Science.gov

Sample records for diagnostics drug delivery

  1. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging.

    PubMed

    Parveen, Suphiya; Misra, Ranjita; Sahoo, Sanjeeb K

    2012-02-01

    Drug delivery is an interdisciplinary and independent field of research and is gaining the attention of pharmaceutical researchers, medical doctors and industry. A safe and targeted drug delivery could improve the performance of some classic medicines already on the market, and moreover, will have implications for the development and success of new therapeutic strategies such as anticancer drug delivery, peptide and protein delivery and gene therapy. In the last decade, several drug-delivery technologies have emerged and a fascinating part of this field is the development of nanoscale drug delivery devices. Nanoparticles (NPs) have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently, nucleotides. NPs and other colloidal drug-delivery systems modify the kinetics, body distribution and drug release of an associated drug. This review article focuses on the potential of nanotechnology in medicine and discusses different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging. This comprehensive review focuses on different nanoparticulate drug-delivery systems including polymeric NPs, ceramic NPs, magnetic NPs, polymeric micelles and dendrimers as well as their applications in therapeutics, diagnostics and imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Low-frequency sonophoresis: a noninvasive method of drug delivery and diagnostics.

    PubMed

    Mitragotri, S; Kost, J

    2000-01-01

    Transdermal drug delivery offers an attractive alternative to injections and oral medications. However, applications of transdermal drug delivery are limited to only a few drugs as a result of low skin permeability. Application of low-frequency ultrasound enhances skin permeability, a phenomenon referred to as low-frequency sonophoresis. In this method, a short application of ultrasound is used to permeabilize skin for a prolonged period of time. During this period, ultrasonically permeabilized skin may be utilized for drug delivery. In addition, a sample of interstitial fluid or its components may be extracted through permeabilized skin for diagnostic applications. In this paper, we report our in vivo studies that demonstrate the principles of both of these concepts. Detailed studies on drug delivery are performed using inulin and mannitol as model drugs. Studies on diagnostics are performed using glucose as a model analyte. Applications of this technology to drug delivery and diagnostics are discussed.

  3. Unique benefits of nanotechnology to drug delivery and diagnostics.

    PubMed

    McNeil, Scott E

    2011-01-01

    Nanotechnology offers many potential benefits to medical research by making pharmaceuticals more efficacious and by decreasing their adverse side-effects. Preclinical characterization of nanoparticles intended for medical applications is complicated--due to the variety of materials used, their unique surface properties and multifunctional nature. This chapter serves as an introduction to the volume, giving a broad overview of applications of nanotechnology to medicine, and describes some of the beneficial aspects of nanotechnology-based drug delivery. We define nanotechnology and provide brief descriptions of the major classes of nanomaterials used for medical applications. The following two chapters discuss scientific and regulatory hurdles involved in the use of nanotechnology in medicine. The remaining bulk of the volume provides the reader with protocols that have been tested against clinically relevant nanoparticles and describes some of the nuances of nanoparticle types and necessary controls.

  4. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles.

    PubMed

    Kintzing, James R; Cochran, Jennifer R

    2016-10-01

    Inhibitor cystine-knots, also known as knottins, are a structural family of ultra-stable peptides with diverse functions. Knottins and related backbone-cyclized peptides called cyclotides contain three disulfide bonds connected in a particular arrangement that endows these peptides with high thermal, proteolytic, and chemical stability. Knottins have gained interest as candidates for non-invasive molecular imaging and for drug development as they can possess the pharmacological properties of small molecules and the target affinity and selectively of protein biologics. Naturally occurring knottins are clinically approved for treating chronic pain and GI disorders. Combinatorial methods are being used to engineer knottins that can bind to other clinically relevant targets in cancer, and inflammatory and cardiac disease. This review details recent examples of engineered knottin peptides; their use as molecular imaging agents, therapeutics, and drug delivery vehicles; modifications that can be introduced to improve peptide folding and bioactivity; and future perspectives and challenges in the field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular Diagnostic and Drug Delivery Agents based on Aptamer-Nanomaterial Conjugates

    PubMed Central

    Lee, Jung Heon; Yigit, Mehmet V.; Mazumdar, Debapriya; Lu, Yi

    2010-01-01

    Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents. PMID:20338204

  6. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates.

    PubMed

    Lee, Jung Heon; Yigit, Mehmet V; Mazumdar, Debapriya; Lu, Yi

    2010-04-30

    Recent progress in an emerging area of designing aptamer and nanomaterial conjugates as molecular diagnostic and drug delivery agents in biomedical applications is summarized. Aptamers specific for a wide range of targets are first introduced and compared to antibodies. Methods of integrating these aptamers with a variety of nanomaterials, such as gold nanoparticles, quantum dots, carbon nanotubes, and superparamagnetic iron oxide nanoparticles, each with unique optical, magnetic, and electrochemical properties, are reviewed. Applications of these systems as fluorescent, colorimetric, magnetic resonance imaging, and electrochemical sensors in medical diagnostics are given, along with new applications as smart drug delivery agents.

  7. Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment.

    PubMed

    Mapara, Sanyat S; Patravale, Vandana B

    2017-09-10

    The advancements in electronics and the progress in nanotechnology have resulted in path breaking development that will transform the way diagnosis and treatment are carried out currently. This development is Medical Capsule Robots, which has emerged from the science fiction idea of robots travelling inside the body to diagnose and cure disorders. The first marketed capsule robot was a capsule endoscope developed to capture images of the gastrointestinal tract. Today, varieties of capsule endoscopes are available in the market. They are slightly larger than regular oral capsules, made up of a biocompatible case and have electronic circuitry and mechanisms to capture and transmit images. In addition, robots with diagnostic features such as in vivo body temperature detection and pH monitoring have also been launched in the market. However, a multi-functional unit that will diagnose and cure diseases inside the body has not yet been realized. A remote controlled capsule that will undertake drug delivery and surgical treatment has not been successfully launched in the market. High cost, inadequate power supply, lack of control over drug release, limited space for drug storage on the capsule, inadequate safety and no mechanisms for active locomotion and anchoring have prevented their entry in the market. The capsule robots can revolutionize the current way of diagnosis and treatment. This paper discusses in detail the applications of medical capsule robots in diagnostics, drug delivery and surgical treatment. In diagnostics, detailed analysis has been presented on wireless capsule endoscopes, issues associated with the marketed versions and their corresponding solutions in literature. Moreover, an assessment has been made of the existing state of remote controlled capsules for targeted drug delivery and surgical treatment and their future impact is predicted. Besides the need for multi-functional capsule robots and the areas for further research have also been

  8. Comparative analysis of the methods of drug and protein delivery for the treatment of cancer, genetic diseases and diagnostics.

    PubMed

    Todorova, Roumiana

    2011-11-01

    The methods of protein and drug delivery for the treatment of cancer, genetic diseases and diagnostics were summarized. The potential of protein transduction is discussed and the recent developments in the field are reviewed. An overview is provided of the non-viral delivery methods such as liposomes, polymer-based delivery, cell-penetrating peptides, bacterial secretion, cells, virosomes, physical methods including electroporation, microinjection, osmotic lysis, nanoparticles, sonoporation to locally inject therapeutic molecules. The characteristic properties of non-viral vectors and their use for the delivery of therapeutic molecules for the diagnosis and treatment of disorders and to target tumors are also discussed. The potential of the transduced peptides and proteins was used as new therapeutic compounds against infectious diseases, to complement deficiencies in specific genes, to specifically kill tumour cells, for gene therapy. The protein delivery vectors can enhance the transfection at low concentrations and help to develop future gene delivery systems with reduced toxicity. Vitamin B12, folic acid, biotin, and riboflavin are essential in the treatment of cancer. Ultrasound has a potential in the delivery of therapeutic agents. The new developing technologies of drug delivery and targeting offer the possibility to improve the therapeutic possibilities of the existing drugs and to develop novel therapeutics.

  9. Thermoresponsive Nanoparticles of Self-Assembled Block Copolymers as Potential Carriers for Drug Delivery and Diagnostics.

    PubMed

    Rahikkala, Antti; Aseyev, Vladimir; Tenhu, Heikki; Kauppinen, Esko I; Raula, Janne

    2015-09-14

    Thermally responsive hydrogel nanoparticles composed of self-assembled polystyrene-b-poly(N-isopropylacrylamide)-b-polystyrene block copolymers and fluorescent probe 1-anilinonaphthalene-8-sulfonic acid have been prepared by aerosol flow reactor method. We aimed exploring the relationship of intraparticle morphologies, that were, PS spheres and gyroids embedded in PNIPAm matrix, as well PS-PNIPAm lamellar structure, to probe release in aqueous solution below and above the cloud point temperature (CPT) of PNIPAm. The release was detected by fluorescence emission given by the probe binding to bovine serum albumin. Also, the colloidal behavior of hydrogel nanoparticles at varying temperatures were examined by scattering method. The probe release was faster below than above the CPT from all the morphologies of which gyroidal morphology showed the highest release. Colloidal behavior varied from single to moderately aggregated particles in order spheres-gyroids-lamellar. Hydrogel nanoparticles with tunable intra particle self-assembled morphologies can be utilized designing carrier systems for drug delivery and diagnostics.

  10. Top-Down Particle Fabrication: Control of Size and Shape for Diagnostic Imaging and Drug Delivery

    PubMed Central

    Canelas, Dorian A.; Herlihy, Kevin P.; DeSimone, Joseph M.

    2009-01-01

    This review discusses rational design of particles for use as therapeutic vectors and diagnostic imaging agent carriers. The emerging importance of both particle size and shape is considered, and the adaptation and modification of soft lithography methods to produce nanoparticles is highlighted. To this end, studies utilizing particles made via a process called Particle Replication In Non-wetting Templates (PRINT™) are discussed. In addition, insights gained into therapeutic cargo and imaging agent delivery from related types of polymer-based carriers are considered. PMID:20049805

  11. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging.

    PubMed

    Bhaskar, Sonu; Tian, Furong; Stoeger, Tobias; Kreyling, Wolfgang; de la Fuente, Jesús M; Grazú, Valeria; Borm, Paul; Estrada, Giovani; Ntziachristos, Vasilis; Razansky, Daniel

    2010-03-03

    fluorescent protein tomography and multispectral optoacoustic tomography. Overall, great potential is foreseen for nanocarriers in medical diagnostics, therapeutics and molecular targeting. A proposed roadmap for ongoing and future research directions is therefore discussed in detail with emphasis on the development of novel approaches for functionalization, targeting and imaging of nano-based drug delivery systems, a cutting-edge technology poised to change the ways medicine is administered.

  12. Multifunctional Nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging

    PubMed Central

    2010-01-01

    fluorescent protein tomography and multispectral optoacoustic tomography. Overall, great potential is foreseen for nanocarriers in medical diagnostics, therapeutics and molecular targeting. A proposed roadmap for ongoing and future research directions is therefore discussed in detail with emphasis on the development of novel approaches for functionalization, targeting and imaging of nano-based drug delivery systems, a cutting-edge technology poised to change the ways medicine is administered. PMID:20199661

  13. Nanomedicine: nanoparticles, molecular biosensors, and targeted gene/drug delivery for combined single-cell diagnostics and therapeutics

    NASA Astrophysics Data System (ADS)

    Prow, Tarl W.; Salazar, Jose H.; Rose, William A.; Smith, Jacob N.; Reece, Lisa; Fontenot, Andrea A.; Wang, Nan A.; Lloyd, R. Stephen; Leary, James F.

    2004-07-01

    Next generation nanomedicine technologies are being developed to provide for continuous and linked molecular diagnostics and therapeutics. Research is being performed to develop "sentinel nanoparticles" which will seek out diseased (e.g. cancerous) cells, enter those living cells, and either perform repairs or induce those cells to die through apoptosis. These nanoparticles are envisioned as multifunctional "smart drug delivery systems". The nanosystems are being developed as multilayered nanoparticles (nanocrystals, nanocapsules) containing cell targeting molecules, intracellular re-targeting molecules, molecular biosensor molecules, and drugs/enzymes/gene therapy. These "nanomedicine systems" are being constructed to be autonomous, much like present-day vaccines, but will have sophisticated targeting, sensing, and feedback control systems-much more sophisticated than conventional antibody-based therapies. The fundamental concept of nanomedicine is to not to just kill all aberrant cells by surgery, radiation therapy, or chemotherapy. Rather it is to fix cells, when appropriate, one cell-at-a-time, to preserve and re-build organ systems. When cells should not be fixed, such as in cases where an improperly repaired cell might give rise to cancer cells, the nanomedical therapy would be to induce apoptosis in those cells to eliminate them without the damagin bystander effects of the inflammatory immune response system reacting to necrotic cells or those which have died from trauma or injury. The ultimate aim of nanomedicine is to combine diagnostics and therapeutics into "real-time medicine", using where possible in-vivo cytometry techniques for diagnostics and therapeutics. A number of individual components of these multi-component nanoparticles are already working in in-vitro and ex-vivo cell and tissue systems. Work has begun on construction of integrated nanomedical systems.

  14. Liposomal systems as viable drug delivery technology for skin cancer sites with an outlook on lipid-based delivery vehicles and diagnostic imaging inputs for skin conditions'.

    PubMed

    Akhtar, Naseem; Khan, Riaz A

    2016-10-01

    Skin cancer is among one of the most common human malignancies wide-spread world-over with mortality statistics rising continuously at an alarming rate. The increasing frequency of these malignancies has marked the need for adopting effective treatment plan coupled with better and site-specific delivery options for the desired therapeutic agent's availability at the affected site. The concurrent delivery approaches to cancerous tissues are under constant challenge and, as a result, are evolving and gaining advancements in terms of delivery modes, therapeutic agents and site-specificity of the therapeutics delivery. The lipid-based liposomal drug delivery is an attractive and emerging option, and which is meticulously shaping up beyond a threshold level to a promising, and viable route for the effective delivery of therapeutic agents and other required injuctions to the skin cancer. An update on liposomal delivery of chemotherapeutic agents, natural-origin compounds, photosensitizer, and DNA repair enzymes as well as other desirable and typical delivery modes employed in drug delivery and in the treatment of skin cancers is discussed in details. Moreover, liposomal delivery of nucleic acid-based therapeutics, i.e., small interfering RNA (siRNA), mRNA therapy, and RGD-linked liposomes are among the other promising novel technology under constant development. The current clinical applicability, viable clinical plans, future prospects including transport feasibility of delivery vesicles and imaging techniques in conjunction with the therapeutic agents is also discussed. The ongoing innovations in liposomal drug delivery technology for skin cancers hold promise for further development of the methodology for better, more effective and site-specific delivery as part of the better treatment plan by ensuring faster drug transport, better and full payload delivery with enough and required concentration of the dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Buccal drug delivery.

