

    PubMed

    Bergallo, Massimiliano; Gambarino, Stefano; Loiacono, Elisa; Vergano, Luca; Galliano, Ilaria; Montanari, Paola; Astegiano, Sara; Tavormina, Paolo; Tovo, Pier-Angelo

    2015-02-01

    Interferon gamma (IFN-γ) is an important cytokine that plays a crucial role in the balance between normal and pathological immune response. Defect of IFN-γ can give a predisposition to infectious disease, autoimmune pathologies and tumours. Different polymorphisms in this gene have been described, in particular the single nucleotide polymorphism (SNP)+874∗T/A that may affect IFN-γ gene expression. Several techniques can be used for the detection of SNPs. In this work two PCR Real Time assays were developed, an Amplification Refractory Mutation System (ARMS) and a Mismatch Amplification Mutation Assay (MAMA). Twenty-seven samples from patients (tonsillectomy) and 85 from donor's blood bank were considered. As a result, 78/85 controls (91.7%) and 25/27 patients (92.6%) were heterozygosis, considering the ARMS-PCR; 55/85 (64.7%) and 14/27 (51.9%) were heterozygosis using MAMA-PCR assay. Fourteen of 85 (16.5%) and 8/27 (29.6%) were homozygosis A, 16/85 (18.8%) and 5/27 (18.5%) presented homozygosis T, taking into account the MAMA-PCR. There are statistically difference between the two assay with p<0.0001 at Chi-square test. Our preliminary data suggest that tonsillectomy patients had a statistical trend to possess the low IFN-γ polymorphism when compared with control subject (p=0.3) but is not statistically significant. In conclusion the Real time MAMA-PCR assay has several advantages over other SNP identification techniques such as rapidity, reliability, easily to perform in one working day and applicable in clinical molecular diagnostic laboratories, although sequencing remains the gold standard. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Quantitation of HIV-1 RNA in breast milk by real time PCR.

    PubMed

    Becquart, Pierre; Foulongne, Vincent; Willumsen, Juana; Rouzioux, Christine; Segondy, Michel; Van de Perre, Philippe

    2006-04-01

    HIV-1 RNA in breast milk is a strong predictor of HIV-1 transmission through breastfeeding. In the present report, breast milk samples from HIV-1 uninfected donors were spiked with dilution of quantified culture supernatant from HIV-1(NDK) infected PBMC. Two RNA extraction techniques based on silica extraction, Nuclisens (BioMerieux) and Triazol (Qiagen), two techniques based on guanidine thiocynanate/chloroforme extraction, TRIzol (Life Technologie) and Amplicor HIV-1 Monitor (Roche Diagnostic Systems), and one technique based on electrostatic adsorption on iron oxide micro beads (Promega) were compared. HIV-1 RNA was quantitated by real time PCR (LTR gene) and Amplicor HIV-1 Monitor. Combining magnetic micro beads extraction and real time PCR quantitation allowed to correctly quantify breast milk HIV-1 RNA, with a difference between the expected and measured HIV-1 RNA levels always lower than 0.3 log copies/ml. The same combination was confirmed on 25 breast milk samples from HIV-1 infected women collected in Kwazulu-Natal, South Africa, by comparing measurements with those obtained by the Amplicor HIV-1 Monitor (r(2)=0.88). Nucleic acid extraction by magnetic micro beads followed by real time PCR is a reliable, sensitive, rapid and simple procedure to quantify HIV-1 RNA in breast milk and allows for PCR inhibitors found frequently in these samples.

  6. Increased detection of respiratory syncytial virus, influenza viruses, parainfluenza viruses, and adenoviruses with real-time PCR in samples from patients with respiratory symptoms.

    PubMed

    van de Pol, Alma C; van Loon, Anton M; Wolfs, Tom F W; Jansen, Nicolaas J G; Nijhuis, Monique; Breteler, Els Klein; Schuurman, Rob; Rossen, John W A

    2007-07-01

    Respiratory samples (n = 267) from hospitalized patients with respiratory symptoms were tested by real-time PCR, viral culture, and direct immunofluorescence for respiratory syncytial virus, influenza virus, parainfluenza viruses, and adenoviruses. Compared with conventional diagnostic tests, real-time PCR increased the diagnostic yields for these viruses from 24% to 43% and from 3.5% to 36% for children and adults, respectively.

  7. Development of a real-time PCR assay for the direct detection of Candida species causing Vulvovaginal candidiasis.

    PubMed

    Tardif, Keith D; Schlaberg, Robert

    2017-01-25

    Identification of Candida species by traditional methods can be time-consuming and have limited analytical sensitivity. We developed a multiplex real-time PCR assay for detection and differentiation of Candida species causing vulvovaginal candidiasis (VVC). Overall, this PCR assay is a powerful diagnostic tool offering superior accuracy, sensitivity, and specificity.

  8. Evaluating the thermostability of commercial fast real-time PCR master mixes.

    PubMed

    Abou Tayoun, Ahmad N; Ward, Brian P; Maltezos, George; Scherer, Axel; Tsongalis, Gregory J

    2012-10-01

    There is an increasing need for affordable, thermostable PCR reagents that can be used for diagnostic testing in resource limited settings. The development of point-of-care devices in such settings is highly dependent on the availability and efficacy of thermostable reagents. Here, we assess the thermostability of commercial, intercalating dye-based real-time PCR master mixes. We show that several of these master mixes have thermostability and robust performance at 20°C, 40°C, and 45°C for 6, 4 and 2 weeks, respectively. However, none of the master mixes that we evaluated was able to withstand more than 1 month at 45°C incubation. Our findings have implications for clinical diagnostics in the developing world where cold-chain delivery of diagnostic assays is difficult to guarantee.

  9. Comparative detection of rabies RNA by NASBA, real-time PCR and conventional PCR.

    PubMed

    Wacharapluesadee, Supaporn; Phumesin, Patta; Supavonwong, Pornpun; Khawplod, Pakamatz; Intarut, Nirun; Hemachudha, Thiravat

    2011-08-01

    Five methods for the RNA detection of rabies virus were directly compared in this study. These included conventional nucleic acid sequence-based amplification with electrochemiluminescence (NASBA-ECL) assay, reverse transcription (RT)-heminested (hn) polymerase chain reaction (PCR) and TaqMan real-time RT-PCR using protocols as described previously. The first two methods have been routinely utilised for ante-mortem diagnosis of human rabies in Thailand and other rabies-endemic Asian and African countries. In addition, two real-time NASBA assays based on the use of a NucliSens EasyQ analyser (NASBA-Beacon-EQ) and LightCycler real-time PCR machine (NASBA-Beacon-LC) were studied in parallel. All methods target the N gene, whereas the L gene is used for RT-hnPCR. Using serial dilutions of purified RNA from rabies-infected dog brain tissue to assess sensitivity, all five methods had comparable degrees of sensitivities of detection. However, both real-time NASBA assays had slightly lower sensitivities by 10-fold than the other three assays. This finding was also true (except for TaqMan real-time RT-PCR due to a mismatch between the target and probe sequences) when laboratory-adapted (challenge virus standard-11) virus was used in the assays. Testing on previously NASBA-ECL positive clinical samples from 10 rabies patients (saliva [6] and brain [4]) and 10 rabies-infected dog brain tissues, similar results were obtained among the five methods; real-time NASBA assays yielded false-negative results on 2 saliva samples. None of the assays showed positive results on cerebrospinal fluid specimens of 10 patients without rabies encephalitis. Due to the unavailability of the NASBA-ECL assay, the results show that TaqMan real-time RT-PCR and RT-hnPCR can be useful for ante- and post-mortem diagnosis of rabies. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A real-time velocity diagnostic for NSTX

    SciTech Connect

    Podesta, M.; Bell, R. E.

    2012-03-15

    A new system for fast measurements of the plasma toroidal velocity has been installed on the National Spherical Torus Experiment, NSTX [M. Ono et al., Nucl. Fusion 40, 557 (2000)]. The diagnostic, based on active charge-exchange recombination spectroscopy, can measure at up to six radial locations with maximum sampling rate of 5 kHz. The system is interfaced in real time with the NSTX plasma control system, in order to feed back on plasma velocity by means of actuators such as neutral beams and external coils. The paper describes the design criteria and implementation of the diagnostic. Examples from the initial tests of the system during neon glows are also discussed.

  11. Pre-Clinical Evaluation of a Real-Time PCR Assay on a Portable Instrument as a Possible Field Diagnostic Tool: Experiences from the Testing of Clinical Samples for African and Classical Swine Fever Viruses.

    PubMed

    Liu, L; Luo, Y; Accensi, F; Ganges, L; Rodríguez, F; Shan, H; Ståhl, K; Qiu, H-J; Belák, S

    2017-10-01

    African swine fever (ASF) and classical swine fever (CSF) are two highly infectious transboundary animal diseases (TADs) that are serious threats to the pig industry worldwide, including in China, the world's largest pork producer. In this study, a duplex real-time PCR assay was developed for the rapid detection and differentiation of African swine fever virus (ASFV) and classical swine fever virus (CSFV). The assay was performed on a portable, battery-powered PCR thermocycler with a low sample throughput (termed as 'T-COR4 assay'). The feasibility and reliability of the T-COR4 assay as a possible field method was investigated by testing clinical samples collected in China. When evaluated with reference materials or samples from experimental infections, the assay performed in a reliable manner, producing results comparable to those obtained from stationary PCR platforms. Of 59 clinical samples, 41 had results identical to a two-step CSFV real-time PCR assay. No ASFV was detected in these samples. The T-COR4 assay was technically easy to perform and produced results within 3 h, including sample preparation. In combination with a simple sample preparation method, the T-COR4 assay provides a new tool for the field diagnosis and differentiation of ASF and CSF, which could be of particular value in remote areas. © 2016 Blackwell Verlag GmbH.

  12. Effects of recent Leptospira vaccination on whole blood real-time PCR testing in healthy client-owned dogs.

    PubMed

    Midence, J N; Leutenegger, C M; Chandler, A M; Goldstein, R E

    2012-01-01

    Bacterin-based canine Leptospira vaccines could present a challenge for the use of whole blood real-time polymerase chain reaction (PCR) as a diagnostic tool. Recent vaccination could induce positive results if the targeted DNA fragment is present within the vaccine and in the blood of the recently vaccinated dog. The objective of this study was to assess whether 2 available 4-serovar vaccines induce a positive real-time PCR reaction in the blood of healthy recently vaccinated dogs. Twenty healthy dogs. This was a prospective study. Dogs were assigned to 1 of 2 vaccine groups. Both vaccines were culture-based and include Leptospira interrogans serovars Pomona, Canicola, and Icterohaemorrhagiae and Leptospira kirschneri serovar Grippotyphosa. Whole blood for real-time PCR and serum for the microscopic agglutination test (MAT) were collected prior to and 3 and 7 days after vaccination and weekly thereafter for 8 weeks. Two real-time PCR tests targeting 2 different genes were performed independently in a blinded fashion. Both Leptospira vaccines produced positive real-time PCR reactions when assayed undiluted or diluted 1 : 100 in canine blood. However, blood samples drawn from all dogs at all time points after vaccination were negative on PCR. All dogs developed MAT titers. Recent vaccination with 2 commercially available vaccines does not interfere with the use of real-time PCR for the identification of acute Leptospira infection in dogs. Copyright © 2011 by the American College of Veterinary Internal Medicine.

  13. Development and validation of a real-time PCR assay for the detection of anguillid herpesvirus 1.

    PubMed

    van Beurden, S J; Voorbergen-Laarman, M A; Roozenburg, I; van Tellingen, J; Haenen, O L M; Engelsma, M Y

    2016-01-01

    Anguillid herpesvirus 1 (AngHV1) causes a haemorrhagic disease with increased mortality in wild and farmed European eel, Anguilla anguilla (L.) and Japanese eel Anguilla japonica, Temminck & Schlegel). Detection of AngHV1 is currently based on virus isolation in cell culture, antibody-based typing assays or conventional PCR. We developed, optimized and concisely validated a diagnostic TaqMan probe based real-time PCR assay for the detection of AngHV1. The primers and probe target AngHV1 open reading frame 57, encoding the capsid protease and scaffold protein. Compared to conventional PCR, the developed real-time PCR is faster, less labour-intensive and has a reduced risk of cross-contamination. The real-time PCR assay was shown to be analytically sensitive and specific and has a high repeatability, efficiency and r(2) -value. The diagnostic performance of the assay was determined by testing 10% w/v organ suspensions and virus cultures from wild and farmed European eels from the Netherlands by conventional and real-time PCR. The developed real-time PCR assay is a useful tool for the rapid and sensitive detection of AngHV1 in 10% w/v organ suspensions from wild and farmed European eels.

  14. Development of real-time PCR for detection of Mycoplasma hominis

    PubMed Central

    Baczynska, Agata; Svenstrup, Helle F; Fedder, Jens; Birkelund, Svend; Christiansen, Gunna

    2004-01-01

    Background Mycoplasma hominis is associated with pelvic inflammatory disease, bacterial vaginosis, post partum fever, sepsis and infections of the central nervous system often leading to serious conditions. Association with development of female infertility has also been suggested, but different publications present different results. We developed a sensitive and fast diagnostic real-time PCR to test clinical samples from women undergoing laparoscopic examination before fertility treatment. To develop a test for the detection and quantification of M. hominis we selected a housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (gap), as a target. Results Real-time PCR was optimized to detect 10 copies of M. hominis PG21 genomic DNA. A fluorescence signal was measured for all 20 other M. hominis isolates, and melting curves analysis showed variations in the melting temperature in agreement with sequence variation in the region of the probes. There was no amplification of other mycoplasmal DNA and human DNA. Eighty-three patient cervical swab samples from infertile women were cultured for M. hominis in the BEa medium. Two of the samples (2.4%) were positive after 48 hours of incubation. The real-time PCR detected the same two samples positive, and the DNA concentrations in the clinical specimens were calculated to 37.000 copies/ml and 88.500 copies/ml, respectively. Conclusion The results demonstrate that real-time PCR may prove to be a rapid alternative to the traditional cultivation method. Information on bacterial load in genital swabs can be obtained. The assay allowed detection of M. hominis in a closed system reducing the risk of contamination by amplicon carry-over. PMID:15350196

  15. [Real-time PCR Detection Method for the Reston Subtype of the Ebola Virus].

    PubMed

    Xu, Lili; Bao, Linlin; Gu, Songzhi; Qin, Chuan

    2015-05-01

    We aimed to develop a real-time polymerase chain reaction (PCR) detection method for the Reston subtype of the Ebola virus. The NP gene of the Reston subtype of the Ebola virus was selected as the detection object. Sequences of different subtypes of Ebola viruses were aligned using Clustal W software. The most unique and conserved regions of the Reston subtype of the Ebola virus were recruited as candidate sequences for specific primers. Primer Express and Primer Premier 5. 0 software were used to filter the optimal pair of primers for detection. Real-time PCR was carried out using optimized parameters and positive DNA prepared by serial (tenfold) dilution of a recombinant plasmid and by plotting a standard curve. In addition, the reproducibility, accuracy, and specificity of the assay were tested. Results showed that the sensitivity of detection of the Reston subtype of the Ebola virus by real-time PCR could reached 10(2) copies/microL. The linear relationship (R2) reached 0.997, the slope of the standard curve was -0.3101, and amplification efficiency was 110.145%. A sharp and narrow melting peak appeared at 79.94 degrees C for all standards in different dilutions. In conclusion, a fast and sensitive real-time PCR detection system for the Reston subtype of the Ebola virus was developed. This system could be used as a supplementary diagnostic and monitoring approach for basic and clinical studies on the Reston subtype of the Ebola virus. The detection system does not require expensive technology or specialist operators.

  16. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes

    PubMed Central

    Deepak, SA; Kottapalli, KR; Rakwal, R; Oros, G; Rangappa, KS; Iwahashi, H; Masuo, Y; Agrawal, GK

    2007-01-01

    Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR — detection and expression analysis of gene(s) in real-time — has revolutionized the 21st century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant. PMID:18645596

  17. Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes.

    PubMed

    Deepak, Sa; Kottapalli, Kr; Rakwal, R; Oros, G; Rangappa, Ks; Iwahashi, H; Masuo, Y; Agrawal, Gk

    2007-06-01

    Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. Real-time PCR - detection and expression analysis of gene(s) in real-time - has revolutionized the 21(st) century biological science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, including technological refinement and application in all scientific fields ranging from medical to environmental issues, and to plant.

  18. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay.

    PubMed

    Bae, Hi-Gung; Nitsche, Andreas; Teichmann, Anette; Biel, Stefan S; Niedrig, Matthias

    2003-06-30

    Yellow fever virus quantitation is performed routinely by cultivation of virus containing samples using susceptible cells. Counting of the resulting plaques provides a marker for the number of infectious particles present in the sample. This assay usually takes up to 5 days before results are obtained and must be carried out under L2 or L3 laboratory conditions, depending on the yellow fever virus strain used. For clinical diagnosis of yellow fever virus infections the cell culture-based approach takes too long and is of limited practical relevance. Recently, due to its considerable sensitivity, PCR has become a promising method for virus detection. However, whilst PCR can detect virus-specific nucleic acids, it does not allow conclusions to be drawn regarding the infectious potential of the virus detected. Nonetheless, for diagnostic purposes, a rapid, specific and sensitive virus PCR is preferable. Therefore, two independent yellow fever virus-specific real-time PCR assays were established and compared the viral RNA loads to the results of a traditional plaque assay. The estimated ratio of yellow fever virus genomes to infectious particles was between 1000:1 and 5000:1; both approaches displayed a comparable precision of <45%. A significant correlation between genome number as determined by real-time PCR and the corresponding number of plaques in paired samples was found with a Pearson coefficient of correlation of r=0.88 (P<0.0001).

  19. Gastric Juice-Based Real-Time PCR for Tailored Helicobacter Pylori Treatment: A Practical Approach.

    PubMed

    Peng, Xianhui; Song, Zhiqiang; He, Lihua; Lin, Sanren; Gong, Yanan; Sun, Lu; Zhao, Fei; Gu, Yixin; You, Yuanhai; Zhou, Liya; Zhang, Jianzhong

    2017-01-01

    A gastric juice-based real-time polymerase chain reaction (PCR) assay was established to identify Helicobacter pylori infection, clarithromycin susceptibility and human CYP2C19 genotypes and to guide the choice of proton pump inhibitor (PPI), clarithromycin and amoxicillin treatment for tailored H. pylori eradication therapy. From January 2013 to November 2014, 178 consecutive dyspeptic patients were enrolled for collection of gastric biopsy samples and gastric juice by endoscopy at the Peking University Third Hospital; 105 and 73 H. pylori-positive and -negative patients, respectively, were included in this study. H. pylori infection was defined as samples with both a strongly positive rapid urease test (RUT) and positive H. pylori histology. A series of primers and probes were distributed into four reactions for identifying the H. pylori cagH gene coupled with an internal control (Rnase P gene), A2142G and A2143G mutants of the H. pylori 23S rRNA gene, and single-nucleotide polymorphisms (SNPs) G681A of CYP2C19*2 and G636A of CYP2C19*3. The E-test and DNA sequencing were used to evaluate the H. pylori clarithromycin susceptibility phenotype and genotype. The SNPs CYP2C19*2 and CYP2C19*3 were also evaluated by nucleotide sequencing. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of this gastric juice-based real-time PCR assay were evaluated by comparing with the same measures obtained through gastric biopsy-based PCR and culture. The H. pylori diagnostic sensitivities of the culture, PCR, and gastric biopsy- and gastric juice-based real-time PCR assays were 90.48% (95/105), 92.38% (97/105), 97.14% (102/105) and 100% (105/105), respectively; the specificities of the above methods were all 100%. Higher false-negative rates were found among the gastric biopsy samples assessed by culture (10.48%, 11/105), PCR (7.62%, 8/105) and real-time PCR (2.86%, 3/105) than in gastric juice by real-time PCR. Regarding

  20. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  1. Developmental stage of strongyle eggs affects the outcome variations of real-time PCR analysis.

    PubMed

    Andersen, U V; Haakansson, I T; Roust, T; Rhod, M; Baptiste, K E; Nielsen, M K

    2013-01-16

    Strongyle and trichostrongyle parasites are ubiquitous nematodes of grazing livestock. Several molecular diagnostic tests are based upon measuring and quantifying DNA obtained from parasite eggs. It is well known that such eggs undergo development during storage, but it remains unknown to which extent developmental stages can affect the variation of diagnostic test results. This study investigated the influence of developmental stages of strongyle eggs on the variation real-time polymerase chain reaction (PCR) results. Mixed species strongyle eggs were obtained from the faeces of a naturally infected horse. Eggs were isolated and placed in microtiter plates with demineralized water. A total of 25 wells containing 100 eggs each were set up and kept refrigerated for up to five days. Once daily, five wells were examined on an inverted microscope at 100× magnification, where the developmental stages of the eggs were noted, and then eggs harvested for DNA extraction. The protocol was repeated three times. Genomic DNA was extracted using a commercial kit previously validated for strongyle type eggs. PCR reactions were performed with a primer set specific for the ribosomal DNA region for all strongyle type parasites (NC1, NC2). SYBR Green Real-Time PCRs were performed in triplicates. Results revealed a statistically significant increase in PCR yield after three days, which was statistically associated with beginning embryonation of the eggs. In conclusion, storage time and developmental stage of strongyle eggs are significant sources of error in studies based on quantitative real-time PCR analysis. This study suggests that for refrigerated storage of more than three days, eggs should be inactivated and preserved for further analysis.

  2. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction

    PubMed Central

    Li, Brandon

    2016-01-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management. PMID:27829823

  3. A New Lab Developed Real Time PCR Assay for Direct Detection of C. Difficle from Stool Sample without DNA Extraction.

    PubMed

    Li, Brandon

    2016-09-01

    Clostridium difficile is a major cause of nosocomial antibiotic-associated infectious diarrhea and pseudomembranous colitis. Detection of C. difficile by anaerobic bacterial culture and/or cytotoxicity assays has been largely replaced by rapid enzyme immunoassays (EIA). However, due to the lack of sensitivity of stool EIA, we developed a multiplex real-time PCR assay targeting the C. difficile toxin genes tcdB. stool samples from hospitalized pediatric patients suspected of having C. difficile-associated disease were prospectively collected. Three testing modalities were evaluated, including enriched culture, cepheid Xpert and real-time Pcr (tcdB) on stool samples performed with tcdB gene-specific primers and hydrolysis probes. A total of 150 de-identified clinical specimen were analyzed. The sensitivities of stool real-time Pcr were 95% against cepheid Xpert C. difficile and 93% against enriched culture respectively, with a specificity of 97% and 94%. The lower limit of detection of the stool real-time PCR was 0.5 cFU/ml of per reaction for tcdB. Direct detection of C. difficile toxin genes in stool samples by real-time Pcr showed performance comparable to enriched culture. Real-time PCR of DNA from stool samples is a rapid and cost-effective diagnostic modality for patients that should facilitate appropriate patient management.

  4. Comparison of an automated ELFA and two different real-time PCR techniques for Salmonella detection in poultry samples.

    PubMed

    Rohonczy, Kata; Zoller, Linda; Hermann, Zsolt; Fodor, Andrea; Mráz, Balázs; Tabajdi-Pintér, Veronika

    2014-09-01

    The aim of this study was to compare an enzyme-linked fluorescent assay (ELFA)-based and two real-time polymerase chain reaction (PCR) methods with the results of the standard culture-based method EN ISO 6579:2002 (bacteriological standard method used in the European Union) for the detection of Salmonella spp. in raw chicken meat. Our investigations were performed on 141 poultry samples sorted from supermarkets. Relative accuracy, relative specificity and relative sensitivity were determined. According to the ISO 16140:2003 criteria for validation of alternative microbiological methods, the ELFA-based method (VIDAS ICS2 + SLM), and real-time PCR methods (TaqMan, Bax) were comparable to the reference standard method for the detection of Salmonella spp. in chicken meat. The use of these methods provide results within 48 hours with high sensitivity (100%). The TaqMan real-time PCR showed a relative specificity of 98% and both of the real-time PCR methods presented 100%.The VIDAS ICS2 + SLM and the Bax real-time PCR methods showed the highest relative accuracy (100%) and 99% in case of the TaqMan method. In conclusion, both the real-time PCR and the ELFA-based assay can be used as a rapid and user-friendly diagnostic method for detection of Salmonella spp. in chicken meat samples.

  5. Real-time PCR (qPCR) primer design using free online software.

    PubMed

    Thornton, Brenda; Basu, Chhandak

    2011-01-01

    Real-time PCR (quantitative PCR or qPCR) has become the preferred method for validating results obtained from assays which measure gene expression profiles. The process uses reverse transcription polymerase chain reaction (RT-PCR), coupled with fluorescent chemistry, to measure variations in transcriptome levels between samples. The four most commonly used fluorescent chemistries are SYBR® Green dyes and TaqMan®, Molecular Beacon or Scorpion probes. SYBR® Green is very simple to use and cost efficient. As SYBR® Green dye binds to any double-stranded DNA product, its success depends greatly on proper primer design. Many types of online primer design software are available, which can be used free of charge to design desirable SYBR® Green-based qPCR primers. This laboratory exercise is intended for those who have a fundamental background in PCR. It addresses the basic fluorescent chemistries of real-time PCR, the basic rules and pitfalls of primer design, and provides a step-by-step protocol for designing SYBR® Green-based primers with free, online software. Copyright © 2010 Wiley Periodicals, Inc.

  6. [Real-time PCR kits for the detection of the African Swine Fever virus].

    PubMed

    Latyshev, O E; Eliseeva, O V; Grebennikova, T V; Verkhovskiĭ, O A; Tsibezov, V V; Chernykh, O Iu; Dzhailidi, G A; Aliper, T I

    2014-01-01

    The results obtained using the diagnostic kit based on real-time polymerase chain reaction to detect the DNA of the African Swine Fever in the pathological material, as well as in the culture fluid, are presented. A high sensitivity and specificity for detection of the DNA in the organs and tissues of animals was shown to be useful for detection in the European Union referentiality reagent kits for DNA detection by real time PCR of ASFV. More rapid and effective method of DNA extraction using columns mini spin Quick gDNA(TM) MiniPrep was suggested and compared to the method of DNA isolation on the inorganic sorbent. High correlation of the results of the DNA detection of ASFV by real-time PCR and antigen detection results ASFV by competitive ELISA obtained with the ELISA SEROTEST/INGEZIM COMRAC PPA was demonstrated. The kit can be used in the veterinary services for effective monitoring of ASFV to contain, eliminate and prevent further spread of the disease.

  7. Comparison of blood culture and multiplex real-time PCR for the diagnosis of nosocomial sepsis.

    PubMed

    Dinç, Fatih; Akalin, Halis; Özakin, Cüneyt; Sinirtaş, Melda; Kebabçi, Nesrin; Işçimen, Remzi; Kelebek Girgin, Nermin; Kahveci, Ferda

    2016-03-01

    In many cases of suspected sepsis, causative microorganisms cannot be isolated. Multiplex real-time PCR generates results more rapidly than conventional blood culture systems. In this study, we evaluated the diagnostic performance of multiplex real-time PCR (LightCycler® SeptiFast, Roche, Mannheim, Germany), and compared with blood cultures and cultures from focus of infection in nosocomial sepsis. Seventy-eight nosocomial sepsis episodes in 67 adult patients were included in this study. The rates of microorganism detection by blood culture and PCR were 34.2% and 47.9%, respectively. Sixty-five microorganisms were detected by both methods from 78 sepsis episodes. Nineteen of these microorganisms were detected by both blood culture and PCR analysis from the same sepsis episode. There was statistically moderate concordance between the two methods (κ=0.445, P<0.001). There was no significant agreement between the blood culture and PCR analysis in terms of microorganism detected (κ=0.160, P=0.07). Comparison of the results of PCR and cultures from focus of infection revealed no significant agreement (κ=0.110, P=0.176). However, comparison of the results of PCR and blood cultures plus cultures from focus of infection (positive blood culture and/or positive culture from focus of infection) showed poor agreement (κ=0.17, P=0.026). When the blood culture was used as the gold standard, the sensitivity, specificity, positive and negative predictive value of PCR in patients with bacteremia was 80%, 69%, 57% and 87%, respectively. SeptiFast may be useful when added to blood culture in the diagnosis and management of sepsis.

  8. Low-cost, real-time, continuous flow PCR system for pathogen detection.

    PubMed

    Fernández-Carballo, B Leticia; McGuiness, Ian; McBeth, Christine; Kalashnikov, Maxim; Borrós, Salvador; Sharon, Andre; Sauer-Budge, Alexis F

    2016-04-01

    In this paper, we present a portable and low cost point-of-care (POC) PCR system for quantitative detection of pathogens. Our system is based on continuous flow PCR which maintains fixed temperatures zones and pushes the PCR solution between two heated areas allowing for faster heat transfer and as a result, a faster PCR. The PCR system is built around a 46.0 mm × 30.9 mm × 0.4 mm disposable thermoplastic chip. In order to make the single-use chip economically viable, it was manufactured by hot embossing and was designed to be compatible with roll-to-roll embossing for large scale production. The prototype instrumentation surrounding the chip includes two heaters, thermal sensors, and an optical system. The optical system allows for pathogen detection via real time fluorescence measurements. FAM probes were used as fluorescent reporters of the amplicons generated during the PCR. To demonstrate the function of the chip, two infectious bacteria targets were selected: Chlamydia trachomatis and Escherichia coli O157:H7. For both bacteria, the limit of detection of the system was determined, PCR efficiencies were calculated, and different flow velocities were tested. We have demonstrated successful detection for these two bacterial pathogens highlighting the versatility and broad utility of our portable, low-cost, and rapid PCR diagnostic device.

  9. Comparison between conventional and real-time PCR assays for diagnosis of visceral leishmaniasis.

    PubMed

    Pereira, Mariana R; Rocha-Silva, Fabiana; Graciele-Melo, Cidiane; Lafuente, Camila R; Magalhães, Telcia; Caligiorne, Rachel B

    2014-01-01

    The diagnosis of visceral leishmaniasis (VL) is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR) has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA) was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n = 12) presented positive results for serology and 79% (n = 15) positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient's blood.

  10. Detection and monitoring of virus infections by real-time PCR.

    PubMed

    Watzinger, F; Ebner, K; Lion, T

    2006-01-01

    The employment of polymerase chain reaction (PCR) techniques for virus detection and quantification offers the advantages of high sensitivity and reproducibility, combined with an extremely broad dynamic range. A number of qualitative and quantitative PCR virus assays have been described, but commercial PCR kits are available for quantitative analysis of a limited number of clinically important viruses only. In addition to permitting the assessment of viral load at a given time point, quantitative PCR tests offer the possibility of determining the dynamics of virus proliferation, monitoring of the response to treatment and, in viruses displaying persistence in defined cell types, distinction between latent and active infection. Moreover, from a technical point of view, the employment of sequential quantitative PCR assays in virus monitoring helps identifying false positive results caused by inadvertent contamination of samples with traces of viral nucleic acids or PCR products. In this review, we provide a survey of the current state-of-the-art in the application of the real-time PCR technology to virus analysis. Advantages and limitations of the RQ-PCR methodology, and quality control issues related to standardization and validation of diagnostic assays are discussed.

  11. Accuracy of real-time PCR, Gram stain and culture for Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae meningitis diagnosis.

    PubMed

    Wu, Henry M; Cordeiro, Soraia M; Harcourt, Brian H; Carvalho, Mariadaglorias; Azevedo, Jailton; Oliveira, Tainara Q; Leite, Mariela C; Salgado, Katia; Reis, Mitermayer G; Plikaytis, Brian D; Clark, Thomas A; Mayer, Leonard W; Ko, Albert I; Martin, Stacey W; Reis, Joice N

    2013-01-22

    Although cerebrospinal fluid (CSF) culture is the diagnostic reference standard for bacterial meningitis, its sensitivity is limited, particularly when antibiotics were previously administered. CSF Gram staining and real-time PCR are theoretically less affected by antibiotics; however, it is difficult to evaluate these tests with an imperfect reference standard. CSF from patients with suspected meningitis from Salvador, Brazil were tested with culture, Gram stain, and real-time PCR using S. pneumoniae, N. meningitidis, and H. influenzae specific primers and probes. An antibiotic detection disk bioassay was used to test for the presence of antibiotic activity in CSF. The diagnostic accuracy of tests were evaluated using multiple methods, including direct evaluation of Gram stain and real-time PCR against CSF culture, evaluation of real-time PCR against a composite reference standard, and latent class analysis modeling to evaluate all three tests simultaneously. Among 451 CSF specimens, 80 (17.7%) had culture isolation of one of the three pathogens (40 S. pneumoniae, 36 N. meningitidis, and 4 H. influenzae), and 113 (25.1%) were real-time PCR positive (51 S. pneumoniae, 57 N. meningitidis, and 5 H. influenzae). Compared to culture, real-time PCR sensitivity and specificity were 95.0% and 90.0%, respectively. In a latent class analysis model, the sensitivity and specificity estimates were: culture, 81.3% and 99.7%; Gram stain, 98.2% and 98.7%; and real-time PCR, 95.7% and 94.3%, respectively. Gram stain and real-time PCR sensitivity did not change significantly when there was antibiotic activity in the CSF. Real-time PCR and Gram stain were highly accurate in diagnosing meningitis caused by S. pneumoniae, N. meningitidis, and H. influenzae, though there were few cases of H. influenzae. Furthermore, real-time PCR and Gram staining were less affected by antibiotic presence and might be useful when antibiotics were previously administered. Gram staining, which is

  12. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing

    PubMed Central

    Espy, M. J.; Uhl, J. R.; Sloan, L. M.; Buckwalter, S. P.; Jones, M. F.; Vetter, E. A.; Yao, J. D. C.; Wengenack, N. L.; Rosenblatt, J. E.; Cockerill, F. R.; Smith, T. F.

    2006-01-01

    Real-time PCR has revolutionized the way clinical microbiology laboratories diagnose many human microbial infections. This testing method combines PCR chemistry with fluorescent probe detection of amplified product in the same reaction vessel. In general, both PCR and amplified product detection are completed in an hour or less, which is considerably faster than conventional PCR detection methods. Real-time PCR assays provide sensitivity and specificity equivalent to that of conventional PCR combined with Southern blot analysis, and since amplification and detection steps are performed in the same closed vessel, the risk of releasing amplified nucleic acids into the environment is negligible. The combination of excellent sensitivity and specificity, low contamination risk, and speed has made real-time PCR technology an appealing alternative to culture- or immunoassay-based testing methods for diagnosing many infectious diseases. This review focuses on the application of real-time PCR in the clinical microbiology laboratory. PMID:16418529

  13. A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis

    PubMed Central

    De Los Santos, Maxy; Soberón, Valeria; Lucas, Carmen M.; Matlashewski, Greg; Llanos-Cuentas, Alejandro; Ore, Marianela; Baldeviano, G. Christian; Edgel, Kimberly A.; Lescano, Andres G.; Graf, Paul C. F.; Bacon, David J.

    2013-01-01

    In South America, various species of Leishmania are endemic and cause New World tegumentary leishmaniasis (NWTL). The correct identification of these species is critical for adequate clinical management and surveillance activities. We developed a real-time polymerase chain reaction (PCR) assay and evaluated its diagnostic performance using 64 archived parasite isolates and 192 prospectively identified samples collected from individuals with suspected leishmaniasis enrolled at two reference clinics in Lima, Peru. The real-time PCR assay was able to detect a single parasite and provided unambiguous melting peaks for five Leishmania species of the Viannia subgenus that are highly prevalent in South America: L. (V.) braziliensis, L. (V.) panamensis, L. (V.) guyanensis, L. (V.) peruviana and L. (V.) lainsoni. Using kinetoplastid DNA-based PCR as a gold standard, the real-time PCR had sensitivity and specificity values of 92% and 77%, respectively, which were significantly higher than those of conventional tests such as microscopy, culture and the leishmanin skin test (LST). In addition, the real-time PCR identified 147 different clinical samples at the species level, providing an overall agreement of 100% when compared to multilocus sequence typing (MLST) data performed on a subset of these samples. Furthermore, the real-time PCR was three times faster and five times less expensive when compared to PCR - MLST for species identification from clinical specimens. In summary, this new assay represents a cost-effective and reliable alternative for the identification of the main species causing NWTL in South America. PMID:23301111

  14. Combination of real-time PCR and sequencing to detect multiple clinically relevant genetic variations in the lactase gene.

    PubMed

    Brasen, Claus Lohman; Frischknecht, Lone; Ørnskov, Dorthe; Andreasen, Lotte; Madsen, Jonna Skov

    2017-02-01

    Lactase persistence is an autosomal dominant trait commonly distributed in Europe as well as some parts of east Africa and the Arabian Peninsula. Using real-time PCR to detect the -13910C > T variant common in the European population is a reliable analysis although other variants in the probe-binding site may cause errors in analysis. The aim of this study was to determine the prevalence of the variants in a Danish cohort examined for lactose intolerance as well as to improve the real-time PCR analysis for detection of the different variants. We genotyped 3395 routine samples using real-time PCR for the -13910C > T-variant. All consecutive samples identified as -13910CC were sequenced using Sanger Sequencing. Using the SDS software we examined various quality value settings to improve on the genetic analysis. Using real-time PCR resulted in 100% successful genotyping of the -13910C > T variant. By using a quality value of 99% and sequencing the undetermined samples we improved the ability of the assay to identify variants other than -13910C > T. This resulted in a reduction of the diagnostic error rate by a factor of 2.4 while increasing the expenses only 3%. We conclude that using a quality value of 99% in the SDS software significantly improves the diagnostic efficiency of the real-time PCR assay for detecting variants associated to lactase persistence.

  15. Use of Multiplex Real-Time PCR To Diagnose Scrub Typhus.

    PubMed

    Tantibhedhyangkul, Wiwit; Wongsawat, Ekkarat; Silpasakorn, Saowaluk; Waywa, Duangdao; Saenyasiri, Nuttawut; Suesuay, Jintapa; Thipmontree, Wilawan; Suputtamongkol, Yupin

    2017-05-01

    Scrub typhus, caused by Orientia tsutsugamushi, is a common cause of acute undifferentiated febrile illness in the Asia-Pacific region. However, its nonspecific clinical manifestation often prevents early diagnosis. We propose the use of PCR and serologic tests as diagnostic tools. Here, we developed a multiplex real-time PCR assay using hydrolysis (TaqMan) probes targeting O. tsutsugamushi 47-kDa, groEL, and human interferon beta (IFN-β gene) genes to improve early diagnosis of scrub typhus. The amplification efficiency was higher than 94%, and the lower detection limit was 10 copies per reaction. We used a human gene as an internal DNA quality and quantity control. To determine the sensitivity of this PCR assay, we selected patients with confirmed scrub typhus who exhibited a clear 4-fold increase in the level of IgG and/or IgM. The PCR assay result was positive in 45 of 52 patients, indicating a sensitivity of 86.5% (95% confidence interval [CI]: 74.2 to 94.4). The PCR assessment was negative for all 136 non-scrub typhus patients, indicating a specificity of 100% (95% CI: 97.3 to 100). In addition, this test helped diagnose patients with inconclusive immunofluorescence assay (IFA) results and using single blood samples. In conclusion, the real-time PCR assay proposed here is sensitive and specific in diagnosing scrub typhus. Combining PCR and serologic tests will improve the diagnosis of scrub typhus among patients presenting with acute febrile illness. Copyright © 2017 American Society for Microbiology.

  16. Polymerase chain reaction and real-time PCR for diagnosing of Leishmania infantum chagasi in dogs.

    PubMed

    Ramos, Rafael Antonio do Nascimento; Ramos, Carlos Alberto do Nascimento; Jusi, Márcia Mariza Gomes; de Araújo, Flábio Ribeiro; Machado, Rosangela Zacarias; Faustino, Maria Aparecida da Glória; Alves, Leucio Câmara

    2012-01-01

    The importance of dogs as a reservoir for Leishmania infantumchagasi in urban environments has stimulated numerous studies assessing diagnostic techniques. When performed properly, such procedures are an important step in preventing leishmaniasis in humans. Molecular methods have become prominent for this purpose. The aim of the present study was to determine the performance of the polymerase chain reaction (PCR) and real-time PCR (qPCR) for diagnosing of canine visceral leishmaniasis (CVL) using different biological samples. For this, 35 dogs from an area endemic for CVL were used. Bone marrow aspirate and lymph node and spleen fragments from these dogs were used for the molecular diagnosis. In the present study, qPCR was able to detect a greater number of positive animals than seen with PCR. Among the different biological samples used, there was no significant difference in L. infantumchagasi DNA detection between PCR and qPCR. However, considering that lymph nodes are easy to acquire, these can be considered to be the best samples for making molecular diagnoses of L. infantum chagasi infection.

  17. Analytical Performance of Multiplex Real-Time PCR for Six Sexually Transmitted Pathogens.

    PubMed

    Kim, Yoonjung; Kim, Juwon; Lee, Kyung-A

    2015-01-01

    Most organisms that cause sexual transmitted diseases (STDs) are fastidious pathogens that are difficult to detect with conventional microbiological methods and the proportions of multiple infections were noted up to 39.3% among the STI-positive subjects. However, only a few multiplex PCR and multiplex real-time PCR tests that can screen more than six microorganisms that cause STDs have been assessed. A total of 114 endocervical swabs (ThinPrep PAPTEST PreservCyt Solution, Hologic Inc., Marlborough, MA, USA) were collected from healthy Korean women. Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Mycoplasma genitalium (MG), Mycoplasma hominis (MH), Ureaplasma urealyticum (UU), and Trichomonas vaginalis (TV) were detected by uniplex PCR with Seeplex kits and by multiplex real-time PCR with Real-Q Kits (Biosewoom Inc., Seoul, Korea). To evaluate analytical sensitivity, plasmids containing target genes from CT, NG, MG, MH, UU, and TV were serially diluted five times with saline buffer and replicated eight times per dilution. Real-Q STIs Kit assays showed 100% sensitivity for detecting MH, MG, CT, TV, NG and 94.1% sensitivity for detecting UU. In addition, it showed 100% specificity for UU, MH, MG, CT, TV, and NG. The analytic sensitivity of UU (95% probit = 17.3 copy/μL, 95% CI = 11.6 to 138.6) and MH (95% probit = 30.9 copy/μL, 95% CI = 20.6 to 169.9) was relatively lower than for others pathogens. Thus, the cutoff Ct value of < 45 for UU and MH and a cutoff Ct value of < 38 for CT, MH, NG, TV could minimize differences in detection limit among the six STIs (95% probit values = 5.3 to 14.6) and to optimize overall diagnostic performance. For medical applications of a multiplex real-time PCR assay, one kind of cutoff value, which is according to manufacturer's instructions, was generally used without the consideration of lowest actual detectable concentration of each target substance. However, analytical performance at the low concentration limit often

  18. Gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of Japanese encephalitis virus

    NASA Astrophysics Data System (ADS)

    Huang, Su-Hua; Yang, Tsuey-Ching; Tsai, Ming-Hong; Tsai, I.-Shou; Lu, Huang-Chih; Chuang, Pei-Hsin; Wan, Lei; Lin, Ying-Ju; Lai, Chih-Ho; Lin, Cheng-Wen

    2008-10-01

    Virus isolation and antibody detection are routinely used for diagnosis of Japanese encephalitis virus (JEV) infection, but the low level of transient viremia in some JE patients makes JEV isolation from clinical and surveillance samples very difficult. We describe the use of gold nanoparticle-based RT-PCR and real-time quantitative RT-PCR assays for detection of JEV from its RNA genome. We tested the effect of gold nanoparticles on four different PCR systems, including conventional PCR, reverse-transcription PCR (RT-PCR), and SYBR green real-time PCR and RT-PCR assays for diagnosis in the acute phase of JEV infection. Gold nanoparticles increased the amplification yield of the PCR product and shortened the PCR time compared to the conventional reaction. In addition, nanogold-based real-time RT-PCR showed a linear relationship between Ct and template amount using ten-fold dilutions of JEV. The nanogold-based RT-PCR and real-time quantitative RT-PCR assays were able to detect low levels (1-10 000 copies) of the JEV RNA genomes extracted from culture medium or whole blood, providing early diagnostic tools for the detection of low-level viremia in the acute-phase infection. The assays described here were simple, sensitive, and rapid approaches for detection and quantitation of JEV in tissue cultured samples as well as clinical samples.

  19. Targeted KRAS Mutation Assessment on Patient Tumor Histologic Material in Real Time Diagnostics

    PubMed Central

    Kotoula, Vassiliki; Charalambous, Elpida; Biesmans, Bart; Malousi, Andigoni; Vrettou, Eleni; Fountzilas, George; Karkavelas, George

    2009-01-01

    Background Testing for tumor specific mutations on routine formalin-fixed paraffin-embedded (FFPE) tissues may predict response to treatment in Medical Oncology and has already entered diagnostics, with KRAS mutation assessment as a paradigm. The highly sensitive real time PCR (Q-PCR) methods developed for this purpose are usually standardized under optimal template conditions. In routine diagnostics, however, suboptimal templates pose the challenge. Herein, we addressed the applicability of sequencing and two Q-PCR methods on prospectively assessed diagnostic cases for KRAS mutations. Methodology/Principal Findings Tumor FFPE-DNA from 135 diagnostic and 75 low-quality control samples was obtained upon macrodissection, tested for fragmentation and assessed for KRAS mutations with dideoxy-sequencing and with two Q-PCR methods (Taqman-minor-groove-binder [TMGB] probes and DxS-KRAS-IVD). Samples with relatively well preserved DNA could be accurately analyzed with sequencing, while Q-PCR methods yielded informative results even in cases with very fragmented DNA (p<0.0001) with 100% sensitivity and specificity vs each other. However, Q-PCR efficiency (Ct values) also depended on DNA-fragmentation (p<0.0001). Q-PCR methods were sensitive to detect ≤1% mutant cells, provided that samples yielded cycle thresholds (Ct) <29, but this condition was met in only 38.5% of diagnostic samples. In comparison, FFPE samples (>99%) could accurately be analyzed at a sensitivity level of 10% (external validation of TMGB results). DNA quality and tumor cell content were the main reasons for discrepant sequencing/Q-PCR results (1.5%). Conclusions/Significance Diagnostic targeted mutation assessment on FFPE-DNA is very efficient with Q-PCR methods in comparison to dideoxy-sequencing. However, DNA fragmentation/amplification capacity and tumor DNA content must be considered for the interpretation of Q-PCR results in order to provide accurate information for clinical decision making. PMID

  20. LUX real-time PCR assay for the detection of porcine circovirus type 2.

    PubMed

    Vilcek, Stefan; Vlasakova, Michaela; Jackova, Anna

    2010-05-01

    Light Upon eXtension real-time PCR (LUX real-time PCR) assay was developed for the detection of porcine circovirus type 2 (PCV2). The primers flanking a 114 bp fragment were selected from ORF1. The optimized assay could detect 20 viral copies of pBluescript SK+ plasmid containing inserted PCV2 DNA. The dynamic range of quantitative analysis covered a 7-order interval ranging from 20 to 2 x 10(8) genome equivalents per assay with the best results in the range from 2 x 10(2) to 2 x 10(7) viral copies. The LUX real-time PCR assay had a high specificity since it detected PCV2 but not PCV1, CSFV, PRRSV or negative samples. There was good agreement between the LUX real-time PCR and the conventional PCR when lymph nodes from PCV2 infected animals were tested. A comparison of the LUX real-time PCR with the TaqMan PCR and SYBR Green PCR indicated that the amount of viral copies determined using linear calibration curve differed from assay to assay but not more than an order. LUX real-time PCR, similar to the TaqMan PCR, was more specific for generation of fluorogenic signal than SYBR Green PCR.

