DOT National Transportation Integrated Search
1982-04-01
A comprehensive review of existing basic diagnostic techniques applicable to the railcar roller bearing defect and failure problem was made. Of the potentially feasible diagnostic techniques identified, high frequency vibration was selected for exper...
Laser program annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, L.W.; Krupke, W.F.; Strack, J.R.
1981-06-01
Volume 2 contains five sections that cover the areas of target design, target fabrication, diagnostics, and fusion experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the Target Fabrication Group, Section 5 contains the results of our diagnostics development, and Section 6 describes advances made in the management and analysis of experimental data. Finally, Section 7 in Volume 2 reports the results of laser target experiments conducted during the year.
RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 2. APPENDICES
The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...
RADON DIAGNOSTIC MEASUREMENT GUIDANCE FOR LARGE BUILDINGS - VOLUME 1. TECHNICAL REPORT
The report discusses the development of radon diagnostic procedures and mitigation strategies applicable to a variety of large non-residential buildings commonly found in Florida. The investigations document and evaluate the nature of radon occurrence and entry mechanisms for rad...
Laser program annual report, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, L.W.; Strack, J.R.
1980-03-01
This volume contains four sections that covers the areas of target design, target fabrication, diagnostics, and experiments. Section 3 reports on target design activities, plasma theory and simulation, code development, and atomic theory. Section 4 presents the accomplishments of the target fabrication group, and Section 5 presents results of diagnostic developments and applications for the year. The results of laser-target experiments are presented. (MOW)
Market assessment of tuberculosis diagnostics in Brazil in 2012.
2014-01-01
Improved diagnostics for the diagnosis of tuberculosis (TB) are urgently needed. However, test developers and investors require market size data to support new product development. This study assessed the served available market for TB diagnostics in Brazil in 2012 and the market segmentation in the public and private sectors. Data were collected on test volumes done in the public and private sectors for the diagnosis of latent and active TB, drug susceptibility testing and treatment follow-up. Tests included were tuberculin skin tests, interferon-gamma releases assays, smear microscopy, solid and liquid cultures, nucleic acid amplification tests and phenotypic drug susceptibility tests. The data were collected by means of an electronic survey via the Brazilian State laboratories and from sales information provided by manufacturers. Test costs for the public sector were calculated using a components approach, while costs for the private sector were based on prices paid by patients. The overall market value (expenditure) for the entire country was calculated using the public sector test costs. During 2012, an estimated total of 2.4 million TB diagnostic tests were done in Brazil, resulting in an estimated overall market value of USD 17.2 million. The public sector accounted for 91% of the test volumes and 88% of the market value. Smear microscopy was the most commonly test (n = 1.3 million; 55% of total) at an estimated value of USD 3.7 million. Culture overall (n = 302,761) represented 13% of test volumes and 40% (USD 6.9 million) of the market value. On average, USD 208 was spent on TB diagnostics for every notified TB patient in Brazil, in 2012. The TB diagnostics market value in Brazil in 2012 was over USD 17 million. These study results will help test developers to understand the current and potential market for replacement or add-on diagnostic technologies.
Market Assessment of Tuberculosis Diagnostics in Brazil in 2012
2014-01-01
Background Improved diagnostics for the diagnosis of tuberculosis (TB) are urgently needed. However, test developers and investors require market size data to support new product development. This study assessed the served available market for TB diagnostics in Brazil in 2012 and the market segmentation in the public and private sectors. Methods Data were collected on test volumes done in the public and private sectors for the diagnosis of latent and active TB, drug susceptibility testing and treatment follow-up. Tests included were tuberculin skin tests, interferon-gamma releases assays, smear microscopy, solid and liquid cultures, nucleic acid amplification tests and phenotypic drug susceptibility tests. The data were collected by means of an electronic survey via the Brazilian State laboratories and from sales information provided by manufacturers. Test costs for the public sector were calculated using a components approach, while costs for the private sector were based on prices paid by patients. The overall market value (expenditure) for the entire country was calculated using the public sector test costs. Results During 2012, an estimated total of 2.4 million TB diagnostic tests were done in Brazil, resulting in an estimated overall market value of USD 17.2 million. The public sector accounted for 91% of the test volumes and 88% of the market value. Smear microscopy was the most commonly test (n = 1.3 million; 55% of total) at an estimated value of USD 3.7 million. Culture overall (n = 302,761) represented 13% of test volumes and 40% (USD 6.9 million) of the market value. On average, USD 208 was spent on TB diagnostics for every notified TB patient in Brazil, in 2012. Conclusion The TB diagnostics market value in Brazil in 2012 was over USD 17 million. These study results will help test developers to understand the current and potential market for replacement or add-on diagnostic technologies. PMID:25099237
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
[Is evidence-based assessment fact or fiction? A bibliometric analysis of three German journals].
Petermann, Franz; Schüssler, Gerhard; Glaesmer, Heide
2008-01-01
Despite the ongoing process for the development and dissemination of empirically supported treatments, little attention has been paid to the development of evidence-based diagnostics. The article aims at evaluating diagnostic procedures and instruments in current clinical research in terms of evidence-based assessment. Volumes 2006 and 2007 of three German psychological journals "Psychotherapeut," "Psychotherapie, Psychosomatik und Medizinische Psychologie," and "Zeitschrift für Psychiatrie, Psychologie und Psychotherapie" were screened for empirical reports and articles dealing with diagnostic issues. 93 articles were identified and evaluated. Most studies used psychometrically valid and established instruments for assessment. However, diagnostic interviews were relatively scarce, as were multimodal assessments. Measures used for outcome evaluation often lacked evidence of sensitivity to change. Clinical assessment to date does not meet criteria for evidence-based diagnostics. Implications for research and guideline development are discussed.
Khoueir, Ziad; Jassim, Firas; Poon, Linda Yi-Chieh; Tsikata, Edem; Ben-David, Geulah S; Liu, Yingna; Shieh, Eric; Lee, Ramon; Guo, Rong; Papadogeorgou, Georgia; Braaf, Boy; Simavli, Huseyin; Que, Christian; Vakoc, Benjamin J; Bouma, Brett E; de Boer, Johannes F; Chen, Teresa C
2017-10-01
To determine the diagnostic capability of peripapillary 3-dimensional (3D) retinal nerve fiber layer (RNFL) volume measurements from spectral-domain optical coherence tomography (OCT) volume scans for open-angle glaucoma (OAG). Assessment of diagnostic accuracy. Setting: Academic clinical setting. Total of 180 patients (113 OAG and 67 normal subjects). One eye per subject was included. Peripapillary 3D RNFL volumes were calculated for global, quadrant, and sector regions, using 4 different-size annuli. Peripapillary 2D RNFL thickness circle scans were also obtained. Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, positive and negative likelihood ratios. Among all 2D and 3D RNFL parameters, best diagnostic capability was associated with inferior quadrant 3D RNFL volume of the smallest annulus (AUROC value 0.977). Otherwise, global 3D RNFL volume AUROC values were comparable to global 2D RNFL thickness AUROC values for all 4 annulus sizes (P values: .0593 to .6866). When comparing the 4 annulus sizes for global RNFL volume, the smallest annulus had the best AUROC values (P values: .0317 to .0380). The smallest-size annulus may have the best diagnostic potential, partly owing to having no areas excluded for being larger than the 6 × 6 mm 2 scanned region. Peripapillary 3D RNFL volume showed excellent diagnostic performance for detecting glaucoma. Peripapillary 3D RNFL volume parameters have the same or better diagnostic capability compared to peripapillary 2D RNFL thickness measurements, although differences were not statistically significant. Copyright © 2017 Elsevier Inc. All rights reserved.
Advanced Techniques in Pulmonary Function Test Analysis Interpretation and Diagnosis
Gildea, T.J.; Bell, C. William
1980-01-01
The Pulmonary Functions Analysis and Diagnostic System is an advanced clinical processing system developed for use at the Pulmonary Division, Department of Medicine at the University of Nebraska Medical Center. The system generates comparative results and diagnostic impressions for a variety of routine and specialized pulmonary functions test data. Routine evaluation deals with static lung volumes, breathing mechanics, diffusing capacity, and blood gases while specialized tests include lung compliance studies, small airways dysfunction studies and dead space to tidal volume ratios. Output includes tabular results of normal vs. observed values, clinical impressions and commentary and, where indicated, a diagnostic impression. A number of pulmonary physiological and state variables are entered or sampled (A to D) with periodic status reports generated for the test supervisor. Among the various physiological variables sampled are respiratory frequency, minute ventilation, oxygen consumption, carbon dioxide production, and arterial oxygen saturation.
Vlahiotis, Anna; Griffin, Brian; Stavros, A Thomas; Margolis, Jay
2018-01-01
Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam. To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures. Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy) other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event), with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes. The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients), 6,987,399 breast ultrasounds (42.4% of patients), and 1,585,856 biopsies (10.3% of patients). Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD) costs for diagnostic mammograms of US$349 ($493), ultrasounds US$132 ($134), and biopsies US$1,938 ($2,343) contributed US$3.05 billion, US$0.92 billion, and US$3.07 billion, respectively, to annual diagnostic breast expenditures estimated at US$7.91 billion. The volume and expense of additional breast diagnostic testing, estimated at US$7.91 billion annually, underscores the need for technological improvements in the breast diagnostic landscape.
Ramskov, Daniel; Nielsen, Rasmus Oestergaard; Sørensen, Henrik; Parner, Erik; Lind, Martin; Rasmussen, Sten
2016-04-23
Injury incidence and prevalence in running populations have been investigated and documented in several studies. However, knowledge about injury etiology and prevention is needed. Training errors in running are modifiable risk factors and people engaged in recreational running need evidence-based running schedules to minimize the risk of injury. The existing literature on running volume and running intensity and the development of injuries show conflicting results. This may be related to previously applied study designs, methods used to quantify the performed running and the statistical analysis of the collected data. The aim of the Run Clever trial is to investigate if a focus on running intensity compared with a focus on running volume in a running schedule influences the overall injury risk differently. The Run Clever trial is a randomized trial with a 24-week follow-up. Healthy recreational runners between 18 and 65 years and with an average of 1-3 running sessions per week the past 6 months are included. Participants are randomized into two intervention groups: Running schedule-I and Schedule-V. Schedule-I emphasizes a progression in running intensity by increasing the weekly volume of running at a hard pace, while Schedule-V emphasizes a progression in running volume, by increasing the weekly overall volume. Data on the running performed is collected by GPS. Participants who sustain running-related injuries are diagnosed by a diagnostic team of physiotherapists using standardized diagnostic criteria. The members of the diagnostic team are blinded. The study design, procedures and informed consent were approved by the Ethics Committee Northern Denmark Region (N-20140069). The Run Clever trial will provide insight into possible differences in injury risk between running schedules emphasizing either running intensity or running volume. The risk of sustaining volume- and intensity-related injuries will be compared in the two intervention groups using a competing risks approach. The trial will hopefully result in a better understanding of the relationship between the running performed and possible differences in running-related injury risk and the injuries developed. Clinical Trials NCT02349373 - January 23, 2015.
NASA Astrophysics Data System (ADS)
Bozhenkov, S. A.; Beurskens, M.; Dal Molin, A.; Fuchert, G.; Pasch, E.; Stoneking, M. R.; Hirsch, M.; Höfel, U.; Knauer, J.; Svensson, J.; Trimino Mora, H.; Wolf, R. C.
2017-10-01
The optimized stellarator Wendelstein 7-X started operation in December 2015 with a 10 week limiter campaign. Divertor experiments will begin in the second half of 2017. The W7-X Thomson scattering system is an essential diagnostic for electron density and temperature profiles. In this paper the Thomson scattering diagnostic is described in detail, including its design, calibration, data evaluation and first experimental results. Plans for further development are also presented. The W7-X Thomson system is a Nd:YAG setup with up to five lasers, two sets of light collection lenses viewing the entire plasma cross-section, fiber bundles and filter based polychromators. To reduce hardware costs, two or three scattering volumes are measured with a single polychromator. The relative spectral calibration is carried out with the aid of a broadband supercontinuum light source. The absolute calibration is performed by observing Raman scattering in nitrogen. The electron temperatures and densities are recovered by Bayesian modelling. In the first campaign, the diagnostic was equipped for 10 scattering volumes. It provided temperature profiles comparable to those measured using an electron cyclotron emission diagnostic and line integrated densities within 10% of those from a dispersion interferometer.
Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration
2011-01-01
Background: New transbronchial needle aspiration (TBNA) technologies have been developed, but their clinical effectiveness and determinants of diagnostic yield have not been quantified. Prospective data are needed to determine risk-adjusted diagnostic yield. Methods: We prospectively enrolled patients undergoing TBNA of mediastinal lymph nodes in the American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education (AQuIRE) multicenter database and recorded clinical, procedural, and provider information. All clinical decisions, including type of TBNA used (conventional vs endobronchial ultrasound-guided), were made by the attending bronchoscopist. The primary outcome was obtaining a specific diagnosis. Results: We enrolled 891 patients at six hospitals. Most procedures (95%) were performed with ultrasound guidance. A specific diagnosis was made in 447 cases. Unadjusted diagnostic yields were 37% to 54% for different hospitals, with significant between-hospital heterogeneity (P = .0001). Diagnostic yield was associated with annual hospital TBNA volume (OR, 1.003; 95% CI, 1.000-1.006; P = .037), smoking (OR, 1.55; 95% CI, 1.02-2.34; P = .042), biopsy of more than two sites (OR, 0.57; 95% CI, 0.38-0.85; P = .015), lymph node size (reference > 1-2 cm, ≤ 1 cm: OR, 0.51; 95% CI, 0.34-0.77; P = .003; > 2-3 cm: OR, 2.49; 95% CI, 1.61-3.85; P < .001; and > 3 cm: OR, 3.61; 95% CI, 2.17-6.00; P < .001), and positive PET scan (OR, 3.12; 95% CI, 1.39-7.01; P = .018). Biopsy was performed on more and smaller nodes at high-volume hospitals (P < .0001). Conclusions: To our knowledge, this is the first bronchoscopy study of risk-adjusted diagnostic yields on a hospital-level basis. High-volume hospitals were associated with high diagnostic yields. This study also demonstrates the value of procedural registries as a quality improvement tool. A larger number and variety of participating hospitals is needed to verify these results and to further investigate other determinants of diagnostic yield. PMID:21659432
A microfabricated bio-sensor for erythrocytes deformability and volume distributions analysis
NASA Astrophysics Data System (ADS)
Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri
2007-12-01
The deformability of erythrocytes is of great importance for oxygen delivery in the microcirculation. Reduced RBC deformability is associated with several types of hemolytic anaemias, malaria, sepsis and diabetes. Aging of erythrocytes is also associated with loss of deformability as well as reduction in cell volume. An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. The system produces valuable data such as velocity profiles of RBCs, spatial distribution within the microchannel, cell volume and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured for the first time. Such DI curves were obtained for normal and Thalassemia RBCs and their diagnostic potential was demonstrated. The spatial distribution and velocity of RBCs and rigid microspheres were measured. Both RBC and rigid spheres showed enhanced inward lateral migration, however the RBCs form a depletion region at the center of flow. The volume and surface area of the flowing cells have been estimated based on a fluid mechanics model and experimental results and fell within the normal range. Hence, the system developed, provides means for examining the behavior of individual RBCs in microchannels, and may serve as a microfabricated diagnostic device for deformability and volume measurements.
School Before Six: A Diagnostic Approach. Volume II (Revised Edition).
ERIC Educational Resources Information Center
Hodgden, Laurel; And Others
This collection of learning activities, appropriate for preschool and kindergarten children, is the second volume of a 2-volume manual which describes a diagnostic method of teaching young children. The activities are organized according to program areas. A description of each activity includes information on its uses, materials needed, and final…
Maroney, Justin; Khan, Saba; Powell, Wayne; Klein, Lloyd W
2013-01-01
We seek to assess the per-operator volume of diagnostic catheterizations and percutaneous coronary interventions (PCI) among US cardiologists, and its implication for future manpower needs in the catheterization laboratory. The number of annual Medicare PCIs peaked in 2004 and has trended downward since, however the total number of catheterization laboratories nationwide has increased. It is unknown whether these trends have resulted in a dilution of per-operator volumes, and whether the current supply of interventional cardiologists is appropriate to meet future needs. We analyzed the Centers for Medicare and Medicaid Services 2008 Medicare 5% sample file, and extracted the total number of Medicare fee-for-service (Medicare FFS) diagnostic catheterizations and PCIs performed in 2008. We then determined per-physician procedure volumes using National Provider Identifier numbers. There were 1,198,610 Medicare FFS diagnostic catheterizations performed by 11,029 diagnostic cardiologists, and there were 378,372 Medicare FFS PCIs performed by 6,443 interventional cardiologists in 2008. The data reveal a marked difference in the 2008 distribution of diagnostic catheterizations and PCIs among operators. Just over 10% of diagnostic catheterizations were performed by operators performing 40 or fewer Medicare FFS diagnostic catheterizations, contrasted with almost 30% of PCIs performed by operators with 40 of fewer Medicare FFS PCIs. A significant majority of interventional cardiologists (61%) performed 40 or fewer Medicare FFS PCIs in 2008. There is a high percentage of low-volume operators performing PCI, raising questions regarding annual volume recommendations for procedural skill maintenance, and the future manpower requirements in the catheterization laboratory. Copyright © 2012 Wiley Periodicals, Inc.
Lim, Wei Yin; Goh, Boon Tong; Khor, Sook Mei
2017-08-15
Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular diagnostics for low resource settings
NASA Astrophysics Data System (ADS)
Weigl, Bernhard H.
2010-03-01
As traditional high quality diagnostic laboratories are not widely available or affordable in developing country health care settings, microfluidics-based point-of-care diagnostics may be able to address the need to perform complex assays in under-resourced areas. Many instrument-based as well as non-instrumented microfluidic prototype diagnostics are currently being developed. In addition to various engineering challenges, the greatest remaining issue is the search for truly low-cost disposable manufacturing methods. Diagnostics for global health, and specifically microfluidics and molecular-based low resource diagnostics, have become a very active research area over the last five years, thanks in part to new funding that became available from the Bill and Melinda Gates Foundation, the National Institutes of Health, and other sources. This has led to a number of interesting prototype devices that are now in advanced development or clinical validation. These devices include disposables and instruments that perform multiplexed PCR-based lab-on-a-chips for enteric, febrile, and vaginal diseases, as well as immunoassays for diseases such as malaria, HIV, and various sexually transmitted diseases. More recently, instrument-free diagnostic disposables based on isothermal nucleic acid amplification have been developed as well. Regardless of platform, however, the search for truly low-cost manufacturing methods that would result in cost of goods per disposable of around US1/unit at volume remains a big challenge. This talk will give an overview over existing platform development efforts as well as present some original research in this area at PATH.
Microfluidic diagnostics for low-resource settings
NASA Astrophysics Data System (ADS)
Hawkins, Kenneth R.; Weigl, Bernhard H.
2010-02-01
Diagnostics for low-resource settings need to be foremost inexpensive, but also accurate, reliable, rugged and suited to the contexts of the developing world. Diagnostics for global health, based on minimally-instrumented, microfluidicsbased platforms employing low-cost disposables, has become a very active research area recently-thanks, in part, to new funding from the Bill & Melinda Gates Foundation, the National Institutes of Health, and other sources. This has led to a number of interesting prototype devices that are now in advanced development or clinical validation. These devices include disposables and instruments that perform multiplexed PCR-based assays for enteric, febrile, and vaginal diseases, as well as immunoassays for diseases such as malaria, HIV, and various sexually transmitted diseases. More recently, instrument-free diagnostic disposables based on isothermal nucleic-acid amplification have been developed. Regardless of platform, however, the search for truly low-cost manufacturing methods that would enable affordable systems (at volume, in the appropriate context) remains a significant challenge. Here we give an overview of existing platform development efforts, present some original research in this area at PATH, and reiterate a call to action for more.
Laboratory development and testing of spacecraft diagnostics
NASA Astrophysics Data System (ADS)
Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric
2017-10-01
The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.
Florida Journal of Communication Disorders, 1998.
ERIC Educational Resources Information Center
Victor, Shelley J., Ed.; Lundy, Donna S., Ed.
1998-01-01
This annual volume is a compilation of research, clinical, and professional articles addressing innovative technology, new diagnostic tests, physiological basis for treatment, and therapeutic ideas in the fields of speech-language pathology and audiology. Featured articles include: (1) "Development of Local Child Norms for the Dichotic Digits…
Sun, Gordon H.; Aliu, Oluseyi; Moloci, Nicholas M.; Mondschein, Joshua K.; Burke, James F.; Hayward, Rodney A.
2013-01-01
Background There are no clinical guidelines on best practices for the use of bronchoscopy and esophagoscopy in diagnosing head and neck cancer. This retrospective cohort study examined variation in the use of bronchoscopy and esophagoscopy across hospitals in Michigan. Patients and Methods We identified 17,828 head and neck cancer patients in the 2006–2010 Michigan State Ambulatory Surgery Databases. We used hierarchical, mixed-effect logistic regression to examine whether a hospital’s risk-adjusted rate of concurrent bronchoscopy or esophagoscopy was associated with its case volume (<100, 100–999, or ≥1000 cases/hospital) for those undergoing diagnostic laryngoscopy. Results Of 9,218 patients undergoing diagnostic laryngoscopy, 1,191 (12.9%) received concurrent bronchoscopy and 1,675 (18.2%) underwent concurrent esophagoscopy. The median hospital rate of bronchoscopy was 2.7% (range 0–61.1%), and low-volume (OR 27.1 [95% CI 1.9, 390.7]) and medium-volume (OR 28.1 [95% CI 2.0, 399.0]) hospitals were more likely to perform concurrent bronchoscopy compared to high-volume hospitals. The median hospital rate of esophagoscopy was 5.1% (range 0–47.1%), and low-volume (OR 9.8 [95% CI 1.5, 63.7]) and medium-volume (OR 8.5 [95% CI 1.3, 55.0]) hospitals were significantly more likely to perform concurrent esophagoscopy relative to high-volume hospitals. Conclusions Head and neck cancer patients undergoing diagnostic laryngoscopy are much more likely to undergo concurrent bronchoscopy and esophagoscopy at low- and medium-volume hospitals than at high-volume hospitals. Whether this represents over-use of concurrent procedures or appropriate care that leads to earlier diagnosis and better outcomes merits further investigation. PMID:24114146
21 CFR 868.1840 - Diagnostic spirometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic spirometer. 868.1840 Section 868.1840...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1840 Diagnostic spirometer. (a) Identification. A diagnostic spirometer is a device used in pulmonary function testing to measure the volume of...
Alcázar, J L; Díaz, L; Flórez, P; Guerriero, S; Jurado, M
2013-08-01
To assess the feasibility of a specific training program for ultrasound diagnosis of adnexal masses. A 2-month intensive training program was developed. The program protocol consisted of a 1-day intensive theoretical course focused on clinical and sonographic issues related to adnexal masses and ovarian cancer, followed by a 4-week real-time ultrasound training program in a tertiary center (25-30 adnexal masses evaluated per month) and a final 4-week period for offline assessment of three-dimensional (3D) volumes from adnexal masses. In this final period, each trainee evaluated five sets of 100 3D volumes. 3D volumes contained gray-scale and power Doppler information, and the trainee was provided with clinical data for each case (patient age, menopausal status and reported symptoms). 3D volumes were obtained from surgically removed masses that had undergone histological diagnosis or from masses that had been followed up until resolution. After assessment of each set, the trainee's diagnostic performance was calculated (sensitivity and specificity) and each incorrectly classified mass was evaluated with the trainer. The objective was to achieve a sensitivity of > 95% and a specificity of > 90%. Learning curve cumulative summation (LC-CUSUM) graphs were plotted to assess the learning curve for the trainees. One trainer and two trainees with little experience in gynecological ultrasound (one gynecologist and one radiologist) participated in this study. LC-CUSUM graphs showed that competence was achieved after 170 or 185 examinations. The objectives for diagnostic performance were achieved after assessment of the second set of 3D volumes (200 cases) for each trainee. The proposed training program appears to be feasible. High diagnostic performance can be achieved after analysis of 200 cases and maintained thereafter. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
DOT National Transportation Integrated Search
1982-03-01
Bearing defect data from 8,000 railroad roller bearings are analyzed to determine their defect modes and defect rate distributions. Cone bore growth, brinelling, and fatigue are identified as the predominant defect modes during the first 12 years of ...
The Health Technology Assessment of companion diagnostics: experience of NICE.
Byron, Sarah K; Crabb, Nick; George, Elisabeth; Marlow, Mirella; Newland, Adrian
2014-03-15
Companion diagnostics are used to aid clinical decision making to identify patients who are most likely to respond to treatment. They are becoming increasingly important as more new pharmaceuticals receive licensed indications that require the use of a companion diagnostic to identify the appropriate patient subgroup for treatment. These pharmaceuticals have proven benefit in the treatment of some cancers and other diseases, and also have potential to precisely tailor treatments to the individual in the future. However, the increasing use of companion diagnostics could place a substantial burden on health system resources to provide potentially high volumes of testing. This situation, in part, has led policy makers and Health Technology Assessment (HTA) bodies to review the policies and methods used to make reimbursement decisions for pharmaceuticals requiring companion diagnostics. The assessment of a pharmaceutical alongside the companion diagnostic used in the clinical trials may be relatively straightforward, although there are a number of challenges associated with assessing pharmaceuticals where a range of alternative companion diagnostics are available for use in routine clinical practice. The UK HTA body, the National Institute for Health and Care Excellence (NICE), has developed policy for considering companion diagnostics using its Technology Appraisal and Diagnostics Assessment Programs. Some HTA bodies in other countries have also adapted their policies and methods to accommodate the assessment of companion diagnostics. Here, we provide insight into the HTA of companion diagnostics for reimbursement decisions and how the associated challenges are being addressed, in particular by NICE. See all articles in this CCR Focus section, "The Precision Medicine Conundrum: Approaches to Companion Diagnostic Co-development." ©2014 AACR.
NASA Technical Reports Server (NTRS)
1993-01-01
Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.
Zhang, Ying; Alonzo, Todd A
2016-11-01
In diagnostic medicine, the volume under the receiver operating characteristic (ROC) surface (VUS) is a commonly used index to quantify the ability of a continuous diagnostic test to discriminate between three disease states. In practice, verification of the true disease status may be performed only for a subset of subjects under study since the verification procedure is invasive, risky, or expensive. The selection for disease examination might depend on the results of the diagnostic test and other clinical characteristics of the patients, which in turn can cause bias in estimates of the VUS. This bias is referred to as verification bias. Existing verification bias correction in three-way ROC analysis focuses on ordinal tests. We propose verification bias-correction methods to construct ROC surface and estimate the VUS for a continuous diagnostic test, based on inverse probability weighting. By applying U-statistics theory, we develop asymptotic properties for the estimator. A Jackknife estimator of variance is also derived. Extensive simulation studies are performed to evaluate the performance of the new estimators in terms of bias correction and variance. The proposed methods are used to assess the ability of a biomarker to accurately identify stages of Alzheimer's disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D
2011-08-01
To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Van den Bosch, T; Valentin, L; Van Schoubroeck, D; Luts, J; Bignardi, T; Condous, G; Epstein, E; Leone, F P; Testa, A C; Van Huffel, S; Bourne, T; Timmerman, D
2012-10-01
To estimate the diagnostic accuracy and interobserver agreement in predicting intracavitary uterine pathology at offline analysis of three-dimensional (3D) ultrasound volumes of the uterus. 3D volumes (unenhanced ultrasound and gel infusion sonography with and without power Doppler, i.e. four volumes per patient) of 75 women presenting with abnormal uterine bleeding at a 'bleeding clinic' were assessed offline by six examiners. The sonologists were asked to provide a tentative diagnosis. A histological diagnosis was obtained by hysteroscopy with biopsy or operative hysteroscopy. Proliferative, secretory or atrophic endometrium was classified as 'normal' histology; endometrial polyps, intracavitary myomas, endometrial hyperplasia and endometrial cancer were classified as 'abnormal' histology. The diagnostic accuracy of the six sonologists with regard to normal/abnormal histology and interobserver agreement were estimated. Intracavitary pathology was diagnosed at histology in 39% of patients. Agreement between the ultrasound diagnosis and the histological diagnosis (normal vs abnormal) ranged from 67 to 83% for the six sonologists. In 45% of cases all six examiners agreed with regard to the presence/absence of intracavitary pathology. The percentage agreement between any two examiners ranged from 65 to 91% (Cohen's κ, 0.31-0.81). The Schouten κ for all six examiners was 0.51 (95% CI, 0.40-0.62), while the highest Schouten κ for any three examiners was 0.69. When analyzing stored 3D ultrasound volumes, agreement between sonologists with regard to classifying the endometrium/uterine cavity as normal or abnormal as well as the diagnostic accuracy varied substantially. Possible actions to improve interobserver agreement and diagnostic accuracy include optimization of image quality and the use of a consistent technique for analyzing the 3D volumes. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Dielectrophoresis-based microfluidic platforms for cancer diagnostics.
Chan, Jun Yuan; Ahmad Kayani, Aminuddin Bin; Md Ali, Mohd Anuar; Kok, Chee Kuang; Yeop Majlis, Burhanuddin; Hoe, Susan Ling Ling; Marzuki, Marini; Khoo, Alan Soo-Beng; Ostrikov, Kostya Ken; Ataur Rahman, Md; Sriram, Sharath
2018-01-01
The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.
Effect of data compression on diagnostic accuracy in digital hand and chest radiography
NASA Astrophysics Data System (ADS)
Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita
1992-05-01
Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.
Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.
Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D
2013-11-01
There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Testing. Occasional Papers 21.
ERIC Educational Resources Information Center
Culhane, P. T., Ed.; White, J., Ed.
Five papers on testing in English as a second language are included in this volume. "A Preliminary Diagnostic Test for Adult Immigrants" by Johan I. Arthur presents the first stage in a project to develop a test for limited English speaking adults in the Colchester, Essex area. "An Initial Testing Battery on a Course for Air Traffic…
Teistler, M; Breiman, R S; Lison, T; Bott, O J; Pretschner, D P; Aziz, A; Nowinski, W L
2008-10-01
Volumetric imaging (computed tomography and magnetic resonance imaging) provides increased diagnostic detail but is associated with the problem of navigation through large amounts of data. In an attempt to overcome this problem, a novel 3D navigation tool has been designed and developed that is based on an alternative input device. A 3D mouse allows for simultaneous definition of position and orientation of orthogonal or oblique multiplanar reformatted images or slabs, which are presented within a virtual 3D scene together with the volume-rendered data set and additionally as 2D images. Slabs are visualized with maximum intensity projection, average intensity projection, or standard volume rendering technique. A prototype has been implemented based on PC technology that has been tested by several radiologists. It has shown to be easily understandable and usable after a very short learning phase. Our solution may help to fully exploit the diagnostic potential of volumetric imaging by allowing for a more efficient reading process compared to currently deployed solutions based on conventional mouse and keyboard.
21 CFR 868.1760 - Volume plethysmograph.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the patient's lung volume changes. (b) Classification. Class II (performance standards). ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Volume plethysmograph. 868.1760 Section 868.1760...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1760 Volume plethysmograph. (a...
Li, Zhanzhan; Zhou, Qin; Li, Yanyan; Yan, Shipeng; Fu, Jun; Huang, Xinqiong; Shen, Liangfang
2017-02-28
We conducted a meta-analysis to evaluate the diagnostic values of mean cerebral blood volume for recurrent and radiation injury in glioma patients. We performed systematic electronic searches for eligible study up to August 8, 2016. Bivariate mixed effects models were used to estimate the combined sensitivity, specificity, positive likelihood ratios, negative likelihood ratios, diagnostic odds ratios and their 95% confidence intervals (CIs). Fifteen studies with a total number of 576 participants were enrolled. The pooled sensitivity and specificity of diagnostic were 0.88 (95%CI: 0.82-0.92) and 0.85 (95%CI: 0.68-0.93). The pooled positive likelihood ratio is 5.73 (95%CI: 2.56-12.81), negative likelihood ratio is 0.15 (95%CI: 0.10-0.22), and the diagnostic odds ratio is 39.34 (95%CI:13.96-110.84). The summary receiver operator characteristic is 0.91 (95%CI: 0.88-0.93). However, the Deek's plot suggested publication bias may exist (t=2.30, P=0.039). Mean cerebral blood volume measurement methods seems to be very sensitive and highly specific to differentiate recurrent and radiation injury in glioma patients. The results should be interpreted with caution because of the potential bias.
Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika
2011-07-01
The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.
Yeo, Lami; Romero, Roberto
2013-09-01
To describe a novel method (Fetal Intelligent Navigation Echocardiography (FINE)) for visualization of standard fetal echocardiography views from volume datasets obtained with spatiotemporal image correlation (STIC) and application of 'intelligent navigation' technology. We developed a method to: 1) demonstrate nine cardiac diagnostic planes; and 2) spontaneously navigate the anatomy surrounding each of the nine cardiac diagnostic planes (Virtual Intelligent Sonographer Assistance (VIS-Assistance®)). The method consists of marking seven anatomical structures of the fetal heart. The following echocardiography views are then automatically generated: 1) four chamber; 2) five chamber; 3) left ventricular outflow tract; 4) short-axis view of great vessels/right ventricular outflow tract; 5) three vessels and trachea; 6) abdomen/stomach; 7) ductal arch; 8) aortic arch; and 9) superior and inferior vena cava. The FINE method was tested in a separate set of 50 STIC volumes of normal hearts (18.6-37.2 weeks of gestation), and visualization rates for fetal echocardiography views using diagnostic planes and/or VIS-Assistance® were calculated. To examine the feasibility of identifying abnormal cardiac anatomy, we tested the method in four cases with proven congenital heart defects (coarctation of aorta, tetralogy of Fallot, transposition of great vessels and pulmonary atresia with intact ventricular septum). In normal cases, the FINE method was able to generate nine fetal echocardiography views using: 1) diagnostic planes in 78-100% of cases; 2) VIS-Assistance® in 98-100% of cases; and 3) a combination of diagnostic planes and/or VIS-Assistance® in 98-100% of cases. In all four abnormal cases, the FINE method demonstrated evidence of abnormal fetal cardiac anatomy. The FINE method can be used to visualize nine standard fetal echocardiography views in normal hearts by applying 'intelligent navigation' technology to STIC volume datasets. This method can simplify examination of the fetal heart and reduce operator dependency. The observation of abnormal echocardiography views in the diagnostic planes and/or VIS-Assistance® should raise the index of suspicion for congenital heart disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Ultrasonography of ovarian hyperandrogenemia
NASA Astrophysics Data System (ADS)
Kuzmina, Svetlana A.; Zharkin, Nikolay A.
2001-05-01
The method of ultrasonography is high informative and widely used in diagnostics of ovarian hyperandrogenaemia. The majority of authors consider that a hyperplasia of a stroma is the main pathognomonic marker of polycystic ovaries (PCO). Still recently swell of a stroma was valued visually, that had subjective nature. We offer for the first time a way of diagnostics of stromal hyperplasia grounded on measurement of a volume of a stroma and ovary with ultrasound method, calculation of the ratio of a volume of the ovary to a volume of a stroma for every patient.
CCL11 (eotaxin-1): a new diagnostic serum marker for prostate cancer.
Agarwal, Manisha; He, Chang; Siddiqui, Javed; Wei, John T; Macoska, Jill A
2013-05-01
The recent recommendation of the U.S. Preventive Services Task Force against PSA-based screening for prostate cancer was based, in part, on the lack of demonstrated diagnostic utility of serum PSA values in the low, but detectable range to successfully predict prostate cancer. Though controversial, this recommendation reinforced the critical need to develop, validate, and determine the utility of other serum and/or urine transcript and protein markers as diagnostic markers for PCa. The studies described here were intended to determine whether inflammatory cytokines might augment serum PSA as a diagnostic marker for prostate cancer. Multiplex ELISA assays were performed to quantify CCL1, CCL2, CCL5, CCL8, CCL11, CCL17, CXCL1, CXCL5, CXCL8, CXCL10, CXCL12, and IL-6 protein levels in the serum of 272 men demonstrating serum PSA values of <10 ng/ml and undergoing a 12 core diagnostic needle biopsy for detection of prostate cancer. Logistic regression was used to identify the associations between specific chemokines and prostate cancer status adjusted for prostate volume, and baseline PSA. Serum levels for CCL1 (I-309) were significantly elevated among all men with enlarged prostates (P < 0.04). Serum levels for CCL11 (Eotaxin-1) were significantly elevated among men with prostate cancer regardless of prostate size (P < 0.01). The remaining 10 cytokines examined in this study did not exhibit significant correlations with either prostate volume or cancer status. Serum CCL11 values may provide a useful diagnostic tool to help distinguish between prostatic enlargement and prostate cancer among men demonstrating low, but detectable, serum PSA values. Copyright © 2012 Wiley Periodicals, Inc.
CCL11 (Eotaxin-1): A New Diagnostic Serum Marker for Prostate Cancer
Agarwal, Manisha; He, Chang; Siddiqui, Javed; Wei, John; Macoska, Jill A.
2012-01-01
Background The recent recommendation of the U.S. Preventive Services Task Force against PSA-based screening for prostate cancer was based, in part, on the lack of demonstrated diagnostic utility of serum PSA values in the low, but detectable range to successfully predict prostate cancer. Though controversial, this recommendation reinforced the critical need to develop, validate, and determine the utility of other serum and/or urine transcript and protein markers as diagnostic markers for PCa. The studies described here were intended to determine whether inflammatory cytokines might augment serum PSA as a diagnostic marker for prostate cancer. Methods Multiplex ELISA assays were performed to quantify CCL1, CCL2, CCL5, CCL8, CCL11, CCL17, CXCL1, CXCL5, CXCL8, CXCL10, CXCL12, and IL-6 protein levels in the serum of 272 men demonstrating serum PSA values of < 10 ng/ml and undergoing a 12 core diagnostic needle biopsy for detection of prostate cancer. Logistic regression was used to identify the associations between specific chemokines and prostate cancer status adjusted for prostate volume, and baseline PSA. Results Serum levels for CCL1 (I-309) were significantly elevated among all men with enlarged prostates (p<.04). Serum levels for CCL11 (Eotaxin-1) were significantly elevated among men with prostate cancer regardless of prostate size (p<.01). The remaining 10 cytokines examined in this study did not exhibit significant correlations with either prostate volume or cancer status. Conclusions Serum CCL11 values may provide a useful diagnostic tool to help distinguish between prostatic enlargement and prostate cancer among men demonstrating low, but detectable, serum PSA values. PMID:23059958
Bili, Eleni; Bili, Authors Eleni; Dampala, Kaliopi; Iakovou, Ioannis; Tsolakidis, Dimitrios; Giannakou, Anastasia; Tarlatzis, Basil C
2014-08-01
The aim of this study was to determine the performance of prostate specific antigen (PSA) and ultrasound parameters, such as ovarian volume and outline, in the diagnosis of polycystic ovary syndrome (PCOS). This prospective, observational, case-controlled study included 43 women with PCOS, and 40 controls. Between day 3 and 5 of the menstrual cycle, fasting serum samples were collected and transvaginal ultrasound was performed. The diagnostic performance of each parameter [total PSA (tPSA), total-to-free PSA ratio (tPSA:fPSA), ovarian volume, ovarian outline] was estimated by means of receiver operating characteristic (ROC) analysis, along with area under the curve (AUC), threshold, sensitivity, specificity as well as positive (+) and negative (-) likelihood ratios (LRs). Multivariate logistical regression models, using ovarian volume and ovarian outline, were constructed. The tPSA and tPSA:fPSA ratio resulted in AUC of 0.74 and 0.70, respectively, with moderate specificity/sensitivity and insufficient LR+/- values. In the multivariate logistic regression model, the combination of ovarian volume and outline had a sensitivity of 97.7% and a specificity of 97.5% in the diagnosis of PCOS, with +LR and -LR values of 39.1 and 0.02, respectively. In women with PCOS, tPSA and tPSA:fPSA ratio have similar diagnostic performance. The use of a multivariate logistic regression model, incorporating ovarian volume and outline, offers very good diagnostic accuracy in distinguishing women with PCOS patients from controls. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jiao, Y; Chen, R; Ke, X; Cheng, L; Chu, K; Lu, Z; Herskovits, E H
2011-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
Fan, Kenneth Chen; Tsikata, Edem; Khoueir, Ziad; Simavli, Huseyin; Guo, Rong; DeLuna, Regina; Pandit, Sumir; Que, Christian John; de Boer, Johannes F.; Chen, Teresa C.
2017-01-01
Purpose To compare the diagnostic capability of 3-dimensional (3D) neuroretinal rim parameters with existing 2-dimensional (2D) neuroretinal and retinal nerve fiber layer (RNFL) thickness rim parameters using spectral domain optical coherence tomography (SD-OCT) volume scans Materials and Methods Design Institutional prospective pilot study. Study population 65 subjects (35 open angle glaucoma patients, 30 normal patients). Observation procedures One eye of each subject was included. SD-OCT was used to obtain 2D retinal nerve fiber layer (RNFL) thickness values and five neuroretinal rim parameters [i.e. 3D minimum distance band (MDB) thickness, 3D Bruch’s membrane opening-minimum rim width (BMO-MRW), 3D rim volume, 2D rim area, and 2D rim thickness]. Main outcome measures Area under the receiver operating characteristic (AUROC) curve values, sensitivity, specificity. Results Comparing all 3D with all 2D parameters, 3D rim parameters (MDB, BMO-MRW, rim volume) generally had higher AUROC curve values (range 0.770–0.946) compared to 2D parameters (RNFL thickness, rim area, rim thickness; range 0.678–0.911). For global region analyses, all 3D rim parameters (BMO-MRW, rim volume, MDB) were equal to or better than 2D parameters (RNFL thickness, rim area, rim thickness; p-values from 0.023–1.0). Among the three 3D rim parameters (MDB, BMO-MRW, and rim volume), there were no significant differences in diagnostic capability (false discovery rate > 0.05 at 95% specificity). Conclusion 3D neuroretinal rim parameters (MDB, BMO-MRW, and rim volume) demonstrated better diagnostic capability for primary and secondary open angle glaucomas compared to 2D neuroretinal parameters (rim area, rim thickness). Compared to 2D RNFL thickness, 3D neuroretinal rim parameters have the same or better diagnostic capability. PMID:28234677
Zhou, Yongxia; Yu, Fang; Duong, Timothy
2014-01-01
This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.
Low-dose computed tomography volumetry for subtyping chronic lung allograft dysfunction.
Saito, Tomohito; Horie, Miho; Sato, Masaaki; Nakajima, Daisuke; Shoushtarizadeh, Hassan; Binnie, Matthew; Azad, Sassan; Hwang, David M; Machuca, Tiago N; Waddell, Thomas K; Singer, Lianne G; Cypel, Marcelo; Liu, Mingyao; Paul, Narinder S; Keshavjee, Shaf
2016-01-01
The long-term success of lung transplantation is challenged by the development of chronic lung allograft dysfunction (CLAD) and its distinct subtypes of bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). However, the current diagnostic criteria for CLAD subtypes rely on total lung capacity (TLC), which is not always measured during routine post-transplant assessment. Our aim was to investigate the utility of low-dose 3-dimensional computed tomography (CT) lung volumetry for differentiating RAS from BOS. This study was a retrospective evaluation of 63 patients who had developed CLAD after bilateral lung or heart‒lung transplantation between 2006 and 2011, including 44 BOS and 19 RAS cases. Median post-transplant follow-up was 65 months in BOS and 27 months in RAS. The median interval between baseline and the disease-onset time-point for CT volumetry was 11 months in both BOS and RAS. Chronologic changes and diagnostic accuracy of CT lung volume (measured as percent of baseline) were investigated. RAS showed a significant decrease in CT lung volume at disease onset compared with baseline (mean 3,916 ml vs 3,055 ml when excluding opacities, p < 0.0001), whereas BOS showed no significant post-transplant change (mean 4,318 ml vs 4,396 ml, p = 0.214). The area under the receiver operating characteristic curve of CT lung volume for differentiating RAS from BOS was 0.959 (95% confidence interval 0.912 to 1.01, p < 0.0001) and the calculated accuracy was 0.938 at a threshold of 85%. In bilateral lung or heart‒lung transplant patients with CLAD, low-dose CT volumetry is a useful tool to differentiate patients who develop RAS from those who develop BOS. Copyright © 2016 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Berents-Oosterhof, M Y; Noordam, C; Otten, B J
2000-12-16
A 7-year-old boy was tall, with a developing penis and initial growth of pubic hair. Due to the accelerated growth there was no premature adrenarche and due to the increased testicular volume there must have been a central cause for the production of androgens. Further specific investigations revealed an astrocytoma of the hypothalamus. After radiotherapy, the tumour exhibited no growth. The pubertal development was inhibited and the growth later stimulated by means of medication. In the case of pubertas praecox the growth chart and pubertal stages including testicular volume can help to differentiate between central and peripheral precocious puberty, narrow the diagnostic evaluation and reduce the time of the initial therapy.
The NASTRAN User's Manual (Level 15)
NASA Technical Reports Server (NTRS)
Mccormick, C. W. (Editor)
1972-01-01
The User's manual for the NASA Structural Analysis (NASTRAN) program is presented. The manual contains all information needed to solve problems with NASTRAN. The volume is instructional and encyclopedic. The manual includes instruction in structural modeling techniques, instruction in input preparation, and information to assist the interpretation of the output. Descriptions of all input data cards, restart procedures, and diagnostic messages are developed.
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
The third of four volumes in Research Report No. 7 of the Health Services Mobility Study (HSMS), this book contains 149 diagnostic radiologist task descriptions that cover activities in the area of nursing (patient care), film processing, quality assurance, radiation protection, machine maintenance, housekeeping, and administration at the…
Regression Analysis of Optical Coherence Tomography Disc Variables for Glaucoma Diagnosis.
Richter, Grace M; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Chopra, Vikas; Greenfield, David S; Varma, Rohit; Schuman, Joel S; Huang, David
2016-08-01
To report diagnostic accuracy of optical coherence tomography (OCT) disc variables using both time-domain (TD) and Fourier-domain (FD) OCT, and to improve the use of OCT disc variable measurements for glaucoma diagnosis through regression analyses that adjust for optic disc size and axial length-based magnification error. Observational, cross-sectional. In total, 180 normal eyes of 112 participants and 180 eyes of 138 participants with perimetric glaucoma from the Advanced Imaging for Glaucoma Study. Diagnostic variables evaluated from TD-OCT and FD-OCT were: disc area, rim area, rim volume, optic nerve head volume, vertical cup-to-disc ratio (CDR), and horizontal CDR. These were compared with overall retinal nerve fiber layer thickness and ganglion cell complex. Regression analyses were performed that corrected for optic disc size and axial length. Area-under-receiver-operating curves (AUROC) were used to assess diagnostic accuracy before and after the adjustments. An index based on multiple logistic regression that combined optic disc variables with axial length was also explored with the aim of improving diagnostic accuracy of disc variables. Comparison of diagnostic accuracy of disc variables, as measured by AUROC. The unadjusted disc variables with the highest diagnostic accuracies were: rim volume for TD-OCT (AUROC=0.864) and vertical CDR (AUROC=0.874) for FD-OCT. Magnification correction significantly worsened diagnostic accuracy for rim variables, and while optic disc size adjustments partially restored diagnostic accuracy, the adjusted AUROCs were still lower. Axial length adjustments to disc variables in the form of multiple logistic regression indices led to a slight but insignificant improvement in diagnostic accuracy. Our various regression approaches were not able to significantly improve disc-based OCT glaucoma diagnosis. However, disc rim area and vertical CDR had very high diagnostic accuracy, and these disc variables can serve to complement additional OCT measurements for diagnosis of glaucoma.
Zhang, Zhongheng; Lu, Baolong; Sheng, Xiaoyan; Jin, Ni
2011-12-01
Stroke volume variation (SVV) appears to be a good predictor of fluid responsiveness in critically ill patients. However, a wide range of its predictive values has been reported in recent years. We therefore undertook a systematic review and meta-analysis of clinical trials that investigated the diagnostic value of SVV in predicting fluid responsiveness. Clinical investigations were identified from several sources, including MEDLINE, EMBASE, WANFANG, and CENTRAL. Original articles investigating the diagnostic value of SVV in predicting fluid responsiveness were considered to be eligible. Participants included critically ill patients in the intensive care unit (ICU) or operating room (OR) who require hemodynamic monitoring. A total of 568 patients from 23 studies were included in our final analysis. Baseline SVV was correlated to fluid responsiveness with a pooled correlation coefficient of 0.718. Across all settings, we found a diagnostic odds ratio of 18.4 for SVV to predict fluid responsiveness at a sensitivity of 0.81 and specificity of 0.80. The SVV was of diagnostic value for fluid responsiveness in OR or ICU patients monitored with the PiCCO or the FloTrac/Vigileo system, and in patients ventilated with tidal volume greater than 8 ml/kg. SVV is of diagnostic value in predicting fluid responsiveness in various settings.
21 CFR 868.1840 - Diagnostic spirometer.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Identification. A diagnostic spirometer is a device used in pulmonary function testing to measure the volume of gas moving in or out of a patient's lungs. (b) Classification. Class II (performance standards). ...
To Duc, Khanh
2017-11-18
Receiver operating characteristic (ROC) surface analysis is usually employed to assess the accuracy of a medical diagnostic test when there are three ordered disease status (e.g. non-diseased, intermediate, diseased). In practice, verification bias can occur due to missingness of the true disease status and can lead to a distorted conclusion on diagnostic accuracy. In such situations, bias-corrected inference tools are required. This paper introduce an R package, named bcROCsurface, which provides utility functions for verification bias-corrected ROC surface analysis. The shiny web application of the correction for verification bias in estimation of the ROC surface analysis is also developed. bcROCsurface may become an important tool for the statistical evaluation of three-class diagnostic markers in presence of verification bias. The R package, readme and example data are available on CRAN. The web interface enables users less familiar with R to evaluate the accuracy of diagnostic tests, and can be found at http://khanhtoduc.shinyapps.io/bcROCsurface_shiny/ .
21 CFR 876.1800 - Urine flow or volume measuring system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...
21 CFR 876.1800 - Urine flow or volume measuring system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...
21 CFR 876.1800 - Urine flow or volume measuring system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...
21 CFR 876.1800 - Urine flow or volume measuring system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urine flow or volume measuring system. 876.1800... (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1800 Urine flow or volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that...
Capabilities and constraints of combustion diagnostics in microgravity
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.
1993-01-01
A significant scientific return from both existing and proposed microgravity combustion science experiments is substantially dependent on the availability of diagnostic systems for the collection of the required scientific data. To date, the available diagnostic instrumentation has consisted primarily of conventional photographic media and intrusive temperature and velocity probes, such as thermocouples and hot wire anemometers. This situation has arisen primarily due to the unique and severe operational constraints inherent in reduced gravity experimentation. Each of the various reduced gravity facilities is accompanied by its own peculiar envelope of capabilities and constraints. Drop towers, for example, pose strict limitations on available working volume and power, as well as autonomy of operation. In contrast, hardware developed for space flight applications can be somewhat less constrained in regards to the aforementioned quantities, but is additionally concerned with numerous issues involving safety and reliability.
Wu, Rongli; Watanabe, Yoshiyuki; Arisawa, Atsuko; Takahashi, Hiroto; Tanaka, Hisashi; Fujimoto, Yasunori; Watabe, Tadashi; Isohashi, Kayako; Hatazawa, Jun; Tomiyama, Noriyuki
2017-10-01
This study aimed to compare the tumor volume definition using conventional magnetic resonance (MR) and 11C-methionine positron emission tomography (MET/PET) images in the differentiation of the pre-operative glioma grade by using whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) maps. Thirty-four patients with histopathologically proven primary brain low-grade gliomas (n = 15) and high-grade gliomas (n = 19) underwent pre-operative or pre-biopsy MET/PET, fluid-attenuated inversion recovery, dynamic susceptibility contrast perfusion-weighted magnetic resonance imaging, and contrast-enhanced T1-weighted at 3.0 T. The histogram distribution derived from the nCBV maps was obtained by co-registering the whole tumor volume delineated on conventional MR or MET/PET images, and eight histogram parameters were assessed. The mean nCBV value had the highest AUC value (0.906) based on MET/PET images. Diagnostic accuracy significantly improved when the tumor volume was measured from MET/PET images compared with conventional MR images for the parameters of mean, 50th, and 75th percentile nCBV value (p = 0.0246, 0.0223, and 0.0150, respectively). Whole-tumor histogram analysis of CBV map provides more valuable histogram parameters and increases diagnostic accuracy in the differentiation of pre-operative cerebral gliomas when the tumor volume is derived from MET/PET images.
Veronese, Paola; Bogana, Gianna; Cerutti, Alessia; Yeo, Lami; Romero, Roberto; Gervasi, Maria Teresa
2016-01-01
Objective To evaluate the performance of Fetal Intelligent Navigation Echocardiography (FINE) applied to spatiotemporal image correlation (STIC) volume datasets of the normal fetal heart in generating standard fetal echocardiography views. Methods In this prospective cohort study of patients with normal fetal hearts (19-30 gestational weeks), one or more STIC volume datasets were obtained of the apical four-chamber view. Each STIC volume successfully obtained was evaluated by STICLoop™ to determine its appropriateness before applying the FINE method. Visualization rates for standard fetal echocardiography views using diagnostic planes and/or Virtual Intelligent Sonographer Assistance (VIS-Assistance®) were calculated. Results One or more STIC volumes (n=463 total) were obtained in 246 patients. A single STIC volume per patient was analyzed using the FINE method. In normal cases, FINE was able to generate nine fetal echocardiography views using: 1) diagnostic planes in 76-100% of cases; 2) VIS-Assistance® in 96-100% of cases; and 3) a combination of diagnostic planes and/or VIS-Assistance® in 96-100% of cases. Conclusion FINE applied to STIC volumes can successfully generate nine standard fetal echocardiography views in 96-100% of cases in the second and third trimesters. This suggests that the technology can be used as a method to screen for congenital heart disease. PMID:27309391
Kasasbeh, Ehab S; Parvez, Babar; Huang, Robert L; Hasselblad, Michele Marie; Glazer, Mark D; Salloum, Joseph G; Cleator, John H; Zhao, David X
2012-11-01
To determine whether radial artery access is associated with a reduction in fluoroscopy time, procedure time, and other procedural variables over a 27-month period during which the radial artery approach was incorporated in a single academic Medical Center. Although previous studies have demonstrated a relationship between increased volume and decreased procedural time, no studies have looked at the integration of radial access over time. Data were collected from consecutive patients who presented to the Vanderbilt University Medical Center cardiac catheterization laboratory from January 1, 2009 to April 1, 2011. Patients who underwent radial access diagnostic catheterization with and without percutaneous coronary intervention were included in this study. A total of 1112 diagnostic cardiac catheterizations through the radial access site were analyzed. High-volume, intermediate-volume, and low-volume operators were grouped based on the percentage of procedures performed through a radial approach. From 2009 to 2011, there was a significant decrease in fluoroscopy time in all operator groups for diagnostic catheterization (P=.035). The high-volume operator group had 1.88 and 3.66 minute reductions in fluoroscopy time compared to the intermediate- and low-volume operator groups, respectively (both P<.001). Likewise, the intermediate-volume operator group had a 1.77 minute improvement compared to the low-volume operator group, but this did not reach statistical significance (P=.102). The improvement in fluoroscopy time and other procedure-related parameters was seen after approximately 25 cases with further improvement after 75 cases. The incorporation of the radial access approach in the cardiac catheterization laboratory led to a decrease in fluoroscopy time for each operator and operator group over the last 3 years. Our data demonstrated that higher-volume radial operators have better procedure, room, and fluoroscopy times when compared to intermediate- and low-volume operators. However, lower-volume operators have a reduction in procedure-related parameters with increased radial cases. Number of procedures needed to become sufficient was demonstrated in the current study.
Graham, James E.; Deutsch, Anne; O’Connell, Ann A.; Karmarkar, Amol M.; Granger, Carl V.; Ottenbacher, Kenneth J.
2013-01-01
Background It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Objectives Assess associations between facility volumes and two patient-centered outcomes in the three most common diagnostic groups in inpatient rehabilitation. Research Design We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the U.S. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Measures Discharge functional status (FIM instrument) and probability of home discharge. Results Facility-level factors accounted for 6–15% of the variance in discharge FIM total scores and 3–5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (p < .01) associations with discharge functional status in all three diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Conclusions Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all three diagnostic groups. Patients with these conditions can be treated locally rather than at higher-volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions. PMID:23579350
Graham, James E; Deutsch, Anne; O'Connell, Ann A; Karmarkar, Amol M; Granger, Carl V; Ottenbacher, Kenneth J
2013-05-01
It is unclear if volume-outcome relationships exist in inpatient rehabilitation. Assess associations between facility volumes and 2 patient-centered outcomes in the 3 most common diagnostic groups in inpatient rehabilitation. We used hierarchical linear and generalized linear models to analyze administrative assessment data from patients receiving inpatient rehabilitation services for stroke (n=202,423), lower extremity fracture (n=132,194), or lower extremity joint replacement (n=148,068) between 2006 and 2008 in 717 rehabilitation facilities across the United States. Facilities were assigned to quintiles based on average annual diagnosis-specific patient volumes. Discharge functional status (FIM instrument) and probability of home discharge. Facility-level factors accounted for 6%-15% of the variance in discharge FIM total scores and 3%-5% of the variance in home discharge probability across the 3 diagnostic groups. We used the middle volume quintile (Q3) as the reference group for all analyses and detected small, but statistically significant (P<0.01) associations with discharge functional status in all 3 diagnosis groups. Only the highest volume quintile (Q5) reached statistical significance, displaying higher functional status ratings than Q3 each time. The largest effect was observed in FIM total scores among fracture patients, with only a 3.6-point difference in Q5 and Q3 group means. Volume was not independently related to home discharge. Outcome-specific volume effects ranged from small (functional status) to none (home discharge) in all 3 diagnostic groups. Patients with these conditions can be treated locally rather than at higher volume regional centers. Further regionalization of inpatient rehabilitation services is not needed for these conditions.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
2010-10-01
steps applied for generating the 3D ROC surface diagnostic metrics: 1. Obtain system data: Gain access to a suitable database of system data under...surface, VUSTPR and VUSCCR, can be calculated. This can be accomplished by partitioning the VUSTPR and VUSCCR volumes into polyhedrons as illustrated... polyhedron volumes to produce VUSTPR and VUSCCR. In the example given in Figures 7 and 8 a logarithmic scaling has been applied to the TL axis. This places
Hsiang, E; Little, K M; Haguma, P; Hanrahan, C F; Katamba, A; Cattamanchi, A; Davis, J L; Vassall, A; Dowdy, D
2016-09-01
Initial cost-effectiveness evaluations of Xpert(®) MTB/RIF for tuberculosis (TB) diagnosis have not fully accounted for the realities of implementation in peripheral settings. To evaluate costs and diagnostic outcomes of Xpert testing implemented at various health care levels in Uganda. We collected empirical cost data from five health centers utilizing Xpert for TB diagnosis, using an ingredients approach. We reviewed laboratory and patient records to assess outcomes at these sites and10 sites without Xpert. We also estimated incremental cost-effectiveness of Xpert testing; our primary outcome was the incremental cost of Xpert testing per newly detected TB case. The mean unit cost of an Xpert test was US$21 based on a mean monthly volume of 54 tests per site, although unit cost varied widely (US$16-58) and was primarily determined by testing volume. Total diagnostic costs were 2.4-fold higher in Xpert clinics than in non-Xpert clinics; however, Xpert only increased diagnoses by 12%. The diagnostic costs of Xpert averaged US$119 per newly detected TB case, but were as high as US$885 at the center with the lowest volume of tests. Xpert testing can detect TB cases at reasonable cost, but may double diagnostic budgets for relatively small gains, with cost-effectiveness deteriorating with lower testing volumes.
Effect of Reduced Tube Voltage on Diagnostic Accuracy of CT Colonography.