    PubMed

    Smart, John D

    2005-05-01

    Buccal formulations have been developed to allow prolonged localised therapy and enhanced systemic delivery. The buccal mucosa, however, while avoiding first-pass effects, is a formidable barrier to drug absorption, especially for biopharmaceutical products (proteins and oligonucleotides) arising from the recent advances in genomics and proteomics. The buccal route is typically used for extended drug delivery, so formulations that can be attached to the buccal mucosa are favoured. The bioadhesive polymers used in buccal drug delivery to retain a formulation are typically hydrophilic macro-molecules containing numerous hydrogen bonding groups. Newer second-generation bioadhesives have been developed and these include modified or new polymers that allow enhanced adhesion and/or drug delivery, in addition to site-specific ligands such as lectins. Over the last 20 years a wide range of formulations has been developed for buccal drug delivery (tablet, patch, liquids and semisolids) but comparatively few have found their way onto the market. Currently, this route is restricted to the delivery of a limited number of small lipophilic molecules that readily cross the buccal mucosa. However, this route could become a significant means for the delivery of a range of active agents in the coming years, if the barriers to buccal drug delivery are overcome. In particular, patient acceptability and the successful systemic delivery of large molecules (proteins, oligonucleotides and polysaccharides) via this route remains both a significant opportunity and challenge, and new/improved technologies may be required to address these.

  16. Intracochlear Drug Delivery Systems

    PubMed Central

    Borenstein, Jeffrey T.

    2011-01-01

    Introduction Advances in molecular biology and in the basic understanding of the mechanisms associated with sensorineural hearing loss and other diseases of the inner ear, are paving the way towards new approaches for treatments for millions of patients. However, the cochlea is a particularly challenging target for drug therapy, and new technologies will be required to provide safe and efficacious delivery of these compounds. Emerging delivery systems based on microfluidic technologies are showing promise as a means for direct intracochlear delivery. Ultimately, these systems may serve as a means for extended delivery of regenerative compounds to restore hearing in patients suffering from a host of auditory diseases. Areas covered in this review Recent progress in the development of drug delivery systems capable of direct intracochlear delivery is reviewed, including passive systems such as osmotic pumps, active microfluidic devices, and systems combined with currently available devices such as cochlear implants. The aim of this article is to provide a concise review of intracochlear drug delivery systems currently under development, and ultimately capable of being combined with emerging therapeutic compounds for the treatment of inner ear diseases. Expert Opinion Safe and efficacious treatment of auditory diseases will require the development of microscale delivery devices, capable of extended operation and direct application to the inner ear. These advances will require miniaturization and integration of multiple functions, including drug storage, delivery, power management and sensing, ultimately enabling closed-loop control and timed-sequence delivery devices for treatment of these diseases. PMID:21615213

  17. Sublingual drug delivery.

    PubMed

    Goswami, Tarun; Jasti, Bhaskara; Li, Xiaoling

    2008-01-01

    The sublingual route is one of the early modes of administration for systemic drug delivery. This route avoids first-pass metabolism and affords quick drug entry into the systemic circulation. Attempts have been made to deliver various pharmacologically active agents, such as cardiovascular drugs, analgesics, and peptides, across the sublingual mucosa. In this review, the anatomical structure, blood supply, biochemical composition, transport pathways, permeation enhancement strategies, in vitro/in vivo models, and clinical investigations for the sublingual route of drug delivery is discussed.

  18. Microfabrication for Drug Delivery

    PubMed Central

    Koch, Brendan; Rubino, Ilaria; Quan, Fu-Shi; Yoo, Bongyoung; Choi, Hyo-Jick

    2016-01-01

    This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems. PMID:28773770

  19. Metrology for drug delivery.

    PubMed

    Lucas, Peter; Klein, Stephan

    2015-08-01

    In various recently published studies, it is argued that there are underestimated risks with infusion technology, i.e., adverse incidents believed to be caused by inadequate administration of the drugs. This is particularly the case for applications involving very low-flow rates, i.e., <1 ml/h and applications involving drug delivery by means of multiple pumps. The risks in infusing are caused by a lack of awareness, incompletely understood properties of the complete drug delivery system and a lack of a proper metrological infrastructure for low-flow rates. Technical challenges such as these were the reason a European research project "Metrology for Drug Delivery" was started in 2011. In this special issue of Biomedical Engineering, the results of that project are discussed.

  20. Single compartment drug delivery

    PubMed Central

    Cima, Michael J.; Lee, Heejin; Daniel, Karen; Tanenbaum, Laura M.; Mantzavinou, Aikaterini; Spencer, Kevin C.; Ong, Qunya; Sy, Jay C.; Santini, John; Schoellhammer, Carl M.; Blankschtein, Daniel; Langer, Robert S.

    2014-01-01

    Drug design is built on the concept that key molecular targets of disease are isolated in the diseased tissue. Systemic drug administration would be sufficient for targeting in such a case. It is, however, common for enzymes or receptors that are integral to disease to be structurally similar or identical to those that play important biological roles in normal tissues of the body. Additionally, systemic administration may not lead to local drug concentrations high enough to yield disease modification because of rapid systemic metabolism or lack of sufficient partitioning into the diseased tissue compartment. This review focuses on drug delivery methods that physically target drugs to individual compartments of the body. Compartments such as the bladder, peritoneum, brain, eye and skin are often sites of disease and can sometimes be viewed as “privileged,” since they intrinsically hinder partitioning of systemically administered agents. These compartments have become the focus of a wide array of procedures and devices for direct administration of drugs. We discuss the rationale behind single compartment drug delivery for each of these compartments, and give an overview of examples at different development stages, from the lab bench to phase III clinical trials to clinical practice. We approach single compartment drug delivery from both a translational and a technological perspective. PMID:24798478

  1. Colloidal microgels in drug delivery applications

    PubMed Central

    Vinogradov, Serguei V.

    2005-01-01

    Colloidal microgels have recently received attention as environmentally responsive systems and now are increasingly used in applications as carriers for therapeutic drugs and diagnostic agents. Synthetic microgels consist of a crosslinked polymer network that provides a depot for loaded drugs, protection against environmental hazards and template for post-synthetic modification or vectorization of the drug carriers. The aim of this manuscript is to review recent attempts to develop new microgel formulations for oral drug delivery, to design metal-containing microgels for diagnostic and therapeutic applications, and to advance approaches including the systemic administration of microgels. Novel nanogel drug delivery systems developed in the authors’ laboratory are discussed in details including aspects of their synthesis, vectorization and recent applications for encapsulation of low molecular weight drugs or formulation of biological macromolecules. The findings reviewed here are encouraging for further development of the nanogels as intelligent drug carriers with such features as targeted delivery and triggered drug release. PMID:17168773

  2. Mucoadhesive drug delivery systems

    PubMed Central

    Shaikh, Rahamatullah; Raj Singh, Thakur Raghu; Garland, Martin James; Woolfson, A David; Donnelly, Ryan F.

    2011-01-01

    Mucoadhesion is commonly defined as the adhesion between two materials, at least one of which is a mucosal surface. Over the past few decades, mucosal drug delivery has received a great deal of attention. Mucoadhesive dosage forms may be designed to enable prolonged retention at the site of application, providing a controlled rate of drug release for improved therapeutic outcome. Application of dosage forms to mucosal surfaces may be of benefit to drug molecules not amenable to the oral route, such as those that undergo acid degradation or extensive first-pass metabolism. The mucoadhesive ability of a dosage form is dependent upon a variety of factors, including the nature of the mucosal tissue and the physicochemical properties of the polymeric formulation. This review article aims to provide an overview of the various aspects of mucoadhesion, mucoadhesive materials, factors affecting mucoadhesion, evaluating methods, and finally various mucoadhesive drug delivery systems (buccal, nasal, ocular, gastro, vaginal, and rectal). PMID:21430958

  3. Polymeric micelles as a diagnostic tool for image-guided drug delivery and radiotherapy of HER2 overexpressing breast cancer

    NASA Astrophysics Data System (ADS)

    Hoang, Nu Bryan

    Block copolymer micelles have emerged as a viable formulation strategy with several drugs relying on this technology in clinical evaluation. To date, information on the tumor penetration and intratumoral distribution of block copolymer micelles (BCM) has been quite limited. Thus, there is impetus to develop a radiolabeled formulation that can be used to gain invaluable insight into the intratumoral distribution of the BCMs. This information could then be used to direct formulation strategies as a means to optimize treatment outcomes. This thesis describes the synthesis and characterization of a targeted block copolymer micelle system based on poly(ethylene glycol)-block -poly(epsilon-caprolactone) labeled with the radionuclide Indium-111 (111In). The incorporation of the imageable component, 111In permits pursuit of image-guided drug delivery for real-time monitoring of tumor localization and intratumoral distribution. Intracellular trafficking of drugs and therapies such as Auger electron emitting radionuclides to perinuclear and nuclear regions of cells is critical to realizing their full therapeutic potential. HER2 specific antibodies (trastuzumab fab fragments) and nuclear localization signal peptides were conjugated to the surface of the BCMs to direct uptake in HER2 expressing cells and subsequent localization in the cell nucleus. Cell uptake was HER2 density dependent, confirming receptor-mediated internalization of the BCMs. Importantly, conjugation of NLS resulted in a significant increase in nuclear uptake of the radionuclide 111In. Successful nuclear targeting was shown to improve the antiproliferative effect of the Auger electrons. In addition, a significant radiation enhancement effect was observed by concurrent delivery of low-dose MTX and 111In in all breast cancer cell lines evaluated. Imaging enabled the accurate quantification of the specific tumor uptake of the micelles and visualization of their degree of tumor penetration in relation to

  4. Photomechanical drug delivery

    NASA Astrophysics Data System (ADS)

    Doukas, Apostolos G.; Lee, Shun

    2000-05-01

    Photomechanical waves (PW) are generated by Q-switched or mode-locked lasers. Ablation is a reliable method for generating PWs with consistent characteristics. Depending on the laser wavelength and target material, PWs with different parameters can be generated which allows the investigation of PWs with cells and tissue. PWs have been shown to permeabilize the stratum corneum (SC) in vivo and facilitate the transport of drugs into the skin. Once a drug has diffused into the dermis it can enter the vasculature, thus producing a systemic effect. Fluorescence microscopy of biopsies show that 40-kDa molecules can be delivered to a depth of > 300 micrometers into the viable skin of rats. Many important drugs such as insulin, and erythropoietin are smaller or comparable in size, making the PWs attractive for transdermal drug delivery. There are three possible pathways through the SC: Transappendageal via hair follicles or other appendages, transcellular through the corneocytes, and intercellular via the extracellular matrix. The intracellular route appears to be the most likely pathway of drug delivery through the SC.

  5. Nanomaterials for Drugs Delivery

    SciTech Connect

    Márquez, Francisco; Morant, Carmen

    2014-07-01

    Nanotechnology has revolutionized engineering, biology, chemistry, physics and medicine of today. These disciplines are evolving thanks to the ongoing development of new materials and applications. Nanomedicine, as application of nanotechnology in the field of health care, has undergone unprecedented development. Some of these changes have real applications as, for example, the use of nanoparticles in MRI imaging, in hyperthermia, in immunotherapy, or to improve the bioavailability of drugs, among others. Furthermore, when a drug is administered to a patient, the blood distributes it throughout the body. In the case of very localized diseases (i.e. tumors), only a small fraction of the drug reaches the target. Chemotherapy is one of the most aggressive treatment options used in some types of cancer, and is usually administered intravenously. The drug circulates throughout the body, reaching and destroying healthy and cancerous tissues, producing side effects throughout the body, sometimes with serious consequences for the health of the patient (nephrotoxicity, cardiotoxicity, peripheral neuropathy, anemia, etc.) in this type of therapy. Among the many applications of nanotechnology, the fabrication of nanostructures capable of safely transporting these drugs is seen as a strategy for reducing these side effects. Nanoparticles are able to carry and release the drug in the right place and with the required dose, greatly reducing the problems associated with direct treatment with these drugs. In recent years, there have been continuous improvements in the design and development of new tailor-made drug delivery systems, including hollow magnetic nanoparticles, liposomal structures, dendrimers, nanoporous silicon, etc. These structures can be obtained with different molecular weights (in the case of polymers), structures, shapes, and even with the appropriate functional groups for interaction at the desired positions. But, a great effort is still required to solve many

  6. Nanomaterials for Drugs Delivery

    DOE PAGES

    Márquez, Francisco; Morant, Carmen

    2014-07-01

    Nanotechnology has revolutionized engineering, biology, chemistry, physics and medicine of today. These disciplines are evolving thanks to the ongoing development of new materials and applications. Nanomedicine, as application of nanotechnology in the field of health care, has undergone unprecedented development. Some of these changes have real applications as, for example, the use of nanoparticles in MRI imaging, in hyperthermia, in immunotherapy, or to improve the bioavailability of drugs, among others. Furthermore, when a drug is administered to a patient, the blood distributes it throughout the body. In the case of very localized diseases (i.e. tumors), only a small fraction ofmore » the drug reaches the target. Chemotherapy is one of the most aggressive treatment options used in some types of cancer, and is usually administered intravenously. The drug circulates throughout the body, reaching and destroying healthy and cancerous tissues, producing side effects throughout the body, sometimes with serious consequences for the health of the patient (nephrotoxicity, cardiotoxicity, peripheral neuropathy, anemia, etc.) in this type of therapy. Among the many applications of nanotechnology, the fabrication of nanostructures capable of safely transporting these drugs is seen as a strategy for reducing these side effects. Nanoparticles are able to carry and release the drug in the right place and with the required dose, greatly reducing the problems associated with direct treatment with these drugs. In recent years, there have been continuous improvements in the design and development of new tailor-made drug delivery systems, including hollow magnetic nanoparticles, liposomal structures, dendrimers, nanoporous silicon, etc. These structures can be obtained with different molecular weights (in the case of polymers), structures, shapes, and even with the appropriate functional groups for interaction at the desired positions. But, a great effort is still required to

  7. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  8. Polymers for Drug Delivery Systems

    PubMed Central

    Liechty, William B.; Kryscio, David R.; Slaughter, Brandon V.; Peppas, Nicholas A.

    2012-01-01

    Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery. PMID:22432577

  9. Optimizing drugs for local delivery.

    PubMed

    Collingwood, S; Lock, R; Searcey, M

    2009-12-01

    An international panel of speakers together with approximately 70 delegates were brought together by The Society for Medicines Research's symposium on Optimising Drugs for Local Delivery, held on June 11, 2009 at the Novartis Institutes for Biomedical Research, Horsham, UK. The focus of the conference was on the delivery of drugs direct to the site of action and the consequences of this delivery route on delivery technologies, formulation science and molecular design.

  10. Microprocessor controlled transdermal drug delivery.

    PubMed

    Subramony, J Anand; Sharma, Ashutosh; Phipps, J B

    2006-07-06

    Transdermal drug delivery via iontophoresis is reviewed with special focus on the delivery of lidocaine for local anesthesia and fentanyl for patient controlled acute therapy such as postoperative pain. The role of the microprocessor controller in achieving dosimetry, alternating/reverse polarity, pre-programmed, and sensor-based delivery is highlighted. Unique features such as the use of tactile signaling, telemetry control, and pulsatile waveforms in iontophoretic drug delivery are described briefly.