  1. Design and Validation of Real-Time PCR: Quantitative Diagnosis of Common Leishmania Species in Iran.

    PubMed

    Fekri Soofi Abadi, Maryam; Dabiri, Shahriar; Fotouhi Ardakani, Reza; Fani Malaki, Lina; Amirpoor Rostami, Sahar; Ziasistani, Mahsa; Dabiri, Donya

    2016-07-01

    Design and validation of Real-time PCR on the protected gene region ITS2 to quantify the parasite load in common leishmania (L) species. Probe and primer were designed from the ITS2 region between the rRNA genes with minimum gene variation in three common leishmania species followed by a Real-time PCR using the Taq man probe method in the form of absolute quantification. A series of different concentrations of leishmania were analyzed. After the purified PCR product was successfully placed in a PTG19-T plasmid vector, specialized ITS2 region was cloned in this plasmid. In the last phase, the cloned gene was transferred to the Ecoli.Top10F bacteria. The standard plasmid was provided in 10(7) to 10(1) copies/rxn concentrations. The specification and clinical sensitivity of the data was analyzed using inter and intra scales. The probe and primer were designed using three species, including L. infantum, L. major, and L.tropica. Seven concentrations of purified parasite in culture media showed that the selected region for quantifying the parasite is suitable. Clinical and analytical specificity and sensitivity were both 100%, respectively. The Taq man method for the ITS2 region in leishmania is one the most sensitive diagnostic test for identifying the parasite load and is suggested as a tool for fast identification and quantification of species.

  2. Critical analysis of rhinovirus RNA load quantification by real-time reverse transcription-PCR.

    PubMed

    Schibler, Manuel; Yerly, Sabine; Vieille, Gaël; Docquier, Mylène; Turin, Lara; Kaiser, Laurent; Tapparel, Caroline

    2012-09-01

    Rhinoviruses are the most frequent cause of human respiratory infections, and quantitative rhinovirus diagnostic tools are needed for clinical investigations. Although results obtained by real-time reverse-transcription PCR (RT-PCR) assays are frequently converted to viral RNA loads, this presents several limitations regarding accurate virus RNA quantification, particularly given the need to reliably quantify all known rhinovirus genotypes with a single assay. Using an internal extraction control and serial dilutions of an in vitro-transcribed rhinovirus RNA reference standard, we validated a quantitative one-step real-time PCR assay. We then used chimeric rhinovirus genomes with 5'-untranslated regions (5'UTRs) originating from the three rhinovirus species and from one enterovirus to estimate the impact of the 5'UTR diversity. Respiratory specimens from infected patients were then also analyzed. The assay quantification ability ranged from 4.10 to 9.10 log RNA copies/ml, with an estimated error margin of ±10%. This variation was mainly linked to target variability and interassay variability. Taken together, our results indicate that our assay can reliably estimate rhinovirus RNA load, provided that the appropriate error margin is used. In contrast, due to the lack of a universal rhinovirus RNA standard and the variability related to sample collection procedures, accurate absolute rhinovirus RNA quantification in respiratory specimens is currently hardly feasible.

  3. Validation of absolute quantitative real-time PCR for the diagnosis of Streptococcus agalactiae in fish.

    PubMed

    Sebastião, Fernanda de A; Lemos, Eliana G M; Pilarski, Fabiana

    2015-12-01

    Streptococcus agalactiae (GBS) are Gram-positive cocci responsible for substantial losses in tilapia fish farms in Brazil and worldwide. It causes septicemia, meningoencephalitis and mortality of whole shoals that can occur within 72 h. Thus, diagnostic methods are needed that are rapid, specific and sensitive. In this study, a pair of specific primers for GBS was generated based on the cfb gene sequence and initially evaluated by conventional PCR. The protocols for absolute quantitative real-time PCR (qPCR) were then adapted to validate the technique for the identification and quantification of GBS isolated by real-time detection of amplicons using fluorescence measurements. Finally, an infectivity test was conducted in tilapia infected with GBS strains. Total DNA from the host brain was subjected to the same technique, and the strains were re-isolated to validate Koch's postulates. The assay showed 100% specificity for the other bacterial species evaluated and a sensitivity of 367 gene copies per 20 mg of brain tissue within 4 h, making this test a valuable tool for health monitoring programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Real-time PCR diagnosis of Plasmodium vivax among blood donors

    PubMed Central

    2012-01-01

    Background When selecting blood donors in transfusion centres, one important problem is to identify, during screening, individuals with infectious diseases that can be transmitted by blood, such as malaria, especially when the parasite densities are very low. This problem is particularly severe in endemic areas, such as the Brazilian Amazon. In the present study, molecular diagnostic (real-time PCR) of Plasmodium vivax was used to identify blood donors infected with malaria parasites. Methods Samples from 595 blood donors were collected in seven haemotherapy centres in northern Brazil located in areas at risk for malaria transmission, and the analyses were performed by real-time PCR with TaqMan probes on 7500 Real-Time PCR Systems, to genotype the mitochondrial DNA region specific to P. vivax. The experiment was designed for hybridization of the cytochrome c oxidase genes of the mitochondrial genome (GenBank GI63022502). The serological data were obtained using enzyme-linked immunosorbent assay - ELISA (Anti-HIV, Anti-HTLV I-II; Anti-HVC, HBsAg, Anti-HBc, Chagas disease) and VDRL (Syphilis) from the Blood Bank System of the Haematology and Haemotherapy Centre of Pará. Results The assay identified eight individuals in the sample (1.34%) infected with P. vivax at the time of blood donation. This percentage was higher than the altered serological results (reactive or inconclusive) of the prevalence of anti-HIV (0.67%), anti-hepatitis C virus (0.34%), anti-hepatitis B surface antigen (0.67%), anti-human T-lymphotropic virus I/II (1.18%), anti-Chagas disease (0.17%) and syphilis (VDRL) (0.50%), but not higher than anti-hepatitis B core antigen antibodies (4.37%). This result indicates the need to use more sensitive methods of diagnosing malaria in blood banks. Conclusion The real-time PCR with TaqMan probes enabled the identification of P. vivax in a high proportion of clinically healthy donors, highlighting the potential risk for transfusion-transmitted malaria

  5. [Research progress of real-time quantitative PCR method for group A rotavirus detection].

    PubMed

    Guo, Yan-Qing; Li, Dan-Di; Duan, Zhao-Jun

    2013-11-01

    Group A rotavirus is one of the most significant etiological agents which causes acute gastroenteritis among infants and young children worldwide. So far, several method which includes electron microscopy (EM), enzyme immunoassay (EIA), reverse transcription-polymerase chain reaction (RT-PCR)and Real-time Quantitative PCR has been established for the detection of rotavirus. Compared with other methods, Real-time quantitative PCR have advantages in specificity, sensitivity, genotyping and quantitative accuracy. This article shows a overview of the application of real-time quantitative PCR technique to detecte group A rotavirus.

  6. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR).

    PubMed

    Felder, Eva; Mossbrugger, Ilona; Lange, Mirko; Wölfel, Roman

    2012-09-01

    Ricin and abrin are two of the most potent plant toxins known and may be easily obtained in high yield from the seeds using rather simple technology. As a result, both toxins are potent and available toxins for criminal or terrorist acts. However, as the production of highly purified ricin or abrin requires sophisticated equipment and knowledge, it may be more likely that crude extracts would be used by non-governmental perpetrators. Remaining plant-specific nucleic acids in these extracts allow the application of a real-time PCR (qPCR) assay for the detection and identification of abrin or ricin genomic material. Therefore, we have developed a duplex real-time PCR assays for simultaneous detection of ricin and abrin DNA based on the OmniMix HS bead PCR reagent mixture. Novel primers and hybridization probes were designed for detection on a SmartCycler instrument by using 5'-nuclease technology. The assay was thoroughly optimized and validated in terms of analytical sensitivity. Evaluation of the assay sensitivity by probit analysis demonstrated a 95% probability of detection at 3 genomes per reaction for ricin DNA and 1.2 genomes per reaction for abrin DNA. The suitability of the assays was exemplified by detection of ricin and abrin contaminations in a food matrix.

  7. Novel real-time PCR detection assay for Brucella suis

    PubMed Central

    Hänsel, C.; Mertens, K.; Elschner, M. C.; Melzer, F.

    2015-01-01

    Introduction Brucella suis is the causative agent of brucellosis in suidae and is differentiated into five biovars (bv). Biovars 1 and 3 possess zoonotic potential and can infect humans, whereas biovar 2 represents the main source of brucellosis in feral and domestic pigs in Europe. Both aspects, the zoonotic threat and the economic loss, emphasize the necessity to monitor feral and domestic pig populations. Available serological or PCR based methods lack sensitivity and specificity. Results Here a bioinformatics approach was used to identify a B. suis specific 17 bp repeat on chromosome II (BS1330_II0657 locus). This repeat is common for B. suis bv 1 to 4 and was used to develop a TaqMan probe assay. The average PCR efficiency was determined as 95% and the limit of detection as 12,5 fg/µl of DNA, equally to 3.7 bacterial genomes. This assay has the highest sensitivity of all previously described B. suis specific PCR assays, making it possible to detect 3-4 bacterial genomes per 1 µl of sample. The assay was tested 100% specific for B. suis and negative for other Brucella spp. and closely related non-Brucella species. Conclusions This novel qPCR assay could become a rapid, inexpensive and reliable screening method for large sample pools of B. suis 1 to 4. This method will be applicable for field samples after validation. PMID:26392898

  8. Real time PCR detection of rabbit haemorrhagic disease virus in rabbits infected with different European strains of RHDV.

    PubMed

    Niedźwiedzka-Rystwej, P; Hukowska-Szematowicz, B; Działo, J; Tokarz-Deptuła, B; Deptuła, W

    2013-01-01

    The paper concerns the use of a novel, very effective diagnostic method, a real-time PCR for diagnosis of a viral agent causing viral haemorrhagic disease in rabbits - RHDV. Until now, the method was widely used for detecting many different viruses, both DNA, and RNA, but as far as RHDV is concerned, there are not many records of such use. This study aimed at the detection of 17 different strains from different European regions, differing in biological features and mortality. The study confirmed that real-time PCR is an applicable and effective method for diagnosis of RHDV, irrespective of the stains' features.

  9. Novel multitarget real-time PCR assay for rapid detection of Bordetella species in clinical specimens.

    PubMed

    Tatti, Kathleen M; Sparks, Kansas N; Boney, Kathryn O; Tondella, Maria Lucia

    2011-12-01

    A novel multitarget real-time PCR (RT-PCR) assay for the rapid identification of Bordetella pertussis, B. parapertussis, and B. holmesii was developed using multicopy insertion sequences (ISs) in combination with the pertussis toxin subunit S1 (ptxS1) singleplex assay. The RT-PCR targets for the multiplex assay include IS481, commonly found in B. pertussis and B. holmesii; IS1001 of B. parapertussis; and the IS1001-like sequence of B. holmesii. Overall, 402 Bordetella species and 66 non-Bordetella species isolates were tested in the multitarget assay. Cross-reactivity was found only with 5 B. bronchiseptica isolates, which were positive with IS1001 of B. parapertussis. The lower limit of detection (LLOD) of the multiplex assay was similar to the LLOD of each target in an individual assay format, which was approximately 1 genomic equivalent per reaction for all targets. A total of 197 human clinical specimens obtained during cough-illness outbreak investigations were used to evaluate the multitarget RT-PCR assay. The multiplex assay results from 87 clinical specimens were compared to the individual RT-PCR assay and culture results. The multitarget assay is useful as a diagnostic tool to confirm B. pertussis infections and to rapidly identify other Bordetella species. In conclusion, the use of this multitarget RT-PCR approach increases specificity, while it decreases the amount of time, reagents, and specimen necessary for RT-PCRs used for accurate diagnosis of pertussis-like illness.

  10. Simplified development of multiplex real-time PCR through master mix augmented by universal fluorogenic reporters.

    PubMed

    Wadle, Simon; Lehnert, Michael; Schuler, Friedrich; Köppel, René; Serr, Annerose; Zengerle, Roland; von Stetten, Felix

    2016-01-01

    Mediator probe (MP) PCR is a real-time PCR approach that uses standardized universal fluorogenic reporter oligonucleotides (UR) in conjunction with label-free sequence-specific probes. To enable multiplex real-time MP PCR, we designed a set of five optimized URs with different fluorescent labels. Performance of the optimized URs was verified in multiplex real-time MP PCR for the detection of a pentaplex food panel and a quadruplex methicillin-resistant Staphylococcus aureus (MRSA) panel. Results were comparable to corresponding multiplex hydrolysis probe (HP) PCR, also designated as TaqMan PCR. Analyses of MRSA DNA standards and DNA extracted from patient swab samples showed improved lower limits of detection (LoDs) by a factor of 2-5 when using quadruplex real-time MP PCR instead of HP PCR. The novel set of standardized URs we present here simplifies development of multiplex real-time PCR assays by requiring only the design of label-free probes. In the future, real-time PCR master mixes could be augmented with up to five standardized fluorogenic URs, each emitting light at a different wavelength.

  11. Miniaturized Real-Time PCR on a Q3 System for Rapid KRAS Genotyping.

    PubMed

    Guarnaccia, Maria; Iemmolo, Rosario; Petralia, Salvatore; Conoci, Sabrina; Cavallaro, Sebastiano

    2017-04-11

    Colorectal cancer (CRC) is an aggressive human malignancy with a complex genomic landscape harboring KRAS mutations. In 40%-60% of patients with CRC, constantly active KRAS proteins affect the prognosis, surgical strategy, and clinical benefit from therapy with anti-epidermal growth factor receptor (EGFR) agents. For this reason, there is a greater demand for minimally-invasive diagnostic devices to characterize the genetic pattern and prevent the acquired mechanism to drug resistance. The rapid developments in cutting-edge diagnostic techniques are expected to play a growing role in medicine and represent an attractive promise to identify potential responders to personalized medicine. Here we propose a new method to simultaneously detect the main KRAS mutations on the portable real-time PCR Q3 platform. This platform is based on hybrid silicon-plastic technology implemented in a miniaturized chip able to achieve a sample-in answer-out rapid analysis, allowing a new approach to genetic counseling and testing.

  12. New PCR systems to confirm real-time PCR detection of Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Herthnek, David; Bölske, Göran

    2006-01-01

    Background Johne's disease, a serious chronic form of enteritis in ruminants, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). As the organism is very slow-growing and fastidious, several PCR-based methods for detection have been developed, based mainly on the MAP-specific gene IS900. However, because this gene is similar to genes in other mycobacteria, there is a need for sensitive and reliable methods to confirm the presence of MAP. As described here, two new real-time PCR systems on the IS900 gene and one on the F57 gene were developed and carefully validated on 267 strains and 56 positive clinical faecal samples. Results Our confirmatory PCR systems on IS900 were found sensitive and specific, only yielding weak false positive reactions in one strain for each system. The PCR system on F57 did not elicit any false positives and was only slightly less sensitive than our primary IS900-system. DNA from both naturally infected and spiked faeces that tested positive with our primary system could be confirmed with all new systems, except one low-level infected sample that tested negative with the F57 system. Conclusion We recommend using the newly constructed DH3 PCR system on the F57 gene as the primary confirmatory test for PCR positives, but should it fail due to its lower sensitivity, the DH1 and DH2 PCR systems should be used. PMID:17020599

  13. Performance of the RealStar Chikungunya Virus Real-Time Reverse Transcription-PCR Kit▿

    PubMed Central

    Panning, Marcus; Hess, Markus; Fischer, Waldemar; Grywna, Klaus; Pfeffer, Martin; Drosten, Christian

    2009-01-01

    A novel commercial Chikungunya virus real-time reverse transcription-PCR (RT-PCR) kit was evaluated on a comprehensive panel of original patient samples. The assay was 100% sensitive and specific in comparison to a published real-time RT-PCR. Viral loads from both assays were highly correlated. The kit proved to be suitable for routine use in patient care. PMID:19625474

  14. Detection and quantification of Aeromonas salmonicida in fish tissue by real-time PCR.

    PubMed

    Bartkova, S; Kokotovic, B; Skall, H F; Lorenzen, N; Dalsgaard, I

    2017-02-01

    Furunculosis, a septicaemic infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida, currently causes problems in Danish seawater rainbow trout production. Detection has mainly been achieved by bacterial culture, but more rapid and sensitive methods are needed. A previously developed real-time PCR assay targeting the plasmid encoded aopP gene of A. salmonicida was, in parallel with culturing, used for the examination of five organs of 40 fish from Danish freshwater and seawater farms. Real-time PCR showed overall a higher frequency of positives than culturing (65% of positive fish by real-time PCR compared to 30% by a culture approach). Also, no real-time PCR-negative samples were found positive by culturing. A. salmonicida was detected by real-time PCR, though not by culturing, in freshwater fish showing no signs of furunculosis, indicating possible presence of carrier fish. In seawater fish examined after an outbreak and antibiotics treatment, real-time PCR showed the presence of the bacterium in all examined organs (1-482 genomic units mg(-1) ). With a limit of detection of 40 target copies (1-2 genomic units) per reaction, a high reproducibility and an excellent efficiency, the present real-time PCR assay provides a sensitive tool for the detection of A. salmonicida. © 2016 John Wiley & Sons Ltd.

  15. Optimal swab processing recovery method for detection of bioterrorism-related Francisella tularensis by real-time PCR.

    PubMed

    Walker, Roblena E; Petersen, Jeannine M; Stephens, Kenyatta W; Dauphin, Leslie A

    2010-10-01

    Francisella tularensis, the etiological agent of tularemia, is regarded as a potential bioterrorism agent. The advent of bioterrorism has heightened awareness of the need for validated methods for processing environmental samples. In this study we determined the optimal method for processing environmental swabs for the recovery and subsequent detection of F. tularensis by the use of real-time PCR assays. Four swab processing recovery methods were compared: heat, sonication, vortexing, and the Swab Extraction Tube System (SETS). These methods were evaluated using cotton, foam, polyester and rayon swabs spiked with six pathogenic strains of F. tularensis. Real-time PCR analysis using a multi-target 5'nuclease assay for F. tularensis showed that the use of the SETS method resulted in the best limit of detection when evaluated using multiple strains of F. tularensis. We demonstrated also that the efficiency of F. tularensis recovery from swab specimens was not equivalent for all swab processing methodologies and, thus, that this variable can affect real-time PCR assay sensitivity. The effectiveness of the SETS method was independent of the automated DNA extraction method and real-time PCR platforms used. In conclusion, diagnostic laboratories can now potentially incorporate the SETS method into specimen processing protocols for the rapid and efficient detection of F. tularensis by real-time PCR during laboratory bioterrorism-related investigations.

  16. Development a rapid and accurate multiplex real time PCR method for the detection Chlamydia trachomatis and Mycoplasma hominis.

    PubMed

    Safarkar, Roya; Mehrabadi, Jalil Fallah; Noormohammadi, Zahra; Mirnejad, Reza

    2017-02-26

    Sexually transmitted diseases easily spread among sexually active people and often have no symptoms. Rapid and accurate method for detecting these infections are necessary in early stages. The traditional detection methods of them are difficult and time-consuming. In this study, multiplex real time PCR was optimized for rapid identification of Chlamydia trachomatis and Mycoplasma hominis in a single tube and was performed with our designed primers. The sensitivity test was carried out to designed primers with diluted genomic DNA. To defined the specificity, non STD bacteria were used as DNA template. This study indicated that the developed multiplex real time PCR can be an effective alternative procedure to the conventional methods for rapid and accurate identification of C Chlamydia trachomatis and Mycoplasma hominis. Multiplex real-time PCR Results of them were checked with melting curves. The sensitivity of our designed primer by multiplex real time PCR for Chlamydia trachomatis and Mycoplasma hominis were 4.78×10(10) and 8.35×10(10) , respectively, Which the primers did not amplify any product from a non-STD species. Multiplex real time PCR by our new primers and analysis of melting curves were successfully usable for rapid and accurate detection of Chlamydia trachomatis and Mycoplasma hominis. This assay instead of traditional culture method, has considerable potential to be rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous and direct detection. © 2017 Wiley Periodicals, Inc.

  17. Comprehensive GMO detection using real-time PCR array: single-laboratory validation.

    PubMed

    Mano, Junichi; Harada, Mioko; Takabatake, Reona; Furui, Satoshi; Kitta, Kazumi; Nakamura, Kosuke; Akiyama, Hiroshi; Teshima, Reiko; Noritake, Hiromichi; Hatano, Shuko; Futo, Satoshi; Minegishi, Yasutaka; Iizuka, Tayoshi

    2012-01-01

    We have developed a real-time PCR array method to comprehensively detect genetically modified (GM) organisms. In the method, genomic DNA extracted from an agricultural product is analyzed using various qualitative real-time PCR assays on a 96-well PCR plate, targeting for individual GM events, recombinant DNA (r-DNA) segments, taxon-specific DNAs, and donor organisms of the respective r-DNAs. In this article, we report the single-laboratory validation of both DNA extraction methods and component PCR assays constituting the real-time PCR array. We selected some DNA extraction methods for specified plant matrixes, i.e., maize flour, soybean flour, and ground canola seeds, then evaluated the DNA quantity, DNA fragmentation, and PCR inhibition of the resultant DNA extracts. For the component PCR assays, we evaluated the specificity and LOD. All DNA extraction methods and component PCR assays satisfied the criteria set on the basis of previous reports.

  18. Simultaneous detection of influenza viruses A and B using real-time quantitative PCR.

    PubMed

    van Elden, L J; Nijhuis, M; Schipper, P; Schuurman, R; van Loon, A M

    2001-01-01

    Since influenza viruses can cause severe illness, timely diagnosis is important for an adequate intervention. The available rapid detection methods either lack sensitivity or require complex laboratory manipulation. This study describes a rapid, sensitive detection method that can be easily applied to routine diagnosis. This method simultaneously detects influenza viruses A and B in specimens of patients with respiratory infections using a TaqMan-based real-time PCR assay. Primers and probes were selected from highly conserved regions of the matrix protein gene of influenza virus A and the hemagglutinin gene segment of influenza virus B. The applicability of this multiplex PCR was evaluated with 27 influenza virus A and 9 influenza virus B reference strains and isolates. In addition, the specificity of the assay was assessed using eight reference strains of other respiratory viruses (parainfluenza viruses 1 to 3, respiratory syncytial virus Long strain, rhinoviruses 1A and 14, and coronaviruses OC43 and 229E) and 30 combined nose and throat swabs from asymptomatic subjects. Electron microscopy-counted stocks of influenza viruses A and B were used to develop a quantitative PCR format. Thirteen copies of viral RNA were detected for influenza virus A, and 11 copies were detected for influenza virus B, equaling 0.02 and 0.006 50% tissue culture infective doses, respectively. The diagnostic efficacy of the multiplex TaqMan-based PCR was determined by testing 98 clinical samples. This real-time PCR technique was found to be more sensitive than the combination of conventional viral culturing and shell vial culturing.

  19. Improved Serotype-Specific Dengue Virus Detection in Trinidad and Tobago using a Multiplex, Real-Time RT-PCR

    PubMed Central

    Waggoner, Jesse J.; Sahadeo, Nikita S. D.; Brown, Arianne; Mohamed-Hadley, Alisha; Hadley, Dexter; Carrington, Leslie; Carrington, Christine V. F.; Pinsky, Benjamin A.

    2014-01-01

    Dengue virus (DENV) transmission occurs throughout the Caribbean, though laboratory confirmation and epidemiologic surveillance is limited by the availability of serotype-specific molecular diagnostics. In this study, we show that a serotype-specific DENV multiplex, real-time RT-PCR detected DENV RNA in significantly more samples (82/182) than a reference hemi-nested RT-PCR (57/182; p=0.01). PMID:25533614

  20. PCR Real time Mismatch Amplification Mutation Assay (MAMA Real Time PCR) for evaluation of TNF-α promoter gene polymorphism -308 G/A in patients with psoriasis.

    PubMed

    Bergallo, Massimiliano; Ponti, Renata; Gambarino, Stefano; Galliano, Ilaria; Montanari, Paola; Fava, Paolo; Novelli, Mauro; Quaglino, Pietro; Fierro, Maria T; Marra, Elena

    2016-10-01

    Psoriasis is a common chronic inflammatory disease, the plaques are infiltrated by leukocytes producing high levels of proinflammatory cytokines and TNF-α. Single-nucleotide polymorphisms within the gene promoters have been shown to affect gene expression. The -308 G/A polymorphism could affect TNF synthesis at transcriptional level. The present study develops a MAMA Real Time PCR assay, in order to identify homozygosis or heterozygosis for TNF-α -308 G/A polymorphism. Seventy patients with psoriasis and 235 controls were considered for the development of the real time PCR assay. Whole blood was processed for nucleic acid extraction. A percentage of 36.17% controls and 38.6% patients were heterozygosis, considering Amplification-refractory mutation system (ARMS)-PCR assay while 23% and 22.85% were heterozygosis using Mismatch Amplification Mutation Assay (MAMA)-PCR. On the contrary, 1.3% and 1.4% were homozygosis A, while 75.7% and 75.75% presented homozygosis G, taking into account the MAMA-PCR results. The two assays were significantly different (P=0.0004 at χ2 Test), but MAMA-PCR showed a better performance for TNF-α -308 G/A gene polymorphism investigation. Further studies are needed for a better comprehension of the role of this polymorphism, such as MAMA real time PCR assays development for other players in cellular immune response.

  1. Identification of Aedes aegypti and its Respective Life Stages by Real-Time PCR

    DTIC Science & Technology

    2004-06-01

    RTO-MP-HFM-108 22 - 1 Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR James C. McAvin1*; Major David E...Stages by Real - Time PCR 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...grade water Identification of Aedes aegypti and its Respective Life Stages by Real - Time PCR RTO-MP-HFM-108 22 - 3 for no template controls

  2. A sensitive multiplex real-time PCR panel for rapid diagnosis of viruses associated with porcine respiratory and reproductive disorders.

    PubMed

    Wu, Haigang; Rao, Pinbin; Jiang, Yonghou; Opriessnig, Tanja; Yang, Zongqi

    2014-01-01

    The objective of this study was to develop a multiplex real-time PCR panel using TaqMan probes for the detection and differentiation of porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus North American type (PRRSV-NA), pseudorabies virus (PRV), classical swine fever virus (CSFV), porcine parvovirus type 1 (PPV1) and Japanese encephalitis virus (JEV). Specific primer and probe combinations for PCV2, PRRSV, PRV, CSFV, PPV1 and JEV were selected within the conserved region of each viral genome. The multiplex real-time PCR panel which was run in two separate tubes was capable of specific detection of the six selected pig viruses, without cross-reactions with other non-targeted pig viruses. The detection limit of the assays was 10 copies/μL for PCV2, PRV, CSFV and PRRSV and 100 copies/μL for PPV and JEV. The two-tube multiplex real-time PCR panel showed 99.2% concordance with conventional PCR assays on 118 field samples. Overall, the multiplex real-time PCR panel provides a fast, specific, and sensitive diagnostic tool for detection of multiple viral pathogens in pigs and will be useful not only for diagnostics, or ecological, epidemiological and pathogenesis studies, but also for investigating host/virus or virus/virus interactions, particularly during coinfections.

  3. Rapid and sensitive detection of ostreid herpesvirus 1 in oyster samples by real-time PCR.

    PubMed

    Pepin, J F; Riou, A; Renault, T

    2008-05-01

    Herpes and herpes-like virus infections have been reported in various marine mollusc species associated with high mortality rates. Following the characterisation and genome sequencing of ostreid herpesvirus 1 (OsHV-1), specific diagnostic tools have been developed based on conventional PCR techniques or in situ hybridisation. We have now developed a real-time PCR assay for rapid, sensitive and quantitative detection of OsHV-1, and compared it with a conventional PCR technique described previously. The new assay utilised SYBR((R)) Green chemistry with specific primers C(9)/C(10) targeting the C region. The melt curve analysis of OsHV-1 DNA or DNA extracted from infected material showed only one melting temperature peak (75.75+/-0.1 degrees C). The assay had a detection limit of 4 copies/microL of viral genomic DNA and a dynamic range of 5 logs. Using infected oyster samples as template, the assay was about 100-fold more sensitive than single PCR method using C(2)/C(6) primers. The assay was applied successfully for rapid diagnosis (100 min) and quantitation of OsHV-1 in different developmental stages of Crassostrea gigas. Although it already exists a competitive PCR method to quantify OsHV-1 DNA, quantitative data that will emerge in future using the new sensitive and reliable assay will illuminate aspects of pathogenesis, in particular the viral loads in asymptomatic oysters and the kinetics of infection in specific target tissues.

  4. A Low-Cost and Fast Real-Time PCR System Based on Capillary Convection.

    PubMed

    Qiu, Xianbo; Ge, Shengxiang; Gao, Pengfei; Li, Ke; Yang, Yongliang; Zhang, Shiyin; Ye, Xiangzhong; Xia, Ningshao; Qian, Shizhi

    2017-02-01

    A low-cost and fast real-time PCR system in a pseudo-isothermal manner with disposable capillary tubes based on thermal convection for point-of-care diagnostics is developed and tested. Once stable temperature gradient along the capillary tube has been established, a continuous circulatory flow or thermal convection inside the capillary tube will repeatedly transport PCR reagents through temperature zones associated with the DNA denaturing, annealing, and extension stages of the reaction. To establish stable temperature gradient along the capillary tube, a dual-temperature heating strategy with top and bottom heaters is adopted here. A thermal waveguide is adopted for precise maintenance of the temperature of the top heater. An optimized optical network is developed for monitoring up to eight amplification units for real-time fluorescence detection. The system performance was demonstrated with repeatable detection of influenza A (H1N1) virus nucleic acid targets with a limit of detection of 1.0 TCID50/mL within 30 min.

  5. Rapid differentiation of mycobacteria by simplex real-time PCR with melting temperature calling analysis.

    PubMed

    Lin, L; Yin, X; Wang, Q

    2015-09-01

    This study aimed to develop a rapid, simple and cost-effective method for the differentiation of Mycobacterium species. A total of 80 clinical mycobacterial isolates belonging to 12 different species and 16 reference strains of 16 different species were differentiated by the simplex real-time PCR coupled with melting temperature calling analysis. By comparing their melting profiles with those of the reference strains, all clinical mycobacterial isolates were differentiated as Mycobacterium tuberculosis complex or nontuberculous mycobacteria, and the latter were further divided into five groups. In comparison with 16S-23S internal transcribed spacer sequencing method as the gold standard method, both sensitivity and specificity of the assay were 100% when it was used for the differentiation between Myco. tuberculosis complex and nontuberculous mycobacteria. The simplex real-time PCR coupled with melting temperature calling analysis could be an alternative method for the differentiation between Myco. tuberculosis complex and nontuberculous mycobacteria. Rapid differentiation of mycobacteria could shorten the diagnostic time of mycobacterial diseases. It is also helpful for achieving optimal therapy and appropriate patient management. © 2015 The Society for Applied Microbiology.

  6. Validation of Real-Time PCR for Laboratory Diagnosis of Acanthamoeba Keratitis▿

    PubMed Central

    Thompson, Paul P.; Kowalski, Regis P.; Shanks, Robert M. Q.; Gordon, Y. Jerold

    2008-01-01

    Confirmation of Acanthamoeba keratitis by laboratory diagnosis is the first step in the treatment of this vision-threatening disease. Two real-time PCR TaqMan protocols (the Rivière and Qvarnstrom assays) were developed for the detection of genus-specific Acanthamoeba DNA but lacked clinical validation. We have adapted these assays for the Cepheid SmartCycler II system (i) by determining their real-time PCR limits of detection and amplification efficiencies, (ii) by determining their ability to detect trophozoites and cysts, and (iii) by testing a battery of positive and negative samples. We also examined the inhibitory effects of a number of commonly used topical ophthalmic drugs on real-time PCR. The results of the real-time PCR limit of detection and amplification efficiency of the Rivière and Qvarnstrom assays were 11.3 DNA copies/10 μl and 94% and 43.8 DNA copies/10 μl and 92%, respectively. Our extraction protocol enabled us to detect 0.7 Acanthamoeba cysts/10 μl and 2.3 Acanthamoeba trophozoites/10 μl by both real-time PCR assays. The overall agreement between the assays was 97.0%. The clinical sensitivity and specificity of both real-time PCR assays based on culture were 100% (7 of 7) and 100% (37 of 37), respectively. Polyhexamethylene biguanide was the only topical drug that demonstrated PCR inhibition, with a minimal inhibitory dilution of 1/640 and an amplification efficiency of 72.7%. Four clinical samples were Acanthamoeba culture negative and real-time PCR positive. Our results indicate that both real-time PCR assays could be used to diagnose Acanthamoeba keratitis. Polyhexamethylene biguanide can inhibit PCR, and we suggest that specimen collection occur prior to topical treatment to avoid possible false-negative results. PMID:18701667

  7. Validation of real-time PCR for laboratory diagnosis of Acanthamoeba keratitis.

    PubMed

    Thompson, Paul P; Kowalski, Regis P; Shanks, Robert M Q; Gordon, Y Jerold

    2008-10-01

    Confirmation of Acanthamoeba keratitis by laboratory diagnosis is the first step in the treatment of this vision-threatening disease. Two real-time PCR TaqMan protocols (the Rivière and Qvarnstrom assays) were developed for the detection of genus-specific Acanthamoeba DNA but lacked clinical validation. We have adapted these assays for the Cepheid SmartCycler II system (i) by determining their real-time PCR limits of detection and amplification efficiencies, (ii) by determining their ability to detect trophozoites and cysts, and (iii) by testing a battery of positive and negative samples. We also examined the inhibitory effects of a number of commonly used topical ophthalmic drugs on real-time PCR. The results of the real-time PCR limit of detection and amplification efficiency of the Rivière and Qvarnstrom assays were 11.3 DNA copies/10 microl and 94% and 43.8 DNA copies/10 microl and 92%, respectively. Our extraction protocol enabled us to detect 0.7 Acanthamoeba cysts/10 microl and 2.3 Acanthamoeba trophozoites/10 microl by both real-time PCR assays. The overall agreement between the assays was 97.0%. The clinical sensitivity and specificity of both real-time PCR assays based on culture were 100% (7 of 7) and 100% (37 of 37), respectively. Polyhexamethylene biguanide was the only topical drug that demonstrated PCR inhibition, with a minimal inhibitory dilution of 1/640 and an amplification efficiency of 72.7%. Four clinical samples were Acanthamoeba culture negative and real-time PCR positive. Our results indicate that both real-time PCR assays could be used to diagnose Acanthamoeba keratitis. Polyhexamethylene biguanide can inhibit PCR, and we suggest that specimen collection occur prior to topical treatment to avoid possible false-negative results.

  8. Sensitivity of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood

    PubMed Central

    da Costa Lima, Manoel Sebastião; Zorzenon, Denielly Christina Rodrigues; Dorval, Maria Elizabeth Cavalheiros; Pontes, Elenir Rose Jardim Cury; Oshiro, Elisa Teruya; Cunha, Rodrigo; Andreotti, Renato; Matos, Maria de Fatima Cepa

    2013-01-01

    Objective To evaluate the effectiveness of PCR and real-time PCR for the diagnosis of human visceral leishmaniasis using peripheral blood samples. Methods DNA extraction was performed using Promega Wizard® Genomic kits. PCR employing RV1/RV2 primers yielded 145-bp amplicons. Real-time PCR was performed with the same primers and SYBR Green ROX Plus mix. These techniques were used to analyze 100 peripheral blood samples from patients with clinical signs of the disease. Results The sensitivity and specificity levels were 91,3%% and 29,6%, respectively, for real-time PCR and 97.78% and 61.82%, respectively, for PCR. Conclusions Real-time PCR proved to be a satisfactory method for the diagnosis of human visceral leishmaniasis.

  9. Comparison between Conventional and Real-Time PCR Assays for Diagnosis of Visceral Leishmaniasis

    PubMed Central

    Pereira, Mariana R.; Rocha-Silva, Fabiana; Graciele-Melo, Cidiane; Lafuente, Camila R.; Magalhães, Telcia; Caligiorne, Rachel B.

    2014-01-01

    The diagnosis of visceral leishmaniasis (VL) is a challenging issue and several studies worldwide have evaluated the different tools to reach a diagnostic solution. The polymerase chain reaction (PCR) has proven to be effective in detecting the genome of Leishmania species in different biological samples. In this study, we compared the conventional PCR and real-time PCR using the Sybr Green system and their application in molecular diagnosis of visceral leishmaniasis in peripheral blood as a biological sample. The genus-specific conserved region of kinetoplast DNA (kDNA) was the target of amplification. We studied 30 samples from patients with suspect of visceral leishmaniasis who were treated by the Medical Clinic of Santa Casa de Belo Horizonte Hospital, Brazil. Among the samples studied, 19 had a confirmed diagnosis for VL by serology and/or by clinical findings. Among these 19 samples, 63% (n = 12) presented positive results for serology and 79% (n = 15) positive results in both PCR methodologies. This fact suggests that the PCR technique can assist in the diagnosis of visceral leishmaniasis in patients who do not have detectable antibodies by serology but can present the genome of the parasite circulating in whole blood. Also, it was possible to observe that there was conformity between the results of the techniques of cPCR and qPCR using the Sybr Green system in 100% of samples analyzed. These data suggest that both PCR techniques were equally effective for detection of the genome of the parasite in the patient's blood. PMID:24689047

  10. Evaluation of urine for Leishmania infantum DNA detection by real-time quantitative PCR.

    PubMed

    Pessoa-E-Silva, Rômulo; Mendonça Trajano-Silva, Lays Adrianne; Lopes da Silva, Maria Almerice; da Cunha Gonçalves-de-Albuquerque, Suênia; de Goes, Tayná Correia; Silva de Morais, Rayana Carla; Lopes de Melo, Fábio; de Paiva-Cavalcanti, Milena

    2016-12-01

    The availability of some sorts of biological samples which require noninvasive collection methods has led to an even greater interest in applying molecular biology on visceral leishmaniasis (VL) diagnosis, since these samples increase the safety and comfort of both patients and health professionals. In this context, this work aimed to evaluate the suitability of the urine as a specimen for Leishmania infantum kinetoplast DNA detection by real-time quantitative PCR (qPCR). Subsequent to the reproducibility analysis, the detection limit of the qPCR assay was set at 5fg (~0.025 parasites) per μL of urine. From the comparative analysis performed with a set of diagnostic criteria (serological and molecular reference tests), concordance value of 96.08% was obtained (VL-suspected and HIV/AIDS patients, n=51) (P>0.05). Kappa coefficient (95% CI) indicated a good agreement between the test and the set of diagnostic criteria (k=0.778±0.151). The detection of Leishmania DNA in urine by qPCR was possible in untreated individuals, and in those with or without suggestive renal impairment. Fast depletion of the parasite's DNA in urine after treatment (from one dose of meglumine antimoniate) was suggested by negative qPCR results, thus indicating it as a potential alternative specimen to follow up the efficacy of therapeutic approaches. Even when evaluated in a clinically heterogeneous set of patients, the urine showed good prospect as sample for VL diagnosis by qPCR, also indicating a good negative predictive value for untreated suspected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Diagnosis of ocular toxoplasmosis by two polymerase chain reaction (PCR) examinations: qualitative multiplex and quantitative real-time.

    PubMed

    Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu

    2011-09-01

    To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.

  12. Comparison of Quantitation of Cytomegalovirus DNA by Real-Time PCR in Whole Blood with the Cytomegalovirus Antigenemia Assay

    PubMed Central

    Kwon, Seonhee; Jung, Bo Kyeung; Ko, Sun-Young; Lee, Chang Kyu

    2015-01-01

    Background Quantitation of cytomegalovirus (CMV) DNA using real-time PCR has been utilized for monitoring CMV infection. However, the CMV antigenemia assay is still the 'gold standard' assay. There are only a few studies in Korea that compared the efficacy of use of real-time PCR for quantitation of CMV DNA in whole blood with the antigenemia assay, and most of these studies have been limited to transplant recipients. Method 479 whole blood samples from 79 patients, falling under different disease groups, were tested by real-time CMV DNA PCR using the Q-CMV real-time complete kit (Nanogen Advanced Diagnostic S.r.L., Italy) and CMV antigenemia assay (CINA Kit, ArgeneBiosoft, France), and the results were compared. Repeatedly tested patients were selected and their charts were reviewed for ganciclovir therapy. Results The concordance rate of the two assays was 86.4% (Cohen's kappa coefficient value=0.659). Quantitative correlation between the two assays was a moderate (r=0.5504, P<0.0001). Among 20 patients tested repeatedly with the two assays, 13 patients were transplant recipients and treated with ganciclovir. Before treatment, CMV was detected earlier by real-time CMV DNA PCR than the antigenemia assay, with a median difference of 8 days. After treatment, the antigenemia assay achieved negative results earlier than real-time CMV DNA PCR with a median difference of 10.5 days. Conclusions Q-CMV real-time complete kit is a useful tool for early detection of CMV infection in whole blood samples in transplant recipients. PMID:25553288

  13. Mediator probe PCR: detection of real-time PCR by label-free probes and a universal fluorogenic reporter.

    PubMed

    Wadle, Simon; Rubenwolf, Stefanie; Lehnert, Michael; Faltin, Bernd; Weidmann, Manfred; Hufert, Frank; Zengerle, Roland; von Stetten, Felix

    2014-01-01

    Mediator probe PCR (MP PCR) is a novel detection format for real-time nucleic acid analysis. Label-free mediator probes (MP) and fluorogenic universal reporter (UR) oligonucleotides are combined to accomplish signal generation. Compared to conventional hydrolysis probe PCRs costs can thus be saved by using the same fluorogenic UR for signal generation in different assays. This tutorial provides a practical guideline to MP and UR design. MP design rules are very similar to those of hydrolysis probes. The major difference is in the replacement of the fluorophore and quencher by one UR-specific sequence tag, the mediator. Further protocols for the setup of reactions, to detect either DNA or RNA targets with clinical diagnostic target detection as models, are explained. Ready to use designs for URs are suggested and guidelines for their de novo design are provided as well, including a protocol for UR signal generation characterization.

  14. Quantitative Real-Time PCR Fecal Source Identification in the ...

    EPA Pesticide Factsheets

    Rivers in the Tillamook Basin play a vital role in supporting a thriving dairy and cheese-making industry, as well as providing a safe water resource for local human and wildlife populations. Historical concentrations of fecal bacteria in these waters are at times too high to allow for safe use leading to economic loss, endangerment of local wildlife, and poor conditions for recreational use. In this study, we employ host-associated qPCR methods for human (HF183/BacR287 and HumM2), ruminant (Rum2Bac), cattle (CowM2 and CowM3), canine (DG3 and DG37), and avian (GFD) fecal pollution combined with high-resolution geographic information system (GIS) land use data and general indicator bacteria measurements to elucidatewater quality spatial and temporal trends. Water samples (n=584) were collected over a 1-year period at 29 sites along the Trask, Kilchis, and Tillamook rivers and tributaries (Tillamook Basin, OR). A total of 16.6% of samples (n=97) yielded E. coli levels considered impaired based on Oregon Department of Environmental Quality bacteria criteria (406 MPN/100mL). Hostassociated genetic indicators were detected at frequencies of 39.2% (HF183/BacR287), 16.3% (HumM2), 74.6% (Rum2Bac), 13.0% (CowM2), 26.7% (CowM3), 19.8% (DG3), 3.2% (DG37), and 53.4% (GFD) across all water samples (n=584). Seasonal trends in avian, cattle, and human fecal pollution sources were evident over the study area. On a sample site basis, quantitative fecal source identification and

  15. Goose Hemorrhagic polyomavirus detection in geese using real-time PCR assay.

    PubMed

    Leon, Olivier; Corrand, Léni; Bich, Tran Ngoc; Le Minor, Odile; Lemaire, Mylène; Guérin, Jean-Luc

    2013-12-01

    Goose hemorrhagic polyomavirus (GHPV) is the viral agent of hemorrhagic nephritis enteritis of geese (HNEG), a lethal disease of goslings. Although death is the most common outcome, geese that recover from HNEG are persistently infected. Here, we present the development of real-time SYBR Green real-time PCR targeted to GHPV and its use to assess the prevalence of GHPV infection in French geese flocks. When compared with classical end-point PCR, real-time PCR revealed a much better sensitivity and equivalent specificity. Real-time PCR could, therefore, be considered a gold standard for the detection of GHPV. Results of field investigations evidenced a very high prevalence of GHPV infections in French geese, largely associated with healthy carriage.

  16. A cost effective real-time PCR for the detection of adenovirus from viral swabs

    PubMed Central

    2013-01-01

    Compared to traditional testing strategies, nucleic acid amplification tests such as real-time PCR offer many advantages for the detection of human adenoviruses. However, commercial assays are expensive and cost prohibitive for many clinical laboratories. To overcome fiscal challenges, a cost effective strategy was developed using a combination of homogenization and heat treatment with an “in-house” real-time PCR. In 196 swabs submitted for adenovirus detection, this crude extraction method showed performance characteristics equivalent to viral DNA obtained from a commercial nucleic acid extraction. In addition, the in-house real-time PCR outperformed traditional testing strategies using virus culture, with sensitivities of 100% and 69.2%, respectively. Overall, the combination of homogenization and heat treatment with a sensitive in-house real-time PCR provides accurate results at a cost comparable to viral culture. PMID:23758993

  17. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  18. Avian influenza virus detection and quantitation by real-time RT-PCR

    USDA-ARS?s Scientific Manuscript database

    Real-time RT-PCR (rRT-PCR) has been used for avian influenza virus (AIV) detection since the early 2000’s for routine surveillance, during outbreaks and for research. Some of the advantages of rRT-PCR are: high sensitivity, high specificity, rapid time-to-result, scalability, cost, and its inherentl...

  19. Evaluation of Quantitative Real-Time PCR Assays for Detection of Citrus Greening

    USDA-ARS?s Scientific Manuscript database

    Citrus huanglongbing (HLB), or citrus greening, is a serious and industry-limiting disease. Preliminary diagnoses can be made through visual symptoms, and greater certainty can be achieved through quantitative real-time PCR (qPCR). Several qPCR procedures are available including those by designed by...

  20. Comparison of real-time PCR with conventional methods to detect dermatophytes in samples from patients with suspected dermatophytosis.