Futamata, Yoshihiro; Koide, Tomoaki; Ihara, Riku
2017-01-01
The normal tube voltage in computed tomography colonography (CTC) is 120 kV. Some reports indicate that the use of a low tube voltage (lower than 120 kV) technique plays a significant role in reduction of radiation dose. However, to determine whether a lower tube voltage can reduce radiation dose without compromising diagnostic accuracy, an evaluation of images that are obtained while maintaining the volume CT dose index (CTDI vol ) is required. This study investigated the effect of reduced tube voltage in CTC, without modifying radiation dose (i.e. constant CTDI vol ), on image quality. Evaluation of image quality involved the shape of the noise power spectrum, surface profiling with volume rendering (VR), and receiver operating characteristic (ROC) analysis. The shape of the noise power spectrum obtained with a tube voltage of 80 kV and 100 kV was not similar to the one produced with a tube voltage of 120 kV. Moreover, a higher standard deviation was observed on volume-rendered images that were generated using the reduced tube voltages. In addition, ROC analysis revealed a statistically significant drop in diagnostic accuracy with reduced tube voltage, revealing that the modification of tube voltage affects volume-rendered images. The results of this study suggest that reduction of tube voltage in CTC, so as to reduce radiation dose, affects image quality and diagnostic accuracy.
Manipulating biological agents and cells in micro-scale volumes for applications in medicine
Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi
2013-01-01
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660
Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph
2011-04-01
The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.
Nano/microfluidics for diagnosis of infectious diseases in developing countries
Lee, Won Gu; Kim, Yun-Gon; Chung, Bong Geun; Demirci, Utkan; Khademhosseini, Ali
2010-01-01
Nano/microfluidic technologies are emerging as powerful enabling tools for diagnosis and monitoring of infectious diseases in both developed and developing countries. Miniaturized nano/microfluidic platforms that precisely manipulate small fluid volumes can be used to enable medical diagnosis in a more rapid and accurate manner. In particular, these nano/microfluidic diagnostic technologies are potentially applicable to global health applications, because they are disposable, inexpensive, portable, and easy-to-use for detection of infectious diseases. In this paper, we review recent developments in nano/microfluidic technologies for clinical point-of-care applications at resource-limited settings in developing countries. PMID:19954755
How can we maximize the diagnostic utility of uroflow?: ICI-RS 2017.
Gammie, Andrew; Rosier, Peter; Li, Rui; Harding, Chris
2018-01-09
To gauge the current level of diagnostic utility of uroflowmetry and to suggest areas needing research to improve this. A summary of the debate held at the 2017 meeting of the International Consultation on Incontinence Research Society, with subsequent analysis by the authors. Limited diagnostic sensitivity and specificity exist for maximum flow rates, multiple uroflow measurements, and flow-volume nomograms. There is a lack of clarity in flow rate curve shape description and uroflow time measurement. There is a need for research to combine uroflowmetry with other non-invasive indicators. Better standardizations of test technique, flow-volume nomograms, uroflow shape descriptions, and time measurements are required. © 2017 Wiley Periodicals, Inc.
[The structural functional analysis of functioning of day-hospitals of the Russian Federation].
2012-01-01
The article deals with the results of structural functional analysis of functioning of day-hospitals in the Russian Federation. The dynamic analysis is presented concerning day-hospitals' network, capacity; financial support, beds stock structure, treated patients structure, volumes of diagnostic tests and curative procedures. The need in developing of population medical care in conditions of day-hospitals is demonstrated.
Advanced life support control/monitor instrumentation concepts for flight application
NASA Technical Reports Server (NTRS)
Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.
1986-01-01
Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.
NASA Technical Reports Server (NTRS)
Yozgatligil, Ahmet; Choi, Mun Young; Dryer, Frederick L.; Kazakov, Andrei; Dobashi, Ritsu
2003-01-01
This study involves flight experiments (for droplets between 1.5 to 5 mm) and supportive ground-based experiments, with concurrent numerical model development and validation. The experiments involve two fuels: n-heptane, and ethanol. The diagnostic measurements include light extinction for soot volume fraction, two-wavelength pyrometry and thin-filament pyrometry for temperature, spectral detection for OH chemiluminescence, broadband radiometry for flame emission, and thermophoretic sampling with subsequent transmission electron microscopy for soot aerosol property calculations.
Development of a magnetic lab-on-a-chip for point-of-care sepsis diagnosis
NASA Astrophysics Data System (ADS)
Schotter, Joerg; Shoshi, Astrit; Brueckl, Hubert
2009-05-01
We present design criteria, operation principles and experimental examples of magnetic marker manipulation for our magnetic lab-on-a-chip prototype. It incorporates both magnetic sample preparation and detection by embedded GMR-type magnetoresistive sensors and is optimized for the automated point-of-care detection of four different sepsis-indicative cytokines directly from about 5 μl of whole blood. The sample volume, magnetic particle size and cytokine concentration determine the microfluidic volume, sensor size and dimensioning of the magnetic gradient field generators. By optimizing these parameters to the specific diagnostic task, best performance is expected with respect to sensitivity, analysis time and reproducibility.
Roles of universal three-dimensional image analysis devices that assist surgical operations.
Sakamoto, Tsuyoshi
2014-04-01
The circumstances surrounding medical image analysis have undergone rapid evolution. In such a situation, it can be said that "imaging" obtained through medical imaging modality and the "analysis" that we employ have become amalgamated. Recently, we feel the distance between "imaging" and "analysis" has become closer regarding the imaging analysis of any organ system, as if both terms mentioned above have become integrated. The history of medical image analysis started with the appearance of the computer. The invention of multi-planar reconstruction (MPR) used in the helical scan had a significant impact and became the basis for recent image analysis. Subsequently, curbed MPR (CPR) and other methods were developed, and the 3D diagnostic imaging and image analysis of the human body have started on a full scale. Volume rendering: the development of a new rendering algorithm and the significant improvement of memory and CPUs contributed to the development of "volume rendering," which allows 3D views with retained internal information. A new value was created by this development; computed tomography (CT) images that used to be for "diagnosis" before that time have become "applicable to treatment." In the past, before the development of volume rendering, a clinician had to mentally reconstruct an image reconfigured for diagnosis into a 3D image, but these developments have allowed the depiction of a 3D image on a monitor. Current technology: Currently, in Japan, the estimation of the liver volume and the perfusion area of the portal vein and hepatic vein are vigorously being adopted during preoperative planning for hepatectomy. Such a circumstance seems to be brought by the substantial improvement of said basic techniques and by upgrading the user interface, allowing doctors easy manipulation by themselves. The following describes the specific techniques. Future of post-processing technology: It is expected, in terms of the role of image analysis, for better or worse, that computer-aided diagnosis (CAD) will develop to a highly advanced level in every diagnostic field. Further, it is also expected in the treatment field that a technique coordinating various devices will be strongly required as a surgery navigator. Actually, surgery using an image navigator is being widely studied, and coordination with hardware, including robots, will also be developed. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Review of Psychodynamic diagnostics manual (PDM).
Moses, Ira
2008-03-01
Reviews the book, Psychodynamic diagnostics manual (PDM) by Alliance of Psychoanalytic Organizations (2006). This volume is divided into three major sections, Part 1--Classification of Adult Mental Heath Disorder, Part 2--Classification of Child and Adolescent Mental Health Disorder, and Part 3--Conceptual and Research Foundations for a Psychodynamically Based Classification System for Mental Health Disorders. Unlike the standard DSM which highlights the patient's presenting symptom (Axis I) with secondary consideration given to an underlying personality disorder (Axis II), the major thesis of classification scheme of this volume is that diagnostic evaluation should provide a more patient centered and a more clinically useful picture of the individual by understanding the symptom(s) through the essential dimensions of the patient's personality and mental functions (interpersonal and cognitive capacities). Part 3, which could stand on its own as a separate volume, is a thorough critique of psychotherapy outcome research in which the authors delineate how major design flaws have derived from "favoring what is measurable over what is meaningful." The authors cogently demonstrate that diagnostic assessment is a continuous effort toward providing individualized and clinically relevant evaluations. (PsycINFO Database Record (c) 2010 APA, all rights reserved).
Porter, Thomas R; Radio, Stanley; Lof, John; Everbach, Carr; Powers, Jeffry E; Vignon, Francois; Shi, William T; Xie, Feng
2016-07-01
We sought to explore mechanistically how intermittent high-mechanical-index (MI) diagnostic ultrasound impulses restore microvascular flow. Thrombotic microvascular obstruction was created in the rat hindlimb muscle of 36 rats. A diagnostic transducer confirmed occlusion with low-MI imaging during an intravenous microbubble infusion. This same transducer was used to intermittently apply ultrasound with an MI that produced stable or inertial cavitation (IC) for 10 min through a tissue-mimicking phantom. A nitric oxide inhibitor, L-Nω-nitroarginine methyl ester (L-NAME), was pre-administered to six rats. Plateau microvascular contrast intensity quantified skeletal microvascular blood volume, and postmortem staining was used to detect perivascular hemorrhage. Intermittent IC impulses produced the greatest recovery of microvascular blood volume (p < 0.0001, analysis of variance). Nitric oxide inhibition did not affect the skeletal microvascular blood volume improvement, but did result in more perivascular hemorrhage. IC inducing pulses from a diagnostic transducer can reverse microvascular obstruction after acute arterial thromboembolism. Nitric oxide may prevent unwanted bio-effects of these IC pulses. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Garcia, M; Yeo, L; Romero, R; Haggerty, D; Giardina, I; Hassan, S S; Chaiworapongsa, T; Hernandez-Andrade, E
2016-04-01
To evaluate prospectively the performance of Fetal Intelligent Navigation Echocardiography (FINE) applied to spatiotemporal image correlation (STIC) volume datasets of the normal fetal heart. In all women between 19 and 30 weeks' gestation with a normal fetal heart, an attempt was made to acquire STIC volume datasets of the apical four-chamber view if the following criteria were met: (1) fetal spine located between 5- and 7-o'clock positions; (2) minimal or absent shadowing (including a clearly visible transverse aortic arch); (3) absence of fetal breathing, hiccups, or movement; and (4) adequate image quality. Each STIC volume successfully acquired was evaluated by STICLoop™ to determine its appropriateness before applying the FINE method. Visualization rates of fetal echocardiography views using diagnostic planes and/or Virtual Intelligent Sonographer Assistance (VIS-Assistance®) were calculated. One or more STIC volumes (365 in total) were obtained successfully in 72.5% (150/207) of women undergoing ultrasound examination. Of the 365 volumes evaluated by STICLoop, 351 (96.2%) were considered to be appropriate. From the 351 STIC volumes, only one STIC volume per patient (n = 150) was analyzed using the FINE method, and consequently nine fetal echocardiography views were generated in 76-100% of cases using diagnostic planes only, in 98-100% of cases using VIS-Assistance only, and in 98-100% of cases when using a combination of diagnostic planes and/or VIS-Assistance. In women between 19 and 30 weeks' gestation with a normal fetal heart undergoing prospective sonographic examination, STIC volumes can be obtained successfully in 72.5% of cases. The FINE method can be applied to generate nine standard fetal echocardiography views in 98-100% of these cases using a combination of diagnostic planes and/or VIS-Assistance. This suggests that FINE could be implemented in fetal cardiac screening programs. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Tsikata, Edem; Lee, Ramon; Shieh, Eric; Simavli, Huseyin; Que, Christian J.; Guo, Rong; Khoueir, Ziad; de Boer, Johannes; Chen, Teresa C.
2016-01-01
Purpose To describe spectral-domain optical coherence tomography (OCT) methods for quantifying neuroretinal rim tissue in glaucoma and to compare these methods to the traditional retinal nerve fiber layer thickness diagnostic parameter. Methods Neuroretinal rim parameters derived from three-dimensional (3D) volume scans were compared with the two-dimensional (2D) Spectralis retinal nerve fiber layer (RNFL) thickness scans for diagnostic capability. This study analyzed one eye per patient of 104 glaucoma patients and 58 healthy subjects. The shortest distances between the cup surface and the OCT-based disc margin were automatically calculated to determine the thickness and area of the minimum distance band (MDB) neuroretinal rim parameter. Traditional 150-μm reference surface–based rim parameters (volume, area, and thickness) were also calculated. The diagnostic capabilities of these five parameters were compared with RNFL thickness using the area under the receiver operating characteristic (AUROC) curves. Results The MDB thickness had significantly higher diagnostic capability than the RNFL thickness in the nasal (0.913 vs. 0.818, P = 0.004) and temporal (0.922 vs. 0.858, P = 0.026) quadrants and the inferonasal (0.950 vs. 0.897, P = 0.011) and superonasal (0.933 vs. 0.868, P = 0.012) sectors. The MDB area and the three neuroretinal rim parameters based on the 150-μm reference surface had diagnostic capabilities similar to RNFL thickness. Conclusions The 3D MDB thickness had a high diagnostic capability for glaucoma and may be of significant clinical utility. It had higher diagnostic capability than the RNFL thickness in the nasal and temporal quadrants and the inferonasal and superonasal sectors. PMID:27768203
Noble Metal Nanoparticles for Biosensing Applications
Doria, Gonçalo; Conde, João; Veigas, Bruno; Giestas, Leticia; Almeida, Carina; Assunção, Maria; Rosa, João; Baptista, Pedro V.
2012-01-01
In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies—from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory. PMID:22438731
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
NASA Astrophysics Data System (ADS)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-01
As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.
Diagnostic Capability of Peripapillary Retinal Thickness in Glaucoma Using 3D Volume Scans
Simavli, Huseyin; Que, Christian John; Akduman, Mustafa; Rizzo, Jennifer L.; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.
2015-01-01
Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal thickness (RT) measurements from 3-dimensional (3D) volume scans for primary open angle glaucoma (POAG). Design Cross-sectional study. Methods Setting Institutional Study population 156 patients (89 POAG and 67 normal subjects) Observation procedures One eye of each subject was included. SD-OCT peripapillary RT values from 3D volume scans were calculated for four quadrants of three different sized annuli. Peripapillary retinal nerve fiber layer (RNFL) thickness values were also determined. Main outcome measures Area under the receiver operating characteristic curve (AUROC) values, sensitivity, specificity, positive and negative predictive values, and positive and negative likelihood ratios. Results The top five RT AUROCs for all glaucoma patients and for a subset of early glaucoma patients were for the inferior quadrant of outer circumpapillary annulus of circular grid (OCA) 1 (0.959, 0.939), inferior quadrant of OCA2 (0.945, 0.921), superior quadrant of OCA1 (0.890, 0.811), inferior quadrant of OCA3 (0.887, 0.854), and superior quadrant of OCA2 (0.879, 0.807). Smaller RT annuli OCA1 and OCA2 consistently showed better diagnostic performance than the larger RT annulus OCA3. For both RNFL and RT measurements, best AUROC values were found for inferior RT OCA1 and OCA2, followed by inferior and overall RNFL thickness. Conclusion Peripapillary RT measurements from 3D volume scans showed excellent diagnostic performance for detecting both glaucoma and early glaucoma patients. Peripapillary RT values have the same or better diagnostic capability compared to peripapillary RNFL thickness measurements, while also having fewer algorithm errors. PMID:25498354
IFSA: a microfluidic chip-platform for frit-based immunoassay protocols
NASA Astrophysics Data System (ADS)
Hlawatsch, Nadine; Bangert, Michael; Miethe, Peter; Becker, Holger; Gärtner, Claudia
2013-03-01
Point-of-care diagnostics (POC) is one of the key application fields for lab-on-a-chip devices. While in recent years much of the work has concentrated on integrating complex molecular diagnostic assays onto a microfluidic device, there is a need to also put comparatively simple immunoassay-type protocols on a microfluidic platform. In this paper, we present the development of a microfluidic cartridge using an immunofiltration approach. In this method, the sandwich immunoassay takes place in a porous frit on which the antibodies have immobilized. The device is designed to be able to handle three samples in parallel and up to four analytical targets per sample. In order to meet the critical cost targets for the diagnostic market, the microfluidic chip has been designed and manufactured using high-volume manufacturing technologies in mind. Validation experiments show comparable sensitivities in comparison with conventional immunofiltration kits.
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a ‘3D well’ was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines. PMID:26184194
Singh, Harpal; Shimojima, Masayuki; Shiratori, Tomomi; An, Le Van; Sugamata, Masami; Yang, Ming
2015-07-08
Enzyme-linked Immunosorbent Assay (ELISA)-based diagnosis is the mainstay for measuring antibody response in infectious diseases and to support pathogen identification of potential use in infectious disease outbreaks and clinical care of individual patients. The development of laboratory diagnostics using readily available 3D printing technologies provides a timely opportunity for further expansion of this technology into immunodetection systems. Utilizing available 3D printing platforms, a '3D well' was designed and developed to have an increased surface area compared to those of 96-well plates. The ease and rapidity of the development of the 3D well prototype provided an opportunity for its rapid validation through the diagnostic performance of ELISA in infectious disease without modifying current laboratory practices for ELISA. The improved sensitivity of the 3D well of up to 2.25-fold higher compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization and Lab-On-a-Chip platforms to reduce time, volume of reagents and samples needed for such assays in the laboratory diagnosis of infectious and other diseases including applications in other disciplines.
Fujita, Nobuhiro; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Ushijima, Yasuhiro; Takayama, Yukihisa; Okamoto, Daisuke; Shirabe, Ken; Yoshizumi, Tomoharu; Kotoh, Kazuhiro; Furusyo, Norihiro; Hida, Tomoyuki; Oda, Yoshinao; Fujioka, Taisuke; Honda, Hiroshi
2016-10-28
To evaluate the diagnostic performance of computed tomography (CT) volumetry for discriminating the fibrosis stage in patients with nonalcoholic fatty liver disease (NAFLD). A total of 38 NAFLD patients were enrolled. On the basis of CT imaging, the volumes of total, left lateral segment (LLS), left medial segment, caudate lobe, and right lobe (RL) of the liver were calculated with a dedicated liver application. The relationship between the volume percentage of each area and fibrosis stage was analyzed using Spearman's rank correlation coefficient. A receiver operating characteristic (ROC) curve analysis was performed to determine the accuracy of CT volumetry for discriminating fibrosis stage. The volume percentages of the caudate lobe and the LLS significantly increased with the fibrosis stage ( r = 0.815, P < 0.001; and r = 0.465, P = 0.003, respectively). Contrarily, the volume percentage of the RL significantly decreased with fibrosis stage ( r = -0.563, P < 0.001). The volume percentage of the caudate lobe had the best diagnostic accuracy for staging fibrosis, and the area under the ROC curve values for discriminating fibrosis stage were as follows: ≥ F1, 0.896; ≥ F2, 0.929; ≥ F3, 0.955; and ≥ F4, 0.923. The best cut-off for advanced fibrosis (F3-F4) was 4.789%, 85.7% sensitivity and 94.1% specificity. The volume percentage of the caudate lobe calculated by CT volumetry is a useful diagnostic parameter for staging fibrosis in NAFLD patients.
Effect of Radiologists’ Diagnostic Work-up Volume on Interpretive Performance
Anderson, Melissa L.; Smith, Robert A.; Carney, Patricia A.; Miglioretti, Diana L.; Monsees, Barbara S.; Sickles, Edward A.; Taplin, Stephen H.; Geller, Berta M.; Yankaskas, Bonnie C.; Onega, Tracy L.
2014-01-01
Purpose To examine radiologists’ screening performance in relation to the number of diagnostic work-ups performed after abnormal findings are discovered at screening mammography by the same radiologist or by different radiologists. Materials and Methods In an institutional review board–approved HIPAA-compliant study, the authors linked 651 671 screening mammograms interpreted from 2002 to 2006 by 96 radiologists in the Breast Cancer Surveillance Consortium to cancer registries (standard of reference) to evaluate the performance of screening mammography (sensitivity, false-positive rate [FPRfalse-positive rate], and cancer detection rate [CDRcancer detection rate]). Logistic regression was used to assess the association between the volume of recalled screening mammograms (“own” mammograms, where the radiologist who interpreted the diagnostic image was the same radiologist who had interpreted the screening image, and “any” mammograms, where the radiologist who interpreted the diagnostic image may or may not have been the radiologist who interpreted the screening image) and screening performance and whether the association between total annual volume and performance differed according to the volume of diagnostic work-up. Results Annually, 38% of radiologists performed the diagnostic work-up for 25 or fewer of their own recalled screening mammograms, 24% performed the work-up for 0–50, and 39% performed the work-up for more than 50. For the work-up of recalled screening mammograms from any radiologist, 24% of radiologists performed the work-up for 0–50 mammograms, 32% performed the work-up for 51–125, and 44% performed the work-up for more than 125. With increasing numbers of radiologist work-ups for their own recalled mammograms, the sensitivity (P = .039), FPRfalse-positive rate (P = .004), and CDRcancer detection rate (P < .001) of screening mammography increased, yielding a stepped increase in women recalled per cancer detected from 17.4 for 25 or fewer mammograms to 24.6 for more than 50 mammograms. Increases in work-ups for any radiologist yielded significant increases in FPRfalse-positive rate (P = .011) and CDRcancer detection rate (P = .001) and a nonsignificant increase in sensitivity (P = .15). Radiologists with a lower annual volume of any work-ups had consistently lower FPRfalse-positive rate, sensitivity, and CDRcancer detection rate at all annual interpretive volumes. Conclusion These findings support the hypothesis that radiologists may improve their screening performance by performing the diagnostic work-up for their own recalled screening mammograms and directly receiving feedback afforded by means of the outcomes associated with their initial decision to recall. Arranging for radiologists to work up a minimum number of their own recalled cases could improve screening performance but would need systems to facilitate this workflow. © RSNA, 2014 Online supplemental material is available for this article. PMID:24960110
Effect of radiologists' diagnostic work-up volume on interpretive performance.
Buist, Diana S M; Anderson, Melissa L; Smith, Robert A; Carney, Patricia A; Miglioretti, Diana L; Monsees, Barbara S; Sickles, Edward A; Taplin, Stephen H; Geller, Berta M; Yankaskas, Bonnie C; Onega, Tracy L
2014-11-01
To examine radiologists' screening performance in relation to the number of diagnostic work-ups performed after abnormal findings are discovered at screening mammography by the same radiologist or by different radiologists. In an institutional review board-approved HIPAA-compliant study, the authors linked 651 671 screening mammograms interpreted from 2002 to 2006 by 96 radiologists in the Breast Cancer Surveillance Consortium to cancer registries (standard of reference) to evaluate the performance of screening mammography (sensitivity, false-positive rate [ FPR false-positive rate ], and cancer detection rate [ CDR cancer detection rate ]). Logistic regression was used to assess the association between the volume of recalled screening mammograms ("own" mammograms, where the radiologist who interpreted the diagnostic image was the same radiologist who had interpreted the screening image, and "any" mammograms, where the radiologist who interpreted the diagnostic image may or may not have been the radiologist who interpreted the screening image) and screening performance and whether the association between total annual volume and performance differed according to the volume of diagnostic work-up. Annually, 38% of radiologists performed the diagnostic work-up for 25 or fewer of their own recalled screening mammograms, 24% performed the work-up for 0-50, and 39% performed the work-up for more than 50. For the work-up of recalled screening mammograms from any radiologist, 24% of radiologists performed the work-up for 0-50 mammograms, 32% performed the work-up for 51-125, and 44% performed the work-up for more than 125. With increasing numbers of radiologist work-ups for their own recalled mammograms, the sensitivity (P = .039), FPR false-positive rate (P = .004), and CDR cancer detection rate (P < .001) of screening mammography increased, yielding a stepped increase in women recalled per cancer detected from 17.4 for 25 or fewer mammograms to 24.6 for more than 50 mammograms. Increases in work-ups for any radiologist yielded significant increases in FPR false-positive rate (P = .011) and CDR cancer detection rate (P = .001) and a nonsignificant increase in sensitivity (P = .15). Radiologists with a lower annual volume of any work-ups had consistently lower FPR false-positive rate , sensitivity, and CDR cancer detection rate at all annual interpretive volumes. These findings support the hypothesis that radiologists may improve their screening performance by performing the diagnostic work-up for their own recalled screening mammograms and directly receiving feedback afforded by means of the outcomes associated with their initial decision to recall. Arranging for radiologists to work up a minimum number of their own recalled cases could improve screening performance but would need systems to facilitate this workflow.
Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.
2017-01-01
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821
Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R
2017-01-14
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma
Simavli, Huseyin; Poon, Linda Yi-Chieh; Que, Christian John; Liu, Yingna; Akduman, Mustafa; Tsikata, Edem; de Boer, Johannes F.; Chen, Teresa C.
2017-01-01
Purpose To determine the diagnostic capability of spectral domain optical coherence tomography (SD-OCT) peripapillary retinal volume (RV) measurements. Materials and Methods A total of 156 patients, 89 primary open angle (POAG) and 67 normal subjects, were recruited. SD-OCT peripapillary RV was calculated for four quadrants using 3 annuli of varying scan circle diameters: outer circumpapillary annuli of circular grids 1, 2, and 3 (OCA1, OCA2, OCA3). Area under the receiver operating characteristic (AUROC) curves and pairwise comparisons of receiver operating characteristic (ROC) curves were performed to determine which quadrants were best for diagnosing POAG. The pairwise comparisons of the best ROC curves for RV and RNFL were performed. The artifact rates were analyzed. Results Pairwise comparisons showed that the smaller annuli OCA1 and OCA2 had better diagnostic performance than the largest annulus OCA3 (p<0.05 for all quadrants). OCA1 and OCA2 had similar diagnostic performance, except for the inferior quadrant which was better for OCA1 (p=0.0033).The pairwise comparisons of the best ROC curves for RV and RNFL were not statistically significant. Retinal volume measurements had lower rates of artifacts at 7.4% while RNFL measurements had higher rates at 42.9%. Conclusion Peripapillary RV measurements have excellent ability for diagnosing not only glaucoma patients but also a subset of early glaucoma patients. The inferior quadrant of peripapillary annulus OCA1 demonstrated the best diagnostic capability for both glaucoma and early glaucoma. The diagnostic ability of RV is comparable to that of RNFL parameters in glaucoma but with lower artifact rates. PMID:28079657
Combustion Diagnostic Development and Application. Volume 2
1990-11-01
diffusion flames in co- flowing air are experimentally determined . The fuel gases are methane and propane. The inert gases are helium argon and nitrogen. The...at one instant of time. The flame is not intentionally forced either experimentally or computationally. The computational flow field is illuminated via...by buoyant forces . At low and transitional fuel flow rates, the rotation of these outside vortices create a dynamic bulging motion in the flame surface
2016-01-01
Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709
Diagnostics and Identification of Injection Duration of Common Rail Diesel Injectors
NASA Astrophysics Data System (ADS)
Krogerus, Tomi R.; Huhtala, Kalevi J.
2018-02-01
In this paper, we study the diagnostics and identification of injection duration of common rail (CR) diesel pilot injectors of dual-fuel engines. In these pilot injectors, the injected volume is small and the repeatability of the injections and identification of the drifts of the injectors are important factors, which need to be taken into account in achieving good repeatability (shot-to-shot with every cylinder) and therefore a well-balanced engine and reduced overall wear. A diagnostics method based on analysis of CR pressure signal with experimental verification results is presented. Using the developed method, the relative duration of injection events can be identified. In the method, the pressure signal during the injection is first extracted after the control of each injection event. After that, the signal is normalized and filtered. Then a derivative of the filtered signal is calculated. Change in the derivative of the filtered signal larger than a predefined threshold indicates an injection event which can be detected and its relative duration can be identified. The efficacy of the proposed diagnostics method is presented with the experimental results, which show that the developed method detects drifts in injection duration and the magnitude of drift. According to the result, ≥ 10 μs change (2%, 500 μs) in injection time can be identified.
NASA Astrophysics Data System (ADS)
Mittag, Anja; Lenz, Dominik; Smith, Paul J.; Pach, Susanne; Tarnok, Attila
2005-04-01
Aim: In patients, e.g. with congenital heart diseases, a differential blood count is needed for diagnosis. To this end by standard automatic analyzers 500 μl of blood is required from the patients. In case of newborns and infants this is a substantial volume, especially after operations associated with blood loss. Therefore, aim of this study was to develop a method to determine a differential blood picture with a substantially reduced specimen volume. Methods: To generate a differential blood picture 10 μl EDTA blood were mixed with 10 μl of a DRAQ5 solution (500μM, Biostatus) and 10 μl of an antibody mixture (CD45-FITC, CD14-PE, diluted with PBS). 20 μl of this cell suspension was filled into a Neubauer counting chamber. Due to the defined volume of the chamber it is possible to determine the cell count per volume. The trigger for leukocyte counting was set on DRAQ5 signal in order to be able to distinguish nucleated white blood cells from erythrocytes. Different leukocyte subsets could be distinguished due to the used fluorescence labeled antibodies. For erythrocyte counting cell suspension was diluted another 150 times. 20 μl of this dilution was analyzed in a microchamber by LSC with trigger set on forward scatter signal. Results: This method allows a substantial decrease of blood sample volume for generation of a differential blood picture (10 μl instead of 500μl). There was a high correlation between our method and the results of routine laboratory (r2=0.96, p<0.0001 n=40). For all parameters intra-assay variance was less than 7 %. Conclusions: In patients with low blood volume such as neonates and in critically ill infants every effort has to be taken to reduce the blood volume needed for diagnostics. With this method only 2% of standard sample volume is needed to generate a differential blood picture. Costs are below that of routine laboratory. We suggest this method to be established in paediatric cardiology for routine diagnostics and for resource poor settings.
NASA Astrophysics Data System (ADS)
Shalkov, Anton; Mamaeva, Mariya
2017-11-01
The article considers the questions of application of nondestructive methods control of reducers of conveyor belts as a means of transport. Particular attention is paid to such types of diagnostics of technical condition as thermal control and analysis of the state of lubricants. The urgency of carrying out types of nondestructive testing presented in the article is determined by the increase of energy efficiency of transport systems of coal and mining enterprises, in particular, reducers of belt conveyors. Periodic in-depth spectral-emission diagnostics and monitoring of a temperature mode of operation oil in the operation of the control equipment and its technical condition and prevent the MTBF allows the monitoring of the actual technical condition of the gearbox of a belt conveyor. In turn, the thermal imaging diagnostics reveals defects at the earliest stage of their formation and development, which allows planning the volumes and terms of equipment repair. Presents diagnostics of the technical condition will allow monitoring in time the technical condition of the equipment and avoiding its premature failure. Thereby it will increase the energy efficiency of both the transport system and the enterprise as a whole, and also avoid unreasonable increases in operating and maintenance costs.
Planned Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2010-11-01
The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.
Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
Wang, D; Meza, D; Wang, Y; Gao, L; Liu, J T C
2014-09-15
We have previously developed a line-scanned dual-axis confocal (LS-DAC) microscope with subcellular resolution suitable for high-frame-rate diagnostic imaging at shallow depths. Due to the loss of confocality along one dimension, the contrast (signal-to-background ratio) of a LS-DAC microscope is deteriorated compared to a point-scanned DAC microscope. However, by using a sCMOS camera for detection, a short oblique light-sheet is imaged at each scanned position. Therefore, by scanning the light sheet in only one dimension, a thin 3D volume is imaged. Both sequential two-dimensional deconvolution and three-dimensional deconvolution are performed on the thin image volume to improve the resolution and contrast of one en face confocal image section at the center of the volume, a technique we call sheet-scanned dual-axis confocal (SS-DAC) microscopy.
Detection of IDH1 mutation in the plasma of patients with glioma.
Boisselier, Blandine; Gállego Pérez-Larraya, Jaime; Rossetto, Marta; Labussière, Marianne; Ciccarino, Pietro; Marie, Yannick; Delattre, Jean-Yves; Sanson, Marc
2012-10-16
The IDH1(R132H) mutation is both a strong prognostic predictor and a diagnostic hallmark of gliomas and therefore has major clinical relevance. Here, we developed a new technique to detect the IDH1(R132H) mutation in the plasma of patients with glioma. Small-size DNA (150-250 base pairs) was extracted from the plasma of 31 controls and 80 patients with glioma with known IDH1(R132H) status and correlated with MRI data. The IDH1(R132H) mutation was detected by a combination of coamplification at lower denaturation temperature and digital PCR. The small size DNA concentration was 1.2 ng/mL (range 0.1-6.6) in controls vs 1.2 ng/mL (range 0.1-50.3) in patients with glioma (p = not significant) and 0.9 ng/mL (0.0-3.0) in low-grade gliomas vs 1.5 ng/mL in high-grade gliomas (p < 0.01). The small size DNA concentration correlated with enhancing tumor volume (1.6 ng/mL [0.4-24.9] when <10 cm(3) and 14.0 ng/mL [0.6-50.3] when ≥10 cm(3)). The IDH1(R132H) mutation was detected in 15 out of 25 plasma DNA mixtures (60%) from patients with mutated tumors and in none of the 14 patients with a nonmutated tumor. The sensitivity increased with enhancing tumor volume (3/9 in nonenhancing tumors, 6/10 for enhancing volume <10 cm(3), and 6/6 for enhancing volume ≥10 cm(3)). With a specificity of 100% and a sensitivity related to the tumor volume and contrast enhancement, IDH1(R132H) identification has a valuable diagnostic accuracy in patients not amenable to biopsy.
Fell, Shari; Bröckl, Stephanie; Büttner, Mathias; Rettinger, Anna; Zimmermann, Pia; Straubinger, Reinhard K
2016-09-15
Bovine tuberculosis (bTB), which is caused by Mycobacterium bovis and M. caprae, is a notifiable animal disease in Germany. Diagnostic procedure is based on a prescribed protocol that is published in the framework of German bTB legislation. In this protocol small sample volumes are used for DNA extraction followed by real-time PCR analyses. As mycobacteria tend to concentrate in granuloma and the infected tissue in early stages of infection does not necessarily show any visible lesions, it is likely that DNA extraction from only small tissue samples (20-40 mg) of a randomly chosen spot from the organ and following PCR testing may result in false negative results. In this study two DNA extraction methods were developed to process larger sample volumes to increase the detection sensitivity of mycobacterial DNA in animal tissue. The first extraction method is based on magnetic capture, in which specific capture oligonucleotides were utilized. These nucleotides are linked to magnetic particles and capture Mycobacterium-tuberculosis-complex (MTC) DNA released from 10 to 15 g of tissue material. In a second approach remaining sediments from the magnetic capture protocol were further processed with a less complex extraction protocol that can be used in daily routine diagnostics. A total number of 100 tissue samples from 34 cattle (n = 74) and 18 red deer (n = 26) were analyzed with the developed protocols and results were compared to the prescribed protocol. All three extraction methods yield reliable results by the real-time PCR analysis. The use of larger sample volume led to a sensitivity increase of DNA detection which was shown by the decrease of Ct-values. Furthermore five samples which were tested negative or questionable by the official extraction protocol were detected positive by real time PCR when the alternative extraction methods were used. By calculating the kappa index, the three extraction protocols resulted in a moderate (0.52; protocol 1 vs 3) to almost perfect agreement (1.00; red deer sample testing with all protocols). Both new methods yielded increased detection rates for MTC DNA detection in large sample volumes and consequently improve the official diagnostic protocol.
Vanishing tattoo multi-sensor for biomedical diagnostics
NASA Astrophysics Data System (ADS)
Moczko, E.; Meglinski, I.; Piletsky, S.
2008-04-01
Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.
Vanishing "tattoo" multisensor for biomedical diagnostics
NASA Astrophysics Data System (ADS)
Moczko, E.; Meglinski, I.; Piletsky, S.
2008-02-01
Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.
Evaluation of Tropical Transport in a Global Chemistry and Transport Model
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; DaSilva, A. M.; Lin, S.-J.; Pawson, S.; Rood, R. B.; Bhartia, P. K. (Technical Monitor)
2001-01-01
Observations of constituents from satellite, aircraft and sondes can be utilized to develop diagnostics of various aspects of tropical transport. These include tropical mid-latitude isolation, the seasonal transport from the upper tropical troposphere to the mid-latitude lowermost stratosphere, the seasonal cycle of the tropical total ozone and its variability. These diagnostics will be applied to constituent fields from an off-line chemistry and transport model (CTM) driven by winds from two sources. These are the Finite Volume Community Climate Model (FV-CCM), a general circulation model that uses the NCAR CCM physics and the Lin and Rood dynamical core, and an assimilation system developed by the Data Assimilation Office at the Goddard Space Flight Center that uses the FV-CCM at its core. Signatures of the quasi-biennial oscillation present in the observations will be emphasized to understand differences between the two model transports and the transport inferred from the observations.
NASA Technical Reports Server (NTRS)
Baily, N. A.
1975-01-01
A light amplifier for large flat screen fluoroscopy was investigated which will decrease both its size and weight. The work on organ contouring was extended to yield volumes. This is a simple extension since the fluoroscopic image contains density (gray scale) information which can be translated as tissue thickness, integrated, yielding accurate volume data in an on-line situation. A number of devices were developed for analog image processing of video signals, operating on-line in real time, and with simple selection mechanisms. The results show that this approach is feasible and produces are improvement in image quality which should make diagnostic error significantly lower. These are all low cost devices, small and light in weight, thereby making them usable in a space environment, on the Ames centrifuge, and in a typical clinical situation.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging.
Tremsin, Anton S; Perrodin, Didier; Losko, Adrian S; Vogel, Sven C; Bourke, Mark A M; Bizarri, Gregory A; Bourret, Edith D
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
NASA Astrophysics Data System (ADS)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A. M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-04-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes.
Mobile Phones Democratize and Cultivate Next-Generation Imaging, Diagnostics and Measurement Tools
Ozcan, Aydogan
2014-01-01
In this article, I discuss some of the emerging applications and the future opportunities and challenges created by the use of mobile phones and their embedded components for the development of next-generation imaging, sensing, diagnostics and measurement tools. The massive volume of mobile phone users, which has now reached ~7 billion, drives the rapid improvements of the hardware, software and high-end imaging and sensing technologies embedded in our phones, transforming the mobile phone into a cost-effective and yet extremely powerful platform to run e.g., biomedical tests and perform scientific measurements that would normally require advanced laboratory instruments. This rapidly evolving and continuing trend will help us transform how medicine, engineering and sciences are practiced and taught globally. PMID:24647550
Diagnostic accuracy of an ultrasonic multiple transducer cardiac imaging system
NASA Technical Reports Server (NTRS)
Popp, R. L.; Brown, O. R.; Harrison, D. C.
1975-01-01
An ultrasonic multiple-transducer imaging system for intracardiac structure visualization is developed in order to simplify visualization of the human heart in vivo without radiation hazard or invasion of the body. Results of the evaluation of the diagnostic accuracy of the devised system in a clinical setting for adult patients are presented and discussed. Criteria are presented for recognition of mitral valva prolapse, mitral stenosis, pericardial effusion, atrial septal defect, and left ventricular dyssynergy. The probable cause for false-positive and false-negative diagnoses is discussed. However, hypertrophic myopathy and congestive myopathy were unable to be detected. Since only qualitative criteria were used, it was not possible to differentiate patients with left ventricular volume overload from patients without cardiac pathology.
Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulsh, Michael; Porter, Jason M.; Bittinat, Daniel C.
2016-04-01
Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDEmore » containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection.« less
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; Vogel, Sven C.; Bourke, Mark A.M.; Bizarri, Gregory A.; Bourret, Edith D.
2017-01-01
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of “blind” processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production. This technique is widely applicable and is not limited to crystal growth processes. PMID:28425461
High density plasmas and new diagnostics: An overview (invited).
Celona, L; Gammino, S; Mascali, D
2016-02-01
One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including "volume-integrated" X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a "pin-hole camera" has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines.
Naval Medical Research and Development News. Volume 7, Issue 9
2015-09-01
satisfaction with the simulated training; career intentions; and, general, occupational, and task-specific self-efficacy using pretest and post - test ...samples needed to be transported to the labs for testing . What was needed was a rapid, on -site, diagnostic test that could be done quickly. "The U.S...relatively small size of the group -- usually only a handful of people per deployment - required members to juggle multiple tasks on their own, including
New Trends and Possibilities in Nuclear Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, H.A.E.; Csernay, L
New Trends and Possibilities in Nuclear Medicine provides an examination of the latest developments in the field of nuclear medicine. This volume reviews advances made in imaging techniques and presents a detailed overview of many new imaging procedures and their clinical applications, e.g.,the oncological applications of immunoscintigraphy. This book also elucidates the various diagnostic capabilities of nuclear imaging in a wide range of disciplines, including cardiology, neurology, pulmonology, gastroenterology, nephrology, oncology, and hematology.
Defense AT and L. Volume 38, Number 4
2009-06-01
accuracy at extended ranges. Today, Afghanistan- and Iraq-bound medics get realistic training on a Florida-based company’s Mini-Combat Trauma Patient ...school basketball team and drone on about how we miss 100 percent of the shots we don’t take. Fine. They may be right; failure might be good for us...be developed (or procured) that exhibits high inherent reliability and maintainability plus ad- vanced self- diagnostics . Do the ICD and Gate 1
Medical Surveillance Monthly Report (MSMR). Volume 17, Number 06, June 2010
2010-06-01
of vaccine safety and effi cacy trials, and advocacy for U.S. licensure of JE vaccines .9 During World War II, LTC Albert Sabin conducted pioneering...the improved safety profi le of second-generation vaccines , and the geographic spread of JE virus over the past 50 years warrant continued...control of JE, including characterization of the ecology of JEV, development of fi rst and second generation vaccines and diagnostic assays, conduct
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
Plasma diagnostics package. Volume 2: Spacelab 2 section. Part B: Thesis projects
NASA Technical Reports Server (NTRS)
Pickett, Jolene S. (Compiler); Frank, L. A. (Compiler); Kurth, W. S. (Compiler)
1988-01-01
This volume (2), which consists of two parts (A and B), of the Plasma Diagnostics Package (PDP) Final Science Report contains a summary of all of the data reduction and scientific analyses which were performed using PDP data obtained on STS-51F as a part of the Spacelab 2 (SL-2) payload. This work was performed during the period of launch, July 29, 1985, through June 30, 1988. During this period the primary data reduction effort consisted of processing summary plots of the data received by 12 of the 14 instruments located on the PDP and submitting these data to the National Space Science Data Center (NSSDC). Three Master's and three Ph.D. theses were written using PDP instrumentation data. These theses are listed in Volume 2, Part B.
Application of Control Volume Analysis to Cerebrospinal Fluid Dynamics
NASA Astrophysics Data System (ADS)
Wei, Timothy; Cohen, Benjamin; Anor, Tomer; Madsen, Joseph
2011-11-01
Hydrocephalus is among the most common birth defects and may not be prevented nor cured. Afflicted individuals face serious issues, which at present are too complicated and not well enough understood to treat via systematic therapies. This talk outlines the framework and application of a control volume methodology to clinical Phase Contrast MRI data. Specifically, integral control volume analysis utilizes a fundamental, fluid dynamics methodology to quantify intracranial dynamics within a precise, direct, and physically meaningful framework. A chronically shunted, hydrocephalic patient in need of a revision procedure was used as an in vivo case study. Magnetic resonance velocity measurements within the patient's aqueduct were obtained in four biomedical state and were analyzed using the methods presented in this dissertation. Pressure force estimates were obtained, showing distinct differences in amplitude, phase, and waveform shape for different intracranial states within the same individual. Thoughts on the physiological and diagnostic research and development implications/opportunities will be presented.
ERIC Educational Resources Information Center
Gilpatrick, Eleanor
The fourth of four volumes in Research Report No. 7 of the Health Services Mobility Study (HSMS), this book contains the extended task names of all the tasks whose descriptions can be found in the three prior volumes. It serves as an index to all the tasks by listing the volume in which each task description appears. Chapter 1 of this volume…
LLE review. Quarterly report, January 1994--March 1994, Volume 58
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, A.
1994-07-01
This volume of the LLE Review, covering the period Jan - Mar 1994, contains articles on backlighting diagnostics; the effect of electron collisions on ion-acoustic waves and heat flow; using PIC code simulations for analysis of ultrashort laser pulses interacting with solid targets; creating a new instrument for characterizing thick cryogenic layers; and a description of a large-aperture ring amplifier for laser-fusion drivers. Three of these articles - backlighting diagnostics; characterizing thick cryogenic layers; and large-aperture ring amplifier - are directly related to the OMEGA Upgrade, now under construction. Separate abstracts have been prepared for articles from this report.
Manpower Advisory Services in the Workplace: A Missing Link in National Manpower Policy. Volume I.
ERIC Educational Resources Information Center
Hansen, Gary B.; Bentley, Marion T.
This first volume of a two-volume final report contains description and findings of a 3-year research and demonstration project in which a small human resource diagnostic and consulting service was established at a State land-grant institution (Utah State University) to provide a broadly based technical assistance program directed toward improving…
New Language and Old Problems in Breast Cancer Radiotherapy.
Chiricuţă, Ion Christian
2017-01-01
New developments in breast cancer radiotherapy make possible new standards in treatment recommandations based on international guidelines. Developments in radiotherapy irradiation techniques from 2D to 3D-Conformal RT and to IMRT (Intensity Modulated Arc Therapy) make possible to reduce the usual side effects on the organs at risk as: skin, lung, miocard, bone, esophagus and brahial plexus. Dispite of all these progresses acute and late side effects are present. Side effects are as old as the radiotherapy was used. New solutions are available now by improving irradiation techniques. New techniques as sentinel node procedure (SNP) or partial breast irradiation (PBRT) and immediate breast reconstruction with silicon implants (IBRIS) make necessary new considerations regarding the target volume delineations. A new language for definition of gross tumor volume (GTV), clinical target volume (CTV) based on the new diagnostic methods as PET/CT,nonaparticle MRI will have real impact on target delineation and irradiation techniques. "The new common language in breast cancer therapy" would be the first step to improve the endresults and finally the quality of life of the patients. Celsius.
Implementation of Cloud based next generation sequencing data analysis in a clinical laboratory.
Onsongo, Getiria; Erdmann, Jesse; Spears, Michael D; Chilton, John; Beckman, Kenneth B; Hauge, Adam; Yohe, Sophia; Schomaker, Matthew; Bower, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat
2014-05-23
The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories. To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample. We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.
Balter, Max L; Chen, Alvin I; Fromholtz, Alex; Gorshkov, Alex; Maguire, Tim J; Yarmush, Martin L
2016-10-01
Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.
NASA Astrophysics Data System (ADS)
Garg, Ishita; Karwoski, Ronald A.; Camp, Jon J.; Bartholmai, Brian J.; Robb, Richard A.
2005-04-01
Chronic obstructive pulmonary diseases (COPD) are debilitating conditions of the lung and are the fourth leading cause of death in the United States. Early diagnosis is critical for timely intervention and effective treatment. The ability to quantify particular imaging features of specific pathology and accurately assess progression or response to treatment with current imaging tools is relatively poor. The goal of this project was to develop automated segmentation techniques that would be clinically useful as computer assisted diagnostic tools for COPD. The lungs were segmented using an optimized segmentation threshold and the trachea was segmented using a fixed threshold characteristic of air. The segmented images were smoothed by a morphological close operation using spherical elements of different sizes. The results were compared to other segmentation approaches using an optimized threshold to segment the trachea. Comparison of the segmentation results from 10 datasets showed that the method of trachea segmentation using a fixed air threshold followed by morphological closing with spherical element of size 23x23x5 yielded the best results. Inclusion of greater number of pulmonary vessels in the lung volume is important for the development of computer assisted diagnostic tools because the physiological changes of COPD can result in quantifiable anatomic changes in pulmonary vessels. Using a fixed threshold to segment the trachea removed airways from the lungs to a better extent as compared to using an optimized threshold. Preliminary measurements gathered from patient"s CT scans suggest that segmented images can be used for accurate analysis of total lung volume and volumes of regional lung parenchyma. Additionally, reproducible segmentation allows for quantification of specific pathologic features, such as lower intensity pixels, which are characteristic of abnormal air spaces in diseases like emphysema.
Microfluidic Sample Preparation for Diagnostic Cytopathology
Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino
2014-01-01
The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972
Clinical laboratory: bigger is not always better.
Plebani, Mario
2018-06-27
Laboratory services around the world are undergoing substantial consolidation and changes through mechanisms ranging from mergers, acquisitions and outsourcing, primarily based on expectations to improve efficiency, increasing volumes and reducing the cost per test. However, the relationship between volume and costs is not linear and numerous variables influence the end cost per test. In particular, the relationship between volumes and costs does not span the entire platter of clinical laboratories: high costs are associated with low volumes up to a threshold of 1 million test per year. Over this threshold, there is no linear association between volumes and costs, as laboratory organization rather than test volume more significantly affects the final costs. Currently, data on laboratory errors and associated diagnostic errors and risk for patient harm emphasize the need for a paradigmatic shift: from a focus on volumes and efficiency to a patient-centered vision restoring the nature of laboratory services as an integral part of the diagnostic and therapy process. Process and outcome quality indicators are effective tools to measure and improve laboratory services, by stimulating a competition based on intra- and extra-analytical performance specifications, intermediate outcomes and customer satisfaction. Rather than competing with economic value, clinical laboratories should adopt a strategy based on a set of harmonized quality indicators and performance specifications, active laboratory stewardship, and improved patient safety.
Gross Brain Morphology in Schizophrenia: A Regional Analysis of Traditional Diagnostic Subtypes.
ERIC Educational Resources Information Center
Raz, Sarah
1994-01-01
Categorized 56 patients with chronic schizophrenia into 2 groups based on traditional diagnostic subtypology. Compared groups on indices of cortical and subcortical cerebrospinal fluid (SCF) volume to explore whether more virulent nonparanoid disorder was linked to cortical/subcortical morphological brain abnormalities. Two groups differed…
Laser program annual report, 1977. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, C.F.; Jarman, B.D.
1978-07-01
An overview is given of the laser fusion program. The solid-state program covers the Shiva and Nova projects. Laser components, control systems, alignment systems, laser beam diagnostics, power conditioning, and optical components are described. The fusion experimental program concerns the diagnostics and data acquisition associated with Argus and Shiva. (MOW)
NASA Astrophysics Data System (ADS)
Jardin, A.; Mazon, D.; Malard, P.; O'Mullane, M.; Chernyshova, M.; Czarski, T.; Malinowski, K.; Kasprowicz, G.; Wojenski, A.; Pozniak, K.
2017-08-01
The tokamak WEST aims at testing ITER divertor high heat flux component technology in long pulse operation. Unfortunately, heavy impurities like tungsten (W) sputtered from the plasma facing components can pollute the plasma core by radiation cooling in the soft x-ray (SXR) range, which is detrimental for the energy confinement and plasma stability. SXR diagnostics give valuable information to monitor impurities and study their transport. The WEST SXR diagnostic is composed of two new cameras based on the Gas Electron Multiplier (GEM) technology. The WEST GEM cameras will be used for impurity transport studies by performing 2D tomographic reconstructions with spectral resolution in tunable energy bands. In this paper, we characterize the GEM spectral response and investigate W density reconstruction thanks to a synthetic diagnostic recently developed and coupled with a tomography algorithm based on the minimum Fisher information (MFI) inversion method. The synthetic diagnostic includes the SXR source from a given plasma scenario, the photoionization, electron cloud transport and avalanche in the detection volume using Magboltz, and tomographic reconstruction of the radiation from the GEM signal. Preliminary studies of the effect of transport on the W ionization equilibrium and on the reconstruction capabilities are also presented.
Deep Learning Role in Early Diagnosis of Prostate Cancer
Reda, Islam; Khalil, Ashraf; Elmogy, Mohammed; Abou El-Fetouh, Ahmed; Shalaby, Ahmed; Abou El-Ghar, Mohamed; Elmaghraby, Adel; Ghazal, Mohammed; El-Baz, Ayman
2018-01-01
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system. PMID:29804518
Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro
2017-05-01
We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.
Naval Medical Research and Development News. Volume 7, Issue 9
2015-09-01
the simulated training; career intentions; and, general, occupational, and task-specific self-efficacy using pretest and post - test surveys from a...DTRA). On August 31, a state-of-the-art laboratory, designed and equipped by NAMRU-2 utilizing DTRA funding, was officially opened at the Ream...transported to the labs for testing . What was needed was a rapid, on -site, diagnostic test that could be done quickly. “The U.S. Centers for Disease
La, Moonwoo; Park, Sang Min; Kim, Dong Sung
2015-01-01
In this study, a multiple sample dispenser for precisely metered fixed volumes was successfully designed, fabricated, and fully characterized on a plastic centrifugal lab-on-a-disk (LOD) for parallel biochemical single-end-point assays. The dispenser, namely, a centrifugal multiplexing fixed-volume dispenser (C-MUFID) was designed with microfluidic structures based on the theoretical modeling about a centrifugal circumferential filling flow. The designed LODs were fabricated with a polystyrene substrate through micromachining and they were thermally bonded with a flat substrate. Furthermore, six parallel metering and dispensing assays were conducted at the same fixed-volume (1.27 μl) with a relative variation of ±0.02 μl. Moreover, the samples were metered and dispensed at different sub-volumes. To visualize the metering and dispensing performances, the C-MUFID was integrated with a serpentine micromixer during parallel centrifugal mixing tests. Parallel biochemical single-end-point assays were successfully conducted on the developed LOD using a standard serum with albumin, glucose, and total protein reagents. The developed LOD could be widely applied to various biochemical single-end-point assays which require different volume ratios of the sample and reagent by controlling the design of the C-MUFID. The proposed LOD is feasible for point-of-care diagnostics because of its mass-producible structures, reliable metering/dispensing performance, and parallel biochemical single-end-point assays, which can identify numerous biochemical. PMID:25610516
Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauner, D.; Kurutz, U.; Fantz, U.
2015-04-08
As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.« less
Sakr, Tamer M; Nawar, Mohamed F; Fasih, T W; El-Bayoumy, S; Abd El-Rehim, H A
2017-11-01
Nanostructured materials attracted considerable attention because of its high surface area to volume ratio resulting from their nano-scale dimensions. This class of sorbents is expected to have a potential impact on enhancement the efficacy of radioisotope generators for diagnostic and therapeutic applications in nuclear medicine. This review provides a summary on the importance of nanostructured materials as effective sorbents for the development of clinical-scale radioisotope generators and outlining the assessment of recent developments, key challenges and promising access to the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heidrich, G; Hassepass, F; Dullin, C; Attin, T; Grabbe, E; Hannig, C
2005-12-01
Successful endodontic diagnostics and therapy call for adequate depiction of the root canal anatomy with multimodal diagnostic imaging. The aim of the present study is to evaluate visualization of the endodont with flat-panel detector volume CT (FD-VCT). 13 human teeth were examined with the prototype of a FD-VCT. After data acquisition and generation of volume data sets in volume rendering technology (VRT), the findings obtained were compared to conventional X-rays and cross-section preparations of the teeth. The anatomical structures of the endodont such as root canals, side canals and communications between different root canals as well as denticles could be detected precisely with FD-VCT. The length of curved root canals was also determined accurately. The spatial resolution of the system is around 140 microm. Only around 73 % of the main root canals detected with FD-VCT and 87 % of the roots could be visualized with conventional dental X-rays. None of the side canals, shown with FD-VCT, was detectable on conventional X-rays. In all cases the enamel and dentin of the teeth could be well delineated. No differences in image quality could be discerned between stored and freshly extracted teeth, or between primary and adult teeth. FD-VCT is an innovative diagnostic modality in preclinical and experimental use for non-destructive three-dimensional analysis of teeth. Thanks to the high isotropic spatial resolution compared with conventional X-rays, even the minutest structures, such as side canals, can be detected and evaluated. Potential applications in endodontics include diagnostics and evaluation of all steps of root canal treatment, ranging from trepanation through determination of the length of the root canal to obturation.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
Clinical chemistry through Clinical Chemistry: a journal timeline.
Rej, Robert
2004-12-01
The establishment of the modern discipline of clinical chemistry was concurrent with the foundation of the journal Clinical Chemistry and that of the American Association for Clinical Chemistry in the late 1940s and early 1950s. To mark the 50th volume of this Journal, I chronicle and highlight scientific milestones, and those within the discipline, as documented in the pages of Clinical Chemistry. Amazing progress has been made in the field of laboratory diagnostics over these five decades, in many cases paralleling-as well as being bolstered by-the rapid pace in the development of computer technologies. Specific areas of laboratory medicine particularly well represented in Clinical Chemistry include lipids, endocrinology, protein markers, quality of laboratory measurements, molecular diagnostics, and general advances in methodology and instrumentation.
Real-time Crystal Growth Visualization and Quantification by Energy-Resolved Neutron Imaging
Tremsin, Anton S.; Perrodin, Didier; Losko, Adrian S.; ...
2017-04-20
Energy-resolved neutron imaging is investigated as a real-time diagnostic tool for visualization and in-situ measurements of "blind" processes. This technique is demonstrated for the Bridgman-type crystal growth enabling remote and direct measurements of growth parameters crucial for process optimization. The location and shape of the interface between liquid and solid phases are monitored in real-time, concurrently with the measurement of elemental distribution within the growth volume and with the identification of structural features with a ~100 μm spatial resolution. Such diagnostics can substantially reduce the development time between exploratory small scale growth of new materials and their subsequent commercial production.more » This technique is widely applicable and is not limited to crystal growth processes.« less
Huang, Jing; Zhang, Hao; Li, Tianqi; Lin, Huiying; Svanberg, Katarina; Svanberg, Sune
2015-11-01
Sinusitis is a very common disease and improved diagnostic tools are desirable also in view of reducing over-prescription of antibiotics. A non-intrusive optical technique called GASMAS (GAs in Scattering Media Absorption Spectroscopy), which has a true potential of being developed into an important complement to other means of detection, was utilized in this work. Water vapor in the frontal sinuses, related to the free gas volume, was studied at around 937 nm in healthy volunteers. The results show a good stability of the GASMAS signals over extended times for the frontal sinuses for all volunteers, showing promising applicability to detect anomalies due to sinusitis. Measurements were also performed following the application of a decongestion spray. No noticeable signal change was observed, which is consistent with the fact that the water vapor concentration is given by the temperature only, and is not influenced by changes in cavity ventilation. Evaluated GASMAS data recorded on 6 consecutive days show signal stability for the left and right frontal sinus in one of the test volunteers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M
2018-05-03
Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Bornstein, E; Monteagudo, A; Santos, R; Strock, I; Tsymbal, T; Lenchner, E; Timor-Tritsch, I E
2010-07-01
To evaluate the feasibility and the processing time of offline analysis of three-dimensional (3D) brain volumes to perform a basic, as well as a detailed, targeted, fetal neurosonogram. 3D fetal brain volumes were obtained in 103 consecutive healthy fetuses that underwent routine anatomical survey at 20-23 postmenstrual weeks. Transabdominal gray-scale and power Doppler volumes of the fetal brain were acquired by one of three experienced sonographers (an average of seven volumes per fetus). Acquisition was first attempted in the sagittal and coronal planes. When the fetal position did not enable easy and rapid access to these planes, axial acquisition at the level of the biparietal diameter was performed. Offline analysis of each volume was performed by two of the authors in a blinded manner. A systematic technique of 'volume manipulation' was used to identify a list of 25 brain dimensions/structures comprising a complete basic evaluation, intracranial biometry and a detailed targeted fetal neurosonogram. The feasibility and reproducibility of obtaining diagnostic-quality images of the different structures was evaluated, and processing times were recorded, by the two examiners. Diagnostic-quality visualization was feasible in all of the 25 structures, with an excellent visualization rate (85-100%) reported in 18 structures, a good visualization rate (69-97%) reported in five structures and a low visualization rate (38-54%) reported in two structures, by the two examiners. An average of 4.3 and 5.4 volumes were used to complete the examination by the two examiners, with a mean processing time of 7.2 and 8.8 minutes, respectively. The overall agreement rate for diagnostic visualization of the different brain structures between the two examiners was 89.9%, with a kappa coefficient of 0.5 (P < 0.001). In experienced hands, offline analysis of 3D brain volumes is a reproducible modality that can identify all structures necessary to complete both a basic and a detailed second-trimester fetal neurosonogram. Copyright 2010 ISUOG. Published by John Wiley & Sons, Ltd.