  11. Controlled Drug Delivery Using Microdevices

    PubMed Central

    Sanjay, Sharma T.; Dou, Maowei; Fu, Guanglei; Xu, Feng; Li, XiuJun

    2016-01-01

    Therapeutic drugs administered systematically are evenly distributed to the whole body through blood circulation and have to cross many biological barriers before reaching the pathological site. Conventional drug delivery may make drugs inactive or reduce their potency as they may be hydrolyzed or degraded enzymatically and are rapidly excreted through the urinary system resulting in suboptimal concentration of drugs at the desired site. Controlled drug delivery aims to localize the pharmacological activity of the drug to the desired site at desired release rates. The advances made by micro/nanofluidic technologies have provided new opportunities for better-controlled drug delivery. Various components of a drug delivery system can be integrated within a single tiny micro/nanofluidic chip. This article reviews recent advances of controlled drug delivery made by microfluidic/nanofluidic technologies. We first discuss microreservoir-based drug delivery systems. Then we highlight different kinds of microneedles used for controlled drug delivery, followed with a brief discussion about the current limitations and the future prospects of controlled drug delivery systems. PMID:26813304

  12. Sonophoresis in transdermal drug deliverys.

    PubMed

    Park, Donghee; Park, Hyunjin; Seo, Jongbum; Lee, Seunghun

    2014-01-01

    Transdermal drug delivery (TDD) has several significant advantages compared to oral drug delivery, including elimination of pain and sustained drug release. However, the use of TDD is limited by low skin permeability due to the stratum corneum (SC), the outermost layer of the skin. Sonophoresis is a technique that temporarily increases skin permeability such that various medications can be delivered noninvasively. For the past several decades, various studies of sonophoresis in TDD have been performed focusing on parameter optimization, delivery mechanism, transport pathway, or delivery of several drug categories including hydrophilic and high molecular weight compounds. Based on these various studies, several possible mechanisms of sonophoresis have been suggested. For example, cavitation is believed to be the predominant mechanism responsible for drug delivery in sonophoresis. This review presents details of various studies on sonophoresis including the latest trends, delivery of various therapeutic drugs, sonophoresis pathways and mechanisms, and outlook of future studies.

  13. MRI in ocular drug delivery.

    PubMed

    Li, S Kevin; Lizak, Martin J; Jeong, Eun-Kee

    2008-11-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed.

  14. MRI in ocular drug delivery

    PubMed Central

    Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee

    2008-01-01

    Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077

  15. Polymeric conjugates for drug delivery

    PubMed Central

    Larson, Nate; Ghandehari, Hamidreza

    2012-01-01

    The field of polymer therapeutics has evolved over the past decade and has resulted in the development of polymer-drug conjugates with a wide variety of architectures and chemical properties. Whereas traditional non-degradable polymeric carriers such as poly(ethylene glycol) (PEG) and N-(2-hydroxypropyl methacrylamide) (HPMA) copolymers have been translated to use in the clinic, functionalized polymer-drug conjugates are increasingly being utilized to obtain biodegradable, stimuli-sensitive, and targeted systems in an attempt to further enhance localized drug delivery and ease of elimination. In addition, the study of conjugates bearing both therapeutic and diagnostic agents has resulted in multifunctional carriers with the potential to both “see and treat” patients. In this paper, the rational design of polymer-drug conjugates will be discussed followed by a review of different classes of conjugates currently under investigation. The design and chemistry used for the synthesis of various conjugates will be presented with additional comments on their potential applications and current developmental status. PMID:22707853

  16. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  17. Ultrasound mediated transdermal drug delivery.

    PubMed

    Azagury, Aharon; Khoury, Luai; Enden, Giora; Kost, Joseph

    2014-06-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy.

  18. Drug delivery to the ear.

    PubMed

    Hoskison, E; Daniel, M; Al-Zahid, S; Shakesheff, K M; Bayston, R; Birchall, J P

    2013-01-01

    Drug delivery to the ear is used to treat conditions of the middle and inner ear such as acute and chronic otitis media, Ménière's disease, sensorineural hearing loss and tinnitus. Drugs used include antibiotics, antifungals, steroids, local anesthetics and neuroprotective agents. A literature review was conducted searching Medline (1966-2012), Embase (1988-2012), the Cochrane Library and Ovid (1966-2012), using search terms 'drug delivery', 'middle ear', 'inner ear' and 'transtympanic'. There are numerous methods of drug delivery to the middle ear, which can be categorized as topical, systemic (intravenous), transtympanic and via the Eustachian tube. Localized treatments to the ear have the advantages of targeted drug delivery allowing higher therapeutic doses and minimizing systemic side effects. The ideal scenario would be a carrier system that could cross the intact tympanic membrane loaded with drugs or biochemical agents for the treatment of middle and inner ear conditions.

  19. Transmucosal macromolecular drug delivery.

    PubMed

    Prego, C; García, M; Torres, D; Alonso, M J

    2005-01-03

    Mucosal surfaces are the most common and convenient routes for delivering drugs to the body. However, macromolecular drugs such as peptides and proteins are unable to overcome the mucosal barriers and/or are degraded before reaching the blood stream. Among the approaches explored so far in order to optimize the transport of these macromolecules across mucosal barriers, the use of nanoparticulate carriers represents a challenging but promising strategy. The present paper aims to compare the characteristics and potential of nanostructures based on the mucoadhesive polysaccharide chitosan (CS). These are CS nanoparticles, CS-coated oil nanodroplets (nanocapsules) and CS-coated lipid nanoparticles. The characteristics and behavior of CS nanoparticles and CS-coated lipid nanoparticles already reported [A. Vila, A. Sanchez, M. Tobio, P. Calvo, M.J. Alonso, Design of biodegradable particles for protein delivery, J. Control. Rel. 78 (2002) 15-24; R. Fernandez-Urrusuno, P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, M.J. Alonso, Enhancement of nasal absorption of insulin using chitosan nanoparticles, Pharm. Res. 16 (1999) 1576-1581; M. Garcia-Fuentes, D. Torres, M.J. Alonso, New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin (submitted for publication).] are compared with those of CS nanocapsules originally reported here. The three types of systems have a size in the nanometer range and a positive zeta potential that was attributed to the presence of CS on their surface. They showed an important capacity for the association of peptides such as insulin, salmon calcitonin and proteins, such as tetanus toxoid. Their mechanism of interaction with epithelia was investigated using the Caco-2 model cell line. The results showed that CS-coated systems caused a concentration-dependent reduction in the transepithelial resistance of the cell monolayer. Moreover, within the range of concentrations investigated, these systems were internalized in the

  20. Intranasal delivery of antipsychotic drugs.

    PubMed

    Katare, Yogesh K; Piazza, Justin E; Bhandari, Jayant; Daya, Ritesh P; Akilan, Kosalan; Simpson, Madeline J; Hoare, Todd; Mishra, Ram K

    2016-11-29

    Antipsychotic drugs are used to treat psychotic disorders that afflict millions globally and cause tremendous emotional, economic and healthcare burdens. However, the potential of intranasal delivery to improve brain-specific targeting remains unrealized. In this article, we review the mechanisms and methods used for brain targeting via the intranasal (IN) route as well as the potential advantages of improving this type of delivery. We extensively review experimental studies relevant to intranasal delivery of therapeutic agents for the treatment of psychosis and mental illnesses. We also review clinical studies in which intranasal delivery of peptides, like oxytocin (7 studies) and desmopressin (1), were used as an adjuvant to antipsychotic treatment with promising results. Experimental animal studies (17) investigating intranasal delivery of mainstream antipsychotic drugs have revealed successful targeting to the brain as suggested by pharmacokinetic parameters and behavioral effects. To improve delivery to the brain, nanotechnology-based carriers like nanoparticles and nanoemulsions have been used in several studies. However, human studies assessing intranasal delivery of mainstream antipsychotic drugs are lacking, and the potential toxicity of nanoformulations used in animal studies has not been explored. A brief discussion of future directions anticipates that if limitations of low aqueous solubility of antipsychotic drugs can be overcome and non-toxic formulations used, IN delivery (particularly targeting specific tissues within the brain) will gain more importance moving forward given the inherent benefits of IN delivery in comparison to other methods.

  1. Microfabrication Technologies for Oral Drug Delivery

    PubMed Central

    Sant, Shilpa; Tao, Sarah L.; Fisher, Omar; Xu, Qiaobing; Peppas, Nicholas A.; Khademhosseini, Ali

    2012-01-01

    Micro-/nanoscale technologies such as lithographic techniques and microfluidics offer promising avenues to revolutionalize the fields of tissue engineering, drug discovery, diagnostics and personalized medicine. Microfabrication techniques are being explored for drug delivery applications due to their ability to combine several features such as precise shape and size into a single drug delivery vehicle. They also offer to create unique asymmetrical features incorporated into single or multiple reservoir systems maximizing contact area with the intestinal lining. Combined with intelligent materials, such microfabricated platforms can be designed to be bioadhesive and stimuli-responsive. Apart from drug delivery devices, microfabrication technologies offer exciting opportunities to create biomimetic gastrointestinal tract models incorporating physiological cell types, flow patterns and brush-border like structures. Here we review the recent developments in this field with a focus on the applications of microfabrication in the development of oral drug delivery devices and biomimetic gastrointestinal tract models that can be used to evaluate the drug delivery efficacy. PMID:22166590

  2. Nanoencapsulation for drug delivery

    PubMed Central

    Kumari, Avnesh; Singla, Rubbel; Guliani, Anika; Yadav, Sudesh Kumar

    2014-01-01

    Nanoencapsulation of drug/small molecules in nanocarriers (NCs) is a very promising approach for development of nanomedicine. Modern drug encapsulation methods allow efficient loading of drug molecules inside the NCs thereby reducing systemic toxicity associated with drugs. Targeting of NCs can enhance the accumulation of nanonencapsulated drug at the diseased site. This article focussed on the synthesis methods, drug loading, drug release mechanism and cellular response of nanoencapsulated drugs on liposomes, micelles, carbon nanotubes, dendrimers, and magnetic NCs. Also the uses of these various NCs have been highlighted in the field of nanotechnology. PMID:26417260

  3. Conformal drug delivery and instantaneous monitoring based on an inverse synthesis method at a diagnostic ultrasound platform

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Lu, Mingzhu; Wan, Mingxi

    2017-03-01

    In this paper, based on a programmable diagnostic ultrasound scanner, a combined approach was proposed, in which a variable-sized focal region wherein the acoustic pressure is above the ultrasound contrast agents (UCA) fragmentation threshold is synthesized by reasonably matching the excitation voltage and the transmit aperture of the linear array at 5MHz, the UCAs' temporal and spatial distribution before and after the microbubbles fragmentation is monitored using the plane-wave transmission and reception at 400Hz and, simultaneously, the broadband noise emission during the microbubbles fragmentation is extracted using the backscattering of focused release bursts (destruction pulse) themselves on the linear array. Then, acquired radio frequency (RF) data are processed to draw parameters which can be correlated with the indicator of broadband noise emission level, namely inertial cavitation dose (ICD) and microbubble fragmentation efficiency, namely decay rate of microbubbles.

  4. Drug Delivery Systems for Platinum Drugs

    NASA Astrophysics Data System (ADS)

    Huynh, Vien T.; Scarano, Wei; Stenzel, Martina H.

    2013-09-01

    Since the discovery of cisplatin, drugs based on platinum, have made a significant impact on the treatment of various cancers. The administration of platinum drugs is however accompanied by significant side effects. This chapter discusses the types of drug delivery systems that have been developed in order to enable the targeted delivery while maintaining controlled temporal supply of the drug. The sizes of carriers range from nanometer to micrometer sized particles. The most common types of drug carriers are micelles, liposomes, nanoparticles, and dendrimers, but also a few microspheres have been developed. Most striking aspect of the delivery of platinum drugs is the possibility of physical encapsulation but also the binding of the drug to the polymer carrier coordinate covalent bond. Since platinum drugs have typically two permanent and two leaving ligands, the polymer can be part of either ligand. As the leaving ligand, the platinum drug is released often as cisplatin. If the polymer provides the functionality for the permanent ligand, a new macromolecular drug has been formed. In addition to the attachment of pt(II) drugs, recent offorts are devoted to the conjugation via the Pt((IV) prodrug.

  5. Photoresponsive nanoparticles for drug delivery

    PubMed Central

    Rwei, Alina Y.; Wang, Weiping; Kohane, Daniel S.

    2015-01-01

    Summary Externally triggerable drug delivery systems provide a strategy for the delivery of therapeutic agents preferentially to a target site, presenting the ability to enhance therapeutic efficacy while reducing side effects. Light is a versatile and easily tuned external stimulus that can provide spatiotemporal control. Here we will review the use of nanoparticles in which light triggers drug release or induces particle binding to tissues (phototargeting). PMID:26644797

  6. Phototriggered multifunctional drug delivery device

    NASA Astrophysics Data System (ADS)

    Härtner, S.; Kim, H.-C.; Hampp, N.

    2006-02-01

    Although phototriggered cleavage of chemical bonds induced by single-photon or two-photon-absorption provides attractive tools for controlled drug delivery, the choice of drugs is still limited by the linker system to which the therapeutic molecules need to be bound covalently. The use of a multifunctional linker system suitable for coupling a broad spectrum of drugs to the polymeric carrier will open a new field for drug delivery. We have developed a novel photocleavable multifunctional linker system based on coumarin dimers, whose unique photochemical behavior are well characterized. As a first example, an acrylic polymer-drug conjugate with antimetabolites is explored. The cleavage of the link between the drug and the polymer backbone is triggered by both single- as well as two-photon absorption. The release of the drug is investigated. It is possible to manufacture a polymeric drug delivery device with several drugs in different areas. In particular the two-photon-absorption induced process offers the possibility to address the drug of interest owing to the superior spatial resolution. The key to such devices is a versatile linker-system which can be adopted to work with various drug compounds.

  7. Mathematical modeling of drug delivery.

    PubMed

    Siepmann, J; Siepmann, F

    2008-12-08

    Due to the significant advances in information technology mathematical modeling of drug delivery is a field of steadily increasing academic and industrial importance with an enormous future potential. The in silico optimization of novel drug delivery systems can be expected to significantly increase in accuracy and easiness of application. Analogous to other scientific disciplines, computer simulations are likely to become an integral part of future research and development in pharmaceutical technology. Mathematical programs can be expected to be routinely used to help optimizing the design of novel dosage forms. Good estimates for the required composition, geometry, dimensions and preparation procedure of various types of delivery systems will be available, taking into account the desired administration route, drug dose and release profile. Thus, the number of required experimental studies during product development can be significantly reduced, saving time and reducing costs. In addition, the quantitative analysis of the physical, chemical and potentially biological phenomena, which are involved in the control of drug release, offers another fundamental advantage: The underlying drug release mechanisms can be elucidated, which is not only of academic interest, but a pre-requisite for an efficient improvement of the safety of the pharmaco-treatments and for effective trouble-shooting during production. This article gives an overview on the current state of the art of mathematical modeling of drug delivery, including empirical/semi-empirical and mechanistic realistic models. Analytical as well as numerical solutions are described and various practical examples are given. One of the major challenges to be addressed in the future is the combination of mechanistic theories describing drug release out of the delivery systems with mathematical models quantifying the subsequent drug transport within the human body in a realistic way. Ideally, the effects of the design

  8. Ultrasound Molecular Imaging and Drug Delivery.

    PubMed

    Caskey, Charles F

    2017-03-02

    Ultrasound is a rapidly advancing field with many emerging diagnostic and therapeutic applications. For diagnostics, new vascular targets are routinely identified and mature technologies are being translated to humans, while other recent innovations may bring about the creation of acoustic reporter genes and micron-scale resolution with ultrasound. As a cancer therapy, ultrasound is being explored as an adjuvant to immune therapies and to deliver acoustically or thermally active drugs to tumor regions. Ultrasound-enhanced delivery across the blood brain barrier (BBB) could potentially be very impactful for brain cancers and neurodegenerative diseases where the BBB often impedes the delivery of therapeutic molecules. In this minireview, we provide an overview of these topics in the field of ultrasound that are especially relevant to the interests of World Molecular Imaging Society.