    PubMed

    Paugam, A; L'ollivier, C; Viguié, C; Anaya, L; Mary, C; de Ponfilly, G; Ranque, S

    2013-11-01

    A PCR detecting dermatophytes within a short turnaround time would significantly enhance the management of patients with suspected dermatophytosis. This study aimed at comparing the results of a real-time PCR assay with those of the conventional diagnostic (direct microscopy and culture) performed by a dermatologist working in a medical mycology laboratory for the detection of dermatophytes in nail and skin samples. A total of 112 specimens (54 nail and 58 skin) were collected from 52 patients with one to four suspected dermatophytosis lesions. The PCR diagnostic indices were calculated for either sample- or patient-based dermatophytosis diagnosis. The sample-based diagnostic efficacy yielded 79% sensitivity and 73% specificity. The patient-based diagnostic efficacy was higher with 100% sensitivity and 82% specificity. Interestingly, PCR yielded significantly (p < 0.004) lesser false negative results and performed overall better (diagnostic odds ratio = 24.0 vs. 5.5) in nail than in skin samples. In conclusion, this real-time PCR assay performance was consistent with those of the conventional methods in the hands of a skilled expert and particularly efficacious in diagnosing dermatophyte onychomycosis. This PCR is suited to high throughput batch processing; if used instead of direct microscopy, it could reduce hands-on time in the routine clinical laboratory workflow. © 2013 Elsevier B.V. All rights reserved.

  1. Comparison and evaluation of real-time PCR, real-time nucleic acid sequence-based amplification, conventional PCR, and serology for diagnosis of Mycoplasma pneumoniae.

    PubMed

    Templeton, Kate E; Scheltinga, Sitha A; Graffelman, A Willy; Van Schie, Jolanda M; Crielaard, Jantine W; Sillekens, Peter; Van Den Broek, Peterhans J; Goossens, Herman; Beersma, Matthias F C; Claas, Eric C J

    2003-09-01

    Mycoplasma pneumoniae is a common cause of community-acquired pneumonia and lower-respiratory-tract infections. Diagnosis has traditionally been obtained by serological diagnosis, but increasingly, molecular techniques have been applied. However, the number of studies actually comparing these assays is limited. The development of a novel duplex real-time PCR assay for detection of M. pneumoniae in the presence of an internal control real-time PCR is described. In addition, real-time nucleic acid sequence-based amplification (NASBA) on an iCycler apparatus is evaluated. These assays were compared to serology and a conventional PCR assay for 106 clinical samples from patients with lower-respiratory-tract infection. Of the 106 samples, 12 (11.3%) were positive by all the molecular methods whereas serology with acute sample and convalescent samples detected 6 (5.6%) and 9 (8.5%), respectively. Clinical symptoms of the patients with Mycoplasma-positive results were compared to those of the other patients with lower-respiratory-tract infections, and it was found that the results for mean lower age numbers as well as the presence of chills, increased erythrocyte sedimentation rate, and raised C-reactive protein levels showed significant differences. Molecular methods are superior for diagnosis of M. pneumoniae, providing more timely diagnosis. In addition, using real-time methods involves less hands-on time and affords the ability to monitor the reaction in the same tube.

  2. Real-time PCR for the detection of precise transgene copy number in durum wheat.

    PubMed

    Gadaleta, Agata; Giancaspro, Angelica; Cardone, Maria Francesca; Blanco, Antonio

    2011-12-01

    Recent results obtained in various crops indicate that real-time PCR could be a powerful tool for the detection and characterization of transgene locus structures. The determination of transgenic locus number through real-time PCR overcomes the problems linked to phenotypic segregation analysis (i.e. lack of detectable expression even when the transgenes are present) and can analyse hundreds of samples in a day, making it an efficient method for estimating gene copy number. Despite these advantages, many authors speak of "estimating" copy number by real-time PCR, and this is because the detection of a precise number of transgene depends on how well real-time PCR performs.This study was conducted to determine transgene copy number in transgenic wheat lines and to investigate potential variability in sensitivity and resolution of real-time chemistry by TaqMan probes. We have applied real-time PCR to a set of four transgenic durum wheat lines previously obtained. A total of 24 experiments (three experiments for two genes in each transgenic line) were conducted and standard curves were obtained from serial dilutions of the plasmids containing the genes of interest. The correlation coefficients ranged from 0.95 to 0.97. By using TaqMan quantitative real-time PCR we were able to detect 1 to 41 copies of transgenes per haploid genome in the DNA of homozygous T4 transformants. Although a slight variability was observed among PCR experiments, in our study we found real-time PCR to be a fast, sensitive and reliable method for the detection of transgene copy number in durum wheat, and a useful adjunct to Southern blot and FISH analyses to detect the presence of transgenic DNA in plant material.

  3. [Analysis of appropriate amount of template DNA for sinofiler kit by real time quantitative PCR technique].

    PubMed

    Li, Cheng-Tao; Guo, Hong; Lin, Yuan; Liu, Yan; Que, Ting-Zhi; Li, Li

    2008-04-01

    To explore the appropriate amount of template DNA for Sinofiler Kit. The DNA samples with ideally genotyped results by Sinofiler Kit were detected by real-time quantitative PCR assay. It was shown that 1.29-1.51 ng of template DNA in 12.5 microL reaction volume was optimal for STR genotyping with Sinofiler Kit. Real time quantitative PCR is an accurate and necessary technique for detection of appropriate amount of template DNA for different kits.

  4. Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague.

    PubMed

    Riehm, Julia M; Rahalison, Lila; Scholz, Holger C; Thoma, Bryan; Pfeffer, Martin; Razanakoto, Léa Mamiharisoa; Al Dahouk, Sascha; Neubauer, Heinrich; Tomaso, Herbert

    2011-02-01

    Yersinia (Y.) pestis, the causative agent of plague, is endemic in natural foci of Asia, Africa, and America. Real-time PCR assays have been described as rapid diagnostic tools, but so far none has been validated for its clinical use. In a retrospective clinical study we evaluated three real-time PCR assays in two different assay formats, 5'-nuclease and hybridization probes assays. Lymph node aspirates from 149 patients from Madagascar with the clinical diagnosis of bubonic plague were investigated for the detection of Y. pestis DNA. Results of real-time PCR assays targeting the virulence plasmids pPCP1 (pla gene), and pMT1 (caf1, Ymt genes) were compared with an F1-antigen immunochromatographic test (ICT) and cultivation of the organism. Out of the 149 samples an infection with Y. pestis was confirmed by culture in 47 patients while ICT was positive in 88 including all culture proven cases. The best real-time PCR assay was the 5'-nuclease assay targeting pla which was positive in 120 cases. In conclusion, the 5'-nuclease assay targeting pla can be recommended as diagnostic tool for establishing a presumptive diagnosis when bubonic plague is clinically suspected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Real time PCR on disposable PDMS chip with a miniaturized thermal cycler.

    PubMed

    Xiang, Q; Xu, B; Fu, R; Li, D

    2005-12-01

    This paper presents the design and implementation of a low-cost miniature PCR device consisting of a disposable reactor chip and a miniature thermal cycler. The simple fabrication of the PCR chip by PDMS (Polydimethylsiloxane) does not need micro-machining or photolithography processes. The thermal cycler was built with a thin film heater for heating and a fan for rapid cooling. This device can perform PCR tests in a single well chip or a multiple-well chip. It can run PCR reactions of different volumes to meet specific application requirements. The smallest reaction volume tested in this work is 0.9 microL. In addition, this device fits any standard fluorescence microscope for real time detection, which makes real time PCR affordable for most research labs and clinics with a fluorescence microscope. Real-time PCR of E. coli stx1 has been demonstrated with the device described.

  6. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis

    PubMed Central

    Sales, Mariana L.; Fonseca, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Filho, Paulo Martins Soares; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 – 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% – 100%) and 100% (CI = 93.98% – 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method. PMID:25763042

  7. Validation of a real-time PCR assay for the molecular identification of Mycobacterium tuberculosis.

    PubMed

    Sales, Mariana L; Fonseca Júnior, Antônio Augusto; Orzil, Lívia; Alencar, Andrea Padilha; Silva, Marcio Roberto; Issa, Marina Azevedo; Soares Filho, Paulo Martins; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2014-01-01

    Mycobacterium tuberculosis is the major cause of tuberculosis in humans. This bacillus gained prominence with the occurrence of HIV, presenting itself as an important opportunistic infection associated with acquired immunodeficiency syndrome (AIDS). The current study aimed to develop a real-time PCR using Eva Green technology for molecular identification of M. tuberculosis isolates. The primers were designed to Rv1510 gene. Ninety nine samples of M. tuberculosis and sixty samples of M. bovis were tested and no sample of the bovine bacillus was detected by the qPCR. Statistical tests showed no difference between the qPCR and biochemical tests used to identify the Mycobacterium tuberculosis. The correlation between tests was perfect with Kappa index of 1.0 (p < 0.001, CI = 0.84 - 1.0). The diagnostic sensitivity and specificity were 100% (CI = 95.94% - 100%) and 100% (CI = 93.98% - 100%). This qPCR was developed with the goal of diagnosing the bacillus M. tuberculosis in samples of bacterial suspension. TB reference laboratories (health and agriculture sectors), public health programs and epidemiological studies probably may benefit from such method.

  8. A quantitative real-time PCR method for monitoring Clostridium botulinum type A in rice samples.

    PubMed

    Takahashi, Hajime; Takakura, Chikako; Kimura, Bon

    2010-04-01

    A quantitative real-time PCR using SYBR Green dye was developed to target the neurotoxin type A (boNT/A) gene of Clostridium botulinum type A. Primer specificity was confirmed by analyzing 63 strains including 5 strains of C. botulinum type A and 11 of non-type A C. botulinum. The highly similar amplification efficiencies of the real-time PCR assay were observed for 5 strains of C. botulinum type A. The DNA extraction with NucliSENS miniMAG provided sufficient performance to obtain the purified DNA from steamed rice samples and to develop the standard curve for the enumeration of C. botulinum in steamed rice samples. The real-time PCR assay could detect 10 cells per milliliter of 10 x rice homogenate, thus indicating that more than 100 C. botulinum cells per g of rice sample was quantifiable by the real-time PCR assay. The inoculation of aseptic rice samples with low numbers of C. botulinum type A cells revealed that the fate of inoculated C. botulinum type A cells in rice samples could be monitored accurately by the real-time PCR assay. These results indicate that the real-time PCR assay developed in this study provides rapid, effective, and quantitative monitoring of C. botulinum in steamed rice samples.

  9. Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys)

    PubMed Central

    Dhami, Manpreet K.; Dsouza, Melissa; Waite, David W.; Anderson, Diane; Li, Dongmei

    2016-01-01

    The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is a gregarious crop pest that has rapidly spread across the world in the last two decades. It is an excellent hitchhiker species, especially as an over-wintering adult. During this period it is often associated with non-biological commodities such as shipping containers and machinery that travel long distances. Inadequate identification keys and similarity to common species has assisted its spread across Europe, while accurate identification from immature stages or eggs is not possible. We developed a real-time TaqMan PCR assay for the accurate and sensitive detection of the brown marmorated stink bug from all life stages. The assay performance against required diagnostic criterion and within a quarantine framework are described. PMID:26955631

  10. New real-time strain imaging concepts using diagnostic ultrasound.

    PubMed

    Pesavento, A; Lorenz, A; Siebers, S; Ermert, H

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted 'vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  11. New real-time strain imaging concepts using diagnostic ultrasound

    NASA Astrophysics Data System (ADS)

    Pesavento, A.; Lorenz, A.; Siebers, S.; Ermert, H.

    2000-06-01

    Two real-time strain imaging concepts and systems are presented. Both systems are based on a conventional ultrasound scanner that is connected to a PC with an A/D converter card for real-time data acquisition of rf data. Differential strain between successively acquired rf frames are estimated using phase root seeking. The first concept uses a special real-time implementation of manual elastography. In the second concept, denoted `vibrography', the static compression is replaced by low-frequency axial vibration of the probe, still operating in quasistatic acquisition mode. The properties of both concepts are discussed with regard to noise and motion artefacts, and it is shown, using simulations and phantom experiments, that both imaging concepts yield the same kind of strain images. Vibrography has the advantage that no manual compression has to be applied, total compression can be very low and some motion artefacts are better suppressed.

  12. Real-time RT-PCR for the detection and quantitative analysis of equine rhinitis viruses.

    PubMed

    Quinlivan, M; Maxwell, G; Lyons, P; Arkins, S; Cullinane, A

    2010-03-01

    Equine rhinitis viruses (ERV) cause respiratory disease and loss of performance in horses. It has been suggested that the economic significance of these viruses may have been underestimated due to insensitive methods of detection. To develop a sensitive, rapid, real-time RT-PCR (rRT-PCR) assay suitable for the routine diagnosis and epidemiological surveillance of the A and B variants of ERV. TaqMan primer probe sets for ERAV and ERBV were designed from conserved regions of the 5' UTR of the ERV genome. Over 400 samples from both clinically affected and asymptomatic horses were employed for validation of the assays. ERAV samples positive by rRT-PCR were verified by virus isolation and ERBV positive samples were verified by rRT-PCR using a different set of primers. The detection limit of the rRT-PCR for both viruses was 10-100 genome copies. Of 250 archival nasal swabs submitted for diagnostic testing over a 7 year period, 29 were ERAV positive and 3 were ERBV positive with an average incidence rate per year of 10 and 1.5%, respectively. There was evidence of co-circulation of ERAV and ERBV with equine influenza virus (EIV). Of 100 post race urine samples tested, 29 were ERAV positive by rRT-PCR. Partial sequencing of 2 ERBV positive samples demonstrated that one was 100% identical to ERBV1 from a 270 bp sequence and the other was more closely related to ERBV2 than ERBV1 (95% compared to 90% nucleotide identity in 178 bp). The rRT-PCR assays described here are specific and more sensitive than virus isolation. They have good reproducibility and are suitable for the routine diagnosis of ERAV and ERBV. These assays should be useful for investigating the temporal association between clinical signs and rhinitis virus shedding.

  13. [Analytical performances of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine].

    PubMed

    De Monte, Anne; Cannavo, Isabelle; Caramella, Anne; Ollier, Laurence; Giordanengo, Valérie

    2016-01-01

    Congenital cytomegalovirus (CMV) infection is the leading cause of sensoneurinal disability due to infectious congenital disease. The diagnosis of congenital CMV infection is based on the search of CMV in the urine within the first two weeks of life. Viral culture of urine is the gold standard. However, the PCR is highly sensitive and faster. It is becoming an alternative choice. The objective of this study is the validation of real-time PCR by Abbott RealTime CMV with m2000 for the detection of cytomegalovirus in urine. Repeatability, reproducibility, detection limit and inter-sample contamination were evaluated. Urine samples from patients (n=141) were collected and analyzed simultaneously in culture and PCR in order to assess the correlation of these two methods. The sensitivity and specificity of PCR were also calculated. The Abbott RealTime CMV PCR in urine is an automated and sensitive method (detection limit 200 UI/mL). Fidelity is very good (standard deviation of repeatability: 0.08 to 0.15 LogUI/mL and reproducibility 0.18 LogUI/mL). We can note a good correlation between culture and Abbott RealTime CMV PCR (kappa 96%). When considering rapid culture as reference, real-time PCR was highly sensitive (100%) and specific (98.2%). The real-time PCR by Abbott RealTime CMV with m2000 is optimal for CMV detection in urine.

  14. Diagnostic Molecular Mycobacteriology in Regions With Low Tuberculosis Endemicity: Combining Real-time PCR Assays for Detection of Multiple Mycobacterial Pathogens With Line Probe Assays for Identification of Resistance Mutations.

    PubMed

    Deggim-Messmer, Vanessa; Bloemberg, Guido V; Ritter, Claudia; Voit, Antje; Hömke, Rico; Keller, Peter M; Böttger, Erik C

    2016-07-01

    Molecular assays have not yet been able to replace time-consuming culture-based methods in clinical mycobacteriology. Using 6875 clinical samples and a study period of 35months we evaluated the use of PCR-based assays to establish a diagnostic workflow with a fast time-to-result of 1-2days, for 1. detection of Mycobacterium tuberculosis complex (MTB), 2. detection and identification of nontuberculous mycobacteria (NTM), and 3. identification of drug susceptible MTB. MTB molecular-based detection and culture gave concordant results for 97.7% of the specimens. NTM PCR-based detection and culture gave concordant results for 97.0% of the specimens. Defining specimens on the basis of combined laboratory data as true positives or negatives with discrepant results resolved by clinical chart reviews, we calculated sensitivity, specificity, PPV and NPV for PCR-based MTB detection as 84.7%, 100%, 100%, and 98.7%; the corresponding values for culture-based MTB detection were 86.3%, 100%, 100%, and 98.8%. PCR-based detection of NTM had a sensitivity of 84.7% compared to 78.0% of that of culture-based NTM detection. Molecular drug susceptibility testing (DST) by line-probe assay was found to predict phenotypic DST results in MTB with excellent accuracy. Our findings suggest a diagnostic algorithm to largely replace lengthy culture-based techniques by rapid molecular-based methods. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing novel coronavirus infections.

    PubMed

    Lin, C; Ye, R; Xia, Y L

    2015-12-02

    Novel coronavirus (nCoV) belongs to the Coronaviridae family, which includes the virus that causes SARS, or severe acute respiratory syndrome. However, infection source, transmission route, and host of nCoV have not yet been thoroughly characterized. In some cases, nCoV presented a limited person-to-person transmission. Therefore, early diagnosis of nCoV may be of importance for reducing the spread of disease in public. Methods for nCoV diagnosis involve smear dyeing inspection, culture identification, and real-time PCR detection, all of which are proved highly effective. Here, we performed a meta-analysis to evaluate the effectiveness of real-time PCR for diagnosing nCoV infection. Fifteen articles conformed to the inclusion and exclusion criteria for further meta-analysis on the basis of a wide range of publications searched from databases involving PubMed, EMBASE, Web of Science, Medline, ISI. We analyzed the stability and publication bias as well as examined the heterogeneity inspection of real-time PCR detection in contrast to smear staining and culture identification. The fixed-effect model was adopted in our meta-analysis. Our result demonstrated that the combination of real-time PCR and smear diagnostics yielded an odds ratio (OR) = 1.91, 95% confidence interval (CI) = 1.51-2.41, Z = 5.43, P < 0.05, while the combination of real-time PCR and culture identification yielded OR = 2.44, 95%CI = 1.77-3.37, Z = 5.41, P < 0.05. Therefore, we propose real-time PCR as an efficient method that offers an auxiliary support for future nCoV diagnosis.

  16. Evaluation of various real-time reverse transcription quantitative PCR assays for norovirus detection.

    PubMed

    Yoo, Ju Eun; Lee, Cheonghoon; Park, SungJun; Ko, GwangPyo

    2017-02-01

    Human noroviruses are widespread and contagious viruses causing nonbacterial gastroenteritis. Real-time reverse transcription quantitative PCR (real-time RT-qPCR) is currently the gold standard for sensitive and accurate detection for these pathogens and serves as a critical tool in outbreak prevention and control. Different surveillance teams, however, may use different assays and variability in specimen conditions may lead to disagreement in results. Furthermore, the norovirus genome is highly variable and continuously evolving. These issues necessitate the re-examination of the real-time RT-qPCR's robustness in the context of accurate detection as well as the investigation of practical strategies to enhance assay performance. Four widely referenced real-time RT-qPCR assays (Assay A-D) were simultaneously performed to evaluate characteristics such as PCR efficiency, detection limit, as well as sensitivity and specificity with RT-PCR, and to assess the most accurate method for detecting norovirus genogroups I and II. Overall, Assay D was evaluated to be the most precise and accurate assay in this study. A Zen internal quencher, which decreases nonspecific fluorescence during the PCR reaction, was added to Assay D's probe which further improved assay performance. This study compared several detection assays for noroviruses and an improvement strategy based on such comparisons provided useful characterizations of a highly optimized real-time RT-qPCR assay for norovirus detection.

  17. Towards real time diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    McJunkin, T. R.; Kunerth, D. C.; Nichol, C. I.; Todorov, E.; Levesque, S.

    2014-02-18

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  18. Towards Real Time Diagnostics of Hybrid Welding Laser/GMAW

    SciTech Connect

    Timothy Mcjunkin; Dennis C. Kunerth; Corrie Nichol; Evgueni Todorov; Steve Levesque; Feng Yu; Robert Danna Couch

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  19. Development of a real-time PCR assay for the identification of Gyrodactylus parasites infecting salmonids in northern Europe.

    PubMed

    Collins, Catherine M; Kerr, Rose; McIntosh, Rebecca; Snow, Mike

    2010-06-11

    Gyrodactylus salaris is a monogenean freshwater parasite that causes high mortality in wild Atlantic salmon, and a number of countries employ monitoring programmes for its presence. A TaqMan-MGB (minor groove binding) probe real-time multiplex assay targeting the internal transcribed spacer ribosomal DNA (ITS rDNA) was developed to simultaneously identify G. salaris/G. thymalli and 2 other commonly occurring Gyrodactylus species infecting salmonids in northern Europe: G. derjavinoides and G. truttae. In addition, a Gyrodactylus genus-level assay was developed to assess parasite DNA quality. The species-specific real-time PCR method correctly identified target species from a wide geographical range and from a number of salmonid hosts. It did not amplify G. lucii or G. teuchis. These species were successfully amplified using the Gyrodactylus genus real-time assay. The species-specific real-time assay proved to be significantly faster than the currently employed molecular screening method of ITS rDNA PCR amplification followed by restriction fragment length polymorphism analyses (RFLP). However, as with ITS RFLP, the real-time method did not distinguish between G. salaris and the non-pathogenic G. thymalli, its principle advantage being a significant reduction in time to achieve an initial diagnostic screen before the employment of more in-depth analyses for those specimens giving a positive G. salaris/G. thymalli real-time result.

  20. Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR.

    PubMed

    Rudi, K; Naterstad, K; Drømtorp, S M; Holo, H

    2005-01-01

    Surface contamination by Listeria monocytogenes of gouda-like cheeses during processing represents a potential public health problem. The aim of this work was to develop novel real-time PCR diagnostics to detect the presence of viable, dead or viable but not culturable (VBNC) cells on gouda-like cheeses. We used ethidium monoazide bromide (EMA)-PCR for direct quantification of viable and dead cells, while semiquantitative detection of culturable cells below the PCR detection limit (c. 100 CFU g(-1)) was obtained by combining growth and real-time PCR. We were able to quantify the fraction of >0.5% viable cells in a background of dead cells by EMA-PCR, given that the viable cell concentration was above the PCR detection limit. The combined growth and real-time PCR complemented the EMA-PCR, and enabled semiquantitative detection of low levels of culturable cells (10 and 100 CFU g(-1)). The significance of this work is that we have developed a novel concept for detection of viable and potentially infectious L. monocytogenes.

  1. High-throughput real-time PCR-based genotyping without DNA purification

    PubMed Central

    2012-01-01

    Background While improvements in genotyping technology have allowed for increased throughput and reduced time and expense, protocols remain hindered by the slow upstream steps of isolating, purifying, and normalizing DNA. Various methods exist for genotyping samples directly through blood, without having to purify the DNA first. These procedures were designed to be used on smaller throughput systems, however, and have not yet been tested for use on current high-throughput real-time (q)PCR based genotyping platforms. In this paper, a method of quantitative qPCR-based genotyping on blood without DNA purification was developed using a high-throughput qPCR platform. Findings The performances of either DNA purified from blood or the same blood samples without DNA purification were evaluated through qPCR-based genotyping. First, 60 different mutations prevalent in the Ashkenazi Jewish population were genotyped in 12 Ashkenazi Jewish individuals using the QuantStudio™12K Flex Real-Time PCR System. Genotyping directly from blood gave a call rate of 99.21%, and an accuracy of 100%, while the purified DNA gave a call rate of 92.49%, and an accuracy of 99.74%. Although no statistical difference was found for these parameters, an F test comparing the standard deviations of the wild type clusters for the two different methods indicated significantly less variation when genotyping directly from blood instead of after DNA purification. To further establish the ability to perform high-throughput qPCR based genotyping directly from blood, 96 individuals of Ashkenazi Jewish decent were genotyped for the same 60 mutations (5,760 genotypes in 5 hours) and resulted in a call rate of 98.38% and a diagnostic accuracy of 99.77%. Conclusion This study shows that accurate qPCR-based high-throughput genotyping can be performed without DNA purification. The direct use of blood may further expedite the entire genotyping process, reduce costs, and avoid tracking errors which can occur during

  2. Application of real-time PCR and melting curve analysis in rapid Diego blood group genotyping.

    PubMed

    Novaretti, M C Z; Ruiz, A S; Dorlhiac-Llacer, P E; Chamone, D A F

    2010-01-01

    The paucity of appropriate reagents for serologic typing of the Diego blood group antigens has prompted the development of a real-time PCR and melting curve analysis for Diego blood group genotyping. In this study, we phenotyped 4326 donor blood samples for Di(a) using semiautomated equipment. All 157 Di(a+) samples were then genotyped by PCR using sequence-specific primers (PCR-SSP) for DI*02 because of anti-Di(b) scarcity. Of the 4326 samples, we simultaneously tested 160 samples for Di(a) and Di(b) serology, and DI*01 and DI*02 by PCR-SSP and by real-time PCR. We used the same primers for Diego genotyping by real-time PCR and PCR-SSP. Melting curve profiles obtained using the dissociation software of the real-time PCR apparatus enabled the discrimination of Diego alleles. Of the total samples tested, 4169 blood donors, 96.4 percent (95% confidence interval [CI], 95.8-96.9%), were homozygous for DI*02 and 157, 3.6 percent (95% CI, 3.1%-4.2%), were heterozygous DI*01/02. No blood donor was found to be homozygous for DI*01 in this study. The calculated DI*01 and DI*02 allele frequencies were 0.0181 (95% CI, 0.0173-0.0189) and 0.9819 (95% CI, 0.9791-0.9847), respectively, showing a good fit for the Hardy-Weinberg equilibrium. There was full concordance among Diego phenotype results by PCR-SSP and real-time PCR. DI*01 and DI*02 allele determination with SYBR Green I and thermal cycler technology are useful methods for Diego determination. The real-time PCR with SYBR Green I melting temperature protocol can be used as a rapid screening tool for DI*01 and DI*02 blood group genotyping.

  3. Real time PCR quantification of viable Mycobacterium tuberculosis from sputum samples treated with propidium monoazide.

    PubMed

    de Assunção, Thiago Milech; Batista, Eraldo L; Deves, Candida; Villela, Anne Drumond; Pagnussatti, Vany Elisa; de Oliveira Dias, Ana Christina; Kritski, Afrânio; Rodrigues-Junior, Valnês; Basso, Luiz Augusto; Santos, Diógenes Santiago

    2014-07-01

    Diagnostic methods of TB, nowadays, are prone to delay in diagnosis, increased false negative results and are not sensitive to many forms of paucibacillary disease. The aims of this study were to implement a quantitative nucleic acid-based diagnostic test for paucibacillary tuberculosis, enabling the identification and quantification of viable Mycobacterium tuberculosis bacilli by quantitative Real-Time PCR (qRT-PCR). The intergenic region of the single-copy inhA-mabA gene was chosen as the target region for design of primers and probes conjugated with fluorophores. The construction of synthetic DNA flanking the target region served as standards for absolute quantification of nucleic acids. Using the intercaling dye, propidium monoazide, we were able to discriminate between viable and dead cells of M. tuberculosis. The diagnosis method showed a broad sensitivity (96.1%) when only compared to samples of smear-positive sputum and ROC analyses shows that our approach performed well and yielded a specificity of 84.6% and a sensitivity of 84.6% when compared to M. tuberculosis colony-forming units counting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Contribution of real-time PCR to Plasmodium species identification and to clinical decisions: a nationwide study in a non-endemic setting.

    PubMed

    Grossman, T; Schwartz, E; Vainer, J; Agmon, V; Glazer, Y; Goldmann, D; Marva, E

    2017-04-01

    Treatment choice for patients with malaria in Israeli hospitals is based on microscopy and rapid diagnostic tests (RDTs). Here, we demonstrate the cumulative value of real-time polymerase chain reaction (PCR) in optimizing the treatment of malaria. Between January 2009 and December 2015, 451 samples from 357 patients were tested in our laboratory using a real-time PCR assay. Hospital laboratory results (without real-time PCR) were compared to those obtained in our laboratory. A total of 307 patients had a malaria-positive laboratory finding in the hospital. Out of those, 288 were confirmed positive and 19 negative using real-time PCR. Two negative hospital results were found to be positive by real-time PCR. More specifically, of 153 cases positive for Plasmodium falciparum by real-time PCR, only 138 (90%) had been correctly identified at the hospitals. Similarly, 66 (67%) of 99 cases positive for P. vivax, 2 (11%) of 18 cases positive for P. ovale, and 3 (30%) of 10 cases positive for P. malariae had been correctly identified. Of 10 cases of mixed infection, only one had been identified as such at the hospital. Thus, real-time PCR was required for correct identification in 81 (28%) out of 290 positive cases. In 52 (18%) of those, there was an erroneous categorization of relapsing versus non-relapsing parasites. In a nationwide study, we found that the use of real-time PCR is definitely beneficial and may change the decision regarding the choice of treatment.

  5. A specific real-time PCR assay for the detection of Bordetella pertussis.

    PubMed

    Vincart, Benoit; De Mendonça, Ricardo; Rottiers, Sylvianne; Vermeulen, Françoise; Struelens, Marc J; Denis, Olivier

    2007-07-01

    A novel real-time PCR (RT-PCR) assay was developed for detection of Bordetella pertussis in respiratory specimens by targeting the pertactin gene. In vitro evaluation with reference strains and quality control samples showed analytical sensitivity equivalent to and specificity superior to those of PCR assays which target the IS481 element. The pertactin-based RT-PCR assay offers better discrimination between B. pertussis and other Bordetella species than previously described assays.

  6. Rapid quantification of Salmonella typhimurium inoculated to meat products by real-time PCR.

    PubMed

    Cheng, Ching-Yang; Chi, Jing-Ruei; Lin, Sin-Rong; Chou, Chi-Chiang; Huang, Chin-Cheng

    2009-03-01

    The objective of this study was to use a 5'-nuclease (TaqMan) real-time PCR method with primers and probe specific to the spaQ gene as a rapid approach to quantitatively determine Salmonella Typhimurium. The result showed that the correlation coefficient between real-time PCR estimates and bovine serum albumin (BSA) plate counts of S. Typhimurium was 0.99, independently of 10(5)-fold numbers of bystander Escherichia coli O157:H7 or total viable counts. The sensitivity of the real-time quantitative PCR assay was 10 CFU/mL for pure S. Typhimurium culture without enrichment. A known number of S. Typhimurium target cells were inoculated to dumpling fillings and chicken nuggets and DNA was extracted for real-time PCR analysis. The sensitivity was 60 CFU/g for S. Typhimurium inoculated to the food samples without any preceding procedure of enrichment. The duration of the entire experiment from DNA isolation and purification to PCR amplification was less than 12 h. This study demonstrated that real-time PCR is a rapid and reliable technique for quantifying S. Typhimurium possessing the spaQ gene in pure culture and in meat products.

  7. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR.

    PubMed

    Platteau, Céline; De Loose, Marc; De Meulenaer, Bruno; Taverniers, Isabel

    2011-11-09

    Hazelnuts (Corylus avellana) are used widely in the food industry, especially in confectionery, where they are used raw, roasted, or in a processed formulation (e.g., praline paste and hazelnut oil). Hazelnuts contain multiple allergenic proteins, which can induce an allergic reaction associated with symptoms ranging from mild irritation to life-threatening anaphylactic shock. To date, immunochemical (e.g., ELISA or dipstick) and PCR-based analyses are the only methods available that can be applied as routine tests. The aim of this study is to make a comparative evaluation of the effectiveness of ELISA and real-time PCR in detecting and correctly quantifying hazelnut in food model systems. To this end, the performances of two commercial ELISAs were compared to those of two commercial and one in-house-developed real-time PCR assays. The results showed that although ELISA seemed to be more sensitive compared to real-time PCR, both detection techniques suffered from matrix effects and lacked robustness with regard to food processing. As these impacts were highly variable among the different evaluated assays (both ELISA and real-time PCR), no firm conclusion can be made as to which technique is suited best to detect hazelnut in (processed) food products. In this regard, the current lack of appropriate DNA calibrators to quantify an allergenic ingredient by means of real-time PCR is highlighted.

  8. Real-time PCR Machine System Modeling and a Systematic Approach for the Robust Design of a Real-time PCR-on-a-Chip System

    PubMed Central

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design. PMID:22315563

  9. Real-time PCR machine system modeling and a systematic approach for the robust design of a real-time PCR-on-a-chip system.

    PubMed

    Lee, Da-Sheng

    2010-01-01

    Chip-based DNA quantification systems are widespread, and used in many point-of-care applications. However, instruments for such applications may not be maintained or calibrated regularly. Since machine reliability is a key issue for normal operation, this study presents a system model of the real-time Polymerase Chain Reaction (PCR) machine to analyze the instrument design through numerical experiments. Based on model analysis, a systematic approach was developed to lower the variation of DNA quantification and achieve a robust design for a real-time PCR-on-a-chip system. Accelerated lift testing was adopted to evaluate the reliability of the chip prototype. According to the life test plan, this proposed real-time PCR-on-a-chip system was simulated to work continuously for over three years with similar reproducibility in DNA quantification. This not only shows the robustness of the lab-on-a-chip system, but also verifies the effectiveness of our systematic method for achieving a robust design.

  10. Microdroplet Sandwich Real-Time RT-PCR for Detection of Pandemic and Seasonal Influenza Subtypes

    PubMed Central

    Angione, Stephanie L.; Inde, Zintis; Beck, Christina M.; Artenstein, Andrew W.; Opal, Steven M.; Tripathi, Anubhav

    2013-01-01

    As demonstrated by the recent 2012/2013 flu epidemic, the continual emergence of new viral strains highlights the need for accurate medical diagnostics in multiple community settings. If rapid, robust, and sensitive diagnostics for influenza subtyping were available, it would help identify epidemics, facilitate appropriate antiviral usage, decrease inappropriate antibiotic usage, and eliminate the extra cost of unnecessary laboratory testing and treatment. Here, we describe a droplet sandwich platform that can detect influenza subtypes using real-time reverse-transcription polymerase chain reaction (rtRT-PCR). Using clinical samples collected during the 2010/11 season, we effectively differentiate between H1N1p (swine pandemic), H1N1s (seasonal), and H3N2 with an overall assay sensitivity was 96%, with 100% specificity for each subtype. Additionally, we demonstrate the ability to detect viral loads as low as 104 copies/mL, which is two orders of magnitude lower than viral loads in typical infected patients. This platform performs diagnostics in a miniaturized format without sacrificing any sensitivity, and can thus be easily developed into devices which are ideal for small clinics and pharmacies. PMID:24066051

  11. Detection of Actinobacillus pleuropneumoniae in pigs by real-time quantitative PCR for the apxIVA gene.

    PubMed

    Tobias, T J; Bouma, A; Klinkenberg, D; Daemen, A J J M; Stegeman, J A; Wagenaar, J A; Duim, B

    2012-08-01

    A real-time quantitative PCR (qPCR) for detection of the apxIVA gene of Actinobacillus pleuropneumoniae was validated using pure cultures of A. pleuropneumoniae and tonsillar and nasal swabs from experimentally inoculated Caesarean-derived/colostrum-deprived piglets and naturally infected conventional pigs. The analytical sensitivity was 5colony forming units/reaction. In comparison with selective bacterial examination using tonsillar samples from inoculated animals, the diagnostic sensitivity of the qPCR was 0.98 and the diagnostic specificity was 1.0. The qPCR showed consistent results in repeatedly sampled conventional pigs. Tonsillar brush samples and apxIVA qPCR analysis may be useful for further epidemiological studies and monitoring for A. pleuropneumoniae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia

    PubMed Central

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  13. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR.

    PubMed

    Capote, Nieves; Bertolini, Edson; Olmos, Antonio; Vidal, Eduardo; Martínez, Maria Carmen; Cambra, Mariano

    2009-03-01

    Direct systems to process plant materials allowed high-throughput testing of Plum pox virus (PPV) by real-time reverse transcription (RT)-PCR without nucleic acids purification. Crude plant extracts were diluted in buffer or spotted on membranes to be used as templates. Alternatively, immobilized PPV targets were amplified from fresh sections of plant tissues printed or squashed onto the same supports, without extract preparation. Spot real-time RT-PCR was validated as a PPV diagnostic method in samples collected during the dormancy period and showed high sensitivity (93.6%), specificity (98.0%), and post-test probability (97.9%) towards sharka disease. In an analysis of 2919 Prunus samples by spot real-time RT-PCR and DASI-ELISA 90.8% of the results coincided, demonstrating high agreement (k = 0.77 +/- 0.01) between the two techniques. These results validate the use of immobilized PPV targets and spot real-time RT-PCR as screening method for largescale analyses.

  14. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  15. Isolation of Listeria monocytogenes from challenged turkeys using real time PCR

    USDA-ARS?s Scientific Manuscript database

    We have hypothesized that stress-induced subclinical infection of turkeys with L. monocytogenes (Lm) may be a source of processing plant contamination. The objective of this work was to compare conventional culture methods and Taqman® real time PCR (RTi PCR) for isolation of Lm from joints of challe...

  16. Molecular-Beacon Multiplex Real-Time PCR Assay for Detection of Vibrio cholerae

    PubMed Central

    Gubala, Aneta J.; Proll, David F.

    2006-01-01

    A multiplex real-time PCR assay was developed using molecular beacons for the detection of Vibrio cholerae by targeting four important virulence and regulatory genes. The specificity and sensitivity of this assay, when tested with pure culture and spiked environmental water samples, were high, surpassing those of currently published PCR assays for the detection of this organism. PMID:16957277

  17. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  18. Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR

    USDA-ARS?s Scientific Manuscript database

    PCR techniques in combination with conventional parasite concentration procedures have potential for sensitive and specific detection of Toxoplasma gondii oocysts in water. Three real-time PCR assays based on the B1 gene and a 529-bp repetitive element were compared for detection of T. gondii tachyz...

  19. Quantitative Real-Time PCR Analysis of Total Propidium Monazide -Resistant Fecal Indicator Bacteria in Wastewater

    EPA Science Inventory

    A real-time quantitative PCR (qPCR) method and a modification of this method incorporating pretreatment of samples with propidium monoazide (PMA) were evaluated for respective analyses of total and presumptively viable Enterococcus and Bacteroidales fecal indicator bacteria. Thes...

  20. Interlaboratory Comparison of Real-time PCR Protocols for Quantification of General Fecal Indicator Bacteria

    EPA Science Inventory

    The application of quantitative real-time PCR (qPCR) technologies for the rapid identification of fecal bacteria in environmental waters is being considered for use as a national water quality metric in the United States. The transition from research tool to a standardized proto...

  1. Single Laboratory Comparison of Quantitative Real-time PCR Assays for the Detection of Fecal Pollution

    EPA Science Inventory

    There are numerous quantitative real-time PCR (qPCR) assays available to detect and enumerate fecal pollution in ambient waters. Each assay employs distinct primers and probes that target different rRNA genes and microorganisms leading to potential variations in concentration es...

  2. Active Case Detection with Pooled Real-Time PCR to Eliminate Malaria in Trat Province, Thailand

    PubMed Central

    Rogawski, Elizabeth T.; Congpuong, Kanungnit; Sudathip, Prayuth; Satimai, Wichai; Sug-aram, Rungniran; Aruncharus, Supannee; Darakapong, Ampai; Kitchakarn, Suravadee; Meshnick, Steven R.

    2012-01-01

    We conducted contact tracing and high-risk group screening using pooled real-time polymerase chain reaction (PCR) to support malaria elimination in Thailand. PCR detected more Plasmodium infections than the local and expert microscopists. High-throughput pooling technique reduced costs and allowed prompt reporting of results. PMID:22556075

  3. rdml: A Mathematica package for parsing and importing Real-Time qPCR data.

    PubMed

    Magno, Ramiro; Duarte, Isabel; Andrade, Raquel P; Palmeirim, Isabel

    2017-06-12

    The purpose and objective of the research presented is to provide a package for easy importing of Real-Time PCR data markup language (RDML) data to Mathematica. Real-Time qPCR is the most widely used experimental method for the accurate quantification of gene expression. To enable the straightforward archiving and sharing of qPCR data and its associated experimental information, an XML-based data standard was developed-the Real-Time PCR data markup language (RDML)-devised by the RDML consortium. Here, we present rdml, a package to parse and import RDML data into Mathematica, allowing the quick loading and extraction of relevant data, thus promoting the re-analysis, meta-analysis or experimental re-validation of gene expression data deposited in RDML format.

  4. Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module.

    PubMed

    Xiang, Q; Xu, B; Li, D

    2007-08-01

    This paper presents the design and implementation of a miniature real time PCR system consisting of a disposable reactor chip, a miniature thermal cycler, and a multi-channel fiber optical fluorescence excitation/detection module. The disposable PCR chip is fabricated by using soft photolithography by PDMS (Polydimethylsiloxane) and glass. The miniature thermal cycler has a thin film heater for heating and a fan for rapid cooling. The fiber optical detection module consists of laser, filter cube, photo-detector and 1x4 fiber optical switch. It is capable of four-well real time PCR analysis. Real-time PCR detection of E. coli stx1 has been demonstrated successfully with this system.

  5. Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis

    PubMed Central

    Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341

  6. Development of a real-time microchip PCR system for portable plant disease diagnosis.

    PubMed

    Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum

    2013-01-01

    Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.

  7. Virological Diagnosis of Herpes Simplex Virus 1 Esophagitis by Quantitative Real-Time PCR Assay

    PubMed Central

    Jazeron, Jean-François; Barbe, Coralie; Frobert, Emilie; Renois, Fanny; Talmud, Déborah; Brixi-Benmansour, Hedia; Brodard, Véronique; Andréoletti, Laurent; Diebold, Marie-Danièle

    2012-01-01

    Herpes simplex virus 1 (HSV-1) esophagitis diagnosis is routinely based on the endoscopic findings confirmed by histopathological examination of the esophagitis lesions. Virological diagnosis is not systematically performed and restricted to viral culture or to qualitative PCR assay from esophagitis biopsy specimens. The aim of this study was to assess the interest of quantitative real-time PCR assay in HSV-1 esophagitis diagnosis by comparing the results obtained to those of histological examination associated with immunohistochemical staining, which is considered the “gold standard.” From 53 esophagitis biopsy specimens, the PCR assay detected HSV-1 in 18 of 19 histologically proven to have herpetic esophagitis and in 9 of 34 that had esophagitis related to other causes, demonstrating sensitivity, specificity, positive predictive value, and negative predictive value of 94.7%, 73%, 66.7%, and 96%, respectively. Interestingly, HSV-1 was not detected in 16 specimens without the histological aspect of esophagitis. The viral loads normalized per μg of total extracted DNA in each biopsy specimen detected positive by HSV PCR were then compared and appeared to be significantly higher in histopathologically positive herpetic esophagitis (median = 2.9 × 106 ± 1.1 × 108) than in histopathologically negative herpetic esophagitis (median = 3.1 × 103 ± 6.2 × 103) (P = 0.0009). Moreover, a receiver operating characteristics analysis revealed that a viral load threshold greater than 2.5 × 104 copies would allow an HSV-1 esophagitis diagnosis with a sensitivity and specificity of 83.3% and 100%, respectively. In conclusion, this work demonstrated that HSV quantitative PCR results for paraffin-embedded esophageal tissue was well correlated to histopathological findings for an HSV-1 esophagitis diagnosis and could be diagnostic through viral load assessment when histopathological results are missing or uncertain. PMID:22170921

  8. Detection and differentiation of coccidian oocysts by real-time PCR and melting curve analysis.

    PubMed

    Lalonde, Laura F; Gajadhar, Alvin A

    2011-08-01

    Rapid and reliable detection and identification of coccidian oocysts are essential for animal health and foodborne disease outbreak investigations. Traditional microscopy and morphological techniques can identify large and unique oocysts, but they are often subjective and require parasitological expertise. The objective of this study was to develop a real-time quantitative PCR (qPCR) assay using melting curve analysis (MCA) to detect, differentiate, and identify DNA from coccidian species of animal health, zoonotic, and food safety concern. A universal coccidia primer cocktail was designed and employed to amplify DNA from Cryptosporidium parvum, Toxoplasma gondii, Cyclospora cayetanensis, and several species of Eimeria, Sarcocystis, and Isospora using qPCR with SYBR Green detection. MCA was performed following amplification, and melting temperatures (T(m)) were determined for each species based on multiple replicates. A standard curve was constructed from DNA of serial dilutions of T. gondii oocysts to estimate assay sensitivity. The qPCR assay consistently detected DNA from as few as 10 T. gondii oocysts. T(m) data analysis showed that C. cayetanensis, C. parvum, Cryptosporidium muris, T. gondii, Eimeria bovis, Eimeria acervulina, Isospora suis, and Sarcocystis cruzi could each be identified by unique melting curves and could be differentiated based on T(m). DNA of coccidian oocysts in fecal, food, or clinical diagnostic samples could be sensitively detected, reliably differentiated, and identified using qPCR with MCA. This assay may also be used to detect other life-cycle stages of coccidia in tissues, fluids, and other matrices. MCA studies on multiple isolates of each species will further validate the assay and support its application as a routine parasitology screening tool.

  9. New Panfungal Real-Time PCR Assay for Diagnosis of Invasive Fungal Infections.

    PubMed

    Valero, Clara; de la Cruz-Villar, Laura; Zaragoza, Óscar; Buitrago, María José

    2016-12-01

    The diagnosis of invasive fungal infections (IFIs) is usually based on the isolation of the fungus in culture and histopathological techniques. However, these methods have many limitations often delaying the definitive diagnosis. In recent years, molecular diagnostics methods have emerged as a suitable alternative for IFI diagnosis. When there is not a clear suspicion of the fungus involved in the IFI, panfungal real-time PCR assays have been used, allowing amplification of any fungal DNA. However, this approach requires subsequent amplicon sequencing to identify the fungal species involved, increasing response time. In this work, a new panfungal real-time PCR assay using the combination of an intercalating dye and sequence-specific probes was developed. After DNA amplification, a melting curve analysis was also performed. The technique was standardized by using 11 different fungal species and validated in 60 clinical samples from patients with proven and probable IFI. A melting curve database was constructed by collecting those melting curves obtained from fungal species included in the standardization assay. Results showed high reproducibility (coefficient of variation [CV] < 5%; r > 0.95) and specificity (100%). The overall sensitivity of the technique was 83.3%, with the group of fungi involved in the infection detected in 77.8% of the positive samples with IFIs covered by molecular beacon probes. Moreover, sequencing was avoided in 67.8% of these "probe-positive" results, enabling report of a positive result in 24 h. This technique is fast, sensitive, and specific and promises to be useful for improving early diagnosis of IFIs.