Rapid biosensing tools for cancer biomarkers.
Ranjan, Rajeev; Esimbekova, Elena N; Kratasyuk, Valentina A
2017-01-15
The present review critically discusses the latest developments in the field of smart diagnostic systems for cancer biomarkers. A wide coverage of recent biosensing approaches involving aptamers, enzymes, DNA probes, fluorescent probes, interacting proteins and antibodies in vicinity to transducers such as electrochemical, optical and piezoelectric is presented. Recent advanced developments in biosensing approaches for cancer biomarker owes much credit to functionalized nanomaterials due to their unique opto-electronic properties and enhanced surface to volume ratio. Biosensing methods for a plenty of cancer biomarkers has been summarized emphasizing the key principles involved. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Laboratory Analysis for Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Krihak, Michael (Editor); Shaw, Tianna
2014-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood/urine chemistry and biomolecular measurements in future space exploration missions. SUMMARY The NASA Exploration Laboratory Analysis project seeks to develop capability to diagnose anticipated space exploration medical conditions on future manned missions. To achieve this goal, NASA will leverage existing point-of-care technology to provide clinical laboratory measurements in space. This approach will place the project on a path to minimize sample, reagent consumption, mass, volume and power. For successful use in the space environment, NASA specific conditions such as micro gravity and radiation, for example, will also need to be addressed.
[Clinical picture, diagnostics and prophylaxis of a syndrome in conditions of the Far North].
Ukhocskiĭ, D M; Tegza, V Iu; Rezvantsev, M V; Vasil'chenko, V V; Belikova, T M
2014-10-01
The analysis of a clinical picture barometeosensitivity in a seaside zone of the Far North is carried out in the article. A diagnostic test included the following laboratory assessments: complete blood count, complete urinary analysis, biomedical measurement assessment, immunology blood research and functional renal test; analysis of the level of an electrolyte in the blood and hormone receptor status; and the following instrumental diagnostics: The auscultatory Korotkov's method of determining blood pressure, electrocardiography, variational pulsometry, chest X-ray, mechanocardiography, echocardiography and abdominal ultrasound; and also consultation of ophthalmologist and neuropathologist. Every patient should keep a diary "weather - health" before and after the treatment. Peculiarities of cardiovascular system, vegetative systems and neuroendocrine system of servicemen, coming to the Far North and mechanisms of development of barometeosensivity were revealed. It has been established that atmospheric pressure variation affects systolic and diastolic blood pressure, heart rate, systolic discharge, Kerdo index, effectiveness of myocardial function, end-diastolic and end-systolic volume, level of cholesterol, triglycerides, kalium, adrenalin, triiodothyronine, blood plasma and plasma renin activity in barometeosensetiv servicemen. The criteria of diagnostics of barometeosensivity in conditions of the Far North are suggested. The influence of baromemteosensivity on the combat capability of serviceman is researched.
Registration of in vivo MR to histology of rodent brains using blockface imaging
NASA Astrophysics Data System (ADS)
Uberti, Mariano; Liu, Yutong; Dou, Huanyu; Mosley, R. Lee; Gendelman, Howard E.; Boska, Michael
2009-02-01
Registration of MRI to histopathological sections can enhance bioimaging validation for use in pathobiologic, diagnostic, and therapeutic evaluations. However, commonly used registration methods fall short of this goal due to tissue shrinkage and tearing after brain extraction and preparation. In attempts to overcome these limitations we developed a software toolbox using 3D blockface imaging as the common space of reference. This toolbox includes a semi-automatic brain extraction technique using constraint level sets (CLS), 3D reconstruction methods for the blockface and MR volume, and a 2D warping technique using thin-plate splines with landmark optimization. Using this toolbox, the rodent brain volume is first extracted from the whole head MRI using CLS. The blockface volume is reconstructed followed by 3D brain MRI registration to the blockface volume to correct the global deformations due to brain extraction and fixation. Finally, registered MRI and histological slices are warped to corresponding blockface images to correct slice specific deformations. The CLS brain extraction technique was validated by comparing manual results showing 94% overlap. The image warping technique was validated by calculating target registration error (TRE). Results showed a registration accuracy of a TRE < 1 pixel. Lastly, the registration method and the software tools developed were used to validate cell migration in murine human immunodeficiency virus type one encephalitis.
Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia.
Hung, Kuo-Chi; Wu, Pei-Chang; Poon, Yi-Chieh; Chang, Hsueh-Wen; Lai, Ing-Chou; Tsai, Jen-Chia; Lin, Pei-Wen; Teng, Mei-Ching
2016-02-01
To compare the diagnostic abilities of spectral-domain optical coherence tomography (SD-OCT; Spectralis OCT) and time-domain OCT (TD-OCT; Stratus OCT). Changes in macular parameters in highly myopic eyes of glaucoma patients and highly myopic eyes of glaucoma suspects were evaluated and compared. We collected data from 72 highly myopic eyes (spherical equivalent, ≤-6.0D). Forty-one eyes had perimetric glaucoma and 31 eyes were suspected to have glaucoma (control group). All eyes underwent SD-OCT and TD-OCT imaging. Area under the receiver operating characteristic (AUROC) curve and sensitivity were examined on macular volume and thickness parameters at a fixed specificity and compared between groups. The highest TD-OCT AUROC curves were found using outer inferior sector macular thickness (AUROC curve, 0.911) and volume (AUROC curve, 0.909). The highest SD-OCT AUROC curves were found using outer inferior region thickness (AUROC curve, 0.836) and volume (AUROC curve, 0.834). The difference between the two imaging modalities was not statistically significant (thickness, p = 0.141; volume, p = 0.138). The sensitivity of TD-OCT macular outer inferior average thickness was highest and was 88.2%, with a specificity of 80.4%. The sensitivity of TD-OCT average volume measurements in this same region was 76.5%, with a specificity of 91.3%. The SD-OCT average thickness measurements also had the highest sensitivity in this region, which was 78.6%, with a specificity of 82.1%. The SD-OCT volume measurements had a sensitivity of 67.9%, with a specificity of 92.3%. Both SD-OCT and TD-OCT measurements of outer inferior macular thickness and volume can differentiate between eyes of glaucoma patients and glaucoma suspects with high myopia. These independent predictors all had good sensitivity. Based on our results, SD-OCT and TD-OCT have similar diagnostic abilities. These parameters may provide useful additional data in highly myopic eyes to complement standard glaucoma diagnosis tools.
Medical Surveillance Monthly Report (MSMR). Volume 19, Number 1, January 2012
2012-01-01
malaria ; or (b) Hospitalization in Iraq/Afghanistan with a malaria diagnosis in any diagnostic position; or (c) Two or more outpatient primary (fi rst...e most common diagnostic test for malaria is the examination under the micro- scope of thin and thick fi lm blood smears. Aft er the blood on the...improve compliance with personal protective measures. Future eff orts will focus on rapid diagnostic tests , creating an inventory and archive of DoD
Optimal Sensor Allocation for Fault Detection and Isolation
NASA Technical Reports Server (NTRS)
Azam, Mohammad; Pattipati, Krishna; Patterson-Hine, Ann
2004-01-01
Automatic fault diagnostic schemes rely on various types of sensors (e.g., temperature, pressure, vibration, etc) to measure the system parameters. Efficacy of a diagnostic scheme is largely dependent on the amount and quality of information available from these sensors. The reliability of sensors, as well as the weight, volume, power, and cost constraints, often makes it impractical to monitor a large number of system parameters. An optimized sensor allocation that maximizes the fault diagnosibility, subject to specified weight, volume, power, and cost constraints is required. Use of optimal sensor allocation strategies during the design phase can ensure better diagnostics at a reduced cost for a system incorporating a high degree of built-in testing. In this paper, we propose an approach that employs multiple fault diagnosis (MFD) and optimization techniques for optimal sensor placement for fault detection and isolation (FDI) in complex systems. Keywords: sensor allocation, multiple fault diagnosis, Lagrangian relaxation, approximate belief revision, multidimensional knapsack problem.
Diagnosis of condensation-induced waterhammer: Case studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Rothe, P.H.; Wallis, G.B.
1988-10-01
This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer, and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of themore » event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 20 refs., 21 figs., 6 tabs.« less
Diagnosis of condensation-induced waterhammer: Methods and background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izenson, M.G.; Rothe, P.H.; Wallis, G.B.
This guidebook provides reference material and diagnostic procedures concerning condensation-induced waterhammer in nuclear power plants. Condensation-induced waterhammer is the most damaging form of waterhammer and its diagnosis is complicated by the complex nature of the underlying phenomena. In Volume 1, the guidebook groups condensation-induced waterhammers into five event classes which have similar phenomena and levels of damage. Diagnostic guidelines focus on locating the event center where condensation and slug acceleration take place. Diagnosis is described in three stages: an initial assessment, detailed evaluation and final confirmation. Graphical scoping analyses are provided to evaluate whether an event from one of themore » event classes could have occurred at the event center. Examples are provided for each type of waterhammer. Special instructions are provided for walking down damaged piping and evaluating damage due to waterhammer. To illustrate the diagnostic methods and document past experience, six case studies have been compiled in Volume 2. These case studies, based on actual condensation-induced waterhammer events at nuclear plants, present detailed data and work through the event diagnosis using the tools introduced in the first volume. 65 figs., 8 tabs.« less
Esfandyarpour, Rahim; DiDonato, Matthew J.; Yang, Yuxin; Durmus, Naside Gozde; Harris, James S.; Davis, Ronald W.
2017-01-01
Isolation and characterization of rare cells and molecules from a heterogeneous population is of critical importance in diagnosis of common lethal diseases such as malaria, tuberculosis, HIV, and cancer. For the developing world, point-of-care (POC) diagnostics design must account for limited funds, modest public health infrastructure, and low power availability. To address these challenges, here we integrate microfluidics, electronics, and inkjet printing to build an ultra–low-cost, rapid, and miniaturized lab-on-a-chip (LOC) platform. This platform can perform label-free and rapid single-cell capture, efficient cellular manipulation, rare-cell isolation, selective analytical separation of biological species, sorting, concentration, positioning, enumeration, and characterization. The miniaturized format allows for small sample and reagent volumes. By keeping the electronics separate from microfluidic chips, the former can be reused and device lifetime is extended. Perhaps most notably, the device manufacturing is significantly less expensive, time-consuming, and complex than traditional LOC platforms, requiring only an inkjet printer rather than skilled personnel and clean-room facilities. Production only takes 20 min (vs. up to weeks) and $0.01—an unprecedented cost in clinical diagnostics. The platform works based on intrinsic physical characteristics of biomolecules (e.g., size and polarizability). We demonstrate biomedical applications and verify cell viability in our platform, whose multiplexing and integration of numerous steps and external analyses enhance its application in the clinic, including by nonspecialists. Through its massive cost reduction and usability we anticipate that our platform will enable greater access to diagnostic facilities in developed countries as well as POC diagnostics in resource-poor and developing countries. PMID:28167769
Yin, Jun-Qiang; Fu, Yi-Wei; Xie, Xian-Biao; Cheng, Xiao-Yu; Yang, Xiao-Yu; Liu, Wei-Hai; Tu, Jian; Gao, Zhen-Hua; Shen, Jing-Nan
2018-06-01
Telangiectatic osteosarcoma (TOS), a rare variant of osteosarcoma, may be easily misdiagnosed as aneurysmal bone cyst (ABC). The aims of this study were to investigate the diagnostic and prognostic factors of TOS by reviewing our experience with TOS and to develop a diagnostic model that may distinguish TOS from ABC. We identified 51 cases of TOS treated at the First Affiliated Hospital of Sun Yat-Sen University from March 2001 to January 2016 and reviewed their records, imaging information and pathological studies. A diagnostic model was developed to differentiate TOS and ABC by Bayes discriminant analysis and was evaluated. The log-rank test was used to analyze the prognostic factors of TOS and to compare the outcome differences between TOS and other high-grade osteosarcoma subtypes. The multi-disciplinary diagnostic method employed that combined clinical, imaging, and pathological studies enhanced the diagnostic accuracy. Age 18 years or younger and pathologic fracture were more common among the TOS patients than among the ABC patients (P = .004 and .005, respectively). The average white blood cell (WBC), platelet, lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) values of the TOS patients were higher than those of the ABC patients ( P = .002, .003, .007, and .007, respectively). Our diagnostic model, including the aforementioned factors, accurately predicted 62% and 78% of the TOS patients in the training and validation sets, respectively. The 5-year estimates of event-free survival and overall survival of the TOS patients were 52.5 ± 9.4% and 54.9 ± 8.8%, respectively, which were similar to those of patients with other osteosarcoma subtypes ( P = .950 and .615, respectively). Tumor volume and the LDH level were predictive prognostic factors ( P = .040 and .044) but not the presence of pathologic fracture or misdiagnosis ( P = .424 and .632, all respectively). The multi-disciplinary diagnostic method and diagnostic model based on predictive factors, i.e. , age, the presence of pathologic fracture, and platelet, LDH, ALP and WBC levels, aided the differentiation of TOS and ABC. Smaller tumors and normal LDH levels were associated with better outcomes.
1987-10-31
measurement. A cube beam splitter divided incident laser light, I, into two beams , IR and I0, of approximately equal intensity. The reference laser...scattered molecules were found to be strongly dependent on beam kinetic energy. These distributions are markedly non -Boltzmann and indicate that the...satisfy these requirements has been developed. The system, named OBIR for optical beam induced reflectance, is non -destructive and operates at 20C in
New Stethoscope With Extensible Diaphragm.
Takashina, Tsunekazu; Shimizu, Masashi; Muratake, Torakazu; Mayuzumi, Syuichi
2016-08-25
This study compared the diagnostic efficacy of the common suspended diaphragm stethoscope (SDS) with a new extensible diaphragm stethoscope (EDS) for low-frequency heart sounds. The EDS was developed by using an ethylene propylene diene monomer diaphragm. The results showed that the EDS enhanced both the volume and quality of low-frequency heart sounds, and improved the ability of examiners to auscultate such heart sounds. Based on the results of the sound analysis, the EDS is more efficient than the SDS. (Circ J 2016; 80: 2047-2049).
Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder
de Zeeuw, Patrick; Schnack, Hugo G.; van Belle, Janna; Weusten, Juliette; van Dijk, Sarai; Langen, Marieke; Brouwer, Rachel M.; van Engeland, Herman; Durston, Sarah
2012-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development. In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development. PMID:22536435
Mori, S; Endo, M; Kohno, R; Minohara, S
2006-09-01
Conventional respiratory-gated CT and four-dimensional CT (4DCT) are disadvantaged by their low temporal resolution, which results in the inclusion of anatomic motion-induced artefacts. These represent a significant source of error both in radiotherapy treatment planning for the thorax and upper abdomen and in diagnostic procedures. In particular, temporal resolution and image quality are vitally important to accurate diagnosis and the minimization of planning target volume margin due to respiratory motion. To improve both temporal resolution and signal-to-noise ratio (SNR), we developed a respiratory-correlated segment reconstruction method (RS) and adapted it to the Feldkamp-Davis-Kress algorithm (FDK) with a 256 multidetector row CT (256MDCT). The 256MDCT scans approximately 100 mm in the craniocaudal direction with a 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of a respiratory sensing system operating in cine scan mode (continuous axial scan with the table stationary). We evaluated the RS-FDK for volume accuracy and image noise in a phantom study with the 256MDCT and compared results with those for a full scan (FS-FDK), which is usually employed in conventional 4DCT and in half scan (HS-FDK). Results showed that the RS-FDK gave a more accurate volume than the others and had the same SNR as the FS-FDK. In a subsequent animal study, we demonstrated a practical sorting process for projection data which was unaffected by variations in respiratory period, and found that the RS-FDK gave the clearest visualization among the three algorithms of the margins of the liver and pulmonary vessels. In summary, the RS-FDK algorithm provides multi-phase images with higher temporal resolution and better SNR. This method should prove useful when combined with new radiotherapeutic and diagnostic techniques.
Diez, Alejandro; Powelson, John; Sundaram, Chandru P; Taber, Tim E; Mujtaba, Muhammad A; Yaqub, Muhammad S; Mishler, Dennis P; Goggins, William C; Sharfuddin, Asif A
2014-06-01
Living donor evaluation involves imaging to determine the choice of kidney for nephrectomy. Our aim was to study the diagnostic accuracy and correlation between CT-based volume measurements and split renal function (SRF) as measured by nuclear renography in potential living donors and its impact on kidney selection decision. We analyzed 190 CT-based volume measurements in healthy donors, of which 65 donors had a radionuclide study performed to determine SRF. There were no differences in demographics, anthropometric measurements, total volumes, eGFR, creatinine clearances between those who required a nuclear scan and those who did not. There was a significant correlation between CT-volume-measurement-based SRF and nuclear-scan-based SRF (Pearson coefficient r 0.59; p < 0.001). Furthermore, selective nuclear-based SRF allowed careful selection of donor nephrectomy, leaving the donor with the higher functioning kidney in most cases. There was also a significantly higher number of right-sided nephrectomies selected after nuclear-based SRF studies. CT-based volume measurements in living donor imaging have sufficient correlation with nuclear-based SRF. Selective use of nuclear-scan-based SRF allows careful selection for donor nephrectomy. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Savolainen, S; Laakso, M P; Paljärvi, L; Alafuzoff, I; Hurskainen, H; Partanen, K; Soininen, H; Vapalahti, M
2000-02-01
MR studies have shown hippocampal atrophy to be a sensitive diagnostic feature of Alzheimer's disease (AD). In this study, we measured the hippocampal volumes of patients with a clinical diagnosis of normal pressure hydrocephalus (NPH), a potentially reversible cause of dementia when shunted. Further, we examined the relationship between the hippocampal volumes and cortical AD pathologic findings, intracranial pressure, and clinical outcomes in cases of NPH. We measured hippocampal volumes from 37 patients with a clinical diagnosis of NPH (27 control volunteers and 24 patients with AD). The patients with NPH underwent biopsy, and their clinical outcomes were followed for a year. Compared with those for control volunteers, the findings for patients with NPH included a minor left-side decrease in the hippocampal volumes (P < .05). Compared with those for patients with AD, the findings for patients with NPH included significantly larger hippocampi on both sides. Although not statistically significant, trends toward larger volumes were observed in patients with NPH who had elevated intracranial pressure, who benefited from shunting, and who did not display cortical AD pathologic findings. Measurements of hippocampal volumes among patients with a clinical diagnosis of NPH have clear clinical implications, providing diagnostic discrimination from AD and possibly prediction of clinical outcome after shunting.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.
2002-01-01
A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.
Market assessment of tuberculosis diagnostics in China in 2012.
Zhao, Y-L; Pang, Y; Xia, H; Du, X; Chin, D; Huan, S-T; Dong, H-Y; Zhang, Z-Y; Ginnard, J; Perkins, M D; Boehme, C C; Jefferson, C; Pantoja, A; Qin, Z Z; Chedore, P; Denkinger, C M; Pai, M; Kik, S V
2016-03-01
To assess the 2012 served available market for tuberculosis (TB) diagnostics in China in the sector served by the China Centre for Disease Control and Prevention (CDC) and the hospital sector in China, including both designated TB hospitals and general hospitals. Test volumes and unit costs were assessed for tuberculin skin tests, interferon-gamma release assays (IGRAs), smear microscopy, serology, cultures, speciation tests, nucleic-acid amplification tests (NAATs), drug susceptibility tests and adenosine-deaminase tests (ADA). Data were obtained from electronic databases (CDC sector) and through surveys (hospital sector), and were estimated for the two sectors and for the country as a whole. Test costs were estimated by staff at China CDC, and using published literature. In 2012, the China CDC and hospital sectors performed a total of 44 million TB diagnostic tests at an overall value of US$294 million. Tests used by the CDC sector were smear microscopy, solid and liquid culture and DST, while the hospital sector also used IGRAs, NAATs, ADA and serology. The hospital sector accounted for 76% of the overall test volume and 94% of the market value. China has a very large TB diagnostic market that encompasses a wide range of diagnostic tests, with the majority being performed in Chinese hospitals.
Laboratory simulation of space plasma phenomena*
NASA Astrophysics Data System (ADS)
Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.
2017-12-01
Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.
Pituitary iron and volume imaging in healthy controls.
Noetzli, L J; Panigrahy, A; Hyderi, A; Dongelyan, A; Coates, T D; Wood, J C
2012-02-01
Patients with transfusional iron overload develop iron deposits in the pituitary gland, which are associated with volume loss and HH. The purpose of this study was to characterize R2 and volumetric data in a healthy population for diagnostic use in patients with transfusional iron overload. One hundred healthy controls without iron overload between the ages of 2 and 48 were recruited to have MR imaging of the brain to assess their pituitary R2 and volume. Pituitary R2 was assessed with a 8-echo spin-echo sequence, and pituitary volumes, by a 3D spoiled gradient-echo sequence with 1-mm(3) resolution. A 2-component continuous piecewise linear approximation was used for creating volumetric and R2 nomograms. Equations were generated from regression relationships for convenient z-score calculation. Pituitary R2 rose weakly with age (r(2) = 0.19, P < .0001). Anterior and total pituitary volumes increased steadily up to 18 years of age, after which volume slightly decreased. Females had larger pituitary glands, most likely representing their larger lactotroph population. From these data, a clinician can calculate the z scores for R2 and pituitary volume in patients with iron overload. Normal ranges are well-differentiated from values previously associated with endocrine disease in transfusional siderosis; this finding suggests that preclinical iron overload can be recognized and appropriately treated.
Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G
2015-11-01
Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.
Dueholm, M; Christensen, J W; Rydbjerg, S; Hansen, E S; Ørtoft, G
2015-06-01
To evaluate the diagnostic efficiency of two-dimensional (2D) and three-dimensional (3D) transvaginal ultrasonography, power Doppler angiography (PDA) and gel infusion sonography (GIS) at offline analysis for recognition of malignant endometrium compared with real-time evaluation during scanning, and to determine optimal image parameters at 3D analysis. One hundred and sixty-nine consecutive women with postmenopausal bleeding and endometrial thickness ≥ 5 mm underwent systematic evaluation of endometrial pattern on 2D imaging, and 2D videoclips and 3D volumes were later analyzed offline. Histopathological findings at hysteroscopy or hysterectomy were used as the reference standard. The efficiency of the different techniques for diagnosis of malignancy was calculated and compared. 3D image parameters, endometrial volume and 3D vascular indices were assessed. Optimal 3D image parameters were transformed by logistic regression into a risk of endometrial cancer (REC) score, including scores for body mass index, endometrial thickness and endometrial morphology at gray-scale and PDA and GIS. Offline 2D and 3D analysis were equivalent, but had lower diagnostic performance compared with real-time evaluation during scanning. Their diagnostic performance was not markedly improved by the addition of PDA or GIS, but their efficiency was comparable with that of real-time 2D-GIS in offline examinations of good image quality. On logistic regression, the 3D parameters from the REC-score system had the highest diagnostic efficiency. The area under the curve of the REC-score system at 3D-GIS (0.89) was not improved by inclusion of vascular indices or endometrial volume calculations. Real-time evaluation during scanning is most efficient, but offline 2D and 3D analysis is useful for prediction of endometrial cancer when good image quality can be obtained. The diagnostic efficiency at 3D analysis may be improved by use of REC-scoring systems, without the need for calculation of vascular indices or endometrial volume. The optimal imaging modality appears to be real-time 2D-GIS. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Kawase, Takatsugu; Kunieda, Etsuo; Deloar, Hossain M; Tsunoo, Takanori; Seki, Satoshi; Oku, Yohei; Saitoh, Hidetoshi; Saito, Kimiaki; Ogawa, Eileen N; Ishizaka, Akitoshi; Kameyama, Kaori; Kubo, Atsushi
2009-10-01
To validate the feasibility of developing a radiotherapy unit with kilovoltage X-rays through actual irradiation of live rabbit lungs, and to explore the practical issues anticipated in future clinical application to humans through Monte Carlo dose simulation. A converging stereotactic irradiation unit was developed, consisting of a modified diagnostic computed tomography (CT) scanner. A tiny cylindrical volume in 13 normal rabbit lungs was individually irradiated with single fractional absorbed doses of 15, 30, 45, and 60 Gy. Observational CT scanning of the whole lung was performed every 2 weeks for 30 weeks after irradiation. After 30 weeks, histopathologic specimens of the lungs were examined. Dose distribution was simulated using the Monte Carlo method, and dose-volume histograms were calculated according to the data. A trial estimation of the effect of respiratory movement on dose distribution was made. A localized hypodense change and subsequent reticular opacity around the planning target volume (PTV) were observed in CT images of rabbit lungs. Dose-volume histograms of the PTVs and organs at risk showed a focused dose distribution to the target and sufficient dose lowering in the organs at risk. Our estimate of the dose distribution, taking respiratory movement into account, revealed dose reduction in the PTV. A converging stereotactic irradiation unit using kilovoltage X-rays was able to generate a focused radiobiologic reaction in rabbit lungs. Dose-volume histogram analysis and estimated sagittal dose distribution, considering respiratory movement, clarified the characteristics of the irradiation received from this type of unit.
A Three-Dimensional Receiver Operator Characteristic Surface Diagnostic Metric
NASA Technical Reports Server (NTRS)
Simon, Donald L.
2011-01-01
Receiver Operator Characteristic (ROC) curves are commonly applied as metrics for quantifying the performance of binary fault detection systems. An ROC curve provides a visual representation of a detection system s True Positive Rate versus False Positive Rate sensitivity as the detection threshold is varied. The area under the curve provides a measure of fault detection performance independent of the applied detection threshold. While the standard ROC curve is well suited for quantifying binary fault detection performance, it is not suitable for quantifying the classification performance of multi-fault classification problems. Furthermore, it does not provide a measure of diagnostic latency. To address these shortcomings, a novel three-dimensional receiver operator characteristic (3D ROC) surface metric has been developed. This is done by generating and applying two separate curves: the standard ROC curve reflecting fault detection performance, and a second curve reflecting fault classification performance. A third dimension, diagnostic latency, is added giving rise to 3D ROC surfaces. Applying numerical integration techniques, the volumes under and between the surfaces are calculated to produce metrics of the diagnostic system s detection and classification performance. This paper will describe the 3D ROC surface metric in detail, and present an example of its application for quantifying the performance of aircraft engine gas path diagnostic methods. Metric limitations and potential enhancements are also discussed
Yarmus, Lonny; Feller-Kopman, David; Imad, Melhem; Kim, Stephanie; Lee, Hans J
2013-09-01
Current interventional pulmonary (IP) procedural guidelines for competency are based on expert opinion. There are few objective data to support competency metrics for IP procedures. This survey reports procedural volume during IP fellowships to help define new standards in training and curriculum development. A web-based survey was developed to evaluate IP training procedural volume. The survey was administered to all US and Canadian IP fellowship directors and graduates in training from 2006 to 2011. The survey inquired about all diagnostic and therapeutic procedures performed during the specialized year of IP training. Questions regarding the training program structure were collected and analyzed. There was a 92.5% fellow response rate (37 of 40) and 77% fellowship director response rate (10 of 13) from programs in existence at the time of the survey. Procedural volume was consistent between fellowship directors and graduates (P = .64). Although there was a wide range of procedural volume and types of procedures between different programs, the procedural mean volumes were all significantly higher than the American College of Chest Physicians (ACCP) and American Thoracic Society/European Respiratory Society (ATS/ERS) guideline recommendations (P < .005). US and Canadian IP fellowships produce fellows with variable procedural volumes; however, these are significantly higher than ACCP and ATS/ERS guidelines for most programs and procedures. With a uniform training curriculum being adopted by the majority of IP fellowship programs in the United States and Canada, as well as data showing improved core knowledge in IP fellows undergoing a dedicated year of additional training, further metrics examining the impact of advanced IP training on patient outcomes are needed.
Intelligent navigation to improve obstetrical sonography.
Yeo, Lami; Romero, Roberto
2016-04-01
'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the use of software to perform manual navigation of volume datasets. Diagnostic planes and VIS-Assistance videoclips can be transmitted by telemedicine so that expert consultants can evaluate the images to provide an opinion. The end result is a user-friendly, simple, fast and consistent method of obtaining sonographic images with decreased operator dependency. Intelligent navigation is one approach to improve obstetrical sonography. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Wang, He; Lu, Shi-Chun; He, Lei; Dong, Jia-Hong
2018-02-01
Liver failure remains as the most common complication and cause of death after hepatectomy, and continues to be a challenge for doctors.t test and χ test were used for single factor analysis of data-related variables, then results were introduced into the model to undergo the multiple factors logistic regression analysis. Pearson correlation analysis was performed for related postoperative indexes, and a diagnostic evaluation was performed using the receiver operating characteristic (ROC) of postoperative indexes.Differences in age, body mass index (BMI), portal vein hypertension, bile duct cancer, total bilirubin, alkaline phosphatase (ALP), gamma-glutamyl transpeptidase (GGT), operation time, cumulative portal vein occlusion time, intraoperative blood volume, residual liver volume (RLV)/entire live rvolume, ascites volume at postoperative day (POD)3, supplemental albumin amount at POD3, hospitalization time after operation, and the prothrombin activity (PTA) were statistically significant. Furthermore, there were significant differences in total bilirubin and the supplemental albumin amount at POD3. ROC analysis of the average PTA, albumin amounts, ascites volume at POD3, and their combined diagnosis were performed, which had diagnostic value for postoperative liver failure (area under the curve (AUC): 0.895, AUC: 0.798, AUC: 0.775, and AUC: 0.903).Preoperative total bilirubin level and the supplemental albumin amount at POD3 were independent risk factors. PTA can be used as the index of postoperative liver failure, and the combined diagnosis of the indexes can improve the early prediction of postoperative liver failure.
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Ausman, James I.
1990-01-01
"Real time" surgical treatment planning utilizing multimodality imaging (CT, MRI, DA) has been developed to provide the neurosurgeon with 2D multiplanar and 3D views of a patient's lesion for stereotactic planning. Both diagnostic and therapeutic stereotactic procedures have been implemented utilizing workstation (SUN 1/10) and specially developed software and hardware (developed in collaboration with TOMO Medical Imaging Technology, Southfield, MI). This provides complete 3D and 2D free-tilt views as part of the system instrumentation. The 2D Multiplanar includes reformatted sagittal, coronal, paraaxial and free tilt oblique vectors at any arbitrary plane of the patient's lesion. The 3D includes features for extracting a view of the target volume localized by a process including steps of automatic segmentation, thresholding, and/or boundary detection with 3D display of the volumes of interest. The system also includes the capability of interactive playback of reconstructed 3D movies, which can be viewed at any hospital network having compatible software on strategical locations or at remote sites through data transmission and record documentation by image printers. Both 2D and 3D menus include real time stereotactic coordinate measurements and trajectory definition capabilities as well as statistical functions for computing distances, angles, areas, and volumes. A combined interactive 3D-2D multiplanar menu allows simultaneous display of selected trajectory, final optimization, and multiformat 2D display of free-tilt reformatted images perpendicular to selected trajectory of the entire target volume.
SER-LARS, Volume 3. Learning Objective History II. 1975-76 Edition.
ERIC Educational Resources Information Center
Montgomery County Intermediate Unit 23, Blue Bell, PA.
The third of nine volumes in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents learning objectives organized by content descriptions. Entries give a history of the use of each objective along with information on…
SER-LARS, Volume 4. Learning Objective History III. 1975-76 Edition.
ERIC Educational Resources Information Center
Montgomery County Intermediate Unit 23, Blue Bell, PA.
The fourth volume in the SER-LARS (Special Education Resources Location Analysis and Retrieval System) series, a diagnostic-prescriptive instructional data bank for teachers of handicapped children, presents a continuation of learning objectives organized by content descriptions. Entrees give a history of the use of each objective along with…
NASA Laboratory Analysis for Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Krihak, Michael K.; Shaw, Tianna E.
2014-01-01
The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability Element under the NASA Human Research Program. ELA instrumentation is identified as an essential capability for future exploration missions to diagnose and treat evidence-based medical conditions. However, mission architecture limits the medical equipment, consumables, and procedures that will be available to treat medical conditions during human exploration missions. Allocated resources such as mass, power, volume, and crew time must be used efficiently to optimize the delivery of in-flight medical care. Although commercial instruments can provide the blood and urine based measurements required for exploration missions, these commercial-off-the-shelf devices are prohibitive for deployment in the space environment. The objective of the ELA project is to close the technology gap of current minimally invasive laboratory capabilities and analytical measurements in a manner that the mission architecture constraints impose on exploration missions. Besides micro gravity and radiation tolerances, other principal issues that generally fail to meet NASA requirements include excessive mass, volume, power and consumables, and nominal reagent shelf-life. Though manned exploration missions will not occur for nearly a decade, NASA has already taken strides towards meeting the development of ELA medical diagnostics by developing mission requirements and concepts of operations that are coupled with strategic investments and partnerships towards meeting these challenges. This paper focuses on the remote environment, its challenges, biomedical diagnostics requirements and candidate technologies that may lead to successful blood-urine chemistry and biomolecular measurements in future space exploration missions.
Kang, Byeong-Teck; Jang, Dong-Pyo; Gu, Su-Hyun; Lee, Jong-Hwan; Jung, Dong-In; Lim, Chae-Young; Kim, Ha-Jung; Kim, Young-Bo; Kim, Hyung-Joong; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung
2009-01-01
The purpose of this study was to evaluate the diagnostic value of magnetic resonance imaging (MRI) and assess the correlation between the volume of the ischemic lesion and neurobehavioral status during the subacute stage of ischemic stroke. Ischemic stroke was induced in 6 healthy laboratory beagles through permanent occlusion of the middle cerebral artery (MCAO). T2-weighted and fluid-attenuated inversion recovery (FLAIR) imaging, diffusion-weighted imaging (DWI), measurement of the apparent diffusion coefficient (ADC) ratio, and neurobehavioral evaluation were performed 3 times serially by using a 1.5-T MR system: before and 3 and 10 d after MCAO. Ischemic lesions demonstrated T2 hyperintensity, FLAIR hyperintensity, and DWI hyperintensity. The ADC ratio was decreased initially but then was increased at 10 d after MCAO. Ischemic lesion volumes on T2-weighted and FLAIR imaging were not significantly different from those on DWI. The lesion volume and neurobehavioral score showed strong correlation. Our results suggest that conventional MRI may be a reliable diagnostic tool during the subacute stage of canine ischemic stroke. PMID:19887030
PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady
1990-01-01
A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.
Cone beam tomographic imaging anatomy of the maxillofacial region.
Angelopoulos, Christos
2008-10-01
Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.
A recoverable gas-cell diagnostic for the National Ignition Facility.
Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B
2016-11-01
The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.
Climate Model Diagnostic Analyzer
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei
2015-01-01
The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.
NASA Astrophysics Data System (ADS)
Gerakis, A.; Shneider, M. N.; Stratton, B. C.; Santra, B.; Car, R.; Raitses, Y.
2016-09-01
Laser-based diagnostics methods, such as Spontaneous and Coherent Rayleigh and Rayleigh-Brillouin scattering (SRBS and CRBS), can be used for in-situ detection and characterization of nanoparticle shape and size as well as their concentration in an inert gas atmosphere. We recently developed and tested this advanced diagnostic at PPPL. It was shown that the signal intensity of the CRBS signal depends on the gas-nanoparticle mixture composition, density and the polarizabilities of the mixture components. The measured results agree well with theoretical predictions of Refs. In this work, we report the application of this diagnostic to monitor nucleation and growth of nanoparticles in a carbon arc discharge. In support of these measurements, A time-dependent density functional theory was used to compute the frequency-dependent polarizabilities of various nanostructures in order to predict the corresponding Rayleigh scattering intensities as well as light depolarization. Preliminary results of measurements demonstrate that CRBS is capable to detect nanoparticles in volume. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Chen, Hua-Hsuan; Rosenberg, David R; MacMaster, Frank P; Easter, Philip C; Caetano, Sheila C; Nicoletti, Mark; Hatch, John P; Nery, Fabiano G; Soares, Jair C
2008-12-01
Adults with major depressive disorder (MDD) are reported to have reduced orbitofrontal cortex (OFC) volumes, which could be related to decreased neuronal density. We conducted a study on medication naïve children with MDD to determine whether abnormalities of OFC are present early in the illness course. Twenty seven medication naïve pediatric Diagnostic and Statistical Manual of Mental Disorders, 4(th) edition (DSM-IV) MDD patients (mean age +/- SD = 14.4 +/- 2.2 years; 10 males) and 26 healthy controls (mean age +/- SD = 14.4 +/- 2.4 years; 12 males) underwent a 1.5T magnetic resonance imaging (MRI) with 3D spoiled gradient recalled acquisition. The OFC volumes were compared using analysis of covariance with age, gender, and total brain volume as covariates. There was no significant difference in either total OFC volume or total gray matter OFC volume between MDD patients and healthy controls. Exploratory analysis revealed that patients had unexpectedly larger total right lateral (F = 4.2, df = 1, 48, p = 0.05) and right lateral gray matter (F = 4.6, df = 1, 48, p = 0.04) OFC volumes compared to healthy controls, but this finding was not significant following statistical correction for multiple comparisons. No other OFC subregions showed a significant difference. The lack of OFC volume abnormalities in pediatric MDD patients suggests the abnormalities previously reported for adults may develop later in life as a result of neural cell loss.
Fibla, Juan J; Brunelli, Alessandro; Allen, Mark S; Wigle, Dennis; Shen, Robert; Nichols, Francis; Deschamps, Claude; Cassivi, Stephen D
2015-02-01
Our objective was to evaluate whether the number and volume of surgical lung biopsies (SLB) influence the diagnosis of diffuse interstitial lung disease (ILD). Retrospective study of SLB for suspected ILD in patients from the Mayo Clinic from January 2002 to January 2010. Data were collected in the institution and analyzed. 311 patients were studied. Mean number of biopsies was 2.05 (SD 0.6); 1 biopsy in 50 (16%), 2 in 198 (63.7%), 3 in 59 (19%) and 4 in 4 (1.3%). Histopathologic diagnosis was: definitive (specific): 232 (74.6%), descriptive (non-specific): 76 (24.4%), no diagnosis: 3 (1%). After excluding patients without diagnosis (n=3), there were 50 patients with only 1 biopsy, 196 with 2 and 62 with 3 or 4; the definitive diagnostic yield was similar in all 3 groups (37/50; 74%, 150/196; 77%, and 45/62; 73%) (Chi-square, p value 0.8). The propensity score analysis between patients with 1 SLB and patients with more than 1 SLB also showed no difference in diagnostic yield. Regarding the volume of biopsies, mean total volume was 34.4 cm(3) (SD 46): 41.2 cm(3) (3 cases) in patients with no diagnosis; 33.6 cm(3) (232 cases, SD 47) in patients with specific diagnosis; and 36.6 cm(3) (76 cases, SD 44) in patients with descriptive diagnosis. Biopsy volume had no influence on histopathology yield (ANOVA, p value .8). The number and volume of the biopsy specimens in SLB did not seem to influence diagnosis. Based on our results, we believe a single sample from a representative area may be sufficient for diagnosis. Randomized prospective trials should be performed to optimize SLB for ILD. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.
Relationship of patient volume and service concentration with outcome in geriatric rehabilitation.
Holstege, Marije S; Zekveld, Ineke G; Caljouw, Monique A A; Peerenboom, Peter Bob; van Balen, Romke; Gussekloo, Jacobijn; Achterberg, Wilco P
2013-10-01
Although geriatric rehabilitation (GR) is beneficial for restoration of activities and participation after hospitalization of vulnerable older persons, little is known about the optimal organization of care of these postacute facilities. This study examines the relationship of patient volume and service concentration with successful GR (short length of stay and discharge home) in skilled nursing facilities (SNFs). A national multicenter retrospective cohort study. All patients indicated for GR in a Dutch SNF. Nurses filled out digital registration forms from patient records. Patients were studied in 3 predefined diagnostic groups: total joint replacement, traumatic injuries, and stroke. Facility characteristics were obtained by structured telephone interviews with facility managers. Volume was based on the number of discharges in a 3-month period and categorized in low-, medium-, and high-volume facilities. Concentration was defined at the organizational level in which the population consists of 80% or more of 1 or 2 diagnostic groups, with the prerequisite of having a minimum of 10 rehabilitation beds. From 88 facilities, 2269 GR patients (mean age 78.2 years [SD 9.7]; 68.2% female) were included. The median length of stay in the SNF was 45 days (interquartile range 23-81), 57% of the patients were discharged home, and 9.8% died during GR. Of patients with total joint replacement (n = 501), concentration was related to successful rehabilitation (odds ratio 5.7; 95% confidence interval 1.3-24.3; P = .020, adjusted for age and gender); this relationship was not found for patients with traumatic injuries or stroke. Volume showed no relation with successful rehabilitation in any of the 3 diagnostic groups. This study may indicate that concentration in an SNF, as a proxy for specialization, favors successful GR in total joint replacement. This relationship was not found for the traumatic injuries or stroke groups, or for volume. The relation on functional outcome in GR needs further investigation. Copyright © 2013 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Harvey, Steven A; Incardona, Sandra; Martin, Nina; Lussiana, Cristina; Streat, Elizabeth; Dolan, Stephanie; Champouillon, Nora; Kyabayinze, Daniel J; Mugerwa, Robert; Nakanwagi, Grace; Njoki, Nancy; Rova, Ratsimandisa; Cunningham, Jane
2017-04-20
Use of antigen-detecting malaria rapid diagnostic tests (RDTs) has increased exponentially over the last decade. WHO's Global Malaria Programme, FIND, and other collaborators have established a quality assurance scheme to guide product selection, lot verification, transport, storage, and training procedures. Recent concerns over the quality of buffer packaging and test accessories suggest a need to include these items in product assessments. This paper describes quality problems with buffer and accessories encountered in a project promoting private sector RDT use in five African countries and suggests steps to avoid or more rapidly identify and resolve such problems. Private provider complaints about RDT buffer vials and kit accessories were collected during supervisory visits, and a standard assessment process was developed. Using 100 tests drawn from six different lots produced by two manufacturers, lab technicians visually assessed alcohol swab packaging, blood transfer device (BTD) usability, and buffer appearance, then calculated mean blood volume from 10 BTD transfers and mean buffer volume from 10 individual buffer vials. WHO guided complaint reporting and follow-up with manufacturers. Supervisory visits confirmed user reports of dry alcohol swabs, poorly functioning BTDs, and non-uniform volumes of buffer. Lot testing revealed further evidence of quality problems, leading one manufacturer to replace buffer vials and accessories for 40,000 RDTs. In December 2014, WHO issued an Information Notice for Users regarding variable buffer volumes in single-use vials and recommended against procurement of these products until defects were addressed. Though not necessarily comprehensive or generalizable, the findings presented here highlight the need for extending quality assessment to all malaria RDT test kit contents. Defects such as those described in this paper could reduce test accuracy and increase probability of invalid, false positive, or false negative results. Such deficiencies could undermine provider confidence in RDTs, prompting a return to presumptive treatment or reliance on poor quality microscopy. In partial response to this experience, WHO, FIND, and other project partners have developed guidance on documenting, troubleshooting, reporting, and resolving such problems when they occur.
Echocardiography as an indication of continuous-time cardiac quiescence
NASA Astrophysics Data System (ADS)
Wick, C. A.; Auffermann, W. F.; Shah, A. J.; Inan, O. T.; Bhatti, P. T.; Tridandapani, S.
2016-07-01
Cardiac computed tomography (CT) angiography using prospective gating requires that data be acquired during intervals of minimal cardiac motion to obtain diagnostic images of the coronary vessels free of motion artifacts. This work is intended to assess B-mode echocardiography as a continuous-time indication of these quiescent periods to determine if echocardiography can be used as a cost-efficient, non-ionizing modality to develop new prospective gating techniques for cardiac CT. These new prospective gating approaches will not be based on echocardiography itself but on CT-compatible modalities derived from the mechanics of the heart (e.g. seismocardiography and impedance cardiography), unlike the current standard electrocardiogram. To this end, echocardiography and retrospectively-gated CT data were obtained from ten patients with varied cardiac conditions. CT reconstructions were made throughout the cardiac cycle. Motion of the interventricular septum (IVS) was calculated from both echocardiography and CT reconstructions using correlation-based, deviation techniques. The IVS was chosen because it (1) is visible in echocardiography images, whereas the coronary vessels generally are not, and (2) has been shown to be a suitable indicator of cardiac quiescence. Quiescent phases were calculated as the minima of IVS motion and CT volumes were reconstructed for these phases. The diagnostic quality of the CT reconstructions from phases calculated from echocardiography and CT data was graded on a four-point Likert scale by a board-certified radiologist fellowship-trained in cardiothoracic radiology. Using a Wilcoxon signed-rank test, no significant difference in the diagnostic quality of the coronary vessels was found between CT volumes reconstructed from echocardiography- and CT-selected phases. Additionally, there was a correlation of 0.956 between the echocardiography- and CT-selected phases. This initial work suggests that B-mode echocardiography can be used as a tool to develop CT-compatible gating techniques based on modalities derived from cardiac mechanics rather than relying on the ECG alone.
Biondi-Zoccai, Giuseppe; Mastrangeli, Simona; Romagnoli, Enrico; Peruzzi, Mariangela; Frati, Giacomo; Roever, Leonardo; Giordano, Arturo
2018-01-17
Atherosclerosis has major morbidity and mortality implications globally. While it has often been considered an irreversible degenerative process, recent evidence provides compelling proof that atherosclerosis can be reversed. Plaque regression is however difficult to appraise and quantify, with competing diagnostic methods available. Given the potential of evidence synthesis to provide clinical guidance, we aimed to review recent meta-analyses on diagnostic methods for atherosclerotic plaque regression. We identified 8 meta-analyses published between 2015 and 2017, including 79 studies and 14,442 patients, followed for a median of 12 months. They reported on atherosclerotic plaque regression appraised with carotid duplex ultrasound, coronary computed tomography, carotid magnetic resonance, coronary intravascular ultrasound, and coronary optical coherence tomography. Overall, all meta-analyses showed significant atherosclerotic plaque regression with lipid-lowering therapy, with the most notable effects on echogenicity, lipid-rich necrotic core volume, wall/plaque volume, dense calcium volume, and fibrous cap thickness. Significant interactions were found with concomitant changes in low density lipoprotein cholesterol, high density lipoprotein cholesterol, and C-reactive protein levels, and with ethnicity. Atherosclerotic plaque regression and conversion to a stable phenotype is possible with intensive medical therapy and can be demonstrated in patients using a variety of non-invasive and invasive imaging modalities.
Minimally invasive estimation of ventricular dead space volume through use of Frank-Starling curves.
Davidson, Shaun; Pretty, Chris; Pironet, Antoine; Desaive, Thomas; Janssen, Nathalie; Lambermont, Bernard; Morimont, Philippe; Chase, J Geoffrey
2017-01-01
This paper develops a means of more easily and less invasively estimating ventricular dead space volume (Vd), an important, but difficult to measure physiological parameter. Vd represents a subject and condition dependent portion of measured ventricular volume that is not actively participating in ventricular function. It is employed in models based on the time varying elastance concept, which see widespread use in haemodynamic studies, and may have direct diagnostic use. The proposed method involves linear extrapolation of a Frank-Starling curve (stroke volume vs end-diastolic volume) and its end-systolic equivalent (stroke volume vs end-systolic volume), developed across normal clinical procedures such as recruitment manoeuvres, to their point of intersection with the y-axis (where stroke volume is 0) to determine Vd. To demonstrate the broad applicability of the method, it was validated across a cohort of six sedated and anaesthetised male Pietrain pigs, encompassing a variety of cardiac states from healthy baseline behaviour to circulatory failure due to septic shock induced by endotoxin infusion. Linear extrapolation of the curves was supported by strong linear correlation coefficients of R = 0.78 and R = 0.80 average for pre- and post- endotoxin infusion respectively, as well as good agreement between the two linearly extrapolated y-intercepts (Vd) for each subject (no more than 7.8% variation). Method validity was further supported by the physiologically reasonable Vd values produced, equivalent to 44.3-53.1% and 49.3-82.6% of baseline end-systolic volume before and after endotoxin infusion respectively. This method has the potential to allow Vd to be estimated without a particularly demanding, specialised protocol in an experimental environment. Further, due to the common use of both mechanical ventilation and recruitment manoeuvres in intensive care, this method, subject to the availability of multi-beat echocardiography, has the potential to allow for estimation of Vd in a clinical environment.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
Bharucha, Tehmina; Chanthongthip, Anisone; Phuangpanom, Soumphou; Phonemixay, Ooyanong; Sengvilaipaseuth, Onanong; Vongsouvath, Manivanh; Lee, Sue; Newton, Paul N.; Dubot-Pérès, Audrey
2016-01-01
Background The use of filter paper as a simple, inexpensive tool for storage and transportation of blood, ‘Dried Blood Spots’ or Guthrie cards, for diagnostic assays is well-established. In contrast, there are a paucity of diagnostic evaluations of dried cerebrospinal fluid (CSF) spots. These have potential applications in low-resource settings, such as Laos, where laboratory facilities for central nervous system (CNS) diagnostics are only available in Vientiane. In Laos, a major cause of CNS infection is Japanese encephalitis virus (JEV). We aimed to develop a dried CSF spot protocol and to evaluate its diagnostic performance using the World Health Organisation recommended anti-JEV IgM antibody capture enzyme-linked immunosorbent assay (JEV MAC-ELISA). Methodology and Principal Findings Sample volumes, spotting techniques and filter paper type were evaluated using a CSF-substitute of anti-JEV IgM positive serum diluted in Phosphate Buffer Solution (PBS) to end-limits of detection by JEV MAC-ELISA. A conventional protocol, involving eluting one paper punch in 200μl PBS, did not detect the end-dilution, nor did multiple punches utilising diverse spotting techniques. However, pre-cut filter paper enabled saturation with five times the volume of CSF-substitute, sufficiently improving sensitivity to detect the end-dilution. The diagnostic accuracy of this optimised protocol was compared with routine, neat CSF in a pilot, retrospective study of JEV MAC-ELISA on consecutive CSF samples, collected 2009–15, from three Lao hospitals. In comparison to neat CSF, 132 CSF samples stored as dried CSF spots for one month at 25–30°C showed 81.6% (65.7–92.3 95%CI) positive agreement, 96.8% (91.0–99.3 95%CI) negative agreement, with a kappa coefficient of 0.81 (0.70–0.92 95%CI). Conclusions/Significance The novel design of pre-cut filter paper saturated with CSF could provide a useful tool for JEV diagnostics in settings with limited laboratory access. It has the potential to improve national JEV surveillance and inform vaccination policies. The saturation of filter paper has potential use in the wider context of pathogen detection, including dried spots for detecting other analytes in CSF, and other body fluids. PMID:26986061
NASA Astrophysics Data System (ADS)
Brahme, Anders; Lind, Bengt K.
2002-04-01
Radiation therapy is today in a state of very rapid development with new intensity modulated treatment techniques continuously being developed. This has made intensity modulated electron and photon beams almost as powerful as conventional uniform beam proton therapy. To be able to cure also the most advanced hypoxic and radiation resistant tumors of complex local spread, intensity modulated light ion beams are really the ultimate tool and only slightly more expensive than proton therapy. The aim of the new center for ion therapy and tumor diagnostics in Stockholm is to develop radiobiologically optimized 3-dimensional pencil beam scanning techniques. Beside the "classical" approaches using low ionization density hydrogen ions (protons, but also deuterons and tritium nuclei) and high ionization density carbon ions, two new approaches will be developed. In the first one lithium or beryllium ions, that induce the least detrimental biological effect to normal tissues for a given biological effect in a small volume of the tumor, will be key particles. In the second approach, referred patients will be given a high-dose high-precision "boost" treatment with carbon or oxygen ions during one week preceding the final treatment with conventional radiations in the referring hospital. The rationale behind these approaches is to reduce the high ionization density dose to the normal tissue stroma inside the tumor and to ensure a microscopically uniform dose delivery. The principal idea of the center is to closely integrate ion therapy into the clinical routine and research of a large radiotherapy department. The light ion therapy center will therefore be combined with advanced tumor diagnostics including MR and PET-CT imaging to facilitate efficient high-precision high-dose boost treatment of remitted patients. The possibility to do 3D tumor diagnostics and 3D dose delivery verification with the same PET camera will be the ultimate step in high quality adaptive radiation therapy where alterations in the delivered dose can be corrected by subsequent treatments
Günther, P; Tröger, J; Holland-Cunz, S; Waag, K L; Schenk, J P
2006-08-01
Exact surgical planning is necessary for complex operations of pathological changes in anatomical structures of the pediatric abdomen. 3D visualization and computer-assisted operational planning based on CT data are being increasingly used for difficult operations in adults. To minimize radiation exposure and for better soft tissue contrast, sonography and MRI are the preferred diagnostic methods in pediatric patients. Because of manifold difficulties 3D visualization of these MRI data has not been realized so far, even though the field of embryonal malformations and tumors could benefit from this.A newly developed and modified raycasting-based powerful 3D volume rendering software (VG Studio Max 1.2) for the planning of pediatric abdominal surgery is presented. With the help of specifically developed algorithms, a useful surgical planning system is demonstrated. Thanks to the easy handling and high-quality visualization with enormous gain of information, the presented system is now an established part of routine surgical planning.
Schroeder, Lee F; Elbireer, Ali; Jackson, J Brooks; Amukele, Timothy K
2015-01-01
Diagnostic laboratory tests are routinely defined in terms of their sensitivity, specificity, and ease of use. But the actual clinical impact of a diagnostic test also depends on its availability and price. This is especially true in resource-limited settings such as sub-Saharan Africa. We present a first-of-its-kind report of diagnostic test types, availability, and prices in Kampala, Uganda. Test types (identity) and availability were based on menus and volumes obtained from clinical laboratories in late 2011 in Kampala using a standard questionnaire. As a measure of test availability, we used the Availability Index (AI). AI is the combined daily testing volumes of laboratories offering a given test, divided by the combined daily testing volumes of all laboratories in Kampala. Test prices were based on a sampling of prices collected in person and via telephone surveys in 2015. Test volumes and menus were obtained for 95% (907/954) of laboratories in Kampala city. These 907 laboratories offered 100 different test types. The ten most commonly offered tests in decreasing order were Malaria, HCG, HIV serology, Syphilis, Typhoid, Urinalysis, Brucellosis, Stool Analysis, Glucose, and ABO/Rh. In terms of AI, the 100 tests clustered into three groups: high (12 tests), moderate (33 tests), and minimal (55 tests) availability. 50% and 36% of overall availability was provided through private and public laboratories, respectively. Point-of-care laboratories contributed 35% to the AI of high availability tests, but only 6% to the AI of the other tests. The mean price of the most commonly offered test types was $2.62 (range $1.83-$3.46). One hundred different laboratory test types were in use in Kampala in late 2011. Both public and private laboratories were critical to test availability. The tests offered in point-of-care laboratories tended to be the most available tests. Prices of the most common tests ranged from $1.83-$3.46.
Capricorn-A Web-Based Automatic Case Log and Volume Analytics for Diagnostic Radiology Residents.
Chen, Po-Hao; Chen, Yin Jie; Cook, Tessa S
2015-10-01
On-service clinical learning is a mainstay of radiology education. However, an accurate and timely case log is difficult to keep, especially in the absence of software tools tailored to resident education. Furthermore, volume-related feedback from the residency program sometimes occurs months after a rotation ends, limiting the opportunity for meaningful intervention. We surveyed the residents of a single academic institution to evaluate the current state of and the existing need for tracking interpretation volume. Using the results of the survey, we created an open-source automated case log software. Finally, we evaluated the effect of the software tool on the residency in a 1-month, postimplementation survey. Before implementation of the system, 89% of respondents stated that volume is an important component of training, but 71% stated that volume data was inconvenient to obtain. Although the residency program provides semiannual reviews, 90% preferred reviewing interpretation volumes at least once monthly. After implementation, 95% of the respondents stated that the software is convenient to access, 75% found it useful, and 88% stated they would use the software at least once a month. The included analytics module, which benchmarks the user using historical aggregate average volumes, is the most often used feature of the software. Server log demonstrates that, on average, residents use the system approximately twice a week. An automated case log software system may fulfill a previously unmet need in diagnostic radiology training, making accurate and timely review of volume-related performance analytics a convenient process. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Design of portable ultraminiature flow cytometers for medical diagnostics
NASA Astrophysics Data System (ADS)
Leary, James F.
2018-02-01
Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.
Neuroanatomical features in soldiers with post-traumatic stress disorder.
Sussman, D; Pang, E W; Jetly, R; Dunkley, B T; Taylor, M J
2016-03-31
Posttraumatic stress disorder (PTSD), an anxiety disorder that can develop after exposure to psychological trauma, impacts up to 20 % of soldiers returning from combat-related deployment. Advanced neuroimaging holds diagnostic and prognostic potential for furthering our understanding of its etiology. Previous imaging studies on combat-related PTSD have focused on selected structures, such as the hippocampi and cortex, but none conducted a comprehensive examination of both the cerebrum and cerebellum. The present study provides a complete analysis of cortical, subcortical, and cerebellar anatomy in a single cohort. Forty-seven magnetic resonance images (MRIs) were collected from 24 soldiers with PTSD and 23 Control soldiers. Each image was segmented into 78 cortical brain regions and 81,924 vertices using the corticometric iterative vertex based estimation of thickness algorithm, allowing for both a region-based and a vertex-based cortical analysis, respectively. Subcortical volumetric analyses of the hippocampi, cerebellum, thalamus, globus pallidus, caudate, putamen, and many sub-regions were conducted following their segmentation using Multiple Automatically Generated Templates Brain algorithm. Participants with PTSD were found to have reduced cortical thickness, primarily in the frontal and temporal lobes, with no preference for laterality. The region-based analyses further revealed localized thinning as well as thickening in several sub-regions. These results were accompanied by decreased volumes of the caudate and right hippocampus, as computed relative to total cerebral volume. Enlargement in several cerebellar lobules (relative to total cerebellar volume) was also observed in the PTSD group. These data highlight the distributed structural differences between soldiers with and without PTSD, and emphasize the diagnostic potential of high-resolution MRI.
Bansal, Ravi; Hao, Xuejun; Liu, Feng; Xu, Dongrong; Liu, Jun; Peterson, Bradley S.
2013-01-01
Water content is the dominant chemical compound in the brain and it is the primary determinant of tissue contrast in magnetic resonance (MR) images. Water content varies greatly between individuals, and it changes dramatically over time from birth through senescence of the human life span. We hypothesize that the effects that individual- and age-related variations in water content have on contrast of the brain in MR images also has important, systematic effects on in vivo, MRI-based measures of regional brain volumes. We also hypothesize that changes in water content and tissue contrast across time may account for age-related changes in regional volumes, and that differences in water content or tissue contrast across differing neuropsychiatric diagnoses may account for differences in regional volumes across diagnostic groups. We demonstrate in several complementary ways that subtle variations in water content across age and tissue compartments alter tissue contrast, and that changing tissue contrast in turn alters measures of the thickness and volume of the cortical mantle: (1) We derive analytic relations describing how age-related changes in tissue relaxation times produce age-related changes in tissue gray-scale intensity values and tissue contrast; (2) We vary tissue contrast in computer-generated images to assess its effects on tissue segmentation and volumes of gray matter and white matter; and (3) We use real-world imaging data from adults with either Schizophrenia or Bipolar Disorder and age- and sex-matched healthy adults to assess the ways in which variations in tissue contrast across diagnoses affects group differences in tissue segmentation and associated volumes. We conclude that in vivo MRI-based morphological measures of the brain, including regional volumes and measures of cortical thickness, are a product of, or at least are confounded by, differences in tissue contrast across individuals, ages, and diagnostic groups, and that differences in tissue contrast in turn likely derive from corresponding differences in water content of the brain across individuals, ages, and diagnostic groups. PMID:24055410
NASA Astrophysics Data System (ADS)
Alyassin, Abdal M.