  9. Implantable drug-delivery systems.

    PubMed

    Blackshear, P J

    1979-12-01

    Implantable drug-delivery systems are being developed to release drugs to the bloodstream continuously as well as free patients from being hospitalized to receive intravenous infusions or frequent injections. One technique is implantation of a pellet in the subcutaneous tissue so the pellet may be released by erosion. Drugs are also diffused through silicone rubber capsules but only polyacrylamide is able to release large molecules. Contraceptive rings containing progesterone and placed in the uterus or vagina and implanted silicone-rubber capsules use these principles. Disadvantages to the subcutaneous delivery of drugs include: 1) release of the drug in subcutaneous tissue rather than in the bloodstream directly; 2) entry into the circulatory system is controlled by surrounding blood supplies which vary with fat; 3) diffusion may be difficult due to dense layers of fibrous tissue; and 4) drug amounts cannot be readily regulated. The Ommaya reservoir uses a container with a self-sealing membrane implanted in the scalp and connected to a cerebral ventricle to treat forms of leukemia and fungal meningitis. Another development is an implantable disk-shaped infusion pump with 2 compartments, the outer one containing a propellant and the inner chamber containing the drug, holds 45 milliliters and releases about 1 milliliter/day. In the future these systems may release drugs in response to biochemical feedback or deliver a drug to 1 specific area.

  10. Nanoparticles for Brain Drug Delivery

    PubMed Central

    Masserini, Massimo

    2013-01-01

    The central nervous system, one of the most delicate microenvironments of the body, is protected by the blood-brain barrier (BBB) regulating its homeostasis. BBB is a highly complex structure that tightly regulates the movement of ions of a limited number of small molecules and of an even more restricted number of macromolecules from the blood to the brain, protecting it from injuries and diseases. However, the BBB also significantly precludes the delivery of drugs to the brain, thus, preventing the therapy of a number of neurological disorders. As a consequence, several strategies are currently being sought after to enhance the delivery of drugs across the BBB. Within this review, the recently born strategy of brain drug delivery based on the use of nanoparticles, multifunctional drug delivery systems with size in the order of one-billionth of meters, is described. The review also includes a brief description of the structural and physiological features of the barrier and of the most utilized nanoparticles for medical use. Finally, the potential neurotoxicity of nanoparticles is discussed, and future technological approaches are described. The strong efforts to allow the translation from preclinical to concrete clinical applications are worth the economic investments. PMID:25937958

  11. Drug delivery by lipid cochleates.

    PubMed

    Zarif, Leila

    2005-01-01

    Drug delivery technology has brought additional benefits to pharmaceuticals such as reduction in dosing frequency and side effects, as well as the extension of patient life. To address this need, cochleates, a precipitate obtained as a result of the interaction between phosphatidylserine and calcium, have been developed and proved to have potential in encapsulating and delivering small molecule drugs. This chapter discusses the molecules that can be encapsulated in a cochleate system and describes in detail the methodology that can be used to encapsulate and characterize hydrophobic drugs such as amphotericin B, a potent antifungal agent. Some efficacy data in animal models infected with candidiasis or aspergillosis are described as well.

  12. Mucoadhesive vaginal drug delivery systems.

    PubMed

    Acartürk, Füsun

    2009-11-01

    Vaginal delivery is an important route of drug administration for both local and systemic diseases. The vaginal route has some advantages due to its large surface area, rich blood supply, avoidance of the first-pass effect, relatively high permeability to many drugs and self-insertion. The traditional commercial preparations, such as creams, foams, gels, irrigations and tablets, are known to reside in the vaginal cavity for a relatively short period of time owing to the self-cleaning action of the vaginal tract, and often require multiple daily doses to ensure the desired therapeutic effect. The vaginal route appears to be highly appropriate for bioadhesive drug delivery systems in order to retain drugs for treating largely local conditions, or for use in contraception. In particular, protection against sexually-transmitted diseases is critical. To prolong the residence time in the vaginal cavity, bioadhesive therapeutic systems have been developed in the form of semi-solid and solid dosage forms. The most commonly used mucoadhesive polymers that are capable of forming hydrogels are synthetic polyacrylates, polycarbophil, chitosan, cellulose derivatives (hydroxyethycellulose, hydroxy-propylcellulose and hydroxypropylmethylcellulose), hyaluronic acid derivatives, pectin, tragacanth, carrageenan and sodium alginate. The present article is a comprehensive review of the patents related to mucoadhesive vaginal drug delivery systems.

  13. [Diagnostic possibilities in drug allergies].

    PubMed

    Pichler, W J

    1993-06-12

    Drug allergies can be subclassified into three subgroups, which differ in their pathophysiology and require different diagnostic steps: (1.) classical drug allergies, which are directed to the drug itself, a reactive compound of the drug, or some contamination of it; (2.) pseudo-allergic reactions, which are caused by non-immune mediated degranulation of mast cells and basophils, and (3.) autoimmune reactions, in which the drug elicits an immune reaction to autologous structures. A very detailed (criminalistic) history has the highest priority for clarification of a suspected drug allergy. In addition, skin tests, serological tests and the lymphocyte transformation test may be useful. It is necessary to differentiate between tests which imitate the drug elicited allergic reaction (i.e. Coombs test in drug induced hemolytic anemia) and tests which only indicate sensitization. The detection of IgG antibodies to drugs bound to various carriers (nitrocellulose, sepharose) is controversial and the meaning of a positive result is unclear. Therefore, this test cannot be recommended for the routine diagnosis of drug allergy. Special emphasis is placed on the value of the lymphocyte transformation test, which is more often positive than other test procedures and may sometimes strengthen the suspicion that a disease may be caused by a drug. Nevertheless, this test requires cautious interpretation as it may be falsely positive as well as falsely negative.

  14. Microfabricated injectable drug delivery system

    DOEpatents

    Krulevitch, Peter A.; Wang, Amy W.

    2002-01-01

    A microfabricated, fully integrated drug delivery system capable of secreting controlled dosages of multiple drugs over long periods of time (up to a year). The device includes a long and narrow shaped implant with a sharp leading edge for implantation under the skin of a human in a manner analogous to a sliver. The implant includes: 1) one or more micromachined, integrated, zero power, high and constant pressure generating osmotic engine; 2) low power addressable one-shot shape memory polymer (SMP) valves for switching on the osmotic engine, and for opening drug outlet ports; 3) microfabricated polymer pistons for isolating the pressure source from drug-filled microchannels; 4) multiple drug/multiple dosage capacity, and 5) anisotropically-etched, atomically-sharp silicon leading edge for penetrating the skin during implantation. The device includes an externally mounted controller for controlling on-board electronics which activates the SMP microvalves, etc. of the implant.

  15. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  16. Food, physiology and drug delivery.

    PubMed

    Varum, F J O; Hatton, G B; Basit, A W

    2013-12-05

    Gastrointestinal physiology is dynamic and complex at the best of times, and a multitude of known variables can affect the overall bioavailability of drugs delivered via the oral route. Yet while the influences of food and beverage intake as just two of these variables on oral drug delivery have been extensively documented in the wider literature, specific information on their effects remains sporadic, and is not so much contextually reviewed. Food co-ingestion with oral dosage forms can mediate several changes to drug bioavailability, yet the precise mechanisms underlying this have yet to be fully elucidated. Likewise, the often detrimental effects of alcohol (ethanol) on dosage form performance have been widely observed experimentally, but knowledge of which has only moderately impacted on clinical practice. Here, we attempt to piece together the available subject matter relating to the influences of both solid and liquid foodstuffs on the gastrointestinal milieu and the implications for oral drug delivery, with particular emphasis on the behaviour of modified-release dosage forms, formulation robustness and drug absorption. Providing better insight into these influences, and exemplifying cases where formulations have been developed or modified to circumvent their associated problems, can help to appropriately direct the design of future in vitro digestive modelling systems as well as oral dosage forms resilient to these effects. Moreover, this will help to better our understanding of the impact of food and alcohol intake on normal gut behaviour and function.

  17. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  18. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Superhydrophobic materials for drug delivery

    NASA Astrophysics Data System (ADS)

    Yohe, Stefan Thomas

    Superhydrophobicity is a property of material surfaces reflecting the ability to maintain air at the solid-liquid interface when in contact with water. These surfaces have characteristically high apparent contact angles, by definition exceeding 150°, as a result of the composite material-air surface formed under an applied water droplet. Superhydrophobic surfaces were first discovered on naturally occurring substrates, and have subsequently been fabricated in the last several decades to harness these favorable surface properties for a number of emerging applications, including their use in biomedical settings. This work describes fabrication and characterization of superhydrophobic 3D materials, as well as their use as drug delivery devices. Superhydrophobic 3D materials are distinct from 2D superhydrophobic surfaces in that air is maintained not just at the surface of the material, but also within the bulk. When the superhydrophobic 3D materials are submerged in water, water infiltrates slowly and continuously as a new water-air-material interface is formed with controlled displacement of air. Electrospinning and electrospraying are used to fabricate superhydrophobic 3D materials utilizing blends of the biocompatible polymers poly(epsilon-caprolactone) and poly(caprolactone-co-glycerol monostearate) (PGC-C18). PGC-C18 is significantly more hydrophobic than PCL (contact angle of 116° versus 83° for flat materials), and further additions of PGC-C18 into electrospun meshes and electrosprayed coatings affords increased stability of the entrapped air layer. For example, PCL meshes alone (500 mum thick) take 10 days to fully wet, and with 10% or 30% PGC-C18 addition wetting rates are dramatically slowed to 60% wetted by 77 days and 4% by 75 days, respectively. Stability of the superhydrophobic materials can be further probed with a variety of physio-chemical techniques, including pressure, surfactant containing solutions, and solvents of varying surface tension

  20. Filled carbon nanotubes in biomedical imaging and drug delivery.

    PubMed

    Martincic, Markus; Tobias, Gerard

    2015-04-01

    Carbon nanotubes have been advocated as promising candidates in the biomedical field in the areas of diagnosis and therapy. In terms of drug delivery, the use of carbon nanotubes can overcome some limitations of 'free' drugs by improving the formulation of poorly water-soluble drugs, allowing targeted delivery and even enabling the co-delivery of two or more drugs for combination therapy. Two different approaches are currently being explored for the delivery of diagnostic and therapeutic agents by carbon nanotubes, namely attachment of the payload to the external sidewalls or encapsulation into the inner cavities. Although less explored, the latter confers additional stability to the chosen diagnostic or therapeutic agents, and leaves the backbone structure of the nanotubes available for its functionalization with dispersing and targeting moieties. Several drug delivery systems and diagnostic agents have been developed in the last years employing the inner tubular cavities of carbon nanotubes. The research discussed in this review focuses on the use of carbon nanotubes that contain in their interior drug molecules and diagnosis-related compounds. The approaches employed for the development of such nanoscale vehicles along with targeting and releasing strategies are discussed. The encapsulation of both biomedical contrast agents and drugs inside carbon nanotubes is further expanding the possibilities to allow an early diagnosis and treatment of diseases.

  1. Thermosensitive polymers for drug delivery

    SciTech Connect

    Gutowska, A.; Kim, Sung Wan

    1996-12-31

    Thermosensitive polymers (TSP) demonstrating temperature-dependent temperature-dependent swelling in water have been extensively studied in recent years. Their molecular and physical properties have been tailored for a variety of biomedical and engineering uses. This presentation will discuss TSP based on poly(N-isopropylacrylamide) and its crosslinked networks modified with hydrophobic or hydrophilic components by copolymerization blending and formation of interpenetrating polymer networks (IPNs). TSP designed for three different areas of drug delivery will be presented. First, heparin releasing temperature-sensitive polymers for the prevention of surface induced thrombosis will be presented as an example of a local macromolecular delivery from a surface of a medical device. Second, a new oral delivery device based on a novel mechanical squeezing concept, utilizing specific swelling-deswelling characteristics of temperature- and temperature/pH-sensitive hydrogels will be described. These hydrogels were synthesized to exhibit a controlled swelling-deswelling kinetics, hence a variety of release profiles may be generated: a delayed, a zero-order or an {open_quotes}on-off{close_quotes} release profile. Finally, thermally reversible polymeric gels as an extracellular matrix for the entrapment of pancreatic islet cells in biohybrid artificial pancreas for insulin delivery will be discussed.

  2. Microspheres and Nanotechnology for Drug Delivery.

    PubMed

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye.

  3. Acoustic behavior of microbubbles and implications for drug delivery.

    PubMed

    Kooiman, Klazina; Vos, Hendrik J; Versluis, Michel; de Jong, Nico

    2014-06-01

    Ultrasound contrast agents are valuable in diagnostic ultrasound imaging, and they increasingly show potential for drug delivery. This review focuses on the acoustic behavior of flexible-coated microbubbles and rigid-coated microcapsules and their contribution to enhanced drug delivery. Phenomena relevant to drug delivery, such as non-spherical oscillations, shear stress, microstreaming, and jetting will be reviewed from both a theoretical and experimental perspective. Further, the two systems for drug delivery, co-administration and the microbubble as drug carrier system, are reviewed in relation to the microbubble behavior. Finally, future prospects are discussed that need to be addressed for ultrasound contrast agents to move from a pre-clinical tool into a clinical setting.

  4. Drug delivery systems from nose to brain.

    PubMed

    Misra, Ambikanandan; Kher, Gitanjali

    2012-09-01

    The treatment of brain disorders is particularly challenging due to the presence of a variety of formidable obstacles to deliver drugs selectively and effectively to the brain. Blood-brain-barrier (BBB) constitutes the major obstacle to the uptake of drugs into the brain following systemic administration. Intranasal delivery offers a non-invasive and convenient method to bypass the BBB and delivery of therapeutics directly to the brain. The review discusses the potential of intranasal route to deliver drugs to the brain, the mechanisms and pathways of direct nose to brain drug transport, the various factors influencing transnasal drug absorption, the conventional and novel intranasal drug delivery systems, the various intranasal drug delivery techniques and devices, and examples of brain drug transport that have been feasible in treating various brain disorders. Moreover, products on the market, investigational drugs, and the author's perceptions about the prospect of intranasal delivery for treating brain disorders are also been discussed.