  10. Detection of viable Salmonella in lettuce by propidium monoazide real-time PCR.

    PubMed

    Liang, Ningjian; Dong, Jin; Luo, Laixin; Li, Yong

    2011-05-01

    Contamination of lettuce by Salmonella has caused serious public health problems. Polymerase chain reaction (PCR) allows rapid detection of pathogenic bacteria in food, but it is inaccurate as it might amplify DNA from dead target cells as well. This study aimed to investigate the stability of DNA of dead Salmonella cells in lettuce and to develop an approach to detecting viable Salmonella in lettuce. Salmonella-free lettuce was inoculated with heat-killed Salmonella Typhimurium cells and stored at 4 °C. Bacterial DNA extracted from the sample was amplified by real-time PCR targeting the invA gene. Our results indicate that DNA from the dead cells remained stable in lettuce for at least 8 d. To overcome this limitation, propidium monoazide (PMA), a dye that can selectively penetrate dead bacterial cells and cross-link their DNA upon light exposure, was combined with real-time PCR. Lettuce samples inoculated with different levels of dead or viable S. Typhimurium cells were treated or untreated with PMA before DNA extraction. Real-time PCR suggests that PMA treatment effectively prevented PCR amplification from as high as 10(8) CFU/g dead S. Typhimurium cells in lettuce. The PMA real-time PCR assay could detect viable Salmonella at as low as 10(2) CFU/mL in pure culture and 10(3) CFU/g in lettuce. With 12-h enrichment, S. Typhimurium of 10(1) CFU/g in lettuce was detectable. In conclusion, the PMA real-time PCR assay provides an alternative to real-time PCR assay for accurate detection of Salmonella in food. © 2011 Institute of Food Technologists®

  11. Rapid DNA extraction protocol for detection of alpha-1 antitrypsin deficiency from dried blood spots by real-time PCR.

    PubMed

    Struniawski, R; Szpechcinski, A; Poplawska, B; Skronski, M; Chorostowska-Wynimko, J

    2013-01-01

    The dried blood spot (DBS) specimens have been successfully employed for the large-scale diagnostics of α1-antitrypsin (AAT) deficiency as an easy to collect and transport alternative to plasma/serum. In the present study we propose a fast, efficient, and cost effective protocol of DNA extraction from dried blood spot (DBS) samples that provides sufficient quantity and quality of DNA and effectively eliminates any natural PCR inhibitors, allowing for successful AAT genotyping by real-time PCR and direct sequencing. DNA extracted from 84 DBS samples from chronic obstructive pulmonary disease patients was genotyped for AAT deficiency variants by real-time PCR. The results of DBS AAT genotyping were validated by serum IEF phenotyping and AAT concentration measurement. The proposed protocol allowed successful DNA extraction from all analyzed DBS samples. Both quantity and quality of DNA were sufficient for further real-time PCR and, if necessary, for genetic sequence analysis. A 100% concordance between AAT DBS genotypes and serum phenotypes in positive detection of two major deficiency S- and Z- alleles was achieved. Both assays, DBS AAT genotyping by real-time PCR and serum AAT phenotyping by IEF, positively identified PI*S and PI*Z allele in 8 out of the 84 (9.5%) and 16 out of 84 (19.0%) patients, respectively. In conclusion, the proposed protocol noticeably reduces the costs and the hand-on-time of DBS samples preparation providing genomic DNA of sufficient quantity and quality for further real-time PCR or genetic sequence analysis. Consequently, it is ideally suited for large-scale AAT deficiency screening programs and should be method of choice.

  12. Detection of Bartonella spp. DNA in clinical specimens using an internally controlled real-time PCR assay.

    PubMed

    Bergmans, Anneke M C; Rossen, John W A

    2013-01-01

    Bartonella henselae is the causative agent of cat-scratch disease (CSD), usually presenting itself as a -self-limiting lymphadenopathy. In this chapter an internally controlled Taqman probe-based real-time PCR targeting the groEL gene of Bartonella spp. is described. This assay allows for the rapid, sensitive, and simple detection of Bartonella spp. in samples from CSD or endocarditis suspects, and it is suitable for implementation in the diagnostic microbiology laboratory.

  13. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    PubMed

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  14. [Real-time PCR detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae DNA in clinical specimens].

    PubMed

    Vacková, Z; Lžičařová, D; Stock, N K; Kozáková, J

    2015-10-01

    The study aim was to implement a molecular real-time polymerase chain reaction (PCR) assay recommended by the CDC (Centers for Disease Control and Prevention) for the detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in clinical (culture negative) specimens from patients with suspected invasive bacterial disease. Clinical specimens are referred to the National Reference Laboratory (NRL) for Meningococcal Infections, Unit for Airborne Bacterial Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health from various regions of the Czech Republic. Clinical specimens are, in particular, cerebrospinal fluid, anti-coagulated blood or serum and, exceptionally, post-mortem specimens. The NRL has implemented molecular diagnosis of these bacterial pathogens involved in meningitis and sepsis from clinical specimens since 1999. The first diagnostic method was semi-nested PCR followed by electrophoretic analysis. In 2014, a molecular qualitative real-time PCR assay was implemented.

  15. Detection of 12 respiratory viruses by duplex real time PCR assays in respiratory samples.

    PubMed

    Arvia, Rosaria; Corcioli, Fabiana; Ciccone, Nunziata; Della Malva, Nunzia; Azzi, Alberta

    2015-12-01

    Different viruses can be responsible for similar clinical manifestations of respiratory infections. Thus, the etiological diagnosis of respiratory viral diseases requires the detection of a large number of viruses. In this study, 6 duplex real-time PCR assays, using EvaGreen intercalating dye, were developed to detect 12 major viruses responsible for respiratory diseases: influenza A and B viruses, enteroviruses (including enterovirus spp, and rhinovirus spp), respiratory syncytial virus, human metapneumovirus, coronaviruses group I (of which CoV 229E and CoV NL63 are part) and II (including CoV OC43 and CoV HKU1), parainfluenza viruses type 1, 2, 3 and 4, human adenoviruses and human bocaviruses. The 2 target viruses of each duplex reaction were distinguishable by the melting temperatures of their amplicons. The 6 duplex real time PCR assays were applied for diagnostic purpose on 202 respiratory samples from 157 patients. One hundred fifty-seven samples were throat swabs and 45 were bronchoalveolar lavages. The results of the duplex PCR assays were confirmed by comparison with a commercial, validated, assay; in addition, the positive results were confirmed by sequencing. The analytical sensitivity of the duplex PCR assays varied from 10(3) copies/ml to 10(4) copies/ml. For parainfluenza virus 2 only it was 10(5) copies/ml. Seventy clinical samples (35%) from 55 patients (30 children and 25 adults) were positive for 1 or more viruses. In adult patients, influenza A virus was the most frequently detected respiratory virus followed by rhinoviruses. In contrast, respiratory syncytial virus was the most common virus in children, followed by enteroviruses, influenza A virus and coronavirus NL63. The small number of samples/patients does not allow us to draw any epidemiological conclusion. Altogether, the results of this study indicate that the 6 duplex PCR assays described in this study are sensitive, specific and cost-effective. Thus, this assay could be

  16. Real-time PCR assays compared to culture-based approaches for identification of aerobic bacteria in chronic wounds.

    PubMed

    Melendez, J H; Frankel, Y M; An, A T; Williams, L; Price, L B; Wang, N-Y; Lazarus, G S; Zenilman, J M

    2010-12-01

    Chronic wounds cause substantial morbidity and disability. Infection in chronic wounds is clinically defined by routine culture methods that can take several days to obtain a final result, and may not fully describe the community of organisms or biome within these wounds. Molecular diagnostic approaches offer promise for a more rapid and complete assessment. We report the development of a suite of real-time PCR assays for rapid identification of bacteria directly from tissue samples. The panel of assays targets 14 common, clinically relevant, aerobic pathogens and demonstrates a high degree of sensitivity and specificity using a panel of organisms commonly associated with chronic wound infection. Thirty-nine tissue samples from 29 chronic wounds were evaluated and the results compared with those obtained by culture. As revealed by culture and PCR, the most common organisms were methicillin-resistant Staphylococcus aureus (MRSA) followed by Streptococcus agalactiae (Group B streptococcus) and Pseudomonas aeruginosa. The sensitivities of the PCR assays were 100% and 90% when quantitative and qualitative culture results were used as the reference standard, respectively. The assays allowed the identification of bacterial DNA from ten additional organisms that were not revealed by quantitative or qualitative cultures. Under optimal conditions, the turnaround time for PCR results is as short as 4-6 h. Real-time PCR is a rapid and inexpensive approach that can be easily introduced into clinical practice for detection of organisms directly from tissue samples. Characterization of the anaerobic microflora by real-time PCR of chronic wounds is warranted.

  17. Real-Time Quantitative PCR Assay for Monitoring of Nervous Necrosis Virus Infection in Grouper Aquaculture▿†

    PubMed Central

    Kuo, Hsiao-Che; Wang, Ting-Yu; Chen, Peng-Peng; Chen, Young-Mao; Chuang, Hui-Ching; Chen, Tzong-Yueh

    2011-01-01

    Viral nervous necrosis caused by nervous necrosis virus (NNV) exacts a high mortality and results in huge economic losses in grouper aquaculture in Taiwan. The present study developed a real-time quantitative PCR (qPCR) method for NNV monitoring. The assay showed a strong linear correlation (r2 = 0.99) between threshold cycle (CT) and RNA quantities, which allowed identification of infected groupers by the CT value and could be exploited to warn of NNV infection prior to an outbreak in grouper fish farms. Real-time qPCR also confirmed the copious content of NNV in grouper fin, similar to that in primary tissues; the result was verified by using in situ reverse transcription-PCR (RT-PCR). This indicated that grouper fin was a suitable sample for NNV detection, in a manner that could be relatively benign to the fish. The rapid spread of NNV infection to the entire population of affected farms was evident. The developed real-time qPCR method is rapid, highly sensitive, and applicable to routine high-throughput detection of large numbers of samples and has potential as a suitable tool for diagnostic, epidemiological, and genetic studies of grouper aquaculture. PMID:21233077

  18. Protein analysis using real-time PCR instrumentation: incorporation in an integrated, inquiry-based project.

    PubMed

    Southard, Jonathan N

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein structure studies possible with a real-time PCR instrument address core topics in biochemistry and have valuable high-throughput applications in the fields of drug discovery and protein engineering. Protein analysis using real-time PCR instrumentation has been incorporated in an undergraduate laboratory project based on previously described projects. Students express, purify, and characterize a protein. Based on literature research and analysis using bioinformatics tools, they select a specific mutation to investigate. They then attempt to express, purify, and characterize their mutated protein. Thermal denaturation using a real-time PCR instrument is the primary tool used to compare the wild-type and mutated proteins. Alternative means for incorporation of protein analysis by real-time PCR instrumentation into laboratory experiences and additional modes of analysis are also described. © 2013 by The International Union of Biochemistry and Molecular Biology.

  19. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  20. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae.

    PubMed

    Takahashi, Hajime; Saito, Rumi; Miya, Satoko; Tanaka, Yuichiro; Miyamura, Natsumi; Kuda, Takashi; Kimura, Bon

    2017-04-04

    The family Enterobacteriaceae, members of which are widely distributed in the environment, includes many important human pathogens. In this study, a rapid real-time PCR method targeting rplP, coding for L16 protein, a component of the ribosome large subunit, was developed for enumerating Enterobacteriaceae strains, and its efficiency was evaluated using naturally contaminated food products. The rplP-targeted real-time PCR amplified Enterobacteriaceae species with Ct values of 14.0-22.8, whereas the Ct values for non-Enterobacteriaceae species were >30, indicating the specificity of this method for the Enterobacteriaceae. Using a calibration curve of Ct=-3.025 (log CFU/g)+37.35, which was calculated from individual plots of the cell numbers in different concentrations of 5 Enterobacteriaceae species, the rplP-targeted real-time PCR was applied to 51 food samples. A <1log difference between the real-time PCR and culture methods was obtained in a majority of the food samples (81.8%), with good correlation (r(2)=0.8285). This study demonstrated that the rplP-targeted real-time PCR method could detect and enumerate Enterobacteriaceae species in foods rapidly and accurately, and therefore, it can be used for the microbiological risk analysis of foods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Interlaboratory Validation for a Real-Time PCR Salmonella Detection Method Using the ABI 7500 FAST Real-Time PCR System.

    PubMed

    Cheng, Chorng-Ming; Doran, Tara; Lin, Wen; Chen, Kai-Shun; Williams-Hill, Donna; Pamboukian, Ruiqing

    2015-06-01

    Sixteen FERN (Food Emergency Response Network) member laboratories collaborated in this study to verify extension of the real-time PCR Salmonella detection method originally designed for the single-tube Cepheid SmartCycler II and validated against the Salmonella method of the U. S. Food and Drug Administration Bacteriological Analytical Manual to the Applied Biosystems (ABI) 7500 FAST Real-Time PCR system multiwell plate platform. Four foods were selected for this study: chili powder, soft cheese, fish, and tomatoes; these foods represent products that are commonly analyzed for the presence of Salmonella for regulatory purposes. Each food consisted of six uninoculated control samples, six samples inoculated with low Salmonella levels (target 1 to 5 CFU/25 g), and six samples inoculated with high levels (target 10 to 50 CFU/25 g). All samples were tested for Salmonella using the 24-h quantitative PCR (qPCR) method for detecting Salmonella, which utilizes modified buffered peptone water as the sole enrichment medium and an internal control for the qPCR. Each of these 18 samples was individually analyzed for Salmonella by the collaborating laboratories using both the ABI 7500 FAST system (alternative method) and the SmartCycler II system (reference method). Statistical analysis of the data revealed no significant difference (P ≥ 0.05) between these two qPCR platforms except for the chili powder samples. The differences noted with chili powder (P = 0.0455) were attributed to the enhanced sensitivity of the ABI 7500 FAST system compared with the SmartCycler II system. The detection limit of both qPCR methods was 0.02 to 0.15 CFU/g. These results provide a solid basis for extending the 24-h qPCR Salmonella method to the ABI 7500 FAST system for high-throughput detection of Salmonella in foods.

  2. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library.

    PubMed

    Fernández-Pinero, J; Gallardo, C; Elizalde, M; Robles, A; Gómez, C; Bishop, R; Heath, L; Couacy-Hymann, E; Fasina, F O; Pelayo, V; Soler, A; Arias, M

    2013-02-01

    A highly sensitive and specific real-time PCR method was developed for the reliable and rapid detection of African swine fever virus (ASFV). The method uses a commercial Universal Probe Library (UPL) probe combined with a specifically designed primer set to amplify an ASFV DNA fragment within the VP72 coding genome region. The detection range of the optimized UPL PCR technique was confirmed by analysis of a large panel (n = 46) of ASFV isolates, belonging to 19 of the 22 viral p72 genotypes described. No amplification signal was observed when closely clinically related viruses, such as classical swine fever, or other porcine pathogens were tested by this assay. The detection limit of the UPL PCR method was established below 18 DNA copies. Validation experiments using an extensive collection of field porcine and tick samples (n = 260), coming from Eastern and Western African regions affected by ASF, demonstrated that the UPL PCR technique was able to detect over 10% more positive samples than the real-time TaqMan PCR test recommended in the OIE manual, confirming its superior diagnostic sensitivity. Clinical material collected during experimental infections with different ASFV p72 genotypes was useful for assuring both the capacity of the UPL PCR for an early viral DNA detection and the competence of the technique to be applied in any ASF diagnostic target sample. The reliability and robustness of the UPL PCR was finally verified with a panel of ASFV-infected clinical samples which was repeatedly tested at different times. Additionally, an internal control PCR assay was also developed and standardized using UPL probes within the endogenous β-actin gene. Finally, the complete study offers a new validated real-time PCR technique, by means of a standardized commercial probe, providing a simple, rapid and affordable test, which is ready for application in the routine diagnosis of ASF.

  3. A standard curve based method for relative real time PCR data processing

    PubMed Central

    Larionov, Alexey; Krause, Andreas; Miller, William

    2005-01-01

    Background Currently real time PCR is the most precise method by which to measure gene expression. The method generates a large amount of raw numerical data and processing may notably influence final results. The data processing is based either on standard curves or on PCR efficiency assessment. At the moment, the PCR efficiency approach is preferred in relative PCR whilst the standard curve is often used for absolute PCR. However, there are no barriers to employ standard curves for relative PCR. This article provides an implementation of the standard curve method and discusses its advantages and limitations in relative real time PCR. Results We designed a procedure for data processing in relative real time PCR. The procedure completely avoids PCR efficiency assessment, minimizes operator involvement and provides a statistical assessment of intra-assay variation. The procedure includes the following steps. (I) Noise is filtered from raw fluorescence readings by smoothing, baseline subtraction and amplitude normalization. (II) The optimal threshold is selected automatically from regression parameters of the standard curve. (III) Crossing points (CPs) are derived directly from coordinates of points where the threshold line crosses fluorescence plots obtained after the noise filtering. (IV) The means and their variances are calculated for CPs in PCR replicas. (V) The final results are derived from the CPs' means. The CPs' variances are traced to results by the law of error propagation. A detailed description and analysis of this data processing is provided. The limitations associated with the use of parametric statistical methods and amplitude normalization are specifically analyzed and found fit to the routine laboratory practice. Different options are discussed for aggregation of data obtained from multiple reference genes. Conclusion A standard curve based procedure for PCR data processing has been compiled and validated. It illustrates that standard curve design

  4. Sex determination using free fetal DNA at early gestational ages: a comparison between a modified mini-STR genotyping method and real-time PCR.

    PubMed

    Aghanoori, Mohamad Reza; Vafaei, Homeira; Kavoshi, Hajar; Mohamadi, Sanaz; Goodarzi, Hamed R

    2012-09-01

    Recently the use of free fetal deoxyribonucleic acid (DNA) in maternal plasma and serum has been applicable for noninvasive prenatal genetic diagnosis. In this study, we applied a new algorithmic base conventional polymerase chain reaction (PCR) genotyping method and also real-time PCR for detecting fetal X and Y-chromosome sequences in maternal plasma to determine fetal sex in pregnant women in their early gestational ages (5-13 weeks). Finally, we compared the efficiency of each method in sex determination. DNA was extracted from 106 pregnant women and their husbands' blood samples. Fetus mini-short tandem repeat (STR) genotyping was accomplished through amplification of 19 mini-STRs and 3 non-STR markers using conventional PCR followed by polyacrylamide gel electrophoresis analysis. Simultaneously, TaqMan real-time PCR was done with the use of DYS14-specific primers and probe. In conventional PCR method, 47 cases were diagnosed to be male and 49 to be female. In comparison, real-time PCR amplified DYS14 (Y-marker) sequences in 45 pregnant women plasma samples. Sensitivity and specificity were calculated to be 95.9% and 98% for conventional PCR and 91.8% and 100% for real-time PCR method, respectively. According to our study, the conventional PCR method was more sensitive than real-time PCR and it could be employed in future clinical diagnostics singly or in combination with real-time PCR. Copyright © 2012 Mosby, Inc. All rights reserved.

  5. New real-time-PCR method to identify single point mutations in hepatitis C virus

    PubMed Central

    Chen, Qian; Belmonte, Irene; Buti, Maria; Nieto, Leonardo; Garcia-Cehic, Damir; Gregori, Josep; Perales, Celia; Ordeig, Laura; Llorens, Meritxell; Soria, Maria Eugenia; Esteban, Rafael; Esteban, Juan Ignacio; Rodriguez-Frias, Francisco; Quer, Josep

    2016-01-01

    AIM To develop a fast, low-cost diagnostic strategy to identify single point mutations in highly variable genomes such as hepatitis C virus (HCV). METHODS In patients with HCV infection, resistance-associated amino acid substitutions within the viral quasispecies prior to therapy can confer decreased susceptibility to direct-acting antiviral agents and lead to treatment failure and virological relapse. One such naturally occurring mutation is the Q80K substitution in the HCV-NS3 protease gene, which confers resistance to PI inhibitors, particularly simeprevir. Low-cost, highly sensitive techniques enabling routine detection of these single point mutations would be useful to identify patients at a risk of treatment failure. LightCycler methods, based on real-time PCR with sequence-specific probe hybridization, have been implemented in most diagnostic laboratories. However, this technique cannot identify single point mutations in highly variable genetic environments, such as the HCV genome. To circumvent this problem, we developed a new method to homogenize all nucleotides present in a region except the point mutation of interest. RESULTS Using nucleotide-specific probes Q, K, and R substitutions at position 80 were clearly identified at a sensitivity of 10% (mutations present at a frequency of at least 10% were detected). The technique was successfully applied to identify the Q80K substitution in 240 HCV G1 serum samples, with performance comparable to that of direct Sanger sequencing, the current standard procedure for this purpose. The new method was then validated in a Catalonian population of 202 HCV G1-infected individuals. Q80K was detected in 14.6% of G1a patients and 0% of G1b in our setting. CONCLUSION A fast, low-cost diagnostic strategy based on real-time PCR and fluorescence resonance energy transfer probe melting curve analysis has been successfully developed to identify single point mutations in highly variable genomes such as hepatitis C virus. This

  6. [Detection and subgrouping of respiratory syncytial virus RNA by real-time RT-PCR].

    PubMed

    Yokoi, Hajime; Tanaka, Toshimitsu; Mizumura, Ayano; Kitahashi, Tomoko

    2012-09-01

    The TaqMan-based quantitative real-time RT-PCR assay we developed uses specific probes to identify respiratory syncytial virus (RSV) and to distinguish RSV subgroups A (RSV-A) and B (RSV-B). We selected conserved regions of the F gene as assay targets and designed new primers and TaqMan MGB probes to detect RSV-A and B. RSV-A and B control plasmids confirmed real-time reverse transcription polymerase chain reaction (RT-PCR) reactivity whose efficiency was 2.5 x 10(1) to 2.5 x 10(7) copies/tube. The assay detection limit was 10 to 10(2) times higher than that of the conventional RT-PCR assay and was equal to the nested PCR assay. No cross-reactions occurred against other respiratory viruses, including influenza virus, metapneumovirus, measles virus, coxsackievirus, enterovirus, echovirus, mumps virus, parainfluenza virus, and rhinovirus. Of 154 clinical specimens derived from subjects with acute respiratory infection and tested by using both real-time RT-PCR and nested PCR, 40 were RSV-positive in both assays. Of these, 25 were identified as RSV-A and 15 as RSV-B by both assays. There was 100% concordance in RSV subgroup identification between real-time RT-PCR and nested PCR assays. These results indicate that our real-time RT-PCR assay can be used for rapid detection, quantitative analysis and subgrouping of RSV-A and RSV-B.

  7. Multi-Probe Real-Time PCR Identification of Common Mycobacterium Species in Blood Culture Broth

    PubMed Central

    Foongladda, Suporn; Pholwat, Suporn; Eampokalap, Boonchuay; Kiratisin, Pattarachai; Sutthent, Ruengpung

    2009-01-01

    Mycobacterium tuberculosis complex, M. avium, and M. intracellulare are the most common causes of systemic bacterial infection in AIDS patients. To identify these mycobacterial isolates in primary blood culture broths, we developed a multiple hybridization probe-based real-time PCR assay using the LightCycler system. The primers were designed to amplify a 320-bp fragment of Mycobacterium 16S rRNA genes. Reaction specificity was evaluated using PCR amplification curves along with specific melting temperatures of probes on DNA extracted from 13 Mycobacterium species. In this study, results showed 100% accuracy for the selected bacterial panel. Detection limits were 350, 600, and 650 colony-forming unit (CFU)/ml blood culture broths for M. tuberculosis complex, M. avium, and M. intracellulare, respectively (1 to 2 CFU/reaction). To evaluate clinical applicability, 341 acid-fast bacilli in blood culture broths were analyzed. In total, 327 (96%) were positively identified: 54.5% M. tuberculosis complex, 37.5% M. avium, and 3.8% M. intracellulare. Results can be available within 3 hours of receiving a broth sample, which makes this rapid and simple assay an attractive diagnostic tool for clinical use. PMID:19095775

  8. Detection of Food Allergens by Taqman Real-Time PCR Methodology.

    PubMed

    García, Aina; Madrid, Raquel; García, Teresa; Martín, Rosario; González, Isabel

    2017-01-01

    Real-time PCR (polymerase chain reaction) has shown to be a very effective technology for the detection of food allergens. The protocol described herein consists on a real-time PCR assay targeting the plant ITS (Internal Transcribed Spacer) region, using species-specific primers and hydrolysis probes (Taqman) dual labeled with a reporter fluorophore at the 5' end (6-carboxyfluorescein, FAM) and a quencher fluorophore at the 3' end (Blackberry, BBQ). The species-specific real-time PCR systems (primers/probe) described in this work allowed the detection of different nuts (peanut, hazelnut, pistachio, almond, cashew, macadamia, walnut and pecan), common allergens present in commercial food products, with a detection limit of 0.1 mg/kg.

  9. The importance of set up time and temperature in real-time PCR; an essential reminder.

    PubMed

    Cassidy, Hayley; MacLean, Alasdair; Gunson, Rory

    2017-05-01

    Non-specific amplification can arise in real-time PCR when temperatures are above 4°C during PCR set up. Pressure of high throughput tests, particularly in a clinical setting, can lead to short cuts being taken during PCR set up. This study set out to evaluate the outcome of exposing a real-time PCR assay to increasing durations of room temperature prior to PCR amplification. A real-time PCR assay was exposed to increasing durations of room temperature prior to PCR amplification. We found that reactions left at room temperature for 30min or more produced non-specific traces in the negative controls which could be mistaken for weak positive traces. In addition we found that the fluorescence of positive control traces was significantly reduced indicating reduced reaction efficiency, however the Ct valves were comparable between all reactions highlighting that control Ct monitoring alone would not have detected this issue. This study acts as a reminder for PCR users to set up reactions on ice/chill blocks prior to PCR amplification. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Detection of Zika virus by SYBR green one-step real-time RT-PCR.

    PubMed

    Xu, Ming-Yue; Liu, Si-Qing; Deng, Cheng-Lin; Zhang, Qiu-Yan; Zhang, Bo

    2016-10-01

    The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.

  11. Detection of enteroviruses and parechoviruses by a multiplex real-time RT-PCR assay.

    PubMed

    Pabbaraju, Kanti; Wong, Sallene; Wong, Anita A; Tellier, Raymond

    2015-04-01

    Detection of all enteroviruses while excluding cross-detection of rhinoviruses is challenging because of sequence similarities in the commonly used conserved targets for molecular assays. In addition, simultaneous detection and differentiation of enteroviruses and parechoviruses would be beneficial because of a similar clinical picture presented by these viruses. A sensitive and specific real-time RT-PCR protocol that can address these clinical needs would be valuable to molecular diagnostic laboratories. Here we report a multiplex nucleic acid based assay using hydrolysis probes targeting the 5' non-translated region for the detection and differentiation of enteroviruses and parechoviruses without cross-detection of rhinoviruses. This assay has been shown to detect enteroviruses belonging to the different species in a variety of specimen types without detecting the different species of rhinoviruses. Laboratory validation shows the assay to be sensitive, specific, reproducible, easy to set up and uses generic cycling conditions. This assay can be implemented for diagnostic testing of patient samples in a high throughput fashion.

  12. MeDIP Real-Time qPCR has the Potential for Noninvasive Prenatal Screening of Fetal Trisomy 21.

    PubMed

    Kazemi, Mohammad; Salehi, Mansoor; Kheirollahi, Majid

    2017-01-01

    This study aimed to verify the reliability of the 7 tissue differentially methylated regions used in the methylated DNA immunoprecipitation (MeDIP) real- time quantitative polymerase chain reaction (real-time qPCR) based approach of fetal DNA in maternal blood to diagnosis of fetal trisomy 21. Forty pregnant women with high risk pregnancy who were referred after first or second trimester screening tests, were selected randomly. For each sample whole DNA extraction (mother and fetus), fragmentation of DNA, immunoprecipitation of methylated DNA and real- time qPCR using 7 primer pairs was performed. D-value for each sample was calculated using the following formula D = -4.908+ 0.254 XEP1+ 0.409 XEP4+ 0.793 XEP5+ 0.324 XEP6+ 0.505 XEP7+ 0.508 XEP9+ 0.691 XEP12. In all normal cases, D value was negative, while it was positive in all trisomy cases. Therefore, all normal and trisomy 21 cases were classified correctly which correspond to 100% specificity and 100% sensitivity for this method. The MeDIP real-time qPCR method has provided the opportunity for noninvasive prenatal diagnosis of fetal trisomy 21 to be potentially employed into the routine practice of diagnostic laboratories.

  13. MeDIP Real-Time qPCR has the Potential for Noninvasive Prenatal Screening of Fetal Trisomy 21

    PubMed Central

    Kazemi, Mohammad; Salehi, Mansoor; Kheirollahi, Majid

    2017-01-01

    This study aimed to verify the reliability of the 7 tissue differentially methylated regions used in the methylated DNA immunoprecipitation (MeDIP) real- time quantitative polymerase chain reaction (real-time qPCR) based approach of fetal DNA in maternal blood to diagnosis of fetal trisomy 21. Forty pregnant women with high risk pregnancy who were referred after first or second trimester screening tests, were selected randomly. For each sample whole DNA extraction (mother and fetus), fragmentation of DNA, immunoprecipitation of methylated DNA and real- time qPCR using 7 primer pairs was performed. D-value for each sample was calculated using the following formula D = -4.908+ 0.254 XEP1+ 0.409 XEP4+ 0.793 XEP5+ 0.324 XEP6+ 0.505 XEP7+ 0.508 XEP9+ 0.691 XEP12. In all normal cases, D value was negative, while it was positive in all trisomy cases. Therefore, all normal and trisomy 21 cases were classified correctly which correspond to 100% specificity and 100% sensitivity for this method. The MeDIP real-time qPCR method has provided the opportunity for noninvasive prenatal diagnosis of fetal trisomy 21 to be potentially employed into the routine practice of diagnostic laboratories. PMID:28868265

  14. A multiplex real-time PCR assay for detection of Xanthomonas campestris from brassicas.

    PubMed

    Berg, T; Tesoriero, L; Hailstones, D L

    2006-06-01

    To develop a sensitive real-time PCR-based protocol for the detection of Xanthomonas campestris pathovars from Brassica seed. A 5' nuclease real-time PCR assay was developed to screen Brassica spp. seed for the presence of X. campestris pathovars that cause black rot. The assay amplifies a 78-bp segment of the X. campestris hrpF gene and a 100-bp segment of the Brassica spp. 18S-25S internal transcribed spacer region. The Brassica spp. target provides an internal control for the amplification process to prevent false negatives that may arise from inhibitors that are often present in extracts from plant material. Whilst the primers were compatible with SYBR Green I assays, the use of fluorescently labelled probes in a 5' nuclease assay afforded greatest sensitivity and specificity. Seed batches carrying one artificially infected seed among 10,000 were readily detected using the assay. The multiplex real-time PCR assay permitted the rapid detection of pathogenic strains of X. campestris from bacterial colonies, Brassica seed and plants. Strains of X. campestris pathogenic to brassicas were readily detected from seed via a multiplex 5' nuclease real-time PCR assay. The real-time assay offers an improvement in sensitivity and a reduced turn-around time over the conventional multiplex PCR. Real-time PCR can be used to rapidly screen Brassica spp. seed batches for the presence of X. campestris pathovars. This assay provides a means for growers and the seed industry to be aware of the black rot status of their planting material, so that they may more effectively employ disease control measures or seed disinfection.

  15. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood

    PubMed Central

    Schell, W. A.; Benton, J. L.; Smith, P. B.; Poore, M.; Rouse, J. L.; Boles, D. J.; Johnson, M. D.; Alexander, B. D.; Pamula, V. K.; Eckhardt, A. E.; Pollack, M. G.; Benjamin, D. K.; Perfect, J. R.

    2014-01-01

    Species of Candida frequently cause life-threatening infections in neonates, transplant and intensive care unit (ICU) patients, and others with compromised host defenses. The successful management of systemic candidiasis depends upon early, rapid diagnosis. Blood cultures are the standard diagnostic method, but identification requires days and less than half of the patients are positive. These limitations may be eliminated by using real-time polymerase chain reaction (PCR) to detect Candida DNA in the blood specimens of patients at risk. Here, we optimized a PCR protocol to detect 5–10 yeasts in low volumes of simulated and clinical specimens. We also used a mouse model of systemic candidiasis and determined that candidemia is optimally detectable during the first few days after infection. However, PCR tests are often costly, labor-intensive, and inconvenient for routine use. To address these obstacles, we evaluated the innovative microfluidic real-time PCR platform (Advanced Liquid Logic, Inc.), which has the potential for full automation and rapid turnaround. Eleven and nine of 16 specimens from individual patients with culture-proven candidemia tested positive for C. albicans DNA by conventional and microfluidic real-time PCR, respectively, for a combined sensitivity of 94%. The microfluidic platform offers a significant technical advance in the detection of microbial DNA in clinical specimens. PMID:22327343

  16. Type A influenza virus detection from horses by real-time RT-PCR and insulated isothermal RT-PCR.

    PubMed

    Balasuriya, Udeni B R

    2014-01-01

    Equine influenza (EI) is a highly contagious disease of horses caused by the equine influenza virus (EIV) H3N8 subtype. EI is the most important respiratory virus infection of horses and can disrupt major equestrian events and cause significant economic losses to the equine industry worldwide. Influenza H3N8 virus spreads rapidly in susceptible horses and can result in very high morbidity within 24-48 h after exposure to the virus. Therefore, rapid and accurate diagnosis of EI is critical for implementation of prevention and control measures to avoid the spread of EIV and to reduce the economic impact of the disease. The probe-based real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays targeting various EIV genes are reported to be highly sensitive and specific compared to the Directigen Flu A(®) test and virus isolation in embryonated hens' eggs. Recently, a TaqMan(®) probe-based insulated isothermal RT-PCR (iiRT-PCR) assay for the detection of EIV H3N8 subtype has been described. These molecular based diagnostic assays provide a fast and reliable means of EIV detection and disease surveillance.

  17. Detection and quantitation of HPV DNA replication by Southern blotting and real-time PCR.

    PubMed

    Morgan, Iain M; Taylor, Ewan R

    2005-01-01

    This provides a brief introduction into the mechanism of DNA replication by the E1 and E2 proteins and describes the traditional Southern blotting technique that is used to monitor E1- and E2-mediated DNA replication. It also includes a novel real-time polymerase chain reaction (PCR) approach for monitoring E1- and E2-mediated DNA replication that has enhanced sensitivity and quantitation compared with Southern blotting, and a discussion of when to use the Southern blotting and real-time PCR techniques.

  18. Diagnosis of Kyasanur forest disease by nested RT-PCR, real-time RT-PCR and IgM capture ELISA.

    PubMed

    Mourya, Devendra T; Yadav, Pragya D; Mehla, Rajeev; Barde, Pradip V; Yergolkar, Prasanna N; Kumar, Sandeep R P; Thakare, Jyotsna P; Mishra, Akhilesh C

    2012-12-01

    Kyasanur forest disease (KFD) is a zoonotic viral disease caused by infection by a Flavivirus, a member of the family Flaviviridae. KFD is a public health concern in the Karnataka State in southern India. Available conventional diagnostic tests such as virus isolation and serological tests, such as haemagglutination inhibition and complement fixation tests are time consuming. This study reports the development of a nested RT-PCR [nRT-PCR] and a TaqMan-based real-time RT-PCR and IgM antibodies capture ELISA [MAC-ELISA] for rapid and accurate diagnosis of suspected KFD cases. The nRT-PCR and the TaqMan-based real-time RT-PCR assays were developed using gene sequences of the NS-5/non-coding region. Both the assays detected KFD viral RNA in acute phase human serum samples and can provide early diagnosis of infection. Real-time RT-PCR was found to be more sensitive than nRT-PCR, which could detect 38 copies of KFDV RNA. MAC-ELISA was developed for the detection of recent infections. Although real-time RT-PCR and nRT-PCR require expensive reagents, expensive equipment and trained personnel, the developed MAC-ELISA can be used easily in the affected areas. These tests add to the existing diagnosis arsenal against haemorrhagic viruses that are prevalent in India. These assays will also help to extend our knowledge of the pathology of KFD virus and its associated clinical features, by measuring the viral titre during infection and at the time of seroconversion. Information, which is not available currently because of the lack of appropriate diagnostic methods. In addition, early laboratory diagnosis of KFDV infection will help in the application of appropriate control measures and management of KFD cases.

  19. [Rapid detection of Listeria monocytogenes in pork samples by real-time PCR with Taqman probe].

    PubMed

    Yan, Lin; Wang, Xiaoying; Guo, Yunchang; Pei, Xiaoyan; Yu, Dongmin; Yang, Dajin

    2014-03-01

    To develop a real-time PCR method for detection Listeria monocytogenes in pork samples. Listeria monocytogenes specific primers and Taqman probe were chosen on the basis of hlyA gene. Real-time PCR method was developed and its specificity was proved. Serial 10-fold diluted pure suspension culture of CMCC 540004 were detected by real-time PCR, and standard curve was constructed. Artificially contaminated experiment was done, six artificially-inoculated samples containing final concentration of Listeria monocytogenes CMCC 540004 (1.3 x 10(0), 1.3 x 10(1), 1.3 x 10(2), 1.3 x 10(3), 1.3 x 10(4), 1.3 x 10(5) and 1.3 x 10(6) CFU per 25 g pork samples) were preparated respectively, meanwhile one sample without inoculation was as control of background value. All the samples were incubated in LB1 enrichment for 24 h and then take 0.1 ml culture solutions to 10 ml LB2 enrichment for 18 - 24 h. All the samples were incubated for 0, 4, 8, 12, 18, 24, 30, 36 and 46 h, and detected Listeria monocytogenes bacteria by PCR, respectively. Twenty-four samples of retail pork were collected from markets in Beijing and detected by the above three methods. Real-time PCR method established was specific for the detection of Listeria monocytogenes. The sensitivity was 1.3 x 10(3) CFU/ml for pure culture without enrichment. Real-time PCR detection limit for artificially contaminated samples after enriching for 24 h was 1.3 CFU/ 25 g, which is the same with the limit of PCR and traditional method after enrichment for 46 h. Standard curve of sample after enrichment for 24 h was established. The positive rate out of total 24 samples was 70.83% (17/24) by real-time PCR, which is the same with the result of PCR and traditional method. The positive ones were quantitative analyzed using standard curve of sample and determined the initial Listeria monocytogenes numbers of CFU/25 g. CONCLUSION; The established real-time PCR technology was simple, rapid, sensitive and specific, which was suitable to

  20. Quantitative assay of photoinduced DNA strand breaks by real-time PCR.

    PubMed

    Wiczk, Justyna; Westphal, Kinga; Rak, Janusz

    2016-09-05

    Real-time PCR (qPCR) - a modern methodology primarily used for studying gene expression has been employed for the quantitative assay of an important class of DNA damage - single strand breaks. These DNA lesions which may lead to highly cytotoxic double strand breaks were quantified in a model system where double stranded DNA was sensitized to UV photons by labeling with 5-bromo-2'-deoxyuridine. The amount of breaks formed due to irradiation with several doses of 320nm photons was assayed by two independent methods: LC-MS and qPCR. A very good agreement between the relative damage measured by the two completely different analytical tools proves the applicability of qPCR for the quantitative analysis of SSBs. Our results suggest that the popularity of the hitherto underestimated though accurate and site-specific technique of real-time PCR may increase in future DNA damage studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Detection of bioterror agents in air samples using real-time PCR.

    PubMed

    Fykse, E M; Langseth, B; Olsen, J S; Skogan, G; Blatny, J M

    2008-08-01

    To use real-time PCR for the detection of bacterial bioterror agents in a liquid air sample containing potential airborne interferences, including bacteria, without the need for DNA extraction. Bacteria in air were isolated after passive sedimentation onto R2A agar plates and characterized by 16S rRNA sequencing. Real-time PCR was used to identify different bacterial bioterror agents in an artificial air sample consisting of a liquid air sample and a mixture of miscellaneous airborne bacteria showing different colony morphology on R2A agar plates. No time-consuming DNA extraction was performed. Specifically designed fluorescent hybridization probes were used for identification. Fourteen different bacterial genera were classified by 16S rRNA gene sequencing of selected bacterial colonies showing growth on R2A agar plates. Real-time PCR amplification of all the bacterial bioterror agents was successfully obtained in the artificial air sample containing commonly found airborne bacteria and other potential airborne PCR interferences. Bacterial bioterror agents can be detected within 1 h in a liquid air sample containing a variety of commonly found airborne bacteria using real-time PCR. Airborne viable bacteria at Kjeller (Norway) were classified to the genera level using 16S rRNA gene sequencing.

  2. Detection of Leishmania infantum in 4 different dog samples by real-time PCR and ITS-1 nested PCR.

    PubMed

    Carvalho Ferreira, Aline Leandra; Carregal, Virgínia Mendes; de Almeida Ferreira, Sidney; Leite, Rodrigo Souza; de Andrade, Antero Silva Ribeiro

    2014-04-01

    The canine visceral leishmaniasis (CVL) diagnosis is an important step of visceral leishmaniasis control program in Brazil, which involves the elimination of infected dogs, the main animal reservoir host of the disease. The aim of the present study was to evaluate a sensitive real-time PCR method for Leishmania infantum detection in 4 different clinical samples of dogs, including the noninvasive conjunctival swab (CS) sample. The results of real-time PCR were compared with those obtained using internal transcribed spacer 1 nested PCR. Animals were divided into 2 groups based on the absence or presence of CVL clinical sings. The CS associated with real-time PCR, using primers addressed to kinetoplast DNA minicircles, was able to detect L. infantum infection in 96.7% of dogs without clinical signs and in 100% of the symptomatic animals, demonstrating the importance of these procedures for diagnosing CVL.

  3. Assessment of real-time PCR for quantification of Legionella spp. in spa water.

    PubMed

    Guillemet, T A; Lévesque, B; Gauvin, D; Brousseau, N; Giroux, J-P; Cantin, P

    2010-12-01

    Legionella bacteria ubiquitously colonize natural freshwater and are responsible for legionellosis in humans. Several cases of legionellosis have been associated in particular with the use of whirlpool spas. The objective of this study was to verify whether real-time PCR is applicable for the quantification of Legionella spp. in spa water. The study compared concentrations obtained by real-time PCR vs that obtained by conventional culture for 101 spa water samples. For the culture method, Legionella spp. were detected and quantified in 14 of 101 samples with measured concentrations ranging from 250 to 3.5 × 10(5) CFU l(-1). With the real-time PCR method, Legionella spp. were detected and quantified in 42 of 101 samples with concentrations ranging from 1000 to 6.1 × 10(7) GU l(-1). Results revealed a significant but weak correlation (r(2) = 0.1867) between the two methods. The positive predictive value (35%) of the PCR method compared to conventional culture herein was low. In contrast, the negative predictive value was excellent, reaching 93%. Real-time PCR could be used as a screening tool to rapidly ascertain the absence of Legionella spp. in spa water. However, a positive result involves the need to resort to conventional culture. Data of this study highlighted the pros and cons of quantification of Legionella spp. in spa water with real-time PCR using a commercial quantitative PCR kit in a routine laboratory, when compared to conventional culture. © 2010 The Authors. Letters in Applied Microbiology 51, 639-644 © 2010 The Society for Applied Microbiology.

  4. [Usefulness of real-time PCR in detecting Chlamydia trachomatis and Neisseria gonorrhoeae in endocervical swabs and first-voided urine specimens].

    PubMed

    Hamasuna, Ryoichi; Kawai, Shuichi; Ando, Yukiko; Ito, Kenji; Kurashima, Motoko; Nishimura, Hirohumi; Yamaguchi, Takamasa; Yoshimura, Makoto; Kobayashi, Tomoko; Muratani, Tetsuro; Matsumoto, Tetsuro

    2013-09-01

    We evaluated performance of Abbott RealTime CT/NG assay (real-time PCR, Abbott Japan) for detect Chlamydia trachomatis and Neisseria gonorrhoeae by real-time PCR in 88 female patients with cervicitis symptoms seen at gynecological clinics and 100 male patients with urethritis symptoms seen at urological or dermatology clinics in Kitakyushu, Japan. Endocervical swab and first-voided urine (FVU) specimens were then collected from women and FVU specimens from men. Detection rates of C. trachomatis and N. gonorrhoeae by real-time PCR in the 3 types of specimens were compared to those by ProbeTec ET assay (ProbeTec, BD Diagnostic System). The overall positive concordance between real-time PCR and ProbTec were 97.1% (66/68) for C. trachomatis and 100% (33/33) for N. gonorrhoeae, C. trachomatis detection yielded 3 discordant results in endocervical specimens and 1 discordant result in male FVU by real-time PCR and ProbTec. Three of 4 reexamined using Aptime Combo 2 Assay (Fuji Rebio Inc.) were positive for C. trachomatis. Endocervical swab and FVU specimen results for C. trachomatis were discordant in 3 cases in real-time PCR and 4 in ProbeTec. Subjects with 2 or more positive endocervical awab results in female or male FVU specimens were assumed to be "true positive" for C. trachomatis. The sensitivities of real-time PCR for detecting C. trachomatis was 94.4% in endocervical swabs, 77.8% in female FVU and 97.4% in the male FVU. The sensitivities for real-time PCR for detectig N. gonorrhoeae was 100% in all 3 specimen types. Abbott RealTime CT/NG assay was useful for detecting C. trachomatis using endocervical swabs or male FVU specimens and for detecting N. gonorrhoeae using endocervical swabs and all FVU specimens.

  5. [Usefulness of real-time PCR in detecting Chlamydia trachomatis and Neisseria gonorrhoeae in endocervical swabs and first-voided urine specimens].

    PubMed

    Hamasuna, Ryoichi; Kawai, Shuichi; Ando, Yukiko; Ito, Kenji; Kurashima, Motoko; Nishimura, Hirohumi; Yamaguchi, Takamasa; Yoshimura, Makoto; Kobayashi, Tomoko; Muratani, Tetsuro; Matsumoto, Tetsuro

    2011-01-01

    We evaluated performance of Abbott RealTime CT/NG assay (real-time PCR, Abbott Japan) for detect Chlamydia trachomatis and Neisseria gonorrhoeae by real-time PCR in 88 female patients with cervicitis symptoms seen at gynecological clinics and 100 male patients with urethritis symptoms seen at urological or dermatology clinics in Kitakyushu, Japan. Endocervical swab and first-voided urine (FVU) specimens were then collected from women and FVU specimens from men. Detection rates of C. trachomatis and N. gonorrhoeae by real-time PCR in the 3 types of specimens were compared to those by ProbeTec ET assay (ProbeTec, BD Diagnostic System). The overall positive concordance between real-time PCR and ProbTec were 97.1% (66/68) for C. trachomatis and 100% (33/33) for N. gonorrhoeae, C. trachomatis detection yielded 3 discordant results in endocervical specimens and 1 discordant result in male FVU by real-time PCR and ProbTec. Three of 4 reexamined using Aptime Combo 2 Assay (Fuji Rebio Inc.) were positive for C. trachomatis. Endocervical swab and FVU specimen results for C. trachomatis were discordant in 3 cases in real-time PCR and 4 in ProbeTec. Subjects with 2 or more positive endocervical awab results in female or male FVU specimens were assumed to be "true positive" for C. trachomatis. The sensitivities of real-time PCR for detecting C. trachomatis was 94.4% in endocervical swabs, 77.8% in female FVU and 97.4% in the male FVU. The sensitivities for real-time PCR for detecting N. gonorrhoeae was 100% in all 3 specimentypes. Abbott RealTime CT/NG assay was useful for detecting C. trachomatis using endocervical swabs or male FVU specimens and for detecting N. gonorrhoeae using endocervical swabs and all FVU specimens.