2002-05-01
3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C; Morelli, John N
2017-01-01
We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms "interventional/computed tomography" and "radiation dose/radiation dose reduction." A PubMed query using the above-mentioned search terms for the years of 2005-2015 was performed. Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6-27) and 246±105 diagnostic radiology abstracts (range, 112-389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79-187) and 1205±307 publications (range, 829-1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted.
Hansmann, Jan; Henzler, Thomas; Gaba, Ron C.; Morelli, John N.
2017-01-01
PURPOSE We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities. METHODS Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed. RESULTS Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001). CONCLUSION The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted. PMID:28287072
Price, P M; Green, M M
2011-01-01
In an era in which it is possible to deliver radiation with high precision, there is a heightened need for enhanced imaging capabilities to improve tumour localisation for diagnostic, planning and delivery purposes. This is necessary to increase the accuracy and overall efficacy of all types of external beam radiotherapy (RT), including particle therapies. Positron emission tomography (PET) has the potential to fulfil this need by imaging fundamental aspects of tumour biology. The key areas in which PET may support the RT process include improving disease diagnosis and staging; assisting tumour volume delineation; defining tumour phenotype or biological tumour volume; assessment of treatment response; and in-beam monitoring of radiation dosimetry. The role of PET and its current developmental status in these key areas are overviewed in this review, highlighting the advantages and drawbacks. PMID:21427180
Danforth, Robert A; Peck, Jerry; Hall, Paul
2003-11-01
Complex impacted third molars present potential treatment complications and possible patient morbidity. Objectives of diagnostic imaging are to facilitate diagnosis, decision making, and enhance treatment outcomes. As cases become more complex, advanced multiplane imaging methods allowing for a 3-D view are more likely to meet these objectives than traditional 2-D radiography. Until recently, advanced imaging options were somewhat limited to standard film tomography or medical CT, but development of cone beam volume tomography (CBVT) multiplane 3-D imaging systems specifically for dental use now provides an alternative imaging option. Two cases were utilized to compare the role of CBVT to these other imaging options and to illustrate how multiplane visualization can assist the pretreatment evaluation and decision-making process for complex impacted mandibular third molar cases.
Electro-mechanical probe positioning system for large volume plasma device
NASA Astrophysics Data System (ADS)
Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.
2018-05-01
An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.
NASA Technical Reports Server (NTRS)
Kriegler, F. J.; Christenson, D.; Gordon, M.; Kistler, R.; Lampert, S.; Marshall, R.; Mclaughlin, R.
1974-01-01
The MIDAS System is a third-generation, fast, multispectral recognition system able to keep pace with the large quantity and high rates of data acquisition from present and projected sensors. A principal objective of the MIDAS Program is to provide a system well interfaced with the human operator and thus to obtain large overall reductions in turn-around time and significant gains in throughout. The hardware and software generated in Phase I of the over-all program are described. The system contains a mini-computer to control the various high-speed processing elements in the data path and a classifier which implements an all-digital prototype multivariate-Gaussian maximum likelihood decision algorithm operating 2 x 105 pixels/sec. Sufficient hardware was developed to perform signature extraction from computer-compatible tapes, compute classifier coefficients, control the classifier operation, and diagnose operation. Diagnostic programs used to test MIDAS' operations are presented.
ViDI: Virtual Diagnostics Interface. Volume 1; The Future of Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
Fleming, Gary A. (Technical Monitor); Schwartz, Richard J.
2004-01-01
The quality of data acquired in a given test facility ultimately resides within the fidelity and implementation of the instrumentation systems. Over the last decade, the emergence of robust optical techniques has vastly expanded the envelope of measurement possibilities. At the same time the capabilities for data processing, data archiving and data visualization required to extract the highest level of knowledge from these global, on and off body measurement techniques have equally expanded. Yet today, while the instrumentation has matured to the production stage, an optimized solution for gaining knowledge from the gigabytes of data acquired per test (or even per test point) is lacking. A technological void has to be filled in order to possess a mechanism for near-real time knowledge extraction during wind tunnel experiments. Under these auspices, the Virtual Diagnostics Interface, or ViDI, was developed.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
Current role of multidetector computed tomography in imaging of wrist injuries.
Syed, Mohd Arif; Raj, Vimal; Jeyapalan, Kanagaratnam
2013-01-01
Imaging of the wrist is challenging to both radiologists and orthopedic surgeons. This is primarily because of the complex anatomy/functionality of the wrist and also the fact that many frequent injuries are sustained to the hands. On going developments in multidetector computed tomography (MDCT) technology with its "state of the art" postprocessing capabilities have revolutionized this field. Apart from routine imaging of wrist trauma, it is now possible to assess intrinsic ligaments with MDCT arthrography, thereby avoiding invasive diagnostic arthroscopies. Postoperative wrist imaging can be a diagnostic challenge, and MDCT can be helpful in assessment of these cases because volume acquisition and excellent postprocessing abilities help to evaluate these wrists in any desired plane and thinner slices. This article pictorially reviews the current clinical role of MDCT imaging of wrist in our practice. It also describes arthrography technique and scanning parameters used at our center. Copyright © 2013 Mosby, Inc. All rights reserved.
Sergeeva, Irina A; Christoffels, Vincent M
2013-12-01
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions. © 2013.
Sey, Michael Sai Lai; Gregor, Jamie; Chande, Nilesh; Ponich, Terry; Bhaduri, Mousumi; Lum, Andrea; Zaleski, Witek; Yan, Brian
2013-08-01
Transcutaneous bowel sonography is a nonionizing imaging modality used in inflammatory bowel disease. Although available in Europe, its uptake in North America has been limited. Since the accuracy of bowel sonography is highly operator dependent, low-volume centers in North America may not achieve the same diagnostic accuracy reported in the European literature. Our objective was to determine the diagnostic accuracy of bowel sonography in a nonexpert low-volume center. All cases of bowel sonography at a single tertiary care center during an 18-month period were reviewed. Bowel sonography was compared with reference standards, including small-bowel follow-through, computed tomography, magnetic resonance imaging, colonoscopy, and surgical findings. A total of 103 cases were included for analysis during the study period. The final diagnoses included Crohn disease (72), ulcerative colitis (8), hemolytic uremic syndrome (1), and normal (22). The sensitivity and specificity of bowel sonography for intestinal wall inflammation were 87.8% and 92.6%, respectively. In the subset of patients who had complications of Crohn disease, the sensitivity and specificity were 50% and 100% for fistulas and 14% and 100% for strictures. One patient had an abscess, which was detected by bowel sonography. Abnormal bowel sonographic findings contributed to the escalation of treatment in 55% of cases. Bowel sonography for inflammatory bowel disease can be performed in low-volume centers and provides diagnostic accuracy for luminal disease comparable with published data, although it is less sensitive for complications of Crohn disease.
A recoverable gas-cell diagnostic for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratkiewicz, A., E-mail: ratkiewicz1@llnl.gov; Berzak Hopkins, L.; Bleuel, D. L.
2016-11-15
The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of {sup nat}Xemore » and discuss future work to study the strength of interactions between plasma and nuclei.« less
A recoverable gas-cell diagnostic for the National Ignition Facility
Ratkiewicz, A.; Hopkins, L. Berzak; Bleuel, D. L.; ...
2016-08-22
Here, the high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXemore » and discuss future work to study the strength of interactions between plasma and nuclei.« less
Seismic Study of the Dynamics of the Solar Subsurface from SoHO Observations
NASA Technical Reports Server (NTRS)
Korzennik, Sylvain G.; Wagner, William J. (Technical Monitor)
2001-01-01
In collaboration with Dr. Baudin, we have developed and refined the new observational methodology for local helioseismology known as time-distance analysis. Global helioseismology study the solar oscillations as a superposition of resonant modes, whose properties (mode frequencies) reflect the global structure of the sun (sound speed stratification, rotation rate, etc). In contrast, local helioseismology look at the solar oscillations as wave packets whose propagation will be affected by perturbations of the media sampled. These local perturbations (sound speed or velocity flows) will modify the propagation time, that in turn can be used as a diagnostic tool for a given region. From a data reduction perspective, the processing of solar dopplergrams that result in time-distance maps, i.e. propagation times as a function of distance between bounces at the surface, is radically different from the methodology used for global mode analysis. We have, in a first step, further develop the programs needed to carry out such analysis. We have then applied them to NMI data set, and explore the trade-off between various averaging and filtering approaches - steps required to improve the signal-to-noise ratio of correlation maps - and the resulting stability and precision of the fitted propagation times. While excessive averaging (whether over space, propagation distance, or time) will reduce the diagnostic potential of the method, insufficient averaging lead to unstable fits, or uncertainties so large as to hide the information we seek. In a second phase, we have developed the analysis methodology required to infer local properties from perturbation in time propagation. Namely, we have developed time-distance inversion techniques, with an emphasis on inferences of velocity flows from time anomalies. Note also that during the period covered by this grant, all the investigators on this proposal (i.e., Drs. Baudin, Eff-Darwich, Korzennik, and Noyes) took part in the organization of the SOHO 6 /GONG 99 Workshop: Structure and Dynamics of the Interior of the Sun and Sunlike Stars, held on June 1-4 1999 at the Boston Park Plaza Hotel in Boston, Massachusetts, USA. it was very well attended by more than 160 participants from 26 countries from all over the world. The proceedings were published in two volumes as ESA SP-418, with Sessions I-III in Volume 1, and Sessions IV-VI in Volume 2 (1,000 pages in total). The complete contents are also included in digital form on a CD-ROM included with Volume 1. This CD-ROM also contains additional multi-media material that complements some of the contributions.
Williamson, Julie A; Tornquist, Susan J
2014-01-01
There is a huge unmet need for veterinary diagnostic laboratory services in developing nations such as Liberia. One way of bridging the service gap is for visiting experts to provide veterinary laboratory training to technicians in a central location in a short-course format. An intensive 1-week training workshop was organized for 18 student and faculty participants from the College of Agriculture and Integrated Development Studies (CAIDS) at Cuttington University in rural central Liberia. The training was designed and delivered by the non-governmental organization Veterinarians Without Borders US and funded through a Farmer-to-Farmer grant provided by the United States Agency for International Development. Although at the start of training none of the students had any veterinary laboratory experience, by the end of the course over 80% of the students were able to discuss appropriate care and use of a microscope and name at least three important components of laboratory record keeping; over 60% were able to describe how to make and stain a blood smear and how to perform a passive fecal flotation; and over 30% were able to describe what a packed cell volume is and how it is measured and name at least three criteria for classifying bacteria. The intensive training workshop greatly improved the knowledge of trainees about veterinary diagnostic laboratory techniques. The training provided initial skills to students and faculty who are awaiting the arrival of additional grant-funded laboratory equipment to continue their training.
Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.
Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen
2008-02-01
A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.
Diagnostic Capability of Peripapillary Retinal Volume Measurements in Glaucoma.
Simavli, Huseyin; Poon, Linda Yi-Chieh; Que, Christian J; Liu, Yingna; Akduman, Mustafa; Tsikata, Edem; de Boer, Johannes F; Chen, Teresa C
2017-06-01
To determine the diagnostic capability of spectral domain optical coherence tomography peripapillary retinal volume (RV) measurements. A total of 156 patients, 89 primary open-angle glaucoma and 67 normal subjects, were recruited. Spectral domain optical coherence tomography peripapillary RV was calculated for 4 quadrants using 3 annuli of varying scan circle diameters: outer circumpapillary annuli of circular grids 1, 2, and 3 (OCA1, OCA2, OCA3). Area under the receiver operating characteristic curves and pairwise comparisons of receiver operating characteristic (ROC) curves were performed to determine which quadrants were best for diagnosing primary open-angle glaucoma. The pairwise comparisons of the best ROC curves for RV and retinal nerve fiber layer (RNFL) were performed. The artifact rates were analyzed. Pairwise comparisons showed that the smaller annuli OCA1 and OCA2 had better diagnostic performance than the largest annulus OCA3 (P<0.05 for all quadrants). OCA1 and OCA2 had similar diagnostic performance, except for the inferior quadrant which was better for OCA1 (P=0.0033). The pairwise comparisons of the best ROC curves for RV and RNFL were not statistically significant. RV measurements had lower rates of artifacts at 7.4% while RNFL measurements had higher rates at 42.9%. Peripapillary RV measurements have excellent ability for diagnosing not only glaucoma patients but also a subset of early glaucoma patients. The inferior quadrant of peripapillary annulus OCA1 demonstrated the best diagnostic capability for both glaucoma and early glaucoma. The diagnostic ability of RV is comparable with that of RNFL parameters in glaucoma but with lower artifact rates.
Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.
Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P
2018-03-01
The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.
NASA Astrophysics Data System (ADS)
Herron, C. A.; Burkhart, Blakesley; Gaensler, B. M.; Lewis, G. F.; McClure-Griffiths, N. M.; Bernardi, G.; Carretti, E.; Haverkorn, M.; Kesteven, M.; Poppi, S.; Staveley-Smith, L.
2018-03-01
Diagnostics of polarized emission provide us with valuable information on the Galactic magnetic field and the state of turbulence in the interstellar medium, which cannot be obtained from synchrotron intensity alone. In Paper I, we derived polarization diagnostics that are rotationally and translationally invariant in the Q–U plane, similar to the polarization gradient. In this paper, we apply these diagnostics to simulations of ideal magnetohydrodynamic turbulence that have a range of sonic and Alfvénic Mach numbers. We generate synthetic images of Stokes Q and U for these simulations for the cases where the turbulence is illuminated from behind by uniform polarized emission and where the polarized emission originates from within the turbulent volume. From these simulated images, we calculate the polarization diagnostics derived in Paper I for different lines of sight relative to the mean magnetic field and for a range of frequencies. For all of our simulations, we find that the polarization gradient is very similar to the generalized polarization gradient and that both trace spatial variations in the magnetoionic medium for the case where emission originates within the turbulent volume, provided that the medium is not supersonic. We propose a method for distinguishing the cases of emission coming from behind or within a turbulent, Faraday rotating medium and a method to partly map the rotation measure of the observed region. We also speculate on statistics of these diagnostics that may allow us to constrain the physical properties of an observed turbulent region.
Forselv, Kristine J N; Lorentzen, Åslaug R; Ljøstad, Unn; Mygland, Åse; Eikeland, Randi; Kjelland, Vivian; Noraas, Sølvi; Quarsten, Hanne
2018-04-01
Tests for direct detection of Borrelia burgdorferi sensu lato (Bb) in Lyme neuroborreliosis (LNB) are needed. Detection of Bb DNA using PCR is promising, but clinical utility is hampered by low diagnostic sensitivity. We aimed to examine whether diagnostic sensitivity can be improved by the use of larger cerebrospinal fluid (CSF) volumes and faster handling of samples. Patients who underwent CSF examination for LNB were included. We collected two millilitres of CSF for PCR analysis, extracted DNA from the pellets within 24 h and analysed the eluate by two real-time PCR protocols (16S rRNA and OspA). Patients who fulfilled diagnostic criteria for LNB were classified as LNB cases and the rest as controls. Bb DNA in CSF was detected by PCR in seven of 28 adults with LNB. Two were Bb antibody negative. No Bb DNA was detected in CSF from 137 controls. Diagnostic sensitivity was 25% and specificity 100%. There was a non-significant trend towards larger CSF sample volume, faster handling of the sample, shorter duration of symptoms, and higher CSF cell count in the PCR-positive cases. We did not find that optimized handling of CSF increased diagnostic sensitivity of PCR in adults with LNB. However, our case series is small and we hypothesize that the importance of these factors will be clarified in further studies with larger case series and altered study design. PCR for diagnosis of LNB may be useful in cases without Bb antibodies due to short duration of symptoms.
Olesen, Tine Kold; Denys, Marie-Astrid; Vande Walle, Johan; Everaert, Karel
2018-02-06
Background Evidence of diagnostic accuracy for proposed definitions of nocturnal polyuria is currently unclear. Purpose Systematic review to determine population-based evidence of the diagnostic accuracy of proposed definitions of nocturnal polyuria based on data from frequency-volume charts. Methods Seventeen pre-specified search terms identified 351 unique investigations published from 1990 to 2016 in BIOSIS, Embase, Embase Alerts, International Pharmaceutical Abstract, Medline, and Cochrane. Thirteen original communications were included in this review based on pre-specified exclusion criteria. Data were extracted from each paper regarding subject age, sex, ethnicity, health status, sample size, data collection methods, and diagnostic discrimination of proposed definitions including sensitivity, specificity, positive and negative predictive value. Results The sample size of study cohorts, participant age, sex, ethnicity, and health status varied considerably in 13 studies reporting on the diagnostic performance of seven different definitions of nocturnal polyuria using frequency-volume chart data from 4968 participants. Most study cohorts were small, mono-ethnic, including only Caucasian males aged 50 or higher with primary or secondary polyuria that were compared to a control group of healthy men without nocturia in prospective or retrospective settings. Proposed definitions had poor discriminatory accuracy in evaluations based on data from subjects independent from the original study cohorts with findings being similar regarding the most widely evaluated definition endorsed by ICS. Conclusions Diagnostic performance characteristics for proposed definitions of nocturnal polyuria show poor to modest discrimination and are not based on sufficient level of evidence from representative, multi-ethnic population-based data from both females and males of all adult ages.
Patel, Vipulkumar; Celec, Peter; Grunt, Magdalena; Schwarzenbach, Heidi; Jenneckens, Ingo; Hillebrand, Timo
2016-01-01
Circulating cell-free DNA (ccfDNA) is a promising diagnostic tool and its size fractionation is of interest. However, kits for isolation of ccfDNA available on the market are designed for small volumes hence processing large sample volumes is laborious. We have tested a new method that enables enrichment of ccfDNA from large volumes of plasma and subsequently allows size-fractionation of isolated ccfDNA into two fractions with individually established cut-off levels of ccfDNA length. This method allows isolation of low-abundant DNA as well as separation of long and short DNA molecules. This procedure may be important e.g., in prenatal diagnostics and cancer research that have been already confirmed by our primary experiments. Here, we report the results of selective separation of 200- and 500-bp long synthetic DNA fragments spiked in plasma samples. Furthermore, we size-fractionated ccfDNA from the plasma of pregnant women and verified the prevalence of fetal ccfDNA in all fractions.
Determination of Probe Volume Dimensions in Coherent Measurement Techniques
NASA Technical Reports Server (NTRS)
Tedder, Sarah A.; Weikl, Markus C.; Seeger, Thomas; Leipertz, Alfred
2008-01-01
When investigating combustion phenomena with pump-probe techniques, the spatial resolution is given by the overlapping region of the laser beams and thus defines the probe volume size. The size of this probe volume becomes important when the length scales of interest are on the same order or smaller. In this work, we present a new approach to measure the probe volume in three dimensions (3-D), which can be used to determine the probe volume length, diameter, and shape. The optical arrangement and data evaluation are demonstrated for a dual-pump dual-broadband coherent anti-Stokes Raman scattering (CARS) setup which is used for combustion diagnostics. This new approach offers a simple, quick alternative with more capabilities than formerly used probe volume measurement methods.
Aerospace Technology Innovation. Volume 10
NASA Technical Reports Server (NTRS)
Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)
2002-01-01
Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.
Atmospheric Pressure Glow Discharge for Point-of-Use Water Treatment
NASA Astrophysics Data System (ADS)
Lindsay, Alexander; Byrns, Brandon; Shannon, Steven; Knappe, Detlef
2012-10-01
Treatment of biological and chemical contaminants is an area of growing global interest where atmospheric pressure plasmas can make a significant contribution. Addressing key challenges of volume processing and operational cost, a large volume 162 MHz coaxial air-plasma source has been developed.footnotetextByrns (2012) J. Phys. D: Appl. Phys. 45 (2012) 195204 Because of VHF ballasting effects, the electric discharge is maintained at a steady glow, allowing formation of critical non-equilibrium chemistry. High densities, ne = 10^11-10^12, have been recorded. The atmospheric nature of the device permits straightforward and efficient treatment of water samples. [H^+] concentrations in 150 milliliter tap water samples have been shown to increase by 10^5 after five minutes of discharge exposure. Recent literature has demonstrated that increasing acidity is strongly correlated with a solution's ability to deactivate microbial contaminants.footnotetextTraylor (2011) J. Phys. D: Appl. Phys. 44 (2011) 472001 The work presented here will explore the impact of treatment gas, system configuration, and power density on water disinfection and PFC abatement. An array of plasma diagnostics, including OES and electrical measurements, are combined with post-process water analysis, including GC-MS and QT analysis of coliform and E.coli bacteria. Development of volume processing atmospheric plasma disinfection methods offers promise for point-of-use treatments in developing areas of the world, potentially supplementing or replacing supply and weather-dependent disinfection methods.
Thornberg, Steven M [Peralta, NM
2012-07-31
A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.
Adoption of Lean Principles in a High-Volume Molecular Diagnostic Microbiology Laboratory
Mitchell, P. Shawn; Mandrekar, Jayawant N.
2014-01-01
Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved. PMID:24829247
[Diagnostic possibilities of digital volume tomography].
Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas
2006-01-01
Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.
[Blood volume for biochemistry determinations--laboratory needs and everyday practice].
Sztefko, Krystyna; Mamica, Katarzyna; Bugajska, Jolanta; Maziarz, Barbara; Tomasik, Przemysław
2014-01-01
Blood loss due to diagnostic phlebotomy jest a very serious problem, especially for newborn, infants and critically ill patients on intensive care units. Although single blood loss can be easily tolerated in adults, in small babies and in patients who are frequently monitored based on laboratory tests iatrogenic anaemia can occur. To evaluate the blood volume drawn for routine biochemistry tests in relation to patient age and the number of parameters requested. Blood volume drawn for routine biochemistry measurements from patients hospitalized in University Children's Hospital (N = 2980, children age from one day to 18 years) and in University Hospital (N = 859, adults, aged > 1.8 years) in Cracow has been analyzed. Blood volume was calculated based on regular tube diameter and blood heights in the tube. In case of microvettes the blood volume was 0.2 ml. Statistical analysis has been performed by using PRISM 5.0. The statistical significance was set at p < 0.05. The mean values of blood volume were 3.02 +/- 0.92 ml and 4.12 +/- 0.68 ml in children and adults, respectively. Analyzing blood volume drawn in children using both microvettes and regular tubes, significant correlation between blood volume and patient age (p < 0.001) as well the number of requested parameters (p < 0.001). The latest relationship was true only for up to five parameters. However, analyzing the blood volume drawn into only into regular tubes blood volume was not related to patients age and number of laboratory tests requested. The proportion of microvettes used for blood collection was highest for newborns and infants, and in all cases where only one to three laboratory tests were requested. 1. All educational programs for nurses and doctors should include the information about current laboratory automation and methods miniaturization; 2) The amount of blood volume needed by laboratory for the requested number of tests should always be taken into account when diagnostic phlebotomy is necessary.
Man, Sumche; Maan, Arie C; Schalij, Martin J; Swenne, Cees A
2015-01-01
In the course of time, electrocardiography has assumed several modalities with varying electrode numbers, electrode positions and lead systems. 12-lead electrocardiography and 3-lead vectorcardiography have become particularly popular. These modalities developed in parallel through the mid-twentieth century. In the same time interval, the physical concepts underlying electrocardiography were defined and worked out. In particular, the vector concept (heart vector, lead vector, volume conductor) appeared to be essential to understanding the manifestations of electrical heart activity, both in the 12-lead electrocardiogram (ECG) and in the 3-lead vectorcardiogram (VCG). Not universally appreciated in the clinic, the vectorcardiogram, and with it the vector concept, went out of use. A revival of vectorcardiography started in the 90's, when VCGs were mathematically synthesized from standard 12-lead ECGs. This facilitated combined electrocardiography and vectorcardiography without the need for a special recording system. This paper gives an overview of these historical developments, elaborates on the vector concept and seeks to define where VCG analysis/interpretation can add diagnostic/prognostic value to conventional 12-lead ECG analysis. Copyright © 2015 Elsevier Inc. All rights reserved.
Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.
Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M
2014-11-15
A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The magnitude and pattern of the changes in volume may allow for the eventual development of diagnostic tools based on the volume estimation approach. Copyright © 2014 Elsevier Inc. All rights reserved.
Li-Fei, Zhu; Hong-Xiong, Liu; Ying, H E
2016-11-01
Our study aimed to investigate the measurement of frontal lobe volume and thalamic volume in fetuses with congenital heart disease (CHD) at different gestational weeks using three dimensional (3-D) ultrasonography and its clinical value. Then, 238 pregnant women who received obstetric ultrasonography in ultrasound department of Internal Medicine of our hospital were enrolled between March 2013 to April 2014. In this study, 85 fetuses were diagnosed to develop CHD by prenatal fetal echocardiography, and the other 153 fetuses were normal. Frontal lobe volume, thalamic volume and cerebral blood flow was determined by color Doppler ultrasonic diagnostic apparatus (type: GE Voluson E8). The level of MCA-PI and CPR in CHD fetus group performed significantly lower than that in normal fetus group (P<0.05), but the level of UA-PI performed significantly higher than that in normal fetus group (P<0.05). When gestational age <30 weeks, there was no significant difference in thalamic volume and frontal lobe volume between the two groups (P<0.05); when gestational age <30 weeks, the level of CHD fetus group performed significantly lower thalamic volume and frontal lobe volume than that in normal fetus group (P<0.05). When gestational age <30 weeks, there was no significant difference in BPD, HC, and GA between the two groups (P<0.05); when gestational age <30 weeks, the level of BPD, HC and GA in CHD fetus group performed significantly lower than that in normal fetus group (P<0.05). If gestational age <30 weeks, CHD performed a small impact on fetal frontal lobe volume and thalamic volume; if gestational age <30 weeks, the level of frontal lobe volume and thalamic volume in fetuses with CHD performed significantly lower than that in normal fetuses.
Centrifugal microfluidic platforms: advanced unit operations and applications.
Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N
2015-10-07
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.
Age and Pathway Diagnostics for a Stratospheric General Circulation Model
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Douglass, Anne R.; Polansky, Brian
2004-01-01
Using a variety of age diagnostic experiments we examine the stratospheric age spectrum of the Goddard Finite Volume Generd Circulation Model. Pulse tracer release age-of-air computations are compared to forward and backward trajectory computations. These comparisons show good agreement, and the age-of-air also compares well with observed long lived tracers. Pathway diagnostics show how air arrives in the lowermost stratosphere and the age structure of that region. Using tracers with different lifetimes we can estimate the age spectrum - this technique should be useful in diagnosing transport from various trace gas observations.
NASA Astrophysics Data System (ADS)
Smith, Suzanne; Sewart, Rene; Land, Kevin; Roux, Pieter; Gärtner, Claudia; Becker, Holger
2016-03-01
Lab-on-a-chip devices are often applied to point-of-care diagnostic solutions as they are low-cost, compact, disposable, and require only small sample volumes. For such devices, various reagents are required for sample preparation and analysis and, for an integrated solution to be realized, on-chip reagent storage and automated introduction are required. This work describes the implementation and characterization of effective liquid reagent storage and release mechanisms utilizing blister pouches applied to various point-of-care diagnostic device applications. The manufacturing aspects as well as performance parameters are evaluated.
Medical Surveillance Monthly Report (MSMR). Volume 17, Number 08, August 2010
2010-08-01
notifi able medical event reports that included diagnostic codes (ICD-9-CM) indicative of chlamydia, gonorrhea, syphilis, herpes simplex virus (HSV...infections of interest for this report Results: Condition Diagnostic codes Chlamydia 099.41, 099.5 Gonorrhea 098 Herpes simplex (HSV) 054 Human...housing arrangements may also play roles and off er opportunities for targeted prevention.6 Human papillomavirus (HPV), the cause of genital warts
High speed micro scanner for 3D in-volume laser micro processing
NASA Astrophysics Data System (ADS)
Schaefer, D.; Gottmann, J.; Hermans, M.; Ortmann, J.; Kelbassa, I.
2013-03-01
Using an in-house developed micro scanner three-dimensional micro components and micro fluidic devices in fused silica are realized using the ISLE process (in-volume selective laser-induced etching). With the micro scanner system the potential of high average power femtosecond lasers (P > 100 W) is exploited by the fabrication of components with micrometer precision at scan speeds of several meters per second. A commercially available galvanometer scanner is combined with an acousto-optical and/or electro-optical beam deflector and translation stages. For focusing laser radiation high numerical aperture microscope objectives (NA > 0.3) are used generating a focal volume of a few cubic micrometers. After laser exposure the materials are chemically wet etched in aqueous solution. The laser-exposed material is etched whereas the unexposed material remains nearly unchanged. Using the described technique called ISLE the fabrication of three-dimensional micro components, micro holes, cuts and channels is possible with high average power femtosecond lasers resulting in a reduced processing time for exposure. By developing the high speed micro scanner up-scaling of the ISLE process is demonstrated. The fabricated components made out of glass can be applied in various markets like biological and medical diagnostics as well as in micro mechanics.
Ferguson, Philip E; Sales, Catherine M; Hodges, Dalton C; Sales, Elizabeth W
2015-01-01
Recent publications have emphasized the importance of a multidisciplinary strategy for maximum conservation and utilization of lung biopsy material for advanced testing, which may determine therapy. This paper quantifies the effect of a multidisciplinary strategy implemented to optimize and increase tissue volume in CT-guided transthoracic needle core lung biopsies. The strategy was three-pronged: (1) once there was confidence diagnostic tissue had been obtained and if safe for the patient, additional biopsy passes were performed to further increase volume of biopsy material, (2) biopsy material was placed in multiple cassettes for processing, and (3) all tissue ribbons were conserved when cutting blocks in the histology laboratory. This study quantifies the effects of strategies #1 and #2. This retrospective analysis comparing CT-guided lung biopsies from 2007 and 2012 (before and after multidisciplinary approach implementation) was performed at a single institution. Patient medical records were reviewed and main variables analyzed include biopsy sample size, radiologist, number of blocks submitted, diagnosis, and complications. The biopsy sample size measured was considered to be directly proportional to tissue volume in the block. Biopsy sample size increased 2.5 fold with the average total biopsy sample size increasing from 1.0 cm (0.9-1.1 cm) in 2007 to 2.5 cm (2.3-2.8 cm) in 2012 (P<0.0001). The improvement was statistically significant for each individual radiologist. During the same time, the rate of pneumothorax requiring chest tube placement decreased from 15% to 7% (P = 0.065). No other major complications were identified. The proportion of tumor within the biopsy material was similar at 28% (23%-33%) and 35% (30%-40%) for 2007 and 2012, respectively. The number of cases with at least two blocks available for testing increased from 10.7% to 96.4% (P<0.0001). The effect of this multidisciplinary strategy to CT-guided lung biopsies was effective in significantly increasing tissue volume and number of blocks available for advanced diagnostic testing.
A diagnostic analysis of the VVP single-doppler retrieval technique
NASA Technical Reports Server (NTRS)
Boccippio, Dennis J.
1995-01-01
A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
Rapid DNA extraction from dried blood spots on filter paper: potential applications in biobanking.
Choi, Eun-Hye; Lee, Sang Kwang; Ihm, Chunhwa; Sohn, Young-Hak
2014-12-01
Dried blood spot (DBS) technology is a microsampling alternative to traditional plasma or serum sampling for pharmaco- or toxicokinetic evaluation. DBS technology has been applied to diagnostic screening in drug discovery, nonclinical, and clinical settings. We have developed an improved elution protocol involving boiling of blood spots dried on Whatman filter paper. The purpose of this study was to compare the quality, purity, and quantity of DNA isolated from frozen blood samples and DBSs. We optimized a method for extraction and estimation of DNA from blood spots dried on filter paper (3-mm FTA card). A single DBS containing 40 μL blood was used. DNA was efficiently extracted in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer by incubation at 37°C overnight. DNA was stable in DBSs that were stored at room temperature or frozen. The housekeeping genes GAPDH and beta-actin were used as positive standards for polymerase chain reaction (PCR) validation of general diagnostic screening. Our simple and convenient DBS storage and extraction methods are suitable for diagnostic screening by using very small volumes of blood collected on filter paper, and can be used in biobanks for blood sample storage.
Proceedings of the American power conference: Volume 59-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, A.E.
1997-07-01
This is Volume 59-1 of the proceedings of the American Power Conference, 1997. The contents include environmental protection; regulatory compliance and permitting; convergence of electric and gas industries; renewable/wind energy; improving operations and maintenance; globalization of renewable, generation, and distribution technologies; diagnostics; battery reliability; access to power transmission facilities; software for competitive decision making and operation; transmission and distribution; and nuclear operations and options.
Hopkins, Heidi; Oyibo, Wellington; Luchavez, Jennifer; Mationg, Mary Lorraine; Asiimwe, Caroline; Albertini, Audrey; González, Iveth J; Gatton, Michelle L; Bell, David
2011-02-08
Malaria rapid diagnostic tests (RDTs) are increasingly used by remote health personnel with minimal training in laboratory techniques. RDTs must, therefore, be as simple, safe and reliable as possible. Transfer of blood from the patient to the RDT is critical to safety and accuracy, and poses a significant challenge to many users. Blood transfer devices were evaluated for accuracy and precision of volume transferred, safety and ease of use, to identify the most appropriate devices for use with RDTs in routine clinical care. Five devices, a loop, straw-pipette, calibrated pipette, glass capillary tube, and a new inverted cup device, were evaluated in Nigeria, the Philippines and Uganda. The 227 participating health workers used each device to transfer blood from a simulated finger-prick site to filter paper. For each transfer, the number of attempts required to collect and deposit blood and any spilling of blood during transfer were recorded. Perceptions of ease of use and safety of each device were recorded for each participant. Blood volume transferred was calculated from the area of blood spots deposited on filter paper. The overall mean volumes transferred by devices differed significantly from the target volume of 5 microliters (p < 0.001). The inverted cup (4.6 microliters) most closely approximated the target volume. The glass capillary was excluded from volume analysis as the estimation method used is not compatible with this device. The calibrated pipette accounted for the largest proportion of blood exposures (23/225, 10%); exposures ranged from 2% to 6% for the other four devices. The inverted cup was considered easiest to use in blood collection (206/226, 91%); the straw-pipette and calibrated pipette were rated lowest (143/225 [64%] and 135/225 [60%] respectively). Overall, the inverted cup was the most preferred device (72%, 163/227), followed by the loop (61%, 138/227). The performance of blood transfer devices varied in this evaluation of accuracy, blood safety, ease of use, and user preference. The inverted cup design achieved the highest overall performance, while the loop also performed well. These findings have relevance for any point-of-care diagnostics that require blood sampling.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor; Silin, Dimitriy Borisovic; De, Asoke Kumar
2005-06-07
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
Waterflood control system for maximizing total oil recovery
Patzek, Tadeusz Wiktor [Oakland, CA; Silin, Dimitriy Borisovich [Pleasant Hill, CA; De, Asoke Kumar [San Jose, CA
2007-07-24
A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.
Chien, Jason L; Ghassibi, Mark P; Patthanathamrongkasem, Thipnapa; Abumasmah, Ramiz; Rosman, Michael S; Skaat, Alon; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul
2017-03-01
To compare glaucoma diagnostic capability of global/regional macular layer parameters in different-sized grids. Serial horizontal spectral-domain optical coherence tomography scans of macula were obtained. Automated macular grids with diameters of 3, 3.45, and 6 mm were used. For each grid, 10 parameters (total volume; average thicknesses in 9 regions) were obtained for 5 layers: macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), ganglion cell-inner plexiform layer (GCIPL; GCL+IPL), and ganglion cell complex (GCC; mRNFL+GCL+IPL). Sixty-nine normal eyes (69 subjects) and 87 glaucomatous eyes (87 patients) were included. For the total volume parameter, the area under the receiver operating characteristic curves (AUCs) in 6-mm grid were larger than the AUCs in 3- and 3.45-mm grids for GCL, GCC, GCIPL, and mRNFL (all P<0.020). For the average thickness parameters, the best AUC in 6-mm grid (T2 region for GCL, IPL, and GCIPL; I2 region for mRNFL and GCC) was greater than the best AUC in 3-mm grid for GCL, GCC, and mRNFL (P<0.045). The AUC of GCL volume (0.920) was similar to those of GCC (0.920) and GCIPL (0.909) volume. The AUC of GCL T2 region thickness (0.942) was similar to those of GCC I2 region (0.942) and GCIPL T2 region (0.934) thickness. Isolated macular GCL appears to be as good as GCC and GCIPL in glaucoma diagnosis, while IPL does not. Larger macular grids may be better at detecting glaucoma. Each layer has a characteristic region with the best glaucoma diagnostic capability.
Desiere, Frank; Romano Spica, Vincenzo
2012-09-15
This special issue of New Biotechnology is focused on molecular diagnostics and personalised medicine and appears at an epochal moment in the development of the field. The practice of medicine is taking a significant and irrevocable turn towards personalisation, due to the great progress in areas such as genomics, pharmacogenomics and molecular diagnosis. It becomes increasingly apparent that to deliver the promise of personalised treatments, more and more novel medicines discovered today will be presented together with innovative companion diagnostics. The contributions to this volume touch on many disciplines, ranging from cell biology to genetics, immunology, molecular diagnostics, pharmaceutics and economic issues. The contributions of clinicians and basic scientists are synergistically presented to underline better the wide spectrum of studies that can contribute to the new field of personalised medicine. The promising perspectives of individualised treatments are related not only to higher effectiveness, but also to increased efficiency. This is relevant not only for the individual patient, but even more so for the general public, within a wider economical perspective where resources are limited and it becomes more and more mandatory to close the gap between social costs and benefits. This approach follows the steps of a stratified and individualised medicine and finds its final goal in an individualised healthcare. Copyright © 2012 Elsevier B.V. All rights reserved.
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Weng, Yi-Hsin
2015-01-01
Purpose. We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [99mTc]-TRODAT with SPECT imaging. Procedures. A normal [99mTc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. Results. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R 2 = 0.84. Conclusions. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients. PMID:26366413
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Yen, Tzu-Chen; Weng, Yi-Hsin
2015-01-01
We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [(99m)Tc]-TRODAT with SPECT imaging. A normal [(99m)Tc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R (2) = 0.84. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients.
Edema is not a reliable diagnostic sign to exclude small brain metastases.
Schneider, Tanja; Kuhne, Jan Felix; Bittrich, Paul; Schroeder, Julian; Magnus, Tim; Mohme, Malte; Grosser, Malte; Schoen, Gerhard; Fiehler, Jens; Siemonsen, Susanne
2017-01-01
No prior systematic study on the extent of vasogenic edema (VE) in patients with brain metastases (BM) exists. Here, we aim to determine 1) the general volumetric relationship between BM and VE, 2) a threshold diameter above which a BM shows VE, and 3) the influence of the primary tumor and location of the BM in order to improve diagnostic processes and understanding of edema formation. This single center, retrospective study includes 173 untreated patients with histologically proven BM. Semi-manual segmentation of 1416 BM on contrast-enhanced T1-weighted images and of 865 VE on fluid-attenuated inversion recovery/T2-weighted images was conducted. Statistical analyses were performed using a paired-samples t-test, linear regression/generalized mixed-effects model, and receiver-operating characteristic (ROC) curve controlling for the possible effect of non-uniformly distributed metastases among patients. For BM with non-confluent edema (n = 545), there was a statistically significant positive correlation between the volumes of the BM and the VE (P < 0.001). The optimal threshold for edema formation was a diameter of 9.4 mm for all BM. The primary tumors as interaction term in multivariate analysis had a significant influence on VE formation whereas location had not. Hence VE development is dependent on the volume of the underlying BM and the site of the primary neoplasm, but not from the location of the BM.
NASA Astrophysics Data System (ADS)
Chen, Biao; Ruth, Chris; Jing, Zhenxue; Ren, Baorui; Smith, Andrew; Kshirsagar, Ashwini
2014-03-01
Breast density has been identified to be a risk factor of developing breast cancer and an indicator of lesion diagnostic obstruction due to masking effect. Volumetric density measurement evaluates fibro-glandular volume, breast volume, and breast volume density measures that have potential advantages over area density measurement in risk assessment. One class of volume density computing methods is based on the finding of the relative fibro-glandular tissue attenuation with regards to the reference fat tissue, and the estimation of the effective x-ray tissue attenuation differences between the fibro-glandular and fat tissue is key to volumetric breast density computing. We have modeled the effective attenuation difference as a function of actual x-ray skin entrance spectrum, breast thickness, fibro-glandular tissue thickness distribution, and detector efficiency. Compared to other approaches, our method has threefold advantages: (1) avoids the system calibration-based creation of effective attenuation differences which may introduce tedious calibrations for each imaging system and may not reflect the spectrum change and scatter induced overestimation or underestimation of breast density; (2) obtains the system specific separate and differential attenuation values of fibroglandular and fat for each mammographic image; and (3) further reduces the impact of breast thickness accuracy to volumetric breast density. A quantitative breast volume phantom with a set of equivalent fibro-glandular thicknesses has been used to evaluate the volume breast density measurement with the proposed method. The experimental results have shown that the method has significantly improved the accuracy of estimating breast density.
Laser optoacoustic tomography for medical diagnostics: principles
NASA Astrophysics Data System (ADS)
Oraevsky, Alexander A.; Esenaliev, Rinat O.; Jacques, Steven L.; Tittel, Frank K.
1996-04-01
This paper is to describe principles of laser optoacoustic tomography for medical diagnostics. Two types of imaging modes are presented. The first is the tomography in transmission mode, which utilizes detection of stress transients transmitted from the laser-excited volume toward the depth through thick layers of tissue. The second is the tomography in reflection mode which utilizes detection of stress transients generated in superficial tissue layer and reflected back toward tissue surface. To distinguish the two modes, we have abbreviated them as (1) laser optoacoustic tomography in transmission mode, LOATT, and (2) time-resolved stress detection tomography of light absorption, TRSDTLA, in reflection mode where emphasis is made on high spatial resolution of images. The basis for laser optoacoustic tomography is the time-resolved detection of laser-induced transient stress waves, selectively generated in absorbing tissues of diagnostic interest. Such a technique allows one to visualize absorbed light distribution in turbid biological tissues irradiated by short laser pulses. Laser optoacoustic tomography can be used for detection of tissue pathological changes that result in either increased concentration of various tissue chromophores such as hemoglobin or in development of enhanced microcirculation in diseased tissue. Potential areas of applications are diagnosis of cancer, brain hemorrhages, arterial atherosclerotic plaques, and other diseased tissues. In addition, it can provide feedback information during medical treatments. Both LOATT and TRSDTLA utilize laser excitation of biological tissues and sensitive detection of laser-induced stress waves. Optical selectivity is based upon differences in optical properties of pathologically different tissues. Sensitivity comes from stress generation under irradiation conditions of temporal stress confinement. The use of sensitive wide-band lithium niobate acoustic transducers expands limits of laser optoacoustic tomography. The technology allows us to determine directly temperature distributions in tissues and locate tissues volumes with different absorption. To demonstrate principles of TRSDTLA, experiments were conducted in vivo with mice-model for breast cancer using specially designed front-surface transducers- reflectometers. To present advantages and limitation of LOATT, experiments were performed in phantoms made of gel with polystyrene spheres colored with copper sulfate. Our experimental results and theoretical calculations show that TRSDTLA can be applied for non- invasive histology of layered tissues with in-depth resolution of up to 2 microns. TRSDTLA in acoustic reflection mode is promising for diagnostics of skin and ocular diseases. LOATT in acoustic transmission mode can be applied for detection of small tissue volumes with enhanced absorption located inside organs at the depth of up to 10 cm.
Yano, Masataka; Kitahara, Satoshi; Yasuda, Kosaku; Yamanishi, Tomonori; Nakai, Hideo; Yanagisawa, Ryouzo; Morozumi, Makoto; Homma, Yukio
2004-05-01
To evaluate the extent to which our newly developed questionnaire, the Saitama Prostate Symptom Score (SPSS), for prostatic symptom scoring reflects objective findings in benign prostatic hyperplasia (clinical BPH) and to compare it with the International Prostate Symptom Score (IPSS) with regard to diagnostic sensitivity in clinical BPH. In this study, both the SPSS and the IPSS were self-administered by patients. Free uroflowmetry, a pressure-flow study and the measurement of prostatic volume were carried out. There was no significant correlation between the results of the IPSS questionnaire and the urethral obstruction grade estimated by Schaefer or Abrams-Griffiths nomograms. The total score of the SPSS was correlated with these nomograms (P = 0.0487 and P = 0.0413, respectively). There was no significant correlation between the results of the IPSS questionnaire and the total volume or transition zone volume of the prostate, whereas the total score of the SPSS correlated with the total volume of the gland and transition zone volume (P = 0.0044 and P= 0.0051, respectively). This study revealed the SPSS to correlate with objective findings satisfactorily. However, there are still several aspects of the SPSS which need to be improved upon, and the questionnaire should be studied in larger numbers of patients suffering from lower urinary tract symptoms.
Bonavina, Luigi; Laface, Letizia; Picozzi, Stefano; Nencioni, Marco; Siboni, Stefano; Bona, Davide; Sironi, Andrea; Sorba, Francesca; Clemente, Claudio
2010-09-01
With the development of tissue banking, a need for homogeneous methods of collection, processing, and storage of tissue has emerged. We describe the implementation of a biological bank in a high-volume, tertiary care University referral center for esophageal cancer surgery. We also propose an original punch biopsy technique of the surgical specimen. The method proved to be simple, reproducible, and not expensive. Unified standards for specimen collection are necessary to improve results of specimen-based diagnostic testing and research in surgical oncology.
NASA Technical Reports Server (NTRS)
Schoen, A. H.; Rosenstein, H.; Stanzione, K.; Wisniewski, J. S.
1980-01-01
This report describes the use of the V/STOL Aircraft Sizing and Performance Computer Program (VASCOMP II). The program is useful in performing aircraft parametric studies in a quick and cost efficient manner. Problem formulation and data development were performed by the Boeing Vertol Company and reflects the present preliminary design technology. The computer program, written in FORTRAN IV, has a broad range of input parameters, to enable investigation of a wide variety of aircraft. User oriented features of the program include minimized input requirements, diagnostic capabilities, and various options for program flexibility.
1989-03-01
DI _1.3)))an also the wire connecting m419 (id (3))( (tp (P-PORT))(port-of rDim) (m88 ( l l ) (type (P-PORT)) (port-of ( DI -1.1))) (m428 (id (2)) (type (P...research on this project had two dis - tinct but overlapping phases: consolidation of work done during the previous two years and developing new...diagnosis when VMES notices a diagnostic short-cut from the dual device model is present; this will be dis - cussed in the section of "Dual Device Model
Enhanced surveillance program FY97 accomplishments. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauzy, A.; Laake, B.
1997-10-01
This annual report is one volume of the Enhanced Surveillance Program (ESP) FY97 Accomplishments. The complete accomplishments report consists of 11 volumes. Volume 1 includes an ESP overview and a summary of selected unclassified FY97 program highlights. Volume 1 specifically targets a general audience, reflecting about half of the tasks conducted in FY97 and emphasizing key program accomplishments and contributions. The remaining volumes of the accomplishments report are classified, organized by program focus area, and present in technical detail the progress achieved in each of the 104 FY97 program tasks. Focus areas are as follows: pits; high explosives; organics; dynamics;more » diagnostics; systems; secondaries; nonnuclear materials; nonnuclear components; and Surveillance Test Program upgrades.« less
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792
Repair of Electronics for Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pettegrew, Richard D.; Easton, John; Struk, Peter
2007-01-01
To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center, Langley Research Center, Johnson Space Center, the National Center for Space Exploration Research, and the U.S. Navy. The project goals are 1) develop and demonstrate a manually-operated electronics repair capability to be conducted in a spacecraft environment; and 2) develop guidelines for designs of electronics that facilitates component-level repair for future space exploration efforts. This multi-faceted program utilizes a cross-disciplinary approach to examine pre- and post-repair diagnostics, conformal coating removal and replacement, component soldering, and electronics design for supportability. These areas are investigated by a combination of trade studies, ground based testing, reduced gravity aircraft testing, and actual spaceflight testing on the International Space Station (ISS) in multiple experiments. This paper details the efforts of this program, with emphasis on early trade study results, ground-based efforts, and two upcoming ISS experiments.
Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW.
Urooj, Shabana; Khan, M; Ansari, A Q; Lay-Ekuakille, Aimé; Salhan, Ashok K
2012-01-01
Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.
Gierach, Gretchen L.; Geller, Berta M.; Shepherd, John A.; Patel, Deesha A.; Vacek, Pamela M.; Weaver, Donald L.; Chicoine, Rachael E.; Pfeiffer, Ruth M.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Wang, Jeff; Johnson, Jason M.; Herschorn, Sally D.; Brinton, Louise A.; Sherman, Mark E.
2014-01-01
Background Mammographic density (MD), the area of non-fatty appearing tissue divided by total breast area, is a strong breast cancer risk factor. Most MD analyses have employed visual categorizations or computer-assisted quantification, which ignore breast thickness. We explored MD volume and area, using a volumetric approach previously validated as predictive of breast cancer risk, in relation to risk factors among women undergoing breast biopsy. Methods Among 413 primarily white women, ages 40–65, undergoing diagnostic breast biopsies between 2007–2010 at an academic facility in Vermont, MD volume (cm3) was quantified in cranio-caudal views of the breast contralateral to the biopsy target using a density phantom, while MD area (cm2) was measured on the same digital mammograms using thresholding software. Risk factor associations with continuous MD measurements were evaluated using linear regression. Results Percent MD volume and area were correlated (r=0.81) and strongly and inversely associated with age, body mass index (BMI), and menopause. Both measures were inversely associated with smoking and positively associated with breast biopsy history. Absolute MD measures were correlated (r=0.46) and inversely related to age and menopause. Whereas absolute dense area was inversely associated with BMI, absolute dense volume was positively associated. Conclusions Volume and area MD measures exhibit some overlap in risk factor associations, but divergence as well, particularly for BMI. Impact Findings suggest that volume and area density measures differ in subsets of women; notably, among obese women, absolute density was higher with volumetric methods, suggesting that breast cancer risk assessments may vary for these techniques. PMID:25139935
A Retrospective Belgian Multi-Center MRI Biomarker Study in Alzheimer's Disease (REMEMBER).
Niemantsverdriet, Ellis; Ribbens, Annemie; Bastin, Christine; Benoit, Florence; Bergmans, Bruno; Bier, Jean-Christophe; Bladt, Roxanne; Claes, Lene; De Deyn, Peter Paul; Deryck, Olivier; Hanseeuw, Bernard; Ivanoiu, Adrian; Lemper, Jean-Claude; Mormont, Eric; Picard, Gaëtane; Salmon, Eric; Segers, Kurt; Sieben, Anne; Smeets, Dirk; Struyfs, Hanne; Thiery, Evert; Tournoy, Jos; Triau, Eric; Vanbinst, Anne-Marie; Versijpt, Jan; Bjerke, Maria; Engelborghs, Sebastiaan
2018-01-01
Magnetic resonance imaging (MRI) acquisition/processing techniques assess brain volumes to explore neurodegeneration in Alzheimer's disease (AD). We examined the clinical utility of MSmetrix and investigated if automated MRI volumes could discriminate between groups covering the AD continuum and could be used as a predictor for clinical progression. The Belgian Dementia Council initiated a retrospective, multi-center study and analyzed whole brain (WB), grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), cortical GM (CGM) volumes, and WM hyperintensities (WMH) using MSmetrix in the AD continuum. Baseline (n = 887) and follow-up (FU, n = 95) T1-weighted brain MRIs and time-linked neuropsychological data were available. The cohort consisted of cognitively healthy controls (HC, n = 93), subjective cognitive decline (n = 102), mild cognitive impairment (MCI, n = 379), and AD dementia (n = 313). Baseline WB and GM volumes could accurately discriminate between clinical diagnostic groups and were significantly decreased with increasing cognitive impairment. MCI patients had a significantly larger change in WB, GM, and CGM volumes based on two MRIs (n = 95) compared to HC (FU>24months, p = 0.020). Linear regression models showed that baseline atrophy of WB, GM, CGM, and increased CSF volumes predicted cognitive impairment. WB and GM volumes extracted by MSmetrix could be used to define the clinical spectrum of AD accurately and along with CGM, they are able to predict cognitive impairment based on (decline in) MMSE scores. Therefore, MSmetrix can support clinicians in their diagnostic decisions, is able to detect clinical disease progression, and is of help to stratify populations for clinical trials.
Longo, Benedetto; Farcomeni, Alessio; Ferri, Germano; Campanale, Antonella; Sorotos, Micheal; Santanelli, Fabio
2013-07-01
Breast volume assessment enhances preoperative planning of both aesthetic and reconstructive procedures, helping the surgeon in the decision-making process of shaping the breast. Numerous methods of breast size determination are currently reported but are limited by methodologic flaws and variable estimations. The authors aimed to develop a unifying predictive formula for volume assessment in small to large breasts based on anthropomorphic values. Ten anthropomorphic breast measurements and direct volumes of 108 mastectomy specimens from 88 women were collected prospectively. The authors performed a multivariate regression to build the optimal model for development of the predictive formula. The final model was then internally validated. A previously published formula was used as a reference. Mean (±SD) breast weight was 527.9 ± 227.6 g (range, 150 to 1250 g). After model selection, sternal notch-to-nipple, inframammary fold-to-nipple, and inframammary fold-to-fold projection distances emerged as the most important predictors. The resulting formula (the BREAST-V) showed an adjusted R of 0.73. The estimated expected absolute error on new breasts is 89.7 g (95 percent CI, 62.4 to 119.1 g) and the expected relative error is 18.4 percent (95 percent CI, 12.9 to 24.3 percent). Application of reference formula on the sample yielded worse predictions than those derived by the formula, showing an R of 0.55. The BREAST-V is a reliable tool for predicting small to large breast volumes accurately for use as a complementary device in surgeon evaluation. An app entitled BREAST-V for both iOS and Android devices is currently available for free download in the Apple App Store and Google Play Store. Diagnostic, II.
Matz, Samantha; Connell, Mary; Sinha, Madhumita; Goettl, Christopher S; Patel, Palak C; Drachman, David
2013-09-01
The presence of free intraperitoneal fluid on diagnostic imaging (sonography or computed tomography [CT]) may indicate an acute inflammatory process in children with abdominal pain in a nontraumatic setting. Although clinical outcomes of pediatric trauma patients with free fluid on diagnostic examinations without evidence of solid-organ injury have been studied, similar studies in the absence of trauma are rare. Our objective was to study clinical outcomes of children with acute abdominal pain of nontraumatic etiology and free intraperitoneal fluid on diagnostic imaging (abdominal/pelvic sonography, CT, or both). We conducted a retrospective review of medical records of children aged 0 to 18 years presenting to a pediatric emergency department with acute abdominal pain (nontraumatic) between April 2008 and March 2009. Patients with intraperitoneal free fluid on imaging were divided into 2 groups: group I, imaging suggestive of an intra-abdominal surgical condition such as appendicitis; and group II, no evidence of an acute surgical condition on imaging, including patients with equivocal studies. Computed tomograms and sonograms were reviewed by a board-certified radiologist, and the free fluid volume was quantitated. Of 1613 patients who underwent diagnostic imaging, 407 were eligible for the study; 134 (33%) had free fluid detected on diagnostic imaging. In patients with both sonography and CT, there was a significant correlation in the free fluid volume (r = 0.79; P < .0005). A significantly greater number of male patients with free fluid had a surgical condition identified on imaging (57.4% versus 25%; P < .001). Children with free fluid and an associated condition on imaging were more likely to have surgery (94.4% versus 6.3%; P < .001). We found clinical outcomes (surgical versus nonsurgical) to be most correlated with a surgical diagnosis on diagnostic imaging and not with the amount of fluid present.
Adoption of lean principles in a high-volume molecular diagnostic microbiology laboratory.
Mitchell, P Shawn; Mandrekar, Jayawant N; Yao, Joseph D C
2014-07-01
Clinical laboratories are constantly facing challenges to do more with less, enhance quality, improve test turnaround time, and reduce operational expenses. Experience with adopting and applying lean concepts and tools used extensively in the manufacturing industry is described for a high-volume clinical molecular microbiology laboratory, illustrating how operational success and benefits can be achieved. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Thyroid sonography as an effective tool to discriminate between euthyroid sick and hypothyroid dogs.
Reese, Sven; Breyer, Ulrike; Deeg, Cornelia; Kraft, Wilfried; Kaspers, Bernd
2005-01-01
The diagnosis of canine hypothyroidism and its differentiation from euthyroid sick syndrome still is a major diagnostic challenge. In this study, ultrasonography was shown to be an effective tool for the investigation of thyroid gland diseases. Healthy control dogs (n = 87), dogs with euthyroid sick syndrome (n = 26), thyroglobulin autoantibody-positive (TgAA-positive, n = 30) hypothyroid dogs, and TgAA-negative (n = 23) hypothyroid dogs were examined by thyroid ultrasonography. Maximal cross sectional area (MCSA), thyroid volume, and echogenicity were measured. Statistical analysis identified highly significant (P < .001) differences between euthyroid and hypothyroid dogs both in thyroid volume and in MCSA, whereas no significant differences in thyroid size were detected between healthy euthyroid dogs and dogs with euthyroid sick syndrome. In euthyroid and euthyroid sick dogs, parenchymal echotexture was homogeneous and hyperechoic, whereas relative thyroid echogenicity of both TgAA-positive and TgAA-negative hypothyroid dogs was significantly lower (P < .001). When using arbitrarily chosen cutoff values for relative thyroid volume, MCSA, and echogenicity, thyroid volume especially was found to have highly specific predictive value for canine hypothyroidism. In summary, the data reveal that thyroid sonography is an effective ancillary diagnostic tool to differentiate between canine hypothyroidism and euthyroid sick syndrome.
NASA Astrophysics Data System (ADS)
Krotov, Aleksei; Pankin, Victor
2017-09-01
The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.
Ozkurt, Huseyin; Tokgoz, Safiye; Karabay, Esra; Ucan, Berna; Akdogan, Melek Pala; Basak, Muzaffer
2014-01-01
Aim To evaluate the diagnostic quality of a new multiple detector-row computed tomography angiography (MDCT-A) protocol using low dose radiation and low volume contrast medium techniques for evaluation of non-cardiac chest pain. Methods Forty-five consecutive patients with clinically suspected noncardiac chest pain and requiring contrast-enhanced chest computed tomography (CT) were examined. The patients were assigned to the protocol, with 80 kilovolt (peak) (kV[p]) and 150 effective milliampere-second (eff mA-s). In our study group, 40 mL of low osmolar contrast material was administered at 3.0 mL/s. Results In the study group, four patients with pulmonary embolism, four with pleural effusion, two with ascending aortic aneurysm and eight patients with pneumonic consolidation were detected. The mean attenuation of the pulmonary truncus and ascendant aortic locations was considered 264±44 and 249±51 HU, respectively. The mean effective radiation dose was 0.83 mSv for MDCT-A. Conclusions Pulmonary artery and the aorta scanning simultaneously was significantly reduced radiation exposure with the mentioned dose saving technique. Additionally, injection of low volume (40 cc) contrast material may reduce the risk of contrast induced nephropathy, therefore, facilitate the diagnostic approach. This technique can be applied to all cases and particularly patients at high risk of contrast induced nephropathy due to its similar diagnostic quality with a low dose and high levels of arteriovenous enhancement simultaneously. PMID:25392818
Martín-Láez, Rubén; Vázquez-Barquero, Alfonso
Despite the existence of published guidelines for more than a decade, there is still a substantial variation in the management of idiopathic normal pressure hydrocephalus due to its diagnostic and therapeutic complexity. The diagnostic and therapeutic protocol for the management of idiopathic normal pressure hydrocephalus in use at the Department of Neurosurgery of the University Hospital Marqués de Valdecilla is presented. The diagnostic process includes neuropsychological testing, phase contrast cine MRI, urodynamic evaluation, continuous intracranial pressure monitoring, cerebrospinal fluid hydrodynamics by means of lumbar infusion testing, and intra-abdominal pressure measurement. A patient is considered a surgical candidate if any of the following criteria is met: mean intracranial pressure >15mmHg, or B-waves present in >10% of overnight recording; pressure-volume index <15ml, or resistance to cerebrospinal fluid outflow (R OUT ) >4.5mmHg/ml/min in bolus infusion test; R OUT >12mmHg/ml/min, intracranial pressure >22mmHg, or high amplitude B-waves in the steady-state of the continuous rate infusion test; or a clinical response to high-volume cerebrospinal fluid withdrawal. The implementation of a diagnostic and therapeutic protocol for idiopathic normal pressure hydrocephalus management could improve various aspects of patient care. It could reduce variability in clinical practice, optimise the use of health resources, and help in identifying scientific uncertainty areas, in order to direct research efforts in a more appropriate way. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Sayegh, Samir I.; Taghian, Alphonse
2013-03-01
Breast cancer-related lymphedema (BCRL) can be irreversible with profound negative impact on patients' quality of life. Programs that provide screening and active surveillance for BCRL are essential to determine whether early detection and intervention influences the course of lymphedema development. Established methods of quantitatively assessing lymphedema at early stages include "volume" methods such as perometry and bioimpedance spectroscopy. Here we demonstrate 1) Use of topographical techniques analogous to those used in corneal topography 2) Development of point-of-care lymphedema detection and characterization based on off-the-shelf hardward 3) The role of subsurface imaging 4) Multimodal diagnostics and integration yielding higher sensitivity/ specificity.