  5. Ocular drug delivery systems: An overview

    PubMed Central

    Patel, Ashaben; Cholkar, Kishore; Agrahari, Vibhuti; Mitra, Ashim K

    2014-01-01

    The major challenge faced by today’s pharmacologist and formulation scientist is ocular drug delivery. Topical eye drop is the most convenient and patient compliant route of drug administration, especially for the treatment of anterior segment diseases. Delivery of drugs to the targeted ocular tissues is restricted by various precorneal, dynamic and static ocular barriers. Also, therapeutic drug levels are not maintained for longer duration in target tissues. In the past two decades, ocular drug delivery research acceleratedly advanced towards developing a novel, safe and patient compliant formulation and drug delivery devices/techniques, which may surpass these barriers and maintain drug levels in tissues. Anterior segment drug delivery advances are witnessed by modulation of conventional topical solutions with permeation and viscosity enhancers. Also, it includes development of conventional topical formulations such as suspensions, emulsions and ointments. Various nanoformulations have also been introduced for anterior segment ocular drug delivery. On the other hand, for posterior ocular delivery, research has been immensely focused towards development of drug releasing devices and nanoformulations for treating chronic vitreoretinal diseases. These novel devices and/or formulations may help to surpass ocular barriers and associated side effects with conventional topical drops. Also, these novel devices and/or formulations are easy to formulate, no/negligibly irritating, possess high precorneal residence time, sustain the drug release, and enhance ocular bioavailability of therapeutics. An update of current research advancement in ocular drug delivery necessitates and helps drug delivery scientists to modulate their think process and develop novel and safe drug delivery strategies. Current review intends to summarize the existing conventional formulations for ocular delivery and their advancements followed by current nanotechnology based formulation developments

  6. Device-assisted transdermal drug delivery.

    PubMed

    Lee, Hyunjae; Song, Changyeong; Baik, Seungmin; Kim, Dokyoon; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-09-01

    Transdermal drug delivery is a prospective drug delivery strategy to complement the limitations of conventional drug delivery systems including oral and injectable methods. This delivery route allows both convenient and painless drug delivery and a sustained release profile with reduced side effects. However, physiological barriers in the skin undermine the delivery efficiency of conventional patches, limiting drug candidates to small-molecules and lipophilic drugs. Recently, transdermal drug delivery technology has advanced from unsophisticated methods simply relying on natural diffusion to drug releasing systems that dynamically respond to external stimuli. Furthermore, physical barriers in the skin have been overcome using microneedles, and controlled delivery by wearable biosensors has been enabled ultimately. In this review, we classify the evolution of advanced drug delivery strategies based on generations and provide a comprehensive overview. Finally, the recent progress in advanced diagnosis and therapy through customized drug delivery systems based on real-time analysis of physiological cues is highlighted. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Colloidal drug delivery systems in vaccine delivery.

    PubMed

    Beg, Sarwar; Samad, Abdus; Nazish, Iram; Sultana, Ruksar; Rahman, Mahfoozur; Ahmad, Md Zaki; Akbar, Md

    2013-01-01

    Vaccines play a vital role in the field of community medicine to combat against several diseases of human existence. Vaccines primarily trigger the acquired immune system to develop long-lasting immunity against pathogens. Conventional approaches for vaccine delivery lacks potential to target a particular antigen to develop acquired immunity by specific antibodies. Recent advancements in vaccine delivery showed that inclusion of adjuvants in vaccine formulations or delivery of them in a carrier helps in achieving desired targeting ability, reducing the immunogenicity and significant augmentation in the immune response. Colloidal carriers (liposomes, niosomes, microspheres, proteosomes, virosomes and virus like particles (VLPs), antigen cochleates, dendrimers and carbon nanotubes) have been widely explored for vaccine delivery. Further, surface engineering of these carriers with ligands, functional moieties and monoclonal antibodies tend to enhance the immune recognition potential of vaccines by differentiation of antigen specific memory T-cells. The current review, therefore, provides an updated account on the recent advancements in various colloidal delivery systems in vaccine delivery, outlining the mechanism of immune response initiated by them along with potential applications and marketed instances in an explicit manner.

  8. Integrated microsystems for controlled drug delivery.

    PubMed

    Razzacki, S Zafar; Thwar, Prasanna K; Yang, Ming; Ugaz, Victor M; Burns, Mark A

    2004-02-10

    Efficient drug delivery and administration are needed to realize the full potential of molecular therapeutics. Integrated microsystems that incorporate extremely fast sensory and actuation capabilities can fulfill this need for efficient drug delivery tools. Photolithographic technologies borrowed from the semiconductor industry enable mass production of such microsystems. Rapid prototyping allows for the quick development of customized devices that would accommodate for diverse therapeutic requirements. This paper reviews the capabilities of existing microfabrication and their applications in controlled drug delivery microsystems. The next generation of drug delivery systems--fully integrated and self-regulating--would not only improve drug administration, but also revolutionize the health-care industry.

  9. Ungual and transungual drug delivery.

    PubMed

    Shivakumar, H N; Juluri, Abhishek; Desai, B G; Murthy, S Narasimha

    2012-08-01

    Topical therapy is desirable in treatment of nail diseases like onychomycosis (fungal infection of nail) and psoriasis. The topical treatment avoids the adverse effects associated with systemic therapy, thereby enhancing the patient compliance and reducing the treatment cost. However the effectiveness of the topical therapies has been limited due to the poor permeability of the nail plate to topically applied therapeutic agents. Research over the past one decade has been focused on improving the transungual permeability by means of chemical treatment, penetration enhancers, mechanical and physical methods. The present review is an attempt to discuss the different physical and chemical methods employed to increase the permeability of the nail plate. Minimally invasive electrically mediated techniques such as iontophoresis have gained success in facilitating the transungual delivery of actives. In addition drug transport across the nail plate has been improved by filing the dorsal surface of the nail plate prior to application of topical formulation. But attempts to improve the trans-nail permeation using transdermal chemical enhancers have failed so far. Attempts are on to search suitable physical enhancement techniques and chemical transungual enhancers in view to maximize the drug delivery across the nail plate.

  10. Ligand-Targeted Drug Delivery.

    PubMed

    Srinivasarao, Madduri; Low, Philip S

    2017-09-12

    Safety and efficacy constitute the major criteria governing regulatory approval of any new drug. The best method to maximize safety and efficacy is to deliver a proven therapeutic agent with a targeting ligand that exhibits little affinity for healthy cells but high affinity for pathologic cells. The probability of regulatory approval can conceivably be further enhanced by exploiting the same targeting ligand, conjugated to an imaging agent, to select patients whose diseased tissues display sufficient targeted receptors for therapeutic efficacy. The focus of this Review is to summarize criteria that must be met during design of ligand-targeted drugs (LTDs) to achieve the required therapeutic potency with minimal toxicity. Because most LTDs are composed of a targeting ligand (e.g., organic molecule, aptamer, protein scaffold, or antibody), spacer, cleavable linker, and therapeutic warhead, criteria for successful design of each component will be described. Moreover, because obstacles to successful drug design can differ among human pathologies, limitations to drug delivery imposed by the unique characteristics of different diseases will be considered. With the explosion of genomic and transcriptomic data providing an ever-expanding selection of disease-specific targets, and with tools for high-throughput chemistry offering an escalating diversity of warheads, opportunities for innovating safe and effective LTDs has never been greater.

  11. Intelligent hydrogels for drug delivery system.

    PubMed

    He, Liumin; Zuo, Qinhua; Xie, Shasha; Huang, Yuexin; Xue, Wei

    2011-09-01

    Intelligent hydrogel, also known as smart hydrogels, are materials with great potential for development in drug delivery system. Intelligent hydrogel also has the ability to perceive as a signal structure change and stimulation. The review introduces the temperature-, pH-, electric signal-, biochemical molecule-, light- and pressure- sensitive hydrogels. Finally, we described the application of intelligent hydrogel in drug delivery system and the recent patents involved for hydrogel in drug delivery.

  12. Novel central nervous system drug delivery systems.

    PubMed

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  13. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring.

    PubMed

    Sennoga, Charles A; Kanbar, Emma; Auboire, Laurent; Dujardin, Paul-Armand; Fouan, Damien; Escoffre, Jean-Michel; Bouakaz, Ayache

    2017-09-01

    Recent developments in ultrasound imaging and ultrasound contrast agents (UCAs) improved diagnostic confidence in echography and set into motion their combined use as a tool for drug delivery and therapeutic monitoring. Non-invasive, precise and targeted delivery of drug molecules to pathological tissues by employing different mechanisms of drug release is becoming feasible. Areas covered: We sought to describe: the nature and features of UCAs; outline current contrast-specific imaging modes; before describing a variety of strategies for using ultrasound and microbubbles as a drug delivery system. Our expert opinion focusses on results and prospects of using ultrasound and microbubbles as a dual modality for drug delivery and therapeutic monitoring. Expert opinion: Today, ultrasound and microbubbles present a realistic prospect as drug delivery tools that have been demonstrated in a variety of animal models and clinical indications. Besides delivering drugs, ultrasound and microbubbles have demonstrated added value through therapeutic monitoring and assessment. Successful evaluation of the sonoporation mechanism(s), ultrasound parameters, drug type and dose will need to be addressed before translating this technology for clinic use. Ultimately, the development of a strategy for monitoring targeted delivery and its implementation in clinical practice would advance therapeutic treatment to a new qualitative level.

  14. Breathable Medicine: Pulmonary Mode of Drug Delivery.

    PubMed

    Gandhimathi, Chinnasamy; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Sridhar, Radhakrishnan; Tay, Samuel Sam Wah; Ramakrishna, Seeram; Kumar, Srinivasan Dinesh

    2015-04-01

    Pharmaceutically active compounds require different modes of drug delivery systems to accomplish therapeutic activity without loss of its activity and lead to exhibit no adverse effects. Originating from ancient days, pulmonary mode of drug delivery is gaining much importance compared to other modes of drug delivery systems with respect to specific diseases. Pulmonary drug delivery is a non-invasive route for local and systemic therapies together with more patient convenience, compliance and is a needleless system. In this review, we addressed the vaccine delivery via non- or minimally invasive routes. Polymeric nanoparticles are preferred for use in the pulmonary delivery devices owing to a prolonged retention in lungs. Small site for absorption, mucociliary clearance, short residence time and low bioavailability are some of the limitations in pulmonary drug delivery have been resolved by generating micro- and nano-sized aerosol particles. We have classified the breathable medicine on the basis of available devices for inhalation and also prominent diseases treated through pulmonary mode of drug delivery. Owing to increasing toxicity of pharmacological drugs, the use of natural medicines has been rapidly gaining importance recently. The review article describes breathability of medicines or the pulmonary mode of drug delivery system and their drug release profile, absorption, distribution and efficacy to cure asthma and diabetes.

  15. Magnetic Resonance-Guided Drug Delivery.

    PubMed

    Mikhail, Andrew S; Partanen, Ari; Yarmolenko, Pavel; Venkatesan, Aradhana M; Wood, Bradford J

    2015-11-01

    The use of clinical imaging modalities for the guidance of targeted drug delivery systems, known as image-guided drug delivery (IGDD), has emerged as a promising strategy for enhancing antitumor efficacy. MR imaging is particularly well suited for IGDD applications because of its ability to acquire images and quantitative measurements with high spatiotemporal resolution. The goal of IGDD strategies is to improve treatment outcomes by facilitating planning, real-time guidance, and personalization of pharmacologic interventions. This article reviews basic principles of targeted drug delivery and highlights the current status, emerging applications, and future paradigms of MR-guided drug delivery.

  16. Application of Various Types of Liposomes in Drug Delivery Systems

    PubMed Central

    Alavi, Mehran; Karimi, Naser; Safaei, Mohsen

    2017-01-01

    Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes. PMID:28507932

  17. Application of Various Types of Liposomes in Drug Delivery Systems.

    PubMed

    Alavi, Mehran; Karimi, Naser; Safaei, Mohsen

    2017-04-01

    Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes.

  18. Ultrasound-Propelled Nanocups for Drug Delivery

    PubMed Central

    Kwan, James J; Myers, Rachel; Coviello, Christian M; Graham, Susan M; Shah, Apurva R; Stride, Eleanor; Carlisle, Robert C; Coussios, Constantin C

    2015-01-01

    Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications. PMID:26296985

  19. Collagen macromolecular drug delivery systems

    SciTech Connect

    Gilbert, D.L.

    1988-01-01

    The objective of this study was to examine collagen for use as a macromolecular drug delivery system by determining the mechanism of release through a matrix. Collagen membranes varying in porosity, crosslinking density, structure and crosslinker were fabricated. Collagen characterized by infrared spectroscopy and solution viscosity was determined to be pure and native. The collagen membranes were determined to possess native vs. non-native quaternary structure and porous vs. dense aggregate membranes by electron microscopy. Collagen monolithic devices containing a model macromolecule (inulin) were fabricated. In vitro release rates were found to be linear with respect to t{sup {1/2}} and were affected by crosslinking density, crosslinker and structure. The biodegradation of the collagen matrix was also examined. In vivo biocompatibility, degradation and {sup 14}C-inulin release rates were evaluated subcutaneously in rats.

  20. Drug delivery systems: An updated review

    PubMed Central

    Tiwari, Gaurav; Tiwari, Ruchi; Sriwastawa, Birendra; Bhati, L; Pandey, S; Pandey, P; Bannerjee, Saurabh K

    2012-01-01

    Drug delivery is the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals. For the treatment of human diseases, nasal and pulmonary routes of drug delivery are gaining increasing importance. These routes provide promising alternatives to parenteral drug delivery particularly for peptide and protein therapeutics. For this purpose, several drug delivery systems have been formulated and are being investigated for nasal and pulmonary delivery. These include liposomes, proliposomes, microspheres, gels, prodrugs, cyclodextrins, among others. Nanoparticles composed of biodegradable polymers show assurance in fulfilling the stringent requirements placed on these delivery systems, such as ability to be transferred into an aerosol, stability against forces generated during aerosolization, biocompatibility, targeting of specific sites or cell populations in the lung, release of the drug in a predetermined manner, and degradation within an acceptable period of time. PMID:23071954

  1. Optimal stent design for drug delivery.

    PubMed

    Rogers, Campbell D K

    2004-01-01

    The efficacy and safety of drug-eluting coronary stents might differ depending on the pharmacologic agents and stent delivery systems used. Recent research has focused on the various constituents of drug-delivery stents, including the stent backbone, materials used as drug-delivery vehicles, and the physicochemical properties of the pharmacotherapeutic agents themselves. Metal stents coated with an outer layer of polymer (bioabsorbable or non-bioabsorbable) can be drug-loaded, thus providing more controlled and sustained drug delivery and allowing more optimal drug-tissue interactions. Among the next generation of drug-eluting stents will be a stent that uses the non-bioabsorbable polymer phosphorylcholine to release the sirolimus analogue ABT-578; another stent will use a highly deliverable cobalt-chromium metal alloy stent platform and, for the first time, a bioabsorbable polymeric coating (thin-film polylactic acid) for drug encapsulation and release.