  6. Duplex Real-Time RT-PCR Assays for the Detection and Typing of Epizootic Haemorrhagic Disease Virus

    PubMed Central

    Viarouge, Cyril; Breard, Emmanuel; Zientara, Stephan; Vitour, Damien; Sailleau, Corinne

    2015-01-01

    Epizootic haemorrhagic disease virus (EHDV) may cause severe clinical episodes in some species of deer and sometimes in cattle. Laboratory diagnosis provides a basis for the design and timely implementation of disease control measures. There are seven distinct EHDV serotypes, VP2 coding segment 2 being the target for serotype specificity. This paper reports the development and validation of eight duplex real-time RT-PCR assays to simultaneously amplify the EHDV target (S9 for the pan-EHDV real-time RT-PCR assay and S2 for the serotyping assays) and endogenous control gene Beta-actin. Analytical and diagnostic sensitivity and specificity, inter- and intra-assay variation and efficiency were evaluated for each assay. All were shown to be highly specific and sensitive. PMID:26161784

  7. Real-Time Reverse Transcription-PCR Assay Panel for Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Lu, Xiaoyan; Whitaker, Brett; Sakthivel, Senthil Kumar K.; Kamili, Shifaq; Rose, Laura E.; Lowe, Luis; Mohareb, Emad; Elassal, Emad M.; Al-sanouri, Tarek; Haddadin, Aktham

    2014-01-01

    A new human coronavirus (CoV), subsequently named Middle East respiratory syndrome (MERS)-CoV, was first reported in Saudi Arabia in September 2012. In response, we developed two real-time reverse transcription-PCR (rRT-PCR) assays targeting the MERS-CoV nucleocapsid (N) gene and evaluated these assays as a panel with a previously published assay targeting the region upstream of the MERS-CoV envelope gene (upE) for the detection and confirmation of MERS-CoV infection. All assays detected ≤10 copies/reaction of quantified RNA transcripts, with a linear dynamic range of 8 log units and 1.3 × 10−3 50% tissue culture infective doses (TCID50)/ml of cultured MERS-CoV per reaction. All assays performed comparably with respiratory, serum, and stool specimens spiked with cultured virus. No false-positive amplifications were obtained with other human coronaviruses or common respiratory viral pathogens or with 336 diverse clinical specimens from non-MERS-CoV cases; specimens from two confirmed MERS-CoV cases were positive with all assay signatures. In June 2012, the U.S. Food and Drug Administration authorized emergency use of the rRT-PCR assay panel as an in vitro diagnostic test for MERS-CoV. A kit consisting of the three assay signatures and a positive control was assembled and distributed to public health laboratories in the United States and internationally to support MERS-CoV surveillance and public health responses. PMID:24153118

  8. Whole blood Nested PCR and Real-time PCR amplification of Talaromyces marneffei specific DNA for diagnosis.

    PubMed

    Lu, Sha; Li, Xiqing; Calderone, Richard; Zhang, Jing; Ma, Jianchi; Cai, Wenying; Xi, Liyan

    2016-02-01

    Talaromyces marneffei is a dimorphic pathogenic fungus, which is a life-threatening invasive mycosis in the immunocompromised host. Prompt diagnosis of T. marneffei infection remains difficult although there has been progress in attempts to expedite the diagnosis of this infection. We previously demonstrated the value of nested polymerase chain reaction (PCR) to detect T. marneffei in paraffin embedded tissue samples with high sensitivity and specificity. In this study, this assay was used to detect the DNA of T. marneffei in whole blood samples. Real-time PCR assay was also evaluated to identify T. marneffei in the same samples. Twenty out of 30 whole blood samples (67%) collected from 23 patients were found positive by using the nested PCR assay, while 23/30 (77%) samples were found positive by using the real-time PCR assay. In order to express accurately the fungal loads, we used a normalized linearized plasmid as an internal control for real-time PCR. The assay results were correlated as the initial quantity (copies/μl) with fungal burden. These data indicate that combination of nested PCR and real-time PCR assay provides an attractive alternative for identification of T. marneffei DNA in whole blood samples of HIV-infected patients.

  9. Specific detection of viable Legionella cells by combined use of photoactivated ethidium monoazide and PCR/real-time PCR.

    PubMed

    Chang, Bin; Sugiyama, Kanji; Taguri, Toshitsugu; Amemura-Maekawa, Junko; Kura, Fumiaki; Watanabe, Haruo

    2009-01-01

    Legionella organisms are prevalent in manmade water systems and cause legionellosis in humans. A rapid detection method for viable Legionella cells combining ethidium monoazide (EMA) and PCR/real-time PCR was assessed. EMA could specifically intercalate and cleave the genomic DNA of heat- and chlorine-treated dead Legionella cells. The EMA-PCR assay clearly showed an amplified fragment specific for Legionella DNA from viable cells, but it could not do so for DNA from dead cells. The number of EMA-treated dead Legionella cells estimated by real-time PCR exhibited a 10(4)- to 10(5)-fold decrease compared to the number of dead Legionella cells without EMA treatment. Conversely, no significant difference in the numbers of EMA-treated and untreated viable Legionella cells was detected by the real-time PCR assay. The combined assay was also confirmed to be useful for specific detection of culturable Legionella cells from water samples obtained from spas. Therefore, the combined use of EMA and PCR/real-time PCR detects viable Legionella cells rapidly and specifically and may be useful in environmental surveillance for Legionella.

  10. Quantification of DNA fragmentation in processed foods using real-time PCR.

    PubMed

    Mano, Junichi; Nishitsuji, Yasuyuki; Kikuchi, Yosuke; Fukudome, Shin-Ichi; Hayashida, Takuya; Kawakami, Hiroyuki; Kurimoto, Youichi; Noguchi, Akio; Kondo, Kazunari; Teshima, Reiko; Takabatake, Reona; Kitta, Kazumi

    2017-07-01

    DNA analysis of processed foods is performed widely to detect various targets, such as genetically modified organisms (GMOs). Food processing often causes DNA fragmentation, which consequently affects the results of PCR analysis. In order to assess the effects of DNA fragmentation on the reliability of PCR analysis, we investigated a novel methodology to quantify the degree of DNA fragmentation. We designed four real-time PCR assays that amplified 18S ribosomal RNA gene sequences common to various plants at lengths of approximately 100, 200, 400, and 800 base pairs (bp). Then, we created an indicator value, "DNA fragmentation index (DFI)", which is calculated from the Cq values derived from the real-time PCR assays. Finally, we demonstrated the efficacy of this method for the quality control of GMO detection in processed foods by evaluating the relationship between the DFI and the limit of detection.

  11. Microfluidic Platform versus Conventional Real-time PCR for the Detection of Mycoplasma pneumoniae in Respiratory Specimens

    PubMed Central

    Wulff-Burchfield, Elizabeth; Schell, Wiley A.; Eckhardt, Allen E.; Pollack, Michael G.; Hua, Zhishan; Rouse, Jeremy L.; Pamula, Vamsee K.; Srinivasan, Vijay; Benton, Jonathan L.; Alexander, Barbara D.; Wilfret, David A.; Kraft, Monica; Cairns, Charles; Perfect, John R.; Mitchell, Thomas G.

    2010-01-01

    Rapid, accurate diagnosis of community-acquired pneumonia (CAP) due to Mycoplasma pneumoniae is compromised by low sensitivity of culture and serology. PCR has emerged as a sensitive method to detect M. pneumoniae DNA in clinical specimens. However, conventional real-time PCR is not cost-effective for routine out-patient or implementation. Here, we evaluate a novel microfluidic real-time PCR platform (Advanced Liquid Logic, Inc.) that is rapid, portable, and fully automated. We enrolled patients with CAP and extracted DNA from nasopharyngeal wash (NPW) specimens using a biotinylated capture probe and streptavidin-coupled magnetic beads. Each extract was tested for M. pneumoniae-specific DNA by real-time PCR on both conventional and microfluidic platforms using Taqman probe and primers. Three of 59 (5.0%) NPWs were positive, and agreement between the methods was 98%. The microfluidic platform was equally sensitive but three times faster and offers an inexpensive and convenient diagnostic test for microbial DNA. PMID:20227222

  12. Development and application of a quantitative real-time PCR assay to detect feline leukemia virus RNA.

    PubMed

    Torres, Andrea N; O'Halloran, Kevin P; Larson, Laurie J; Schultz, Ronald D; Hoover, Edward A

    2008-05-15

    We previously defined four categories of feline leukemia virus (FeLV) infection, designated as abortive, regressive, latent, and progressive. To determine if detectable viral DNA is transcriptionally active in the absence of antigenemia, we developed and validated a real-time viral RNA qPCR assay. This assay proved to be highly sensitive, specific, reproducible, and allowed reliable quantitation. We then applied this methodology, together with real-time DNA qPCR and p27 capsid antigen capture ELISA, to examine cats challenged with FeLV. We found that circulating viral RNA and DNA levels were highly correlated and the assays were almost in perfect agreement. This indicates that the vast majority of viral DNA is transcriptionally active, even in the absence of antigenemia. The real-time qPCR assays are more sensitive than the most commonly used FeLV diagnostic assay, the p27 capsid antigen capture ELISA. Application of qPCR assays may add greater depth in understanding of FeLV-host relationships.

  13. Monitoring biothreat agents (Francisella tularensis, Bacillus anthracis and Yersinia pestis) with a portable real-time PCR instrument.

    PubMed

    Mölsä, Markos; Hemmilä, Heidi; Katz, Anna; Niemimaa, Jukka; Forbes, Kristian M; Huitu, Otso; Stuart, Peter; Henttonen, Heikki; Nikkari, Simo

    2015-08-01

    In the event of suspected releases or natural outbreaks of contagious pathogens, rapid identification of the infectious agent is essential for appropriate medical intervention and disease containment. The purpose of this study was to compare the performance of a novel portable real-time PCR thermocycler, PikoReal™, to the standard real-time PCR thermocycler, Applied Biosystems® 7300 (ABI 7300), for the detection of three high-risk biothreat bacterial pathogens: Francisella tularensis, Bacillus anthracis and Yersinia pestis. In addition, a novel confirmatory real-time PCR assay for the detection of F. tularensis is presented and validated. The results show that sensitivity of the assays, based on a dilution series, for the three infectious agents ranged from 1 to 100 fg of target DNA with both instruments. No cross-reactivity was revealed in specificity testing. Duration of the assays with the PikoReal and ABI 7300 systems were 50 and 100 min, respectively. In field testing for F. tularensis, results were obtained with the PikoReal system in 95 min, as the pre-PCR preparation, including DNA extraction, required an additional 45 min. We conclude that the PikoReal system enables highly sensitive and rapid on-site detection of biothreat agents under field conditions, and may be a more efficient alternative to conventional diagnostic methods.

  14. Rapid real-time recirculating PCR using localized surface plasmon resonance (LSPR) and piezo-electric pumping.

    PubMed

    Haber, J M; Gascoyne, P R C; Sokolov, K

    2017-08-08

    Rapid detection and characterization of pathogens in patients with bloodstream infections (BSIs) is a persistent problem for modern medicine, as current techniques are slow or provide incomplete diagnostic information. Real-time polymerase chain reaction (qPCR) allows specific detection of a wide range of targets and quantification of pathogenic burdens to aid in treatment planning. However, new technological advances are required for a rapid and multiplex implementation of qPCR in clinical applications. In this paper, the feasibility of a novel microfluidic platform for qPCR is presented, integrating highly sensitive, label-free localized surface plasmon resonance (LSPR) imaging of DNA hybridization into a recirculating chip design for real-time analysis. Single target and multiplex detection of DNA target amplification are demonstrated, with a limit of detection of 5 fg μL(-1) of E. coli DNA for single target PCR, correlating with approximately 300 bacteria per mL. The results of this study demonstrate the potential of this platform for simultaneous real-time detection of multiple target genes within 15 minutes that could provide live saving benefits in patients with BSIs.

  15. Development of a real-time PCR for Bartonella spp. detection, a current emerging microorganism.

    PubMed

    Parra, Elena; Segura, Ferran; Tijero, Jessica; Pons, Imma; Nogueras, Maria-Mercedes

    2017-04-01

    A real-time PCR assay using SYBR Green was optimized to detect those Bartonella that are most frequently described as pathogens. The assay was genus-specific. Sequencing allowed to distinguish species. Assay sensitivity was determined using 10-fold serial dilutions of genomic DNA. Dynamic range was 100 ng-100 fg and sensitivity was 50 copies/reaction.

  16. Real-time RT-PCR assay for detection and differentiation of Citrus tristeza virus isolates

    USDA-ARS?s Scientific Manuscript database

    For universal detection of Citrus tristeza virus (CTV) strains by real time RT-PCR, a protocol was developed based on a set of primers and a Cy5-labeled TaqMan probe. This test included primers and a TET-labeled TaqMan probe selected on the mitochondrial nad5 gene for the simultaneous detection of ...

  17. REAL-TIME PCR METHOD TO DETECT ENTEROCOCCUS FAECALIS IN WATER

    EPA Science Inventory

    A 16S rDNA real-time PCR method was developed to detect Enterococcus faecalis in water samples. The dynamic range for cell detection spanned five logs and the detection limit was determined to be 6 cfu/reaction. The assay was capable of detecting E. faecalis cells added to biof...

  18. Detection of shrimp-derived components in food by real-time fluorescent PCR.

    PubMed

    Cao, Jijuan; Yu, Bing; Ma, Lidan; Zheng, Qiuyue; Zhao, Xin; Xu, Junyi

    2011-10-01

    Crustaceans such as shrimp and crabs and their products are important allergens in food, and allergic reactions due to the consumption of shrimp and crabs are frequently reported. However, the chemical properties of shrimp-derived allergens, except for Pen a I, are still unclear. Therefore, it is important to establish a more sensitive and specific method for detecting the composition of foods containing shrimp. In the present study, we developed a real-time fluorescent PCR to identify the specific shrimp-derived components in food. The primers and TaqMan probes for real-time fluorescent PCR were designed based on 16S rRNA genes through comparing a large number of nucleic acid sequences from different species of shrimp that have been published by the National Center for Biotechnology Information. In total, 56 kinds of samples, including different kinds of shrimp, crab, fish, shellfish, and octopus, were subjected to detection by real-time PCR. The results indicated that real-time fluorescent PCR could successfully identify the shrimp-derived components. In order to explore the effect of food processing on detection sensitivity, fish powder containing shrimp powder was treated by heating at 133°C for 30 min. The limit of detection of shrimp-derived components in fish powder was 0.05% (wt/wt).

  19. Quantification of viable Brochothrix thermosphacta in cooked shrimp and salmon by real-time PCR.

    PubMed

    Mamlouk, Kelthoum; Macé, Sabrina; Guilbaud, Morgan; Jaffrès, Emmanuel; Ferchichi, Mounir; Prévost, Hervé; Pilet, Marie-France; Dousset, Xavier

    2012-05-01

    Brochothrix thermosphacta, a Gram-positive bacterium, is considered as the predominant spoilage microbiota of modified atmosphere packing (MAP) shrimp and fish. Traditional methods currently used to detect B. thermosphacta in foods are time-consuming and labour-intensive. The aim of this study was to develop a real-time PCR quantification method combined with a propidium monoazide (PMA) sample treatment step to monitor the population of B. thermosphacta in cooked shrimp and salmon. The specificity of the two primers MO405 and MO404 used to amplify a 70 bp fragment of the 16S rRNA gene was demonstrated by using purified DNA from 30 strains, among 21 bacterial species including 22 reference strains. Using these primers for real-time PCR and in pure culture, a good correlation was obtained between real-time PCR and the conventional plating method. Quantification was linear over 7-log units using artificially inoculated samples. The method performed successfully when tested on naturally contaminated cooked shrimp and fresh salmon, with a minimum threshold of 1.9×10² CFU/g for accurate quantification of B. thermosphacta. The correlation between the B. thermosphacta counts obtained by real-time PCR and plate counts on naturally contaminated shrimp and salmon was high (R²=0.895). Thus, this study presents a rapid tool for producing reliable quantitative data on B. thermosphacta in cooked shrimp and fresh salmon.

  20. Rapid species identification of cooked poisonous mushrooms by using real-time PCR.

    PubMed

    Maeta, Kazuhiko; Ochi, Tomoya; Tokimoto, Keisuke; Shimomura, Norihiro; Maekawa, Nitaro; Kawaguchi, Nobuhisa; Nakaya, Makoto; Kitamoto, Yutaka; Aimi, Tadanori

    2008-05-01

    Species-specific identification of the major cooked and fresh poisonous mushrooms in Japan was performed using a real-time PCR system. Specific fluorescence signals were detected, and no nonspecific signals were detected. Therefore, we succeeded in developing a species-specific test for the identification of poisonous mushrooms within 1.5 h.

  1. Quantitative detection of residual porcine host cell DNA by real-time PCR.

    PubMed

    Chang, Jen-Ting; Chen, Yu-Chen; Chou, Yu-Chi; Wang, Shih-Rong

    2014-03-01

    All biological products are derived from complex living systems and are often mixed with large numbers of impurities. For reasons of safety, residual host-cell DNA must be eliminated during processing. To assay host-cell DNA content in biopharmaceutical products derived from porcine sources, this study applies the quantitative real-time polymerase chain reaction (Q-PCR) method. The optimized assay in this study is based on the pol region of the porcine endogenous retrovirus (PERV). Assay validation results demonstrate that the proposed assay has appropriate accuracy, preciseness, reproducibility, and sensitivity. Primer and probe specificity are evaluated in real-time Q-PCR reactions using genomic DNA from rabbit, mouse, cat, hamster, monkey, human cell, yeast, and Escherichia coli as templates. The sensitivity of real-time Q-PCR is determined using genomic DNA from the porcine kidney cell line. The reliable detection range is within 0.5-10(5) pg/reaction. The limit of quantitation is 500 fg. The sensitivity of the assay meets the authority criterion. Moreover, the assay is applied to determine the level of host-cell DNA in recombinant human coagulation factor IX (rhFIX) from transgenic pigs. The real-time Q-PCR assay is thus a promising new tool for quantitative detection and clearance validation of residual porcine DNA when manufacturing recombinant therapeutics.

  2. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  3. Application of real-time PCR to postharvest physiology – DNA isolation

    USDA-ARS?s Scientific Manuscript database

    Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...

  4. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    33672 Bacillus megaterium ................................................................ NA...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical...modification 4 June 2004/Accepted 9 August 2004 Real-time PCR has become an important method for the rapid identification of Bacillus anthracis since the

  5. Identifying Haemophilus haemolyticus and Haemophilus influenzae by SYBR Green real-time PCR.

    PubMed

    Latham, Roger; Zhang, Bowen; Tristram, Stephen

    2015-05-01

    SYBR Green real time PCR assays for protein D (hpd), fuculose kinase (fucK) and [Cu, Zn]-superoxide dismutase (sodC) were designed for use in an algorithm for the identification of Haemophilus influenzae and H. haemolyticus. When tested on 127 H. influenzae and 60 H. haemolyticus all isolates were identified correctly.

  6. Detection and quantification of Pratylenchus thornei in DNA extracted from soil using real-time PCR.

    PubMed

    Yan, Guiping; Smiley, Richard W; Okubara, Patricia A

    2012-01-01

    The root-lesion nematode Pratylenchus thornei is one of the most important pests restricting productivity of wheat in the Pacific Northwest (PNW). It is laborious and difficult to use microscopy to count and identify the nematodes in soils. A SYBR Green I-based real-time polymerase chain reaction (PCR) assay was developed to detect and quantify this species from DNA extracts of soil. A primer set, designed from the internal transcribed spacer region (ITS1) of rDNA, was highly specific to P. thornei and did not amplify DNA from 27 isolates of other Pratylenchus spp., other nematodes, and six fungal species present in PNW wheat fields. A standard curve relating threshold cycle and log values of nematode number was generated from artificially infested soils. The standard curve was supported by a high correlation between the numbers of P. thornei added to soil and the numbers quantified using real-time PCR. Examination of 15 PNW dryland field soils and 20 greenhouse samples revealed significant positive correlations between the numbers determined by real-time PCR and by the Whitehead tray and microscopic method. Real-time PCR is a rapid, sensitive alternative to time-consuming nematode extractions, microscopic identification, and counting of P. thornei from field and greenhouse soils.

  7. [PCR "real time" to analyze the quantitative and qualitative relations microbiota of periodontal pockets].

    PubMed

    Zorina, O A; Kulakov, A A; Boriskina, O A; Rebrikov, D V

    2011-01-01

    The introduction of a broad medical practice PCR "real time" is just beginning and dentistry is no exception. Modern molecular genetic methods provide numerous opportunities for diagnosis, assessment and prediction in patients with inflammatory periodontal diseases. Early and accurate diagnosis can allow in the future reduce the incidence of periodontitis and the progression of its course.

  8. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER (FRET) PCR TO DETECT ARCOBACTER SPECIES

    USDA-ARS?s Scientific Manuscript database

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using the Fluorescence Resonance Energy Transfer technology...

  9. DEVELOPMENT OF A REAL-TIME FLUORESCENCE RESONANCE ENERGY TRANSFER PCR TO DETECT ARCOBACTER SPECIES

    USDA-ARS?s Scientific Manuscript database

    A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was made by probe hybridization and melting curve analysis, using Fluorescence Resonance Energy Transfer technology. D...

  10. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    ERIC Educational Resources Information Center

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  11. Rapid detection of Salmonella in bovine lymph nodes using a commercial real-time PCR system

    USDA-ARS?s Scientific Manuscript database

    Rapid Salmonella detection is needed to help prevent the distribution of contaminated food products. Using traditional culture methods, Salmonella detection can take up to 3-5 days. Using an improved protocol and a commercial real-time PCR system, we have shortened the detection time to under 24 h...

  12. Detection of Human Cytomegalovirus DNA by Real-Time Quantitative PCR

    PubMed Central

    Nitsche, Andreas; Steuer, Nina; Schmidt, Christian Andreas; Landt, Olfert; Ellerbrok, Heinz; Pauli, Georg; Siegert, Wolfgang

    2000-01-01

    A real-time PCR assay was developed to quantify human cytomegalovirus (CMV) DNA. This assay was used to demonstrate a higher CMV DNA load in plasma of bone marrow transplant patients than in that of blood donors. The CMV load was higher in CMV antigen-positive patients than in antigen-negative patients. PMID:10878073

  13. European validation of Real-Time PCR method for detection of Salmonella spp. in pork meat.

    PubMed

    Delibato, Elisabetta; Rodriguez-Lazaro, David; Gianfranceschi, Monica; De Cesare, Alessandra; Comin, Damiano; Gattuso, Antonietta; Hernandez, Marta; Sonnessa, Michele; Pasquali, Frédérique; Sreter-Lancz, Zuzsanna; Saiz-Abajo, María-José; Pérez-De-Juan, Javier; Butrón, Javier; Prukner-Radovcic, Estella; Horvatek Tomic, Danijela; Johannessen, Gro S; Jakočiūnė, Džiuginta; Olsen, John E; Chemaly, Marianne; Le Gall, Francoise; González-García, Patricia; Lettini, Antonia Anna; Lukac, Maja; Quesne, Segolénè; Zampieron, Claudia; De Santis, Paola; Lovari, Sarah; Bertasi, Barbara; Pavoni, Enrico; Proroga, Yolande T R; Capuano, Federico; Manfreda, Gerardo; De Medici, Dario

    2014-08-01

    The classical microbiological method for detection of Salmonella spp. requires more than five days for final confirmation, and consequently there is a need for an alternative methodology for detection of this pathogen particularly in those food categories with a short shelf-life. This study presents an international (at European level) ISO 16140-based validation study of a non-proprietary Real-Time PCR-based method that can generate final results the day following sample analysis. It is based on an ISO compatible enrichment coupled to an easy and inexpensive DNA extraction and a consolidated Real-Time PCR assay. Thirteen laboratories from seven European Countries participated to this trial, and pork meat was selected as food model. The limit of detection observed was down to 10 CFU per 25 g of sample, showing excellent concordance and accordance values between samples and laboratories (100%). In addition, excellent values were obtained for relative accuracy, specificity and sensitivity (100%) when the results obtained for the Real-Time PCR-based methods were compared to those of the ISO 6579:2002 standard method. The results of this international trial demonstrate that the evaluated Real-Time PCR-based method represents an excellent alternative to the ISO standard. In fact, it shows an equal and solid performance as well as it reduces dramatically the extent of the analytical process, and can be easily implemented routinely by the Competent Authorities and Food Industry laboratories. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Diagnosis of gastric cryptosporidiosis in birds using a duplex real-time PCR assay.

    PubMed

    Nakamura, Alex A; Homem, Camila G; da Silva, Adriana M J; Meireles, Marcelo V

    2014-09-15

    Three species and several genotypes of Cryptosporidium can infect the epithelial surface of the bursa of Fabricius, the respiratory tract, the proventriculus, the intestine, and the urinary tract in birds. There is reason to believe that gastric cryptosporidiosis in birds is caused by Cryptosporidium galli and Cryptosporidium avian genotype III, resulting in a chronic illness of the proventriculus that can lead to a debilitating and fatal clinical condition in birds of the orders Passeriformes and Psittaciformes. The objectives of the present study were to develop a duplex real-time polymerase chain reaction (PCR) that targets the 18S rRNA gene to simultaneously detect C. galli and Cryptosporidium avian genotype III DNA and to compare the duplex real-time PCR results to those of nested PCR targeting a partial fragment of the 18S rRNA gene, followed by sequencing of the amplified products (nPCR/S). A total of 1027 fecal samples were collected from birds of the orders Psittaciformes and Passeriformes originating either from captivity or the wild. Duplex real-time PCR results were positive in 580 (56.47%) and 21 (2.04%) samples, respectively, for C. galli and Cryptosporidium avian genotype III, whereas nPCR/S was positive in 28 (2.73%) and three (0.29%) samples, respectively, for C. galli and Cryptosporidium avian genotype III. Novel host birds were identified for both of the above gastric species, and it was also possible to identify Cryptosporidium baileyi and, for the first time in Brazil, Cryptosporidium avian genotype V. The duplex real-time PCR assay developed in the present study represents a sensitive and specific method for the detection of C. galli and Cryptosporidium avian genotype III in bird fecal samples. Moreover, this method may serve as an alternative to nPCR/S as a gold standard for the diagnosis of gastric cryptosporidiosis in birds.

  15. Development of absolute quantification method for genotype-specific Babesia microti using real-time PCR and practical experimental tips of real-time PCR.

    PubMed

    Ohmori, Shiho; Nagano-Fujii, Motoko; Saito-Ito, Atsuko

    2016-10-01

    Babesia microti, a rodent babesia, is known as a pathogen of zoonosis, human babesiosis, is composed of several genotypes of small subunit ribosomal RNA gene (SSUrDNA) and different genotypes have been suggested to have different infectivity and pathogenicity to humans. We established a real-time PCR assay using SYBR Green I, which allows specific detection and absolute quantification for each SSUrDNA-type-B. microti of four SSUrDNA-types found in Japanese rodents even in mixed infection. In this assay, four genotype-specific primer pairs targeted on internal transcribed spacer 1 or 2 sequences were used. Primer pairs have the characteristics for a high specificity for homologous genotype DNA. The calibration curves of cycle threshold (Ct) values versus log concentrations of DNA for all four genotypes were linear over 10(7) fold range of DNA concentrations with correlation coefficient from 0.95 to 1 and sufficient amplification efficiency from 90% to 110%. The standard curves for all four genotypes were not changed even in the presence of heterologous DNA. In this paper, we introduce how to establish and perform the genotype-specific real-time PCR and our practical experimental tips to be recommended.

  16. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  17. Real-Time PCR Improves Helicobacter pylori Detection in Patients with Peptic Ulcer Bleeding

    PubMed Central

    Casalots, Alex; Sanfeliu, Esther; Boix, Loreto; García-Iglesias, Pilar; Sánchez-Delgado, Jordi; Montserrat, Antònia; Bella-Cueto, Maria Rosa; Gallach, Marta; Sanfeliu, Isabel; Segura, Ferran; Calvet, Xavier

    2011-01-01

    Background and Aims Histological and rapid urease tests to detect H. pylori in biopsy specimens obtained during peptic ulcer bleeding episodes (PUB) often produce false-negative results. We aimed to examine whether immunohistochemistry and real-time PCR can improve the sensitivity of these biopsies. Patients and Methods We selected 52 histology-negative formalin-fixed paraffin-embedded biopsy specimens obtained during PUB episodes. Additional tests showed 10 were true negatives and 42 were false negatives. We also selected 17 histology-positive biopsy specimens obtained during PUB to use as controls. We performed immunohistochemistry staining and real-time PCR for 16S rRNA, ureA, and 23S rRNA for H. pylori genes on all specimens. Results All controls were positive for H. pylori on all PCR assays and immunohistochemical staining. Regarding the 52 initially negative biopsies, all PCR tests were significantly more sensitive than immunohistochemical staining (p<0.01). Sensitivity and specificity were 55% and 80% for 16S rRNA PCR, 43% and 90% for ureA PCR, 41% and 80% for 23S rRNA PCR, and 7% and 100% for immunohistochemical staining, respectively. Combined analysis of PCR assays for two genes were significantly more sensitive than ureA or 23S rRNA PCR tests alone (p<0.05) and marginally better than 16S rRNA PCR alone. The best combination was 16S rRNA+ureA, with a sensitivity of 64% and a specificity of 80%. Conclusions Real-time PCR improves the detection of H. pylori infection in histology-negative formalin-fixed paraffin-embedded biopsy samples obtained during PUB episodes. The low reported prevalence of H. pylori in PUB may be due to the failure of conventional tests to detect infection. PMID:21625499

  18. A real-time PCR assay for the monitoring of influenza A virus in wild birds.

    PubMed

    Karlsson, Malin; Wallensten, Anders; Lundkvist, Ake; Olsen, Björn; Brytting, Maria

    2007-09-01

    A screening system including a new real-time PCR assay for the monitoring of influenza A virus in wild birds was developed. The real-time PCR assay uses SYBR green chemistry and the primers are targeting the matrix gene of influenza A virus. The performance of the assay was compared with two other assays, one assay also using SYBR green chemistry and one assay using TaqMan chemistry, i.e. a specific probe. A total of 45 fecal bird samples were analysed for influenza A virus in three different PCR reactions. Overall, 26 samples were positive in at least one of the three real-time PCR assays. Of the 26 samples, 18 were positive by all three reactions. Eight samples were found positive exclusively by the two SYBR green reactions, six of which were detected by both SYBR green reactions. Of the 26 positive samples, 15 samples were verified as positive either by virus isolation or influenza A M2-gene PCR. The results showed that the two SYBR green systems had a higher performance regarding the detection of influenza A as compared to the PCR reaction using a specific probe.

  19. Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR.

    PubMed

    Priha, Outi; Hallamaa, Katri; Saarela, Maria; Raaska, Laura

    2004-05-01

    The aim of this study was to develop a PCR-based rapid method to detect Bacillus cereus group cells from paper and cardboard. Primers targeting the 16S rDNA and real-time PCR with SYBR green I detection were used in order to be able to also quantify the target. Both autoclaved cardboard samples spiked with B. cereus vegetative cells or spores and naturally contaminated paper and cardboard samples were studied. Results were compared with culturing verified by commercial (API) tests. Several different methods were tested for DNA isolation from the paper and cardboard samples. Two commercial kits intended for soils, the UltraClean soil DNA kit and the FastDNA spin kit for soil, gave the most reproducible results. In spiked samples, the average yield was 50% of added vegetative cells, but spore yield was only about 10%. PCR results from adding vegetative cells correlated with added colony-forming unit (cfu) values ( r=0.93, P <0.001) in the range 100-10,000 cfu g(-1). Three out of nine studied paper and cardboard samples contained B. cereus group bacteria, based both on culturing and real-time PCR. The numbers were 10(2)-10(3) bacteria g(-1); and PCR gave somewhat higher results than culturing. Thus, real-time PCR can be used as a rapid semi-quantitative method to screen paper and cardboard samples for contamination with B. cereus group bacteria.

  20. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases.

    PubMed

    Laux da Costa, Lucas; Delcroix, Melaine; Dalla Costa, Elis R; Prestes, Isaías V; Milano, Mariana; Francis, Steve S; Unis, Gisela; Silva, Denise R; Riley, Lee W; Rossetti, Maria L R

    2015-07-01

    The goal of this study was to identify a host gene signature that can distinguish tuberculosis (TB) from other pulmonary diseases (OPD). We conducted real-time PCR on whole blood samples from patients in Brazil. TB and OPD patients (asthma and non-TB pneumonia) differentially expressed granzyme A (GZMA), guanylate binding protein 5 (GBP5) and Fc gamma receptor 1A (CD64). Receiver operating characteristic, tree classification and random forest analyses were applied to evaluate the discriminatory power of the three genes and find the gene panel most predictive of patients' disease classification. Tree classification produced a model based on GBP5 and CD64 expression. In random forest analysis, the combination of the three genes provided a robust biosignature to distinguish TB from OPD with 95% specificity and 93% sensitivity. Our results suggest that GBP5 and CD64 in tandem may be the most predictive combination. However, GZMA contribution to the prediction model requires further investigation. Regardless, these three genes show promise as a rapid diagnostic marker separating TB from OPD.

  1. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases

    PubMed Central

    da Costa, Lucas Laux; Delcroix, Melaine; Dalla Costa, Elis R.; Prestes, Isaías V.; Milano, Mariana; Francis, Steve S.; Unis, Gisela; Silva, Denise R.; Riley, Lee W.; Rossetti, Maria L. R.

    2015-01-01

    The goal of this study was to identify a host gene signature that can distinguish tuberculosis (TB) from other pulmonary diseases (OPD). We conducted real-time PCR on whole blood samples from patients in Brazil. TB and OPD patients (asthma and non-TB pneumonia) differentially expressed granzyme A (GZMA), guanylate binding protein 5 (GBP5) and Fc gamma receptor 1A (CD64). Receiver operating characteristic, tree classification and random forest analyses were applied to evaluate the discriminatory power of the three genes and find the gene panel most predictive of patients’ disease classification. Tree classification produced a model based on GBP5 and CD64 expression. In random forest analysis, the combination of the three genes provided a robust biosignature to distinguish TB from OPD with 95% specificity and 93% sensitivity. Our results suggest that GBP5 and CD64 in tandem may be the most predictive combination. However, GZMA contribution to the prediction model requires further investigation. Regardless, these three genes show promise as a rapid diagnostic marker separating TB from OPD. PMID:26025597

  2. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens

    PubMed Central

    Theodore, M. Jordan; Mair, Raydel; Trujillo-Lopez, Elizabeth; du Plessis, Mignon; Wolter, Nicole; Baughman, Andrew L.; Hatcher, Cynthia; Vuong, Jeni; Lott, Lisa; von Gottberg, Anne; Sacchi, Claudio; McDonald, J. Matthew; Messonnier, Nancy E.; Mayer, Leonard W.

    2012-01-01

    Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae are important causes of meningitis and other infections, and rapid, sensitive, and specific laboratory assays are critical for effective public health interventions. Singleplex real-time PCR assays have been developed to detect N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA and serogroup-specific genes in the cap locus for N. meningitidis serogroups A, B, C, W135, X, and Y. However, the assay sensitivity for serogroups B, W135, and Y is low. We aimed to improve assay sensitivity and develop multiplex assays to reduce time and cost. New singleplex real-time PCR assays for serogroup B synD, W135 synG, and Y synF showed 100% specificity for detecting N. meningitidis species, with high sensitivity (serogroup B synD, 99% [75/76]; W135 synG, 97% [38/39]; and Y synF, 100% [66/66]). The lower limits of detection (LLD) were 9, 43, and 10 copies/reaction for serogroup B synD, W135 synG, and Y synF assays, respectively, a significant improvement compared to results for the previous singleplex assays. We developed three multiplex real-time PCR assays for detection of (i) N. meningitidis ctrA, H. influenzae hpd, and S. pneumoniae lytA (NHS assay); (ii) N. meningitidis serogroups A, W135, and X (AWX assay); and (iii) N. meningitidis serogroups B, C, and Y (BCY assay). Each multiplex assay was 100% specific for detecting its target organisms or serogroups, and the LLD was similar to that for the singleplex assay. Pairwise comparison of real-time PCR between multiplex and singleplex assays showed that cycle threshold values of the multiplex assay were similar to those for the singleplex assay. There were no substantial differences in sensitivity and specificity between these multiplex and singleplex real-time PCR assays. PMID:22170919

  3. Evaluation by latent class analysis of a magnetic capture based DNA extraction followed by real-time qPCR as a new diagnostic method for detection of Echinococcus multilocularis in definitive hosts.

    PubMed

    Maas, Miriam; van Roon, Annika; Dam-Deisz, Cecile; Opsteegh, Marieke; Massolo, Alessandro; Deksne, Gunita; Teunis, Peter; van der Giessen, Joke

    2016-10-30

    A new method, based on a magnetic capture based DNA extraction followed by qPCR, was developed for the detection of the zoonotic parasite Echinococcus multilocularis in definitive hosts. Latent class analysis was used to compare this new method with the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. In total, 60 red foxes and coyotes from three different locations were tested with both molecular methods and the sedimentation and counting technique (SCT) or intestinal scraping technique (IST). Though based on a limited number of samples, it could be established that the magnetic capture based DNA extraction followed by qPCR showed similar sensitivity and specificity as the currently used phenol-chloroform DNA extraction followed by single tube nested PCR. All methods have a high specificity as shown by Bayesian latent class analysis. Both molecular assays have higher sensitivities than the combined SCT and IST, though the uncertainties in sensitivity estimates were wide for all assays tested. The magnetic capture based DNA extraction followed by qPCR has the advantage of not requiring hazardous chemicals like the phenol-chloroform DNA extraction followed by single tube nested PCR. This supports the replacement of the phenol-chloroform DNA extraction followed by single tube nested PCR by the magnetic capture based DNA extraction followed by qPCR for molecular detection of E. multilocularis in definitive hosts. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantification Bias Caused by Plasmid DNA Conformation in Quantitative Real-Time PCR Assay

    PubMed Central

    Lin, Chih-Hui; Chen, Yu-Chieh; Pan, Tzu-Ming

    2011-01-01

    Quantitative real-time PCR (qPCR) is the gold standard for the quantification of specific nucleic acid sequences. However, a serious concern has been revealed in a recent report: supercoiled plasmid standards cause significant over-estimation in qPCR quantification. In this study, we investigated the effect of plasmid DNA conformation on the quantification of DNA and the efficiency of qPCR. Our results suggest that plasmid DNA conformation has significant impact on the accuracy of absolute quantification by qPCR. DNA standard curves shifted significantly among plasmid standards with different DNA conformations. Moreover, the choice of DNA measurement method and plasmid DNA conformation may also contribute to the measurement error of DNA standard curves. Due to the multiple effects of plasmid DNA conformation on the accuracy of qPCR, efforts should be made to assure the highest consistency of plasmid standards for qPCR. Thus, we suggest that the conformation, preparation, quantification, purification, handling, and storage of standard plasmid DNA should be described and defined in the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) to assure the reproducibility and accuracy of qPCR absolute quantification. PMID:22194997

  5. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR.

    PubMed

    Alaei, Hossein; Baeyen, Steve; Maes, Martine; Höfte, Monica; Heungens, Kurt

    2009-02-01

    Puccinia horiana Henn. is a quarantine organism and one of the most important fungal pathogens of Chrysanthemum x morifolium cultivars grown for cut flower or potted plant production (florist's chrysanthemum) in several regions of the world. Highly specific primer pairs were identified for conventional, nested, and real-time PCR detection of P. horiana based on the specific and sensitive PCR amplification of selected regions in the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA (rDNA). Using these different PCR versions, 10 pg, 10 fg, and 5 fg genomic DNA could be detected, respectively. When using cloned target DNA as template, the detection limits were 5000, 50, and 5 target copies, respectively. These detection limits were not affected by a background of chrysanthemum plant DNA. The DNA extraction method was optimized to maximize the recoverability of the pathogen from infected plant tissue. A CTAB extraction protocol or a selection of commercial DNA extraction methods allowed the use of 10 ng total (plant+pathogen) DNA without interference of PCR inhibitors. Due to the specificity of the primers, SYBR Green I technology enabled reliable real time PCR signal detection. However, an efficient TaqMan probe is available. The lowest proportion of infected plant material that could still be detected when mixed with healthy plant material was 0.001%. The real-time PCR assay could detect as few as eight pure P. horiana basidiospores, demonstrating the potential of the technique for aerial detection of the pathogen. The amount of P. horiana DNA in plant tissue was determined at various time points after basidiospore inoculation. Using the real-time PCR protocol, it was possible to detect the pathogen immediately after the inoculation period, even though the accumulation of pathogen DNA was most pronounced near the end of the latent period. The detection system proved to be accurate and sensitive and could help not only in pathogen diagnosis but

  6. Taqman real-time PCR assays for rapid detection of avian pathogenic Escherichia coli isolates.

    PubMed

    Ikuta, Nilo; De Oliveira Solla Sobral, Fabiana; Lehmann, Fernanda Kieling Moreira; da Silveira, Proença Vinicius; de Carli, Silvia; Casanova, Yara Silva; Celmer, Álvaro José; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2014-12-01

    Avian pathogenic Escherichia coli (APEC) isolates are currently differentiated from nonpathogenic strains by classical PCR of virulence genes. This study improves the detection of the five main virulence genes used for APEC detection with the development of duplex and single Taqman real-time PCR to these targets. Primers and probes targeted to ompT, hlyF, iroN, iutA, and iss genes were designed and used in the implementation of single (iss) and duplex (hlyF/ompT and iroN/iutA) Taqman PCR assays. All five virulence genes of E coli strains were successfully detected by classical and Taqman real-time (single and duplex) PCR. A panel of 111 E coli isolates, obtained from avian samples collected in different Brazilian regions between 2010 and 2011, were further tested by both assays. Complete agreement was observed in the detection of four genes, ompT, hlyF, iron, iutA, but not for iss. This issue was addressed by combining the forward primer of the classical PCR to the new iss reverse primer and probe, resulting in complete agreement for all five genes. In total, 61 (55%) Brazilian E. coli isolates were detected as APEC, and the remaining 50 (45%) as avian fecal E. coli (AFEC). In conclusion, classical and Taqman real-time PCR presented exactly the same analytical performance for the differentiation of APEC and AFEC isolates. The developed real-time Taqman PCR assays could be used for the detection and differentiation of APEC isolates.

  7. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus.

    PubMed

    Frosth, Sara; König, Ulrika; Nyman, Ann-Kristin; Aspán, Anna

    2017-09-01

    Dichelobacter nodosus is the principal cause of ovine footrot and strain virulence is an important factor in disease severity. Therefore, detection and virulence determination of D. nodosus is important for proper diagnosis of the disease. Today this is possible by real-time PCR analysis. Analysis of large numbers of samples is costly and laborious; therefore, pooling of individual samples is common in surveillance programs. However, pooling can reduce the sensitivity of the method. The aim of this study was to develop a pooling method for real-time PCR analysis that would allow sensitive detection and simultaneous virulence determination of D. nodosus. A total of 225 sheep from 17 flocks were sampled using ESwabs within the Swedish Footrot Control Program in 2014. Samples were first analysed individually and then in pools of five by real-time PCR assays targeting the 16S rRNA and aprV2/B2 genes of D. nodosus. Each pool consisted of four negative and one positive D. nodosus samples with varying amounts of the bacterium. In the individual analysis, 61 (27.1%) samples were positive in the 16S rRNA and the aprV2/B2 PCR assays and 164 (72.9%) samples were negative. All samples positive in the aprV2/B2 PCR-assay were of aprB2 variant. The pooled analysis showed that all 41 pools were also positive for D. nodosus 16S rRNA and the aprB2 variant. The diagnostic sensitivity for pooled and individual samples was therefore similar. Our method includes concentration of the bacteria before DNA-extraction. This may account for the maintenance of diagnostic sensitivity. Diagnostic sensitivity in the real-time PCR assays of the pooled samples were comparable to the sensitivity obtained for individually analysed samples. Even sub-clinical infections were able to be detected in the pooled PCR samples which is important for control of the disease. This method may therefore be implemented in footrot control programs where it can replace analysis of individual samples.

  8. Real-Time RT-PCR for the Detection of Lyssavirus Species

    PubMed Central

    Deubelbeiss, A.; Zahno, M.-L.; Zanoni, M.; Bruegger, D.; Zanoni, R.

    2014-01-01

    The causative agents of rabies are single-stranded, negative-sense RNA viruses in the genus Lyssavirus of Rhabdoviridae, consisting of twelve classified and three as yet unclassified species including classical rabies virus (RABV). Highly neurotropic RABV causes rapidly progressive encephalomyelitis with nearly invariable fatal outcome. Rapid and reliable diagnosis of rabies is highly relevant for public and veterinary health. Due to growing variety of the genus Lyssavirus observed, the development of suitable molecular assays for diagnosis and differentiation is challenging. This work focused on the establishment of a suitable real-time RT-PCR technique for rabies diagnosis as a complement to fluorescent antibody test and rabies tissue culture infection test as gold standard for diagnosis and confirmation. The real-time RT-PCR was adapted with the goal to detect the whole spectrum of lyssavirus species, for nine of which synthesized DNA fragments were used. For the detection of species, seven probes were developed. Serial dilutions of the rabies virus strain CVS-11 showed a 100-fold higher sensitivity of real-time PCR compared to heminested RT-PCR. Using a panel of thirty-one lyssaviruses representing four species, the suitability of the protocol could be shown. Phylogenetic analysis of the sequences obtained by heminested PCR allowed correct classification of all viruses used. PMID:26464934

  9. Development of Multiplexed Real-Time Quantitative PCR Assay for Detecting Human Adenoviruses

    PubMed Central

    Huang, Meei-Li; Nguy, Long; Ferrenberg, James; Boeckh, Michael; Cent, Anne; Corey, Lawrence

    2008-01-01

    Adenoviruses (AdV) have been associated with a wide variety of human disease and are increasingly recognized as viral pathogens that can cause significant morbidity and mortality in immunocompromised patients. Early detection of AdV DNA in plasma and sterile fluids has been shown to be useful for identifying patients at risk for invasive AdV disease. Due to the large number of existing Adv types, few real-time quantitative AdV PCR assays published effectively cover all AdV types. We designed a series of AdV PCR primers and probes and empirically multiplexed them into two separate real-time PCR assays to quantitatively detect all 49 serotypes of human AdV (Types 1-49) available from ATCC. We then subsequently multiplexed all the primers and probes into one reaction. The sensitivity of these assays was determined to be less than 10 copies per reaction (500 copies/ml plasma). In a retrospective evaluation we detected all 84 clinical AdV isolates isolated in cell culture from patients undergoing hematopoietic stem cell transplant (HSCT) between 1981 and 1987. Prospective analysis of 46 consecutive clinical samples submitted for adenovirus testing showed greater sensitivity and equal specificity of the AdV PCR than viral culture. This real time PCR assay allows rapid, sensitive and specific quantification of all currently defined adenoviruses into either two or one multiplex assay for clinical samples. PMID:18707838

  10. Real-time electrochemical PCR with a DNA intercalating redox probe.

    PubMed

    Deféver, Thibaut; Druet, Michel; Evrard, David; Marchal, Damien; Limoges, Benoit

    2011-03-01

    The proof-of-principle of a nonoptical real-time PCR method based on the electrochemical monitoring of a DNA intercalating redox probe that becomes considerably less easily electrochemically detectable once intercalated to the amplified double-stranded DNA is demonstrated. This has been made possible thanks to the finding of a redox intercalator that (i) strongly and specifically binds to the amplified double-stranded DNA, (ii) does not significantly inhibit PCR, (iii) is chemically stable under PCR cycling, and (iv) is sensitively detected by square wave voltammetry during PCR cycling. Among the different DNA intercalating redox probes that we have investigated, namely, methylene blue, Os[(bpy)(2)phen](2+), Os[(bpy)(2)DPPZ](2+), Os[(4,4'-dimethyl-bpy)(2)DPPZ](2+) and Os[(4,4'-diamino-bpy)(2)DPPZ](2+) (with bpy = 2,2'-bipyridine, phen = phenanthroline, and DPPZ = dipyrido[3,2-a:2',3'-c]phenazine), the one and only compound with which it has been possible to demonstrate the proof-of-concept is the Os[(bpy)(2)DPPZ](2+). In terms of analytical performances, the methodology described here compares well with optical-based real-time PCRs, offering finally the same advantages than the popular and routinely used SYBR Green-based real-time fluorescent PCR, but with the additional incomes of being potentially much cheaper and easier to integrate in a hand-held miniaturized device.