The Rapid-Heat LAMPellet Method: A Potential Diagnostic Method for Human Urogenital Schistosomiasis
Carranza-Rodríguez, Cristina; Pérez-Arellano, José Luis; Vicente, Belén; López-Abán, Julio; Muro, Antonio
2015-01-01
Background Urogenital schistosomiasis due to Schistosoma haematobium is a serious underestimated public health problem affecting 112 million people - particularly in sub-Saharan Africa. Microscopic examination of urine samples to detect parasite eggs still remains as definitive diagnosis. This work was focussed on developing a novel loop-mediated isothermal amplification (LAMP) assay for detection of S. haematobium DNA in human urine samples as a high-throughput, simple, accurate and affordable diagnostic tool to use in diagnosis of urogenital schistosomiasis. Methodology/Principal Findings A LAMP assay targeting a species specific sequence of S. haematobium ribosomal intergenic spacer was designed. The effectiveness of our LAMP was assessed in a number of patients´ urine samples with microscopy confirmed S. haematobium infection. For potentially large-scale application in field conditions, different DNA extraction methods, including a commercial kit, a modified NaOH extraction method and a rapid heating method were tested using small volumes of urine fractions (whole urine, supernatants and pellets). The heating of pellets from clinical samples was the most efficient method to obtain good-quality DNA detectable by LAMP. The detection limit of our LAMP was 1 fg/µL of S. haematobium DNA in urine samples. When testing all patients´ urine samples included in our study, diagnostic parameters for sensitivity and specificity were calculated for LAMP assay, 100% sensitivity (95% CI: 81.32%-100%) and 86.67% specificity (95% CI: 75.40%-94.05%), and also for microscopy detection of eggs in urine samples, 69.23% sensitivity (95% CI: 48.21% -85.63%) and 100% specificity (95% CI: 93.08%-100%). Conclusions/Significance We have developed and evaluated, for the first time, a LAMP assay for detection of S. haematobium DNA in heated pellets from patients´ urine samples using no complicated requirement procedure for DNA extraction. The procedure has been named the Rapid-Heat LAMPellet method and has the potential to be developed further as a field diagnostic tool for use in urogenital schistosomiasis-endemic areas. PMID:26230990
Patouillard, Edith; Kleinschmidt, Immo; Hanson, Kara; Pok, Sochea; Palafox, Benjamin; Tougher, Sarah; O'Connell, Kate; Goodman, Catherine
2013-09-05
There is increased interest in using commercial providers for improving access to quality malaria treatment. Understanding their current role is an essential first step, notably in terms of the volume of diagnostics and anti-malarials they sell. Sales volume data can be used to measure the importance of different provider and product types, frequency of parasitological diagnosis and impact of interventions. Several methods for measuring sales volumes are available, yet all have methodological challenges and evidence is lacking on the comparability of different methods. Using sales volume data on anti-malarials and rapid diagnostic tests (RDTs) for malaria collected through provider recall (RC) and retail audits (RA), this study measures the degree of agreement between the two methods at wholesale and retail commercial providers in Cambodia following the Bland-Altman approach. Relative strengths and weaknesses of the methods were also investigated through qualitative research with fieldworkers. A total of 67 wholesalers and 107 retailers were sampled. Wholesale sales volumes were estimated through both methods for 62 anti-malarials and 23 RDTs and retail volumes for 113 anti-malarials and 33 RDTs. At wholesale outlets, RA estimates for anti-malarial sales were on average higher than RC estimates (mean difference of four adult equivalent treatment doses (95% CI 0.6-7.2)), equivalent to 30% of mean sales volumes. For RDTs at wholesalers, the between-method mean difference was not statistically significant (one test, 95% CI -6.0-4.0). At retail outlets, between-method differences for both anti-malarials and RDTs increased with larger volumes being measured, so mean differences were not a meaningful measure of agreement between the methods. Qualitative research revealed that in Cambodia where sales volumes are small, RC had key advantages: providers were perceived to remember more easily their sales volumes and find RC less invasive; fieldworkers found it more convenient; and it was cheaper to implement than RA. Both RA and RC had implementation challenges and were prone to data collection errors. Choice of empirical methods is likely to have important implications for data quality depending on the study context.
2013-01-01
Background There is increased interest in using commercial providers for improving access to quality malaria treatment. Understanding their current role is an essential first step, notably in terms of the volume of diagnostics and anti-malarials they sell. Sales volume data can be used to measure the importance of different provider and product types, frequency of parasitological diagnosis and impact of interventions. Several methods for measuring sales volumes are available, yet all have methodological challenges and evidence is lacking on the comparability of different methods. Methods Using sales volume data on anti-malarials and rapid diagnostic tests (RDTs) for malaria collected through provider recall (RC) and retail audits (RA), this study measures the degree of agreement between the two methods at wholesale and retail commercial providers in Cambodia following the Bland-Altman approach. Relative strengths and weaknesses of the methods were also investigated through qualitative research with fieldworkers. Results A total of 67 wholesalers and 107 retailers were sampled. Wholesale sales volumes were estimated through both methods for 62 anti-malarials and 23 RDTs and retail volumes for 113 anti-malarials and 33 RDTs. At wholesale outlets, RA estimates for anti-malarial sales were on average higher than RC estimates (mean difference of four adult equivalent treatment doses (95% CI 0.6-7.2)), equivalent to 30% of mean sales volumes. For RDTs at wholesalers, the between-method mean difference was not statistically significant (one test, 95% CI −6.0-4.0). At retail outlets, between-method differences for both anti-malarials and RDTs increased with larger volumes being measured, so mean differences were not a meaningful measure of agreement between the methods. Qualitative research revealed that in Cambodia where sales volumes are small, RC had key advantages: providers were perceived to remember more easily their sales volumes and find RC less invasive; fieldworkers found it more convenient; and it was cheaper to implement than RA. Discussion/conclusions Both RA and RC had implementation challenges and were prone to data collection errors. Choice of empirical methods is likely to have important implications for data quality depending on the study context. PMID:24010526
Efficient screening for COPD using three steps: a cross-sectional study in Mexico City.
Franco-Marina, Francisco; Fernandez-Plata, Rosario; Torre-Bouscoulet, Luis; García-Sancho, Cecilia; Sanchez-Gallen, Elisa; Martinez, David; Perez-Padilla, Rogelio
2014-05-20
Underdiagnosis of chronic obstructive pulmonary disease (COPD) in primary care can be improved by a more efficient screening strategy. To evaluate a three-step method of screening for COPD consisting of an initial short questionnaire followed by measurement of forced expiratory volume in 1s/forced expiratory volume in 6s (FEV1/FEV6) using an inexpensive pocket spirometer in those with high risk, and diagnostic quality spirometry in those with a low FEV1/FEV6. We analysed two related Mexico City cross-sectional samples. The 2003 Mexico City PLATINO survey (n=542) was used to develop a short questionnaire to determine the risk of COPD and a 2010 survey (n=737) additionally used a pocket spirometer. The discriminatory power of the two instruments was assessed with receiver operator characteristic (ROC) curves using three COPD definitions. The developed COPD scale included two variables from a simple questionnaire and, in ROC analysis, an area under the curve (AUC) between 0.64 and 0.77 was found to detect COPD. The pocket spirometer had an AUC between 0.85 and 0.88 to detect COPD. Using the COPD scale as a first screening step excluded 35-48% of the total population from further testing at the cost of not detecting 8-18% of those with COPD. Using the pocket spirometer and sending those with a FEV1/FEV6<0.80 for diagnostic quality spirometry is very efficient, and substantially improved the positive predictive value at the cost of not detecting one-third of COPD cases. A three-step screening strategy for COPD substantially reduces the need for spirometry testing when only a COPD scale is used for screening.
NASA Astrophysics Data System (ADS)
Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy
2016-10-01
Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
NASA Astrophysics Data System (ADS)
Huang, Xiaohua; El-Sayed, Ivan H.; El-Sayed, Mostafa A.
2005-08-01
Gold nanoparticles with unique optical properties offer useful applications in biotechnology. In this article two applications that we have developed are summarized, in one they are used in cancer cell diagnostics and in the other they are found to have catalytic property for the NADH oxidation reaction which is important in ATP formations. By conjugation with anti-EGFR antibodies which specifically target EGFR that are usually overexpressed on most cancer cells, gold nanoparticles are used as a molecular contrast agent for cancer cell diagnostics using their both strong surface plasmon absorption and efficient Mie scattering properties. Au nanoparticles are also good catalysts for many reactions due to their high surface to volume ratio. Au nanoparticles are found to be the catalyst for the NADH oxidation reaction. This was studied by monitoring the effect of the nanoparticles on NADH fluorescence intensity and lifetime as well as the change of the surface plasmon absorption band during the reaction.
Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less
Corning HYPERFlask® for viral amplification and production of diagnostic reagents.
Kearney, Brian J; Voorhees, Matthew A; Williams, Priscilla L; Olschner, Scott P; Rossi, Cynthia A; Schoepp, Randal J
2017-04-01
Viral preparations are essential components in diagnostic research and development. The production of large quantities of virus traditionally is done by infecting numerous tissue culture flasks or roller bottles, which require large incubators and/or roller bottle racks. The Corning HYPERFlask ® is a multilayer flask that uses a gas permeable film to provide gas exchange between the cells and culture medium and the atmospheric environment. This study evaluated the suitability of the HYPERFlask for production of Lassa, Ebola, Bundibugyo, Reston, and Marburg viruses and compared it to more traditional methods using tissue culture flasks and roller bottles. The HYPERFlask produced cultures were equivalent in virus titer and indistinguishable in immunodiagnostic assays. The use of the Corning HYPERFlask for viral production is a viable alternative to traditional tissue culture flasks and roller bottles. HYPERFlasks allow for large volumes of virus to be produced in a small space without specialized equipment. Copyright © 2016. Published by Elsevier B.V.
Cunha, Burke A; Syed, Uzma; Stroll, Stephanie; Mickail, Nardeen; Laguerre, Marianne
2009-01-01
In spring 2009, a novel strain of influenza A originating in Veracruz, Mexico, quickly spread to the United States and throughout the world. This influenza A virus was the product of gene reassortment of 4 different genetic elements: human influenza, swine influenza, avian influenza, and Eurasian swine influenza. In the United States, New York was the epicenter of the swine influenza (H1N1) pandemic. Hospital emergency departments (EDs) were inundated with patients with influenza-like illnesses (ILIs) requesting screening for H1N1. Our ED screening, as well as many others, used a rapid screening test for influenza A (QuickVue A/B) because H1N1 was a variant of influenza A. The definitive laboratory test i.e., RT-PCR for H1N1 was developed by the Centers for Disease Control (Atlanta, GA) and subsequently distributed to health departments. Because of the extraordinary volume of test requests, health authorities restricted reverse transcription polymerase chain reaction (RT-PCR) testing. Hence most EDs, including our own, were dependent on rapid influenza diagnostic tests (RIDTs) for swine influenza. A positive rapid influenza A test was usually predictive of RT-PCR H1N1 positivity, but the rapid influenza A screening test (QuickVue A/B) was associated with 30% false negatives. The inability to rely on RIDTs for H1N1 diagnosis resulted in underdiagnosing H1N1. Confronted with adults admitted with ILIs, negative RIDTs, and restricted RT-PCR testing, there was a critical need to develop clinical criteria to diagnose probable swine influenza H1N1 pneumonia. During the pandemic, the Infectious Disease Division at Winthrop-University Hospital developed clinical criteria for adult admitted patients with ILIs and negative RIDTs. Similar to the one developed for the clinical diagnosis of legionnaire's disease. The Winthrop-University Hospital Infectious Disease Division's diagnostic weighted point score system for swine influenza H1N1 pneumonia is based on key clinical and laboratory features. During the "herald" wave of the swine influenza H1N1 pandemic, the diagnostic weighted point score system accurately identified probable swine influenza H1N1 pneumonia and accurately differentiated swine influenza H1N1 pneumonia from ILIs and other viral and bacterial community-acquired pneumonias. In hospitalized adults with ILIs and negative RIDTs, the diagnostic weighted diagnostic point score system, may be used to make a presumptive clinical diagnosis of swine influenza H1N1 pneumonia.
Miniaturized devices towards an integrated lab-on-a-chip platform for DNA diagnostics
NASA Astrophysics Data System (ADS)
Kaprou, G.; Papadakis, G.; Kokkoris, G.; Papadopoulos, V.; Kefala, I.; Papageorgiou, D.; Gizeli, E.; Tserepi, A.
2015-06-01
Microfluidics is an emerging technology enabling the development of Lab-on-a-chip (LOC) systems for clinical diagnostics, drug discovery and screening, food safety and environmental analysis. LOC systems integrate and scale down one or several laboratory functions on a single chip of a few mm2 to cm2 in size, and account for many advantages on biochemical analyses, such as low sample and reagent consumption, low cost, reduced analysis time, portability and point-of-need compatibility. Currently, available nucleic acid diagnostic tests take advantage of Polymerase Chain Reaction (PCR) that allows exponential amplification of portions of nucleic acid sequences that can be used as indicators for the identification of various diseases. Here, we present a comparison between static chamber and continuous flow miniaturized PCR devices, in terms of energy consumption for devices fabricated on the same material stack, with identical sample volume and channel dimensions. The comparison is implemented by a computational study coupling heat transfer in both solid and fluid, mass conservation of species, and joule heating. Based on the conclusions of this study, we develop low-cost and fast DNA amplification devices for both PCR and isothermal amplification, and we implement them in the detection of mutations related to breast cancer. The devices are fabricated by mass production amenable technologies on printed circuit board (PCB) substrates, where copper facilitates the incorporation of on-chip microheaters, defining the thermal zones necessary for PCR or isothermal amplification methods.
Morphologic 3D scanning of fallopian tubes to assist ovarian cancer diagnosis
NASA Astrophysics Data System (ADS)
Madore, Wendy-Julie; De Montigny, Etienne; Deschênes, Andréanne; Benboujja, Fouzi; Leduc, Mikael; Mes-Masson, Anne-Marie; Provencher, Diane M.; Rahimi, Kurosh; Boudoux, Caroline; Godbout, Nicolas
2016-02-01
Pathological evaluation of the fallopian tubes is an important diagnostic result but tumors can be missed using routine approaches. As the majority of high-grade serous ovarian cancers are now believed to originate in the fallopian tubes, pathological examination should include in a thorough examination of the excised ovaries and fallopian tubes. We present an dedicated imaging system for diagnostic exploration of human fallopian tubes. This system is based on optical coherence tomography (OCT), a laser imaging modality giving access to sub- epithelial tissue architecture. This system produces cross-sectional images up to 3 mm in depth, with a lateral resolution of ≍15μm and an axial resolution of ≍12μm. An endoscopic single fiber probe was developed to fit in a human fallopian tube. This 1.2 mm probe produces 3D volume data of the entire inner tube within a few minutes. To demonstrate the clinical potential of OCT for lesion identification, we studied 5 different ovarian lesions and healthy fallopian tubes. We imaged 52 paraffin-embedded human surgical specimens with a benchtop system and compared these images with histology slides. We also imaged and compared healthy oviducts from 3 animal models to find one resembling the human anatomy and to develop a functional ex vivo imaging procedure with the endoscopic probe. We also present an update on an ongoing clinical pilot study on women undergoing prophylactic or diagnostic surgery in which we image ex vivo fallopian tubes with the endoscopic probe.
Miklowitz, David J.; Chang, Kiki D.
2007-01-01
This article examines how bipolar symptoms emerge during development, and the potential role of psychosocial and pharmacological interventions in the prevention of the onset of the disorder. Early signs of bipolarity can be observed among children of bipolar parents and often take the form of subsyndromal presentations (e.g., mood lability, episodic elation or irritability, depression, inattention, and psychosocial impairment). However, many of these early presentations are diagnostically nonspecific. The few studies that have followed at-risk youth into adulthood find developmental discontinuities from childhood to adulthood. Biological markers (e.g., amygdalar volume) may ultimately increase our accuracy in identifying children who later develop bipolar I disorder, but few such markers have been identified. Stress, in the form of childhood adversity or highly conflictual families, is not a diagnostically-specific causal agent but does place genetically and biologically vulnerable individuals at risk for a more pernicious course of illness. A preventative family-focused treatment for children with (a) at least one first-degree relative with bipolar disorder, and (b) subsyndromal signs of bipolar disorder, is described. This model attempts to address the multiple interactions of psychosocial and biological risk factors in the onset and course of bipolar disorder. PMID:18606036
Strauss, Keith J
2014-10-01
The management of image quality and radiation dose during pediatric CT scanning is dependent on how well one manages the radiographic techniques as a function of the type of exam, type of CT scanner, and patient size. The CT scanner's display of expected CT dose index volume (CTDIvol) after the projection scan provides the operator with a powerful tool prior to the patient scan to identify and manage appropriate CT techniques, provided the department has established appropriate diagnostic reference levels (DRLs). This paper provides a step-by-step process that allows the development of DRLs as a function of type of exam, of actual patient size and of the individual radiation output of each CT scanner in a department. Abdomen, pelvis, thorax and head scans are addressed. Patient sizes from newborns to large adults are discussed. The method addresses every CT scanner regardless of vendor, model or vintage. We cover adjustments to techniques to manage the impact of iterative reconstruction and provide a method to handle all available voltages other than 120 kV. This level of management of CT techniques is necessary to properly monitor radiation dose and image quality during pediatric CT scans.
NASA Astrophysics Data System (ADS)
Siswaningsih, W.; Firman, H.; Zackiyah; Khoirunnisa, A.
2017-02-01
The aim of this study was to develop the two-tier pictorial-based diagnostic test for identifying student misconceptions on mole concept. The method of this study is used development and validation. The development of the test Obtained through four phases, development of any items, validation, determination key, and application test. Test was developed in the form of pictorial consisting of two tier, the first tier Consist of four possible answers and the second tier Consist of four possible reasons. Based on the results of content validity of 20 items using the CVR (Content Validity Ratio), a number of 18 items declared valid. Based on the results of the reliability test using SPSS, Obtained 17 items with Cronbach’s Alpha value of 0703, the which means that items have accepted. A total of 10 items was conducted to 35 students of senior high school students who have studied the mole concept on one of the high schools in Cimahi. Based on the results of the application test, student misconceptions were identified in each label concept in mole concept with the percentage of misconceptions on the label concept of mole (60.15%), Avogadro’s number (34.28%), relative atomic mass (62, 84%), relative molecule mass (77.08%), molar mass (68.53%), molar volume of gas (57.11%), molarity (71.32%), chemical equation (82.77%), limiting reactants (91.40%), and molecular formula (77.13%).
Ophthalmologic diagnostic tool using MR images for biomechanically-based muscle volume deformation
NASA Astrophysics Data System (ADS)
Buchberger, Michael; Kaltofen, Thomas
2003-05-01
We would like to give a work-in-progress report on our ophthalmologic diagnostic software system which performs biomechanically-based muscle volume deformations using MR images. For reconstructing a three-dimensional representation of an extraocular eye muscle, a sufficient amount of high resolution MR images is used, each representing a slice of the muscle. In addition, threshold values are given, which restrict the amount of data used from the MR images. The Marching Cube algorithm is applied to the polygons, resulting in a 3D representation of the muscle, which can efficiently be rendered. A transformation to a dynamic, deformable model is applied by calculating the center of gravity of each muscle slice, approximating the muscle path and subsequently adding Hermite splines through the centers of gravity of all slices. Then, a radius function is defined for each slice, completing the transformation of the static 3D polygon model. Finally, this paper describes future extensions to our system. One of these extensions is the support for additional calculations and measurements within the reconstructed 3D muscle representation. Globe translation, localization of muscle pulleys by analyzing the 3D reconstruction in two different gaze positions and other diagnostic measurements will be available.
Innovative diagnostics for ITER physics addressed in JET
NASA Astrophysics Data System (ADS)
Murari, A.; Edlington, T.; Alfier, A.; Alonso, A.; Andrew, Y.; Arnoux, G.; Beurskens, M.; Coad, P.; Crombe, C.; Gauthier, E.; Giroud, C.; Hidalgo, C.; Hong, S.; Kempenaars, M.; Kiptily, V.; Loarer, T.; Meigs, A.; Pasqualotto, R.; Tala, T.; Contributors, JET-EFDA
2008-12-01
In recent years, JET diagnostic capability has been significantly improved to widen the range of physical phenomena that can be studied and thus contribute to the understanding of some ITER relevant issues. The most significant results reported in this paper refer to the plasma wall interactions, the interplay between core and edge physics and fast particles. A synergy between new infrared cameras, visible cameras and spectroscopy diagnostics has allowed investigating a series of new aspects of the plasma wall interactions. The power loads on the plasma facing components of JET main chambers have been assessed at steady state and during transient events like ELMs and disruptions. Evidence of filaments in the edge region of the plasma has been collected with a new fast visible camera and high resolution Thomson scattering. The physics of detached plasmas and some new aspects of dust formation have also been devoted particular attention. The influence of the edge plasma on the core has been investigated with upgraded active spectroscopy, providing new information on momentum transport and the effects of impurity injection on ELMs and ITBs and their interdependence. Given the fact that JET is the only machine with a plasma volume big enough to confine the alphas, a coherent programme of diagnostic developments for the energetic particles has been undertaken. With upgraded γ-ray spectroscopy and a new scintillator probe, it is now possible to study both the redistribution and the losses of the fast particles in various plasma conditions.
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2013-09-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent, The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data-sets are made available to facilitate the process of model evaluation and scheme intercomparison.
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Ullrich, P. A.; Jablonowski, C.; Bosler, P. A.; Calhoun, D.; Conley, A. J.; Enomoto, T.; Dong, L.; Dubey, S.; Guba, O.; Hansen, A. B.; Kaas, E.; Kent, J.; Lamarque, J.-F.; Prather, M. J.; Reinert, D.; Shashkin, V. V.; Skamarock, W. C.; Sørensen, B.; Taylor, M. A.; Tolstykh, M. A.
2014-01-01
Recently, a standard test case suite for 2-D linear transport on the sphere was proposed to assess important aspects of accuracy in geophysical fluid dynamics with a "minimal" set of idealized model configurations/runs/diagnostics. Here we present results from 19 state-of-the-art transport scheme formulations based on finite-difference/finite-volume methods as well as emerging (in the context of atmospheric/oceanographic sciences) Galerkin methods. Discretization grids range from traditional regular latitude-longitude grids to more isotropic domain discretizations such as icosahedral and cubed-sphere tessellations of the sphere. The schemes are evaluated using a wide range of diagnostics in idealized flow environments. Accuracy is assessed in single- and two-tracer configurations using conventional error norms as well as novel diagnostics designed for climate and climate-chemistry applications. In addition, algorithmic considerations that may be important for computational efficiency are reported on. The latter is inevitably computing platform dependent. The ensemble of results from a wide variety of schemes presented here helps shed light on the ability of the test case suite diagnostics and flow settings to discriminate between algorithms and provide insights into accuracy in the context of global atmospheric/ocean modeling. A library of benchmark results is provided to facilitate scheme intercomparison and model development. Simple software and data sets are made available to facilitate the process of model evaluation and scheme intercomparison.
Wetzel, Hermann
2006-01-01
In a large number of mostly retrospective association studies, a statistical relationship between volume and quality of health care has been reported. However, the relevance of these results is frequently limited by methodological shortcomings. In this article, criteria for the evidence and definition of thresholds for volume-outcome relations are proposed, e.g. the specification of relevant outcomes for quality indicators, analysis of volume as a continuous variable with an adequate case-mix and risk adjustment, accounting for cluster effects and considering mathematical models for the derivation of cut-off values. Moreover, volume thresholds are regarded as surrogate parameters for the indirect classification of the quality of care, whose diagnostic validity and effectiveness in improving health care quality need to be evaluated in prospective studies.
Lambregts, Doenja M J; Rao, Sheng-Xiang; Sassen, Sander; Martens, Milou H; Heijnen, Luc A; Buijsen, Jeroen; Sosef, Meindert; Beets, Geerard L; Vliegen, Roy A; Beets-Tan, Regina G H
2015-12-01
Retrospective single-center studies have shown that diffusion-weighted magnetic resonance imaging (DWI) is promising for identification of patients with rectal cancer with a complete tumor response after neoadjuvant chemoradiotherapy (CRT), using certain volumetric thresholds. This study aims to validate the diagnostic value of these volume thresholds in a larger, independent, and bi-institutional patient cohort. A total of 112 patients with locally advanced rectal cancer (2 centers) treated with a long course of CRT were enrolled. Patients underwent standard T2W-magnetic resonance imaging and DWI, both pre- and post-CRT. Two experienced readers independently determined pre-CRT and post-CRT tumor volumes (cm) on T2W-magnetic resonance image and diffusion-weighted magnetic resonance image by means of freehand tumor delineation. Tumor volume reduction rates (Δvolume) were calculated. Previously determined T2W and DWI threshold values for prevolume, postvolume, and Δvolume were tested to "prospectively" assess their respective diagnostic value in discriminating patients with a complete tumor response from patients with residual tumor. Twenty patients had a complete response. Using the average measurements between the 2 readers, areas under the curve for the pre-/post-/Δvolumes was 0.73/0.82/0.78 for T2W-magnetic resonance imaging and 0.77/0.92/0.86 for DWI, respectively. For T2W-volumetry, sensitivity and specificity using the predefined volume thresholds were 55% and 74% for pre-, 60% and 89% for post-, and 60% and 86% for Δvolume. For DWI volumetry, sensitivity and specificity were 65% and 76% for pre-, 70% and 98% for post-, and 70% and 93% for Δvolume. Previously established DWI volume thresholds can be reproduced with good results. Post-CRT DWI volumetry offers the best results for the detection of patients with a complete response after CRT with an area under the curve of 0.92, sensitivity of 70%, and specificity of 98%.
D'Orsi, Carl; Tu, Shin-Ping; Nakano, Connie; Carney, Patricia A.; Abraham, Linn A.; Taplin, Stephen H.; Hendrick, R. Edward; Cutter, Gary R.; Berns, Eric; Barlow, William E.; Elmore, Joann G.
2011-01-01
PURPOSE To evaluate the current (2001–2002) capacity of community-based mammography facilities to deliver screening and diagnostic services in the United States. MATERIALS AND METHODS Institutional review board approvals and patient consent were obtained. A mailed survey was sent to 53 eligible mammography facilities in three states (Washington, New Hampshire, and Colorado). Survey questions assessed equipment and staffing availability, as well as appointment waiting times for screening and diagnostic mammography services. Criterion-related content and construct validity were obtained first by means of a national advisory committee of academic, scientific, and clinical colleagues in mammography that reviewed literature on existing surveys and second by pilot testing a series of draft surveys among community mammography facilities not inclusive of the study facilities. The final survey results were independently double entered into a relational database with programmed data checks. The data were sent encrypted by means of file transfer protocol to a central analytical center at Group Health Cooperative. A two-sided P value with α = .05 was considered to show statistical significance in all analyses. RESULTS Forty-five of 53 eligible mammography facilities (85%) returned the survey. Shortages of radiologists relative to the mammographic volume were found in 44% of mammography facilities overall, with shortages of radiologists higher in not-for-profit versus for-profit facilities (60% vs 28% reported). Shortages of Mammography Quality Standards Act–qualified technologists were reported by 20% of facilities, with 46% reporting some level of difficulty in maintaining qualified technologists. Waiting times for diagnostic mammography ranged from less than 1 week to 4 weeks, with 85% performed within 1 week. Waiting times for screening mammography ranged from less than 1 week to 8 weeks, with 59% performed between 1 week and 4 weeks. Waiting times for both diagnostic and screening services were two to three times higher in high-volume compared with low-volume facilities. CONCLUSION Survey results show shortages of radiologists and certified mammography technologists. PMID:15798153
Proton Radiography of a Thermal Explosion in PBX9501
NASA Astrophysics Data System (ADS)
Smilowitz, L.; Henson, B. F.; Romero, J. J.; Sandstrom, M. M.; Asay, B. W.; Schwartz, C.; Saunders, A.; Merrill, F.; Morris, C.; Murray, M. M.; McNeil, W. V.; Marr-Lyon, M.; Rightley, P. M.
2007-12-01
The understanding of thermal explosions and burn propagation lags that of detonations and shock propagation. Diagnostics such as high energy radiography have been used to image shocks, but have been previously precluded from use in thermal explosions due to their stringent timing requirements: shock propagation can be synchronized to an external diagnostic while thermal explosion can not. This issue is solved by following the evolution of the ignition volume in a thermal explosion and using a laser pulse to provide a temperature jump in that central volume during the final thermal runaway leading to ignition. Thermal explosion experiments have been conducted at the Los Alamos Proton Radiography facility and have yielded images of the evolution of ignition, post-ignition burn propagation, and case failure in a radially confined cylinder of PBX 9501. This paper presents images taken during the hours long quasistatic heating, the final minutes of thermal runaway, and the post ignition burn propagation.
Low Contrast Dose Catheter-Directed CT Angiography (CCTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Formosa, Amanda, E-mail: amandaformosa@yahoo.ca; Santos, Denise May, E-mail: contact@denisemaysantos.com; Marcuzzi, Daniel
2016-04-15
PurposeCatheter-directed computed tomography angiography (CCTA) has been shown to reduce the contrast volumes required in conventional CTA, thus minimizing the risk of contrast-induced nephropathy (CIN).Materials and MethodsA retrospective analysis was performed on cases where CCTA was used to assess access vessels prior to transfemoral aortic valve implantation (TAVI, n = 53), abdominal aortic aneurysm assessment for endovascular aneurysm repair (EVAR, n = 11), and peripheral vascular disease (PVD, n = 24).ResultsWe show that CCTA can image vasculature with adequate diagnostic detail to allow assessment of lower extremity disease, anatomic suitability for EVAR, as well as potential contraindications to TAVI. Average contrast volumes for pre-TAVI, pre-EVAR, andmore » PVD cases were 7, 11, and 28 mL, respectively.ConclusionThis study validates the use of CCTA in obtaining diagnostic images of the abdominal and pelvic vessels and in imaging lower extremity vasculature.« less
An international registry for primary ciliary dyskinesia.
Werner, Claudius; Lablans, Martin; Ataian, Maximilian; Raidt, Johanna; Wallmeier, Julia; Große-Onnebrink, Jörg; Kuehni, Claudia E; Haarman, Eric G; Leigh, Margaret W; Quittner, Alexandra L; Lucas, Jane S; Hogg, Claire; Witt, Michal; Priftis, Kostas N; Yiallouros, Panayiotis; Nielsen, Kim G; Santamaria, Francesca; Ückert, Frank; Omran, Heymut
2016-03-01
Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder leading to chronic upper and lower airway disease. Fundamental data on epidemiology, clinical presentation, course and treatment strategies are lacking in PCD. We have established an international PCD registry to realise an unmet need for an international platform to systematically collect data on incidence, clinical presentation, treatment and disease course.The registry was launched in January 2014. We used internet technology to ensure easy online access using a web browser under www.pcdregistry.eu. Data from 201 patients have been collected so far. The database is comprised of a basic data form including demographic and diagnostic information, and visit forms designed to monitor the disease course.To establish a definite PCD diagnosis, we used strict diagnostic criteria, which required two to three diagnostic methods in addition to classical clinical symptoms. Preliminary analysis of lung function data demonstrated a mean annual decline of percentage predicted forced expiratory volume in 1 s of 0.59% (95% CI 0.98-0.22).Here, we present the development of an international PCD registry as a new promising tool to advance the understanding of this rare disorder, to recruit candidates for research studies and ultimately to improve PCD care. Copyright ©ERS 2016.
Optical system for the Protein Crystallisation Diagnostics Facility (PCDF) on board the ISS
NASA Astrophysics Data System (ADS)
Joannes, Luc; Dupont, Olivier; Dewandel, Jean-Luc; Ligot, Renaud; Algrain, Hervé
2004-06-01
The Protein Crystallisation Diagnostic Facility (PCDF) is a multi-user facility to study the protein crystallisation under the conditions of micro-gravity onboard the International Space Station (ISS) Columbus facility. Large size protein crystals will growth under reduced gravity in thermally controlled reactors. A combination of diagnostic tools like video system, microscope, interferometer, and light scattering device shall help to understand the growth phenomena. Common methods of protein crystallisation shall be performed in PCDF: Dialysis where the protein solution and the salt solution are separated by a semi-permeable membrane. Extended Length Dialysis Batch where the saturation to get crystals is achieved by changing the concentration of the protein in the sample liquid. The overall ESA project is leaded by EADS Space Transportation, Friedrichshafen, Germany. Lambda-X is responsible for the Optical System (OS), with Verhaert Design and Development as sub-contractor for the mechanical design. The OS includes different compact parts: Original illumination systems based on LEDs of difference colours; Quantitative Mach-Zehnder interferometers to measure the concentration distribution around crystals; Imaging assemblies to visualize the protein volume with different field of views. The paper concentrates on the description of each part, and in particular on the imaging assembly which allow switching from one field of view to another by passive elements only.
Market assessment of tuberculosis diagnostics in India in 2013.
Maheshwari, P; Chauhan, K; Kadam, R; Pujani, A; Kaur, M; Chitalia, M; Dabas, H; Perkins, M D; Boehme, C C; Denkinger, C M; Raizada, N; Ginnard, J; Jefferson, C; Pantoja, A; Rupert, S; Kik, S V; Cohen, C; Chedore, P; Satyanarayana, S; Pai, M
2016-03-01
India represents a significant potential market for new tests. We assessed India's market for tuberculosis (TB) diagnostics in 2013. Test volumes and unit costs were assessed for tuberculin tests, interferon-gamma release assays, sputum smear microscopy, serology, culture, speciation testing, nucleic-acid amplification tests (i.e., in-house polymerase chain reaction, Xpert(®) MTB/RIF, line-probe assays) and drug susceptibility testing. Data from the public sector were collected from the Revised National TB Control Programme reports. Private sector data were collected through a survey of private laboratories and practitioners. Data were also collected from manufacturers. In 2013, India's public sector performed 19.2 million tests, with a market value of US$22.9 million. The private sector performed 13.6 million tests, with a market value of US$60.4 million when prices charged to the patient were applied. The overall market was US$70.8 million when unit costs from the ingredient approach were used for the 32.8 million TB tests performed in the entire country. Smear microscopy was the most common test performed, accounting for 25% of the overall market value. India's estimated market value for TB diagnostics in 2013 was US$70.8 million. These data should be of relevance to test developers, donors and implementers.
Hydraulic-fracture diagnostic research. Final report, December 1989-December 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, J.E.; Adair, R.G.; Clawson, G.E.
1992-05-01
The results of the research in microseismic methods to determine hydraulic fracture dimensions during the contract were significant. The GRI Hydraulic Fracture Test Site (HFTS) development planning was a major effort. Ten meetings of the Planning Team were coordinated and hosted. A statement of the HFTS mission, scope, objectives, and requirements was created. The primary objectives were to provide for interdisciplinary experiments on fracture modeling and fracture diagnostics. A Conceptual Plan for the HFTS was compiled by Teledyne Geotech and distributed at the Project Advisors Group meeting. An experiment at the Shell South Belridge Field in California was a directmore » analog of the HFTS. Multiple fracture stimulations were monitored from 3 wells with cemented-in geophones. Methods of handling and processing large data volumes in real time were established. The final fracture geometry did not fit the circular model. Fracture diagnostics were monitored at two GRI cooperative wells: the Enron S. Hogsback No. 13-8A and the Phillips Ward C No. 11. Theoretical studies indicate that crack waves might be used as an estimate of fracture length. After applying advanced signal enhancement techniques to low-frequency signals from 14 surveys, it was concluded that the data from presently available sondes is contaminated by sonde resonances.« less
NASA Astrophysics Data System (ADS)
Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping
2014-03-01
Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.
Scott, Julia A; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R; Schumann, Cynthia M; Carmichael, Owen T; Simon, Tony J
2016-04-01
Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Shape alterations are not specific to hippocampal subfields. Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.
Ferguson, Philip E.; Sales, Catherine M.; Hodges, Dalton C.; Sales, Elizabeth W.
2015-01-01
Background Recent publications have emphasized the importance of a multidisciplinary strategy for maximum conservation and utilization of lung biopsy material for advanced testing, which may determine therapy. This paper quantifies the effect of a multidisciplinary strategy implemented to optimize and increase tissue volume in CT-guided transthoracic needle core lung biopsies. The strategy was three-pronged: (1) once there was confidence diagnostic tissue had been obtained and if safe for the patient, additional biopsy passes were performed to further increase volume of biopsy material, (2) biopsy material was placed in multiple cassettes for processing, and (3) all tissue ribbons were conserved when cutting blocks in the histology laboratory. This study quantifies the effects of strategies #1 and #2. Design This retrospective analysis comparing CT-guided lung biopsies from 2007 and 2012 (before and after multidisciplinary approach implementation) was performed at a single institution. Patient medical records were reviewed and main variables analyzed include biopsy sample size, radiologist, number of blocks submitted, diagnosis, and complications. The biopsy sample size measured was considered to be directly proportional to tissue volume in the block. Results Biopsy sample size increased 2.5 fold with the average total biopsy sample size increasing from 1.0 cm (0.9–1.1 cm) in 2007 to 2.5 cm (2.3–2.8 cm) in 2012 (P<0.0001). The improvement was statistically significant for each individual radiologist. During the same time, the rate of pneumothorax requiring chest tube placement decreased from 15% to 7% (P = 0.065). No other major complications were identified. The proportion of tumor within the biopsy material was similar at 28% (23%–33%) and 35% (30%–40%) for 2007 and 2012, respectively. The number of cases with at least two blocks available for testing increased from 10.7% to 96.4% (P<0.0001). Conclusions The effect of this multidisciplinary strategy to CT-guided lung biopsies was effective in significantly increasing tissue volume and number of blocks available for advanced diagnostic testing. PMID:26479367
Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H
2017-12-01
Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic contrast-enhanced parameter of rate transfer constant from the fixed T1 acted as a preferable marker to differentiate true progression from pseudoprogression. © 2017 by American Journal of Neuroradiology.
Cannabis use and brain structural alterations of the cingulate cortex in early psychosis.
Rapp, Charlotte; Walter, Anna; Studerus, Erich; Bugra, Hilal; Tamagni, Corinne; Röthlisberger, Michel; Borgwardt, Stefan; Aston, Jacqueline; Riecher-Rössler, Anita
2013-11-30
As cannabis use is more frequent in patients with psychosis than in the general population and is known to be a risk factor for psychosis, the question arises whether cannabis contributes to recently detected brain volume reductions in schizophrenic psychoses. This study is the first to investigate how cannabis use is related to the cingulum volume, a brain region involved in the pathogenesis of schizophrenia, in a sample of both at-risk mental state (ARMS) and first episode psychosis (FEP) subjects. A cross-sectional magnetic resonance imaging (MRI) study of manually traced cingulum in 23 FEP and 37 ARMS subjects was performed. Cannabis use was assessed with the Basel Interview for Psychosis. By using repeated measures analyses of covariance, we investigated whether current cannabis use is associated with the cingulum volume, correcting for age, gender, alcohol consumption, whole brain volume and antipsychotic medication. There was a significant three-way interaction between region (anterior/posterior cingulum), hemisphere (left/right cingulum) and cannabis use (yes/no). Post-hoc analyses revealed that this was due to a significant negative effect of cannabis use on the volume of the posterior cingulum which was independent of the hemisphere and diagnostic group and all other covariates we controlled for. In the anterior cingulum, we found a significant negative effect only for the left hemisphere, which was again independent of the diagnostic group. Overall, we found negative associations of current cannabis use with grey matter volume of the cingulate cortex, a region rich in cannabinoid CB1 receptors. As this finding has not been consistently found in healthy controls, it might suggest that both ARMS and FEP subjects are particularly sensitive to exogenous activation of these receptors. © 2013 Elsevier Ireland Ltd. All rights reserved.
Renaud, Guillaume; Bosch, Johan G; Van Der Steen, Antonius F W; De Jong, Nico
2014-06-01
Contrast-enhanced ultrasound imaging is based on the detection of non-linear vibrational responses of a contrast agent after its intravenous administration. Improving contrast-enhanced images requires an accurate understanding of the vibrational response to ultrasound of the lipid-coated gas microbubbles that constitute most ultrasound contrast agents. Variations in the volume of microbubbles provide the most efficient radiation of ultrasound and, therefore, are the most important bubble vibrations for medical diagnostic ultrasound imaging. We developed an "acoustical camera" that measures the dynamic volume change of individual microbubbles when excited by a pressure wave. In the work described here, the technique was applied to the characterization of low-amplitude non-linear behaviors of BR14 microbubbles (Bracco Research, Geneva, Switzerland). The amplitude dependence of the resonance frequency and the damping, the prevalence of efficient subharmonic and ultraharmonic vibrations and the amplitude dependence of the response at the fundamental frequency and at the second harmonic frequency were investigated. Because of the large number of measurements, we provide a statistical characterization of the low-amplitude non-linear properties of the contrast agent. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lesion location and cognitive impact of cerebral small vessel disease.
Biesbroek, J Matthijs; Weaver, Nick A; Biessels, Geert Jan
2017-04-25
Cerebral small vessel disease (SVD) is an important cause of cognitive impairment. Important MRI manifestations of SVD include white matter hyperintensities (WMH) and lacunes. This narrative review addresses the role of anatomical lesion location in the impact of SVD on cognition, integrating findings from early autopsy studies with emerging findings from recent studies with advanced image analysis techniques. Early autopsy and imaging studies of small case series indicate that single lacunar infarcts in, for example the thalamus, caudate nucleus or internal capsule can cause marked cognitive impairment. However, the findings of such case studies may not be generalizable. Emerging location-based image analysis approaches are now being applied to large cohorts. Recent studies show that WMH burden in strategic white matter tracts, such as the forceps minor or anterior thalamic radiation (ATR), is more relevant in explaining variance in cognitive functioning than global WMH volume. These findings suggest that the future diagnostic work-up of memory clinic patients could potentially be improved by shifting from a global assessment of WMH and lacune burden towards a quantitative assessment of lesion volumes within strategic brain regions. In this review, a summary of currently known strategic regions for SVD-related cognitive impairment is provided, highlighting recent technical developments in SVD research. The potential and challenges of location-based approaches for diagnostic purposes in clinical practice are discussed, along with their potential prognostic and therapeutic applications. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Kistler, Andreas D.; Serra, Andreas L.; Siwy, Justyna; Poster, Diane; Krauer, Fabienne; Torres, Vicente E.; Mrug, Michal; Grantham, Jared J.; Bae, Kyongtae T.; Bost, James E.; Mullen, William; Wüthrich, Rudolf P.; Mischak, Harald; Chapman, Arlene B.
2013-01-01
Treatment options for autosomal dominant polycystic kidney disease (ADPKD) will likely become available in the near future, hence reliable diagnostic and prognostic biomarkers for the disease are strongly needed. Here, we aimed to define urinary proteomic patterns in ADPKD patients, which aid diagnosis and risk stratification. By capillary electrophoresis online coupled to mass spectrometry (CE-MS), we compared the urinary peptidome of 41 ADPKD patients to 189 healthy controls and identified 657 peptides with significantly altered excretion, of which 209 could be sequenced using tandem mass spectrometry. A support-vector-machine based diagnostic biomarker model based on the 142 most consistent peptide markers achieved a diagnostic sensitivity of 84.5% and specificity of 94.2% in an independent validation cohort, consisting of 251 ADPKD patients from five different centers and 86 healthy controls. The proteomic alterations in ADPKD included, but were not limited to markers previously associated with acute kidney injury (AKI). The diagnostic biomarker model was highly specific for ADPKD when tested in a cohort consisting of 481 patients with a variety of renal and extrarenal diseases, including AKI. Similar to ultrasound, sensitivity and specificity of the diagnostic score depended on patient age and genotype. We were furthermore able to identify biomarkers for disease severity and progression. A proteomic severity score was developed to predict height adjusted total kidney volume (htTKV) based on proteomic analysis of 134 ADPKD patients and showed a correlation of r = 0.415 (p<0.0001) with htTKV in an independent validation cohort consisting of 158 ADPKD patients. In conclusion, the performance of peptidomic biomarker scores is superior to any other biochemical markers of ADPKD and the proteomic biomarker patterns are a promising tool for prognostic evaluation of ADPKD. PMID:23326375
Markossian, Talar W.; Darnell, Julie S.; Calhoun, Elizabeth A.
2012-01-01
Background We evaluated the efficacy of a Chicago-based cancer patient navigation program developed to increase the proportion of patients reaching diagnostic resolution and reduce the time from abnormal screening test to definitive diagnostic resolution. Methods Women with an abnormal breast (n=352) or cervical (n=545) cancer screening test were recruited for the quasi-experimental study. Navigation subjects originated from five federally qualified health center sites and one safety net hospital. Records-based concurrent control subjects were selected from 20 sites. Control sites had similar characteristics to the navigated sites in terms of patient volume, racial/ethnic composition, and payor mix. Mixed-effects logistic regression and Cox proportional hazard regression analyses were conducted to compare navigation and control patients reaching diagnostic resolution by 60 days and time to resolution, adjusting for demographic covariates and site. Results Compared to controls, the breast navigation group had shorter time to diagnostic resolution (aHR=1.65, CI=1.20–2.28) and the cervical navigation group had shorter time to diagnostic resolution for those who resolved after 30 days (aHR= 2.31, CI=1.75–3.06), with no difference before 30 days (aHR= 1.42, CI=0.83–2.43). Variables significantly associated with longer time to resolution for breast cancer screening abnormalities were being older, never partnered, abnormal mammogram and BI-RADS 3, and being younger and Black for cervical abnormalities. Conclusions Patient navigation reduces time from abnormal cancer finding to definitive diagnosis in underserved women. Impact Results support efforts to use patient navigation as a strategy to reduce cancer disparities among socioeconomically disadvantaged women. PMID:23045544
Markossian, Talar W; Darnell, Julie S; Calhoun, Elizabeth A
2012-10-01
We evaluated the efficacy of a Chicago-based cancer patient navigation program developed to increase the proportion of patients reaching diagnostic resolution and reduce the time from abnormal screening test to definitive diagnostic resolution. Women with an abnormal breast (n = 352) or cervical (n = 545) cancer screening test were recruited for the quasi-experimental study. Navigation subjects originated from five federally qualified health center sites and one safety net hospital. Records-based concurrent control subjects were selected from 20 sites. Control sites had similar characteristics to the navigated sites in terms of patient volume, racial/ethnic composition, and payor mix. Mixed-effects logistic regression and Cox proportional hazard regression analyses were conducted to compare navigation and control patients reaching diagnostic resolution by 60 days and time to resolution, adjusting for demographic covariates and site. Compared with controls, the breast navigation group had shorter time to diagnostic resolution (aHR = 1.65, CI = 1.20-2.28) and the cervical navigation group had shorter time to diagnostic resolution for those who resolved after 30 days (aHR = 2.31, CI = 1.75-3.06), with no difference before 30 days (aHR = 1.42, CI = 0.83-2.43). Variables significantly associated with longer time to resolution for breast cancer screening abnormalities were being older, never partnered, abnormal mammogram and BI-RADS 3, and being younger and Black for cervical abnormalities. Patient navigation reduces time from abnormal cancer finding to definitive diagnosis in underserved women. Results support efforts to use patient navigation as a strategy to reduce cancer disparities among socioeconomically disadvantaged women. 2012 AACR
Feasibility of low contrast media volume in CT angiography of the aorta.
Seehofnerová, Anna; Kok, Madeleine; Mihl, Casper; Douwes, Dave; Sailer, Anni; Nijssen, Estelle; de Haan, Michiel J W; Wildberger, Joachim E; Das, Marco
2015-01-01
Using smaller volumes of contrast media (CM) in CT angiography (CTA) is desirable in terms of cost reduction and prevention of contrast-induced nephropathy (CIN). The purpose was to evaluate the feasibility of low CM volume in CTA of the aorta. 77 patients referred for CTA of the aorta were scanned using a standard MDCT protocol at 100 kV. A bolus of 50 ml CM (Iopromide 300 mg Iodine/ml) at a flow rate of 6 ml/s was applied (Iodine delivery rate IDR = 1.8 g/s; Iodine load 15 g) followed by a saline bolus of 40 ml at the same flow rate. Scan delay was determined by the test bolus method. Subjective image quality was assessed and contrast enhancement was measured at 10 anatomical levels of the aorta. Diagnostic quality images were obtained for all patients, reaching a mean overall contrast enhancement of 324 ± 28 HU. Mean attenuation was 350 ± 60 HU at the thoracic aorta and 315 ± 83 HU at the abdominal aorta. A straightforward low volume CM protocol proved to be technically feasible and led to CTA examinations reaching diagnostic image quality of the aorta at 100 kV. Based on these findings, the use of a relatively small CM bolus can be incorporated into routine clinical imaging.
Karamlou, Tara; Diggs, Brian S; Person, Thomas; Ungerleider, Ross M; Welke, Karl F
2008-12-02
Surgery for grown-up (age > or = 18 years) patients with congenital heart disease (GUCH) is frequently performed by surgeons without specialization in pediatric heart surgery. We sought to define national practice patterns and to determine whether outcomes for GUCH patients are improved if they are treated by specialized pediatric heart surgeons (PHSs) compared with non-PHSs. We identified index cardiac procedures in patients with 12 congenital heart disease diagnostic groups using the Nationwide Inpatient Sample 1988 to 2003. PHSs were defined as surgeons whose annual practice volumes were made of >75% annual pediatric heart cases. GUCH operations were defined as operations within these 12 diagnoses occurring in patients > or =18 years of age. We identified 30,250 operations, yielding a national estimate of 152,277 +/- 7,875 operations. Of these, 111,816 +/- 7,456 (73%) were pediatric operations, and 40,461 +/- 1,365 (27%) were GUCH operations. PHSs performed 68% of pediatric operations in all diagnostic groups, whereas non-PHSs performed 95% of GUCH operations within the same diagnostic groups (P<0.0001). In-hospital death rates for GUCH patients operated on by PHSs were lower than death rates for GUCH patients operated on by non-PHSs (1.87% [95% CI, 0.62 to 3.13] versus 4.84% [95% CI, 4.30 to 5.38%]; P<0.0001). Survival advantage increased with increasing surgeon annual pediatric volume (P=0.0031). Pediatric patients within specific diagnostic groups are more likely to undergo operation by PHSs, whereas GUCH patients within the same diagnostic groups are more likely to undergo operation by non-PHSs. In-hospital death rates are lower for GUCH patients operated on by PHSs. GUCH patients should be encouraged to obtain surgical operation by PHS.
Ross, J S; Datte, P; Divol, L; Galbraith, J; Froula, D H; Glenzer, S H; Hatch, B; Katz, J; Kilkenny, J; Landen, O; Manuel, A M; Molander, W; Montgomery, D S; Moody, J D; Swadling, G; Weaver, J
2016-11-01
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10 20 cm -3 while a 3ω probe will be used for plasma densities of ∼1 × 10 19 cm -3 . The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).
Combined sensing platform for advanced diagnostics in exhaled mouse breath
NASA Astrophysics Data System (ADS)
Fortes, Paula R.; Wilk, Andreas; Seichter, Felicia; Cajlakovic, Merima; Koestler, Stefan; Ribitsch, Volker; Wachter, Ulrich; Vogt, Josef; Radermacher, Peter; Carter, Chance; Raimundo, Ivo M.; Mizaikoff, Boris
2013-03-01
Breath analysis is an attractive non-invasive strategy for early disease recognition or diagnosis, and for therapeutic progression monitoring, as quantitative compositional analysis of breath can be related to biomarker panels provided by a specific physiological condition invoked by e.g., pulmonary diseases, lung cancer, breast cancer, and others. As exhaled breath contains comprehensive information on e.g., the metabolic state, and since in particular volatile organic constituents (VOCs) in exhaled breath may be indicative of certain disease states, analytical techniques for advanced breath diagnostics should be capable of sufficient molecular discrimination and quantification of constituents at ppm-ppb - or even lower - concentration levels. While individual analytical techniques such as e.g., mid-infrared spectroscopy may provide access to a range of relevant molecules, some IR-inactive constituents require the combination of IR sensing schemes with orthogonal analytical tools for extended molecular coverage. Combining mid-infrared hollow waveguides (HWGs) with luminescence sensors (LS) appears particularly attractive, as these complementary analytical techniques allow to simultaneously analyze total CO2 (via luminescence), the 12CO2/13CO2 tracer-to-tracee (TTR) ratio (via IR), selected VOCs (via IR) and O2 (via luminescence) in exhaled breath, yet, establishing a single diagnostic platform as both sensors simultaneously interact with the same breath sample volume. In the present study, we take advantage of a particularly compact (shoebox-size) FTIR spectrometer combined with novel substrate-integrated hollow waveguide (iHWG) recently developed by our research team, and miniaturized fiberoptic luminescence sensors for establishing a multi-constituent breath analysis tool that is ideally compatible with mouse intensive care stations (MICU). Given the low tidal volume and flow of exhaled mouse breath, the TTR is usually determined after sample collection via gas chromatography coupled to mass spectrometric detection. Here, we aim at potentially continuously analyzing the TTR via iHWGs and LS flow-through sensors requiring only minute (< 1 mL) sample volumes. Furthermore, this study explores non-linearities observed for the calibration functions of 12CO2 and 13CO2 potentially resulting from effects related to optical collision diameters e.g., in presence of molecular oxygen. It is anticipated that the simultaneous continuous analysis of oxygen via LS will facilitate the correction of these effects after inclusion within appropriate multivariate calibration models, thus providing more reliable and robust calibration schemes for continuously monitoring relevant breath constituents.
The volume of the human knee joint.
Matziolis, Georg; Roehner, Eric; Windisch, Christoph; Wagner, Andreas
2015-10-01
Despite its clinical relevance, particularly in septic knee surgery, the volume of the human knee joint has not been established to date. Therefore, the objective of this study was to determine knee joint volume and whether or not it is dependent on sex or body height. Sixty-one consecutive patients (joints) who were due to undergo endoprosthetic joint replacement were enrolled in this prospective study. During the operation, the joint volume was determined by injecting saline solution until a pressure of 200 mmHg was achieved in the joint. The average volume of all knee joints was 131 ± 53 (40-290) ml. The volume was not found to be dependent on sex, but it was dependent on the patients' height (R = 0.312, p = 0.014). This enabled an estimation of the joint volume according to V = 1.6 height - 135. The considerable inter-individual variance of the knee joint volume would suggest that it should be determined or at least estimated according to body height if the joint volume has consequences for the diagnostics or therapy of knee disorders.
Fritz, Jan; Henes, Jörg C; Thomas, Christoph; Clasen, Stephan; Fenchel, Michael; Claussen, Claus D; Lewin, Jonathan S; Pereira, Philippe L
2008-12-01
The objective of our study was to prospectively test the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively. Over a 12-month period, 60 patients (32 women and 28 men; median age, 28 years; age range, 18-49 years) with chronic lower back pain suspected to originate from the sacroiliac joints were enrolled in the study. Based on diagnostic MRI findings, MR fluoroscopy-guided sacroiliac joint injections were performed in 57 (95%) patients. Diagnostic injections (35, 58.3%) were performed if nonspecific or degenerative MRI findings were present. Therapeutic injections (22, 36.7%) were performed in patients with inflammatory arthropathy. In three (5%) patients, no injections were performed. Technical effectiveness was assessed by analyzing, first, the rate of intraarticular injection; second, the time required for the procedure; third, image quality; and, fourth, occurrence of complications and clinical outcome by analyzing pain intensity changes and volume and signal intensity of sacroiliac inflammatory changes. The rate of intraarticular injection was 90.4% (103/114). The mean length of time for the procedure was 50 minutes (range, 34-103 minutes), with exponential shortening over time (p < or = 0.001). The contrast-to-noise ratios of the needle and tissues were sufficiently different for excellent delineation of the needle. No complications occurred. Diagnostic injections identified the sacroiliac joints as generating significant pain in 46.9% (15/32) of the patients. Three months after therapeutic injections, pain intensity had decreased by 62.5% (p < or = 0.001) and the volume and relative signal intensity of inflammatory changes had decreased by 37.5% (p = 0.003) and 47.6% (p < or = 0.001), respectively. We accept the hypothesis that combined diagnostic and interventional MRI of the sacroiliac joints can be performed efficiently and effectively for comprehensive diagnosis and therapy of lower back pain originating from the sacroiliac joints.
Gray, Ewan; Butler, Holly J; Board, Ruth; Brennan, Paul M; Chalmers, Anthony J; Dawson, Timothy; Goodden, John; Hamilton, Willie; Hegarty, Mark G; James, Allan; Jenkinson, Michael D; Kernick, David; Lekka, Elvira; Livermore, Laurent J; Mills, Samantha J; O'Neill, Kevin; Palmer, David S; Vaqas, Babar; Baker, Matthew J
2018-05-24
To determine the potential costs and health benefits of a serum-based spectroscopic triage tool for brain tumours, which could be developed to reduce diagnostic delays in the current clinical pathway. A model-based health pre-trial economic assessment. Decision tree models were constructed based on simplified diagnostic pathways. Models were populated with parameters identified from rapid reviews of the literature and clinical expert opinion. Explored as a test in both primary and secondary care (neuroimaging) in the UK health service, as well as application to the USA. Calculations based on an initial cohort of 10 000 patients. In primary care, it is estimated that the volume of tests would approach 75 000 per annum. The volume of tests in secondary care is estimated at 53 000 per annum. The primary outcome measure was quality-adjusted life-years (QALY), which were employed to derive incremental cost-effectiveness ratios (ICER) in a cost-effectiveness analysis. Results indicate that using a blood-based spectroscopic test in both scenarios has the potential to be highly cost-effective in a health technology assessment agency decision-making process, as ICERs were well below standard threshold values of £20 000-£30 000 per QALY. This test may be cost-effective in both scenarios with test sensitivities and specificities as low as 80%; however, the price of the test would need to be lower (less than approximately £40). Use of this test as triage tool in primary care has the potential to be both more effective and cost saving for the health service. In secondary care, this test would also be deemed more effective than the current diagnostic pathway. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Holographic Imaging In Dense Artificial Fog
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Marzwell, Neville
1996-01-01
Artificial fog serves as volume-projection medium for display of three-dimensional image. Projection technique enables display of images for variety of purposes, possibly including entertainment, indoor and outdoor advertising, medical diagnostics and image representations for surgical procedures, and education.
[Thoracoscopic diagnosis and treatment of postoperative residual cavities].
Ioffe, D Ts; Dashiev, V A; Amanov, S A
1987-03-01
Investigations performed in 41 patients with postoperative residual cavities after surgical interventions of different volume have shown high value of thoracoscopy as an additional diagnostic and curative method. The endoscopy findings determinate further curative tactics--surgery or conservative therapy.
NASA Astrophysics Data System (ADS)
Hancock, Matthew C.; Magnan, Jerry F.