  2. Refilling drug delivery depots through the blood.

    PubMed

    Brudno, Yevgeny; Silva, Eduardo A; Kearney, Cathal J; Lewin, Sarah A; Miller, Alex; Martinick, Kathleen D; Aizenberg, Michael; Mooney, David J

    2014-09-02

    Local drug delivery depots have significant clinical utility, but there is currently no noninvasive technique to refill these systems once their payload is exhausted. Inspired by the ability of nanotherapeutics to target specific tissues, we hypothesized that blood-borne drug payloads could be modified to home to and refill hydrogel drug delivery systems. To address this possibility, hydrogels were modified with oligodeoxynucleotides (ODNs) that provide a target for drug payloads in the form of free alginate strands carrying complementary ODNs. Coupling ODNs to alginate strands led to specific binding to complementary-ODN-carrying alginate gels in vitro and to injected gels in vivo. When coupled to a drug payload, sequence-targeted refilling of a delivery depot consisting of intratumor hydrogels completely abrogated tumor growth. These results suggest a new paradigm for nanotherapeutic drug delivery, and this concept is expected to have applications in refilling drug depots in cancer therapy, wound healing, and drug-eluting vascular grafts and stents.

  3. Implantable Devices for Sustained, Intravesical Drug Delivery

    PubMed Central

    2016-01-01

    In clinical settings, intravesical instillation of a drug bolus is often performed for the treatment of bladder diseases. However, it requires repeated instillations to extend drug efficacy, which may result in poor patient compliance. To alleviate this challenge, implantable devices have been developed for the purpose of sustained, intravesical drug delivery. In this review, we briefly summarize the current trend in the development of intravesical drug-delivery devices. We also introduce the most recently developed devices with strong potential for intravesical drug-delivery applications. PMID:27377941

  4. Permeation enhancer strategies in transdermal drug delivery.

    PubMed

    Marwah, Harneet; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Today, ∼74% of drugs are taken orally and are not found to be as effective as desired. To improve such characteristics, transdermal drug delivery was brought to existence. This delivery system is capable of transporting the drug or macromolecules painlessly through skin into the blood circulation at fixed rate. Topical administration of therapeutic agents offers many advantages over conventional oral and invasive techniques of drug delivery. Several important advantages of transdermal drug delivery are prevention from hepatic first pass metabolism, enhancement of therapeutic efficiency and maintenance of steady plasma level of the drug. Human skin surface, as a site of drug application for both local and systemic effects, is the most eligible candidate available. New controlled transdermal drug delivery systems (TDDS) technologies (electrically-based, structure-based and velocity-based) have been developed and commercialized for the transdermal delivery of troublesome drugs. This review article covers most of the new active transport technologies involved in enhancing the transdermal permeation via effective drug delivery system.

  5. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery.

    PubMed

    Sharma, Ashok Kumar; Gothwal, Avinash; Kesharwani, Prashant; Alsaab, Hashem; Iyer, Arun K; Gupta, Umesh

    2017-02-01

    Dendrimers are novel nanoarchitectures with unique properties including a globular 3D shape, a monodispersed unimicellar nature and a nanometric size range. The availability of multiple peripheral functional groups and tunable surface engineering enable the facile modification of the dendrimer surface with different therapeutic drugs, diagnostic agents and targeting ligands. Drug encapsulation, and solubilizing and passive targeting also equally contribute to the therapeutic use of dendrimers. In this review, we highlight recent advances in the delivery of anticancer drugs using dendrimers, as well as other biomedical and diagnostic applications. Taken together, the immense potential and utility of dendrimers are envisaged to have a significant positive impact on the growing arena of drug delivery and targeting.

  6. Prodrug Strategies in Ocular Drug Delivery

    PubMed Central

    Barot, Megha; Bagui, Mahuya; Gokulgandhi, Mitan R.; Mitra, Ashim K.

    2015-01-01

    Poor bioavailability of topically instilled drug is the major concern in the field of ocular drug delivery. Efflux transporters, static and dynamic ocular barriers often possess rate limiting factors for ocular drug therapy. Different formulation strategies like suspension, ointment, gels, nanoparticles, implants, dendrimers and liposomes have been employed in order to improve drug permeation and retention by evading rate limiting factors at the site of absorption. Chemical modification such as prodrug targeting various nutrient transporters (amino acids, peptide and vitamin) has evolved a great deal ofintereSt to improve ocular drug delivery. In this review, we have discussed various prodrug strategies which have been widely applied for enhancing therapeutic efficacy of ophthalmic drugs. The purpose of this review is to provide an update on the utilization of prodrug concept in ocular drug delivery. In addition, this review will highlight ongoing academic and industrial research and development in terms of ocular prodrug design and delivery. PMID:22530907

  7. Micelles and nanoparticles for ultrasonic drug and gene delivery.

    PubMed

    Husseini, Ghaleb A; Pitt, William G

    2008-06-30

    Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent's side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from the collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nanocarriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means.

  8. Micelles and Nanoparticles for Ultrasonic Drug and Gene Delivery

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    Drug delivery research employing micelles and nanoparticles has expanded in recent years. Of particular interest is the use of these nanovehicles that deliver high concentrations of cytotoxic drugs to diseased tissues selectively, thus reducing the agent’s side effects on the rest of the body. Ultrasound, traditionally used in diagnostic medicine, is finding a place in drug delivery in connection with these nanoparticles. In addition to their non-invasive nature and the fact that they can be focused on targeted tissues, acoustic waves have been credited with releasing pharmacological agents from nanocarriers, as well as rendering cell membranes more permeable. In this article, we summarize new technologies that combine the use of nanoparticles with acoustic power both in drug and gene delivery. Ultrasonic drug delivery from micelles usually employs polyether block copolymers, and has been found effective in vivo for treating tumors. Ultrasound releases drug from micelles, most probably via shear stress and shock waves from collapse of cavitation bubbles. Liquid emulsions and solid nanoparticles are used with ultrasound to deliver genes in vitro and in vivo. The small packaging allows nanoparticles to extravasate into tumor tissues. Ultrasonic drug and gene delivery from nano-carriers has tremendous potential because of the wide variety of drugs and genes that could be delivered to targeted tissues by fairly non-invasive means. PMID:18486269

  9. Nanoparticles for intracellular-targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Paulo, Cristiana S. O.; Pires das Neves, Ricardo; Ferreira, Lino S.

    2011-12-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  10. Microneedles: an emerging transdermal drug delivery system.

    PubMed

    Bariya, Shital H; Gohel, Mukesh C; Mehta, Tejal A; Sharma, Om Prakash

    2012-01-01

    One of the thrust areas in drug delivery research is transdermal drug delivery systems (TDDS) due to their characteristic advantages over oral and parenteral drug delivery systems. Researchers have focused their attention on the use of microneedles to overcome the barrier of the stratum corneum. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Recent advances in the development of microneedles are discussed in this review for the benefit of young scientists and to promote research in the area. Microneedles are fabricated using a microelectromechanical system employing silicon, metals, polymers or polysaccharides. Solid coated microneedles can be used to pierce the superficial skin layer followed by delivery of the drug. Advances in microneedle research led to development of dissolvable/degradable and hollow microneedles to deliver drugs at a higher dose and to engineer drug release. Iontophoresis, sonophoresis and electrophoresis can be used to modify drug delivery when used in concern with hollow microneedles. Microneedles can be used to deliver macromolecules such as insulin, growth hormones, immunobiologicals, proteins and peptides. Microneedles containing 'cosmeceuticals' are currently available to treat acne, pigmentation, scars and wrinkles, as well as for skin tone improvement. Literature survey and patents filled revealed that microneedle-based drug delivery system can be explored as a potential tool for the delivery of a variety of macromolecules that are not effectively delivered by conventional transdermal techniques. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  11. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  12. [Site-specific drug delivery systems. I. Colon targeted delivery].

    PubMed

    Szente, Virág; Zelkó, Romána

    2007-01-01

    Colon specific drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon like Chron's disease, ulcerative colitis, irritable bowel syndrome, cancer or infections, but also for the potential it holds for the systemic delivery of proteins (e.g. insulin) and therapeutic peptides. These systems enable the protection of healthy tissues from the side effects of drugs and the drug intake of targeted cells, as well. The formulation of colon specific drug delivery systems is of great impact in the case of diseases having circadian rhythm (midnight gerd). Such circadian rhythm release drug delivery systems are designed to provide a plasma concentration--time profile, which varies according to physiological need at different times during the dosing period, i.e., mimicking the circadian rhythm and severity/manifestation of gastric acid secretion (and/or midnight gerd). In general four primary approaches have been proposed for colon targeted delivery namely pH-dependent systems, time dependent systems, colonic microflora activated systems and prodrugs.

  13. Mechanisms Underlying Drug Delivery to Peripheral Arteries.

    PubMed

    Li, Jun; Tzafriri, Rami; Patel, Sandeep M; Parikh, Sahil A

    2017-04-01

    Delivery of drugs onto arterial targets via endovascular devices commands several principles: dissolution, diffusion, convection, drug binding, barriers to absorption, and interaction between the drug, delivery vehicle, and accepting arterial wall. The understanding of drug delivery in the coronary vasculature is vast; there is ongoing work needed in the peripheral arteries. There are differences that account for some failures of application of coronary technology into the peripheral vascular space. Breakthroughs in peripheral vascular interventional techniques building on current technologies require investigators willing to acknowledge the similarities and differences between these different vascular territories, while developing technologies adapted for peripheral arteries.

  14. Polysaccharides in colon-specific drug delivery.

    PubMed

    Sinha, V R; Kumria, R

    2001-08-14

    Natural polysaccharides are now extensively used for the development of solid dosage forms for delivery of drug to the colon. The rationale for the development of a polysaccharide based delivery system for colon is the presence of large amounts of polysaccharidases in the human colon as the colon is inhabited by a large number and variety of bacteria which secrete many enzymes e.g. beta-D-glucosidase, beta-D-galactosidase, amylase, pectinase, xylanase, beta-D-xylosidase, dextranase, etc. Various major approaches utilizing polysaccharides for colon-specific delivery are fermentable coating of the drug core, embedding of the drug in biodegradable matrix, formulation of drug-saccharide conjugate (prodrugs). A large number of polysaccharides have already been studied for their potential as colon-specific drug carrier systems, such as chitosan, pectin, chondroitin sulphate, cyclodextrin, dextrans, guar gum, inulin, amylose and locust bean gum. Recent efforts and approaches exploiting these polysaccharides in colon-specific drug delivery are discussed.

  15. Intravenous drug delivery in neonates: lessons learnt.

    PubMed

    Sherwin, Catherine M T; Medlicott, Natalie J; Reith, David M; Broadbent, Roland S

    2014-06-01

    Intravenous drug administration presents a series of challenges that relate to the pathophysiology of the neonate and intravenous infusion systems in neonates. These challenges arise from slow intravenous flow rates, small drug volume, dead space volume and limitations on the flush volume in neonates. While there is a reasonable understanding of newborn pharmacokinetics, an appreciation of the substantial delay and variability in the rate of drug delivery from the intravenous line is often lacking. This can lead to difficulties in accurately determining the pharmacokinetic and pharmacodynamic relationship of drugs in the smallest patients. The physical variables that affect the passage of drugs through neonatal lines need to be further explored in order to improve our understanding of their impact on the delivery of drugs by this route in neonates. Through careful investigation, the underlying causes of delayed drug delivery may be identified and administration protocols can then be modified to ensure predictable, appropriate drug input kinetics.

  16. Application of liposomes in medicine and drug delivery.

    PubMed

    Daraee, Hadis; Etemadi, Ali; Kouhi, Mohammad; Alimirzalu, Samira; Akbarzadeh, Abolfazl

    2016-01-01

    Liposomes provide an established basis for the sustainable development of different commercial products for treatment of medical diseases by the smart delivery of drugs. The industrial applications include the use of liposomes as drug delivery vehicles in medicine, adjuvants in vaccination, signal enhancers/carriers in medical diagnostics and analytical biochemistry, solubilizers for various ingredients as well as support matrices for various ingredients and penetration enhancers in cosmetics. In this review, we summarize the main applications and liposome-based commercial products that are currently used in the medical field.

  17. Nanomedicine and drug delivery: a mini review

    NASA Astrophysics Data System (ADS)

    Mirza, Agha Zeeshan; Siddiqui, Farhan Ahmed

    2014-02-01

    The field of nanotechnology now has pivotal roles in electronics, biology and medicine. Its application can be appraised, as it involves the materials to be designed at atomic and molecular level. Due to the advantage of their size, nanospheres have been shown to be robust drug delivery systems and may be useful for encapsulating drugs and enabling more precise targeting with a controlled release. In this review specifically, we highlight the recent advances of this technology for medicine and drug delivery systems.

  18. Magnetic nanoparticles for gene and drug delivery

    PubMed Central

    McBain, Stuart C; Yiu, Humphrey HP; Dobson, Jon

    2008-01-01

    Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. PMID:18686777

  19. Synthetic Lipoproteins as Carriers for Drug Delivery.

    PubMed

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  20. Smart Polymers in Nasal Drug Delivery

    PubMed Central

    Chonkar, Ankita; Nayak, Usha; Udupa, N.

    2015-01-01

    Nasal drug delivery has now been recognized as a promising route for drug delivery due to its capability of transporting a drug to systemic circulation and central nervous system. Though nasal mucosa offers improved bioavailability and quick onset of action of the drug, main disadvantage associated with nasal drug delivery is mucocilliary clearance due to which drug particles get cleared from the nose before complete absorption through nasal mucosa. Therefore, mucoadhesive polymeric approach can be successfully used to enhance the retention of the drug on nasal mucosal surface. Here, some of the aspects of the stimuli responsive polymers have been discussed which possess liquid state at the room temperature and in response to nasal temperature, pH and ions present in mucous, can undergo in situ gelation in nasal cavity. In this review, several temperature responsive, pH responsive and ion responsive polymers used in nasal delivery, their gelling mechanisms have been discussed. Smart polymers not only able to enhance the retention of the drug in nasal cavity but also provide controlled release, ease of administration, enhanced permeation of the drug and protection of the drug from mucosal enzymes. Thus smart polymeric approach can be effectively used for nasal delivery of peptide drugs, central nervous system dugs and hormones. PMID:26664051

  1. Molecular diagnosis using multi drug delivery network and stability.

    PubMed

    Jalil, M A; Innate, K; Suwanpayak, N; Yupapin, P P; Ali, J

    2011-12-01

    By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required diagnosis or drug delivery targets can be performed within the network. The advantage of the proposed system is that the proposed diagnostic method can perform within the tiny system (thin film device or circuit), which can be available for a human embedded device for diagnostic use. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided.

  2. Ultrasonic-Activated Micellar Drug Delivery for Cancer Treatment

    PubMed Central

    Husseini, Ghaleb A.; Pitt, William G.