  11. Real-time PCR for detection of Streptococcus suis serotype 2 in cerebrospinal fluid of human patients with meningitis

    PubMed Central

    Nga, Tran Vu Thieu; Nghia, Ho Dang Trung; Tu, Le Thi Phuong; Diep, To Song; Mai, Nguyen Thi Hoang; Chau, Tran Thi Hong; Sinh, Dinh Xuan; Phu, Nguyen Hoan; Nga, Tran Thi Thu; Chau, Nguyen Van Vinh; Campbell, James; Hoa, Ngo Thi; Chinh, Nguyen Tran; Hien, Tran Tinh; Farrar, Jeremy; Schultsz, Constance

    2011-01-01

    Streptococcus suis serotype 2 is an emerging zoonotic pathogen and is the main cause of acute bacterial meningitis in adult patients in Vietnam. We developed an internally controlled real-time PCR for detection of S. suis serotype 2 in cerebrospinal fluid (CSF) samples targeted at the cps2J gene. Sensitivity and specificity in culture-confirmed clinical samples were 100%. The PCR detected S. suis serotype 2 infection in 101 of 238 (42.4%) prospectively collected CSF samples, of which 55 (23%) were culture positive. Culture-negative but PCR-positive CSF samples were significantly associated with the use of antimicrobial agents before admission. S. suis serotype 2 infection was more common than infections with Streptococcus pneumoniae and Neisseria meningitidis combined. Our results strikingly illustrate the additional diagnostic value of PCR in patients who are pretreated with antimicrobial agents and demonstrate the extremely high prevalence of S. suis infections among Vietnamese adult patients with bacterial meningitis. PMID:21767702

  12. Rapid and economic DNA extraction from a single salmon egg for real-time PCR amplification.

    PubMed

    Yang, Jing-Iong; Huang, Hsiao-Yun; Chou, Yii-Cheng; Chen, Chien-Cheng; Lee, Guo-Chi; Chang, Hsueh-Wei

    2011-01-01

    Salmon eggs are common in Japanese sushi and other seafood products; however, certain fish eggs are used as counterfeit salmon eggs which are found in foods and processed products. This study develops a simple, rapid, and cost-effective method for DNA extraction, filtration (FT) and dilution (DL) protocols from a single salmon egg with good DNA quality for real-time PCR amplification. The DNA amount, DNA quality, and real-time PCR performance for different dilutions and different lengths of PCR amplicons were evaluated and compared with the common Qiagen tissue kit (QTK) and Chelex-100-based (CX) protocols. The extracted DNA from a single salmon egg using the FT or DL protocol can be applied in phylogenic research, food authentication and post-marketing monitoring of genetically modified (GM) food products.

  13. Protocol for real-time PCR identification of anthrax spores from nasal swabs after broth enrichment.

    PubMed

    Oggioni, Marco R; Meacci, Francesca; Carattoli, Alessandra; Ciervo, Alessandra; Orru, Germano; Cassone, Antonio; Pozzi, Gianni

    2002-11-01

    A mass-screening protocol for the diagnosis of anthrax from nasal swabs based on an enrichment step in liquid medium was devised. Incubation for growth was performed in autoclavable vials and racks which allow real-time PCR analysis of sterilized cultures. A dual-color PCR was set up with primers and probes for the chromosomal marker rpoB and the plasmid marker lef. Specific primer and probe sets were designed for the differentiation of Bacillus anthracis from B. cereus and for the differentiation of the Sterne vaccine strain from field isolates and the Ames strain, which was used in the recent anthrax bioterrorist attack. The present protocol thus combines the high specificity and sensitivity of real-time PCR with excellent biosafety and the low hands-on time necessary for the processing of large numbers of samples, which is extremely important during control programs involving the processing of large numbers of samples.

  14. Protocol for Real-Time PCR Identification of Anthrax Spores from Nasal Swabs after Broth Enrichment

    PubMed Central

    Oggioni, Marco R.; Meacci, Francesca; Carattoli, Alessandra; Ciervo, Alessandra; Orru, Germano; Cassone, Antonio; Pozzi, Gianni

    2002-01-01

    A mass-screening protocol for the diagnosis of anthrax from nasal swabs based on an enrichment step in liquid medium was devised. Incubation for growth was performed in autoclavable vials and racks which allow real-time PCR analysis of sterilized cultures. A dual-color PCR was set up with primers and probes for the chromosomal marker rpoB and the plasmid marker lef. Specific primer and probe sets were designed for the differentiation of Bacillus anthracis from B. cereus and for the differentiation of the Sterne vaccine strain from field isolates and the Ames strain, which was used in the recent anthrax bioterrorist attack. The present protocol thus combines the high specificity and sensitivity of real-time PCR with excellent biosafety and the low hands-on time necessary for the processing of large numbers of samples, which is extremely important during control programs involving the processing of large numbers of samples. PMID:12409358

  15. Real-time PCR detection of aldoxime dehydratase genes in nitrile-degrading microorganisms.

    PubMed

    Dooley-Cullinane, Tríona Marie; O'Reilly, Catherine; Coffey, Lee

    2017-02-01

    Aldoxime dehydratase catalyses the conversion of aldoximes to their corresponding nitriles. Utilization of the aldoxime-nitrile metabolising enzyme pathway can facilitate the move towards a greener chemistry. In this work, a real-time PCR assay was developed for the detection of aldoxime dehydratase genes in aldoxime/nitrile metabolising microorganisms which have been purified from environmental sources. A conventional PCR assay was also designed allowing gene confirmation via sequencing. Aldoxime dehydratase genes were identified in 30 microorganisms across 11 genera including some not previously shown to harbour the gene. The assay displayed a limit of detection of 1 pg/μL DNA or 7 CFU/reaction. This real-time PCR assay should prove valuable in the high-throughput screening of micro-organisms for novel aldoxime dehydratase genes towards pharmaceutical and industrial applications.

  16. [Rapid diagnosis of psittacosis using a recently developed real-time PCR technique].

    PubMed

    van der Bruggen, T; Kaan, J A; Heddema, E R; van Hannen, E J; de Jongh, B M

    2008-08-23

    A 37-year-old man was admitted with cough and fever. Three days after admission he was tested using a newly developed real-time PCR technique that detects the DNA of Chlamydophila psittaci. The result was positive; serological investigation was not positive until 14 days later. Psittacosis is a potentially life-threatening infectious disease. Laboratory diagnosis relies mainly on the assessment of paired sera, but this approach has obvious disadvantages in the acute setting. Routine use of the real-time PCR technique led to the rapid diagnosis of psittacosis in 6 other patients. All 7 patients recovered after antibiotic treatment. This PCR technique is a valuable adjuvant to serological testing for the rapid diagnosis of psittacosis.

  17. Combining ethidium monoazide treatment with real-time PCR selectively quantifies viable Batrachochytrium dendrobatidis cells.

    PubMed

    Blooi, Mark; Martel, An; Vercammen, Francis; Pasmans, Frank

    2013-02-01

    Detection of the lethal amphibian fungus Batrachochytrium dendrobatidis relies on PCR-based techniques. Although highly accurate and sensitive, these methods fail to distinguish between viable and dead cells. In this study a novel approach combining the DNA intercalating dye ethidium monoazide (EMA) and real-time PCR is presented that allows quantification of viable B. dendrobatidis cells without the need for culturing. The developed method is able to suppress real-time PCR signals of heat-killed B. dendrobatidis zoospores by 99.9 % and is able to discriminate viable from heat-killed B. dendrobatidis zoospores in mixed samples. Furthermore, the novel approach was applied to assess the antifungal activity of the veterinary antiseptic F10(®) Antiseptic Solution. This disinfectant killed B. dendrobatidis zoospores effectively within 1 min at concentrations as low as 1:6400. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  18. Real-time PCR detection of protein analytes with conformation-switching aptamers

    PubMed Central

    Yang, Litao; Ellington, Andrew D.

    2008-01-01

    We have developed a novel method that utilizes conformation-switching aptamers for real-time PCR analysis of protein analytes. The aptamers have been designed so that they assume one secondary structure in the absence of a protein analyte, and a different secondary structure in the presence of a protein such as thrombin or PDGF. The protein-bound structure in turn assembles a ligation junction for the addition of a real-time PCR primer. Protein concentrations could be specifically detected into the picomolar range, even in the presence of cell lysates. The method has advantages relative to both immunoPCR (since no signal is produced by background binding) and to the proximity ligation assay (PLA; since only one epitope on a protein surface must be bound, rather than two). PMID:18541130

  19. Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.

    PubMed

    Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel

    2007-04-01

    Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.

  20. Microfluidic Flow-Through Reactor with Electrochemical Sensor Array for Real-Time Pcr

    NASA Astrophysics Data System (ADS)

    Teh, Huey-Fang; Ramalingam, Naveen; Gong, Hai-Qing; Tan, Swee-Ngin

    We developed an integrated microfluidic flow-through EC-PCR (EC-PCR) microdevice for the concurrent DNA amplification, PCR products EC detection and PCR products quantification instead of the current available fluorescence detection scheme. The microfluidic flow-through EC-PCR microdevice was fabricated with the state-of-the-art microfabrication technology, by bonding a bottom glass substrate having a microelectrode array to a top glass cover having the microchannels made of PDMS material. Both the amplification of the target DNA sequence and the subsequent EC detection of the PCR products were carried out concurrently on the integrated device by real-time monitoring. The underlying principle of the microfluidic flow-through EC-PCR method was based on the changes of current signal of methylene blue (MB), which worked as an electrochemically active species DNA intercalator in the PCR mixture, during the amplification process at the extension phase. The results shown in this work indicated that the nucleic acid analysis could be performed in a fast thermal cycling and true real-time quantitative electrochemical detection. The signal variation trends of the EC detection and the fluorescence detection were the same in our verification measurements for both methods, which suggested that the EC detection method was feasible for this application.

  1. Thermal factors influencing detection of Vibrio vulnificus using real-time PCR.

    PubMed

    Wang, Shishan; Levin, Robert E

    2007-05-01

    Five thermal factors, including initial denaturation temperature, cycling denaturation temperature, annealing temperature, extension temperature and the temperature at which the intensity of the fluorescent signal is read, were evaluated for their effects on the detection of Vibrio vulnificus via real-time PCR. Fluorescent signal detection after extension was set between the Tm value of the primer-dimers (79 degrees C) and that of the PCR target amplicons (84 degrees C). This effectively eliminated the overestimation of the yield of PCR amplicons due to the presence of primer-dimers which otherwise led to erroneously lower Ct values (1.91+/-0.22 cycles lower). The annealing and extension steps were combined to convert a three-step PCR to a two-step PCR. This consisted of initial denaturation at 95 degrees C for 3 min, cycling denaturation at 94 degrees C for 15 s and a combined annealing and extension step at 60 degrees C for 5 s in each PCR cycle. One genomic target per real-time PCR reaction was detected with the simplified two-step PCR.

  2. Development of real-time PCR assays for genotyping of Chlamydia trachomatis.

    PubMed

    Jalal, Hamid; Stephen, Hannah; Alexander, Sarah; Carne, Christopher; Sonnex, Christopher

    2007-08-01

    We have developed and validated a nested real-time PCR (NRT-PCR) for the genotyping of Chlamydia trachomatis and used it specifically for the typing of either eight genovars from D to K or three genovars of lymphogranuloma venereum (LGV). The 11 probes used in the NRT-PCR correctly identified the DNA from D to K and LGV reference strains and did not cross-react with the DNA from 26 strains representing the bacterial pathogens and commensals of the oropharynx, genital tract, and rectum. The NRT-PCR had a 95% probability of detection at four genome copies (confidence interval, three to six copies) of C. trachomatis per reaction. One hundred cervical and urethral swab specimens containing C. trachomatis DNA from 63 women and 37 men were used to validate the method. The results from the NRT-PCR and the DNA sequencing of amplicons generated from the omp1 gene showed 100% correlation for these samples. The assay also identified the LGV-II genotype in 24 of 48 rectal swab specimens containing C. trachomatis DNA that were obtained from men having sex with men. The Sexually Transmitted Bacteria Reference Laboratory, London, independently confirmed these results using group-specific LGV real-time PCR and restriction fragment length polymorphism analysis. Compared with the NRT-PCR, non-NRT-PCR was found to be less sensitive: it typed C. trachomatis DNA in only 80% of the genital samples and 90% of the rectal swab samples. This is the first successful demonstration of the use of real-time PCR for the genotype-specific typing of C. trachomatis strains that cause sexually transmitted diseases.

  3. Real-time quantitative PCR assays for detection and monitoring of pathogenic human viruses in immunosuppressed pediatric patients.

    PubMed

    Watzinger, F; Suda, M; Preuner, S; Baumgartinger, R; Ebner, K; Baskova, L; Niesters, H G M; Lawitschka, A; Lion, T

    2004-11-01

    A panel of 23 real-time PCR assays based on TaqMan technology has been developed for the detection and monitoring of 16 different viruses and virus families including human polyomaviruses BK virus and JC virus, human herpesviruses 6, 7, and 8, human adenoviruses, herpes simplex viruses 1 and 2, varicella-zoster virus, cytomegalovirus, Epstein-Barr virus, parvovirus B19, influenza A and B viruses, parainfluenza viruses 1 to 3, enteroviruses, and respiratory syncytial virus. The test systems presented have a broad dynamic range and display high sensitivity, reproducibility, and specificity. Moreover, the assays allow precise quantification of viral load in a variety of clinical specimens. The ability to use uniform PCR conditions for all assays permits simultaneous processing and detection of many different viruses, thus economizing the diagnostic work. Our observations based on more than 50,000 assays reveal the potential of the real-time PCR tests to facilitate early diagnosis of infection and to monitor the kinetics of viral proliferation and the response to treatment. We demonstrate that, in immunosuppressed patients with invasive virus infections, surveillance by the assays described may permit detection of increasing viral load several days to weeks prior to the onset of clinical symptoms. In virus infections for which specific treatment is available, the quantitative PCR assays presented provide reliable diagnostic tools for timely initiation of appropriate therapy and for rapid assessment of the efficacy of antiviral treatment strategies.

  4. Detection and quantification of Enterococcus gilvus in cheese by real-time PCR.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Carminati, Domenico; Giraffa, Giorgio

    2009-10-01

    The objective of this work was to investigate the occurrence of Enterococcus gilvus in cheese. For this purpose, a real-time PCR protocol using phenylalanyl-tRNA synthase (pheS) as a target gene was optimized to evaluate the presence and abundance of this microorganism in Italian artisan cheeses. The real-time assay unequivocally distinguished E. gilvus from 25 non-target LAB and non-LAB species, demonstrating its absolute specificity. The assay performed well not only with purified DNA but also with DNA extracted from cheese samples artificially contaminated with E. gilvus. The dynamic range of target determination of the method in the cheese matrix (from 10(7) to 10(4) cfu/ml, covering three orders of magnitude) was lower and the detection limit higher than in vitro conditions, but still high enough to obtain an excellent quantification accuracy in cheese. Twenty commercially available cheeses were analyzed by real-time PCR and approximately 40% of the cheese samples contained E. gilvus at levels ranging from 4.17+/-0.10 to 6.75+/-0.01 log cfu/g. Such levels represented 0.1-10% of the total enterococci counted on kanamycin aesculin azide agar (KAA) from the corresponding cheeses. The successful isolation of E. gilvus from cheeses containing high loads of this species, as detected by real-time PCR, provided definitive proof on both assay specificity and presence of this organism in cheeses. Despite the relatively low sensitivity in cheese (> or =4 log cfu/g), the real-time PCR described here may, however, be useful to detect E. gilvus rapidly when present at (sub)dominant levels within the enterococcal cheese microflora. The assay may be helpful to detect and quantify E. gilvus strains from food, thus enabling a better understanding of technological role, ecological and safety aspects in cheeses and other fermented food products of this infrequent species.

  5. Development of SYBR Green based real time PCR assay for detection of monodon baculovirus in Penaeus monodon.

    PubMed

    Ramesh Kumar, D; Sanjuktha, M; Rajan, J J S; Ananda Bharathi, R; Santiago, T C; Alavandi, S V; Poornima, M

    2014-09-01

    Shrimp farming is one of the most important aquaculture activities. Expansion and intensification of shrimp farming has been accompanied with the outbreak of diseases, which threaten the development and sustainability of the industry. Viral diseases are the major challenges faced by shrimp farming industries. The prevention/control of such diseases have become critical in determining the viability of the shrimp farming. The disease caused by monodon baculovirus (MBV) is the major limiting factor especially in shrimp hatchery. There are no therapeutic measures to control the viral diseases. So the detection of the disease is crucial in the prevention and spread of the disease. Hence, in this study, SYBR Green based real time polymerase chain reaction (PCR) assay was developed for the detection of MBV. The sensitivity of the real time PCR was determined using 10-fold dilutions of purified plasmid DNA with the concentration in the range of 10(1)-10(5) copies per reaction. The assay could detect as low as 12 copies indicating that the assay was sensitive and could be effectively used for the quantification of MBV. The real time PCR assay was found to be specific and did not show any amplification with P. monodon infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV), white spot syndrome virus (WSSV) and hepatopancreatic parvo-like virus (HPV). The novelty of this assay is that it could be employed for diagnosis of low level MBV infection in broodstock using fecal matter of shrimp, a non-invasive diagnostic tool.

  6. Development of a real-time RT-PCR method for detection of porcine rubulavirus (PoRV-LPMV).

    PubMed

    Cuevas-Romero, Sandra; Blomström, Anne-Lie; Alvarado, Arcelia; Hernández-Jauregui, Pablo; Rivera-Benitez, Francisco; Ramírez-Mendoza, Humberto; Berg, Mikael

    2013-04-01

    In order to provide a rapid and sensitive method for detection of the Porcine rubulavirus La Piedad-Michoacan-Mexico Virus (PoRV-LPMV), we have developed a specific real-time reverse transcriptase polymerase chain reaction assay. The detection of PoRV-LPMV, represents a diagnostic challenge due to the viral RNA being present in very small amounts in tissue samples. In this study, a TaqMan(®) real-time PCR assay was designed based on the phosphoprotein gene of PoRV-LPMV, to allow specific amplification and detection of viral RNA in clinical samples. Assay conditions for the primers and probe were optimized using infected PK15 cells and ten-fold serial dilutions of a plasmid containing the whole P-gene. The sensitivity of the developed TaqMan(®) assay was approximately 10 plasmid copies per reaction, and was shown to be 1000 fold better than a conventional nested RT-PCR. The performance of this real-time RT-PCR method enables studies of various aspects of PoRV-LPMV infection. Finally, the assay detects all current known variants of the virus. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Impact of Routine Real-Time PCR Testing of Imported Malaria over 4 Years of Implementation in a Clinical Laboratory

    PubMed Central

    Shokoples, Sandra; Mukhi, Shamir N.; Scott, Allison N.

    2013-01-01

    In clinical laboratories, diagnosis of imported malaria is commonly performed by microscopy. However, the volume of specimens is generally low and maintaining proficiency in reading blood smears, particularly at the species level, is challenging in this setting. To address this problem, the Provincial Laboratory for Public Health (ProvLab) in Alberta, Canada, implemented real-time PCR for routine confirmation of all smear-positive samples in the province. Here we report our experience over a 4-year period (2008 to 2012) with this new diagnostic algorithm. While detection of Plasmodium falciparum by microscopy alone was accurate, real-time PCR served as an important adjunct to microscopy for the identification of non-falciparum species. In 18% of cases, the result was reported as non-falciparum or the species could not be identified by microscopy alone, and in all cases, the species was resolved by real-time PCR. In another 4% of cases, the species was misidentified by microscopy. To enhance surveillance for malaria, we integrated our demographic, clinical, and laboratory data into a new system developed by the Canadian Network for Public Health Intelligence, called the Malaria System for Online Surveillance (SOS). Using this application, we characterized our patient populations and travel history to identify risk factors associated with malaria infection abroad. PMID:23554200

  8. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources.

  9. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids

    PubMed Central

    Yang, Litao; Liang, Wanqi; Jiang, Lingxi; Li, Wenquan; Cao, Wei; Wilson, Zoe A; Zhang, Dabing

    2008-01-01

    Background Real-time PCR techniques are being widely used for nucleic acids analysis, but one limitation of current frequently employed real-time PCR is the high cost of the labeled probe for each target molecule. Results We describe a real-time PCR technique employing attached universal duplex probes (AUDP), which has the advantage of generating fluorescence by probe hydrolysis and strand displacement over current real-time PCR methods. AUDP involves one set of universal duplex probes in which the 5' end of the fluorescent probe (FP) and a complementary quenching probe (QP) lie in close proximity so that fluorescence can be quenched. The PCR primer pair with attached universal template (UT) and the FP are identical to the UT sequence. We have shown that the AUDP technique can be used for detecting multiple target DNA sequences in both simplex and duplex real-time PCR assays for gene expression analysis, genotype identification, and genetically modified organism (GMO) quantification with comparable sensitivity, reproducibility, and repeatability with other real-time PCR methods. Conclusion The results from GMO quantification, gene expression analysis, genotype identification, and GMO quantification using AUDP real-time PCR assays indicate that the AUDP real-time PCR technique has been successfully applied in nucleic acids analysis, and the developed AUDP real-time PCR technique will offer an alternative way for nucleic acid analysis with high efficiency, reliability, and flexibility at low cost. PMID:18522756

  10. Legionellosis and Lung Abscesses: Contribution of Legionella Quantitative Real-Time PCR to an Adapted Followup

    PubMed Central

    Descours, G.; Tellini, C.; Flamens, C.; Philit, F.; Celard, M.; Etienne, J.; Lina, G.; Jarraud, S.

    2013-01-01

    We report a case of severe Legionnaires' disease (LD) complicated by a lung abscess in an immunocompetent patient who required ECMO therapy and thoracic surgery. The results of repeated Legionella quantitative real-time PCR performed on both sera and respiratory samples correlated with the LD severity and the poor clinical outcome. Moreover, the PCR allowed for the detection of Legionella DNA in the lung abscess specimen, which was negative when cultured for Legionella. This case report provides a logical basis for further investigations to examine whether the Legionella quantitative PCR could improve the assessment of LD severity and constitute a prognostic marker. PMID:23862082

  11. Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

    2000-02-01

    This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

  12. A Proposal for an Advanced Drilling System with Real-Time Diagnostics (Diagnostics-While-Drilling)

    SciTech Connect

    Finger, J.T.; Mansure, A.J.; Prairie, M.R.

    1999-07-12

    In this paper, we summarize the rationale for an advanced system called Diagnostics-While-Drilling (DWD) and describe its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. We outline a Program Plan for DOE, university, and industry to cooperate in the development of DWD technology.

  13. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses.

    PubMed

    Choudhary, Manohar L; Anand, Siddharth P; Tikhe, Shamal A; Walimbe, Atul M; Potdar, Varsha A; Chadha, Mandeep S; Mishra, Akhilesh C

    2016-01-01

    Detection of respiratory viruses using polymerase chain reaction (PCR) is sensitive, specific and cost effective, having huge potential for patient management. In this study, the performance of an in-house developed conventional multiplex RT-PCR (mRT-PCR), real time RT-PCR (rtRT-PCR) and Luminex xTAG(®) RVP fast assay (Luminex Diagnostics, Toronto, Canada) for the detection of respiratory viruses was compared. A total 310 respiratory clinical specimens predominantly from pediatric patients, referred for diagnosis of influenza A/H1N1pdm09 from August 2009 to March 2011 were tested to determine performance characteristic of the three methods. A total 193 (62.2%) samples were detected positive for one or more viruses by mRT-PCR, 175 (56.4%) samples by real time monoplex RT-PCR, and 138 (44.5%) samples by xTAG(®) RVP fast assay. The overall sensitivity of mRT-PCR was 96.9% (95% CI: 93.5, 98.8), rtRT-PCR 87.9% (95% CI: 82.5, 92.1) and xTAG(®) RVP fast was 68.3% (95% CI: 61.4, 74.6). Rhinovirus was detected most commonly followed by respiratory syncytial virus group B and influenza A/H1N1pdm09. The monoplex real time RT-PCR and in-house developed mRT-PCR are more sensitive, specific and cost effective than the xTAG(®) RVP fast assay.

  14. Comparison of droplet digital PCR to real-time PCR for quantification of hepatitis B virus DNA.

    PubMed

    Tang, Hui; Cai, Qingchun; Li, Hu; Hu, Peng

    2016-06-16

    Quantitative real-time PCR (qPCR) has been widely implemented for clinical hepatitis B viral load testing, but a lack of standardization and relatively poor precision hinder its usefulness. Droplet digital PCR (ddPCR) is a promising tool that offers high precision and direct quantification. In this study, we compared the ddPCR QX100 platform by Bio-Rad with the CFX384 Touch Real-Time PCR Detection System (Bio-Rad, USA) to detect serial plasmid DNA dilutions of known concentrations as well as HBV DNA extracted from patient serum samples. Both methods showed a high degree of linearity and quantitative correlation. However, ddPCR assays generated more reproducible results and detected lower copy numbers than qPCR assays. Patient sample quantifications by ddPCR and qPCR were highly agreeable based on the Bland-Altman analysis. Collectively, our findings demonstrate that ddPCR offers improved analytical sensitivity and specificity for HBV measurements and is suitable for clinical HBV detection.

  15. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes

    PubMed Central

    Neuzil, Pavel; Zhang, Chunyan; Pipper, Juergen; Oh, Sharon; Zhuo, Lang

    2006-01-01

    We have designed, fabricated and tested a real-time PCR chip capable of conducting one thermal cycle in 8.5 s. This corresponds to 40 cycles of PCR in 5 min and 40 s. The PCR system was made of silicon micromachined into the shape of a cantilever terminated with a disc. The thin film heater and a temperature sensor were placed on the disc perimeter. Due to the system's thermal constant of 0.27 s, we have achieved a heating rate of 175°C s−1 and a cooling rate of −125°C s−1. A PCR sample encapsulated with mineral oil was dispensed onto a glass cover slip placed on the silicon disc. The PCR cycle time was then determined by heat transfer through the glass, which took only 0.5 s. A real-time PCR sample with a volume of 100 nl was tested using a FAM probe. As the single PCR device occupied an area of only a few square millimeters, devices could be combined into a parallel system to increase throughput. PMID:16807313

  16. Influence of neurotoxoplasmosis characteristics on real-time PCR sensitivity among AIDS patients in Brazil.

    PubMed

    Correia, Carolina C; Melo, Heloísa R L; Costa, Vláudia M A

    2010-01-01

    Cerebral toxoplasmosis among individuals with AIDS may be difficult to diagnose and needs to be differentiated from other neurological diseases. A validation study was performed on real-time PCR for detecting the B1 gene of Toxoplasma gondii in the blood and cerebrospinal fluid (CSF) of AIDS patients with cerebral toxoplasmosis. The study included 135 AIDS patients divided into two groups: Group I comprised 85 patients with neurotoxoplasmosis; and Group II comprised 50 patients with non-toxoplasmic neurological diseases. Real-time PCR on blood showed a sensitivity of 1.5%, specificity of 100.0%, positive predictive value (PPV) of 100.0% and negative predictive value (NPV) of 36.5%. CSF testing produced better results, with a sensitivity of 35.3%, specificity of 100.0%, PPV of 100.0% and NPV of 44.7%. The group presenting with pleocytosis and four or more encephalic lesions was associated with greater CSF positivity on PCR. In conclusion, real-time PCR on blood was not useful for diagnosis. CSF testing showed low sensitivity but high specificity. Greater numbers of lesions and greater CSF cellularity may improve the sensitivity of the method.

  17. Livers provide a reliable matrix for real-time PCR confirmation of avian botulism.

    PubMed

    Le Maréchal, Caroline; Ballan, Valentine; Rouxel, Sandra; Bayon-Auboyer, Marie-Hélène; Baudouard, Marie-Agnès; Morvan, Hervé; Houard, Emmanuelle; Poëzevara, Typhaine; Souillard, Rozenn; Woudstra, Cédric; Le Bouquin, Sophie; Fach, Patrick; Chemaly, Marianne

    2016-04-01

    Diagnosis of avian botulism is based on clinical symptoms, which are indicative but not specific. Laboratory investigations are therefore required to confirm clinical suspicions and establish a definitive diagnosis. Real-time PCR methods have recently been developed for the detection of Clostridium botulinum group III producing type C, D, C/D or D/C toxins. However, no study has been conducted to determine which types of matrices should be analyzed for laboratory confirmation using this approach. This study reports on the comparison of different matrices (pooled intestinal contents, livers, spleens and cloacal swabs) for PCR detection of C. botulinum. Between 2013 and 2015, 63 avian botulism suspicions were tested and 37 were confirmed as botulism. Analysis of livers using real-time PCR after enrichment led to the confirmation of 97% of the botulism outbreaks. Using the same method, spleens led to the confirmation of 90% of botulism outbreaks, cloacal swabs of 93% and pooled intestinal contents of 46%. Liver appears to be the most reliable type of matrix for laboratory confirmation using real-time PCR analysis.

  18. Real-time duplex PCR for simultaneous HPV 16 and HPV 18 DNA quantitation.

    PubMed

    Jacquin, Elise; Saunier, Maëlle; Mauny, Frédéric; Schwarz, Elisabeth; Mougin, Christiane; Prétet, Jean-Luc

    2013-11-01

    HPV 16 and HPV 18 are responsible for more than 75% of cervical cancers and high HPV 16 loads are associated with both prevalent and incident lesions. The objective of the present study was to develop a method allowing the detection and quantitation of HPV 16 and 18 DNA to improve future strategies for cervical cancer screening. A duplex real-time PCR allowing the simultaneous quantitation of both HPV 16 and HPV 18 was carried out. Mixes of HPV 16 and HPV 18 whole genome plasmids were prepared to test a wide range of viral DNA concentrations. The values obtained for each mix of plasmids with the simplex and the duplex PCR were very close to the theoretical values except when a HPV type represented only 1:1000 genome equivalent or lower than the concurrent type. Cervical samples harboring HPV 16, HPV 18 or both types were tested by comparing the results with simplex and duplex real-time PCR assays. HPV 16 and HPV 18 genome titers were similar with the two assays. In conclusion, the real-time duplex PCR proved to be robust for HPV 16 and HPV 18 DNA quantitation.

  19. MAKERGAUL: an innovative MAK2-based model and software for real-time PCR quantification.

    PubMed

    Bultmann, Christoph André; Weiskirchen, Ralf

    2014-01-01

    Gene expression analysis by quantitative PCR is a standard laboratory technique for RNA quantification with high accuracy. In particular real-time PCR techniques using SYBR Green and melting curve analysis allowing verification of specific product amplification have become a well accepted laboratory technique for rapid and high throughput gene expression quantification. However, the software that is applied for quantification is somewhat circuitous and needs actually above average manual operation. We here developed a novel, simple to handle open source software package (i.e., MAKERGAUL) for quantification of gene expression data obtained by real time PCR technology. The developed software was evaluated with an already well characterized real time PCR data set and the performance parameters (i.e., absolute bias, linearity, reproducibility, and resolution) of the algorithm that are the basis of our calculation procedure compared and ranked with those of other implemented and well-established algorithms. It shows good quantification performance with reduced requirements in computing power. We conclude that MAKERGAUL is a convenient and easy to handle software allowing accurate and fast expression data analysis. © 2013.

  20. Methods for optimizing DNA extraction before quantifying oral bacterial numbers by real-time PCR.

    PubMed

    Nadkarni, Mangala A; Martin, F Elizabeth; Hunter, Neil; Jacques, Nicholas A

    2009-07-01

    Methods for the optimal extraction of genomic DNA for real-time PCR enumeration of oral bacteria using the muramidase, mutanolysin, were developed using a simple in vitro oral flora model comprised of the facultative anaerobic gram-positive bacteria, Lactobacillus acidophilus and Streptococcus mutans, the gram-positive anaerobe, Parvimonas micra, and the gram-negative anaerobes, Porphyromonas gingivalis, Prevotella melaninogenica and Fusobacterium nucleatum. Traditional, as well as more elaborate, methods of quantifying bacterial numbers, including colony counting and estimation of DNA content using 4',6-diamino-2-phenylindole were compared in order to validate the real-time PCR approach. Evidence was obtained that P. gingivalis nuclease activity adversely affected the extraction of double-stranded DNA from this bacterium either alone or when it formed part of a consortium with the other bacteria. This nuclease activity could be overcome by treatment of the bacteria with either 20 mM diethyl pyrocarbonate or 70% ethanol at 4 degrees C overnight. A final purification of the DNA to remove any potential PCR inhibitors was added to the protocol in order to accurately quantify the amount of DNA by real-time PCR and hence the number of bacteria in a sample.

  1. Determination of pig sex in meat and meat products using multiplex real time-PCR.

    PubMed

    Abdulmawjood, A; Krischek, C; Wicke, M; Klein, G

    2012-07-01

    For specific production lines, European retail companies demand exclusively female pork meat. To control the quality of their suppliers the identification and a quantitative detection of the animal sex origin of the meat is therefore of importance for meat processors. To enable a fast and reliable detection of male pig meat, a real time-PCR-system was designed in the present study. This was based on the genes AMEL-X and AMEL-Y. The real time-PCR assay allowed the detection of male pig meat at a concentration of 1% yielding a detection probability of 100% while the detection probability investigating meat samples containing 0.1% male pig meat was 44.4%. The analytic sensitivity of this system was assessed to be <5 pg DNA per PCR reaction. The assessment of the accuracy of the real time-PCR assay to correctly identify sex individuals was investigated with 62 pigs including males (n=29) and females (n=33) belonging to different breeds/lines. With the newly designed test all analysed animals were correctly sexed. No amplification was obtained with cow, goat, sheep, turkey and chicken genomic DNA. The presented assay can be used for sex diagnosis, for the detection of male pig meat and for meat quality control.

  2. Comparison of Culture, Conventional and Real-time PCR Methods for Listeria monocytogenes in Foods

    PubMed Central

    Moon, Jin-San

    2014-01-01

    We compared standard culture methods as well as conventional PCR and real-time PCR for the detection of Listeria monocytogenes (L. monocytogenes) in milk, cheese, fresh-cut vegetables, and raw beef that have different levels of background microflora. No statistical differences were observed in sensitivity between the two selective media in all foods. In total, real-time PCR assay exhibited statistically excellent detection sensitivity (p<0.05) and was less time consuming and laborious as compared with standard culture methods. Conventional culture methods showed poor performance in detecting L. monocytogenes in food with high levels of background microflora, generating numerous false negative results. While the detection of L. monocytogenes in fresh cut vegetable by culture methods was hindered only by L. innocua, various background microflora, such as L. innocua, L. welshimeri, L. grayi, and Enterococcus faecalis appeared on the two selective media as presumptive positive colonies in raw beef indicating the necessity of improvement of current selective media. It appears that real-time PCR is an effective and sensitive presumptive screening tool for L. monocytogenes in various types of foods, especially foods samples with high levels of background microflora, thus complementing standard culture methodologies. PMID:26761501

  3. Development of quantitative duplex real-time PCR method for screening analysis of genetically modified maize.

    PubMed

    Oguchi, Taichi; Onishi, Mari; Minegishi, Yasutaka; Kurosawa, Yasunori; Kasahara, Masaki; Akiyama, Hiroshi; Teshima, Reiko; Futo, Satoshi; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2009-06-01

    A duplex real-time PCR method was developed for quantitative screening analysis of GM maize. The duplex real-time PCR simultaneously detected two GM-specific segments, namely the cauliflower mosaic virus (CaMV) 35S promoter (P35S) segment and an event-specific segment for GA21 maize which does not contain P35S. Calibration was performed with a plasmid calibrant specially designed for the duplex PCR. The result of an in-house evaluation suggested that the analytical precision of the developed method was almost equivalent to those of simplex real-time PCR methods, which have been adopted as ISO standard methods for the analysis of GMOs in foodstuffs and have also been employed for the analysis of GMOs in Japan. In addition, this method will reduce both the cost and time requirement of routine GMO analysis by half. The high analytical performance demonstrated in the current study would be useful for the quantitative screening analysis of GM maize. We believe the developed method will be useful for practical screening analysis of GM maize, although interlaboratory collaborative studies should be conducted to confirm this.

  4. Detection of viable Escherichia coli O157:H7 by ethidium monoazide real-time PCR.

    PubMed

    Wang, L; Li, Y; Mustapha, A

    2009-11-01

    The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real-time PCR for the detection of viable Escherichia coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan real-time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0.25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false-negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 microg ml(-1), was demonstrated to effectively bind DNA from 10(8) CFU ml(-1) dead cells, and the optimized method could detect as low as 10(4) CFU g(-1) of viable E. coli O157:H7 cells in ground beef without interference from 10(8) CFU g(-1) of dead cells. EMA real-time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. The EMA real-time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.

  5. Development of real-time RT-PCR for the detection of low concentrations of Rift Valley fever virus.

    PubMed

    Maquart, Marianne; Temmam, Sarah; Héraud, Jean-Michel; Leparc-Goffart, Isabelle; Cêtre-Sossah, Catherine; Dellagi, Koussay; Cardinale, Eric; Pascalis, Hervé

    2014-01-01

    In recent years, Madagascar and the Comoros archipelago have been affected by epidemics of Rift Valley fever (RVF), however detection of Rift Valley fever virus (RVFV) in zebu, sheep and goats during the post epidemic periods was frequently unsuccessful. Thus, a highly sensitive real-time RT-PCR assay was developed for the detection of RVFV at low viral loads. A new RVF SYBR Green RT-PCR targeting the M segment was tested on serum from different RVF seronegative ruminant species collected from May 2010 to August 2011 in Madagascar and the Comoros archipelago and compared with a RVF specific quantitative real time RT-PCR technique, which is considered as the reference technique. The specificity was tested on a wide range of arboviruses or other viruses giving RVF similar clinical signs. A total of 38 out of 2756 serum samples tested positive with the new RT-PCR, whereas the reference technique only detected 5 out of the 2756. The described RT-PCR is an efficient diagnostic tool for the investigation of enzootic circulation of the RVF virus. It allows the detection of low viral RNA loads adapted for the investigations of reservoirs or specific epidemiological situations such as inter-epizootic periods.

  6. Use of TaqMan® real-time PCR for rapid detection of Salmonella enterica serovar Typhi.

    PubMed

    Ranjbar, Reza; Naghoni, Ali; Farshad, Shohreh; Lashini, Hadi; Najafi, Ali; Sadeghifard, Nourkhoda; Mammina, Caterina

    2014-06-01

    We evaluated the performances of a newly designed real-time polymerase chain reaction (PCR) assay using TaqMan® probes to detect Salmonella Typhi. TaqMan® real-time PCR assays were performed by designed primers and probe based on the staG gene for detecting S. Typhi. The specificity of the assay was evaluated on 15 Salmonella serovars. The analytical specificity was evaluated on 20 non-Salmonella microorganisms. The analytical sensitivity was assessed using decreasing DNA quantities of S. Typhi ATCC 19430. Finally the detection capability of the TaqMan® real-time PCR assay on isolates recovered from patients with Salmonella infections was compared to the conventional PCR assay. Only S. Typhi strain had positive results when subjected to the assay using Typhi-specific real-time PCR. No amplification products were observed in real-time PCR with any of the non-Salmonella microorganisms tested. The TaqMan® real-time PCR was more sensitive than the conventional PCR. In conclusion, we found that the easy-to-use real-time PCR assays were faster than conventional PCR systems. The staG-based TaqMan® real-time PCR assay showed to be specific and sensitive method for the safe and rapid detection of the S. Typhi.

  7. Detection of Capripoxvirus DNA Using a Field-Ready Nucleic Acid Extraction and Real-Time PCR Platform.

    PubMed

    Armson, B; Fowler, V L; Tuppurainen, E S M; Howson, E L A; Madi, M; Sallu, R; Kasanga, C J; Pearson, C; Wood, J; Martin, P; Mioulet, V; King, D P

    2017-06-01

    Capripoxviruses, comprising sheep pox virus, goat pox virus and lumpy skin disease virus cause serious diseases of domesticated ruminants, notifiable to The World Organization for Animal Health. This report describes the evaluation of a mobile diagnostic system (Enigma Field Laboratory) that performs automated sequential steps for nucleic acid extraction and real-time PCR to detect capripoxvirus DNA within laboratory and endemic field settings. To prepare stable reagents that could be deployed into field settings, lyophilized reagents were used that employed an established diagnostic PCR assay. These stabilized reagents demonstrated an analytical sensitivity that was equivalent, or greater than the established laboratory-based PCR test which utilizes wet reagents, and the limit of detection for the complete assay pipeline was approximately one log10 more sensitive than the laboratory-based PCR assay. Concordant results were generated when the mobile PCR system was compared to the laboratory-based PCR using samples collected from Africa, Asia and Europe (n = 10) and experimental studies (n = 9) representing clinical cases of sheep pox, goat pox and lumpy skin disease. Furthermore, this mobile assay reported positive results in situ using specimens that were collected from a dairy cow in Morogoro, Tanzania, which was exhibiting clinical signs of lumpy skin disease. These data support the use of mobile PCR systems for the rapid and sensitive detection of capripoxvirus DNA in endemic field settings. © 2015 The Authors. Transboundary and Emerging Diseases published by Blackwell Verlag GmbH.

  8. Design of primers and probes for quantitative real-time PCR methods.

    PubMed

    Rodríguez, Alicia; Rodríguez, Mar; Córdoba, Juan J; Andrade, María J

    2015-01-01

    Design of primers and probes is one of the most crucial factors affecting the success and quality of quantitative real-time PCR (qPCR) analyses, since an accurate and reliable quantification depends on using efficient primers and probes. Design of primers and probes should meet several criteria to find potential primers and probes for specific qPCR assays. The formation of primer-dimers and other non-specific products should be avoided or reduced. This factor is especially important when designing primers for SYBR(®) Green protocols but also in designing probes to ensure specificity of the developed qPCR protocol. To design primers and probes for qPCR, multiple software programs and websites are available being numerous of them free. These tools often consider the default requirements for primers and probes, although new research advances in primer and probe design should be progressively added to different algorithm programs. After a proper design, a precise validation of the primers and probes is necessary. Specific consideration should be taken into account when designing primers and probes for multiplex qPCR and reverse transcription qPCR (RT-qPCR). This chapter provides guidelines for the design of suitable primers and probes and their subsequent validation through the development of singlex qPCR, multiplex qPCR, and RT-qPCR protocols.

  9. Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay.

    PubMed

    Haque, Rashidul; Kabir, Mamun; Noor, Zannatun; Rahman, S M Mazidur; Mondal, Dinesh; Alam, Faisal; Rahman, Intekhab; Al Mahmood, Abdullh; Ahmed, Nooruddin; Petri, William A

    2010-08-01

    The noninvasive diagnosis of amebic liver abscess is challenging, as most patients at the time of diagnosis do not have a concurrent intestinal infection with Entamoeba histolytica. Fecal testing for E. histolytica parasite antigen or DNA is negative in most patients. A real-time PCR assay was evaluated for detection of E. histolytica DNA in blood, urine, and saliva samples from amebic liver abscess as well as amebic colitis patients in Bangladesh. A total of 98 amebic liver abscess and 28 amebic colitis patients and 43 control subjects were examined. The real-time PCR assay detected E. histolytica DNA in 49%, 77%, and 69% of blood, urine, and saliva specimens from the amebic liver abscess patients. For amebic colitis the sensitivity of the real-time PCR assay for detection of E. histolytica DNA in blood, urine, and saliva was 36%, 61%, and 64%, respectively. All blood, urine, and saliva samples from control subjects were negative by the real-time PCR assay for E. histolytica DNA. When the real-time PCR assay results of the urine and saliva specimens were taken together (positive either in urine or saliva), the real-time PCR assay was 97% and 89% sensitive for detection of E. histolytica DNA in liver abscess and intestinal infection, respectively. We conclude that the detection of E. histolytica DNA in saliva and urine could be used as a diagnostic tool for amebic liver abscess.

  10. Evaluation of periodontal pathogens of the mandibular third molar pericoronitis by using real time PCR.

    PubMed

    Sencimen, Metin; Saygun, Isil; Gulses, Aydin; Bal, Vehbi; Acikel, Cengiz H; Kubar, Ayhan

    2014-08-01

    The aim of this study was to investigate the mandibular third molar pericoronitis flora by using real-time polymerase chain reaction (PCR). The quantitative values of Aggregatibacter actinomycetemcomitans (Aa), Campylobacter rectus (Cr), Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi) and Tannerella forsythia (Tf) were evaluated in comparison with the healthy third molar flora by using real time PCR. Aa, Cr, Pg, and Pi were not statistically significant but numerically higher than the pericoronitis group. In contrast to samples from control subjects, statistically significant higher numbers of Tf were detected in samples from pericoronitis patients. The study revealed the strong relation between risk of pericoronitis and the presence of Tf. Individuals who have Tf in their samples present with an almost eight times relative risk of pericoronitis as the individuals with an absence of Tf in their samples. Tf plays an important role in the development of clinical symptoms related to pericoronitis. © 2014 FDI World Dental Federation.