2017-03-01
To determine the potential usefulness of quantified diagnostic image features as inputs to a CAD system, we investigate the predictive capabilities of statistical learning methods for classifying nodule malignancy, utilizing the Lung Image Database Consortium (LIDC) dataset, and only employ the radiologist-assigned diagnostic feature values for the lung nodules therein, as well as our derived estimates of the diameter and volume of the nodules from the radiologists' annotations. We calculate theoretical upper bounds on the classification accuracy that is achievable by an ideal classifier that only uses the radiologist-assigned feature values, and we obtain an accuracy of 85.74 (+/-1.14)% which is, on average, 4.43% below the theoretical maximum of 90.17%. The corresponding area-under-the-curve (AUC) score is 0.932 (+/-0.012), which increases to 0.949 (+/-0.007) when diameter and volume features are included, along with the accuracy to 88.08 (+/-1.11)%. Our results are comparable to those in the literature that use algorithmically-derived image-based features, which supports our hypothesis that lung nodules can be classified as malignant or benign using only quantified, diagnostic image features, and indicates the competitiveness of this approach. We also analyze how the classification accuracy depends on specific features, and feature subsets, and we rank the features according to their predictive power, statistically demonstrating the top four to be spiculation, lobulation, subtlety, and calcification.
Diagnostic management of chronic obstructive pulmonary disease.
Broekhuizen, B D L; Sachs, A P E; Hoes, A W; Verheij, T J M; Moons, K G M
2012-01-01
Detection of early chronic obstructive pulmonary disease (COPD) in patients presenting with respiratory symptoms is recommended; however, diagnosing COPD is difficult because a single gold standard is not available. The aim of this article is to review and interpret the existing evidence, theories and consensus on the individual parts of the diagnostic work-up for COPD. Relevant articles are discussed under the subheadings: history taking, physical examination, spirometry and additional lung function assessment. Wheezing, cough, phlegm and breathlessness on exertion are suggestive signs for COPD. The diagnostic value of the physical examination is limited, except for auscultated pulmonary wheezing or reduced breath sounds, increasing the probability of COPD. Spirometric airflow obstruction after bronchodilation, defined as a lowered ratio of the forced volume in one second to the forced vital capacity (FEV1/FVC ratio), is a prerequisite, but can only confirm COPD in combination with suggestive symptoms. Different thresholds are being recommended to define low FEV1/FVC, including a fixed threshold, and one varying with gender and age; however, the way physicians interpret these thresholds in their assessment is not well known. Body plethysmography allows a more complete assessment of pulmonary function, providing results on the total lung capacity and the residual volume and is indicated when conventional spirometry results are inconclusive. Chest radiography has no diagnostic value for COPD but is useful to exclude alternative diagnoses such as heart failure or lung cancer. Extensive history taking is of key importance in diagnosing COPD.
Acoustic analysis of the composition of human blood serum
NASA Astrophysics Data System (ADS)
Gurbatov, S. N.; Demin, I. Yu.; Klemina, A. V.; Klemin, V. A.
2009-10-01
New acoustic methods of determining total protein, protein fractions, and lipid components of the human blood serum are presented. Acoustic methods are based on high-precision measurements of velocity and temperature dependences and frequency and temperature dependences of ultrasound absorption. Acoustic characteristics of the blood serum were measured using the method of a fixed length interferometer in acoustic cells ˜80 mcl in volume in the temperature range from 15 to 40°C and the 4-9 MHz frequency range with the acoustic analyzer developed by BIOM company. An error in measuring ultrasound velocity in the blood serum was 3 × 10-5; that of absorption, 2 × 10-2. The developed acoustic methods were clinically tested and recommended for application at clinical diagnostic laboratories with RF treatment-and-prophylactics establishments.
Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert
2004-01-01
A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D was developed to solve the three-dimensional, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This User's Guide describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.
Dead space and slope indices from the expiratory carbon dioxide tension-volume curve.
Kars, A H; Bogaard, J M; Stijnen, T; de Vries, J; Verbraak, A F; Hilvering, C
1997-08-01
The slope of phase 3 and three noninvasively determined dead space estimates derived from the expiratory carbon dioxide tension (PCO2) versus volume curve, including the Bohr dead space (VD,Bohr), the Fowler dead space (VD,Fowler) and pre-interface expirate (PIE), were investigated in 28 healthy control subjects, 12 asthma and 29 emphysema patients (20 severely obstructed and nine moderately obstructed) with the aim to establish diagnostic value. Because breath volume and frequency are closely related to CO2 elimination, the recording procedures included varying breath volumes in all subjects during self-chosen/natural breathing frequency, and fixed frequencies of 10, 15 and 20 breaths x min(-1) with varying breath volumes only in the healthy controls. From the relationships of the variables with tidal volume (VT), the values at 1 L were estimated to compare the groups. The slopes of phase 3 and VD,Bohr at 1 L VT showed the most significant difference between controls and patients with asthma or emphysema, compared to the other two dead space estimates, and were related to the degree of airways obstruction. Discrimination between no-emphysema (asthma and controls) and emphysema patients was possible on the basis of a plot of intercept and slope of the relationship between VD,Bohr and VT. A combination of both the slope of phase 3 and VD,Bohr of a breath of 1 L was equally discriminating. The influence of fixed frequencies in the controls did not change the results. The conclusion is that Bohr dead space in relation to tidal volume seems to have diagnostic properties separating patients with asthma from patients with emphysema with the same degree of airways obstruction. Equally discriminating was a combination of both phase 3 and Bohr dead space of a breath of 1 L. The different pathophysiological mechanisms in asthma and emphysema leading to airways obstruction are probably responsible for these results.
Luo, Dee; Smith, James A.; Meadows, Nick A.; Schuh, A.; Manescu, Katie E.; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L.; Brindley, David A.
2016-01-01
Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics. PMID:26858745
Luo, Dee; Smith, James A; Meadows, Nick A; Schuh, A; Manescu, Katie E; Bure, Kim; Davies, Benjamin; Horne, Rob; Kope, Mike; DiGiusto, David L; Brindley, David A
2015-01-01
Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics.
NASA Astrophysics Data System (ADS)
Grach, S. M.; Klimenko, V. V.; Shindin, A. V.; Nasyrov, I. A.; Sergeev, E. N.; A. Yashnov, V.; A. Pogorelko, N.
2012-06-01
We present the results of studying the structure and dynamics of the HF-heated volume above the Sura facility obtained in 2010 by measurements of ionospheric airglow in the red (λ = 630 nm) and green (λ = 557.7 nm) lines of atomic oxygen. Vertical sounding of the ionosphere (followed by modeling of the pump-wave propagation) and measurements of stimulated electromagnetic emission were used for additional diagnostics of ionospheric parameters and the processes occurring in the heated volume.
Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia
2012-12-01
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cohen, Noa; Sabhachandani, Pooja; Golberg, Alexander; Konry, Tania
2015-04-15
In this study we describe a simple lab-on-a-chip (LOC) biosensor approach utilizing well mixed microfluidic device and a microsphere-based assay capable of performing near real-time diagnostics of clinically relevant analytes such cytokines and antibodies. We were able to overcome the adsorption kinetics reaction rate-limiting mechanism, which is diffusion-controlled in standard immunoassays, by introducing the microsphere-based assay into well-mixed yet simple microfluidic device with turbulent flow profiles in the reaction regions. The integrated microsphere-based LOC device performs dynamic detection of the analyte in minimal amount of biological specimen by continuously sampling micro-liter volumes of sample per minute to detect dynamic changes in target analyte concentration. Furthermore we developed a mathematical model for the well-mixed reaction to describe the near real time detection mechanism observed in the developed LOC method. To demonstrate the specificity and sensitivity of the developed real time monitoring LOC approach, we applied the device for clinically relevant analytes: Tumor Necrosis Factor (TNF)-α cytokine and its clinically used inhibitor, anti-TNF-α antibody. Based on the reported results herein, the developed LOC device provides continuous sensitive and specific near real-time monitoring method for analytes such as cytokines and antibodies, reduces reagent volumes by nearly three orders of magnitude as well as eliminates the washing steps required by standard immunoassays. Copyright © 2014 Elsevier B.V. All rights reserved.
Integration of Diagnostics into Ground Equipment Study. Volume 1
2004-07-30
Marine Corps V-22, CH-53E, MH-53E, SH- 60B, MH- 60S /R, AH-1Z and UH -1Y aircraft. In addition, 30 systems are in delivery to the US Army Aviation Applied...simultaneous) can be connected to the VMEP system, which is based on a PC-104 platform and a 233MHz processor. The AH-64 Apache and UH - 60 Blackhawk are outfitted...34A Model-Based Health and Usage Monitoring and Diagnostic System for the UH - 60 Helicopter," Proceedings of the American Helicopter Society 57th
Respiratory diagnostic possibilities during closed circuit anesthesia.
Verkaaik, A P; Erdmann, W
1990-01-01
An automatic feed back controlled totally closed circuit system (Physioflex) has been developed for quantitative practice of inhalation anesthesia and ventilation. In the circuit system the gas is moved unidirectionally around by a blower at 70 l/min. In the system four membrane chambers are integrated for ventilation. Besides end-expiratory feed back control of inhalation anesthetics, and inspiratory closed loop control of oxygen, the system offers on-line registration of flow, volume and respiratory pressures as well as a capnogram and oxygen consumption. Alveolar ventilation and static compliance can easily be derived. On-line registration of oxygen consumption has proven to be of value for determination of any impairment of tissue oxygen supply when the oxygen delivery has dropped to critical values. Obstruction of the upper or lower airways are immediately detected and differentiated. Disregulations of metabolism, e.g. in malignant hyperthermia, are seen in a pre-crisis phase (increase of oxygen consumption and of CO2 production), and therapy can be started extremely early and before a disastrous condition has developed. Registration of compliance is only one of the continuously available parameters that guarantee a better and adequate control of lung function (e.g. atalectasis is early detected). The newly developed sophisticated anesthesia device enlarges tremendously the monitoring and respiratory diagnostic possibilities of artificial ventilation, gives new insights in the (patho)physiology and detects disturbances of respiratory parameters and metabolism in an early stage.
NASA Astrophysics Data System (ADS)
Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.
2016-12-01
Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.
Aitken, Victoria; Tabakov, Slavik
2005-09-01
Two Leonardo projects, EMERALD and EMIT, have developed in a partnershipof university and hospital departments (the consortia) e-Learning materials in X-ray diagnostic radiology, nuclear medicine, radiotherapy, ultrasound and magnetic resonance imaging for medical physics graduates and other healthcare professionals. These e-Learning materials are described in a separate paper in this issue. To assess the effectiveness and relevance of the e-Learning material, a series of evaluations by student users groups plus experts in medical physics education and training were undertaken. The students, with backgrounds in physics and clinical ultrasound, reviewed the e-Learning material using an evaluation form developed by the consortia. The student feedback was favourable with students commenting that their level of knowledge had increased having completed the tasks. Areas identified for development were a reduction in text volume and an increase in the time allowed for completion of some tasks. The feedback from the experts was positive with an overall appreciation of the value of the learning material as a resource for students in medical physics field across Europe and identified other disciplines in which the access to the learning material could be useful contribution to their learning. Suggestions made for improvements ranged from grading the tasks into basic and advanced topics to increasing the interactive nature of the material. These early evaluation of the e-Learning material look promising and provide a framework for further developments in the field. Insight into users and providers views is important if developers are to provide relevant and worthwhile educational learning opportunities.
Gerischer, Lea M; Fehlner, Andreas; Köbe, Theresa; Prehn, Kristin; Antonenko, Daria; Grittner, Ulrike; Braun, Jürgen; Sack, Ingolf; Flöel, Agnes
2018-01-01
Dementia due to Alzheimer's Disease (AD) is a neurodegenerative disease for which treatment strategies at an early stage are of great clinical importance. So far, there is still a lack of non-invasive diagnostic tools to sensitively detect AD in early stages and to predict individual disease progression. Magnetic resonance elastography (MRE) of the brain may be a promising novel tool. In this proof-of-concept study, we investigated whether multifrequency-MRE (MMRE) can detect differences in hippocampal stiffness between patients with clinical diagnosis of dementia due to AD and healthy controls (HC). Further, we analyzed if the combination of three MRI-derived parameters, i.e., hippocampal stiffness, hippocampal volume and mean diffusivity (MD), improves diagnostic accuracy. Diagnostic criteria for probable dementia due to AD were in line with the NINCDS-ADRDA criteria and were verified through history-taking (patient and informant), neuropsychological testing, routine blood results and routine MRI to exclude other medical causes of a cognitive decline. 21 AD patients and 21 HC (median age 75 years) underwent MMRE and structural MRI, from which hippocampal volume and MD were calculated. From the MMRE-images maps of the magnitude | G* | and phase angle φ of the complex shear modulus were reconstructed using multifrequency inversion. Median values of | G* | and φ were extracted within three regions of interest (hippocampus, thalamus and whole brain white matter). To test the predictive value of the main outcome parameters, we performed receiver operating characteristic (ROC) curve analyses. Hippocampal stiffness (| G* |) and viscosity ( φ ) were significantly lower in the patient group (both p < 0.001). ROC curve analyses showed an area under the curve (AUC) for | G* | of 0.81 [95%CI 0.68-0.94]; with sensitivity 86%, specificity 67% for cutoff at | G* | = 980 Pa) and for φ an AUC of 0.79 [95%CI 0.66-0.93]. In comparison, the AUC of MD and hippocampal volume were 0.83 [95%CI 0.71-0.95] and 0.86 [95%CI 0.74-0.97], respectively. A combined ROC curve of | G* |, MD and hippocampal volume yielded a significantly improved AUC of 0.90 [95%CI 0.81-0.99]. In conclusion, we demonstrated reduced hippocampal stiffness and reduced hippocampal viscosity, as determined by MMRE, in patients with clinical diagnosis of dementia of the AD type. Diagnostic sensitivity was further improved by the combination with two other MRI-based hippocampal parameters. These findings motivate further investigation whether MMRE can detect decreased brain stiffness already in pre-dementia stages, and whether these changes predict cognitive decline.
Magnetic Nanoparticles and microNMR for Diagnostic Applications
Shao, Huilin; Min, Changwook; Issadore, David; Liong, Monty; Yoon, Tae-Jong; Weissleder, Ralph; Lee, Hakho
2012-01-01
Sensitive and quantitative measurements of clinically relevant protein biomarkers, pathogens and cells in biological samples would be invaluable for disease diagnosis, monitoring of malignancy, and for evaluating therapy efficacy. Biosensing strategies using magnetic nanoparticles (MNPs) have recently received considerable attention, since they offer unique advantages over traditional detection methods. Specifically, because biological samples have negligible magnetic background, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. This review focuses on the use of MNPs for in vitro detection of cellular biomarkers based on nuclear magnetic resonance (NMR) effects. This detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs as proximity sensors to modulate the spin-spin relaxation time of water molecules surrounding the molecularly-targeted nanoparticles. With new developments such as more effective MNP biosensors, advanced conjugational strategies, and highly sensitive miniaturized NMR systems, the DMR detection capabilities have been considerably improved. These developments have also enabled parallel and rapid measurements from small sample volumes and on a wide range of targets, including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses and bacteria. The DMR platform thus makes a robust and easy-to-use sensor system with broad applications in biomedicine, as well as clinical utility in point-of-care settings. PMID:22272219
Effects of Early Life Stress on Depression, Cognitive Performance, and Brain Morphology
Saleh, Ayman; Potter, Guy G.; McQuoid, Douglas R.; Boyd, Brian; Turner, Rachel; MacFall, James R; Taylor, Warren D.
2016-01-01
Background Childhood early life stress (ELS) increases risk of adulthood Major Depressive Disorder (MDD) and is associated with altered brain structure and function. It is unclear whether specific ELSs affect depression risk, cognitive function and brain structure. Methods This cross-sectional study included 64 antidepressant-free depressed and 65 never depressed individuals. Both groups reported a range of ELSs on the Early Life Stress Questionnaire, completed neuropsychological testing and 3T MRI. Neuropsychological testing assessed domains of episodic memory, working memory, processing speed and executive function. MRI measures included cortical thickness and regional gray matter volumes, with a priori focus on cingulate cortex, orbitofrontal cortex (OFC), amygdala, caudate and hippocampus. Results Of 19 ELSs, only emotional abuse, sexual abuse and severe family conflict independently predicted adulthood MDD diagnosis. The effect of total ELS score differed between groups. Greater ELS exposure was associated with slower processing speed and smaller OFC volumes in depressed subjects, but faster speed and larger volumes in nondepressed subjects. In contrast, exposure to ELSs predictive of depression had similar effects in both diagnostic groups. Individuals reporting predictive ELSs exhibited poorer processing speed and working memory performance, smaller volumes of the lateral OFC and caudate, and decreased cortical thickness in multiple areas including the insula bilaterally. Predictive ELS exposure was also associated with smaller left hippocampal volume in depressed subjects. Conclusion Findings suggest an association between childhood trauma exposure and adulthood cognitive function and brain structure. These relationships appear to differ between individuals who do and do not develop depression. PMID:27682320
Wise, T; Radua, J; Via, E; Cardoner, N; Abe, O; Adams, T M; Amico, F; Cheng, Y; Cole, J H; de Azevedo Marques Périco, C; Dickstein, D P; Farrow, T F D; Frodl, T; Wagner, G; Gotlib, I H; Gruber, O; Ham, B J; Job, D E; Kempton, M J; Kim, M J; Koolschijn, P C M P; Malhi, G S; Mataix-Cols, D; McIntosh, A M; Nugent, A C; O'Brien, J T; Pezzoli, S; Phillips, M L; Sachdev, P S; Salvadore, G; Selvaraj, S; Stanfield, A C; Thomas, A J; van Tol, M J; van der Wee, N J A; Veltman, D J; Young, A H; Fu, C H; Cleare, A J; Arnone, D
2017-10-01
Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.
Toprak, Ibrahim; Yaylalı, Volkan; Yildirim, Cem
2017-01-01
To assess diagnostic consistency and relation between spectral-domain optical coherence tomography (SD-OCT) and standard automated perimetry (SAP) in patients with primary open-angle glaucoma (POAG). This retrospective study comprised 51 eyes of 51 patients with a confirmed diagnosis of POAG. The qualitative and quantitative SD-OCT parameters (retinal nerve fiber layer thicknesses [RNFL; average, superior, inferior, nasal and temporal], RNFL symmetry, rim area, disc area, average and vertical cup/disc [C/D] ratio and cup volume) were compared with parameters of SAP (mean deviation, pattern standard deviation, visual field index, and glaucoma hemifield test reports). Fifty-one eyes of 51 patients with POAG were recruited. Twenty-nine eyes (56.9%) had consistent RNFL and visual field (VF) damage. However, nine patients (17.6%) showed isolated RNFL damage on SD-OCT and 13 patients (25.5%) had abnormal VF test with normal RNFL. In patients with VF defect, age, average C/D ratio, vertical C/D ratio, and cup volume were significantly higher and rim area was lower when compared to those of the patients with normal VF. In addition to these parameters, worsening in average, superior, inferior, and temporal RNFL thicknesses and RNFL symmetry was significantly associated with consistent SD-OCT and SAP outcomes. In routine practice, patients with POAG can be manifested with inconsistent reports between SD-OCT and SAP. An older age, higher C/D ratio, larger cup volume, and lower rim area on SD-OCT appears to be associated with detectable VF damage. Moreover, additional worsening in RNFL parameters might reinforce diagnostic consistency between SD-OCT and SAP.
Hollis, Christin P; Weiss, Heidi L; Evers, B Mark; Gemeinhart, Richard A; Li, Tonglei
2014-06-01
To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model. The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo. The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity. Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.
Huang, Guoliang; Huang, Qin; Ma, Li; Luo, Xianbo; Pang, Biao; Zhang, Zhixin; Wang, Ruliang; Zhang, Junqi; Li, Qi; Fu, Rongxin; Ye, Jiancheng
2014-01-01
A sensitive DNA isothermal amplification method for the detection of DNA at fM to aM concentrations for pathogen identification was developed using a non-stick-coated metal microfluidic bioreactor. A portable confocal optical detector was utilized to monitor the DNA amplification in micro- to nanoliter reaction assays in real-time, with fluorescence collection near the optical diffraction limit. The non-stick-coated metal microfluidic bioreactor, with a surface contact angle of 103°, was largely inert to bio-molecules, and DNA amplification could be performed in a minimum reaction volume of 40 nL. The isothermal nucleic acid amplification for Mycoplasma pneumoniae identification in the non-stick-coated microfluidic bioreactor could be performed at a minimum DNA template concentration of 1.3 aM, and a detection limit of three copies of genomic DNA was obtained. This microfluidic bioreactor offers a promising clinically relevant pathogen molecular diagnostic method via the amplification of targets from only a few copies of genomic DNA from a single bacterium. PMID:25475544
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.
2014-08-21
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and representmore » the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.« less
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-01
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Feasibility of low contrast media volume in CT angiography of the aorta
Seehofnerová, Anna; Kok, Madeleine; Mihl, Casper; Douwes, Dave; Sailer, Anni; Nijssen, Estelle; de Haan, Michiel J.W.; Wildberger, Joachim E.; Das, Marco
2015-01-01
Objectives Using smaller volumes of contrast media (CM) in CT angiography (CTA) is desirable in terms of cost reduction and prevention of contrast-induced nephropathy (CIN). The purpose was to evaluate the feasibility of low CM volume in CTA of the aorta. Methods 77 patients referred for CTA of the aorta were scanned using a standard MDCT protocol at 100 kV. A bolus of 50 ml CM (Iopromide 300 mg Iodine/ml) at a flow rate of 6 ml/s was applied (Iodine delivery rate IDR = 1.8 g/s; Iodine load 15 g) followed by a saline bolus of 40 ml at the same flow rate. Scan delay was determined by the test bolus method. Subjective image quality was assessed and contrast enhancement was measured at 10 anatomical levels of the aorta. Results Diagnostic quality images were obtained for all patients, reaching a mean overall contrast enhancement of 324 ± 28 HU. Mean attenuation was 350 ± 60 HU at the thoracic aorta and 315 ± 83 HU at the abdominal aorta. Conclusions A straightforward low volume CM protocol proved to be technically feasible and led to CTA examinations reaching diagnostic image quality of the aorta at 100 kV. Based on these findings, the use of a relatively small CM bolus can be incorporated into routine clinical imaging. PMID:26937437
Chen, Alexander; Pastis, Nicholas; Furukawa, Brian; Silvestri, Gerard A
2015-05-01
Electromagnetic navigation has improved the diagnostic yield of peripheral bronchoscopy for pulmonary nodules. For these procedures, a thin-slice chest CT scan is performed prior to bronchoscopy at full inspiration and is used to create virtual airway reconstructions that are used as a map during bronchoscopy. Movement of the lung occurs with respiratory variation during bronchoscopy, and the location of pulmonary nodules during procedures may differ significantly from their location on the initial planning full-inspiratory chest CT scan. This study was performed to quantify pulmonary nodule movement from full inspiration to end-exhalation during tidal volume breathing in patients undergoing electromagnetic navigation procedures. A retrospective review of electromagnetic navigation procedures was performed for which two preprocedure CT scans were performed prior to bronchoscopy. One CT scan was performed at full inspiration, and a second CT scan was performed at end-exhalation during tidal volume breathing. Pulmonary lesions were identified on both CT scans, and distances between positions were recorded. Eighty-five pulmonary lesions were identified in 46 patients. Average motion of all pulmonary lesions was 17.6 mm. Pulmonary lesions located in the lower lobes moved significantly more than upper lobe nodules. Size and distance from the pleura did not significantly impact movement. Significant movement of pulmonary lesions occurs between full inspiration and end-exhalation during tidal volume breathing. This movement from full inspiration on planning chest CT scan to tidal volume breathing during bronchoscopy may significantly affect the diagnostic yield of electromagnetic navigation bronchoscopy procedures.
Current and future bioanalytical approaches for stroke assessment.
Pullagurla, Swathi R; Baird, Alison E; Adamski, Mateusz G; Soper, Steven A
2015-01-01
Efforts are underway to develop novel platforms for stroke diagnosis to meet the criteria for effective treatment within the narrow time window mandated by the FDA-approved therapeutic (<3 h). Blood-based biomarkers could be used for rapid stroke diagnosis and coupled with new analytical tools, could serve as an attractive platform for managing stroke-related diseases. In this review, we will discuss the physiological processes associated with stroke and current diagnostic tools as well as their associated shortcomings. We will then review information on blood-based biomarkers and various detection technologies. In particular, point of care testing that permits small blood volumes required for the analysis and rapid turn-around time measurements of multiple markers will be presented.
Characterizing proton-activated materials to develop PET-mediated proton range verification markers
NASA Astrophysics Data System (ADS)
Cho, Jongmin; Ibbott, Geoffrey S.; Kerr, Matthew D.; Amos, Richard A.; Stingo, Francesco C.; Marom, Edith M.; Truong, Mylene T.; Palacio, Diana M.; Betancourt, Sonia L.; Erasmus, Jeremy J.; DeGroot, Patricia M.; Carter, Brett W.; Gladish, Gregory W.; Sabloff, Bradley S.; Benveniste, Marcelo F.; Godoy, Myrna C.; Patil, Shekhar; Sorensen, James; Mawlawi, Osama R.
2016-06-01
Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (~0.1 g cm-3) and beef (~1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils’ PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Dian, E-mail: dwang@mcw.edu; Bosch, Walter; Kirsch, David G.
Purpose: To evaluate variability in the definition of preoperative radiotherapy gross tumor volume (GTV) and clinical target volume (CTV) delineated by sarcoma radiation oncologists. Methods and Materials: Extremity sarcoma planning CT images along with the corresponding diagnostic MRI from two patients were distributed to 10 Radiation Therapy Oncology Group sarcoma radiation oncologists with instructions to define GTV and CTV using standardized guidelines. The CT data with contours were then returned for central analysis. Contours representing statistically corrected 95% (V95) and 100% (V100) agreement were computed for each structure. Results: For the GTV, the minimum, maximum, mean (SD) volumes (mL) weremore » 674, 798, 752 {+-} 35 for the lower extremity case and 383, 543, 447 {+-} 46 for the upper extremity case. The volume (cc) of the union, V95 and V100 were 882, 761, and 752 for the lower, and 587, 461, and 455 for the upper extremity, respectively. The overall GTV agreement was judged to be almost perfect in both lower and upper extremity cases (kappa = 0.9 [p < 0.0001] and kappa = 0.86 [p < 0.0001]). For the CTV, the minimum, maximum, mean (SD) volumes (mL) were 1145, 1911, 1605 {+-} 211 for the lower extremity case and 637, 1246, 1006 {+-} 180 for the upper extremity case. The volume (cc) of the union, V95, and V100 were 2094, 1609, and 1593 for the lower, and 1533, 1020, and 965 for the upper extremity cases, respectively. The overall CTV agreement was judged to be almost perfect in the lower extremity case (kappa = 0.85 [p < 0.0001]) but only substantial in the upper extremity case (kappa = 0.77 [p < 0.0001]). Conclusions: Almost perfect agreement existed in the GTV of these two representative cases. Tshere was no significant disagreement in the CTV of the lower extremity, but variation in the CTV of upper extremity was seen, perhaps related to the positional differences between the planning CT and the diagnostic MRI.« less
Bekelis, K; Missios, S; Eskey, C; Labropoulos, N
2014-02-01
Several groups have demonstrated the safety of ambulatory cerebral angiography, with no patients experiencing complications related to early discharge. Although this practice appears to be safe, the socioeconomic characteristics factoring in the selection of the patients have not been investigated. We performed a retrospective cohort study involving 45,226 patients undergoing outpatient and 159,046 undergoing inpatient cerebral angiography, who were registered in the State Ambulatory Surgery Databases (SASD) and State Inpatient Databases (SID) respectively for 4 US States (New York, California, Florida, North Carolina). In a multivariate analysis of diagnostic cerebral angiography, Caucasian race (OR 1.36, 95% CI, 1.31, 1.42) and male gender (OR 1.36, 95% CI, 1.31, 1.41), were significantly associated with outpatient procedures. Higher Charlson Comorbidity Index (CCI) (OR 0.60, 95% CI, 0.54, 0.67), high income (OR 0.70, 95% CI, 0.67, 0.73), high volume hospitals (OR 0.69, 95% CI, 0.66, 0.73), and coverage by Medicare/Medicaid (OR 0.96, 95% CI, 0.92, 0.99) were associated with a decreased chance of outpatient procedures. Institutional charges were significantly less for outpatient cerebral angiography. The median charge for inpatient diagnostic cerebral angiography was $26,968 as compared to $16,151 in the outpatient setting (P < 0.0001, Student's t-test). Access to ambulatory diagnostic cerebral angiography appears to be more common for patients with private insurance and less comorbidities, in the setting of lower volume hospitals. Further investigation is needed in the direction of mapping these disparities in resource utilization.
NASA Astrophysics Data System (ADS)
Nemschokmichal, Sebastian; Tschiersch, Robert; Höft, Hans; Wild, Robert; Bogaczyk, Marc; Becker, Markus M.; Loffhagen, Detlef; Stollenwerk, Lars; Kettlitz, Manfred; Brandenburg, Ronny; Meichsner, Jürgen
2018-05-01
The phenomenology and breakdown mechanism of dielectric barrier discharges are strongly determined by volume and surface memory effects. In particular, the pre-ionization provided by residual species in the volume or surface charges on the dielectrics influences the breakdown behavior of filamentary and diffuse discharges. This was investigated by advanced diagnostics such as streak camera imaging, laser photodetachment of negative ions and laser photodesorption of electrons from dielectric surfaces in correlation with 1D fluid modeling. The streak camera images show that an increasing number of residual charges in the volume changes the microdischarge breakdown in air-like gas mixtures from a cathode-directed streamer to a simultaneous propagation of cathode- and anode-directed streamers. In contrast, seed electrons are important for the pre-ionization if the density of residual charges in the volume is low. One source of seed electrons are negative ions, whose density exceeds the electron density during the pre-phase of diffuse helium-oxygen barrier discharges as indicated by the laser photodetachment experiments. Electrons desorbed from the cathodic dielectric have an even larger influence. They induce a transition from the glow-like to the Townsend-like discharge mode in nominally pure helium. Apart from analyzing the importance of the pre-ionization for the breakdown mechanism, the opportunities for manipulating the lateral structure and discharge modes are discussed. For this purpose, the intensity and diameter of a diffuse discharge in helium are controlled by an illuminated semiconducting barrier. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Grothe, Michel; Heinsen, Helmut; Teipel, Stefan J.
2013-01-01
Background The basal forebrain cholinergic system (BFCS) is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer´s disease (AD). However, there is a controversy on how the cholinergic lesion in AD relates to early and incipient stages of the disease. In-vivo imaging studies on the structural integrity of the BFCS in normal and pathological aging are still rare. Methods We applied automated morphometry techniques in combination with high-dimensional image warping and a cytoarchitectonic map of BF cholinergic nuclei to a large cross-sectional dataset of high-resolution MRI scans, covering the whole adult age-range (20–94 years; N=211) as well as patients with very mild AD (vmAD; CDR=0.5; N=69) and clinically manifest AD (AD; CDR=1; N=28). For comparison, we investigated hippocampus volume using automated volumetry. Results Volume of the BFCS declined from early adulthood on and atrophy aggravated in advanced age. Volume reductions in vmAD were most pronounced in posterior parts of the nucleus basalis Meynert, while in AD atrophy was more extensive and included the whole BFCS. In clinically manifest AD, the diagnostic accuracy of BFCS volume reached the diagnostic accuracy of hippocampus volume. Conclusions Our findings indicate that cholinergic degeneration in AD occurs against a background of age-related atrophy and that exacerbated atrophy in AD can be detected at earliest stages of cognitive impairment. Automated in-vivo morphometry of the BFCS may become a useful tool to assess BF cholinergic degeneration in normal and pathological aging. PMID:21816388
Guo, Xiasheng; Li, Qian; Zhang, Zhe; Zhang, Dong; Tu, Juan
2013-08-01
The inertial cavitation (IC) activity of ultrasound contrast agents (UCAs) plays an important role in the development and improvement of ultrasound diagnostic and therapeutic applications. However, various diagnostic and therapeutic applications have different requirements for IC characteristics. Here through IC dose quantifications based on passive cavitation detection, IC thresholds were measured for two commercialized UCAs, albumin-shelled KangRun(®) and lipid-shelled SonoVue(®) microbubbles, at varied UCA volume concentrations (viz., 0.125 and 0.25 vol. %) and acoustic pulse lengths (viz., 5, 10, 20, 50, and 100 cycles). Shell elastic and viscous coefficients of UCAs were estimated by fitting measured acoustic attenuation spectra with Sarkar's model. The influences of sonication condition (viz., acoustic pulse length) and UCA shell properties on IC threshold were discussed based on numerical simulations. Both experimental measurements and numerical simulations indicate that IC thresholds of UCAs decrease with increasing UCA volume concentration and acoustic pulse length. The shell interfacial tension and dilatational viscosity estimated for SonoVue (0.7 ± 0.11 N/m, 6.5 ± 1.01 × 10(-8) kg/s) are smaller than those of KangRun (1.05 ± 0.18 N/m, 1.66 ± 0.38 × 10(-7) kg/s); this might result in lower IC threshold for SonoVue. The current results will be helpful for selecting and utilizing commercialized UCAs for specific clinical applications, while minimizing undesired IC-induced bioeffects.
Hu, Lingzhi; Chen, Junjie; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Yanaba, Noriko; Caruthers, Shelton D.; Lanza, Gregory M.; Hammerman, Marc R.; Wickline, Samuel A.
2014-01-01
Purpose We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles (PFC NPs) and 19F MRI. Methods Because the detected 19F signal intensity directly reflects local blood volume, and the 19F R1 is linearly proportional to local blood oxygen content (pO2), 19F spin density weighted and T1 weighted images were utilized to generate quantitative functional mapping in both healthy and ischemia-reperfusion (acute kidney injury, AKI) injured mouse kidneys. 1H Blood-Oxygenation-Level-Dependant (BOLD) MRI was also employed as a supplementary approach to facilitate the compressive analysis of renal circulation and its pathological changes in AKI. Results Heterogeneous blood volume distribution and intrarenal oxygenation gradient were confirmed in healthy kidneys by 19F MRI. In a mouse model of AKI, 19F MRI, in conjunction with BOLR MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary (CM) junction region, we observed 25% lower 19F signal (p<0.05) and 70% longer 1H T2* (p<0.01) in injured kidneys compared to contralateral kidneys at 24 hours after initial ischemia-reperfusion injury. We also detected 71% higher 19F signal (p<0.01) and 40% lower 1H T2* (p<0.05) in the renal medulla region of injured kidneys compared to contralateral kidneys. Conclusion With demonstrated superior diagnostic capability, functional kidney 19F MRI using PFC NPs could serve as a new diagnostic measures for comprehensive evaluation of renal function and pathology. PMID:23929727
Dong, Tuochuan; Kang, Le; Hutson, Alan; Xiong, Chengjie; Tian, Lili
2014-03-01
Although most of the statistical methods for diagnostic studies focus on disease processes with binary disease status, many diseases can be naturally classified into three ordinal diagnostic categories, that is normal, early stage, and fully diseased. For such diseases, the volume under the ROC surface (VUS) is the most commonly used index of diagnostic accuracy. Because the early disease stage is most likely the optimal time window for therapeutic intervention, the sensitivity to the early diseased stage has been suggested as another diagnostic measure. For the purpose of comparing the diagnostic abilities on early disease detection between two markers, it is of interest to estimate the confidence interval of the difference between sensitivities to the early diseased stage. In this paper, we present both parametric and non-parametric methods for this purpose. An extensive simulation study is carried out for a variety of settings for the purpose of evaluating and comparing the performance of the proposed methods. A real example of Alzheimer's disease (AD) is analyzed using the proposed approaches. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ross, J. S.; Datte, P.; Divol, L.; ...
2016-07-28
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. Here, we report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ 0 = 210 nm) will be used to Thomson scatter from electron plasma densities of ~5 × 10 20more » cm -3 while a 3ω probe will be used for plasma densities of ~1 × 10 19 cm -3. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.
2016-11-15
An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{supmore » −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).« less
Seymour, H R; Matson, M B; Belli, A M; Morgan, R; Kyriou, J; Patel, U
2001-02-01
Rotational digital subtraction angiography (RDSA) allows multidirectional angiographic acquisitions with a single injection of contrast medium. The role of RDSA was evaluated in 60 patients referred over a 7-month period for diagnostic renal angiography and 12 patients referred for renal transplant studies. All angiograms were assessed for their diagnostic value, the presence of anomalies and the quantity of contrast medium used. The effective dose for native renal RDSA was determined. 41 (68.3%) native renal RDSA images and 8 (66.7%) transplant renal RDSA images were of diagnostic quality. Multiple renal arteries were identified in 9/41 (22%) native renal RDSA diagnostic images. The mean volume of contrast medium in the RDSA runs was 51.2 ml and 50 ml for native and transplant renal studies, respectively. The mean effective dose for 120 degrees native renal RDSA was 2.36 mSv, equivalent to 1 year's mean background radiation. Those RDSA images that were non-diagnostic allowed accurate prediction of the optimal angle for further static angiographic series, which is of great value in transplant renal vessels.
Progress On The Thomson Scattering Diagnostic For The Helicon Plasma Experiment (HPX)
NASA Astrophysics Data System (ADS)
Green, A.; Emami, T.; Davies, R.; Frank, J.; Hopson, J.; Karama, J.; James, R. W.; Hopson, J.; Paolino, R. N.; Sandri, E.; Turk, J.; Wicke, M.; Cgapl Team
2017-10-01
A high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 has been assembled on HPX at the Coast Guard Academy Plasma Laboratory (CGAPL). This spectrometer will collect doppler shifted photons, emitted from the plasma by the first harmonic (1064 nm) of a 2.5 J Nd:YAG laser. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) single spatial point diagnostic system. A zero order half wave plate rotates the polarization of the second harmonic TS laser beam when operating at a wavelength of 532 nm. A linear actuated periscope has been constructed to remotely redirect the beam so that 532 and 1064 nm wavelengths can both be used. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. Operating at both 532 and 1064 nm results in a self-consistent measurement and better use our existing spectrometer and soon to be constructed polychrometer. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. The current status of the diagnostic development, spectrometer, and collection optics system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY17.
Magnetically guided capsule endoscopy.
Shamsudhin, Naveen; Zverev, Vladimir I; Keller, Henrik; Pane, Salvador; Egolf, Peter W; Nelson, Bradley J; Tishin, Alexander M
2017-08-01
Wireless capsule endoscopy (WCE) is a powerful tool for medical screening and diagnosis, where a small capsule is swallowed and moved by means of natural peristalsis and gravity through the human gastrointestinal (GI) tract. The camera-integrated capsule allows for visualization of the small intestine, a region which was previously inaccessible to classical flexible endoscopy. As a diagnostic tool, it allows to localize the sources of bleedings in the middle part of the gastrointestinal tract and to identify diseases, such as inflammatory bowel disease (Crohn's disease), polyposis syndrome, and tumors. The screening and diagnostic efficacy of the WCE, especially in the stomach region, is hampered by a variety of technical challenges like the lack of active capsular position and orientation control. Therapeutic functionality is absent in most commercial capsules, due to constraints in capsular volume and energy storage. The possibility of using body-exogenous magnetic fields to guide, orient, power, and operate the capsule and its mechanisms has led to increasing research in Magnetically Guided Capsule Endoscopy (MGCE). This work shortly reviews the history and state-of-art in WCE technology. It highlights the magnetic technologies for advancing diagnostic and therapeutic functionalities of WCE. Not restricting itself to the GI tract, the review further investigates the technological developments in magnetically guided microrobots that can navigate through the various air- and fluid-filled lumina and cavities in the body for minimally invasive medicine. © 2017 American Association of Physicists in Medicine.
Cough-variant asthma: a diagnostic dilemma in the occupational setting.
Lipińska-Ojrzanowska, A; Wiszniewska, M; Walusiak-Skorupa, J
2015-03-01
Cough-variant asthma (Corrao's syndrome) is defined as the presence of chronic non-productive cough in patients with bronchial hyperresponsiveness (BHR) and response to bronchodilator therapy. This variant of asthma may present a diagnostic problem in occupational medicine. To describe additional evaluation of cough-variant asthma in a cyanoacrylate-exposed worker in whom standard diagnostic testing was negative. A female beautician was evaluated for suspected occupational allergic rhinitis and asthma. A specific inhalation challenge test (SICT) was performed with cyanoacrylate glues used for applying artificial eyelashes and nails. Spirometry and peak expiratory flow (PEF) measurements were recorded hourly for 24h; methacholine challenge testing was performed and nasal lavage (NL) samples were analysed for eosinophilia. After SICT, the patient developed sneezing, nasal airflow obstruction and cough. Declines in forced expiratory volume in 1 s and PEF were not observed. Eosinophil proportions in NL fluid increased markedly at 4 and 24h after SICT. A significant increase in BHR also occurred 24h after SICT. Clinical symptoms, post-challenge BHR and increased NL eosinophil counts confirmed a positive response to SICT and validated the diagnosis of cough-variant occupational asthma. SICT may be useful in cases where history and clinical data suggest cough-variant asthma and spirometric indices are negative. © The Author 2014. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Singh, Harpal; Shimojima, Masayuki; Fukushi, Shuetsu; Le Van, An; Sugamata, Masami; Yang, Ming
2015-01-01
Enzyme-linked Immunosorbent Assay or ELISA -based diagnostics are considered the gold standard in the demonstration of various immunological reaction including in the measurement of antibody response to infectious diseases and to support pathogen identification with application potential in infectious disease outbreaks and individual patients' treatment and clinical care. The rapid prototyping of ELISA-based diagnostics using available 3D printing technologies provides an opportunity for a further exploration of this platform into immunodetection systems. In this study, a '3D-Well' was designed and fabricated using available 3D printing platforms to have an increased surface area of more than 4 times for protein-surface adsorption compared to those of 96-well plates. The ease and rapidity in designing-product development-feedback cycle offered through 3D printing platforms provided an opportunity for its rapid assessment, in which a chemical etching process was used to make the surface hydrophilic followed by validation through the diagnostic performance of ELISA for infectious disease without modifying current laboratory practices for ELISA. The higher sensitivity of the 3D-Well (3-folds higher) compared to the 96-well ELISA provides a potential for the expansion of this technology towards miniaturization platforms to reduce time, volume of reagents and samples needed for laboratory or field diagnosis of infectious diseases including applications in other disciplines.
40 CFR 86.101 - General applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... procedures. For example, if you are testing an ethanol-fueled vehicle, perform diagnostics in your evaporative emission enclosure with ethanol and propane. (9) For exhaust emission testing with ethanol-gasoline blends that have less than 25% ethanol by volume, if you use NMHC-to-NMOG conversion factors...
Preliminary Evaluation of a Diagnostic Tool for Prosthetics
2017-10-01
volume change. Processing algorithms for data from the activity monitors were modified to run more efficiently so that large datasets could be...left) and blade style prostheses (right). Figure 4: Ankle ActiGraph correct position demonstrated for a left leg below-knee amputee cylindrical
A review of direct experimental measurements of detachment
Boedo, J.; McLean, A. G.; Rudakov, D. L.; ...
2018-02-22
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S
1994-12-01
While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).
A review of direct experimental measurements of detachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedo, J.; McLean, A. G.; Rudakov, D. L.
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. Here, we review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson Scattering (TS) in the divertor regionmore » and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.« less
A review of direct experimental measurements of detachment
NASA Astrophysics Data System (ADS)
Boedo, J.; McLean, A. G.; Rudakov, D. L.; Watkins, J. G.
2018-04-01
Detached divertor plasmas feature strong radial and parallel gradients of density, temperature, electric fields and flow over the divertor volume and therefore, sampling the divertor plasma directly provides crucial knowledge to the interpretation and modeling efforts. We review the contribution of diagnostics that directly sample the plasma to the advancement of knowledge of the physics of detachment and detached divertors, such as the characteristics of the various regimes, discovery and quantification of drifts and identification of convection of heat and particles. We focus on wall probes, scanning probes, retarding field analyzers and Thomson scattering in the divertor region and also include the contribution of measurements away from the divertor that provide insight on how divertor detachment affects core, edge or pedestal conditions. Wall probes are critical as they can be installed in closed volumes of difficult access to other diagnostics and measure plasma parameters at the divertor structures, which define the plasma boundary conditions and where detachment effects are more likely to be strongest.
A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment.
Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ragavendar, M S; Schmolke, Susanne; Huang, Yiwei; Gumbrecht, Walter; Mitra, Nivedita
2016-12-01
Molecular diagnostics is a promising alternative to culture based methods for the detection of bloodstream infections, notably due to its overall lower turnaround time when starting directly from patient samples. Whole blood is usually the starting diagnostic sample in suspected bloodstream infections. The detection of low concentrations of pathogens in blood using a molecular assay necessitates a fairly high starting volume of blood sample in the range of 5-10mL. This large volume of blood sample has a substantial accompanying human genomic content that interferes with pathogen detection. In this study, we have established a workflow using magnetic beads coated with Apolipoprotein H that makes it possible to concentrate pathogens from a 5.0mL whole blood sample, thereby enriching pathogens from whole blood background and also reducing the sample volume to ~200μL or less. We have also demonstrated that this method of enrichment allows detection of 1CFU/mL of Escherichia coli, Enterococcus gallinarum and Candida tropicalis from 5mL blood using quantitative PCR; a detection limit that is not possible in unenriched samples. The enrichment method demonstrated here took 30min to complete and can be easily integrated with various downstream molecular and microbiological techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
LLE Review Quarterly Report (January-March 1999). Volume 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, Sean P.
1999-03-01
This volume of the LLE Review, covering the period January-March 1999, features two articles concerning issues relevant to 2-D SSD laser-beam smoothing on OMEGA. In the first article J. D. Zuegel and J. A. Marozas present the design of an efficient, bulk phase modulator operating at approximately 10.5 GHz, which can produce substantial phase-modulated bandwidth with modest microwave drive power. This modulator is the cornerstone of the 1-THz UV bandwidth operation planned for OMEGA this year. In the second article J. A. Marozas and J. H. Kelly describe a recently developed code -- Waasese -- that simulates the collective behaviormore » of the optical components in the SSD driver line. The measurable signatures predicted by the code greatly enhance the diagnostic capability of the SSD driver line. Other articles in this volume are titled: Hollow-Shell Implosion Studies on the 60-Beam, UC OMEGA Laser System; Simultaneous Measurements of Fuel Areal Density, Shell Areal Density, and Fuel Temperature in D 3He-Filled Imploding Capsules; The Design of Optical Pulse Shapes with an Aperture-Coupled-Stripline Pulse-Shaping System; Measurement Technique for Characterization of Rapidly Time- and Frequency-Varying Electronic Devices; and, Damage to Fused-Silica, Spatial-Filter Lenses on the OMEGA Laser System.« less
Glorikian, Harry; Warburg, Richard Jeremy; Moore, Kelly; Malinowski, Jennifer
2018-02-01
The development of molecular diagnostics is a complex endeavor, with multiple regulatory pathways to consider and numerous approaches to development and commercialization. Companion diagnostics, devices which are "essential for the safe and effective use of a corresponding drug or diagnostic product" (see U.S. Food & Drug Administration, In Vitro Diagnostics - Companion Diagnostics, U.S. Dept. of Health & Human Services(2016), available at https://www.fda.gov/medicaldevices/productsandmedicalprocedures/invitrodiagnostics/ucm407297.htm ) and complementary diagnostics, which are more broadly associated with a class of drug, are becoming increasingly important as integral components of the implementation of precision medicine. Areas covered: The following article will highlight the intellectual property ('IP') considerations pertinent to molecular diagnostics development with special emphasis on companion diagnostics. Expert opinion/commentary Summary: For all molecular diagnostics, intellectual property (IP) concerns are of paramount concern, whether the device will be marketed only in the United States or abroad. Taking steps to protect IP at each stage of product development is critical to optimize profitability of a diagnostic product. Also the legal framework around IP protection of diagnostic technologies has been changing over the previous few years and can be expected to continue to change in the foreseeable near future, thus, a comprehensive IP strategy should take into account the fact that changes in the law can be expected.
Shin, Dmitriy; Kovalenko, Mikhail; Ersoy, Ilker; Li, Yu; Doll, Donald; Shyu, Chi-Ren; Hammer, Richard
2017-01-01
Background: Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Methods: Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. Results: We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. Conclusion: PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings. PMID:28828200
Shin, Dmitriy; Kovalenko, Mikhail; Ersoy, Ilker; Li, Yu; Doll, Donald; Shyu, Chi-Ren; Hammer, Richard
2017-01-01
Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls. Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics. We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice. PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.
Kim, Hyungjin; Choi, Seung Hong; Kim, Ji-Hoon; Ryoo, Inseon; Kim, Soo Chin; Yeom, Jeong A.; Shin, Hwaseon; Jung, Seung Chai; Lee, A. Leum; Yun, Tae Jin; Park, Chul-Kee; Sohn, Chul-Ho; Park, Sung-Hye
2013-01-01
Background Glioma grading assumes significant importance in that low- and high-grade gliomas display different prognoses and are treated with dissimilar therapeutic strategies. The objective of our study was to retrospectively assess the usefulness of a cumulative normalized cerebral blood volume (nCBV) histogram for glioma grading based on 3 T MRI. Methods From February 2010 to April 2012, 63 patients with astrocytic tumors underwent 3 T MRI with dynamic susceptibility contrast perfusion-weighted imaging. Regions of interest containing the entire tumor volume were drawn on every section of the co-registered relative CBV (rCBV) maps and T2-weighted images. The percentile values from the cumulative nCBV histograms and the other histogram parameters were correlated with tumor grades. Cochran’s Q test and the McNemar test were used to compare the diagnostic accuracies of the histogram parameters after the receiver operating characteristic curve analysis. Using the parameter offering the highest diagnostic accuracy, a validation process was performed with an independent test set of nine patients. Results The 99th percentile of the cumulative nCBV histogram (nCBV C99), mean and peak height differed significantly between low- and high-grade gliomas (P = <0.001, 0.014 and <0.001, respectively) and between grade III and IV gliomas (P = <0.001, 0.001 and <0.001, respectively). The diagnostic accuracy of nCBV C99 was significantly higher than that of the mean nCBV (P = 0.016) in distinguishing high- from low-grade gliomas and was comparable to that of the peak height (P = 1.000). Validation using the two cutoff values of nCBV C99 achieved a diagnostic accuracy of 66.7% (6/9) for the separation of all three glioma grades. Conclusion Cumulative histogram analysis of nCBV using 3 T MRI can be a useful method for preoperative glioma grading. The nCBV C99 value is helpful in distinguishing high- from low-grade gliomas and grade IV from III gliomas. PMID:23704910
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, Michael J; Jacobson, Stephen C
2012-09-18
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2007-07-03
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Automatic delineation of functional lung volumes with 68Ga-ventilation/perfusion PET/CT.
Le Roux, Pierre-Yves; Siva, Shankar; Callahan, Jason; Claudic, Yannis; Bourhis, David; Steinfort, Daniel P; Hicks, Rodney J; Hofman, Michael S
2017-10-10
Functional volumes computed from 68 Ga-ventilation/perfusion (V/Q) PET/CT, which we have shown to correlate with pulmonary function test parameters (PFTs), have potential diagnostic utility in a variety of clinical applications, including radiotherapy planning. An automatic segmentation method would facilitate delineation of such volumes. The aim of this study was to develop an automated threshold-based approach to delineate functional volumes that best correlates with manual delineation. Thirty lung cancer patients undergoing both V/Q PET/CT and PFTs were analyzed. Images were acquired following inhalation of Galligas and, subsequently, intravenous administration of 68 Ga-macroaggreted-albumin (MAA). Using visually defined manual contours as the reference standard, various cutoff values, expressed as a percentage of the maximal pixel value, were applied. The average volume difference and Dice similarity coefficient (DSC) were calculated, measuring the similarity of the automatic segmentation and the reference standard. Pearson's correlation was also calculated to compare automated volumes with manual volumes, and automated volumes optimized to PFT indices. For ventilation volumes, mean volume difference was lowest (- 0.4%) using a 15%max threshold with Pearson's coefficient of 0.71. Applying this cutoff, median DSC was 0.93 (0.87-0.95). Nevertheless, limits of agreement in volume differences were large (- 31.0 and 30.2%) with differences ranging from - 40.4 to + 33.0%. For perfusion volumes, mean volume difference was lowest and Pearson's coefficient was highest using a 15%max threshold (3.3% and 0.81, respectively). Applying this cutoff, median DSC was 0.93 (0.88-0.93). Nevertheless, limits of agreement were again large (- 21.1 and 27.8%) with volume differences ranging from - 18.6 to + 35.5%. Using the 15%max threshold, moderate correlation was demonstrated with FEV1/FVC (r = 0.48 and r = 0.46 for ventilation and perfusion images, respectively). No correlation was found between other PFT indices. To automatically delineate functional volumes with 68 Ga-V/Q PET/CT, the most appropriate cutoff was 15%max for both ventilation and perfusion images. However, using this unique threshold systematically provided unacceptable variability compared to the reference volume and relatively poor correlation with PFT parameters. Accordingly, a visually adapted semi-automatic method is favored, enabling rapid and quantitative delineation of lung functional volumes with 68 Ga-V/Q PET/CT.
Schwarz, Stefan T; Xing, Yue; Tomar, Pragya; Bajaj, Nin; Auer, Dorothee P
2017-06-01
Purpose To investigate the pattern of neuromelanin signal intensity loss within the substantia nigra pars compacta (SNpc), locus coeruleus, and ventral tegmental area in Parkinson disease (PD); the specific aims were (a) to study regional magnetic resonance (MR) quantifiable depigmentation in association with PD severity and (b) to investigate whether imaging- and platform-dependent signal intensity variations can be normalized. Materials and Methods This prospective case-control study was approved by the local ethics committee and the research department of Nottingham University Hospitals. Written informed consent was obtained from all participants before enrollment in the study. Sixty-nine participants (39 patients with PD and 30 control subjects) were investigated with neuromelanin-sensitive MR imaging by using two different 3-T platforms and three differing protocols. Neuromelanin-related volumes of the anterior and posterior SNpc, locus coeruleus, and ventral tegmental area were determined, and normalized neuromelanin volumes were assessed for protocol-dependent effects. Diagnostic test performance of normalized neuromelanin volume was investigated by using receiver operating characteristic analyses, and correlations with the Unified Parkinson's Disease Rating Scale scores were tested. Results Reduction of normalized neuromelanin volume in PD was most pronounced in the posterior SNpc (median, -83%; P < .001), followed by the anterior SNpc (-49%; P < .001) and the locus coeruleus (-37%; P < .05). Normalized neuromelanin volume loss of the posterior and whole SNpc allowed the best differentiation of patients with PD and control subjects (area under the receiver operating characteristic curve, 0.92 and 0.88, respectively). Normalized neuromelanin volume of the anterior, posterior, and whole SNpc correlated with Unified Parkinson's Disease Rating Scale scores (r 2 = 0.25, 0.22, and 0.28, respectively; all P < .05). Conclusion PD-induced neuromelanin loss can be quantified across imaging protocols and platforms by using appropriate adjustment. Depigmentation in PD follows a distinct spatial pattern, affords high diagnostic accuracy, and is associated with disease severity. © RSNA, 2016 Online supplemental material is available for this article.
Reversible grasp reflexes in normal pressure hydrocephalus.
Thomas, Rhys H; Bennetto, Luke; Silva, Mark T
2009-05-01
We present two cases of normal pressure hydrocephalus in combination with grasp reflexes. In both cases the grasp reflexes disappeared following high volume cerebrospinal fluid removal. In one of the cases the grasp reflexes returned over a period of weeks but again resolved following definitive cerebrospinal fluid shunting surgery, and remained absent until final follow up at 9 months. We hypothesise that resolving grasp reflexes following high volume CSF removal has both diagnostic and prognostic value in normal pressure hydrocephalus, encouraging larger studies on the relevance of primitive reflexes in NPH.
Beams 92: Proceedings. Volume 1: Invited papers, pulsed power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, D.; Cooperstein, G.
1993-12-31
This report contains papers on the following topics: Ion beam papers; electron beam, bremsstrahlung, and diagnostics papers; radiating Z- pinch papers; microwave papers; electron laser papers; advanced accelerator papers; beam and pulsed power applications papers; pulsed power papers; and these papers have been indexed separately elsewhere.
Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories
USDA-ARS?s Scientific Manuscript database
Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...
Systematic Benchmarking of Diagnostic Technologies for an Electrical Power System
NASA Technical Reports Server (NTRS)
Kurtoglu, Tolga; Jensen, David; Poll, Scott
2009-01-01
Automated health management is a critical functionality for complex aerospace systems. A wide variety of diagnostic algorithms have been developed to address this technical challenge. Unfortunately, the lack of support to perform large-scale V&V (verification and validation) of diagnostic technologies continues to create barriers to effective development and deployment of such algorithms for aerospace vehicles. In this paper, we describe a formal framework developed for benchmarking of diagnostic technologies. The diagnosed system is the Advanced Diagnostics and Prognostics Testbed (ADAPT), a real-world electrical power system (EPS), developed and maintained at the NASA Ames Research Center. The benchmarking approach provides a systematic, empirical basis to the testing of diagnostic software and is used to provide performance assessment for different diagnostic algorithms.
Molecular Diagnostics of Fusion and Laboratory Plasmas
NASA Astrophysics Data System (ADS)
Fantz, U.
2005-05-01
The presence of molecules in the cold scrape-off layer of fusion experiments and industrial plasmas requires an understanding of the molecular dynamics in these low temperature plasmas. Suitable diagnostic methods can provide an insight in molecular processes in the plasma volume as well as for plasma surface interactions. A very simple but powerful technique is the molecular emission spectroscopy. Spectra are obtained easily, whereas interpretation might be very complex and relies on the availability of atomic and molecular data. Examples are given for hydrogen plasmas and plasmas with hydrocarbons which both are of importance in industrial applications as well as in fusion experiments.
NASA Technical Reports Server (NTRS)
Hensarling, Paula L.
2007-01-01
The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.
Adatto, Maurice A; Adatto-Neilson, Robyn M; Morren, Grietje
2014-09-01
A growing patient demand for a youthful skin appearance with a favorable body shape has led to the recent development of new noninvasive body contouring techniques. We have previously demonstrated that the combination of bipolar radiofrequency (RF) and optical energies with tissue manipulation is an efficient reshaping modality. Here, we investigated the efficacy and safety of a new high-power version of this combined technology, in terms of adipose tissue reduction and skin tightening. Thirty-five patients received one treatment per week over 6 weeks to their abdomen/flank, buttock, or thigh areas and were followed up to 3 months post completion of the treatment protocol. This new device has an increased power in the bipolar RF, as this parameter appears to be the most important energy modality for volume reduction. Patient circumferences were measured and comparisons of baseline and post treatment outcomes were made. Diagnostic ultrasound (US) measurements were performed in 12 patients to evaluate the reduction in adipose tissue volume, and a cutometer device was used to assess improvements in skin tightening. We observed a gradual decline in patient circumferences from baseline to post six treatments. The overall body shaping effect was accompanied with improvement in skin tightening and was clearly noticeable in the comparison of the before and after treatment clinical photographs. These findings correlated with measurements of adipose tissue volume and skin firmness/elasticity using diagnostic US and cutometer, respectively. The thickness of the fat layer showed on average a 29% reduction between baseline and the 1-month follow up. The average reduction in the circumference of the abdomen/flanks, buttocks, and thighs from baseline to the 3-month follow-up was 1.4, 0.5, and 1.2 cm, respectively, and 93% of study participants demonstrated a 1-60% change in fat layer thickness. Patients subjectively described comfort and satisfaction from treatment, and 97% of them were satisfied with the results at the follow-up visit. The application of high-power RF energy combined with infrared (IR), mechanical massage, and vacuum appears to be an effective modality for the reduction in circumferences of the abdomen/flank, buttock and thigh regions, and the improvement of skin appearance. The present study performed with a new device suggests that the underlying mechanism of action is reduction in the subcutaneous adipose tissue volume and intensification of dermal matrix density.