    2008-01-01

    The use of nanoparticles and ultrasound in medicine continues to evolve. Great strides have been made in the areas of producing micelles, nanoemulsions and solid nanoparticles that can be used in drug delivery. An effective nanocarrier allows for the delivery of a high concentration of potent medications to targeted tissue while minimizing the side effect of the agent to the rest of the body. Polymeric micelles have been shown to encapsulate therapeutic agents and maintain their structural integrity at lower concentrations. Ultrasound is currently being used in drug delivery as well as diagnostics, and has many advantages that elevate its importance in drug delivery. The technique is non-invasive, thus no surgery is needed; the ultrasonic waves can be easily controlled by advanced electronic technology so that they can be focused on the desired target volume. Additionally, the physics of ultrasound are widely used and well understood; thus ultrasonic application can be tailored towards a particular drug delivery system. In this article, we review the recent progress made in research that utilizes both polymeric micelles and ultrasonic power in drug delivery. PMID:18506804

  3. Thiolated polymers as mucoadhesive drug delivery systems.

    PubMed

    Duggan, Sarah; Cummins, Wayne; O' Donovan, Orla; Hughes, Helen; Owens, Eleanor

    2017-03-30

    Mucoadhesion is the process of binding a material to the mucosal layer of the body. Utilising both natural and synthetic polymers, mucoadhesive drug delivery is a method of controlled drug release which allows for intimate contact between the polymer and a target tissue. It has the potential to increase bioavailability, decrease potential side effects and offer protection to more sensitive drugs such as proteins and peptide based drugs. The thiolation of polymers has, in the last number of years, come to the fore of mucoadhesive drug delivery, markedly improving mucoadhesion due to the introduction of free thiol groups onto the polymer backbone while also offering a more cohesive polymeric matrix for the slower and more controlled release of drug. This review explores the concept of mucoadhesion and the recent advances in both the polymers and the methods of thiolation used in the synthesis of mucoadhesive drug delivery devices.

  4. Inorganic Nanomaterials as Carriers for Drug Delivery.

    PubMed

    Chen, Shizhu; Hao, Xiaohong; Liang, Xingjie; Zhang, Qun; Zhang, Cuimiao; Zhou, Guoqiang; Shen, Shigang; Jia, Guang; Zhang, Jinchao

    2016-01-01

    For safe and effective therapy, drugs must be delivered efficiently and with minimal systemic side effects. Nanostructured drug carriers enable the delivery of small-molecule drugs as well as nucleic acids and proteins. Inorganic nanomaterials are ideal for drug delivery platforms due to their unique physicochemical properties, such as facile preparation, good storage stability and biocompatibility. Many inorganic nanostructure-based drug delivery platforms have been prepared. Although there are still many obstacles to overcome, significant advances have been made in recent years. This review focuses on the status and development of inorganic nanostructures, including silica, quantum dots, gold, carbon-based and magnetic iron oxide-based nanostructures, as carriers for chemical and biological drugs. We specifically highlight the extensive use of these inorganic drug carriers for cancer therapy. Finally, we discuss the most important areas in the field that urgently require further study.

  5. Mucosal drug delivery: membranes, methodologies, and applications.

    PubMed

    Song, Yifan; Wang, Yiping; Thakur, Rashmi; Meidan, Victor M; Michniak, Bozena

    2004-01-01

    In recent years, extensive research into novel forms of drug delivery has suggested that mucosal approaches offer a promising therapeutic alternative, especially for systemically acting drugs. Transmucosal drug delivery offers many benefits, including noninvasive administration, convenience, rapid onset, as well as elimination of hepatic first-pass metabolism. The investigated absorptive surfaces consist of the nasal, buccal, ocular, vaginal, and rectal mucosae. Among these, the nasal and buccal routes have proved the most promising to date. The bioavailability achieved mainly depends upon the pathophysiological state of the mucosa and the properties of both the drug and delivery systems. Various agents can increase the efficacy of transmucosal drug delivery. These include cyclodextrins, bile salts, surfactants, fusidic acid derivatives, microspheres, liposomes, and bioadhesive agents. The mechanisms of action, effectiveness, and toxicity profiles of these enhancers have been investigated extensively in both animal and human models.

  6. Radiation sterilization of new drug delivery systems

    PubMed Central

    Abuhanoğlu, Gürhan

    2014-01-01

    Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (γ) and beta (β) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by γ irradiation. PMID:24936306

  7. Radiation sterilization of new drug delivery systems.

    PubMed

    Abuhanoğlu, Gürhan; Ozer, A Yekta

    2014-06-01

    Radiation sterilization has now become a commonly used method for sterilization of several active ingredients in drugs or drug delivery systems containing these substances. In this context, many applications have been performed on the human products that are required to be sterile, as well as on pharmaceutical products prepared to be developed. The new drug delivery systems designed to deliver the medication to the target tissue or organ, such as microspheres, nanospheres, microemulsion, and liposomal systems, have been sterilized by gamma (γ) and beta (β) rays, and more recently, by e-beam sterilization. In this review, the sterilization of new drug delivery systems was discussed other than conventional drug delivery systems by γ irradiation.

  8. Polypeptides and polyaminoacids in drug delivery.

    PubMed

    González-Aramundiz, José Vicente; Lozano, María Victoria; Sousa-Herves, Ana; Fernandez-Megia, Eduardo; Csaba, Noemi

    2012-02-01

    Advances achieved over the last few years in drug delivery have provided novel and versatile possibilities for the treatment of various diseases. Among the biomaterials applied in this field, it is worth highlighting the increasing importance of polyaminoacids and polypeptides. The appealing properties of these polymers are very promising for the design of novel compositions in a variety of drug delivery applications. This review provides an overview on the general characteristics of polyaminoacids and polypeptides and briefly discusses different synthetic pathways for their production. This is followed by a detailed description of different drug delivery applications of these polymers, emphasizing those examples that already reached advanced preclinical development or have entered clinical trials. Polyaminoacids and polypeptides are gaining much attention in drug delivery due to their exceptional properties. Their application as polymers for drug delivery purposes has been sped up by the significant achievements related to their synthesis. Certainly, cancer therapy has benefited the most from these advances, although other fields such as vaccine delivery and alternative administration routes are also being successfully explored. The design of new entities based on polyaminoacids and polypeptides and the improved insight gained in drug delivery guarantee exciting findings in the near future.

  9. Protein-Based Drug-Delivery Materials

    PubMed Central

    Jao, Dave; Xue, Ye; Medina, Jethro; Hu, Xiao

    2017-01-01

    There is a pressing need for long-term, controlled drug release for sustained treatment of chronic or persistent medical conditions and diseases. Guided drug delivery is difficult because therapeutic compounds need to survive numerous transport barriers and binding targets throughout the body. Nanoscale protein-based polymers are increasingly used for drug and vaccine delivery to cross these biological barriers and through blood circulation to their molecular site of action. Protein-based polymers compared to synthetic polymers have the advantages of good biocompatibility, biodegradability, environmental sustainability, cost effectiveness and availability. This review addresses the sources of protein-based polymers, compares the similarity and differences, and highlights characteristic properties and functionality of these protein materials for sustained and controlled drug release. Targeted drug delivery using highly functional multicomponent protein composites to guide active drugs to the site of interest will also be discussed. A systematical elucidation of drug-delivery efficiency in the case of molecular weight, particle size, shape, morphology, and porosity of materials will then be demonstrated to achieve increased drug absorption. Finally, several important biomedical applications of protein-based materials with drug-delivery function—including bone healing, antibiotic release, wound healing, and corneal regeneration, as well as diabetes, neuroinflammation and cancer treatments—are summarized at the end of this review. PMID:28772877

  10. Perspectives on transdermal ultrasound mediated drug delivery

    PubMed Central

    Smith, Nadine Barrie

    2007-01-01

    The use of needles for multiple injection of drugs, such as insulin for diabetes, can be painful. As a result, prescribed drug noncompliance can result in severe medical complications. Several noninvasive methods exist for transdermal drug delivery. These include chemical mediation using liposomes and chemical enhancers or physical mechanisms such as microneedles, iontophoresis, electroporation, and ultrasound. Ultrasound enhanced transdermal drug delivery offers advantages over traditional drug delivery methods which are often invasive and painful. A broad review of the transdermal ultrasound drug delivery literature has shown that this technology offers promising potential for noninvasive drug administration. From a clinical perspective, few drugs, proteins or peptides have been successfully administered transdermally because of the low skin permeability to these relatively large molecules, although much work is underway to resolve this problem. The proposed mechanism of ultrasound has been suggested to be the result of cavitation, which is discussed along with the bioeffects from therapeutic ultrasound. For low frequencies, potential transducers which can be used for drug delivery are discussed, along with cautions regarding ultrasound safety versus efficacy. PMID:18203426

  11. Recent advances in ophthalmic drug delivery

    PubMed Central

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL

    2011-01-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  12. Torsion Induced Traumatic Optic Neuropathy (TITON): Animal Model for Diagnostics, Drugs Delivery, and Therapeutics for Injuries to the Cental Nervous System

    DTIC Science & Technology

    2016-06-01

    RESONANCE IMAGING DIAGNOSTICS (5% COMPLETE) MRI has become a powerful diagnostic tool because it can provide non-invasive anatomical, physiological ...neck and the eye coils are actively decoupled. The following parameters will be used: slice thickness = 1 mm, TR = 4 s, TE = 13 ms, label duration... Eyes were removed with 3-5 mm of optic nerve intact taking care not to stretch or otherwise injure the nerve. Eyes were flash frozen in liquid

  13. Inner Ear Drug Delivery for Auditory Applications

    PubMed Central

    Swan, Erin E. Leary; Mescher, Mark J.; Sewell, William F.; Tao, Sarah L.; Borenstein, Jeffrey T.

    2008-01-01

    Many inner ear disorders cannot be adequately treated by systemic drug delivery. A blood-cochlear barrier exists, similar physiologically to the blood-brain barrier, which limits the concentration and size of molecules able to leave the circulation and gain access to the cells of the inner ear. However, research in novel therapeutics and delivery systems has led to significant progress in the development of local methods of drug delivery to the inner ear. Intratympanic approaches, which deliver therapeutics to the middle ear, rely on permeation through tissue for access to the structures of the inner ear, whereas intracochlear methods are able to directly insert drugs into the inner ear. Innovative drug delivery systems to treat various inner ear ailments such as ototoxicity, sudden sensorineural hearing loss, autoimmune inner ear disease, and for preserving neurons and regenerating sensory cells are being explored. PMID:18848590

  14. Chitosan Microspheres in Novel Drug Delivery Systems

    PubMed Central

    Mitra, Analava; Dey, Baishakhi

    2011-01-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems. PMID:22707817

  15. Transpapillary drug delivery to the breast.

    PubMed

    Dave, Kaushalkumar; Averineni, Ranjith; Sahdev, Preety; Perumal, Omathanu

    2014-01-01

    The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug's lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple.

  16. Colloidal polymeric nanoparticles and brain drug delivery.

    PubMed

    Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2009-07-01

    The blood brain barrier protects the brain from harmful substances in the blood stream and has stopped the development of many powerful and interesting drugs candidates for central nervous system due to the low poor distribution and by efflux mechanisms. Many different approaches have been developed in order to overcome this barrier and the drug gain access to the brain. The polymeric nanoparticles are efficient colloidal systems that have been investigated to the brain drug delivery. This review will focus on the current strategies for brain drug delivery emphasizing the properties and characteristics of polymeric nanoparticles for this purpose.

  17. Vesicular carriers for dermal drug delivery.

    PubMed

    Sinico, Chiara; Fadda, Anna Maria

    2009-08-01

    The skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate into and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve drug topical delivery. Vesicular systems such as liposomes, niosomes, ethosomes and elastic, deformable vesicles provide an alternative for improved skin drug delivery. The function of vesicles as topical delivery systems is controversial with variable effects being reported in relation to the type of vesicles and their composition. In fact, vesicles can act as drug carriers controlling active release; they can provide a localized depot in the skin for dermally active compounds and enhance transdermal drug delivery. A wide variety of lipids and surfactants can be used to prepare vesicles, which are commonly composed of phospholipids (liposomes) or non-ionic surfactants (niosomes). Vesicle composition and preparation method influence their physicochemical properties (size, charge, lamellarity, thermodynamic state, deformability) and therefore their efficacy as drug delivery systems. A review of vesicle value in localizing drugs within the skin at the site of action will be provided with emphasis on their potential mechanism of action.

  18. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  19. Nuclear drug delivery for cancer chemotherapy.

    PubMed

    Sui, Meihua; Liu, Wenwen; Shen, Youqing

    2011-10-30

    Nanosystems with unique physical and biological properties have been extensively explored for cancer targeted intracellular delivery of small-molecular chemotherapeutic drugs to increase their therapeutic efficacies and to minimize their side effects. A large number of anticancer drugs are DNA-toxins that bind nuclear DNA or its associated enzymes to exert their cytotoxicity to cancer cells. After entering tumor cells, they need to be further delivered to the nucleus for actions. Herein, we discuss the biological barriers and summarize recent progress of nuclear drug delivery for cancer chemotherapy, emphasizing strategies that appear useful for design of vehicles capable of delivering drugs to the nucleus, particularly for in vivo applications. The existing obstacles or problems that need to be overcome before successful applications of nuclear drug delivery for cancer chemotherapy are also discussed.

  20. Molecular imprinted polymers as drug delivery vehicles.

    PubMed

    Zaidi, Shabi Abbas

    2016-09-01

    This review is aimed to discuss the molecular imprinted polymer (MIP)-based drug delivery systems (DDS). Molecular imprinted polymers have proved to possess the potential and also as a suitable material in several areas over a long period of time. However, only recently it has been employed for pharmaceuticals and biomedical applications, particularly as drug delivery vehicles due to properties including selective recognition generated from imprinting the desired analyte, favorable in harsh experimental conditions, and feedback-controlled recognitive drug release. Hence, this review will discuss their synthesis, the reason they are selected as drug delivery vehicles and for their applications in several drug administration routes (i.e. transdermal, ocular and gastrointestinal or stimuli-reactive routes).

  1. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  2. Microneedles for drug and vaccine delivery

    PubMed Central

    Kim, Yeu-Chun; Park, Jung-Hwan; Prausnitz, Mark R.

    2012-01-01

    Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990’s when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. PMID:22575858

  3. Designing hydrogels for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Jianyu; Mooney, David J.

    2016-12-01

    Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform on which various physiochemical interactions with the encapsulated drugs occur to control drug release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

  4. Polymethacrylate microparticles gel for topical drug delivery.

    PubMed

    Labouta, Hagar Ibrahim; El-Khordagui, Labiba K

    2010-10-01

    Evaluating the potentials of particulate delivery systems in topical drug delivery. Polymethacrylate microparticles (MPs) incorporating verapamil hydrochloride (VRP) as a model hydrophilic drug with potential topical clinical uses, using Eudragit RS100 and Eudragit L100 were prepared for the formulation of a composite topical gel. The effect of initial drug loading, polymer composition, particularly the proportion of Eudragit L100 as an interacting polymer component and the HLB of the dispersing agent on MPs characteristics was investigated. A test MPs formulation was incorporated in gel and evaluated for drug release and human skin permeation. MPs showed high % incorporation efficiency and % yield. Composition of the hybrid polymer matrix was a main determinant of MPs characteristics, particularly drug release. Factors known to influence drug release such as MPs size and high drug solubility were outweighed by strong VRP-Eudragit L100 interaction. The developed MPs gel showed controlled VRP release and reduced skin retention compared to a free drug gel. Topical drug delivery and skin retention could be modulated using particulate delivery systems. From a practical standpoint, the VRP gel developed may offer advantage in a range of dermatological conditions, in response to the growing off-label topical use of VRP.