  11. Fast real-time PCR for the detection of crustacean allergen in foods.

    PubMed

    Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2012-02-29

    Crustaceans are one of the most common allergens causing severe food reaction. These food allergens are a health problem, and they have become very important; there are various regulations that establish that labeling must be present regarding these allergens to warn consumers. In the present work a fast real-time PCR, by a LNA probe, was developed. This allows the detection of crustaceans in all kinds of products, including processed products in which very aggressive treatments of temperature and pressure during the manufacturing process are used. This methodology provides greater sensitivity and specificity and reduces the analysis time of real-time PCR to 40 min. This methodology was further validated by means of simulating products likely to contain this allergen. For this, products present on the market were spiked with crustacean cooking water. The assay is a potential tool in issues related to the labeling of products and food security to protect the allergic consumer.

  12. Multiplex real-time PCR for identification of canine parvovirus antigenic types.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Narang, Deepti

    2016-07-01

    Canine parvovirus (CPV) is an important disease causing gastroenteritis and/or haemorrhagic gastroenteritis in dogs. There are four antigenic types of CPV reported worldwide viz. CPV 2, CPV 2a, CPV 2b and CPV 2c. The diagnosis of CPV with the identification of the antigen type responsible remains problematic. In the present study, identification as well as antigenic typing of CPV was done using a de novo multiplex real time PCR to combat the problem of antigenic type identification. From the study it could be concluded that the here developed multiplex real time PCR assay could be used for rapid detection of CPV as well as typing of its three antigenic types.

  13. Quantification of mRNA Levels Using Real-Time Polymerase Chain Reaction (PCR).

    PubMed

    Li, Yiyi; Wang, Kai; Chen, Longhua; Zhu, Xiaoxia; Zhou, Jie

    2016-01-01

    Real-time quantitative reverse transcription PCR technique has advanced greatly over the past 20 years. Messenger RNA (mRNA) levels in cells or tissues can be quantified by this approach. It is well known that changes in mRNA expression in disease, and correlation of mRNA expression profiles with clinical parameters, serve as clinically relevant biomarkers. Hence, accurate determination of the mRNA levels is critically important in describing the biological, pathological, and clinical roles of genes in health and disease. This chapter describes a real-time PCR approach to detect and quantify mRNA expression levels, which can be used for both laboratorial and clinical studies in breast cancer research.

  14. Re-examination of feline leukemia virus: host relationships using real-time PCR.

    PubMed

    Torres, Andrea N; Mathiason, Candace K; Hoover, Edward A

    2005-02-05

    The mechanisms responsible for effective vs. ineffective viral containment are central to immunoprevention and therapies of retroviral infections. Feline leukemia virus (FeLV) infection is unique as a naturally occurring, diametric example of effective vs. ineffective retroviral containment by the host. We developed a sensitive quantitative real-time DNA PCR assay specific for exogenous FeLV to further explore the FeLV-host relationship. By assaying p27 capsid antigen in blood and FeLV DNA in blood and tissues of successfully vaccinated, unsuccessfully vaccinated, and unvaccinated pathogen-free cats, we defined four statistically separable classes of FeLV infection, provisionally designated as abortive, regressive, latent, and progressive. These host-virus relationships were established by 8 weeks post-challenge and could be maintained for years. Real-time PCR methods offer promise in gaining deeper insight into the mechanisms of FeLV infection and immunity.

  15. Detection and quantification of cultured marine Alexandrium species by real-time PCR.

    PubMed

    Zhang, Fengli; Li, Zhiyong

    2012-12-01

    The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.

  16. Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood.

    PubMed

    Okolie, Charles E

    2017-01-01

    The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA).

  17. Development of single-tube nested real-time PCR assays with long internally quenched probes for detection of norovirus genogroup II.

    PubMed

    Xia, Hongyan; Gravelsina, Sabine; Öhrmalm, Christina; Ottoson, Jakob; Blomberg, Jonas

    2016-01-01

    The high sequence variation of RNA viruses necessitates use of degenerate primers and probes or multiple primers and probes in molecular diagnostic assays. We showed previously that PCR amplification in two rounds, first with long target-specific primers and then with short generic primers, followed by detection using long probes, can tolerate sequence variation. Here we demonstrate that long primers and probes of up to 56 nucleotides can also be applied in real-time PCR for the detection of norovirus genogroup II with improved sensitivity. Probe design (method of incorporating quenchers, use of Zen internal quencher or traditional quenchers) greatly affects the sensitivity of the real-time PCR assays.

  18. Proportion of prey consumed can be determined from faecal DNA using real-time PCR.

    PubMed

    Bowles, Ella; Schulte, Patricia M; Tollit, Dominic J; Deagle, Bruce E; Trites, Andrew W

    2011-05-01

    Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ∼ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.

  19. Development of a multiplex real-time PCR assay for the detection of ruminant DNA.

    PubMed

    Ekins, Jason; Peters, Sharla M; Jones, Yolanda L; Swaim, Heidi; Ha, Tai; La Neve, Fabio; Civera, Tiziana; Blackstone, George; Vickery, Michael C L; Marion, Bill; Myers, Michael J; Yancy, Haile F

    2012-06-01

    The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool

  20. Detection of Schmallenberg virus in different Culicoides spp. by real-time RT-PCR.

    PubMed

    De Regge, N; Deblauwe, I; De Deken, R; Vantieghem, P; Madder, M; Geysen, D; Smeets, F; Losson, B; van den Berg, T; Cay, A B

    2012-12-01

    To identify possible vectors of Schmallenberg virus (SBV), we tested pools containing heads of biting midges (Culicoides) that were caught during the summer and early autumn of 2011 at several places in Belgium by real-time RT-PCR. Pools of heads originating from following species: C. obsoletus complex, C. dewulfi and C. chiopterus were found positive, strongly indicating that these species are relevant vectors for SBV.

  1. Comparison of droplet digital PCR with quantitative real-time PCR for determination of zygosity in transgenic maize.

    PubMed

    Xu, Xiaoli; Peng, Cheng; Wang, Xiaofu; Chen, Xiaoyun; Wang, Qiang; Xu, Junfeng

    2016-12-01

    This study evaluated the applicability of droplet digital PCR (ddPCR) as a tool for maize zygosity determination using quantitative real-time PCR (qPCR) as a reference technology. Quantitative real-time PCR is commonly used to determine transgene copy number or GMO zygosity characterization. However, its effectiveness is based on identical reaction efficiencies for the transgene and the endogenous reference gene. Additionally, a calibrator sample should be utilized for accuracy. Droplet digital PCR is a DNA molecule counting technique that directly counts the absolute number of target and reference DNA molecules in a sample, independent of assay efficiency or external calibrators. The zygosity of the transgene can be easily determined using the ratio of the quantity of the target gene to the reference single copy endogenous gene. In this study, both the qPCR and ddPCR methods were used to determine insect-resistant transgenic maize IE034 zygosity. Both methods performed well, but the ddPCR method was more convenient because of its absolute quantification property.

  2. Real-time PCR detection of the effects of protozoa on rumen bacteria in cattle.

    PubMed

    Ozutsumi, Yuhei; Tajima, Kiyoshi; Takenaka, Akio; Itabashi, Hisao

    2006-02-01

    A real-time PCR approach was used in this study to clarify the populations of major bacterial species in the rumens of faunated and unfaunated cattle. The sensitivity of this novel real-time PCR assay was evaluated by using 10(1) to 10(8) plasmid copies of target bacteria. The numbers of plasmid copies of Ruminococcus albus, Ruminococcus flavefaciens, Prevotella ruminicola, and the CUR-E cluster were higher in the unfaunated than in the faunated rumens. The CUR-E cluster belongs to the Clostridium group. In contrast, Fibrobacter succinogenes was higher in the faunated than in the unfaunated rumens. Although it is well known that an absence of protozoa brings about an increase in the bacterial population, it was clarified here that an absence of protozoa exerted differential effects on the populations of cellulolytic bacteria in cattle rumens (i.e., F. succinogenes, R. albus, and R. flavefaciens). In addition, real-time PCR analysis suggested that the CUR-E cluster was more prevalent in the unfaunated rumens.

  3. Duplex real-time PCR assay for rapid detection of ampicillin-resistant Enterococcus faecium.

    PubMed

    Mohn, Stein Christian; Ulvik, Arve; Jureen, Roland; Willems, Rob J L; Top, Janetta; Leavis, Helen; Harthug, Stig; Langeland, Nina

    2004-02-01

    Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the D-Ala-D-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.

  4. RT real-time PCR-based quantification of Uromyces fabae in planta.

    PubMed

    Voegele, Ralf T; Schmid, Annette

    2011-09-01

    Quantification of obligate biotrophic parasites has been a long-standing problem in plant pathology. Many attempts have been made to determine how much of a pathogen is present in infected plant tissue. Methods of quantification included scoring disease symptoms, microscopic evaluation, determination of specific compounds like Ergosterol, and lately nucleic acid-based technologies. All of these methods have their drawbacks, and even real-time PCR may not be quantitative if for example the organism of interest has specific and differing numbers of nuclei in different infection structures. We applied reverse transcription (RT) real-time PCR to quantify Uromyces fabae within its host plant Vicia faba. We used three different genes, which have been shown to be constitutively expressed. Our analyses show an exponential increase of fungal material between 4 and 9 days post inoculation and thereafter reaching a steady state of around 45% of total RNA. We also used haustorium-specific genes to determine the amount of haustoria present at each time point. These analyses parallel the development of the whole fungus with the exception of the steady-state level, which is only around 5% of the total RNA. This indicates that RT real-time PCR is a suitable method for quantification of obligate biotrophic parasites, and also for the differentiation of developmental stages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Duplex Real-Time PCR Method for the Differentiation of Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Li, Xiaofang; Cui, Jinghua; DU, Xiaoli; Cui, Zhigang; Huang, Yibing; Kan, Biao

    2017-01-01

    Cronobacter sakazakii and Cronobacter malonaticus are the most common species of Cronobacter , so it is necessary to detect the two species as soon as possible in surveillance programs. We developed a real-time PCR method for identifying C. sakazakii and C. malonaticus from the genus Cronobacter . In this study, the two pairs of primers and probes were designed, targeting 16S rRNA and fusA, respectively. The specificity of the real-time PCR assay was validated with 112 strains of Cronobacter , including 56 C. sakazakii , 32 C. malonaticus , 16 Cronobacter dublinensis , 6 Cronobacter turicensis , and 2 Cronobacter muytjensii . The results showed that C. sakazakii and C. malonaticus were all correctly identified, consistent with the results of another method by analyzing the clustering of the fusA sequence. The detection limit for pure culture was 10(2) CFU/ml and 10(3) CFU/g for artificially contaminated rehydrated powdered infant formula. Therefore, the developed real-time PCR was a rapid, sensitive, and reliable method for the identification of C. sakazakii and C. malonaticus .

  6. Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta.

    PubMed

    Suzuki, Kunio; Sakai, D K

    2007-03-13

    Quantification of msa gene mRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease (BKD), was investigated using reverse transcription followed by real-time PCR assay on R. salmoninarum in culture, and in experimentally challenged chum salmon Oncorhynchus keta fry kidney tissues (total of 70 samples) after intraperitoneal (i.p.) injection and bath infection. Correlations of msa gene mRNA concentrations with culturable cell concentrations (as colony forming units [CFU]), determined by drop-plate culture method on selective kidney disease medium (SKDM) agar through a 12 wk incubation time, and msa gene DNA concentrations by real-time PCR assay were examined. Furthermore, ovarian fluid samples from wild chum salmon adults with no clinical signs of disease were collected from 8 rivers and from clinically infected kokanee 0. nerka and masu salmon O. masou that were reared in 1 and 2 hatcheries, respectively (total of 414 samples). All samples were examined by nested PCR assay. Then, positive samples were examined by real-time PCR assays for mRNA and DNA; mRNA was detectable at 8 log units (5.0 x 101 to 5.0 x 10(9) copies p11(-1)) with high correlation (R2 = 0.999). The mRNA concentration correlated with CFU in kidney tissue from fish infected by i.p. injection (R2 = 0.924), by bath infection (R2 = 0.502) and in culture (R2 = 0.888). R. salmoninarum was detected and quantified by real-time PCR assay for mRNA in ovarian fluid samples in both subclinically infected chum salmon adults and clinically infected kokanee and masu salmon adults; detection rates ranged from 0 to 44.4% and concentrations ranged from 9.7 x 10(2) to 5.6 x 10(5) copies pl(-1). These results indicate that real-time PCR assay for the mRNA is a rapid, sensitive and reliable method to detect and quantify the viability of R. salmoninarum in kidney and ovarian fluid samples of salmonid fishes with both clinical and subclinical infection of the pathogen.

  7. Sensitive on-chip quantitative real-time PCR performed on an adaptable and robust platform.

    PubMed

    Lund-Olesen, Torsten; Dufva, Martin; Dahl, John Arne; Collas, Philippe; Hansen, Mikkel Fougt

    2008-12-01

    A robust, flexible and efficient system for performing high sensitivity quantitative on-chip real-time PCR for research purposes is presented. The chips used consist of microchannels etched in silicon. The surface in the channels is a thermally grown silicon dioxide and the channel is sealed by a glass lid. The chips contain four PCR chambers but this number can be increased for further multiplexing. Contrary to PCR chips with oil covered open chambers, these channel-like chambers are easily integrated in lab-on-a-chip devices. The temperature is controlled by a Peltier element and the fluorochrome detector system is a commercially available fluorescence stereo microscope equipped with a CCD camera. The setup shows an excellent signal-to-noise ratio of about 400 compared to that of about 150 obtained in a commercial real time PCR machine. A detection limit of a few copies of target molecules is found, which is 100 to 100,000-fold better than other on-chip real-time PCR systems presented in the literature. This demonstrates that the PCR system can be used for critical applications. We also demonstrate that high quality melting curves can be obtained. Such curves are important in lab-on-a-chip systems for identification of amplified product. The usability of the system is validated by performing quantitative on-chip measurements of the amount of specific gene sequences co-immunoprecipitated with various posttranslationally modified histone proteins. Similar results are obtained from on-chip experiments and experiments carried out in a commercial system on larger sample volumes.

  8. Molecular diagnosis of alpha-thalassemia by combining real-time PCR with SYBR Green1 and dissociation curve analysis.

    PubMed

    Liu, Jingzhong; Yan, Mei; Wang, Zhangyong; Wang, Lirong; Zhou, Yan; Xiao, Bai

    2006-07-01

    The aim of the study was to set up an automatic molecular diagnostic method for deletional alpha-thalassemia without gel electrophoresis and TaqMan probe. Four real-time polymerase chain reactions (PCRs) with SYBR Green1 and ABI7000 (SYBR-PCR) followed by dissociation curve (DC) analysis were used to detect the --(SEA), - alpha(3.7), -alpha(4.2), and non-deletion-type alleles (alpha alpha or alpha(T)alpha), respectively. Positive results of the SYBR-PCRs were defined by the special shapes of the dissociation curves and the peak height at specific Tm for each predetermined PCR at a specific Tm for each PCR amplicon > or = cutoff values. Molecular diagnosis of alpha-thalassemia was determined by combining all four SYBR-PCR results. The specific Tms for the SYBR-PCR1-4, which was used to detect the --(SEA), - alpha(3.7), -alpha(4.2), and non-deletion-type alleles were 82.5 +/- 1 degrees Celsius, 82.8 +/- 1 degrees Celsius, 81.5 +/- 1 degrees Celsius, and 83.0 +/- 1 degrees Celsius, respectively. The cutoff values of the specific peaks for the positive amplificons were 40, 20, 10, and 70. The C(T) VS log copies of a recombinant plasmid DNA showed a good linear relationship between 10(5) approximately 10(0). Sensitivity of the SYBR-PCR-based method was at least 16 times higher than the multiplex PCR (mPCR)/gel electrophoresis method. Diagnostic outcomes of the 120 alpha-thalassemia cases by using the SYBR-PCR and DC analysis techniques were shown to be the same as that by using the mPCR/gel electrophoresis methods. The SYBR-PCR combined with the DC analysis technique is an alternative assay for the routine molecular diagnosis of alpha-thalassemia.

  9. A noninvasive, direct real-time PCR method for sex determination in multiple avian species.

    PubMed

    Brubaker, Jessica L; Karouna-Renier, Natalie K; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T; Henry, Paula F P

    2011-03-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  10. A noninvasive, direct real-time PCR method for sex determination in multiple avian species

    USGS Publications Warehouse

    Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.

    2011-01-01

    Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.

  11. Accurate Real-Time PCR Strategy for Monitoring Bloodstream Parasitic Loads in Chagas Disease Patients

    PubMed Central

    Duffy, Tomas; Bisio, Margarita; Altcheh, Jaime; Burgos, Juan Miguel; Diez, Mirta; Levin, Mariano Jorge; Favaloro, Roberto Rene; Freilij, Hector; Schijman, Alejandro Gabriel

    2009-01-01

    Background This report describes a real-time PCR (Q-PCR) strategy to quantify Trypanosoma cruzi (T. cruzi) DNA in peripheral blood samples from Chagas disease patients targeted to conserved motifs within the repetitive satellite sequence. Methodology/Principal Findings The Q-PCR has a detection limit of 0.1 and 0.01 parasites/mL, with a dynamic range of 106 and 107 for Silvio X10 cl1 (T. cruzi I) and Cl Brener stocks (T. cruzi IIe), respectively, an efficiency of 99%, and a coefficient of determination (R2) of 0.998. In order to express accurately the parasitic loads: (1) we adapted a commercial kit based on silica-membrane technology to enable efficient processing of Guanidine Hydrochloride-EDTA treated blood samples and minimize PCR inhibition; (2) results were normalized incorporating a linearized plasmid as an internal standard of the whole procedure; and (3) a correction factor according to the representativity of satellite sequences in each parasite lineage group was determined using a modified real-time PCR protocol (Lg-PCR). The Q-PCR strategy was applied (1) to estimate basal parasite loads in 43 pediatric Chagas disease patients, (2) to follow-up 38 of them receiving treatment with benznidazole, and (3) to monitor three chronic Chagas heart disease patients who underwent heart-transplantation and displayed events of clinical reactivation due to immunosupression. Conclusion/Significance All together, the high analytical sensitivity of the Q-PCR strategy, the low levels of intra- and inter-assay variations, as well as the accuracy provided by the Lg-PCR based correction factor support this methodology as a key laboratory tool for monitoring clinical reactivation and etiological treatment outcome in Chagas disease patients. PMID:19381287

  12. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    NASA Astrophysics Data System (ADS)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  13. Simultaneous detection of 45 fusion genes in leukemia by dual-color fluorescence real-time PCR.

    PubMed

    Zheng, Z; Zhang, P; He, G; Liao, K; Wang, Z; Pan, J; Du, K; Du, J; Li, B-A

    2017-04-01

    Detection of recurrent genetic abnormalities is of great significance for a refined diagnosis and assessment of prognosis in leukemia. Conventional nested reverse transcription PCR is labor intensive and time-consuming. We have developed a novel dual-color TaqMan probe-based real-time PCR method for the simultaneous screening of 45 fusion transcripts in 12 parallel reactions. The method was tested and validated with cell lines carrying known fusion transcripts and patient samples. A multiplex real-time PCR method was successfully developed for rapid detection of 45 fusion genes and validated for 15 of the more commonly detected fusion genes. Intra-assay reproducibility assessed for the most frequent rearrangements ranged from 0.41% to 0.74% for the coefficient of variation (CV) of cycle threshold (Ct) and the interassay reproducibility ranged from 1.62% to 2.83% in five separate experiments. The lowest detection limit for the translocations tested ranged between 1 : 16 000 and 1 : 32 000. Validation of the method with 213 patient samples showed 100% specificity and excellent consistence with conventional nested RT-PCR. Overall, we believe that this method is easily applicable, cost-effective, and clinically useful for a rapid screening of fusion genes in the initial diagnostic phase of leukemia. Its use can also be extended to the monitoring of minimal residual disease. © 2017 John Wiley & Sons Ltd.

  14. Molecular Analysis of Spinal Muscular Atrophy: A genotyping protocol based on TaqMan(®) real-time PCR.

    PubMed

    de Souza Godinho, Fernanda Marques; Bock, Hugo; Gheno, Tailise Conte; Saraiva-Pereira, Maria Luiza

    2012-12-01

    Spinal muscular atrophy (SMA) is an autosomal recessive inherited disorder caused by alterations in the survival motor neuron I (SMN1) gene. SMA patients are classified as type I-IV based on severity of symptoms and age of onset. About 95% of SMA cases are caused by the homozygous absence of SMN1 due to gene deletion or conversion into SMN2. PCR-based methods have been widely used in genetic testing for SMA. In this work, we introduce a new approach based on TaqMan(®)real-time PCR for research and diagnostic settings. DNA samples from 100 individuals with clinical signs and symptoms suggestive of SMA were analyzed. Mutant DNA samples as well as controls were confirmed by DNA sequencing. We detected 58 SMA cases (58.0%) by showing deletion of SMN1 exon 7. Considering clinical information available from 56 of them, the patient distribution was 26 (46.4%) SMA type I, 16 (28.6%) SMA type II and 14 (25.0%) SMA type III. Results generated by the new method was confirmed by PCR-RFLP and by DNA sequencing when required. In conclusion, a protocol based on real-time PCR was shown to be effective and specific for molecular analysis of SMA patients.

  15. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  16. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR.

    PubMed

    Corless, C E; Guiver, M; Borrow, R; Edwards-Jones, V; Kaczmarski, E B; Fox, A J

    2000-05-01

    A set of universal oligonucleotide primers specific for the conserved regions of the eubacterial 16S rRNA gene was designed for use with the real-time PCR Applied Biosystems 7700 (TaqMan) system. During the development of this PCR, problems were noted with the use of this gene as an amplification target. Contamination of reagents with bacterial DNA was a major problem exacerbated by the highly sensitive nature of the real-time PCR chemistry. This was compounded by the use of a small amplicon of approximately 100 bases, as is necessary with TaqMan chemistry. In an attempt to overcome this problem, several methodologies were applied. Certain treatments were more effective than others in eliminating the contaminating DNA; however, to achieve this there was a decrease in sensitivity. With UV irradiation there was a 4-log reduction in PCR sensitivity, with 8-methoxypsoralen activity facilitated by UV there was between a 5- and a 7-log reduction, and with DNase alone and in combination with restriction digestion there was a 1.66-log reduction. Restriction endonuclease treatment singly and together did not reduce the level of contaminating DNA. Without the development of ultrapure Taq DNA polymerase, ultrapure reagents, and plasticware guaranteed to be free of DNA, the implementation of a PCR for detection of eubacterial 16S rRNA with the TaqMan system will continue to be problematical.

  17. Real-time PCR probe optimization using design of experiments approach

    PubMed Central

    Wadle, S.; Lehnert, M.; Rubenwolf, S.; Zengerle, R.; von Stetten, F.

    2015-01-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3–14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7–11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times. PMID:27077046

  18. Identification of lactic acid bacteria isolated from wine using real-time PCR.

    PubMed

    Kántor, Attila; Kluz, Maciej; Puchalski, Czeslaw; Terentjeva, Margarita; Kačániová, Miroslava

    2016-01-01

    Different lactic acid bacteria strains have been shown to cause wine spoilage, including the generation of substances undesirable for the health of wine consumers. The aim of this study was to investigate the occurrence of selected species of heterofermentative lactobacilli, specifically Lactobacillus brevis, Lactobacillus hilgardii, and Lactobacillus plantarum in six different Slovak red wines following the fermentation process. In order to identify the dominant Lactobacillus strain using quantitative (real time) polymerized chain reaction (qPCR) method, pure lyophilized bacterial cultures from the Czech Collection of Microorganisms were used. Six different red wine samples following malolactic fermentation were obtained from selected wineries. After collection, the samples were subjected to a classic plate dilution method for enumeration of lactobacilli cells. Real-time PCR was performed after DNA extraction from pure bacterial strains and wine samples. We used SYBR® Green master mix reagents for measuring the fluorescence in qPCR. The number of lactobacilli ranged from 3.60 to 5.02 log CFU mL(-1). Specific lactobacilli strains were confirmed by qPCR in all wine samples. The number of lactobacilli ranged from 10(3) to 10(6) CFU mL(-1). A melting curve with different melting temperatures (T(m)) of DNA amplicons was obtained after PCR for the comparison of T(m) of control and experimental portions, revealing that the most common species in wine samples was Lactobacillus plantarum with a T(m) of 84.64°C.

  19. Real-time PCR probe optimization using design of experiments approach.

    PubMed

    Wadle, S; Lehnert, M; Rubenwolf, S; Zengerle, R; von Stetten, F

    2016-03-01

    Primer and probe sequence designs are among the most critical input factors in real-time polymerase chain reaction (PCR) assay optimization. In this study, we present the use of statistical design of experiments (DOE) approach as a general guideline for probe optimization and more specifically focus on design optimization of label-free hydrolysis probes that are designated as mediator probes (MPs), which are used in reverse transcription MP PCR (RT-MP PCR). The effect of three input factors on assay performance was investigated: distance between primer and mediator probe cleavage site; dimer stability of MP and target sequence (influenza B virus); and dimer stability of the mediator and universal reporter (UR). The results indicated that the latter dimer stability had the greatest influence on assay performance, with RT-MP PCR efficiency increased by up to 10% with changes to this input factor. With an optimal design configuration, a detection limit of 3-14 target copies/10 μl reaction could be achieved. This improved detection limit was confirmed for another UR design and for a second target sequence, human metapneumovirus, with 7-11 copies/10 μl reaction detected in an optimum case. The DOE approach for improving oligonucleotide designs for real-time PCR not only produces excellent results but may also reduce the number of experiments that need to be performed, thus reducing costs and experimental times.

  20. Detection of intestinal protozoa in paediatric patients with gastrointestinal symptoms by multiplex real-time PCR.

    PubMed

    Maas, L; Dorigo-Zetsma, J W; de Groot, C J; Bouter, S; Plötz, F B; van Ewijk, B E

    2014-06-01

    The performance of a multiplex real-time PCR for the detection of Blastocystis, Dientamoeba fragilis, Giardia lamblia, Cryptosporidium species and Entamoeba species in faecal samples was evaluated in an observational prospective study. Paediatric patients (0-18 years) presenting with gastrointestinal symptoms and suspected of having enteroparasitic disease were included. A questionnaire on gastrointestinal symptoms and the chosen treatment was completed at the start of the study and after 6 weeks. Of 163 paediatric patients (mean age, 7.8 years), 114 (70%) had a PCR-positive faecal sample. D. fragilis was detected most frequently, in 101 patients, followed by Blastocystis in 49. In faecal samples of 47 patients, more than one protozoan was detected, mainly the combination of D. fragilis and Blastocystis. Reported gastrointestinal symptoms were abdominal pain (78%), nausea (30%), and altered bowel habits (28%). Eighty-nine of the PCR-positive patients were treated with antibiotics. A significant reduction in abdominal pain was observed both in treated and in untreated patients. This study demonstrated that multiplex real-time PCR detects a high percentage of intestinal protozoa in paediatric patients with gastrointestinal symptoms. However, interpretation and determination of the clinical relevance of a positive PCR result in this population are still difficult. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  1. Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection.

    PubMed

    Caldas, Sérgio; Caldas, Ivo Santana; Diniz, Lívia de Figueiredo; Lima, Wanderson Geraldo de; Oliveira, Riva de Paula; Cecílio, Alzira Batista; Ribeiro, Isabela; Talvani, André; Bahia, Maria Terezinha

    2012-09-01

    The lack of an accurate diagnosis has been a serious obstacle to the advancement of the anti-Trypanosoma cruzi chemotherapy and long-term infection can result in different health risks to human. PCRs are alternative methods, more sensitive than conventional parasitological techniques, which due to their low sensitivities are considered unsuitable for these purposes. The aim of this study was to investigate a sensitive diagnostic strategy to quantify blood and cardiac tissues parasites based on real-time PCR tools during acute and chronic phases of murine Chagas disease, as well as to monitor the evolution of infection in those mice under specific treatment. In parallel, fresh blood examination, immunological analysis and quantification of cardiac inflammation were also performed to confront and improve real-time PCR data. Similar profiles of parasitemia curves were observed in both quantification techniques during the acute phase of the infection. In contrast, parasites could be quantified only by real-time PCR at 60 and 120 days of infection. In cardiac tissue, real-time PCR detected T. cruzi DNA in 100% of infected mice, and using this tool a significant Pearson correlation between parasite load in peripheral blood and in cardiac tissue during acute and chronic phases was observed. Levels of serum CCL2, CCL5 and nitric oxide were coincident with parasite load but focal and diffuse mononuclear infiltrates was observed, even with significant (p<0.05) reduction of parasitism after 60 days of infection. Later, this methodology was used to monitor the evolution of infection in animals treated with itraconazole (Itz). Itz-treatment induced a reduction of parasite load in both blood and cardiac muscle at the treatment period, but after the end of chemotherapy an increase of parasitism was detected. Interestingly, inflammatory mediators levels and heart inflammation intensity had similar evolution to the parasite load, in the group of animals treated. Taken together, our

  2. Detection and quantification of Histomonas meleagridis by real-time PCR targeting single copy genes.

    PubMed

    Hussain, Imtiaz; Jaskulska, Barbara; Hess, Michael; Bilic, Ivana

    2015-09-15

    Histomonas meleagridis, a protozoan parasite that can infect gallinaceous birds, affects mainly the liver and caeca of infected birds. As a consequence of the recent ban of chemotherapeuticals in Europe and the USA, histomonosis gained somewhat more attention due to its re-emergence and the fact that there is no effective treatment available. Therefore, special attention is now also given towards the diagnosis and the control of the disease. In the actual study we report the development of highly specific and sensitive real-time PCR methods for detection and quantification of the parasite, based on two protein coding genes, Fe-hydrogenase (FeHYD) and rpb1. Both genes seem to be in a single copy in H. meleagridis as shown by southern blotting and absolute quantification using real-time PCRs on samples containing a known amount of the parasite. The real-time PCR assays based on FeHYD and rpb1 genes were found to be an efficient method for the quantification and detection of H. meleagridis in in vitro grown cultures, tissues of infected birds and in faecal samples. Both real-time PCRs were able to detect up to a single cell in in vitro cultures of H. meleagridis and in fecal samples spiked with H. meleagridis. Finally, qPCR assays were shown to be highly specific for H. meleagridis as samples containing either of the two H. meleagridis genotypes were positive, whereas samples containing other protozoa such as Tetratrichomonas gallinarum, Trichomonas gallinae, Simplicimonas sp., Tritrichomonas sp., Parahistomonas wenrichi, Dientamoebidae sp. and Blastocystis sp. were all negative. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Neurotoxoplasmosis diagnosis for HIV-1 patients by real-time PCR of cerebrospinal fluid.

    PubMed

    Nogui, Fábio Luís Nascimento; Mattas, Sandro; Turcato Júnior, Gilberto; Lewi, David Salomão

    2009-02-01

    Encephalitis caused by Toxoplasma gondii is the most common cause of central nervous system damage in patients with acquired immunodeficiency syndrome (AIDS). Toxoplasma may infect any of the brain cells, thus leading to non-specific neurotoxoplasmosis clinical manifestations including focused or non-focused signs and symptoms of central nervous system malfunction. Clinical development ranges from insidious display during weeks to experiencing acute general confusion or ultimately fatal onset. Cerebral toxoplasmosis occurs in advanced stages of immunodeficiency, and the absence of anti-toxoplasmosis antibodies by the immunofluorescence method does not allow us to rule out its diagnosis. As specific therapy begins, diagnosis confirmation is sought through clinical and radiological response. There are few accurate diagnosis methods to confirm such cases. We present a method for T. gondii DNA detection by real time PCR-Multiplex. Fifty-one patients were evaluated; 16 patients had AIDS and a presumptive diagnosis for toxoplasmosis, 23 patients were HIV-positive with further morbidities except neurotoxoplasmosis, and 12 subjects were HIV-negative control patients. Real time PCR-Multiplex was applied to these patients' cephalorachidian liquid with a specific T. gondii genome sequence from the 529bp fragment. This test is usually carried out within four hours. Test sensitivity, specificity, positive predictive value, and negative predictive value were calculated according to applicable tables. Toxoplasma gondii assay by real time Multiplex of cephalorachidian fluid was positive for 11 out of 16 patients with AIDS and a presumptive diagnosis for cerebral toxoplasmosis, while none of the 35 control patients displayed such a result. Therefore, this method allowed us to achieve 68.8% sensitivity, 100% specificity, 100% positive predictive value, and 87.8% negative predictive value. Real time PCR on CSF allowed high specificity and good sensitivity among patients who

  4. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR.

    PubMed

    Maheshwari, Yogita; Selvaraj, Vijayanandraj; Hajeri, Subhas; Yokomi, Raymond

    2017-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD) in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative) PCR (qPCR) for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR.

  5. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR

    PubMed Central

    Hajeri, Subhas

    2017-01-01

    Droplet digital polymerase chain reaction (ddPCR) is a method for performing digital PCR that is based on water-oil emulsion droplet technology. It is a unique approach to measure the absolute copy number of nucleic acid targets without the need of external standards. This study evaluated the applicability of ddPCR as a quantitative detection tool for the Spiroplasma citri, causal agent of citrus stubborn disease (CSD) in citrus. Two sets of primers, SP1, based on the spiral in housekeeping gene, and a multicopy prophage gene, SpV1 ORF1, were used to evaluate ddPCR in comparison with real time (quantitative) PCR (qPCR) for S. citri detection in citrus tissues. Standard curve analyses on tenfold dilution series showed that both ddPCR and qPCR exhibited good linearity and efficiency. However, ddPCR had a tenfold greater sensitivity than qPCR and accurately quantified up to one copy of spiralin gene. Receiver operating characteristic analysis indicated that the ddPCR methodology was more robust for diagnosis of CSD and the area under the curve was significantly broader compared to qPCR. Field samples were used to validate ddPCR efficacy and demonstrated that it was equal or better than qPCR to detect S. citri infection in fruit columella due to a higher pathogen titer. The ddPCR assay detected both the S. citri spiralin and the SpV1 ORF1 targets quantitatively with high precision and accuracy compared to qPCR assay. The ddPCR was highly reproducible and repeatable for both the targets and showed higher resilience to PCR inhibitors in citrus tissue extract for the quantification of S. citri compare to qPCR. PMID:28910375

  6. Development of a novel detection system for microbes from bovine diarrhea by real-time PCR

    PubMed Central

    TSUCHIAKA, Shinobu; MASUDA, Tsuneyuki; SUGIMURA, Satoshi; KOBAYASHI, Suguru; KOMATSU, Natsumi; NAGAI, Makoto; OMATSU, Tsutomu; FURUYA, Tetsuya; OBA, Mami; KATAYAMA, Yukie; KANDA, Shuhei; YOKOYAMA, Tadashi; MIZUTANI, Tetsuya

    2015-01-01

    Diarrhea in cattle is one of the most economically costly disorders, decreasing milk production and weight gain. In the present study, we established a novel simultaneous detection system using TaqMan real-time PCR designed as a system for detection of microbes from bovine diarrhea using real-time PCR (referred to as Dembo-PCR). Dembo-PCR simultaneously detects a total of 19 diarrhea-causing pathogens, including viruses, bacteria and protozoa. Specific primer–probe sets were newly designed for 7 pathogens and were synthesized on the basis of previous reports for 12 pathogens. Assays were optimized to react under the same reaction conditions. The PCR efficiency and correlation coefficient (R2) of standard curves for each assay were more than 80% and 0.9766, respectively. Furthermore, the sensitivity of Dembo-PCR in fecal sample analysis was measured with feces spiked with target pathogens or synthesized DNA that included specific nucleotide target regions. The resulting limits of detection (LOD) for virus-spiked samples, bacteria and DNA fragments were 0.16–1.6 TCID50 (PFU/reaction), 1.3–13 CFU/reaction and 10–100 copies/reaction, respectively. All reactions showed high sensitivity in pathogen detection. A total of 8 fecal samples, collected from 6 diarrheic cattle, 1 diarrheic calf and 1 healthy cow, were tested using Dembo-PCR to validate the assay’s clinical performance. The results revealed that bovine coronavirus had infected all diarrheic adult cattle and that bovine torovirus had infected the diarrheic calf. These results suggest that Dembo-PCR may be a powerful tool for diagnosing infectious agents in cattle diarrhea. PMID:26616156

  7. The potential advantages of digital PCR for clinical virology diagnostics.

    PubMed

    Hall Sedlak, Ruth; Jerome, Keith R

    2014-05-01

    Digital PCR (dPCR), a new nucleic acid amplification technology, offers several potential advantages over real-time or quantitative PCR (qPCR), the current workhorse of clinical molecular virology diagnostics. Several studies have demonstrated dPCR assays for human cytomegalovirus or HIV, which give more precise and reproducible results than qPCR assays without sacrificing sensitivity. Here we review the literature comparing dPCR and qPCR performance in viral molecular diagnostic assays and offer perspective on the future of dPCR in clinical virology diagnostics.

  8. A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics.

    PubMed

    Shu, Bowen; Zhang, Chunsun; Xing, Da

    2017-11-15

    Timely and accurate molecular diagnostics at the point-of-care (POC) level is critical to global health. To this end, we propose a handheld convective-flow real-time polymerase chain reaction (PCR) system capable of direct sample-to-answer genetic analysis for the first time. Such a system mainly consists of a magnetic bead-assisted photothermolysis sample preparation, a closed-loop convective PCR reactor, and a wireless video camera-based real-time fluorescence detection. The sample preparation exploits the dual functionality of vancomycin-modified magnetic beads (VMBs) for bacteria enrichment and photothermal conversion, enabling cell pre-concentration and lysis to be finished in less than 3min. On the presented system, convective thermocycling is driven by a single-heater thermal gradient, and its amplification is monitored in real-time, with an analysis speed of less than 25min, a dynamic linear range from 10(6) to 10(1) copies/µL and a detection sensitivity of as little as 1 copies/µL. Additionally, the proposed PCR system is self-contained with a control electronics, pocket-size and battery-powered, providing a low-cost genetic analysis in a portable format. Therefore, we believe that this integrated system may become a potential candidate for fast, accurate and affordable POC molecular diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantification of Tetracycline Resistance Genes in Feedlot Lagoons by Real-Time PCR

    PubMed Central

    Smith, Marilyn S.; Yang, Richard K.; Knapp, Charles W.; Niu, Yafen; Peak, Nicholas; Hanfelt, Margery M.; Galland, John C.; Graham, David W.

    2004-01-01

    A new real-time PCR method is presented that detects and quantifies three tetracycline resistance (Tcr) genes [tet(O), tet(W), and tet(Q)] in mixed microbial communities resident in feedlot lagoon wastewater. Tcr gene real-time TaqMan primer-probe sets were developed and optimized to quantify the Tcr genes present in seven different cattle feedlot lagoons, to validate the method, and to assess whether resistance gene concentrations correlate with free-tetracycline levels in lagoon waters. The method proved to be sensitive across a wide range of gene concentrations and provided consistent and reproducible results from complex lagoon water samples. The log10 of the sum of the three resistance gene concentrations was correlated with free-tetracycline levels (r2 = 0.50, P < 0.001; n = 18), with the geometric means of individual resistance concentrations ranging from 4- to 8.3-fold greater in lagoon samples with above-median tetracycline levels (>1.95 μg/liter by enzyme-linked immunosorbent assay techniques) than in below-median lagoon samples. Of the three Tcr genes tested, tet(W) and tet(Q) were more commonly found in lagoon water samples. Successful development of this real-time PCR assay will permit other studies quantifying Tcr gene numbers in environmental and other samples. PMID:15574938

  10. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    PubMed Central

    Bode, Elizabeth; Hurtle, William; Norwood, David

    2004-01-01

    Real-time PCR has become an important method for the rapid identification of Bacillus anthracis since the 2001 anthrax mailings. Most real-time PCR assays for B. anthracis have been developed to detect virulence genes located on the pXO1 and pXO2 plasmids. In contrast, only two published chromosomal targets exist, the rpoB gene and the gyrA gene. In the present study, subtraction-hybridization with a plasmid-cured B. anthracis tester strain and a Bacillus cereus driver was used to find a unique chromosomal sequence. By targeting this region, a real-time assay was developed with the Ruggedized Advanced Pathogen Identification Device. Further testing has revealed that the assay has 100% sensitivity and 100% specificity, with a limit of detection of 50 fg of DNA. The results of a search for sequences with homology with the BLAST program demonstrated significant alignment to the recently published B. anthracis Ames strain, while an inquiry for protein sequence similarities indicated homology with an abhydrolase from B. anthracis strain A2012. The importance of this chromosomal assay will be to verify the presence of B. anthracis independently of plasmid occurrence. PMID:15583318

  11. [Clinical application of real-time PCR for the detection of genetic mutations underlying spinal muscular atrophy].

    PubMed

    Jiang, Yu; Peng, Guilan; Wu, Qichang; Zhou, Yulin

    2014-04-01

    To verify the reliability of real-time PCR for the detection of genetic mutations underlying spinal muscular atrophy (SMA) and establish quality control for clinical testing. Thirty-five patients, 61 first-degree relatives, 61 healthy controls and 7 prenatal cases which were previously genotyped by multiplex ligation-dependent probe amplification (MLPA) were tested with Roche LightCycler 480 and Bio-Rad CFX96 (TM) real-time PCR machines for relative quantification of copy number of SMN1 exon 7. Genotyping detected by relative quantitative real-time PCR were consistent with the results of MLPA. Both types of real-time PCR machines could accurately distinguish different SMN1 copy numbers despite certain systematic differences between the two platforms. The reliability of real-time PCR assay for detecting SMA depends on quality control. Standard database generated with known SMN1 copy number variations should be established for different instruments.

  12. Real-time PCR systems targeting giant viruses of amoebae and their virophages.

    PubMed

    Ngounga, Tatsiana; Pagnier, Isabelle; Reteno, Dorine-Gaelle Ikanga; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2013-01-01

    Giant viruses that infect amoebae, including mimiviruses and marseilleviruses, were first described in 2003. Virophages were subsequently described that infect mimiviruses. Culture isolation with Acanthamoeba spp. and metagenomic studies have shown that these giant viruses are common inhabitants of our biosphere and have enabled the recent detection of these viruses in human samples. However, the genomes of these viruses display substantial genetic diversity, making it a challenge to examine their presence in environmental and clinical samples using conventional and real-time PCR. We designed and evaluated the performance of PCR systems capable of detecting all currently isolated mimiviruses, marseilleviruses and virophages to assess their prevalence in various samples. Our real-time PCR assays accurately detected all or most of the members of the currently delineated lineages of giant viruses infecting acanthamoebae as well as the mimivirus virophages, and enabled accurate classification of the mimiviruses of amoebae in lineages A, B or C. We were able to detect four new mimiviruses directly from environmental samples and correctly classified these viruses within mimivirus lineage C. This was subsequently confirmed by culture on amoebae followed by partial Sanger sequencing. PCR systems such as those implemented here may contribute to an improved understanding of the prevalence of mimiviruses, their virophages and marseilleviruses in humans.

  13. Monitoring temperature with fluorescence during real-time PCR and melting analysis.

    PubMed

    Sanford, Lindsay N; Wittwer, Carl T

    2013-03-01

    Accurate control of the sample temperature during thermal cycling is critical for successful polymerase chain reaction (PCR). Direct sensor contact with the reaction is problematic, forcing measurements external to the sample and compromising accuracy during rapid temperature transitions. The widespread use of fluorescence in real-time PCR and melting analysis suggests another measure of temperature, the intrinsic fluorescence of temperature-sensitive passive dyes. Calibration curves correlating sulforhodamine B fluorescence to temperature on nine real-time PCR instruments were obtained by heating at 0.018-0.1 °C/s between 50 and 95 °C, with a twofold change in fluorescence. After instrument stabilization for 20 min, no dye photobleaching was observed and thermal degradation was 2.2%/h at 80 °C. During cycling, solution temperatures derived from fluorescence were well matched to thermocouples placed within samples, but not to temperatures recorded by the instrument. Solution temperatures lagged instrument temperatures by up to 8 °C during cycling, often requiring 5-10 s at target temperatures for equilibration. Melting curves were displaced by 0.2-1.1 °C. Temperature inaccuracies were dependent on the instrument, the ramp rate, and the sample volume. The fluorescence of passive dyes can be used to accurately assess solution temperatures during PCR and should be particularly useful at fast cycling speeds.

  14. Tendency for interlaboratory precision in the GMO analysis method based on real-time PCR.

    PubMed

    Kodama, Takashi; Kurosawa, Yasunori; Kitta, Kazumi; Naito, Shigehiro

    2010-01-01

    The Horwitz curve estimates interlaboratory precision as a function only of concentration, and is frequently used as a method performance criterion in food analysis with chemical methods. The quantitative biochemical methods based on real-time PCR require an analogous criterion to progressively promote method validation. We analyzed the tendency of precision using a simplex real-time PCR technique in 53 collaborative studies of seven genetically modified (GM) crops. Reproducibility standard deviation (SR) and repeatability standard deviation (Sr) of the genetically modified organism (GMO) amount (%) was more or less independent of GM crops (i.e., maize, soybean, cotton, oilseed rape, potato, sugar beet, and rice) and evaluation procedure steps. Some studies evaluated whole steps consisting of DNA extraction and PCR quantitation, whereas others focused only on the PCR quantitation step by using DNA extraction solutions. Therefore, SR and Sr for GMO amount (%) are functions only of concentration similar to the Horwitz curve. We proposed S(R) = 0.1971C 0.8685 and S(r) = 0.1478C 0.8424, where C is the GMO amount (%). We also proposed a method performance index in GMO quantitative methods that is analogous to the Horwitz Ratio.

  15. Enabling reproducible real-time quantitative PCR research: the RDML package.

    PubMed

    Rödiger, Stefan; Burdukiewicz, Michal; Spiess, Andrej-Nikolai; Blagodatskikh, Konstantin

    2017-08-26

    Reproducibility, a cornerstone of research, requires defined data formats, which include the set-up and output of experiments. The Real-time PCR Data Markup Language (RDML) is a recommended standard of the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Despite the popularity of the RDML format for analysis of qPCR data, handling of RDML files is not yet widely supported in all PCR curve analysis softwares. This study describes the open source RDML package for the statistical computing language RDML is compatible with RDML versions ≤ 1.2 and provides functionality to (i) import RDML data; (ii) extract sample information (e.g., targets, concentration); (iii) transform data to various formats of the environment; (iv) generate human readable run summaries; and (v) to create RDML files from user data. In addition, RDML offers a graphical user interface to read, edit and create RDML files. https://cran.r-project.org/package=RDML . rdmlEdit server http://shtest.evrogen.net/rdmlEdit/ . Documentation: http://kablag.github.io/RDML/ . k.blag@yandex.ru. Supplementary data are available at Bioinformatics online.