Aris-Brosou, Stephane; Kim, James; Li, Li; Liu, Hui
2018-05-15
Vendors in the health care industry produce diagnostic systems that, through a secured connection, allow them to monitor performance almost in real time. However, challenges exist in analyzing and interpreting large volumes of noisy quality control (QC) data. As a result, some QC shifts may not be detected early enough by the vendor, but lead a customer to complain. The aim of this study was to hypothesize that a more proactive response could be designed by utilizing the collected QC data more efficiently. Our aim is therefore to help prevent customer complaints by predicting them based on the QC data collected by in vitro diagnostic systems. QC data from five select in vitro diagnostic assays were combined with the corresponding database of customer complaints over a period of 90 days. A subset of these data over the last 45 days was also analyzed to assess how the length of the training period affects predictions. We defined a set of features used to train two classifiers, one based on decision trees and the other based on adaptive boosting, and assessed model performance by cross-validation. The cross-validations showed classification error rates close to zero for some assays with adaptive boosting when predicting the potential cause of customer complaints. Performance was improved by shortening the training period when the volume of complaints increased. Denoising filters that reduced the number of categories to predict further improved performance, as their application simplified the prediction problem. This novel approach to predicting customer complaints based on QC data may allow the diagnostic industry, the expected end user of our approach, to proactively identify potential product quality issues and fix these before receiving customer complaints. This represents a new step in the direction of using big data toward product quality improvement. ©Stephane Aris-Brosou, James Kim, Li Li, Hui Liu. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 15.05.2018.
Kim, James; Li, Li; Liu, Hui
2018-01-01
Background Vendors in the health care industry produce diagnostic systems that, through a secured connection, allow them to monitor performance almost in real time. However, challenges exist in analyzing and interpreting large volumes of noisy quality control (QC) data. As a result, some QC shifts may not be detected early enough by the vendor, but lead a customer to complain. Objective The aim of this study was to hypothesize that a more proactive response could be designed by utilizing the collected QC data more efficiently. Our aim is therefore to help prevent customer complaints by predicting them based on the QC data collected by in vitro diagnostic systems. Methods QC data from five select in vitro diagnostic assays were combined with the corresponding database of customer complaints over a period of 90 days. A subset of these data over the last 45 days was also analyzed to assess how the length of the training period affects predictions. We defined a set of features used to train two classifiers, one based on decision trees and the other based on adaptive boosting, and assessed model performance by cross-validation. Results The cross-validations showed classification error rates close to zero for some assays with adaptive boosting when predicting the potential cause of customer complaints. Performance was improved by shortening the training period when the volume of complaints increased. Denoising filters that reduced the number of categories to predict further improved performance, as their application simplified the prediction problem. Conclusions This novel approach to predicting customer complaints based on QC data may allow the diagnostic industry, the expected end user of our approach, to proactively identify potential product quality issues and fix these before receiving customer complaints. This represents a new step in the direction of using big data toward product quality improvement. PMID:29764796
NASA Astrophysics Data System (ADS)
Belabbassi, L.; Garzio, L. M.; Smith, M. J.; Knuth, F.; Vardaro, M.; Kerfoot, J.
2016-02-01
The Ocean Observatories Initiative (OOI), funded by the National Science Foundation, provides users with access to long-term datasets from a variety of deployed oceanographic sensors. The Pioneer Array in the Atlantic Ocean off the Coast of New England hosts 10 moorings and 6 gliders. Each mooring is outfitted with 6 to 19 different instruments telemetering more than 1000 data streams. These data are available to science users to collaborate on common scientific goals such as water quality monitoring and scale variability measures of continental shelf processes and coastal open ocean exchanges. To serve this purpose, the acquired datasets undergo an iterative multi-step quality assurance and quality control procedure automated to work with all types of data. Data processing involves several stages, including a fundamental pre-processing step when the data are prepared for processing. This takes a considerable amount of processing time and is often not given enough thought in development initiatives. The volume and complexity of OOI data necessitates the development of a systematic diagnostic tool to enable the management of a comprehensive data information system for the OOI arrays. We present two examples to demonstrate the current OOI pre-processing diagnostic tool. First, Data Filtering is used to identify incomplete, incorrect, or irrelevant parts of the data and then replaces, modifies or deletes the coarse data. This provides data consistency with similar datasets in the system. Second, Data Normalization occurs when the database is organized in fields and tables to minimize redundancy and dependency. At the end of this step, the data are stored in one place to reduce the risk of data inconsistency and promote easy and efficient mapping to the database.
Scher, Michael B; Elbaum, Michael B; Mogilevkin, Yakov; Hilbert, David W; Mydlo, Jack H; Sidi, A Ami; Adelson, Martin E; Mordechai, Eli; Trama, Jason P
2012-12-01
Detection of methylated DNA has been shown to be a good biomarker for bladder cancer. Bladder cancer has the highest recurrence rate of any cancer and, as such, patients are regularly monitored using invasive diagnostic techniques. As urine is easily attainable, bladder cancer is an optimal cancer to detect using DNA methylation. DNA methylation is highly specific in cancer detection. However, it is difficult to detect because of the limited amount of DNA present in the urine of patients with bladder cancer. Therefore, an improved, sensitive and noninvasive diagnostic test is needed. We developed a highly specific and sensitive nested methylation specific polymerase chain reaction assay to detect the presence of bladder cancer in small volumes of patient urine. The genes assayed for DNA methylation are BCL2, CDKN2A and NID2. The regions surrounding the DNA methylation sites were amplified in a methylation independent first round polymerase chain reaction and the amplification product from the first polymerase chain reaction was used in a real-time methylation specific polymerase chain reaction. Urine samples were collected from patients receiving treatment at Wolfson Medical Center in Holon, Israel. In a pilot clinical study using patient urine samples we were able to differentiate bladder cancer from other urogenital malignancies and nonmalignant conditions with a sensitivity of 80.9% and a specificity of 86.4%. We developed a novel methylation specific polymerase chain reaction assay for the detection and monitoring of bladder cancer using DNA extracted from patient urine. The assay may also be combined with other diagnostic tests to improve accuracy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rockwell, T. H.; Giffin, W. C.
1982-01-01
Computer displays using PLATO are illustrated. Diagnostic scenarios are described. A sample of subject data is presented. Destination diversion displays, a combined destination, diversion scenario, and critical in-flight event (CIFE) data collection/subject testing system are presented.
Medical Surveillance Monthly Report, Volume 20, Number 8
2013-08-01
primary diagnostic position, 99 (55.6%) had secondary diagnoses indica- tive of infections (e.g., streptococcus infec- tion, cellulitis , UTI) (data not...respiratory infections (e.g., pneumonia), and skin infections (e.g., cellulitis ), all of which are risk factors for septicemia.7,12,13 It is not clear why
Middle Atmosphere Program. Handbook for MAP, Volume 10
NASA Technical Reports Server (NTRS)
Taubenheim, J. (Editor)
1984-01-01
The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.
Application of geotechnical data to resource planning in southeast Alaska.
W.L. Schroeder; D.N. Swanston
1987-01-01
Recent quantification of engineering properties and index values of dominant soil types in the Alexander Archipelago, southeast Alaska, have revealed consistent diagnostic characteristics useful to evaluating landslide risk and subgrade material stability before timber harvesting and low-volume road construction. Shear strength data are summarized and grouped by Soil...
Spatial Expansion and Automation of the Pegasus Thomson Scattering Diagnostic System
NASA Astrophysics Data System (ADS)
Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.
2015-11-01
The Pegasus Thomson scattering diagnostic system has recently undergone modifications to increase the spatial range of the diagnostic and automate the Thomson data collection process. Two multichannel spectrometers have been added to the original configuration, providing a total of 24 data channels to view the plasma volume. The new system configuration allows for observation of three distinct regions of the plasma: the local helicity injection (LHI) source (R ~ 67-73.8 cm), the plasma edge (R ~ 51.5-57.6 cm), and the plasma core (R ~ 35-41.1 cm). Each spectrometer utilizes a volume-phase holographic (VPH) grating and a gated-intensified CCD camera. The edge and the LHI spectrometers have been fitted with low-temperature VPH gratings to cover Te = 10 - 100 eV, while the core spectrometer has been fitted with a high-temperature VPH grating to cover Te = 0 . 1 - 1 . 0 keV. The additional spectrometers have been calibrated to account for detector flatness, detector linearity, and vignetting. Operation of the Thomson system has been overhauled to utilize LabVIEW software to synchronize the major components of the Thomson system with the Pegasus shot cycle and to provide intra-shot beam alignment. Multi-point Thomson scattering measurements will be obtained in the aforementioned regions of LHI and Ohmic discharges and will be compared to Langmuir probe measurements. Work supported by US DOE grant DE-FG02-96ER54375.
JANNAF 35th Combustion Subcommittee Meeting. Volume 1
NASA Technical Reports Server (NTRS)
Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor); Rognan, Melanie (Editor)
1998-01-01
Volume 1, the first of two volumes is a compilation of 63 unclassified/unlimited distribution technical papers presented at the 35th meeting of the Joint Army-Navy-NASA-Air Force (JANNAF) Combustion Subcommittee (CS) held jointly with the 17th Propulsion Systems Hazards Subcommittee (PSHS) and Airbreathing Propulsion Subcommittee (APS). The meeting was held on 7-11 December 1998 at Raytheon Systems Company and the Marriott Hotel, Tucson, AZ. Topics covered include solid gun propellant processing, ignition and combustion, charge concepts, barrel erosion and flash, gun interior ballistics, kinetics and molecular modeling, ETC gun modeling, simulation and diagnostics, and liquid gun propellant combustion; solid rocket motor propellant combustion, combustion instability fundamentals, motor instability, and measurement techniques; and liquid and hybrid rocket combustion.
Disposable blast shields for use on NIF imaging diagnostics
NASA Astrophysics Data System (ADS)
Smith, Cal A.; Wang, Karen M.; Masters, Nathan
2015-08-01
The NIFs 192 lasers can deliver 2 MJ of energy to Target Chamber Center (TCC) to produce environments not available in any other experimental laboratory. The NIFs ability to deliver such intense energy to a small volume causes harsh consequences to experimental equipment and supporting diagnostics such as holhraums, support packages, target positioners, diagnostic equipment, and laser optics. Of these, the hohlraum and support packages are typically quickly vaporized and transformed into an expanding shell of high-hypersonic gases referred to as debris wind. During an experimental event such as fusion implosion, the target diagnostic components used to measure key observables in the experiment are subjected to extreme pressures and impact shocks due to incident debris wind loading. As diagnostics are positioned closer to TCC, the diagnostic pinhole stacks and other components along the diagnostic structure become more likely to be at or above the yield strength of the materials commonly used. In particular, the pinhole stack components and data recording instruments behind the pinholes are the most costly to replace. Thus, a conceptual configuration for a pinhole shield is proposed, analyzed, and tested with the intent of mitigating damage to the pinhole stack and imaging equipment and allowing immediate re-use of this diagnostic equipment. This pinhole shield would be a replaceable window that can be replaced quickly by inserting and removing it before and after each experimental laser shot, which will allow NIF to benefit from significant material and labor costs.
Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 2: User's guide
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the User's Guide, and describes the program's features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.
Endoscopic ultrasound-guided transesophageal thoracentesis for minimal pleural effusion.
Rana, Surinder Singh; Sharma, Ravi; Gupta, Rajesh
2018-06-19
Pleural effusion is a common finding both in patients with benign and malignant diseases of pleura and lung with diagnostic thoracentesis establishing the diagnosis in the majority of cases. The diagnostic thoracentesis can be done either blindly or under the guidance of ultrasound or computed tomography. However, minimal pleural effusion is difficult to sample even under image guidance. Endoscopic ultrasound (EUS) is known to detect smaller volume of pleural effusion and, thus, can help in guiding thoracentesis. To analyze the safety and efficacy of EUS-guided diagnostic thoracentesis in patients with undiagnosed minimal pleural effusion retrospectively. Retrospective analysis of the data of patients with minimal pleural effusion, who underwent EUS-guided transesophageal diagnostic thoracentesis over last 2 years, was performed. Thirteen patients (11 male; mean age 46.7 ± 16.2 years) with undiagnosed minimal pleural effusion underwent successful EUS-guided transesophageal diagnostic thoracentesis using a 22-G needle. Seven (53%) patients had fever on presentation whereas two presented with cough and loss of appetite. Eight to 54 mL fluid was aspirated with an attempt to completely empty the pleural cavity. There were no complications of the procedure. EUS-guided diagnostic thoracentesis is a safe and effective alternative for evaluating patients with minimal pleural effusion.
A review of Theileria diagnostics and epidemiology
Mans, Ben J.; Pienaar, Ronel; Latif, Abdalla A.
2015-01-01
An extensive range of serological and molecular diagnostic assays exist for most of the economically important Theileira species such as T. annulata, T. equi, T. lestoquardi, T. parva, T. uilenbergi and other more benign species. Diagnostics of Theileria is considered with regard to sensitivity and specificity of current molecular and serological assays and their use in epidemiology. In the case of serological assays, cross-reactivity of genetically closely related species reduces the use of the gold standard indirect fluorescent antibody test (IFAT). Development of antigen-specific assays does not necessarily address this problem, since closely related species will potentially have similar antigens. Even so, serological assays remain an important line of enquiry in epidemiological surveys. Molecular based assays have exploded in the last decade with significant improvements in sensitivity and specificity. In this review, the current interpretation of what constitute a species in Theileria and its impact on accurate molecular diagnostics is considered. Most molecular assays based on conventional or real-time PCR technology have proven to be on standard with regard to analytical sensitivity. However, consideration of the limits of detection in regard to total blood volume of an animal indicates that most assays may only detect >400,000 parasites/L blood. Even so, natural parasitaemia distribution in carrier-state animals seems to be above this limit of detection, suggesting that most molecular assays should be able to detect the majority of infected individuals under endemic conditions. The potential for false-negative results can, however, only be assessed within the biological context of the parasite within its vertebrate host, i.e. parasitaemia range in the carrier-state that will support infection of the vector and subsequent transmission. PMID:25830110
NASA Astrophysics Data System (ADS)
Bozic, Ivan; El-Haddad, Mohamed T.; Malone, Joseph D.; Joos, Karen M.; Patel, Shriji N.; Tao, Yuankai K.
2017-02-01
Ophthalmic diagnostic imaging using optical coherence tomography (OCT) is limited by bulk eye motions and a fundamental trade-off between field-of-view (FOV) and sampling density. Here, we introduced a novel multi-volumetric registration and mosaicking method using our previously described multimodal swept-source spectrally encoded scanning laser ophthalmoscopy and OCT (SS-SESLO-OCT) system. Our SS-SESLO-OCT acquires an entire en face fundus SESLO image simultaneously with every OCT cross-section at 200 frames-per-second. In vivo human retinal imaging was performed in a healthy volunteer, and three volumetric datasets were acquired with the volunteer moving freely and refixating between each acquisition. In post-processing, SESLO frames were used to estimate en face rotational and translational motions by registering every frame in all three volumetric datasets to the first frame in the first volume. OCT cross-sections were contrast-normalized and registered axially and rotationally across all volumes. Rotational and translational motions calculated from SESLO frames were applied to corresponding OCT B-scans to compensate for interand intra-B-scan bulk motions, and the three registered volumes were combined into a single interpolated multi-volumetric mosaic. Using complementary information from SESLO and OCT over serially acquired volumes, we demonstrated multivolumetric registration and mosaicking to recover regions of missing data resulting from blinks, saccades, and ocular drifts. We believe our registration method can be directly applied for multi-volumetric motion compensation, averaging, widefield mosaicking, and vascular mapping with potential applications in ophthalmic clinical diagnostics, handheld imaging, and intraoperative guidance.
Webb, C A; Weber, M; Mundy, E A; Killgore, W D S
2014-10-01
Studies investigating structural brain abnormalities in depression have typically employed a categorical rather than dimensional approach to depression [i.e., comparing subjects with Diagnostic and Statistical Manual of Mental Disorders (DSM)-defined major depressive disorder (MDD) v. healthy controls]. The National Institute of Mental Health, through their Research Domain Criteria initiative, has encouraged a dimensional approach to the study of psychopathology as opposed to an over-reliance on categorical (e.g., DSM-based) diagnostic approaches. Moreover, subthreshold levels of depressive symptoms (i.e., severity levels below DSM criteria) have been found to be associated with a range of negative outcomes, yet have been relatively neglected in neuroimaging research. To examine the extent to which depressive symptoms--even at subclinical levels--are linearly related to gray matter volume reductions in theoretically important brain regions, we employed whole-brain voxel-based morphometry in a sample of 54 participants. The severity of mild depressive symptoms, even in a subclinical population, was associated with reduced gray matter volume in the orbitofrontal cortex, anterior cingulate, thalamus, superior temporal gyrus/temporal pole and superior frontal gyrus. A conjunction analysis revealed concordance across two separate measures of depression. Reduced gray matter volume in theoretically important brain regions can be observed even in a sample that does not meet DSM criteria for MDD, but who nevertheless report relatively elevated levels of depressive symptoms. Overall, these findings highlight the need for additional research using dimensional conceptual and analytic approaches, as well as further investigation of subclinical populations.
Clinical utility of balloon expulsion test for functional defecation disorders
2016-01-01
Purpose I investigated the diagnostic accuracy of balloon expulsion test (BET) with various techniques to find out the most appropriate method, and tried to confirm its clinical utility in diagnosing functional defecation disorders (FDD) in constipated patients. Methods Eighty-seven patients constituted the study population. FDD was defined when patients had at least two positive findings in defecography, manometry, and electromyography. BET was done 4 times in each patient with 2 different positions and 2 different volumes. The positions were seated position (SP) and left lateral decubitus position (LDP). The volumes were fixed volume (FV) of 60 mL and individualized volume with which patient felt a constant desire to defecate (CDV). The results of BETs with 4 different settings (LDP-FV, LDP-CDV, SP-FV, and SP-CDV) were statistically compared and analyzed. Results Of 87 patients, 23 patients (26.4%) had at least two positive findings in 3 tests and thus were diagnosed to have FDD. On receiver operating characteristic curve analysis, area under curve was highest in BET with SP-FV. With a cutoff value of 30 seconds, the specificity of BET with SP-FV was 86.0%, sensitivity was 73.9%, negative predictive value was 89.8%, positive predictive value was 65.4%, and accuracy rate was 82.8% for diagnosing FDD. Conclusion SP-FV is the most appropriate method for BET. In this setting, BET has a diagnostic accuracy sufficient to identify constipated patients who do not have FDD. Patients with negative results in BET with SP-FV may not need other onerous tests to exclude FDD. PMID:26878016
Clinical utility of balloon expulsion test for functional defecation disorders.
Seong, Moo-Kyung
2016-02-01
I investigated the diagnostic accuracy of balloon expulsion test (BET) with various techniques to find out the most appropriate method, and tried to confirm its clinical utility in diagnosing functional defecation disorders (FDD) in constipated patients. Eighty-seven patients constituted the study population. FDD was defined when patients had at least two positive findings in defecography, manometry, and electromyography. BET was done 4 times in each patient with 2 different positions and 2 different volumes. The positions were seated position (SP) and left lateral decubitus position (LDP). The volumes were fixed volume (FV) of 60 mL and individualized volume with which patient felt a constant desire to defecate (CDV). The results of BETs with 4 different settings (LDP-FV, LDP-CDV, SP-FV, and SP-CDV) were statistically compared and analyzed. Of 87 patients, 23 patients (26.4%) had at least two positive findings in 3 tests and thus were diagnosed to have FDD. On receiver operating characteristic curve analysis, area under curve was highest in BET with SP-FV. With a cutoff value of 30 seconds, the specificity of BET with SP-FV was 86.0%, sensitivity was 73.9%, negative predictive value was 89.8%, positive predictive value was 65.4%, and accuracy rate was 82.8% for diagnosing FDD. SP-FV is the most appropriate method for BET. In this setting, BET has a diagnostic accuracy sufficient to identify constipated patients who do not have FDD. Patients with negative results in BET with SP-FV may not need other onerous tests to exclude FDD.
Status of Real-Time Laser Based Ion Engine Diagnostics at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Williams, George J., Jr.
2001-01-01
The development status of laser based erosion diagnostics for ion engines at the NASA Glenn Research Center is discussed. The diagnostics are being developed to enhance component life-prediction capabilities. A direct measurement of the erosion product density using laser induced fluorescence (LIF) is described. Erosion diagnostics based upon evaluation of the ion dynamics are also under development, and the basic approach is presented. The planned implementation of the diagnostics is discussed.
Schrijver, Iris; Aziz, Nazneen; Farkas, Daniel H; Furtado, Manohar; Gonzalez, Andrea Ferreira; Greiner, Timothy C; Grody, Wayne W; Hambuch, Tina; Kalman, Lisa; Kant, Jeffrey A; Klein, Roger D; Leonard, Debra G B; Lubin, Ira M; Mao, Rong; Nagan, Narasimhan; Pratt, Victoria M; Sobel, Mark E; Voelkerding, Karl V; Gibson, Jane S
2012-11-01
This report of the Whole Genome Analysis group of the Association for Molecular Pathology illuminates the opportunities and challenges associated with clinical diagnostic genome sequencing. With the reality of clinical application of next-generation sequencing, technical aspects of molecular testing can be accomplished at greater speed and with higher volume, while much information is obtained. Although this testing is a next logical step for molecular pathology laboratories, the potential impact on the diagnostic process and clinical correlations is extraordinary and clinical interpretation will be challenging. We review the rapidly evolving technologies; provide application examples; discuss aspects of clinical utility, ethics, and consent; and address the analytic, postanalytic, and professional implications. Copyright © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
2013-12-01
Cancer : Opportunities for a Novel Diagnostic and Prognostic Biomarker Development PRINCIPAL INVESTIGATOR: Oleg M. Alekseev CONTRACTING...Expression of tNASP in Prostate Cancer : Opportunities for a Novel Diagnostic and Prognostic Biomarker Development 5a. CONTRACT NUMBER...Expression of tNASP in Prostate Cancer : Opportunities for a Novel Diagnostic and Prognostic Biomarker Development 5b. GRANT NUMBER W81XWH-12-1-0361
Diagnostic validity of hematologic parameters in evaluation of massive pulmonary embolism.
Ates, Hale; Ates, Ihsan; Kundi, Harun; Yilmaz, Fatma Meric
2017-09-01
The aim of this study was to determine the hematologic parameter with the highest diagnostic differentiation in the identification of massive acute pulmonary embolism (APE). A retrospective study was performed on patients diagnosing with APE between June 2014 and June 2016. All radiological and laboratory parameters of patients were scanned through the electronic information management system of the hospital. PLR was obtained from the ratio of platelet count to lymphocyte count, NLR was obtained from the ratio of neutrophil count to lymphocyte count, WMR was obtained from white blood cell in mean platelet volume ratio, MPR was obtained from the ratio of mean platelet volume to platelet count, and RPR was obtained from the ratio of red distribution width to platelet count. Six hundred and thirty-nine patients consisting of 292 males (45.7%) and 347 females (54.3%) were included in the research. Independent predictors of massive risk as compared to sub-massive group were; pulmonary arterial systolic pressure (PASP) (OR=1.40; P=.001), PLR (OR=1.59; P<.001), NLR (OR=2.22; P<.001), WMR (OR=1.22; P<.001), MPR (OR=0.33; P<.001), and RPR (OR=0.68; P<.001). Upon evaluation of the diagnostic differentiation of these risk factors for massive APE by employing receiver operating characteristic curve analysis, it was determined that PLR (AUC±SE=0.877±0.015; P<.001), and NLR (AUC±SE=0.893±0.013; P<.001) have similar diagnostic differentiation in diagnosing massive APE and these two parameters are superior over PASP, MPR, WMR, and RPR. We determined that the levels of NLR and PLR are superior to other parameters in the determination of clinical severity in APE cases. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeylue, U.O.
1997-05-01
An in situ particulate diagnostic/analysis technique is outlined based on the Rayleigh-Debye-Gans polydisperse fractal aggregate (RDG/PFA) scattering interpretation of absolute angular light scattering and extinction measurements. Using proper particle refractive index, the proposed data analysis method can quantitatively yield all aggregate parameters (particle volume fraction, f{sub v}, fractal dimension, D{sub f}, primary particle diameter, d{sub p}, particle number density, n{sub p}, and aggregate size distribution, pdf(N)) without any prior knowledge about the particle-laden environment. The present optical diagnostic/interpretation technique was applied to two different soot-containing laminar and turbulent ethylene/air nonpremixed flames in order to assess its reliability. The aggregate interpretationmore » of optical measurements yielded D{sub f}, d{sub p}, and pdf(N) that are in excellent agreement with ex situ thermophoretic sampling/transmission electron microscope (TS/TEM) observations within experimental uncertainties. However, volume-equivalent single particle models (Rayleigh/Mie) overestimated d{sub p} by about a factor of 3, causing an order of magnitude underestimation in n{sub p}. Consequently, soot surface areas and growth rates were in error by a factor of 3, emphasizing that aggregation effects need to be taken into account when using optical diagnostics for a reliable understanding of soot formation/evolution mechanism in flames. The results also indicated that total soot emissivities were generally underestimated using Rayleigh analysis (up to 50%), mainly due to the uncertainties in soot refractive indices at infrared wavelengths. This suggests that aggregate considerations may not be essential for reasonable radiation heat transfer predictions from luminous flames because of fortuitous error cancellation, resulting in typically a 10 to 30% net effect.« less
Accelerating the Development and Validation of New Value-Based Diagnostics by Leveraging Biobanks.
Schneider, Daniel; Riegman, Peter H J; Cronin, Maureen; Negrouk, Anastassia; Moch, Holger; Balling, Rudi; Penault-Llorca, Frederiques; Zatloukal, Kurt; Horgan, Denis
The challenges faced in developing value-based diagnostics has resulted in few of these tests reaching the clinic, leaving many treatment modalities without matching diagnostics to select patients for particular therapies. Many patients receive therapies from which they are unlikely to benefit, resulting in worse outcomes and wasted health care resources. The paucity of value-based diagnostics is a result of the scientific challenges in developing predictive markers, specifically: (1) complex biology, (2) a limited research infrastructure supporting diagnostic development, and (3) the lack of incentives for diagnostic developers to invest the necessary resources. Better access to biospecimens can address some of these challenges. Methodologies developed to evaluate biomarkers from biospecimens archived from patients enrolled in randomized clinical trials offer the greatest opportunity to develop and validate high-value molecular diagnostics. An alternative opportunity is to access high-quality biospecimens collected from large public and private longitudinal observational cohorts such as the UK Biobank, the US Million Veteran Program, the UK 100,000 Genomes Project, or the French E3N cohort. Value-based diagnostics can be developed to work in a range of samples including blood, serum, plasma, urine, and tumour tissue, and better access to these high-quality biospecimens with clinical data can facilitate biomarker research. © 2016 S. Karger AG, Basel.
Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.
2015-01-01
Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain–behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain–behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18–87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain–behaviour associations and test whether brain–behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain–behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family members. Additionally, while age had a relatively strong impact on all neurocognitive traits, the effects of age on cognition did not differ between diagnostic groups. Most brain–behaviour associations were also similar across the age range, with the exception of cortical and ventricular volume and lingual gyrus thickness, which showed weak correlations with verbal fluency and inhibitory control at younger ages that increased in magnitude in older subjects, regardless of diagnosis. Findings indicate that neuroanatomical traits potentially impacted by bipolar disorder are significantly associated with multiple neurobehavioural domains. Structure–function relationships are generally preserved across diagnostic groups, with the notable exception of ventrolateral prefrontal and parietal association cortex, volumetric increases in which may be associated with cognitive resilience specifically in individuals with bipolar disorder. Although age impacted all neurobehavioural traits, we did not find any evidence of accelerated cognitive decline specific to bipolar disorder subjects. Regardless of diagnosis, greater global brain volume may represent a protective factor for the effects of ageing on executive functioning. PMID:25943422
Laser-Induced Incandescence Measurements in Low Gravity
NASA Technical Reports Server (NTRS)
VanderWal, R. L.
1997-01-01
A low-gravity environment offers advantages to investigations concerned with soot growth or flame radiation by eliminating of buoyancy-induced convection. Basic to each type of study is knowledge of spatially resolved soot volume fraction, (f(sub v). Laser-induced incandescence (LII) has emerged as a diagnostic for soot volume fraction determination because it possesses high temporal and spatial resolution, geometric versatility and high sensitivity. Implementation and system characterization of LII in a drop tower that provides 2.2 sec of low-gravity (micro)g) at the NASA Lewis Research Center are described here. Validation of LII for soot volume fraction determination in (micro)g is performed by comparison between soot volume fraction measurements obtained by light extinction [20] and LII in low-gravity for a 50/50 mixture (by volume) of 0 acetylene/nitrogen issuing into quiescent air. Quantitative soot volume fraction measurements within other laminar flames of ethane and propane and a turbulent diffusion flame in (micro)g via LII are also demonstrated. An analysis of LII images of a turbulent acetylene diffusion flame in 1-g and (micro)g is presented.
Method for improved selectivity in photo-activation and detection of molecular diagnostic agents
Wachter, Eric A.; Fisher, Walter G.; Dees, H. Craig
1998-01-01
A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.
Method for improved selectivity in photo-activation and detection of molecular diagnostic agents
Wachter, E.A.; Fisher, W.G.; Dees, H.C.
1998-11-10
A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method includes the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention is also a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent. 13 figs.
Methods for improved selectivity in photo-activation and detection of molecular diagnostic agents
Wachter, Eric A [Oak Ridge, TN; Fisher, Walter G [Knoxville, TN; Dees, H Craig [Knoxville, TN
2008-03-18
A method for the imaging of a particular volume of plant or animal tissue, wherein the plant or animal tissue contains at least one photo-active molecular agent. The method comprises the steps of treating the particular volume of the plant or animal tissue with light sufficient to promote a simultaneous two-photon excitation of the photo-active molecular agent contained in the particular volume of the plant or animal tissue, photo-activating at least one of the at least one photo-active molecular agent in the particular volume of the plant or animal tissue, thereby producing at least one photo-activated molecular agent, wherein the at least one photo-activated molecular agent emits energy, detecting the energy emitted by the at least one photo-activated molecular agent, and producing a detected energy signal which is characteristic of the particular volume of plant or animal tissue. The present invention also provides a method for the imaging of a particular volume of material, wherein the material contains at least one photo-active molecular agent.
Fitch, J.P.
1999-07-06
An endoscope is disclosed which reduces the volume needed by the imaging part, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases it's utility. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing. 7 figs.
Fitch, Joseph P.
1999-07-06
An endoscope which reduces the volume needed by the imaging part thereof, maintains resolution of a wide diameter optical system, while increasing tool access, and allows stereographic or interferometric processing for depth and perspective information/visualization. Because the endoscope decreases the volume consumed by imaging optics such allows a larger fraction of the volume to be used for non-imaging tools, which allows smaller incisions in surgical and diagnostic medical applications thus produces less trauma to the patient or allows access to smaller volumes than is possible with larger instruments. The endoscope utilizes fiber optic light pipes in an outer layer for illumination, a multi-pupil imaging system in an inner annulus, and an access channel for other tools in the center. The endoscope is amenable to implementation as a flexible scope, and thus increases the utility thereof. Because the endoscope uses a multi-aperture pupil, it can also be utilized as an optical array, allowing stereographic and interferometric processing.
Huckle, David
2015-06-01
Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.
Educational Diagnostic Assessment.
ERIC Educational Resources Information Center
Bejar, Isaac I.
1984-01-01
Approaches proposed for educational diagnostic assessment are reviewed and identified as deficit assessment and error analysis. The development of diagnostic instruments may require a reexamination of existing psychometric models and development of alternative ones. The psychometric and content demands of diagnostic assessment all but require test…
Depth-sensitive optical spectroscopy for layered tissue measurements (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Wei; Yu, Xiaojun; Liu, Quan; Liu, Linbo; Ong, Yi Hong
2017-02-01
Disease diagnosis based on the visual inspection of the pathological presentations or symptoms on the epithelial tissue such as the skin are subjective and highly depend on the experience of the doctors. Vital diagnostic information for the accurate identification of diseases is usually located underneath the surface and its depth distribution is known to be related to disease progression. Although optical spectroscopic measurements are fast and non-invasive, the accurate retrieval of the depth-specific diagnostic information is complicated by the heterogeneous nature of epithelial tissues. The optical signal measured from a tissue is often the result of averaging from a large tissue volume that mixes information from the region of interest and the surrounding tissue region, especially from the overlaying layers. Our group has developed a series of techniques for depth sensitive optical measurements from such layered tissues. We will first review the earlier development of composite fiber-optic probe, in which the source-detector separation and the angles of source and detector fibers are varied to achieve depth sensitive measurements. Then the more recent development of non-contact axicon lens based probes for depth sensitive fluorescence measurements and the corresponding numerical methods for optimization will be introduced. Finally, the most recently developed snapshot axicon lens based probe that can measure Raman spectra from five different depths at the same time will be discussed. Results from tissue phantoms, ex vivo pork samples and in vivo fingernail measurements will be presented, which indicates the great potential of depth sensitive optical spectroscopy for clinical tissue diagnosis.
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
Ebola Check: Delivering molecular diagnostics at the point of need.
Moschos, Sterghios A
2015-01-01
The 2013-5 global outbreak of Ebolavirus disease brought to sharp focus the need for diagnostic capacity to be equitably available on a global scale: from the most under-developed areas of resource-limited countries in West Africa to high volume international travel hubs in Europe and the USA. Quick detection of the causal agent of disease is pivotal to containment, contact tracing and clinical action to protect healthcare workers, communities and patients. Nucleic acid testing (NAT) by real time reverse transcription quantitative polymerase chain reaction (RT-PCR) has emerged as the preferred method for reliable patient status confirmation. Presently, this is served through advanced clinical molecular laboratory testing in a <8hr manual process that requires 3.5ml venous blood samples. To meet the demand in West Africa, this has necessitated large-scale mobile laboratory and volunteer biomedical scientist deployment: a solution that has proven eventually adequate, albeit temporary against future re-emergence of this and other haemorrhagic fever disease agents prevalent in the region. The EbolaCheck consortium was formed in August 2014 to address the need for delivering NAT at the point of care. We have developed a novel platform technology that can QUantitatively, RAPidly IDentify (QuRapID) known RNA or DNA targets in viruses, bacteria, or eukaryotic cells directly in crude biofluids, including whole blood, in under 40min using a 5 microliter sample. The portable, battery-operated system lacks microfluidics, pumps or other sensitive/high cost parts making it suitable for the environmental and economic challenges of resource-limited countries. The simple, safe, 5-step sample-to-answer process requires minimal training and informs frontline healthcare workers of diagnostic status, whilst reporting remotely epidemiologically relevant results. Data on biosafety level 2 surrogate Ebolavirus templates presented in encapsulated or enveloped viruses indicate performance comparable to clinical laboratory testing and utility beyond filoviruses. Emerging performance data on live Ebolavirus, non-human primate disease model and patient samples, as well as future development plans will be discussed.
Dowdle, W. R.; Lambriex, M.; Hierholzer, J. C.
1971-01-01
A simple procedure for the production of large volumes of purified adenovirus group-specific complement-fixing (CF) (hexon) antigen by selective adsorption to and elution from CaHPO4 is described. Results of immunodiffusion tests, electrophoresis, electron microscopy, and tests for hemagglutination and infectivity indicate that the purified antigen consisted of a single virus component (hexon). The purified product contained little host materials. Unlike the crude virus harvest usually employed for serodiagnostic CF tests, the purified antigen demonstrated no anticomplementary activity and did not develop such activity during storage. The purified antigen was equal to or slightly more sensitive than crude virus harvests for serodiagnosis of adenovirus infections. Images PMID:4325021
Helmstädter, Axel
2011-01-01
Demeter Georgievitz-Weitzer (1873-1949), called "Surya", Sanskrit for "sun", was an important representative of medical occultism in the first half of the 20th century. He worked as a journal editor and published a 13-volume book series about occult medicine, mainly written by himself. His hypotheses were closely related to the "Lebensreform" movement around 1900. Regarding diagnostics, he relied on astrology, cheiromancy, and clairvoyance, while therapeutics were dominated by diet and spagyric remedies according to Cesare Mattei (1809-1896) and Carl-Friedrich Zimpel (1801-1879). In his later years, he developed his own healing system, initially comprising eight, later only two preparations. Surya remedies were commercially available until the end of the 20th century,
Nano-plasmonic exosome diagnostics
Im, Hyungsoon; Shao, Huilin; Weissleder, Ralph; Castro, Cesar M.; Lee, Hakho
2015-01-01
Exosomes have emerged as a promising biomarker. These vesicles abound in biofluids and harbor molecular constituents from their parent cells, thereby offering a minimally-invasive avenue for molecular analyses. Despite such clinical potential, routine exosomal analysis, particularly the protein assay, remains challenging, due to requirements for large sample volumes and extensive processing. We have been developing miniaturized systems to facilitate clinical exosome studies. These systems can be categorized into two components: microfluidics for sample preparation and analytical tools for protein analyses. In this report, we review a new assay platform, nano-plasmonic exosome (nPLEX), in which sensing is based on surface plasmon resonance to achieve label-free exosome detection. Looking forward, we also discuss some potential challenges and improvements in exosome studies. PMID:25936957
[Big data, generalities and integration in radiotherapy].
Le Fèvre, C; Poty, L; Noël, G
2018-02-01
The many advances in data collection computing systems (data collection, database, storage), diagnostic and therapeutic possibilities are responsible for an increase and a diversification of available data. Big data offers the capacities, in the field of health, to accelerate the discoveries and to optimize the management of patients by combining a large volume of data and the creation of therapeutic models. In radiotherapy, the development of big data is attractive because data are very numerous et heterogeneous (demographics, radiomics, genomics, radiogenomics, etc.). The expectation would be to predict the effectiveness and tolerance of radiation therapy. With these new concepts, still at the preliminary stage, it is possible to create a personalized medicine which is always more secure and reliable. Copyright © 2017. Published by Elsevier SAS.
LLE review, volume 73. Quarterly report, October 1997--December 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-04-01
This progress report contains discussion on the following topics: A high-bandwidth electrical-waveform generator based on aperture-coupled striplines for OMEGA pulse-shaping applications; sweep deflection circuit development using computer-aided circuit design for the OMEGA multichannel streak camera; D-{sup 3}He protons as a diagnostic for target {rho}R; growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion; three-dimensional analysis of the power transfer between crossed laser beams; characterization of freestanding polymer films for application in 351-nm, high-peak-power laser systems; subsurface damage in microgrinding optical glasses; bound-abrasive polishers for optical glass; and color gamut of cholesteric liquid crystal films and flakes by standardmore » colorimetry.« less
Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2005-01-01
Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities.
One-stop-shop tumor imaging: buy hypoxia, get lactate free.
Manzoor, Ashley A; Schroeder, Thies; Dewhirst, Mark W
2008-05-01
The ability to noninvasively assess physiological changes in solid tumors is desired for its diagnostic and therapeutic potential. In this issue of JCI, Matsumoto and colleagues reveal their development and use of a novel imaging approach, combining pulsed electron paramagnetic resonance imaging (EPRI) with conventional MRI to image squamous cell carcinoma tumor-bearing mice (See the related article beginning on page 1965). This method provides coregistered images of oxygenation and blood volume/flow with the underlying anatomy and concentrations of metabolites such as lactate and choline. This technique, combining functional and anatomic imaging, shows immediate preclinical applicability in monitoring factors that control tumor hypoxia and metabolism and may have future clinical potential for monitoring tumor response to treatment.
Toward an in-situ analytics and diagnostics framework for earth system models
NASA Astrophysics Data System (ADS)
Anantharaj, Valentine; Wolf, Matthew; Rasch, Philip; Klasky, Scott; Williams, Dean; Jacob, Rob; Ma, Po-Lun; Kuo, Kwo-Sen
2017-04-01
The development roadmaps for many earth system models (ESM) aim for a globally cloud-resolving model targeting the pre-exascale and exascale systems of the future. The ESMs will also incorporate more complex physics, chemistry and biology - thereby vastly increasing the fidelity of the information content simulated by the model. We will then be faced with an unprecedented volume of simulation output that would need to be processed and analyzed concurrently in order to derive the valuable scientific results. We are already at this threshold with our current generation of ESMs at higher resolution simulations. Currently, the nominal I/O throughput in the Community Earth System Model (CESM) via Parallel IO (PIO) library is around 100 MB/s. If we look at the high frequency I/O requirements, it would require an additional 1 GB / simulated hour, translating to roughly 4 mins wallclock / simulated-day => 24.33 wallclock hours / simulated-model-year => 1,752,000 core-hours of charge per simulated-model-year on the Titan supercomputer at the Oak Ridge Leadership Computing Facility. There is also a pending need for 3X more volume of simulation output . Meanwhile, many ESMs use instrument simulators to run forward models to compare model simulations against satellite and ground-based instruments, such as radars and radiometers. The CFMIP Observation Simulator Package (COSP) is used in CESM as well as the Accelerated Climate Model for Energy (ACME), one of the ESMs specifically targeting current and emerging leadership-class computing platforms These simulators can be computationally expensive, accounting for as much as 30% of the computational cost. Hence the data are often written to output files that are then used for offline calculations. Again, the I/O bottleneck becomes a limitation. Detection and attribution studies also use large volume of data for pattern recognition and feature extraction to analyze weather and climate phenomenon such as tropical cyclones, atmospheric rivers, blizzards, etc. It is evident that ESMs need an in-situ framework to decouple the diagnostics and analytics from the prognostics and physics computations of the models so that the diagnostic computations could be performed concurrently without limiting model throughput. We are designing a science-driven online analytics framework for earth system models. Our approach is to adopt several data workflow technologies, such as the Adaptable IO System (ADIOS), being developed under the U.S. Exascale Computing Project (ECP) and integrate these to allow for extreme performance IO, in situ workflow integration, science-driven analytics and visualization all in a easy to use computational framework. This will allow science teams to write data 100-1000 times faster and seamlessly move from post processing the output for validation and verification purposes to performing these calculations in situ. We can easily and knowledgeably envision a near-term future where earth system models like ACME and CESM will have to address not only the challenges of the volume of data but also need to consider the velocity of the data. The earth system model of the future in the exascale era, as they incorporate more complex physics at higher resolutions, will be able to analyze more simulation content without having to compromise targeted model throughput.
[Ascites and acute kidney injury].
Piano, Salvatore; Tonon, Marta; Angeli, Paolo
2016-07-01
Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years.
Hooper, Lee; Bunn, Diane K; Abdelhamid, Asmaa; Gillings, Rachel; Jennings, Amy; Maas, Katie; Millar, Sophie; Twomlow, Elizabeth; Hunter, Paul R; Shepstone, Lee; Potter, John F; Fairweather-Tait, Susan J
2016-07-01
Water-loss dehydration (hypertonic, hyperosmotic, or intracellular dehydration) is due to insufficient fluid intake and is distinct from hypovolemia due to excess fluid losses. Water-loss dehydration is associated with poor health outcomes such as disability and mortality in older people. Urine specific gravity (USG), urine color, and urine osmolality have been widely advocated for screening for dehydration in older adults. We assessed the diagnostic accuracy of urinary measures to screen for water-loss dehydration in older people. This was a diagnostic accuracy study of people aged ≥65 y taking part in the DRIE (Dehydration Recognition In our Elders; living in long-term care) or NU-AGE (Dietary Strategies for Healthy Ageing in Europe; living in the community) studies. The reference standard was serum osmolality, and index tests included USG, urine color, urine osmolality, urine cloudiness, additional dipstick measures, ability to provide a urine sample, and the volume of a random urine sample. Minimum useful diagnostic accuracy was set at sensitivity and specificity ≥70% or a receiver operating characteristic plot area under the curve ≥0.70. DRIE participants (women: 67%; mean age: 86 y; n = 162) had more limited cognitive and functional abilities than did NU-AGE participants (women: 64%; mean age: 70 y; n = 151). Nineteen percent of DRIE participants and 22% of NU-AGE participants were dehydrated (serum osmolality >300 mOsm/kg). Neither USG nor any other potential urinary tests were usefully diagnostic for water-loss dehydration. Although USG, urine color, and urinary osmolality have been widely advocated for screening for dehydration in older adults, we show, in the largest study to date to our knowledge, that their diagnostic accuracy is too low to be useful, and these measures should not be used to indicate hydration status in older people (either alone or as part of a wider tranche of tests). There is a need to develop simple, inexpensive, and noninvasive tools for the assessment of dehydration in older people. The DRIE study was registered at www.researchregister.org.uk as 122273. The NU-AGE trial was registered at clinicialtrials.gov as NCT01754012. © 2016 American Society for Nutrition.
Email for communicating results of diagnostic medical investigations to patients.
Meyer, Barbara; Atherton, Helen; Sawmynaden, Prescilla; Car, Josip
2012-08-15
As medical care becomes more complex and the ability to test for conditions grows, pressure on healthcare providers to convey increasing volumes of test results to patients is driving investigation of alternative technological solutions for their delivery. This review addresses the use of email for communicating results of diagnostic medical investigations to patients. To assess the effects of using email for communicating results of diagnostic medical investigations to patients, compared to SMS/ text messaging, telephone communication or usual care, on outcomes, including harms, for health professionals, patients and caregivers, and health services. We searched: the Cochrane Consumers and Communication Review Group Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1 2010), MEDLINE (OvidSP) (1950 to January 2010), EMBASE (OvidSP) (1980 to January 2010), PsycINFO (OvidSP) (1967 to January 2010), CINAHL (EbscoHOST) (1982 to February 2010), and ERIC (CSA) (1965 to January 2010). We searched grey literature: theses/dissertation repositories, trials registers and Google Scholar (searched July 2010). We used additional search methods: examining reference lists and contacting authors. Randomised controlled trials, quasi-randomised trials, controlled before and after studies and interrupted time series studies of interventions using email for communicating results of any diagnostic medical investigations to patients, and taking the form of 1) unsecured email 2) secure email or 3) web messaging. All healthcare professionals, patients and caregivers in all settings were considered. Two review authors independently assessed the titles and abstracts of retrieved citations. No studies were identified for inclusion. Consequently, no data collection or analysis was possible. No studies met the inclusion criteria, therefore there are no results to report on the use of email for communicating results of diagnostic medical investigations to patients. In the absence of included studies, we can draw no conclusions on the effects of using email for communicating results of diagnostic medical investigations to patients, and thus no recommendations for practice can be stipulated. Further well-designed research should be conducted to inform practice and policy for communicating patient results via email, as this is a developing area.
Impact of Availability of Companion Diagnostics on the Clinical Development of Anticancer Drugs.
Tibau, Ariadna; Díez-González, Laura; Navarro, Beatriz; Galán-Moya, Eva M; Templeton, Arnoud J; Seruga, Bostjan; Pandiella, Atanasio; Amir, Eitan; Ocana, Alberto
2017-06-01
Companion diagnostics permit the selection of patients likely to respond to targeted anticancer drugs; however, it is unclear if the drug development process differs between drugs developed with or without companion diagnostics. Identification of differences in study design could help future clinical development. Anticancer drugs approved for use in solid tumors between 28 September 2000 and 4 January 2014 were identified using a search of the US FDA website. Phase III trials supporting registration were extracted from the drug label. Each published study was reviewed to obtain information about the phase I and II trials used for the development of the respective drug. We identified 35 drugs and 59 phase III randomized trials supporting regulatory approval. Fifty-three phase I trials and 47 phase II trials were cited in the studies and were used to support the design of these phase III trials. The approval of drugs using a companion diagnostic has increased over time (p for trend 0.01). Expansion cohorts were more frequently observed with drugs developed with a companion diagnostic (62 vs. 20%; p = 0.005). No differences between drugs developed with or without a companion diagnostic were observed for the design of phase I and II studies. The approval of drugs developed with a companion diagnostic has increased over time. The availability of a companion diagnostic was associated with more frequent use of phase I expansion cohorts comprising patients selected by the companion diagnostic.
The ITER bolometer diagnostic: Status and plansa)
NASA Astrophysics Data System (ADS)
Meister, H.; Giannone, L.; Horton, L. D.; Raupp, G.; Zeidner, W.; Grunda, G.; Kalvin, S.; Fischer, U.; Serikov, A.; Stickel, S.; Reichle, R.
2008-10-01
A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration.
2012-01-01
Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the thorax quite distinct from that of atrial filling. The in-vivo tests of the HCP with LVot Doppler resulted in a Pearson’s correlation of R = 0.892, and Bland-Altman plotting of SV yielded a mean bias of -1.6 ml and 2SD =14.8 ml. Conclusions The results indicate that the HCP was able to track the changes in ventricular stroke volume reliably. Furthermore, the HCP produced ventricular volume-time curves that were consistent with the literature, and may be a diagnostic tool as well. PMID:22900831
Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt
2007-08-12
The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.
Gilbert, Mark; Cook, Darrel; Steinberg, Malcolm; Kwag, Michael; Robert, Wayne; Doupe, Glenn; Krajden, Mel; Rekart, Michael
2013-10-23
The contribution of acute HIV infection (AHI) to transmission is widely recognized, and increasing AHI diagnosis capacity can enhance HIV prevention through subsequent behavior change or intervention. We examined the impact of targeted pooled nucleic acid amplification testing (NAAT) and social marketing to increase AHI diagnosis among men who have sex with men (MSM) in Vancouver. Observational study. We implemented pooled NAAT following negative third-generation enzyme immunoassay (EIA) testing for males above 18 years in six clinics accessed by MSM, accompanied by two social marketing campaigns developed by a community gay men's health organization. We compared test volume and diagnosis rates for pre-implementation (April 2006-March 2009) and post-implementation (April 2009-March 2012) periods. After implementation, we used linear regression to examine quarterly trends and calculated diagnostic yield. After implementation, the AHI diagnosis rate significantly increased from 1.03 to 1.84 per 1000 tests, as did quarterly HIV test volumes and acute to non-acute diagnosis ratio. Of the 217 new HIV diagnoses after implementation, 54 (24.9%) were AHIs (25 detected by pooled NAAT only) for an increased diagnostic yield of 11.5%. The average number of prior negative HIV tests (past 2 years) increased significantly for newly diagnosed MSM at the six study clinics compared to other newly diagnosed MSM in British Columbia, per quarter. Targeted implementation of pooled NAAT at clinics accessed by MSM is effective in increasing AHI diagnoses compared to third-generation EIA testing. Social marketing campaigns accompanying pooled NAAT implementation may contribute to increasing AHI diagnoses and frequency of HIV testing.
Screening Mammography and Digital Breast Tomosynthesis: Utilization Updates.
Boroumand, Gilda; Teberian, Ida; Parker, Laurence; Rao, Vijay M; Levin, David C
2018-05-01
There have been many recent developments in breast imaging, including the 2009 revision of the U.S. Preventive Services Task Force's breast cancer screening guidelines and the approval of digital breast tomosynthesis (DBT) for clinical use in 2011. The objective of this study is to evaluate screening mammography utilization trends among the Medicare population from 2005 to 2015 and examine the volume of DBT studies performed in 2015, the first year for which procedural billing codes for DBT are available. We reviewed national Medicare Part B Physician/Supplier Procedure Summary master files from 2005 to 2015, to determine the annual utilization rate of screening mammography on the basis of procedure codes used for film-screen and digital screening mammography. We also used the Physician/Supplier Procedure Summary master files to determine the volume of screening and diagnostic DBT studies performed in 2015. The utilization rate of screening mammography per 1000 women in the Medicare fee-for-service population increased gradually every year, from 311.5 examinations in 2005 to a peak of 322.9 examinations in 2009, representing a compound annual growth rate of 0.9%. In 2010, the utilization rate abruptly decreased by 4.3% to 309.2 examinations, and it has not since recovered to pre-2010 levels. In 2015, 18.9% of screening and 16.2% of diagnostic digital mammography examinations included DBT as an add-on procedure. In contrast to the annual increase in screening mammography utilization from 2005 to 2009, an abrupt sustained decline in screening occurred beginning in 2010, coinciding with the release of U.S. Preventive Services Task Force recommendations. DBT utilization was somewhat limited in 2015, occurring in conjunction with less than 20% of digital mammography examinations.
Microfluidic Chips Controlled with Elastomeric Microvalve Arrays
Li, Nianzhen; Sip, Chris; Folch, Albert
2007-01-01
Miniaturized microfluidic systems provide simple and effective solutions for low-cost point-of-care diagnostics and high-throughput biomedical assays. Robust flow control and precise fluidic volumes are two critical requirements for these applications. We have developed microfluidic chips featuring elastomeric polydimethylsiloxane (PDMS) microvalve arrays that: 1) need no extra energy source to close the fluidic path, hence the loaded device is highly portable; and 2) allow for microfabricating deep (up to 1 mm) channels with vertical sidewalls and resulting in very precise features. The PDMS microvalves-based devices consist of three layers: a fluidic layer containing fluidic paths and microchambers of various sizes, a control layer containing the microchannels necessary to actuate the fluidic path with microvalves, and a middle thin PDMS membrane that is bound to the control layer. Fluidic layer and control layers are made by replica molding of PDMS from SU-8 photoresist masters, and the thin PDMS membrane is made by spinning PDMS at specified heights. The control layer is bonded to the thin PDMS membrane after oxygen activation of both, and then assembled with the fluidic layer. The microvalves are closed at rest and can be opened by applying negative pressure (e.g., house vacuum). Microvalve closure and opening are automated via solenoid valves controlled by computer software. Here, we demonstrate two microvalve-based microfluidic chips for two different applications. The first chip allows for storing and mixing precise sub-nanoliter volumes of aqueous solutions at various mixing ratios. The second chip allows for computer-controlled perfusion of microfluidic cell cultures. The devices are easy to fabricate and simple to control. Due to the biocompatibility of PDMS, these microchips could have broad applications in miniaturized diagnostic assays as well as basic cell biology studies. PMID:18989408
Fully automated structural MRI of the brain in clinical dementia workup.
Persson, Karin; Selbæk, Geir; Brækhus, Anne; Beyer, Mona; Barca, Maria; Engedal, Knut
2017-06-01
Background The dementia syndrome has been regarded a clinical diagnosis but the focus on supplemental biomarkers is increasing. An automatic magnetic resonance imaging (MRI) volumetry method, NeuroQuant® (NQ), has been developed for use in clinical settings. Purpose To evaluate the clinical usefulness of NQ in distinguishing Alzheimer's disease dementia (AD) from non-dementia and non-AD dementia. Material and Methods NQ was performed in 275 patients diagnosed according to the criteria of ICD-10 for AD, vascular dementia and Parkinson's disease dementia (PDD); the Winblad criteria for mild cognitive impairment; the Lund-Manchester criteria for frontotemporal dementia; and the revised consensus criteria for Lewy body dementia (LBD). Receiver operating curve (ROC) analyses with calculation of area under the curve (AUC) and regression analyses were carried out. Results Forebrain parenchyma (AUC 0.82), hippocampus (AUC 0.80), and inferior lateral ventricles (AUC 0.78) yielded the highest AUCs for AD/non-dementia discrimination. Only hippocampus (AUC 0.62) and cerebellum (AUC 0.67) separated AD from non-AD dementia. Cerebellum separated AD from PDD-LBD (AUC 0.83). Separate multiple regression analyses adjusted for age and gender, showed that memory (CERAD 10-word delayed recall) (beta 0.502, P < 0.001) was more strongly associated to the hippocampus volume than the diagnostic distinction of AD versus non-dementia (beta -0.392, P < 0.001). Conclusion NQ measures could separate AD from non-dementia fairly well but generally poorer from non-AD dementia. Degree of memory impairment, age, and gender, but not diagnostic distinction, were associated to the hippocampus volume in adjusted analyses. Surprisingly, cerebellum was found relevant in separating AD from PDD-LBD.
Control and Diagnostic Model of Brushless Dc Motor
NASA Astrophysics Data System (ADS)
Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol
2014-09-01
A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values
Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H
2012-09-01
On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).
Sharma, P; Bhargava, M; Sukhachev, D; Datta, S; Wattal, C
2014-02-01
Tropical febrile illnesses such as malaria and dengue are challenging to differentiate clinically. Automated cellular indices from hematology analyzers may afford a preliminary rapid distinction. Blood count and VCS parameters from 114 malaria patients, 105 dengue patients, and 105 febrile controls without dengue or malaria were analyzed. Statistical discriminant functions were generated, and their diagnostic performances were assessed by ROC curve analysis. Three statistical functions were generated: (i) malaria-vs.-controls factor incorporating platelet count and standard deviations of lymphocyte volume and conductivity that identified malaria with 90.4% sensitivity, 88.6% specificity; (ii) dengue-vs.-controls factor incorporating platelet count, lymphocyte percentage and standard deviation of lymphocyte conductivity that identified dengue with 81.0% sensitivity and 77.1% specificity; and (iii) febrile-controls-vs.-malaria/dengue factor incorporating mean corpuscular hemoglobin concentration, neutrophil percentage, mean lymphocyte and monocyte volumes, and standard deviation of monocyte volume that distinguished malaria and dengue from other febrile illnesses with 85.1% sensitivity and 91.4% specificity. Leukocyte abnormalities quantitated by automated analyzers successfully identified malaria and dengue and distinguished them from other fevers. These economic discriminant functions can be rapidly calculated by analyzer software programs to generate electronic flags to trigger-specific testing. They could potentially transform diagnostic approaches to tropical febrile illnesses in cost-constrained settings. © 2013 John Wiley & Sons Ltd.
Peripheral telomere length and hippocampal volume in adolescents with major depressive disorder.
Henje Blom, E; Han, L K M; Connolly, C G; Ho, T C; Lin, J; LeWinn, K Z; Simmons, A N; Sacchet, M D; Mobayed, N; Luna, M E; Paulus, M; Epel, E S; Blackburn, E H; Wolkowitz, O M; Yang, T T
2015-11-10
Several studies have reported that adults with major depressive disorder have shorter telomere length and reduced hippocampal volumes. Moreover, studies of adult populations without major depressive disorder suggest a relationship between peripheral telomere length and hippocampal volume. However, the relationship of these findings in adolescents with major depressive disorder has yet to be explored. We examined whether adolescent major depressive disorder is associated with altered peripheral telomere length and hippocampal volume, and whether these measures relate to one another. In 54 unmedicated adolescents (13-18 years) with major depressive disorder and 63 well-matched healthy controls, telomere length was assessed from saliva using quantitative polymerase chain reaction methods, and bilateral hippocampal volumes were measured with magnetic resonance imaging. After adjusting for age and sex (and total brain volume in the hippocampal analysis), adolescents with major depressive disorder exhibited significantly shorter telomere length and significantly smaller right, but not left hippocampal volume. When corrected for age, sex, diagnostic group and total brain volume, telomere length was not significantly associated with left or right hippocampal volume, suggesting that these cellular and neural processes may be mechanistically distinct during adolescence. Our findings suggest that shortening of telomere length and reduction of hippocampal volume are already present in early-onset major depressive disorder and thus unlikely to be only a result of accumulated years of exposure to major depressive disorder.
Development of educational image databases and e-books for medical physics training.
Tabakov, S; Roberts, V C; Jonsson, B-A; Ljungberg, M; Lewis, C A; Wirestam, R; Strand, S-E; Lamm, I-L; Milano, F; Simmons, A; Deane, C; Goss, D; Aitken, V; Noel, A; Giraud, J-Y; Sherriff, S; Smith, P; Clarke, G; Almqvist, M; Jansson, T
2005-09-01
Medical physics education and training requires the use of extensive imaging material and specific explanations. These requirements provide an excellent background for application of e-Learning. The EU projects Consortia EMERALD and EMIT developed five volumes of such materials, now used in 65 countries. EMERALD developed e-Learning materials in three areas of medical physics (X-ray diagnostic radiology, nuclear medicine and radiotherapy). EMIT developed e-Learning materials in two further areas: ultrasound and magnetic resonance imaging. This paper describes the development of these e-Learning materials (consisting of e-books and educational image databases). The e-books include tasks helping studying of various equipment and methods. The text of these PDF e-books is hyperlinked with respective images. The e-books are used through the readers' own Internet browser. Each Image Database (IDB) includes a browser, which displays hundreds of images of equipment, block diagrams and graphs, image quality examples, artefacts, etc. Both the e-books and IDB are engraved on five separate CD-ROMs. Demo of these materials can be taken from www.emerald2.net.
A New Four-Barrel Pellet Injection System for the TJ-II Stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, Stephen Kirk; Foust, Charles R; McGill, James M
2011-01-01
A new pellet injection system for the TJ-II stellarator has been developed/constructed as part of a collaboration between the Oak Ridge National Laboratory (ORNL) and the Centro de Investigaciones Energ ticas, Medioambientales y Tecnol gicas (CIEMAT). ORNL is providing most of the injector hardware and instrumentation, the pellet diagnostics, and the pellet transport tubes; CIEMAT is responsible for the injector stand/interface to the stellarator, cryogenic refrigerator, vacuum pumps/ballast volumes, gas manifolds, remote operations, plasma diagnostics, and data acquisition. The pellet injector design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST).more » It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation and a combined mechanical punch/propellant valve system for pellet acceleration (speeds ~100 to 1000 m/s). On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those typically used for the MST application are required. The system will initially be equipped with four different pellet sizes, with the gun barrel bores ranging between ~0.5 to 1.0 mm. The new system is almost complete and is described briefly here, highlighting the new features added since the original MST injector was constructed. Also, the future installation on TJ-II is reviewed.« less
The Development of a Dental Diagnostic Terminology
Kalenderian, Elsbeth; Ramoni, Rachel L.; White, Joel M.; Schoonheim-Klein, Meta E.; Stark, Paul C.; Kimmes, Nicole S.; Zeller, Gregory G.; Willis, George P.; Walji, Muhammad F.
2011-01-01
There is no commonly accepted standardized terminology for oral diagnoses. The purpose of this article is to report the development of a standardized dental diagnostic terminology by a work group of dental faculty members. The work group developed guiding principles for decision making and adhered to principles of terminology development. The members used an iterative process to develop a terminology incorporating concepts represented in the Toronto/University of California, San Francisco/Creighton University and International Classification of Diseases (ICD)-9/10 codes and periodontal and endodontic diagnoses. Domain experts were consulted to develop a final list of diagnostic terms. A structure was developed, consisting of thirteen categories, seventy-eight subcategories, and 1,158 diagnostic terms, hierarchically organized and mappable to other terminologies and ontologies. Use of this standardized diagnostic terminology will reinforce the diagnosis-treatment link and will facilitate clinical research, quality assurance, and patient communication. Future work will focus on implementation and approaches to enhance the validity and reliability of diagnostic term utilization. PMID:21205730
Diagnostic and Treatment Innovations for Mass Casualties
2016-08-01
measurement * U.S. Customary Units Multiply by International Units Divide by † Length/ Area /Volume inch (in) 2.54 × 10 –2 meter (m) foot...cal) (thermochemical) 4.184 joule (J) Pressure atmosphere (atm) 1.013 250 × 10 5 pascal (Pa) pound force per square inch (psi) 6.984 757 × 10
ERIC Educational Resources Information Center
Batty, Martin J.; Liddle, Elizabeth B.; Pitiot, Alain; Toro, Roberto; Groom, Madeleine J.; Scerif, Gaia; Liotti, Mario; Liddle, Peter F.; Paus, Tomas; Hollis, Chris
2010-01-01
Objective: Previous studies have shown smaller brain volume and less gray matter in children with attention-deficit/hyperactivity disorder (ADHD). Relatively few morphological studies have examined structures thought to subserve inhibitory control, one of the diagnostic features of ADHD. We examined one such region, the pars opercularis,…
Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allendorf, Mark D.
Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.
Medical Surveillance Monthly Report. Volume 19, Number 5
2012-05-01
genital herpes ” (ICD-9-CM 054.1 with any fi ft h digit) in any diagnostic position. Incidence rates of MHD were com- pared between three groups of active...cervi- cal cancers and 80 percent of genital warts, was licensed in the United States.2 Consis- tent with the Centers for Disease Control and
On Human Symbiosis and the Vicissitudes of Individuation. Infantile Psychosis, Volume 1.
ERIC Educational Resources Information Center
Mahler, Margaret S.
The concepts of symbiosis and separation-individuation are explained, and the symbiosis theory of infantile psychosis is presented. Diagnostic considerations and clinical cases of child psychosis are reviewed; prototypes of mother-child interaction are described; and therapy is discussed. A summary of the symbiosis theory and a bibliography of…
Pituitary Volumes Are Reduced in Patients with Somatization Disorder
Yildirim, Hanefi; Sirlier, Burcu; Kayali, Alperen
2012-01-01
Objective Despite of the suggested physiological relationship between somatoform disorder and disturbances in HPA axis function no volumetric study of pituitary volumes in somatization disorder has been carried out. Therefore, we aimed to use structural MRI to evaluate the pituitary volumes of the patients with somatization disorder. Methods Eighteen female patients with somatization disorder according to DSM-IV and same number of healthy controls were included into the study. All subjects were scanned using a 1.5-T General Electric (GE; Milwaukee, USA) scanner. Pituitary volume measurements were determined by using manuallly tracings according to standard antomical atlases. Results It was found significantly smaller pituitary volumes of the whole group of somatization patients compared to healthy (t=-3.604, p=0.001). ANCOVA predicting pituitary volumes demonstrated a significant main effect of diagnostic group (F=13.530, p<0.001) but TBV (F=1.924, p>0.05) or age (F=1.159, p>0.05). It was determined that there was no significant correlation between smaller pituitary volumes and the duration of illness (r=0.16, p>0.05) in the patient group. Conclusion In conclusion, we suggest that the patients with somatization disorder might have significantly smaller pituitary volumes compared to healthy control subjects. PMID:22993528
Moon, Chung-Man; Jeong, Gwang-Woo
2015-11-01
Only a few morphological studies have focused on changes in white matter (WM) volume in patients with generalized anxiety disorder (GAD). We evaluated alterations in WM volume and its correlation with symptom severity and duration of illness in adults with GAD. The 44 subjects were comprised of 22 patients with GAD (13 males and nine females) diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) and 22 age-matched healthy controls (13 males and nine females). High-resolution magnetic resonance imaging (MRI) data were processed by voxel-based morphometry (VBM) analysis based on diffeomorphic anatomical registration using the exponentiated Lie algebra (DARTEL) algorithm in SPM8. Patients with GAD showed significantly reduced WM volume, particularly in the dorsolateral prefrontal cortex (DLPFC), anterior limb of the internal capsule (ALIC), and midbrain. In addition, DLPFC volume was negatively correlated with GAD-7 score and illness duration. ALIC volume was negatively correlated with GAD-7 score. Female patients had significantly less orbitofrontal cortex volume compared to that in male patients. The findings demonstrate localized changes in WM volume associated with cognitive and emotional dysfunction in patients with GAD. The finding will be helpful for understanding the neuropathology in patients with GAD.
Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.
Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J
2015-10-15
Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.
A multispectral imaging approach for diagnostics of skin pathologies
NASA Astrophysics Data System (ADS)
Lihacova, Ilze; Derjabo, Aleksandrs; Spigulis, Janis
2013-06-01
Noninvasive multispectral imaging method was applied for different skin pathology such as nevus, basal cell carcinoma, and melanoma diagnostics. Developed melanoma diagnostic parameter, using three spectral bands (540 nm, 650 nm and 950 nm), was calculated for nevus, melanoma and basal cell carcinoma. Simple multispectral diagnostic device was established and applied for skin assessment. Development and application of multispectral diagnostics method described further in this article.
How 3D immersive visualization is changing medical diagnostics
NASA Astrophysics Data System (ADS)
Koning, Anton H. J.
2011-03-01
Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.
Toluene laser-induced fluorescence imaging of compressible flows in an expansion tube
NASA Astrophysics Data System (ADS)
Miller, V. A.; Gamba, M.; Mungal, M. G.; Hanson, R. K.; Mohri, K.; Schulz, C.
2011-11-01
Laser-induced fluorescence (LIF) imaging using toluene as a tracer molecule has been developed for high-speed, low-to-moderate enthalpy conditions in the Stanford 6-inch Expansion Tube. The approach is demonstrated on three canonical compressible flow configurations: (i) supersonic flow over a 20° wedge, (ii) around a cylinder, and (iii) a supersonic boundary layer. Under constant-pressure conditions, toluene LIF offers unique sensitivity to temperature and can therefore be used as an accurate thermometry diagnostic for supersonic flows; on the other hand, for variable-pressure flow fields (e.g., flow around a blunt body), toluene LIF imaging is demonstrated to be an effective flow visualization tool. The three configurations selected demonstrate the diagnostic in these two capacities. For all configurations considered in the study, toluene (0.6% by volume) is seeded into a nitrogen freestream at a Mach number ~ 2.2, T ~ 500K, and p ~ 1.5 bar. A frequency-quadrupled pulsed Nd:YAG laser is used to excite the tracer, and the resulting fluorescence is captured by an ICCD camera. Synthetic fluorescence signals from CFD solutions of each case have been computed and compare favorably to measured signals. Sponsored by DoE PSAAP at Stanford University.
Materials for Microfluidic Immunoassays: A Review.
Mou, Lei; Jiang, Xingyu
2017-08-01
Conventional immunoassays suffer from at least one of these following limitations: long processing time, high costs, poor user-friendliness, technical complexity, poor sensitivity and specificity. Microfluidics, a technology characterized by the engineered manipulation of fluids in channels with characteristic lengthscale of tens of micrometers, has shown considerable promise for improving immunoassays that could overcome these limitations in medical diagnostics and biology research. The combination of microfluidics and immunoassay can detect biomarkers with faster assay time, reduced volumes of reagents, lower power requirements, and higher levels of integration and automation compared to traditional approaches. This review focuses on the materials-related aspects of the recent advances in microfluidics-based immunoassays for point-of-care (POC) diagnostics of biomarkers. We compare the materials for microfluidic chips fabrication in five aspects: fabrication, integration, function, modification and cost, and describe their advantages and drawbacks. In addition, we review materials for modifying antibodies to improve the performance of the reaction of immunoassay. We also review the state of the art in microfluidic immunoassays POC platforms, from the laboratory to routine clinical practice, and also commercial products in the market. Finally, we discuss the current challenges and future developments in microfluidic immunoassays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Two-Year Longitudinal MRI Study of the Corpus Callosum in Autism
Frazier, Thomas W.; Keshavan, Matcheri S.; Minshew, Nancy J.; Hardan, Antonio Y.
2015-01-01
A growing body of literature has identified size reductions of the corpus callosum (CC) in autism. However, to our knowledge, no published studies have reported on the growth of CC volumes in youth with autism. Volumes of the total CC and its sub-divisions were obtained from 23 male children with autism and 23 age-matched male controls at baseline and 2-year follow-up. Persistent reductions in total CC volume were observed in participants with autism relative to controls. Only the rostral body sub-division showed a normalization of size over time. Persistent reductions are consistent with the diagnostic stability and life-long impairment observed in many individuals with autism. Multimodal imaging studies are needed to identify specific fiber tracks contributing to CC reductions. PMID:22350341
Compression techniques in tele-radiology
NASA Astrophysics Data System (ADS)
Lu, Tianyu; Xiong, Zixiang; Yun, David Y.
1999-10-01
This paper describes a prototype telemedicine system for remote 3D radiation treatment planning. Due to voluminous medical image data and image streams generated in interactive frame rate involved in the application, the importance of deploying adjustable lossy to lossless compression techniques is emphasized in order to achieve acceptable performance via various kinds of communication networks. In particular, the compression of the data substantially reduces the transmission time and therefore allows large-scale radiation distribution simulation and interactive volume visualization using remote supercomputing resources in a timely fashion. The compression algorithms currently used in the software we developed are JPEG and H.263 lossy methods and Lempel-Ziv (LZ77) lossless methods. Both objective and subjective assessment of the effect of lossy compression methods on the volume data are conducted. Favorable results are obtained showing that substantial compression ratio is achievable within distortion tolerance. From our experience, we conclude that 30dB (PSNR) is about the lower bound to achieve acceptable quality when applying lossy compression to anatomy volume data (e.g. CT). For computer simulated data, much higher PSNR (up to 100dB) is expectable. This work not only introduces such novel approach for delivering medical services that will have significant impact on the existing cooperative image-based services, but also provides a platform for the physicians to assess the effects of lossy compression techniques on the diagnostic and aesthetic appearance of medical imaging.
Vupparaboina, Kiran Kumar; Nizampatnam, Srinath; Chhablani, Jay; Richhariya, Ashutosh; Jana, Soumya
2015-12-01
A variety of vision ailments are indicated by anomalies in the choroid layer of the posterior visual section. Consequently, choroidal thickness and volume measurements, usually performed by experts based on optical coherence tomography (OCT) images, have assumed diagnostic significance. Now, to save precious expert time, it has become imperative to develop automated methods. To this end, one requires choroid outer boundary (COB) detection as a crucial step, where difficulty arises as the COB divides the choroidal granularity and the scleral uniformity only notionally, without marked brightness variation. In this backdrop, we measure the structural dissimilarity between choroid and sclera by structural similarity (SSIM) index, and hence estimate the COB by thresholding. Subsequently, smooth COB estimates, mimicking manual delineation, are obtained using tensor voting. On five datasets, each consisting of 97 adult OCT B-scans, automated and manual segmentation results agree visually. We also demonstrate close statistical match (greater than 99.6% correlation) between choroidal thickness distributions obtained algorithmically and manually. Further, quantitative superiority of our method is established over existing results by respective factors of 27.67% and 76.04% in two quotient measures defined relative to observer repeatability. Finally, automated choroidal volume estimation, being attempted for the first time, also yields results in close agreement with that of manual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Huayong; Williams, Ben; Stone, Richard
2014-01-01
A new low-cost optical diagnostic technique, called Cone Beam Tomographic Three Colour Spectrometry (CBT-TCS), has been developed to measure the planar distributions of temperature, soot particle size, and soot volume fraction in a co-flow axi-symmetric laminar diffusion flame. The image of a flame is recorded by a colour camera, and then by using colour interpolation and applying a cone beam tomography algorithm, a colour map can be reconstructed that corresponds to a diametral plane. Look-up tables calculated using Planck's law and different scattering models are then employed to deduce the temperature, approximate average soot particle size and soot volume fraction in each voxel (volumetric pixel). A sensitivity analysis of the look-up tables shows that the results have a high temperature resolution but a relatively low soot particle size resolution. The assumptions underlying the technique are discussed in detail. Sample data from an ethylene laminar diffusion flame are compared with data in the literature for similar flames. The comparison shows very consistent temperature and soot volume fraction profiles. Further analysis indicates that the difference seen in comparison with published results are within the measurement uncertainties. This methodology is ready to be applied to measure 3D data by capturing multiple flame images from different angles for non-axisymmetric flame.
Economic challenges associated with tuberculosis diagnostic development
Hanrahan, Colleen F.; Shah, Maunank
2015-01-01
Tuberculosis remains a global health crisis in part due to underdiagnosis. Technological innovations are needed to improve diagnostic test accuracy and reduce the reliance on expensive laboratory infrastructure. However, there are significant economic challenges impeding the development and implementation of new diagnostics. The aim of this piece is to examine the current state of TB diagnostics, outline the unmet needs for new tests, and detail the economic challenges associated with development of new tests from the perspective of developers, policy makers and implementers. PMID:24766367
Economic challenges associated with tuberculosis diagnostic development.
Hanrahan, Colleen F; Shah, Maunank
2014-08-01
Tuberculosis remains a global health crisis in part due to underdiagnosis. Technological innovations are needed to improve diagnostic test accuracy and reduce the reliance on expensive laboratory infrastructure. However, there are significant economic challenges impeding the development and implementation of new diagnostics. The aim of this piece is to examine the current state of TB diagnostics, outline the unmet needs for new tests, and detail the economic challenges associated with development of new tests from the perspective of developers, policy makers and implementers.
NASA Astrophysics Data System (ADS)
Kainerstorfer, Jana M.; Amyot, Franck; Demos, Stavros G.; Hassan, Moinuddin; Chernomordik, Victor; Hitzenberger, Christoph K.; Gandjbakhche, Amir H.; Riley, Jason D.
2009-07-01
Quantitative assessment of skin chromophores in a non-invasive fashion is often desirable. Especially pixel wise assessment of blood volume and blood oxygenation is beneficial for improved diagnostics. We utilized a multi-spectral imaging system for acquiring diffuse reflectance images of healthy volunteers' lower forearm. Ischemia and reactive hyperemia was introduced by occluding the upper arm with a pressure cuff for 5min with 180mmHg. Multi-spectral images were taken every 30s, before, during and after occlusion. Image reconstruction for blood volume and blood oxygenation was performed, using a two layered skin model. As the images were taken in a non-contact way, strong artifacts related to the shape (curvature) of the arms were observed, making reconstruction of optical / physiological parameters highly inaccurate. We developed a curvature correction method, which is based on extracting the curvature directly from the intensity images acquired and does not require any additional measures on the object imaged. The effectiveness of the algorithm was demonstrated, on reconstruction results of blood volume and blood oxygenation for in vivo data during occlusion of the arm. Pixel wise assessment of blood volume and blood oxygenation was made possible over the entire image area and comparison of occlusion effects between veins and surrounding skin was performed. Induced ischemia during occlusion and reactive hyperemia afterwards was observed and quantitatively assessed. Furthermore, the influence of epidermal thickness on reconstruction results was evaluated and the exact knowledge of this parameter for fully quantitative assessment was pointed out.
A portable single-sided magnet system for remote NMR measurements of pulmonary function.
Dabaghyan, Mikayel; Muradyan, Iga; Hrovat, Alan; Butler, James; Frederick, Eric; Zhou, Feng; Kyriazis, Angelos; Hardin, Charles; Patz, Samuel; Hrovat, Mirko
2014-12-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). Copyright © 2014 John Wiley & Sons, Ltd.
A portable single-sided magnet system for remote NMR measurements of pulmonary function
Mikayel, Dabaghyan; Iga, Muradyan; James, Butler; Eric, Frederick; Feng, Zhou; Angelos, Kyriazis; Charles, Hardin; Samuel, Patz; Mirko, Hrovat
2014-01-01
In this work, we report initial results from a light-weight, low field magnetic resonance device designed to make relative pulmonary density measurements at the bedside. The development of this device necessarily involves special considerations for the magnet, RF and data acquisition schemes as well as a careful analysis of what is needed to provide useful information in the ICU. A homogeneous field region is created remotely from the surface of the magnet such that when the magnet is placed against the chest, an NMR signal is measured from a small volume in the lung. In order to achieve portability, one must trade off field strength and therefore spatial resolution. We report initial measurements from a ping-pong ball size region in the lung as a function of lung volume. As expected, we measured decreased signal at larger lung volumes since lung density decreases with increasing lung volume. Using a CPMG sequence with ΔTE=3.5 ms and a 20 echo train, a signal to noise ratio ~1100 was obtained from an 8.8mT planar magnet after signal averaging for 43 s. This is the first demonstration of NMR measurements made on a human lung with a light-weight planar NMR device. We argue that very low spatial resolution measurements of different lobar lung regions will provide useful diagnostic information for clinicians treating Acute Respiratory Distress Syndrome as clinicians want to avoid ventilator pressures that cause either lung over distension (too much pressure) or lung collapse (too little pressure). PMID:24953556
NASA Technical Reports Server (NTRS)
Ferguson, D. R.; Keith, J. S.
1975-01-01
The improvements which have been incorporated in the Streamtube Curvature Program to enhance both its computational and diagnostic capabilities are described. Detailed descriptions are given of the revisions incorporated to more reliably handle the jet stream-external flow interaction at trailing edges. Also presented are the augmented boundary layer procedures and a variety of other program changes relating to program diagnostics and extended solution capabilities. An updated User's Manual, that includes information on the computer program operation, usage, and logical structure, is presented. User documentation includes an outline of the general logical flow of the program and detailed instructions for program usage and operation. From the standpoint of the programmer, the overlay structure is described. The input data, output formats, and diagnostic printouts are covered in detail and illustrated with three typical test cases.
[Giant paraovarian cyst in childhood - Case report].
Torres, Janina P; Íñiguez, Rodrigo D
2015-01-01
Paraovarian cysts are very uncommon in children To present a case of giant paraovarian cyst case in a child and its management using a modified laparoscopic-assisted technique A 13-year-old patient with a 15 day-history of intermittent abdominal pain, located in the left hemiabdomen and associated with progressive increase in abdominal volume. Diagnostic imaging was inconclusive, describing a giant cystic formation that filled up the abdomen, but without specifying its origin. Laboratory tests and tumor markers were within normal range. Video-assisted transumbilical cystectomy, a modified laparoscopic procedure with diagnostic and therapeutic intent, was performed with a successful outcome. The histological study reported giant paraovarian cyst. Cytology results were negative for tumor cells. The patient remained asymptomatic during the postoperative follow-up. The video-assisted transumbilical cystectomy is a safe procedure and an excellent diagnostic and therapeutic alternative for the treatment of giant paraovarian cysts. Copyright © 2015. Publicado por Elsevier España, S.L.U.
[CONTEMPORARY MOLECULAR-GENETIC METHODS USED FOR ETIOLOGIC DIAGNOSTICS OF SEPSIS].
Gavrilov, S N; Skachkova, T S; Shipulina, O Yu; Savochkina, Yu A; Shipulin, G A; Maleev, V V
2016-01-01
Etiologic diagnostics of sepsis is one of the most difficult problems of contemporary medicine due to a wide variety of sepsis causative agents, many of which are components of normal human microflora. Disadvantages of contemporary "golden standard" of microbiologic diagnostics of sepsis etiology by seeding of blood for sterility are duration of cultivation, limitation in detection of non-cultivable forms of microorganisms, significant effect of preliminary empiric antibiotics therapy on results of the analysis. Methods of molecular diagnostics that are being actively developed and integrated during the last decade are deprived of these disadvantages. Main contemporary methods of molecular-biological diagnostics are examined in the review, actualdata on their diagnostic characteristic are provided. Special attention is given to methods of PCR-diagnostics, including novel Russian developments. Methods of nucleic acid hybridization and proteomic analysis are examined in comparative aspect. Evaluation of application and perspectives of development of methods of molecular diagnostics of sepsis is given.
Loewen, Nils A; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Greenfield, David S; Schuman, Joel S; Varma, Rohit; Huang, David
2015-09-01
To improve the diagnostic power for glaucoma by combining measurements of peripapillary nerve fibre layer (NFL), macular ganglion cell complex (GCC) and disc variables obtained with Fourier-domain optical coherence tomography (FD-OCT) into the glaucoma structural diagnostic index (GSDI). In this observational, cross-sectional study of subjects from the Advanced Imaging of Glaucoma Study, GCC and NFL of healthy and perimetrical glaucoma subjects from four major academic referral centres of the Advanced Imaging of Glaucoma Study were mapped with the RTVue FD-OCT. Global loss volume and focal loss volume parameters were defined using NFL and GCC normative reference maps. Optimal weights for NFL, GCC and disc variables were combined using multivariate logistic regression to build the GSDI. Glaucoma severity was classified using the Enhanced Glaucoma Staging System (GSS2). Diagnostic accuracy was assessed by sensitivity, specificity and the area under the receiver operator characteristic curve (AUC). We analysed 118 normal eyes of 60 subjects, 236 matched eyes of 166 subjects with perimetrical glaucoma, and 105 eyes from a healthy reference group of 61 subjects. The GSDI included composite overall thickness and focal loss volume with weighted NFL and GCC components, as well as the vertical cup-to-disc ratio. The AUC of 0.922 from leave-one-out cross validation was better than the best component variable alone (p=0.047). The partial AUC in the high specificity region was also better (p=0.01), with a sensitivity of 69% at 99% specificity, and a sensitivity of 80.3% at 95% specificity. For GSS2 stages 3-5 the sensitivity was 98% at 99% specificity, and 100% at 95% specificity. Combining structural measurements of GCC, NFL and disc variables from FD-OCT created a GSDI that improved the accuracy for glaucoma diagnosis. NCT01314326. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Peterson, Mark E; Guterl, Jade N; Rishniw, Mark; Broome, Michael R
2016-07-01
Thyroid scintigraphy is commonly used for evaluation of cats with hyperthyroidism, with the thyroid-to-salivary ratio (T/S) being the most common method to quantify the degree of thyroid activity and disease. Calculation of thyroid-to-background ratios (T/B) or percent thyroidal uptake of (99m) TcO(-) 4 (TcTU) has only been reported in a few studies. The purpose of this prospective, cross-sectional study was to evaluate a number of quantitative scintigraphic indices as diagnostic tests for hyperthyroidism, including the T/S, three different T/B, TcTU, and estimated thyroid volume. Of 524 cats referred to our clinic for evaluation of suspected hyperthyroidism, the diagnosis was confirmed (n = 504) or excluded (n = 20) based on results of a serum thyroid panel consisting of thyroxine (T4 ), triiodothyronine (T3 ), free T4 (fT4 ), and thyroid-stimulating hormone (TSH) concentrations. In the hyperthyroid cats, median values for TcTU, T/S, and three T/B ratios were all significantly higher (P < 0.001) than values in euthyroid suspect cats or clinically normal cats. All scintigraphic parameters were relatively sensitive and specific as diagnostic tests for hyperthyroidism, but the T/S ratio had the highest test accuracy. The T/S ratio correlated strongly with the TcTU (r = 0.85). However, the TcTU had a higher and more significant correlation (P < 0.01) with serum T4 (r = 0.76 vs. 0.64), T3 (r = 0.77 vs. 0.64), and estimated thyroid volume (r = 0.62 vs. 0.38). Overall, calculation of TcTU is an accurate diagnostic test, but also appears to be the best parameter to predict the functional volume and metabolic activity of the feline adenomatous thyroid gland. © 2016 American College of Veterinary Radiology.
Comparison of polycyclic aromatic hydrocarbon emissions on gasoline- and diesel-dominated routes.
Kuo, Chung-Yih; Chien, Po-Shan; Kuo, Wan-Ching; Wei, Chien-Tai; Rau, Jui-Yeh
2013-07-01
Three diesel-dominated routes (DDRs) and three gasoline-dominated routes (GDRs) were chosen as the study sites. The total number of vehicles on GDRs (47,200) was much higher than that on DDRs (14,500). The concentration of polycyclic aromatic hydrocarbons (PAHs), elemental carbon, organic carbon, and metals from GDR roadsides was higher than that for DDRs. The diagnostic ratios (ANTHR/PHE + ANTHR, FLT/FLT + PYR, BaA/BaA + CHR, and IND/IND + BghiP + ANTHN) all indicated that the major PAH source on DDR and GDR was emissions from vehicle engine combustion. The marked diesel ratios of low molecular weight PAH2.5/T-PAH2.5, methyl-PAH2.5/T-PAH2.5, methyl-PHE/PHE, and Mo/PM2.5 on DDRs were higher than those on GDRs. Significant correlations were found between the number of vehicles and the concentration of T-PAH2.5, Car-PAHs2.5, and BaPeq2.5 on DDRs and GDRs. The increase in the levels of T-PAH2.5, Car-PAHs2.5, and BaPeq2.5 per 100 vehicles on DDRs was about 3.3, 3.5, and 4.2 times higher than that on GDRs, respectively. The higher percentage of high-exhaust volume from the larger amount of diesel vehicles on DDRs than that on GDRs was the main factor leading to these results. The diagnostic ratios BaA2.5/CHR2.5 and (BbF + BkF)2.5/BghiP2.5 showed significant differences between the fine PAH sources emitted on DDRs and GDRs, whereas the diagnostic ratios Me-PAH2.5/T-PAH2.5 and (BbF + BkF)2.5/BghiP2.5 showed good correlations with the percentages of diesel exhaust volume in the total exhaust volume (E(diesel)/E(total)) on DDRs.
NASA Astrophysics Data System (ADS)
Idicheria, Cherian Alex
An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL < 6, but are substantially larger for xL > 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture fraction characteristics were investigated in nonreacting and reacting jets with a PLMS diagnostic system developed for the UT-Austin 1.25-second drop tower. (Abstract shortened by UMI.)
MO-C-BRB-06: Translating NIH / NIBIB funding to clinical reality in quantitative diagnostic imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, E.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-03: RSNA President [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arenson, R.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-01: Introduction [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, J.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
MO-C-BRB-02: ASTRO President [Diagnostic radiology and radiation oncology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsky, B.
Diagnostic radiology and radiation oncology are arguably two of the most technologically advanced specialties in medicine. The imaging and radiation medicine technologies in clinical use today have been continuously improved through new advances made in the commercial and academic research arenas. This symposium explores the translational path from research through clinical implementation. Dr. Pettigrew will start this discussion by sharing his perspectives as director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). The NIBIB has focused on promoting research that is technological in nature and has high clinical impact. We are in the age of precision medicine, andmore » the technological innovations and quantitative tools developed by engineers and physicists working with physicians are providing innovative tools that increase precision and improve outcomes in health care. NIBIB funded grants lead to a very high patenting rate (per grant dollar), and these patents have higher citation rates by other patents, suggesting greater clinical impact, as well. Two examples of clinical translation resulting from NIH-funded research will be presented, in radiation therapy and diagnostic imaging. Dr. Yu will describe a stereotactic radiotherapy device developed in his laboratory that is designed for treating breast cancer with the patient in the prone position. It uses 36 rotating Cobalt-60 sources positioned in an annular geometry to focus the radiation beam at the system’s isocenter. The radiation dose is delivered throughout the target volume in the breast by constantly moving the patient in a planned trajectory relative to the fixed isocenter. With this technique, the focal spot dynamically paints the dose distribution throughout the target volume in three dimensions. Dr. Jackson will conclude this symposium by describing the RSNA Quantitative Imaging Biomarkers Alliance (QIBA), which is funded in part by NIBIB and is a synergistic collaboration between medical physicists, radiologists, oncologists, industry representatives, and other stakeholders. The mission of QIBA is to improve the accuracy and practicality of quantitative image-based biomarkers by increasing precision across devices, patients, and time, an essential step in incorporating quantitative imaging biomarkers into radiology practice. Validated quantitative imaging biomarkers are necessary to support precision medicine initiatives, multimodality / multiparametric applications in medicine, treatment planning and response assessment, and radiogenomics applications. Current applications in the QIBA portfolio extend to cancer diagnosis and treatment, pulmonary diseases, and neurological disorders. The overall goal of this symposium is to illustrate the bidirectional exchange between medical research and clinical practice. Revitalizing scientific excellence in clinical medical physics challenges practitioners to identify clinical limitations, which then drive research innovation; research funded by the NIH and other agencies develops technological solutions to these limitations, which are translated to the care environment to ultimately improve clinical practice in radiology and radiation oncology.« less
Mitchell, Shanti R; Reiss, Allan L; Tatusko, Danielle H; Ikuta, Ichiro; Kazmerski, Dana B; Botti, Jo-Anna C; Burnette, Courtney P; Kates, Wendy R
2009-08-01
Investigating neuroanatomic differences in monozygotic twins who are discordant for autism can help unravel the relative contributions of genetics and environment to this pervasive developmental disorder. The authors used magnetic resonance imaging (MRI) to investigate several brain regions of interest in monozygotic twins who varied in degree of phenotypic discordance for narrowly defined autism. The subjects were 14 pairs of monozygotic twins between the ages of 5 and 14 years old and 14 singleton age- and gender-matched typically developing comparison subjects. The monozygotic twin group was a cohort of children with narrowly defined autistic deficits and their co-twins who presented with varying levels of autistic deficits. High-resolution MRIs were acquired and volumetric/area measurements obtained for the frontal lobe, amygdala, and hippocampus and subregions of the prefrontal cortex, corpus callosum, and cerebellar vermis. No neurovolumetric/area differences were found between twin pairs. Relative to typically developing comparison subjects, dorsolateral prefrontal cortex volumes and anterior areas of the corpus callosum were significantly altered in autistic twins, and volumes of the posterior vermis were altered in both autistic twins and co-twins. Intraclass correlation analysis of brain volumes between children with autism and their co-twins indicated that the degree of within-pair neuroanatomic concordance varied with brain region. In the group of subjects with narrowly defined autism only, dorsolateral prefrontal cortex, amygdala, and posterior vermis volumes were significantly associated with the severity of autism based on scores from the Autism Diagnostic Observation Schedule-Generic. These findings support previous research demonstrating alterations in the prefrontal cortex, corpus callosum, and posterior vermis in children with autism and further suggest that alterations are associated with the severity of the autism phenotype. Continued research involving twins who are concordant and discordant for autism is essential to disentangle the genetic and environmental contributions to autism.
Gundersen, Guri Holmen; Norekval, Tone M; Haug, Hilde Haugberg; Skjetne, Kyrre; Kleinau, Jens Olaf; Graven, Torbjorn; Dalen, Havard
2016-01-01
Objectives Medical history, physical examination and laboratory testing are not optimal for the assessment of volume status in heart failure (HF) patients. We aimed to study the clinical influence of focused ultrasound of the pleural cavities and inferior vena cava (IVC) performed by specialised nurses to assess volume status in HF patients at an outpatient clinic. Methods HF outpatients were prospectively included and underwent laboratory testing, history recording and clinical examination by two nurses with and without an ultrasound examination of the pleural cavities and IVC using a pocket-size imaging device, in random order. Each nurse worked in a team with a cardiologist. The influence of the different diagnostic tests on diuretic dosing was assessed descriptively and in linear regression analyses. Results Sixty-two patients were included and 119 examinations were performed. Mean±SD age was 74±12 years, EF was 34±14%, and N-terminal pro-brain natriuretic peptide (NT-proBNP) value was 3761±3072 ng/L. Dosing of diuretics differed between the teams in 31 out of 119 consultations. Weight change and volume status assessed clinically with and without ultrasound predicted dose adjustment of diuretics at follow-up (p<0.05). Change of oedema, NT-proBNP, creatinine, and symptoms did not (p≥0.10). In adjusted analyses, only volume status based on ultrasound predicted dose adjustments of diuretics at first visit and follow-up (all ultrasound p≤0.01, all other p≥0.2). Conclusions Ultrasound examinations of the pleural cavities and IVC by nurses may improve diagnostics and patient care in HF patients at an outpatient clinic, but more studies are needed to determine whether these examinations have an impact on clinical outcomes. Trial registration number NCT01794715. PMID:26438785
Gundersen, Guri Holmen; Norekval, Tone M; Haug, Hilde Haugberg; Skjetne, Kyrre; Kleinau, Jens Olaf; Graven, Torbjorn; Dalen, Havard
2016-01-01
Medical history, physical examination and laboratory testing are not optimal for the assessment of volume status in heart failure (HF) patients. We aimed to study the clinical influence of focused ultrasound of the pleural cavities and inferior vena cava (IVC) performed by specialised nurses to assess volume status in HF patients at an outpatient clinic. HF outpatients were prospectively included and underwent laboratory testing, history recording and clinical examination by two nurses with and without an ultrasound examination of the pleural cavities and IVC using a pocket-size imaging device, in random order. Each nurse worked in a team with a cardiologist. The influence of the different diagnostic tests on diuretic dosing was assessed descriptively and in linear regression analyses. Sixty-two patients were included and 119 examinations were performed. Mean±SD age was 74±12 years, EF was 34±14%, and N-terminal pro-brain natriuretic peptide (NT-proBNP) value was 3761±3072 ng/L. Dosing of diuretics differed between the teams in 31 out of 119 consultations. Weight change and volume status assessed clinically with and without ultrasound predicted dose adjustment of diuretics at follow-up (p<0.05). Change of oedema, NT-proBNP, creatinine, and symptoms did not (p≥0.10). In adjusted analyses, only volume status based on ultrasound predicted dose adjustments of diuretics at first visit and follow-up (all ultrasound p≤0.01, all other p≥0.2). Ultrasound examinations of the pleural cavities and IVC by nurses may improve diagnostics and patient care in HF patients at an outpatient clinic, but more studies are needed to determine whether these examinations have an impact on clinical outcomes. NCT01794715. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Low contrast media volume in pre-TAVI CT examinations.
Kok, Madeleine; Turek, Jakub; Mihl, Casper; Reinartz, Sebastian D; Gohmann, Robin F; Nijssen, Estelle C; Kats, Suzanne; van Ommen, Vincent G; Kietselaer, Bas L J H; Wildberger, Joachim E; Das, Marco
2016-08-01
To evaluate image quality using reduced contrast media (CM) volume in pre-TAVI assessment. Forty-seven consecutive patients referred for pre-TAVI examination were evaluated. Patients were divided into two groups: group 1 BMI < 28 kg/m(2) (n = 29); and group 2 BMI > 28 kg/m(2) (n = 18). Patients received a combined scan protocol: retrospective ECG-gated helical CTA of the aortic root (80kVp) followed by a high-pitch spiral CTA (group 1: 70 kV; group 2: 80 kVp) from aortic arch to femoral arteries. All patients received one bolus of CM (300 mgI/ml): group 1: volume = 40 ml; flow rate = 3 ml/s, group 2: volume = 53 ml; flow rate = 4 ml/s. Attenuation values (HU) and contrast-to-noise ratio (CNR) were measured at the levels of the aortic root (helical) and peripheral arteries (high-pitch). Diagnostic image quality was considered sufficient at attenuation values > 250HU and CNR > 10. Diagnostic image quality for TAVI measurements was obtained in 46 patients. Mean attenuation values and CNR (HU ± SD) at the aortic root (helical) were: group 1: 381 ± 65HU and 13 ± 8; group 2: 442 ± 68HU and 10 ± 5. At the peripheral arteries (high-pitch), mean values were: group 1: 430 ± 117HU and 11 ± 6; group 2: 389 ± 102HU and 13 ± 6. CM volume can be substantially reduced using low kVp protocols, while maintaining sufficient image quality for the evaluation of aortic root and peripheral access sites. • Image quality could be maintained using low kVp scan protocols. • Low kVp protocols reduce contrast media volume by 34-67 %. • Less contrast media volume lowers the risk of contrast-induced nephropathy.
Cole, Eric; Margel, David; Greenspan, Michael; Shayegan, Bobby; Matsumoto, Edward; Fischer, Marc A; Patlas, Michael; Daya, Dean; Pinthus, Jehonathan H
2014-05-03
The prostatic anterior zone (AZ) is not targeted routinely by TRUS guided prostate biopsy (TRUS-Pbx). MRI is an accurate diagnostic tool for AZ tumors, but is often unavailable due to cost or system restrictions. We examined the diagnostic yield of office based AZ TRUS-Pbx. 127 men at risk for AZ tumors were studied: Patients with elevated PSA and previous extended negative TRUS-Pbx (group 1, n = 78) and actively surveyed low risk prostate cancer patients (group 2, n = 49). None of the participants had a previous AZ biopsy. Biopsy template included suspicious ultrasonic areas, 16 peripheral zone (PZ), 4 transitional zone (TZ) and 6 AZ cores. All biopsies were performed by a single urologist under local peri-prostatic anaesthetic, using the B-K Medical US System, an end-firing probe 4-12 MHZ and 18 ga/25 cm needle. All samples were reviewed by a single specialized uro-pathologist. Multivariate analysis was used to detect predictors for AZ tumors accounting for age, PSA, PSA density, prostate volume, BMI, and number of previous biopsies. Median PSA was 10.4 (group 1) and 7.3 (group 2). Age (63.9, 64.5), number of previous biopsies (1.5) and cores (17.8, 21.3) and prostate volume (56.4 cc, 51 cc) were similar for both groups. The overall diagnostic yield was 34.6% (group 1) and 85.7% (group 2). AZ cancers were detected in 21.8% (group 1) and 34.7% (group 2) but were rarely the only zone involved (1.3% and 4.1% respectively). Gleason ≥ 7 AZ cancers were often accompanied by equal grade PZ tumors. In multivariate analysis only prostate volume predicted for AZ tumors. Patients detected with AZ tumors had significantly smaller prostates (36.9 cc vs. 61.1 cc p < 0.001). Suspicious AZ ultrasonic findings were uncommon (6.3%). TRUS-Pbx AZ sampling rarely improves the diagnostic yield of extended PZ sampling in patients with elevated PSA and previous negative biopsies. In low risk prostate cancer patients who are followed by active surveillance, AZ sampling changes risk stratification in 6% but larger studies are needed to define the role of AZ sampling in this population and its correlation with prostatectomy final pathological specimens.
Evaluation of individually body weight adapted contrast media injection in coronary CT-angiography.
Mihl, Casper; Kok, Madeleine; Altintas, Sibel; Kietselaer, Bas L J H; Turek, Jakub; Wildberger, Joachim E; Das, Marco
2016-04-01
Contrast media (CM) injection protocols should be customized to the individual patient. Aim of this study was to determine if software tailored CM injections result in diagnostic enhancement of the coronary arteries in computed tomography angiography (CTA) and if attenuation values were comparable between different weight categories. 265 consecutive patients referred for routine coronary CTA were scanned on a 2nd generation dual-source CT. Group 1 (n=141) received an individual CM bolus based on weight categories (39-59 kg; 60-74 kg; 75-94 kg; 95-109 kg) and scan duration ('high-pitch: 1s; "dual-step prospective triggering": 7s), as determined by contrast injection software (Certegra™ P3T, Bayer, Berlin, Germany). Group 2 (n=124) received a standard fixed CM bolus; Iopromide 300 mgI/ml; volume: 75 ml; flow rate: 7.2 ml/s. Contrast enhancement was measured in all proximal and distal coronary segments. Subjective and objective image quality was evaluated. Statistical analysis was performed using SPSS (IBM, version 20.0). For group 1, mean attenuation values of all segments were diagnostic (>325 HU) without statistical significant differences between different weight categories (p>0.17), proximal vs. distal: 449 ± 65-373 ± 58 HU (39-59 kg); 443 ± 69-367 ± 81 HU (60-74 kg); 427 ± 59-370 ± 61 HU (75-94 kg); 427 ± 73-347 ± 61 HU (95-109 kg). Mean CM volumes were: 55 ± 6 ml (39-59 kg); 61 ± 7 ml (60-74 kg); 71 ± 8 ml (75-94 kg); 84 ± 9 ml (95-109 kg). For group 2, mean attenuation values were not all diagnostic with differences between weight categories (p<0.01), proximal vs. distal: 611 ± 142-408 ± 69 HU (39-59 kg); 562 ± 135-389 ± 98 HU (60-74 kg); 481 ± 83-329 ± 81 HU (75-94 kg); 420 ± 73-305 ± 35 HU (95-109 kg). Comparable image noise and image quality were found between groups (p ≥ 0.330). Individually tailored CM injection protocols yield diagnostic attenuation and a more homogeneous enhancement pattern between different weight groups. CM volumes could be reduced for the majority of patients utilizing individualized CM bolus application. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Herrmann, F; Hambsch, K; Wolf, T; Rother, P; Müller, P
1989-01-01
There exist some histometric methods for the morphological quantification of different strongly stimulating effects on the thyroid gland induced by drugs and/or other chemical substances in dependence upon dose and duration of application. But in respect of technical and temporal expense and also diagnostic statement, there are considerable differences between these recording procedures. Therefore we examined the 3 mostly used methods synchronously (i.e. determination of thyroid epithelial cell height, nuclear volume in thyrocytes, and estimation of relative volume parts in the thyroid gland by the point counting method) by investigating the thyroid glands of methylthiouracil-(MTU)-stimulated rats and corresponding controls in order to compare the diagnostic value and temporal expense. The largest temporal expense was required in the nuclear volume determination, the smallest in the point-counting method. On principle, all 3 procedures allow the determination of hypertrophic alterations but only by help of the point-counting method, also hyperplastic changes are recognizable. By nuclear volume determination, we found significant differences between central and peripheral parts of the thyroid gland. Therefore, to avoid the subjective error, it will be necessary to measure a large number of nuclei in many planes of the gland. Also the determination of epithelial cell high reinforces the subjective error because of the heterological structure especially in unstimulated thyroid gland. If the number of counting points is exactly determined and, full of sense, limited, the point-counting method allows a nearly complete measuring of the whole object to be tested within an acceptable investigation time. In this way, the heterological structure of thyroid gland will be regarded, and comparability and reproducibility are guaranteed on an high level.
Velasco, Omar; Beckett, Morgan Q; James, Aaron W; Loehr, Megan N; Lewis, Taylor G; Hassan, Tahmin; Janardhanan, Rajesh
2017-01-01
Our review of real-time three-dimensional echocardiography (RT3DE) discusses the diagnostic utility of RT3DE and provides a comparison with two-dimensional echocardiography (2DE) in clinical cardiology. A Pubmed literature search on RT3DE was performed using the following key words: transthoracic, two-dimensional, three-dimensional, real-time, and left ventricular (LV) function. Articles included perspective clinical studies and meta-analyses in the English language, and focused on the role of RT3DE in human subjects. Application of RT3DE includes analysis of the pericardium, right ventricular (RV) and LV cavities, wall motion, valvular disease, great vessels, congenital anomalies, and traumatic injury, such as myocardial contusion. RT3DE, through a transthoracic echocardiography (TTE), allows for increasingly accurate volume and valve motion assessment, estimated LV ejection fraction, and volume measurements. Chamber motion and LV mass approximation have been more accurately evaluated by RT3DE by improved inclusion of the third dimension and quantification of volumetric movement. Moreover, RT3DE was shown to have no statistical significance when comparing the ejection fractions of RT3DE to cardiac magnetic resonance (CMR). Analysis of RT3DE data sets of the LV endocardial exterior allows for the volume to be directly quantified for specific phases of the cardiac cycle, ranging from end systole to end diastole, eliminating error from wall motion abnormalities and asymmetrical left ventricles. RT3DE through TTE measures cardiac function with superior diagnostic accuracy in predicting LV mass, systolic function, along with LV and RV volume when compared with 2DE with comparable results to CMR.
The best prostate biopsy scheme is dictated by the gland volume: a monocentric study.
Dell'Atti, L
2015-08-01
Accuracy of biopsy scheme depends on different parameters. Prostate-specific antigen (PSA) level and digital rectal examination (DRE) influenced the detection rate and suggested the biopsy scheme to approach each patient. Another parameter is the prostate volume. Sampling accuracy tends to decrease progressively with an increasing prostate volume. We prospectively observed detection cancer rate in suspicious prostate cancer (PCa) and improved by applying a protocol biopsy according to prostate volume (PV). Clinical data and pathological features of these 1356 patients were analysed and included in this study. This protocol is a combined scheme that includes transrectal (TR) 12-core PBx (TR12PBx) for PV ≤ 30 cc, TR 14-core PBx (TR14PBx) for PV > 30 cc but < 60 cc, TR 18-core PBx (TR18PBx) for PV ≥ 60 cc. Out of a total of 1356 patients, in 111 (8.2%) PCa was identified through TR12PBx scheme, in 198 (14.6%) through TR14PBx scheme and in 253 (18.6%) through TR18PBx scheme. The PCa detection rate was increased by 44% by adding two TZ cores (TR14PBx scheme). The TR18PBx scheme increased this rate by 21.7% vs. TR14PBx scheme. The diagnostic yield offered by TR18PBx was statistically significant compared to the detection rate offered by the TR14PBx scheme (p < 0.003). The biopsy Gleason score and the percentage of core involvement were comparable between PCa detected by the TR14PBx scheme diagnostic yield and those detected by the TR18PBx scheme (p = 0.362). The only PV parameter, in our opinion, can be significant in choosing the best biopsy scheme to approach in a first setting of biopsies increasing PCa detection rate.
Kinner, Sonja; Kuehle, Christiane A; Herbig, Sebastian; Haag, Sebastian; Ladd, Susanne C; Barkhausen, Joerg; Lauenstein, Thomas C
2008-11-01
Sufficient luminal distension is mandatory for small bowel imaging. However, patients often are unable to ingest volumes of currently applied oral contrast compounds. The aim of this study was to evaluate if administration of low doses of an oral contrast agent with high-osmolarity leads to sufficient and diagnostic bowel distension. Six healthy volunteers ingested at different occasions 150, 300 and 450 ml of a commercially available oral contrast agent (Banana Smoothie Readi-Cat, E-Z-EM; 194 mOsmol/l). Two-dimensional TrueFISP data sets were acquired in 5-min intervals up to 45 min after contrast ingestion. Small bowel distension was quantified using a visual five-grade ranking (5 = very good distension, 1 = collapsed bowel). Results were statistically compared using a Wilcoxon-Rank test. Ingestion of 450 ml and 300 ml resulted in a significantly better distension than 150 ml. The all-over average distension value for 450 ml amounted to 3.4 (300 ml: 3.0, 150 ml: 2.3) and diagnostic bowel distension could be found throughout the small intestine. Even 45 min after ingestion of 450 ml the jejunum and ileum could be reliably analyzed. Small bowel imaging with low doses of contrast leads to diagnostic distension values in healthy subjects when a high-osmolarity substance is applied. These findings may help to further refine small bowel MRI techniques, but need to be confirmed in patients with small bowel disorders.
Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo
NASA Astrophysics Data System (ADS)
Zettergren, Eric; Swamy, Tushar; Runnels, Judith; Lin, Charles P.; Niedre, Mark
2012-07-01
Sensing and enumeration of specific types of circulating cells in small animals is an important problem in many areas of biomedical research. Microscopy-based fluorescence in vivo flow cytometry methods have been developed previously, but these are typically limited to sampling of very small blood volumes, so that very rare circulating cells may escape detection. Recently, we described the development of a ‘diffuse fluorescence flow cytometer’ (DFFC) that allows sampling of much larger blood vessels and therefore circulating blood volumes in the hindlimb, forelimb or tail of a mouse. In this work, we extend this concept by developing and validating a method to tomographically localize circulating fluorescently labeled cells in the cross section of a tissue simulating optical flow phantom and mouse limb. This was achieved using two modulated light sources and an array of six fiber-coupled detectors that allowed rapid, high-sensitivity acquisition of full tomographic data sets at 10 Hz. These were reconstructed into two-dimensional cross-sectional images using Monte Carlo models of light propagation and the randomized algebraic reconstruction technique. We were able to obtain continuous images of moving cells in the sample cross section with 0.5 mm accuracy or better. We first demonstrated this concept in limb-mimicking optical flow photons with up to four flow channels, and then in the tails of mice with fluorescently labeled multiple myeloma cells. This approach increases the overall diagnostic utility of our DFFC instrument.
Data mining approach to model the diagnostic service management.
Lee, Sun-Mi; Lee, Ae-Kyung; Park, Il-Su
2006-01-01
Korea has National Health Insurance Program operated by the government-owned National Health Insurance Corporation, and diagnostic services are provided every two year for the insured and their family members. Developing a customer relationship management (CRM) system using data mining technology would be useful to improve the performance of diagnostic service programs. Under these circumstances, this study developed a model for diagnostic service management taking into account the characteristics of subjects using a data mining approach. This study could be further used to develop an automated CRM system contributing to the increase in the rate of receiving diagnostic services.
Poste, George; Carbone, David P.; Parkinson, David R.; Verweij, Jaap; Hewitt, Stephen; Jessup, J. Milburn
2012-01-01
Molecular diagnostics are increasingly important in clinical research to stratify or identify molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, or to assess early response to therapy or monitor patients. Molecular diagnostics can also be used to identify pharmocogenetic risk of adverse drug reactions. The articles of this CCR Focus section on Molecular Diagnosis describe the development and use of markers for medical decision-making in the cancer patient. They define the sources of preanalytic variability to minimize as well as the regulatory and financial challenges in diagnostic development and integration into clinical practice. They also outline an NCI program to assist diagnostic development. Molecular diagnostic clinical tests require rigor in their development and clinical validation with sufficient sensitivity, specificity and validity that is comparable to that used for development of therapeutics. These diagnostics must be offered at a realistic cost that reflects both their clinical value and the costs associated with their development. When genome sequencing technologies move into the clinic, they must be integrated with and traceable to current technology because they may identify more efficient and accurate approaches to drug development. In addition, regulators may define progressive drug approval for companion diagnostics that requires further evidence regarding efficacy and safety before full approval. A way to accomplish this is to emphasize Phase IV post-marketing hypothesis driven clinical trials with biological characterization that permits accurate definition of the association of low prevalence gene alterations with toxicity or response in large cohorts. PMID:22422403
Poste, George; Carbone, David P; Parkinson, David R; Verweij, Jaap; Hewitt, Stephen M; Jessup, J Milburn
2012-03-15
Molecular diagnostics are becoming increasingly important in clinical research to stratify or identify molecularly profiled patient cohorts for targeted therapies, to modify the dose of a therapeutic, and to assess early response to therapy or monitor patients. Molecular diagnostics can also be used to identify the pharmacogenetic risk of adverse drug reactions. The articles in this CCR Focus section on molecular diagnosis describe the development and use of markers to guide medical decisions regarding cancer patients. They define sources of preanalytic variability that need to be minimized, as well as the regulatory and financial challenges involved in developing diagnostics and integrating them into clinical practice. They also outline a National Cancer Institute program to assist diagnostic development. Molecular diagnostic clinical tests require rigor in their development and clinical validation, with sensitivity, specificity, and validity comparable to those required for the development of therapeutics. These diagnostics must be offered at a realistic cost that reflects both their clinical value and the costs associated with their development. When genome-sequencing technologies move into the clinic, they must be integrated with and traceable to current technology because they may identify more efficient and accurate approaches to drug development. In addition, regulators may define progressive drug approval for companion diagnostics that requires further evidence regarding efficacy and safety before full approval can be achieved. One way to accomplish this is to emphasize phase IV postmarketing, hypothesis-driven clinical trials with biological characterization that would permit an accurate definition of the association of low-prevalence gene alterations with toxicity or response in large cohorts.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-29
...] Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for... workshop entitled ``Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis (TB... Tuberculosis in the United States, Committee on the Elimination of Tuberculosis in the United States, Division...
van Kooten, Xander F; Truman-Rosentsvit, Marianna; Kaigala, Govind V; Bercovici, Moran
2017-09-05
The use of on-chip isotachophoresis assays for diagnostic applications is often limited by the small volumes of standard microfluidic channels. Overcoming this limitation is particularly important for detection of 'discrete' biological targets (such as bacteria) at low concentrations, where the volume of processed liquid in a standard microchannel might not contain any targets. We present a novel microfluidic chip that enables ITP focusing of target analytes from initial sample volumes of 50 μL into a concentrated zone with a volume of 500 pL, corresponding to a 100,000-fold increase in mean concentration, and a 300,000-fold increase in peak concentration. We present design considerations for limiting sample dispersion in such large-volume focusing (LVF) chips and discuss the trade-off between assay time and Joule heating, which ultimately governs the scalability of LVF designs. Finally, we demonstrate a 100-fold improvement of ITP focusing performance in the LVF chip as compared to conventional microchannels, and apply this enhancement to achieve highly sensitive detection of both molecular targets (DNA, down to 10 fM) and whole bacteria (down to 100 cfu/mL).
Roscoe, Donna M; Hu, Yun-Fu; Philip, Reena
2015-01-01
Companion diagnostics are essential for the safe and effective use of the corresponding therapeutic products. The US FDA has approved a number of companion diagnostics used to select cancer patients for treatment with contemporaneously approved novel therapeutics. The processes of co-development and co-approval of a therapeutic product and its companion diagnostic have been a learning experience that continues to evolve. Using several companion diagnostics as examples, this article describes the challenges associated with the scientific, clinical and regulatory hurdles faced by FDA and industry alike. Taken together, this discussion is intended to assist manufacturers toward a successful companion diagnostics development plan.
Study of Airflow Out of the Mouth During Speech.
ERIC Educational Resources Information Center
Catford, J.C.; And Others
Airflow outside the mouth is diagnostic of articulatory activities in the vocal tract, both total volume-velocity and the distribution of particle velocities over the flow-front being useful for this purpose. A system for recording and displaying both these types of information is described. This consists of a matrix of l6 hot-wire anemometer flow…
NASA Technical Reports Server (NTRS)
1979-01-01
The results of the Coastal Zone Color Scanner protoflight tests are examined in detail while some of the test results are evaluated with respect to expected performance. Performance characteristics examined include spectral response, signal to noise ratio as a function of radiance input, radiance response, the modulation transfer function, and the field of view and coregistration. The results of orbital sequence tests are also included. The in orbit performance or return of radiometric data in the six spectral bands is evaluated along with the data processing sequence necessary to derive the final data products. Examples of the raw data are given and the housekeeping or diagnostic data which provides information on the day to day health or status of the instrument are discussed.
Electric discharge during electrosurgery
Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I.; Keidar, Michael
2015-01-01
Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 103 A/cm2. The plasma electron density and electrical conductivities in the channel were found be 1016 cm−3 and (1-2) Ohm−1cm−1, respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold. PMID:25880721
Electric discharge during electrosurgery.
Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael
2015-04-16
Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.
Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Christian Wolf, R
2015-03-15
Abnormal brain volume has been frequently demonstrated in major depressive disorder (MDD). It is unclear if these findings are specific for MDD since aberrant brain structure is also present in disorders with depressive comorbidity and affective dysregulation, such as borderline personality disorder (BPD). In this transdiagnostic study, we aimed to investigate if regional brain volume loss differentiates between MDD and BPD. Further, we tested for associations between brain volume and clinical variables within and between diagnostic groups. 22 Females with a DSM-IV diagnosis of MDD, 17 females with a DSM-IV diagnosis of BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls (HC) were investigated using magnetic resonance imaging. High-resolution structural data were analyzed using voxel-based morphometry. A significant (p<0.05, cluster-corrected) volume decrease of the anterior cingulate cortex (ACC) was found in MDD compared to HC, as opposed to volume decreases of the amygdala in BPD compared to both HC and MDD. Sensitivity and specificity of regional gray matter volume for a diagnosis of MDD were modest to fair. Amygdala volume was related to depressive symptoms across the entire patient sample. Potential limitations of this study include the modest sample size and the heterogeneous psychotropic drug treatment. ACC volume reduction is more pronounced in MDD with an intermediate degree of volume loss in BPD compared to HC. In contrast, amygdala volume loss is more pronounced in BPD compared to MDD, yet amygdala volume is associated with affective symptom expression in both disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Real-Time Processing System for the JET Hard X-Ray and Gamma-Ray Profile Monitor Enhancement
NASA Astrophysics Data System (ADS)
Fernandes, Ana M.; Pereira, Rita C.; Neto, André; Valcárcel, Daniel F.; Alves, Diogo; Sousa, Jorge; Carvalho, Bernardo B.; Kiptily, Vasily; Syme, Brian; Blanchard, Patrick; Murari, Andrea; Correia, Carlos M. B. A.; Varandas, Carlos A. F.; Gonçalves, Bruno
2014-06-01
The Joint European Torus (JET) is currently undertaking an enhancement program which includes tests of relevant diagnostics with real-time processing capabilities for the International Thermonuclear Experimental Reactor (ITER). Accordingly, a new real-time processing system was developed and installed at JET for the gamma-ray and hard X-ray profile monitor diagnostic. The new system is connected to 19 CsI(Tl) photodiodes in order to obtain the line-integrated profiles of the gamma-ray and hard X-ray emissions. Moreover, it was designed to overcome the former data acquisition (DAQ) limitations while exploiting the required real-time features. The new DAQ hardware, based on the Advanced Telecommunication Computer Architecture (ATCA) standard, includes reconfigurable digitizer modules with embedded field-programmable gate array (FPGA) devices capable of acquiring and simultaneously processing data in real-time from the 19 detectors. A suitable algorithm was developed and implemented in the FPGAs, which are able to deliver the corresponding energy of the acquired pulses. The processed data is sent periodically, during the discharge, through the JET real-time network and stored in the JET scientific databases at the end of the pulse. The interface between the ATCA digitizers, the JET control and data acquisition system (CODAS), and the JET real-time network is provided by the Multithreaded Application Real-Time executor (MARTe). The work developed allowed attaining two of the major milestones required by next fusion devices: the ability to process and simultaneously supply high volume data rates in real-time.