  16. Development of duplex real-time PCR for detection of two DNA respiratory viruses.

    PubMed

    Dina, Julia; Nguyen, Emilie; Gouarin, Stephanie; Petitjean, Joelle; Parienti, Jean-Jacques; Nimal, Delphine; Brouard, Jacques; Freymuth, François; Vabret, Astrid

    2009-12-01

    A method was developed for the detection and quantitation of HAdV (human adenovirus) and HBoV (human bocavirus) based on a duplex real-time PCR, the AB PCR, using a Smartcycler instrument. A control real-time PCR was carried out on albumin DNA to standardise the non-homogenous respiratory samples. No cross-reactivity was observed with viruses or bacteria that could be found in the respiratory tract. The diagnosis rate using the AB PCR on clinical samples was 10.7%: 3.4% for HBoV detection, 6.9% for HAdV detection and 0.3% double detection HBoV-HAdV. The clinical and epidemiological characteristics of the HAdV- and HBoV-infected patients were evaluated. In the HAdV-positive group and the HBoV-positive group the samples were classified according to the severity of the disease. The HAdV viral load did not appear to be linked to the severity of the disease. Conversely, the difference between the two HBoV groups, severe and non-severe, was significant statistically when the comparison was based on the viral load (P=0.006) or after adjustment of the viral load to the number of cells in the samples (P=0.02).

  17. [BK virus nephropathy after renal transplantation. Diagnosis and prognosis by real time PCR].

    PubMed

    Echavarría, Marcela; Basilotta, Natalia; Aguiar, Ana; Davalos, Mario; Ricarte, Carmen; Iotti, Alejandro; Carballal, Guadalupe

    2007-01-01

    BK virus nephropathy may lead to kidney transplant failure. BK infection and acute rejection are clinically undistinguishable, therefore diagnosis of these entities is critical to establish the correct treatment. The new molecular methods using PCR and real time PCR have significantly contributed to the rapid and sensitive diagnosis of BK virus. Furthermore, viral load determination in-plasma has significantly been associated with BK virus nephropathy. Definite diagnosis of nephropathy requires renal biopsy, although due to the multifocal nature of the disease sensitivity may be less than 100%. BK detection in blood and urine by PCR has contributed to the diagnosis of nephropathy in a more standardized and less invasive way. Recently, quantification of BK virus in plasma has been used for the diagnosis and monitoring of this disease. In the present study, we describe the validation of a real time PCR method for BK virus detection in plasma and urine and its application for diagnosis and monitoring in a renal transplant patient with nephropathy.

  18. Effects of bacterial contamination of media on the diagnosis of Tritrichomonas foetus by culture and real-time PCR.

    PubMed

    Clothier, Kristin A; Villanueva, Michelle; Torain, Andrea; Hult, Cynthia; Wallace, Rachel

    2015-03-15

    The venereal pathogen Tritrichomonas foetus causes early embryonic death and abortion in cattle. With no approved treatment, control involves detection of infected animals and their removal from the herd. Culture is the traditional diagnostic method; standard media are formulated to support protozoal growth while suppressing competing organisms which may prevent microscopic recognition of T. foetus. Real-time PCR increases diagnostic sensitivity and specificity over culture but requires intact T. foetus DNA for detection. The purposes of this study were 1) to evaluate the effects of resident preputial bacteria that are not suppressed by antimicrobials in a commercial culture medium (InPouch™) on T. foetus detection by culture and PCR, and 2) to determine the performance of a laboratory-prepared culture medium on T. foetus detection by culture and PCR in samples with and without this bacterial contamination. A known concentration of one of three different strains of T. foetus inoculated into InPouch™ (IP) or modified Diamonds-Plastridge media (DPM) were co-incubated with a smegma culture media (CONTAM) for 24h and examined microscopically for the presence of identifiable T. foetus. PCR was performed on IP samples to determine if CONTAM also affected T. foetus DNA detection. A PCR protocol was then validated in DPM that performed similarly to the established IP PCR method. IP and DPM with CONTAM were spiked with serial dilutions that mimic field infections of one of four T. foetus strains and evaluated by real-time PCR; cycles to threshold (Ct) values and "positive" classification were compared between media. T. foetus motility and morphology as well as media pH were severely altered in IP samples with CONTAM compared to those without as well as to DPM medium with and without CONTAM (P<0.0001). PCR testing demonstrated significantly greater Ct values were for T. foetus DNA (P<0.001) in IP contaminated with smegma bacteria compared to those without. When using T

  19. [Development and comparison of real-time and conventional RT-PCR assay for detection of human coronavirus NL63 and HKU1].

    PubMed

    Lu, Rou-jian; Zhang, Ling-lin; Tan, Wen-jie; Zhou, Wei-min; Wang, Zhong; Peng, Kun; Ruan, Li

    2008-07-01

    We designed specific primers and fluorescence-labeled probes to develop real-time and conventional RT-PCR assays for detection of human coronavirus NL63 or HKU1. Subsequently, experiments were undertaken to assess diagnostic criteria such as specificity, sensitivity and reproducibility. The detection limit of the real-time RT-PCR assays was 10 RNA copies per reaction mixture. No cross-reactivity was observed between RNA samples derived from designed HCoV and other HCoV or human metapneumovirus. A total of 158 nasopharyngeal swab specimens collected from adult patients with acute respiratory tract infection in Beijing were screened for the presence of human coronavirus NL63 and HKU1 by using real-time RT-PCR and conventional RT-PCR method. The fluorescence quantitative RT-PCR method detected six specimens positive for human coronavirus NL63, five specimens positive for human coronavirus HKU1; and conventional RT-PCR method detected three HCoV-NL63 positive and three HCoV-HKU1 positive, respectively. The convention RT-PCR products of positive samples were obtained and sequence analysis confirmed the reliability of the above methods. In summary, the real-time RT-PCR assay for HCoV- NL63 or HKU1 was more sensitive than conventional RT-PCR and with less time (less than 4 hours) for completion. It may be suitable for molecular epidemiological surveillance and clinical diagnosis for human coronavirus NL63 and HKU1.

  20. Real-Time PCR Assay Using Fine-Needle Aspirates and Tissue Biopsy Specimens for Rapid Diagnosis of Mycobacterial Lymphadenitis in Children

    PubMed Central

    van Coppenraet, E. S. Bruijnesteijn; Lindeboom, J. A.; Prins, J. M.; Peeters, M. F.; Claas, E. C. J.; Kuijper, E. J.

    2004-01-01

    A real-time PCR assay was developed to diagnose and identify the causative agents of suspected mycobacterial lymphadenitis. Primers and probes for the real-time PCR were designed on the basis of the internal transcribed spacer sequence, enabling the recognition of the genus Mycobacterium and the species Mycobacterium avium and M. tuberculosis. The detection limit for the assay was established at 1,100 CFU/ml of pus, and the specificity tests showed no false-positive reaction with other mycobacterial species and other pathogens causing lymphadenitis. From 67 children with suspected mycobacterial lymphadenitis based on a positive mycobacterial skin test, 102 samples (58 fine-needle aspirates [FNA] and 44 tissue specimens) were obtained. The real-time PCR assay detected a mycobacterial infection in 48 patients (71.6%), whereas auramine staining and culturing were positive for 31 (46.3%) and 28 (41.8%) of the patients. The addition of the real-time PCR assay to conventional diagnostic tests resulted in the recognition of 13 more patients with mycobacterial disease. These results indicate that the real-time PCR is more sensitive than conventional staining and culturing techniques (P = 0.006). The M. avium-specific real-time PCR was positive for 38 patients, and the M. tuberculosis-specific real-time PCR was positive for 1 patient. Analysis of 27 patients from whom FNA and tissue biopsy specimens were collected revealed significantly more positive real-time PCR results for FNA than for tissue biopsy specimens (P = 0.003). Samples from an age-matched control group of 50 patients with PCR-proven cat scratch disease were all found to be negative by the real-time PCR. We conclude that this real-time PCR assay with a sensitivity of 72% for patients with lymphadenitis and a specificity of 100% for the detection of atypical mycobacteria can provide excellent support for clinical decision making in children with lymphadenitis. PMID:15184446

  1. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer

    PubMed Central

    2011-01-01

    Background Quantitative real-time PCR (qPCR) is becoming increasingly important for DNA genotyping and gene expression analysis. For continuous monitoring of the production of PCR amplicons DNA-intercalating dyes are widely used. Recently, we have introduced a new qPCR mix which showed improved amplification of medium-size genomic DNA fragments in the presence of DNA dye SYBR green I (SGI). In this study we tested whether the new PCR mix is also suitable for other DNA dyes used for qPCR and whether it can be applied for amplification of DNA fragments which are difficult to amplify. Results We found that several DNA dyes (SGI, SYTO-9, SYTO-13, SYTO-82, EvaGreen, LCGreen or ResoLight) exhibited optimum qPCR performance in buffers of different salt composition. Fidelity assays demonstrated that the observed differences were not caused by changes in Taq DNA polymerase induced mutation frequencies in PCR mixes of different salt composition or containing different DNA dyes. In search for a PCR mix compatible with all the DNA dyes, and suitable for efficient amplification of difficult-to-amplify DNA templates, such as those in whole blood, of medium size and/or GC-rich, we found excellent performance of a PCR mix supplemented with 1 M 1,2-propanediol and 0.2 M trehalose (PT enhancer). These two additives together decreased DNA melting temperature and efficiently neutralized PCR inhibitors present in blood samples. They also made possible more efficient amplification of GC-rich templates than betaine and other previously described additives. Furthermore, amplification in the presence of PT enhancer increased the robustness and performance of routinely used qPCRs with short amplicons. Conclusions The combined data indicate that PCR mixes supplemented with PT enhancer are suitable for DNA amplification in the presence of various DNA dyes and for a variety of templates which otherwise can be amplified with difficulty. PMID:21501492

  2. Detection of Invasive Aspergillosis in Bone Marrow Transplant Recipients Using Real-Time PCR

    PubMed Central

    Nabili, Mojtaba; Shokohi, Tahereh; Janbabaie, Ghasem; Hashemi-Soteh, Mohammad Bagher; Ali-Moghaddam, Kamran; Aghili, Seyed Reza

    2013-01-01

    Objective: The invasive aspergillosis (IA) is a serious opportunistic infection caused by various species of Aspergillus in immunocompromised individuals. Basically, rapid and early diagnosis prevents IA progression. In this study we performed a Real Time PCR/ Fluorescence Resonance Energy Transfer (FRET) for diagnosis of IA in hematologic malignancies and bone marrow transplant recipients. Materials and Methods: Sixty two patients with hematologic malignancies and marrow transplant recipients were evaluated for IA in Sari and Tehran from 2009 to 2010. The primer and hybridization probe were designed to amplify the specific sequence of 18S rRNA genes using Light Cycler system and FRET. Galactomannan (GM) assay was performed on serums which obtained from selected patients using the Platelia Aspergillus kit. Results: According to the criteria defined by the European Organization for Research and Treatment of Cancer and Mycoses Study Group (EORTC/MSG) for IA, 18 (29%) patients out of 62 patients were stratified into probable and possible groups. The female-to-male ratio was 1:2; the mean age of the patients was 36 years. The most common malignancies in these patients were acute lymphoblastic leukemia (38.9%). The minimum detection limit was 10 conidia (101 CFU/ml) equivalents (100 fg) per PCR reaction. GM assay was positive in 20.9% and real-time PCR probe set assay were positive in 17.7% patients who had clinical signs and host factor according to the mentioned criteria. Conclusion: Using the Real-Time PCR/FRET assay in whole blood specimens seems to be a promising method for diagnosis of IA, especially when used in combination with the GM detection test. PMID:23853434

  3. Real-time PCR using mycobacteriophage DNA for rapid phenotypic drug susceptibility results for Mycobacterium tuberculosis.

    PubMed

    Pholwat, Suporn; Ehdaie, Beeta; Foongladda, Suporn; Kelly, Kimberly; Houpt, Eric

    2012-03-01

    Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 10(3) PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (C(T)) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and C(T) control-C(T) drug cutoffs of between +0.3 and -6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔC(T) values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC.

  4. Real-Time PCR Using Mycobacteriophage DNA for Rapid Phenotypic Drug Susceptibility Results for Mycobacterium tuberculosis

    PubMed Central

    Pholwat, Suporn; Ehdaie, Beeta; Foongladda, Suporn; Kelly, Kimberly

    2012-01-01

    Managing drug-resistant Mycobacterium tuberculosis requires drug susceptibility testing, yet conventional drug susceptibility testing is slow, and molecular testing does not yield results for all antituberculous drugs. We addressed these challenges by utilizing real-time PCR of mycobacteriophage D29 DNA to evaluate the drug resistance of clinical M. tuberculosis isolates. Mycobacteriophages infect and replicate in viable bacterial cells faster than bacterial cells replicate and have been used for detection and drug resistance testing for M. tuberculosis either by using reporter cells or phages with engineered reporter constructs. Our primary protocol involved culturing M. tuberculosis isolates for 48 h with and without drugs at critical concentrations, followed by incubation with 103 PFU/ml of D29 mycobacteriophage for 24 h and then real-time PCR. Many drugs could be incubated instantly with M. tuberculosis and phage for 24 h alone. The change in phage DNA real-time PCR cycle threshold (CT) between control M. tuberculosis and M. tuberculosis treated with drugs was calculated and correlated with conventional agar proportion drug susceptibility results. Specifically, 9 susceptible clinical isolates, 22 multidrug-resistant (MDR), and 1 extensively drug-resistant (XDR) M. tuberculosis strains were used and CT control-CT drug cutoffs of between +0.3 and −6.0 yielded 422/429 (98%) accurate results for isoniazid, rifampin, streptomycin, ethambutol, amikacin, kanamycin, capreomycin, ofloxacin, moxifloxacin, ethionamide, para-aminosalicylic acid, cycloserine, and linezolid. Moreover, the ΔCT values correlated with isolate MIC for most agents. This D29 quantitative PCR assay offers a rapid, accurate, 1- to 3-day phenotypic drug susceptibility test for first- and second-line drugs and may suggest an approximate MIC. PMID:22170929

  5. An integrated real-time diagnostic concept using expert systems, qualitative reasoning and quantitative analysis

    SciTech Connect

    Edwards, R.M.; Lee, K.Y.; Kumara, S.; Levine, S.H.

    1989-01-01

    An approach for an integrated real-time diagnostic system is being developed for inclusion as an integral part of a power plant automatic control system. In order to participate in control decisions and automatic closed loop operation, the diagnostic system must operate in real-time. Thus far, an expert system with real-time capabilities has been developed and installed on a subsystem at the Experimental Breeder Reactor (EBR-II) in Idaho, USA. Real-time simulation testing of advanced power plant concepts at the Pennsylvania State University has been developed and was used to support the expert system development and installation at EBR-II. Recently, the US National Science Foundation (NSF) and the US Department of Energy (DOE) have funded a Penn State research program to further enhance application of real-time diagnostic systems by pursuing implementation in a distributed power plant computer system including microprocessor based controllers. This paper summarizes past, current, planned, and possible future approaches to power plant diagnostic systems research at Penn State. 34 refs., 9 figs.

  6. FPGA implementation of principal component regression (PCR) for real-time differentiation of dopamine from interferents.

    PubMed

    Bozorgzadeh, Bardia; Covey, Daniel P; Garris, Paul A; Mohseni, Pedram

    2015-01-01

    This paper reports on field-programmable gate array (FPGA) implementation of a digital signal processing (DSP) unit for real-time processing of neurochemical data obtained by fast-scan cyclic voltammetry (FSCV) at a carbonfiber microelectrode (CFM). The DSP unit comprises a decimation filter and two embedded processors to process the FSCV data obtained by an oversampling recording front-end and differentiate the target analyte from interferents in real time with a chemometrics algorithm using principal component regression (PCR). Interfaced with an integrated, FSCV-sensing front-end, the DSP unit successfully resolves the dopamine response from that of pH change and background-current drift, two common dopamine interferents, in flow injection analysis involving bolus injection of mixed solutions, as well as in biological tests involving electrically evoked, transient dopamine release in the forebrain of an anesthetized rat.

  7. Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses.

    PubMed

    Ben Shabat, M; Meir, R; Haddas, R; Lapin, E; Shkoda, I; Raibstein, I; Perk, S; Davidson, I

    2010-09-01

    Avian influenza viruses (AIVs) of the H9N2 subtype are a major economic problem in the poultry industry in Israel. Most field isolates from the last decade differ significantly from H9N2 isolates from Europe and the USA, rendering published detection methods inadequate. This study aimed to develop a real-time TaqMan((R)) RT-PCR assay, based on a conserved region in the HA9 gene. The assay was validated with viruses representing different genetic subtypes and other common avian pathogens, and was found specific to H9N2. The real-time RT-PCR assay was compared to RT-PCR, which is in routine diagnostic use. Real-time RT-PCR was found to be more sensitive than RT-PCR by 1.5-2.5 orders of magnitude when testing tracheal swabs directly and by 2-3 orders of magnitude allantoic fluid after AIV propagation in embryonated eggs. Sensitivity was quantified by using 10-fold dilutions of the H9-gene amplification fragment, and real-time RT-PCR was found to be 10(4)-fold more sensitive than RT-PCR. Clinical samples, which included tracheal and cloacal swabs, as well as allantoic fluid, were tested by both methods. By real-time RT-PCR 20% more positive H9N2 samples were detected than by RT-PCR. The real-time RT-PCR assay was found suitable for detection and epidemiological survey not only of Israeli H9N2 viruses, but also for isolates from other parts of the world.

  8. Evaluation of a commercial real-time PCR kit for detection of dengue virus in samples collected during an outbreak in Goiania, Central Brazil, in 2005.

    PubMed

    Levi, José Eduardo; Tateno, Adriana Fumie; Machado, Adriana Freire; Ramalho, Débora Camillo; de Souza, Vanda Akico Ueda Fick; Guilarde, Adriana Oliveira; de Rezende Feres, Valéria Christina; Martelli, Celina Maria Turchi; Turchi, Marília Dalva; Siqueira, João Bosco; Pannuti, Cláudio Sérgio

    2007-06-01

    In the past 2 decades, dengue has reemerged in Brazil as a significant public health problem. Clinicians demand a diagnostic test with high sensitivity that is applicable during the early symptomatic phase. We aimed to test two distinct molecular methods on samples from suspected dengue cases during an outbreak in Central Brazil. Acute-phase serum specimens from 254 patients suspected of having dengue were collected during 2005 in the city of Goiânia, Central Brazil. Samples were blindly evaluated by real-time and multiplex PCR in addition to routine immunoglobulin M serology and virus culture. Overall, acute dengue was confirmed by serology, multiplex PCR, or virus isolation for 80% of patients (203/254). Another four patients presented real-time PCR-positive results as the unique marker of dengue. Higher real-time PCR positivity levels and viral loads were observed in the early symptomatic phase of disease (< or =5 days) than after this period. Multiplex and real-time PCR assays presented a high kappa agreement (0.85). According to multiplex PCR, 60 samples harbored dengue virus type 3 (DEN-3), 4 samples harbored DEN-2, and 1 sample displayed a pattern compatible with a double infection with DEN-2 and -3. The dengue virus real-time kit was found to be practical and adjustable for high throughput, to display the best performance in the early symptomatic phase of dengue cases, and to be valuable for confirming dengue diagnosis in a timely manner.

  9. Clinical application of a multiplex real-time PCR assay for simultaneous detection of Legionella species, Legionella pneumophila, and Legionella pneumophila serogroup 1.

    PubMed

    Benitez, Alvaro J; Winchell, Jonas M

    2013-01-01

    We developed a single-tube multiplex real-time PCR assay capable of simultaneously detecting and discriminating Legionella spp., Legionella pneumophila, and Legionella pneumophila serogroup 1 in primary specimens. Evaluation of 21 clinical specimens and 115 clinical isolates demonstrated this assay to be a rapid, high-throughput diagnostic test with 100% specificity that may aid during legionellosis outbreaks and epidemiologic investigations.

  10. Real-Time PCR Assay for Detection and Differentiation of Shiga Toxin-Producing Escherichia coli from Clinical Samples

    PubMed Central

    Klein, Eileen J.; Galanakis, Emmanouil; Thomas, Anita A.; Stapp, Jennifer R.; Rich, Shannon; Buccat, Anne Marie; Tarr, Phillip I.

    2015-01-01

    Timely accurate diagnosis of Shiga toxin-producing Escherichia coli (STEC) infections is important. We evaluated a laboratory-developed real-time PCR (LD-PCR) assay targeting stx1, stx2, and rfbEO157 with 2,386 qualifying stool samples submitted to the microbiology laboratory of a tertiary care pediatric center between July 2011 and December 2013. Broth cultures of PCR-positive samples were tested for Shiga toxins by enzyme immunoassay (EIA) (ImmunoCard STAT! enterohemorrhagic E. coli [EHEC]; Meridian Bioscience) and cultured in attempts to recover both O157 and non-O157 STEC. E. coli O157 and non-O157 STEC were detected in 35 and 18 cases, respectively. Hemolytic uremic syndrome (HUS) occurred in 12 patients (10 infected with STEC O157, one infected with STEC O125ac, and one with PCR evidence of STEC but no resulting isolate). Among the 59 PCR-positive STEC specimens from 53 patients, only 29 (54.7%) of the associated specimens were toxin positive by EIA. LD-PCR differentiated STEC O157 from non-O157 using rfbEO157, and LD-PCR results prompted successful recovery of E. coli O157 (n = 25) and non-O157 STEC (n = 8) isolates, although the primary cultures and toxin assays were frequently negative. A rapid “mega”-multiplex PCR (FilmArray gastrointestinal panel; BioFire Diagnostics) was used retrospectively, and results correlated with LD-PCR findings in 25 (89%) of the 28 sorbitol-MacConkey agar culture-negative STEC cases. These findings demonstrate that PCR is more sensitive than EIA and/or culture and distinguishes between O157 and non-O157 STEC in clinical samples and that E. coli O157:H7 remains the predominant cause of HUS in our institution. PCR is highly recommended for rapid diagnosis of pediatric STEC infections. PMID:25926491

  11. The workflow of single-cell expression profiling using quantitative real-time PCR

    PubMed Central

    Ståhlberg, Anders; Kubista, Mikael

    2014-01-01

    Biological material is heterogeneous and when exposed to stimuli the various cells present respond differently. Much of the complexity can be eliminated by disintegrating the sample, studying the cells one by one. Single-cell profiling reveals responses that go unnoticed when classical samples are studied. New cell types and cell subtypes may be found and relevant pathways and expression networks can be identified. The most powerful technique for single-cell expression profiling is currently quantitative reverse transcription real-time PCR (RT-qPCR). A robust RT-qPCR workflow for highly sensitive and specific measurements in high-throughput and a reasonable degree of multiplexing has been developed for targeting mRNAs, but also microRNAs, non-coding RNAs and most recently also proteins. We review the current state of the art of single-cell expression profiling and present also the improvements and developments expected in the next 5 years. PMID:24649819

  12. Development of a real-time quantitative PCR assay to enumerate Yersinia pestis in fleas.

    PubMed

    Gabitzsch, Elizabeth S; Vera-Tudela, Rommelle; Eisen, Rebecca J; Bearden, Scott W; Gage, Kenneth L; Zeidner, Nordin S

    2008-07-01

    A real-time quantitative polymerase chain reaction (qPCR) assay was developed for Yersina pestis. The qPCR assay was developed utilizing a conserved region of the Y. pestis ferric iron uptake regulator gene (fur) to design primers and a fluorescent (FAM-labeled) TaqMan probe. The assay was optimized using cultured Y. pestis (UG05-0454) and was confirmed to work with strains from 3 Y. pestis biovars. The optimized assay was capable of detecting a single organism of cultured Y. pestis and as little as 300 bacteria in infected flea triturates. This qPCR assay enables rapid enumeration of Y. pestis bacterium in laboratory-infected fleas when compared with conventional serial dilution plating.

  13. Comparative Evaluation of Real-Time PCR Methods for Human Noroviruses in Wastewater and Human Stool

    PubMed Central

    Konta, Yoshimitsu; Kazama, Shinobu; Inaba, Manami; Imagawa, Toshifumi; Tohma, Kentaro; Saito, Mayuko; Suzuki, Akira; Oshitani, Hitoshi; Omura, Tatsuo

    2016-01-01

    Selecting the best quantitative PCR assay is essential to detect human norovirus genome effectively from clinical and environmental samples because no cell lines have been developed to propagate this virus. The real-time PCR methods for noroviruses GI (4 assays) and GII (3 assays) were evaluated using wastewater (n = 70) and norovirus-positive stool (n = 77) samples collected in Japan between 2012 and 2013. Standard quantitative PCR assays recommended by the U.S. Environmental Protection Agency, International Organization for Standardization, and Ministry of Health, Labour and Welfare, Japan, together with recently reported assays were included. Significant differences in positive rates and quantification cycles were observed by non-parametric analysis. The present study identifies the best assay for norovirus GI and GII to amplify norovirus genomes efficiently. PMID:27525654

  14. Probe-based real-time PCR method for multilocus melt typing of Xylella fastidiosa strains.

    PubMed

    Brady, Jeff A; Faske, Jennifer B; Ator, Rebecca A; Castañeda-Gill, Jessica M; Mitchell, Forrest L

    2012-04-01

    Epidemiological studies of Pierce's disease (PD) can be confounded by a lack of taxonomic detail on the bacterial causative agent, Xylella fastidiosa (Xf). PD in grape is caused by strains of Xylella fastidiosa subsp. fastidiosa, but is not caused by other subspecies of Xf that typically colonize plants other than grape. Detection assays using ELISA and qPCR are effective at detecting and quantifying Xf presence or absence, but offer no information on Xf subspecies or strain identity. Surveying insects or host plants for Xf by current ELISA or qPCR methods provides only presence/absence and quantity information for any and all Xf subspecies, potentially leading to false assessments of disease threat. This study uses a series of adjacent-hybridizing DNA melt analysis probes that are capable of efficiently discriminating Xf subspecies and strain relationships in rapid real-time PCR reactions.

  15. Real-time PCR for detection of NDM-1 carbapenemase genes from spiked stool samples.

    PubMed

    Naas, Thierry; Ergani, Ayla; Carrër, Amélie; Nordmann, Patrice

    2011-09-01

    An in-house quantitative real-time PCR (qPCR) assay using TaqMan chemistry has been developed to detect NDM-1 carbapenemase genes from bacterial isolates and directly from stool samples. The qPCR amplification of bla(NDM-1) DNA was linear over 10 log dilutions (r(2) = 0.99), and the amplification efficiency was 1.03. The qPCR detection limit was reproducibly 1 CFU, or 10 plasmid molecules, and there was no cross-reaction with DNA extracted from several multidrug-resistant bacteria harboring other β-lactam resistance genes. Feces spiked with decreasing amounts of enterobacterial isolates producing NDM-1 were spread on ChromID ESBL and on CHROMagar KPC media and were subjected to the qPCR. The limits of carbapenem-resistant bacterial detection from stools was reproducibly 1 × 10(1) to 3 × 10(1) CFU/100 mg feces with ChromID ESBL medium. The CHROMagar KPC culture medium had higher limits of detection (1 × 10(1) to 4 × 10(3) CFU/ml), especially with bacterial isolates having low carbapenem MICs. The limits of detection with the qPCR assay were reproducibly below 1 × 10(1) CFU/100 mg of feces by qPCR assay. Samples spiked with NDM-1-negative bacteria were negative by qPCR. The sensitivity and specificity of the bla(NDM-1) qPCR assay on spiked samples were 100% in both cases. Using an automated DNA extraction system (QIAcube system), the qPCR assay was reproducible. The use of qPCR is likely to shorten the time for bla(NDM-1) detection from 48 h to 4 h and will be a valuable tool for outbreak follow-up in order to rapidly isolate colonized patients and assign them to cohorts.

  16. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species.

    PubMed

    Kikkawa, Hitomi S; Tsuge, Kouichiro; Sugita, Ritsuko

    2016-03-01

    Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.

  17. Pregnancy rates of beef cattle are not affected by Campylobacter fetus subsp. venerealis real-time PCR-positive breeding sires in New Zealand.

    PubMed

    Sanhueza, J M; Heuer, C; Jackson, R; Hughes, P; Anderson, P; Kelly, K; Walker, G

    2014-09-01

    clinically insignificant levels of endemicity among, beef breeding herds in New Zealand. The real-time PCR assay that was assessed in this study should not be used for the detection of C. fetus venerealis in bulls or for investigations of low conception rates in cattle in New Zealand. During the course of this survey, sequencing analysis of an apparent C. fetus venerealis isolate from the intestines of a Friesian bull turned out to be Campylobacter hyointestinalis. As a consequence, this real-time PCR assay for C. fetus venerealis is no longer being offered by diagnostic laboratories in New Zealand.

  18. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay

    PubMed Central

    2012-01-01

    Background Bacterial load quantification is a critical component of bacterial community analysis, but a culture-independent method capable of detecting and quantifying diverse bacteria is needed. Based on our analysis of a diverse collection of 16 S rRNA gene sequences, we designed a broad-coverage quantitative real-time PCR (qPCR) assay—BactQuant—for quantifying 16 S rRNA gene copy number and estimating bacterial load. We further utilized in silico evaluation to complement laboratory-based qPCR characterization to validate BactQuant. Methods The aligned core set of 4,938 16 S rRNA gene sequences in the Greengenes database were analyzed for assay design. Cloned plasmid standards were generated and quantified using a qPCR-based approach. Coverage analysis was performed computationally using >670,000 sequences and further evaluated following the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Results A bacterial TaqMan® qPCR assay targeting a 466 bp region in V3-V4 was designed. Coverage analysis showed that 91% of the phyla, 96% of the genera, and >80% of the 89,537 species analyzed contained at least one perfect sequence match to the BactQuant assay. Of the 106 bacterial species evaluated, amplification efficiencies ranged from 81 to 120%, with r2-value of >0.99, including species with sequence mismatches. Inter- and intra-run coefficient of variance was <3% and <16% for Ct and copy number, respectively. Conclusions The BactQuant assay offers significantly broader coverage than a previously reported universal bacterial quantification assay BactQuant in vitro performance was better than the in silico predictions. PMID:22510143

  19. Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses.

    PubMed

    Cecilia, D; Kakade, M; Alagarasu, K; Patil, J; Salunke, A; Parashar, D; Shah, P S

    2015-01-01

    Dengue and chikungunya viruses co-circulate and cause infections that start with similar symptoms but progress to radically different outcomes. Therefore, an early diagnostic test that can differentiate between the two is needed. A single-step multiplex real-time RT-PCR assay was developed that can simultaneously detect and quantitate RNA of all dengue virus (DENV) serotypes and chikungunya virus (CHIKV). The sensitivity was 100 % for DENV and 95.8 % for CHIKV, whilst the specificity was 100 % for both viruses when compared with conventional RT-PCR. The detection limit ranged from 1 to 50 plaque-forming units. The assay was successfully used for differential diagnosis of dengue and chikungunya in Pune, where the viruses co-circulate.

  20. Rapid Detection of Rifampicin- and Isoniazid-Resistant Mycobacterium tuberculosis Using Real-Time PCR

    PubMed Central

    Sahebi, Leyla; Ansarin, Khalil; Monfaredan, Amir; Farajnia, Safar; Nili, Seiran; Khalili, Majid

    2016-01-01

    Background Accurate and rapid detection of drug-resistant Mycobacterium tuberculosis is fundamental for the successful treatment of tuberculosis (TB). Objectives The aim of this study was to determine the frequency of common mutations leading to isoniazid (INH) and rifampicin (RMP) resistance. Patients and Methods In a cross-sectional study carried out in 2014, 90 patients with M. tuberculosis from five border provinces of Iran were selected. After a full clinical history and physical evaluation, real-time polymerase chain reaction (PCR) technique was performed for the detection of mutations in the patients’ katG and rpoB genes. The results were compared with results of a standard proportion method as well as a multiplex allele-specific PCR (MAS-PCR). Results A total of 23 mutations were found in isolates among which, codon katG 315, rpoB P1 (511 - 519 sequence) and rpoB P2 (524-533 sequence) were responsible for seven, nine and seven cases, respectively. The mean (standard deviation (SD)) of melting temperature (Tm) in katG 315 codon, rpoB P1 and P2 sequences in susceptible and mutant isolates was as follows: katG 85.4°C (0.18) and 87.54°C (0.62); rpoΒ P1 84.6°C (0.61) and 82.9°C (0.38); rpoΒ P2 83.4°C (0.18) and 85.3°C (0.19), respectively. In comparison to the standard proportion test, the sensitivity of real-time PCR in detecting INH- and RMP-resistant mutations was 75% and 83.3%, respectively. In comparison to the MAS-PCR test, 100% of katG 315 mutations and 80% of rpoB mutations were determined. Overall, 10% of the patients were diagnosed with a recurrence of TB. Age and previous history of TB treatment increased mutation odds in rpoB sequences (P = 0.046, P = 0.036, respectively). Conclusions Detection of drug resistance associated with mutations through real-time PCR by melting analysis technique showed a high differentiating power. This technique had high concordance with the standard proportion test and MAS-PCR results. PMID:27942356

  1. Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection

    PubMed Central

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat. PMID:24098735

  2. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection.

    PubMed

    Huang, Huali; Cheng, Fang; Wang, Ruoan; Zhang, Dabing; Yang, Litao

    2013-01-01

    Proper selection of endogenous reference genes and their real-time PCR assays is quite important in genetically modified organisms (GMOs) detection. To find a suitable endogenous reference gene and its real-time PCR assay for common wheat (Triticum aestivum L.) DNA content or copy number quantification, four previously reported wheat endogenous reference genes and their real-time PCR assays were comprehensively evaluated for the target gene sequence variation and their real-time PCR performance among 37 common wheat lines. Three SNPs were observed in the PKABA1 and ALMT1 genes, and these SNPs significantly decreased the efficiency of real-time PCR amplification. GeNorm analysis of the real-time PCR performance of each gene among common wheat lines showed that the Waxy-D1 assay had the lowest M values with the best stability among all tested lines. All results indicated that the Waxy-D1 gene and its real-time PCR assay were most suitable to be used as an endogenous reference gene for common wheat DNA content quantification. The validated Waxy-D1 gene assay will be useful in establishing accurate and creditable qualitative and quantitative PCR analysis of GM wheat.

  3. Universal Probe Library based real-time PCR for rapid detection of bacterial pathogens from positive blood culture bottles.

    PubMed

    Zhu, Lingxiang; Shen, Ding-Xia; Zhou, Qiming; Liu, Chao-Jun; Li, Zexia; Fang, Xiangdong; Li, Quan-Zhen

    2014-03-01

    A set of real-time PCR based assays using the locked nucleic acid probes from Roche Universal ProbeLibrary were developed for rapid detection of eight bacterial species from positive blood culture bottles. Four duplex real-time PCR reactions targeting to one Gram-positive bacterium and one Gram-negative bacterium were optimized for species identification according to Gram stain results. We also included mecA-specific primers and probes in the assays to indicate the presence of methicillin resistance in the bacterial species. The analytical sensitivity was in the range of 1-10 CFU per PCR reaction mixture. The specificity and cross reactivity of the assay was validated by 28 ATCC reference strains and 77 negative blood culture specimens. No cross-reactivity was observed in these samples thus demonstrating 100 % specificity. 72 previously characterized clinical isolates were tested by the real-time PCR assay and validated the accuracy and feasibility of the real-time PCR assay. Furthermore, 55 positive blood culture samples were tested using real-time PCR and 50 (90.9 %) of them were identified as the same species as judged by biochemical analysis. In total, real-time PCR showed 98.2 % consistent to that of traditional methods. Real-time PCR can be used as a supplement for early detection of the frequently-occurred pathogens from the positive blood cultures.

  4. Comparison of droplet digital PCR and quantitative real-time PCR in mcrA-based methanogen community analysis.

    PubMed

    Kim, Tae Gwan; Jeong, So-Yeon; Cho, Kyung-Suk

    2014-12-01

    Two different quantitative PCR platforms, droplet digital PCR (dd-PCR) and quantitative real-time PCR (qPCR), were compared in a mcrA-based methanogen community assay that quantifies ten methanogen sub-groups. Both technologies exhibited similar PCR efficiencies over at least four orders of magnitude and the same lower limits of detection (8 copies μL-DNA extract(-1)). The mcrA-based methanogen communities in three full-scale anaerobic digesters were examined using the two technologies. dd-PCR detected seven groups from the digesters, while qPCR did five groups, indicating that dd-PCR is more sensitive for DNA quantification. Linear regression showed quantitative agreements between both of the technologies (R(2) = 0.59-0.98) in the five groups that were concurrently detected. Principal component analysis from the two datasets consistently indicated a substantial difference in the community composition among the digesters and revealed similar levels of differentiation among the communities. The combined results suggest that dd-PCR is more promising for examining methanogenic archaeal communities in biotechnological processes.

  5. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.

    PubMed

    Fontaine, Melanie; Guillot, Emmanuelle

    2003-07-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.

  6. Molecular detection and identification of Aspergillus spp. from clinical samples using real-time PCR.

    PubMed

    Ramírez, Mercedes; Castro, Carmen; Palomares, José Carlos; Torres, M José; Aller, Ana Isabel; Ruiz, Maite; Aznar, Javier; Martín-Mazuelos, Estrella

    2009-03-01

    The definite and rapid diagnosis of invasive aspergillosis is necessary because of the high mortality caused. The objective of this study was to evaluate a real-time PCR assay to detect Aspergillus spp. in clinical samples, based on the Light Cycler technology. Specificity was assessed by using DNA extracted from pathogenic and non-pathogenic bacteria/fungi from Spanish Collection including: two Aspergillus flavus, four Aspergillus fumigatus, two Aspergillus nidulans, two Aspergillus niger and two Aspergillus terreus isolates. The analytical sensitivity was evaluated with different inocula (10(1)-10(5) conidia ml(-1)), and serially diluted DNA of A. fumigatus. To assess clinical applicability, samples from patients at risk were analysed. Species identification was determined by analysing the melting curves. Reactions using genomic DNA from other species of different genera than Aspergillus were negative (specificity: 100%). Analytical sensitivity was 60 fg using DNA and 5-20 conidia using conidial suspensions. The linear range was from 60 to 6 x 10(7) fg. The Tm ranged from 67.34 to 70.7 degrees C for the different Aspergillus spp. studied. Nine hundred and forty-eight consecutive blood samples from 127 patients were processed. In total, 10 (1%) of 948 samples from blood samples were PCR-positive. The real-time PCR assay provides a high sensitivity and specificity for detection of fungal DNA and rapidly identifies most of clinically relevant Aspergillus species.

  7. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay.

    PubMed

    Cherkaoui, Abdessalam; Ceroni, Dimitri; Emonet, Stéphane; Lefevre, Yan; Schrenzel, Jacques

    2009-01-01

    Kingella kingae is an emerging pathogen that is recognized as a causative agent of septic arthritis and osteomyelitis, primarily in infants and children. The bacterium is best detected by rapid inoculation in blood culture systems or by real-time PCR assays. Pathogenesis of the agent was linked recently to the production of a potent cytotoxin, known as RTX, which is toxic to a variety of human cell types. The locus encoding the RTX toxin is thought to be a putative virulence factor, and is, apparently, essential for inducing cytotoxic effects on respiratory epithelial, synovial and macrophage-like cells. Herein, we describe a novel real-time PCR assay that targets the RTX toxin gene and illustrate its use in two clinical cases. The assay exhibited a sensitivity of 30 c.f.u., which is 10-fold more sensitive than a previously published semi-nested broad-range 16S rRNA gene PCR, and showed no cross-reactivity with several related species and common osteoarticular pathogens.

  8. Simultaneous detection, typing and quantitation of oncogenic human papillomavirus by multiplex consensus real-time PCR.

    PubMed

    Jenkins, Andrew; Allum, Anne-Gry; Strand, Linda; Aakre, Randi Kersten

    2013-02-01

    A consensus multiplex real-time PCR test (PT13-RT) for the oncogenic human papillomavirus (HPV) types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 is described. The test targets the L1 gene. Analytical sensitivity is between 4 and 400 GU (genomic units) in the presence of 500 ng of human DNA, corresponding to 75,000 human cells. HPV types are grouped into multiplex groups of 3 or 4 resulting in the use of 4 wells per sample and permitting up to 24 samples per run (including controls) in a standard 96-well real-time PCR instrument. False negative results are avoided by (a) measuring sample DNA concentration to control that sufficient cellular material is present and (b) including HPV type 6 as a homologous internal control in order to detect PCR inhibition or competition from other (non-oncogenic) HPV types. Analysis time from refrigerator to report is 8 h, including 2.5 h hands-on time. Relative to the HC2 test, the sensitivity and specificity were respectively 98% and 83%, the lower specificity being attributable to the higher analytical sensitivity of PT13-RT. To assess type determination comparison was made with a reversed line-blot test. Type concordance was high (κ=0.79) with discrepancies occurring mostly in multiple-positive samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Development of cycling probe-based real-time PCR system to detect Fusarium species and Fusarium solani species complex (FSSC).

    PubMed

    Muraosa, Yasunori; Schreiber, Angelica Zaninelli; Trabasso, Plínio; Matsuzawa, Tetsuhiro; Taguchi, Hideaki; Moretti, Maria Luiza; Mikami, Yuzuru; Kamei, Katsuhiko

    2014-05-01

    In the present study, we developed a new real-time PCR system based on the cycling probe technology (CPT), which is composed of two single tube real-time PCR assays: the Fusarium genus-specific assay and the Fusarium solani species complex (FSSC)-specific assay with primers targeting the 28s ribosomal RNA gene. The Fusarium genus-specific assay was shown to be highly specific, detecting all reference Fusarium strains with no cross-reaction with other reference fungal strains, such as Aspergillus spp. and human DNA. The FSSC-specific assay also reacted very specifically with FSSC, except for a cross-reaction with Fusarium lunatum. To validate the real-time PCR system, we tested 87 clinical isolates of Fusarium spp. Identification results from the real-time PCR system were found to be 100% concordant with those from DNA sequencing of EF-1α gene. The sensitivity testing also demonstrated high sensitivity, enabling detection of one copy of standard DNA with good reproducibility. Furthermore, both assays were shown to be extremely sensitive even when fungal cells were mixed with human cells, detecting 3 germinated conidia spiked in 3mL of human blood. To apply our new real-time PCR system to the molecular diagnosis of fusariosis, we evaluated its efficacy using a mouse model of invasive F. solani infection. Plasma and whole blood samples of infected mice were tested using the real-time PCR system. The sensitivity of the real-time PCR system was found to be 100% (n=4) in plasma samples. In contrast, no amplification signal was detected in whole blood samples. This system could provide a rapid and precise diagnostic tool for early diagnosis, which is necessary for appropriate treatment and improvement of prognosis of disseminated fusariosis.

  10. Development and Application of Real-Time PCR Assays for Quantification of Genes Encoding Tetracycline Resistance

    PubMed Central

    Yu, Zhongtang; Michel, Frederick C.; Hansen, Glenn; Wittum, Thomas; Morrison, Mark

    2005-01-01

    We report here the development, validation, and use of three real-time PCR assays to quantify the abundance of the following three groups of tetracycline resistance genes: tet(A) and tet(C); tet(G); and tet genes encoding ribosomal protection proteins, including tet(M), tet(O), tetB(P), tet(Q), tet(S), tet(T), and tet(W). The assays were validated using known numbers of sample-derived tet gene templates added to microbiome DNA. These assays are both precise and accurate over at least 6 log tet gene copies. New tet gene variants were also identified from cloned tet amplicons as part of this study. The utility of these real-time PCR assays was demonstrated by quantifying the three tet gene groups present in bovine and swine manures, composts of swine manure, lagoons of hog house effluent, and samples from an Ekokan upflow biofilter system treating hog house effluent. The bovine manures were found to contain fewer copies of all three groups of tet genes than the swine manures. The composts of swine manures had substantially reduced tet gene abundance (up to 6 log), while lagoon storage or the upflow biofilter had little effect on tet gene abundance. These results suggest that the method of manure storage and treatment may have a substantial impact on the persistence and dissemination of tet genes in agricultural environments. These real-time PCR assays provide rapid, quantitative, cultivation-independent measurements of 10 major classes of tet genes, which should be useful for ecological studies of antibiotic resistance. PMID:16269727

  11. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection.

    PubMed

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic "gold standard", the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments.

  12. Use of Occult Blood Detection Cards for Real-Time PCR-Based Diagnosis of Schistosoma Mansoni Infection

    PubMed Central

    Schunk, Mirjam; Kebede Mekonnen, Seleshi; Wondafrash, Beyene; Mengele, Carolin; Fleischmann, Erna; Herbinger, Karl-Heinz; Verweij, Jaco J.; Geldmacher, Christof; Bretzel, Gisela; Löscher, Thomas; Zeynudin, Ahmed

    2015-01-01

    Background In Schistosoma mansoni infection, diagnosis and control after treatment mainly rely on parasitological stool investigations which are laborious and have limited sensitivity. PCR methods have shown equal or superior sensitivity but preservation and storage methods limit their use in the field. Therefore, the use of occult blood detection cards (fecal cards) for easy sampling and storage of fecal samples for further PCR testing was evaluated in a pilot study. Methodology Stool specimens were collected in a highly endemic area for S. mansoni in Ethiopia and submitted in an investigator-blinded fashion to microscopic examination by Kato-Katz thick smear as well as to real-time PCR using either fresh frozen stool samples or stool smears on fecal cards which have been stored at ambient temperature for up to ten months. Principal Findings Out of 55 stool samples, 35 were positive by microscopy, 33 and 32 were positive by PCR of frozen samples and of fecal card samples, respectively. When microscopy was used as diagnostic “gold standard”, the sensitivity of PCR on fresh stool was 94.3% (95%-CI: 86.6; 100) and on fecal cards 91.4% (95%-CI: 82.2; 100). Conclusions The use of fecal cards proved to be a simple and useful method for stool collection and prolonged storage prior to PCR based diagnosis of S. mansoni infection. This technique may be a valuable approach for large scale surveillance and post treatment assessments PMID:26360049

  13. Real-time magnetic resonance imaging guidance improves the diagnostic yield of endomyocardial biopsy

    PubMed Central

    Rogers, Toby; Ratnayaka, Kanishka; Karmarkar, Parag; Campbell-Washburn, Adrienne E.; Schenke, William H.; Mazal, Jonathan R.; Kocaturk, Ozgur; Faranesh, Anthony Z.; Lederman, Robert J.

    2016-01-01

    Background Diagnostic yield of endomyocardial biopsy is low, particularly in disease that affects the myocardium in a non-uniform distribution. We hypothesized that real-time MRI guidance could improve the yield through targeted biopsy of focal myocardial pathology. Methods An animal model of focal myocardial pathology was created by infusing 3mL of fluorescent microspheres (NuFlow Hydrocoat, 15μm diameter, 5 million spheres/mL) followed by 2mL of 100% ethanol to a branch coronary artery. Animals were survived for minimum 14days, before undergoing MRI guided endomyocardial biopsy using a custom 6.5Fr active visualization MRI-conditional bioptome and X-ray guided biopsy using a commercial bioptome. Specimens were analyzed using a dissecting microscope under ultraviolet light to determine the proportion of ‘on-target’ specimens containing fluorescent microspheres. Results A total of 77 specimens were obtained using r