  5. Progress in antiretroviral drug delivery using nanotechnology

    PubMed Central

    Mallipeddi, Rama; Rohan, Lisa Cencia

    2010-01-01

    There are currently a number of antiretroviral drugs that have been approved by the Food and Drug Administration for use in the treatment of human immunodeficiency virus (HIV). More recently, antiretrovirals are being evaluated in the clinic for prevention of HIV infection. Due to the challenging nature of treatment and prevention of this disease, the use of nanocarriers to achieve more efficient delivery of antiretroviral drugs has been studied. Various forms of nanocarriers, such as nanoparticles (polymeric, inorganic, and solid lipid), liposomes, polymeric micelles, dendrimers, cyclodextrins, and cell-based nanoformulations have been studied for delivery of drugs intended for HIV prevention or therapy. The aim of this review is to provide a summary of the application of nanocarrier systems to the delivery of anti-HIV drugs, specifically antiretrovirals. For anti-HIV drugs to be effective, adequate distribution to specific sites in the body must be achieved, and effective drug concentrations must be maintained at those sites for the required period of time. Nanocarriers provide a means to overcome cellular and anatomical barriers to drug delivery. Their application in the area of HIV prevention and therapy may lead to the development of more effective drug products for combating this pandemic disease. PMID:20957115

  6. Hydrogen peroxide mediated transvaginal drug delivery.

    PubMed

    Fatakdawala, Hussain; Uhland, Scott A

    2011-05-16

    Simple, safe and effective permeability enhancers are crucial for successful non-invasive drug delivery methods. We seek local permeability augmentation mechanisms for integration into passive or active architectures in order to enable novel therapeutic delivery routes of the target drug while minimizing drug formulation challenges. This study explores the efficacy of hydrogen peroxide (HP) as a permeability enhancer for transmucosal delivery of macromolecules. HP at low concentrations (2–8 mM) is an effective permeability enhancer that is locally metabolized and safe. HP improves drug permeation through mucosa by altering tight junctions (TJ) between cells and oxidizing enzymes that function to degrade the foreign species. Results from trans-epithelial electrical resistance measurements and cell viability assay show reversible disassembly of TJ with minimal cell damage demonstrating the feasibility of HP as a safe permeability enhancer for drug delivery. Permeation studies show that HP treatment of cell cultured vaginal mucosa significantly enhances the permeability to insulin by more than an order of magnitude. This work lays foundation for the development of a drug delivery platform that administers drug doses by enhancing the permeability of local epithelial tissue via a separate HP treatment step.

  7. Transpapillary Drug Delivery to the Breast

    PubMed Central

    Dave, Kaushalkumar; Averineni, Ranjith; Sahdev, Preety; Perumal, Omathanu

    2014-01-01

    The study was aimed at investigating localized topical drug delivery to the breast via mammary papilla (nipple). 5-fluorouracil (5-FU) and estradiol (EST) were used as model hydrophilic and hydrophobic compounds respectively. Porcine and human nipple were used for in-vitro penetration studies. The removal of keratin plug enhanced the drug transport through the nipple. The drug penetration was significantly higher through the nipple compared to breast skin. The drug’s lipophilicity had a significant influence on drug penetration through nipple. The ducts in the nipple served as a major transport pathway to the underlying breast tissue. Results showed that porcine nipple could be a potential model for human nipple. The topical application of 5-FU on the rat nipple resulted in high drug concentration in the breast and minimal drug levels in plasma and other organs. Overall, the findings from this study demonstrate the feasibility of localized drug delivery to the breast through nipple. PMID:25545150

  8. Microfluidic device for drug delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  9. Protein Nanoparticles as Drug Delivery Carriers for Cancer Therapy

    PubMed Central

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy. PMID:24772414

  10. Novel biodegradable nanocarriers for enhanced drug delivery.

    PubMed

    Gagliardi, Mariacristina

    2016-12-01

    With the refinement of functional properties, the interest around biodegradable materials, in biorelated applications and, in particular, in their use as controlled drug-delivery systems, increased in the last decades. Biodegradable materials are an ideal platform to obtain nanoparticles for spatiotemporal controlled drug delivery for the in vivo administration, thanks to their biocompatibility, functionalizability, the control exerted on delivery rates and the complete degradation. Their application in systems for cancer treatment, brain and cardiovascular diseases is already a consolidated practice in research, while the bench-to-bedside translation is still late. This review aims at summarizing reported applications of biodegradable materials to obtain drug-delivery nanoparticles in the last few years, giving a complete overview of pros and cons related to degradable nanomedicaments.

  11. Intelligent, self-powered, drug delivery systems.

    PubMed

    Patra, Debabrata; Sengupta, Samudra; Duan, Wentao; Zhang, Hua; Pavlick, Ryan; Sen, Ayusman

    2013-02-21

    Self-propelled nano/micromotors and pumps are considered to be next generation drug delivery systems since the carriers can either propel themselves ("motor"-based drug delivery) or be delivered ("pump"-based drug delivery) to the target in response to specific biomarkers. Recently, there has been significant advancement towards developing nano/microtransporters into proof-of-concept tools for biomedical applications. This review encompasses the progress made to date on the design of synthetic nano/micromotors and pumps with respect to transportation and delivery of cargo at specific locations. Looking ahead, it is possible to imagine a day when intelligent machines navigate through the human body and perform challenging tasks.

  12. Novel drug delivery systems for glaucoma

    PubMed Central

    Lavik, E; Kuehn, M H; Kwon, Y H

    2011-01-01

    Reduction of intraocular pressure (IOP) by pharmaceutical or surgical means has long been the standard treatment for glaucoma. A number of excellent drugs are available that are effective in reducing IOP. These drugs are typically applied as eye drops. However, patient adherence can be poor, thus reducing the clinical efficacy of the drugs. Several novel delivery systems designed to address the issue of adherence and to ensure consistent reduction of IOP are currently under development. These delivery systems include contact lenses-releasing glaucoma medications, injectables such as biodegradable micro- and nanoparticles, and surgically implanted systems. These new technologies are aimed at increasing clinical efficacy by offering multiple delivery options and are capable of managing IOP for several months. There is also a desire to have complementary neuroprotective approaches for those who continue to show progression, despite IOP reduction. Many potential neuroprotective agents are not suitable for traditional oral or drop formulations. Their potential is dependent on developing suitable delivery systems that can provide the drugs in a sustained, local manner to the retina and optic nerve. Drug delivery systems have the potential to improve patient adherence, reduce side effects, increase efficacy, and ultimately, preserve sight for glaucoma patients. In this review, we discuss benefits and limitations of the current systems of delivery and application, as well as those on the horizon. PMID:21475311

  13. Brain Mitochondrial Drug Delivery: Influence of Drug Physicochemical Properties

    PubMed Central

    Durazo, Shelley A.; Kadam, Rajendra S.; Drechsel, Derek; Patel, Manisha

    2017-01-01

    Purpose To determine the influence of drug physicochemical properties on brain mitochondrial delivery of 20 drugs at physiological pH. Methods The delivery of 8 cationic drugs (beta-blockers), 6 neutral drugs (corticosteroids), and 6 anionic drugs (non-steroidal anti-inflammatory drugs, NSAIDs) to isolated rat brain mitochondria was determined with and without membrane depolarization. Multiple linear regression was used to determine whether lipophilicity (Log D), charge, polarizability, polar surface area (PSA), and molecular weight influence mitochondrial delivery. Results The Log D for beta-blockers, corticosteroids, and NSAIDs was in the range of −1.41 to 1.37, 0.72 to 2.97, and −0.98 to 2, respectively. The % mitochondrial uptake increased exponentially with an increase in Log D for each class of drugs, with the uptake at a given lipophilicity obeying the rank order cationic>anionic>neutral. Valinomycin reduced membrane potential and the delivery of positively charged propranolol and betaxolol. The best equation for the combined data set was Log % Uptake=0.333 Log D+ 0.157 Charge – 0.887 Log PSA+2.032 (R2=0.738). Conclusions Drug lipopohilicity, charge, and polar surface area and membrane potential influence mitochondrial drug delivery, with the uptake of positively charged, lipophilic molecules being the most efficient. PMID:21796482

  14. Brain mitochondrial drug delivery: influence of drug physicochemical properties.

    PubMed

    Durazo, Shelley A; Kadam, Rajendra S; Drechsel, Derek; Patel, Manisha; Kompella, Uday B

    2011-11-01

    To determine the influence of drug physicochemical properties on brain mitochondrial delivery of 20 drugs at physiological pH. The delivery of 8 cationic drugs (beta-blockers), 6 neutral drugs (corticosteroids), and 6 anionic drugs (non-steroidal anti-inflammatory drugs, NSAIDs) to isolated rat brain mitochondria was determined with and without membrane depolarization. Multiple linear regression was used to determine whether lipophilicity (Log D), charge, polarizability, polar surface area (PSA), and molecular weight influence mitochondrial delivery. The Log D for beta-blockers, corticosteroids, and NSAIDs was in the range of -1.41 to 1.37, 0.72 to 2.97, and -0.98 to 2, respectively. The % mitochondrial uptake increased exponentially with an increase in Log D for each class of drugs, with the uptake at a given lipophilicity obeying the rank order cationic>anionic>neutral. Valinomycin reduced membrane potential and the delivery of positively charged propranolol and betaxolol. The best equation for the combined data set was Log % Uptake = 0.333 Log D + 0.157 Charge - 0.887 Log PSA + 2.032 (R(2) = 0.738). Drug lipopohilicity, charge, and polar surface area and membrane potential influence mitochondrial drug delivery, with the uptake of positively charged, lipophilic molecules being the most efficient.

  15. Lipid-Based Drug Delivery Systems

    PubMed Central

    Shrestha, Hina; Bala, Rajni; Arora, Sandeep

    2014-01-01

    The principle objective of formulation of lipid-based drugs is to enhance their bioavailability. The use of lipids in drug delivery is no more a new trend now but is still the promising concept. Lipid-based drug delivery systems (LBDDS) are one of the emerging technologies designed to address challenges like the solubility and bioavailability of poorly water-soluble drugs. Lipid-based formulations can be tailored to meet a wide range of product requirements dictated by disease indication, route of administration, cost consideration, product stability, toxicity, and efficacy. These formulations are also a commercially viable strategy to formulate pharmaceuticals, for topical, oral, pulmonary, or parenteral delivery. In addition, lipid-based formulations have been shown to reduce the toxicity of various drugs by changing the biodistribution of the drug away from sensitive organs. However, the number of applications for lipid-based formulations has expanded as the nature and type of active drugs under investigation have become more varied. This paper mainly focuses on novel lipid-based formulations, namely, emulsions, vesicular systems, and lipid particulate systems and their subcategories as well as on their prominent applications in pharmaceutical drug delivery. PMID:26556202

  16. Electroresponsive nanoparticles for drug delivery on demand

    NASA Astrophysics Data System (ADS)

    Samanta, Devleena; Hosseini-Nassab, Niloufar; Zare, Richard N.

    2016-04-01

    The potential of electroresponsive conducting polymer nanoparticles to be used as general drug delivery systems that allow electrically pulsed, linearly scalable, and on demand release of incorporated drugs is demonstrated. As examples, facile release from polypyrrole nanoparticles is shown for fluorescein, a highly water-soluble model compound, piroxicam, a lipophilic small molecule drug, and insulin, a large hydrophilic peptide hormone. The drug loading is about 13 wt% and release is accomplished in a few seconds by applying a weak constant current or voltage. To identify the parameters that should be finely tuned to tailor the carrier system for the release of the therapeutic molecule of interest, a systematic study of the factors that affect drug delivery is performed, using fluorescein as a model compound. The parameters studied include current, time, voltage, pH, temperature, particle concentration, and ionic strength. Results indicate that there are several degrees of freedom that can be optimized for efficient drug delivery. The ability to modulate linearly drug release from conducting polymers with the applied stimulus can be utilized to design programmable and minimally invasive drug delivery devices.

  17. Cellulose based polymeric systems in drug delivery

    USDA-ARS?s Scientific Manuscript database

    The pharmaceutical industry requires the development of biodegradable, biocompatible, non toxic, site specific drug delivery polymers, which can be easily coupled with drugs to be delivered orally, topically, locally, or parenterally. The use of the most abundant biopolymer, cellulose along with its...

  18. A pulsed mode electrolytic drug delivery device

    NASA Astrophysics Data System (ADS)

    Yi, Ying; Buttner, Ulrich; Carreno, Armando A. A.; Conchouso, David; Foulds, Ian G.

    2015-10-01

    This paper reports the design of a proof-of-concept drug delivery device that is actuated using the bubbles formed during electrolysis. The device uses a platinum (Pt) coated nickel (Ni) metal foam and a solid drug in reservoir (SDR) approach to improve the device’s performance. This electrochemically-driven pump has many features that are unlike conventional drug delivery devices: it is capable of pumping periodically and being refilled automatically; it features drug release control; and it enables targeted delivery. Pt-coated metal foam is used as a catalytic reforming element, which reduces the period of each delivery cycle. Two methods were used for fabricating the Pt-coated metal: sputtering and electroplating. Of these two methods, the sputtered Pt-coated metal foam has a higher pumping rate; it also has a comparable recombination rate when compared to the electroplated Pt-coated metal foam. The only drawback of this catalytic reformer is that it consumes nickel scaffold. Considering long-term applications, the electroplated Pt metal foam was selected for drug delivery, where a controlled drug release rate of 2.2 μg  ±  0.3 μg per actuation pulse was achieved using 4 mW of power.

  19. Nanotech approaches to drug delivery and imaging.

    PubMed

    Sahoo, Sanjeeb K; Labhasetwar, Vinod

    2003-12-15

    Nanotechnology, a multidisciplinary scientific undertaking, involves creation and utilization of materials, devices or systems on the nanometer scale. The field of nanotechnology is currently undergoing explosive development on many fronts. The technology is expected to create innovations and play a critical role in various biomedical applications, not only in drug delivery, but also in molecular imaging, biomarkers and biosensors. Target-specific drug therapy and methods for early diagnosis of pathologies are the priority research areas where nanotechnology would play a vital role. This review considers different nanotechnology-based drug delivery and imaging approaches, and their economic impact on pharmaceutical and biomedical industries.

  20. Liposome-like Nanostructures for Drug Delivery

    PubMed Central

    Gao, Weiwei; Hu, Che-Ming J.; Fang, Ronnie H.; Zhang, Liangfang

    2013-01-01

    Liposomes are a class of well-established drug carriers that have found numerous therapeutic applications. The success of liposomes, together with recent advancements in nanotechnology, has motivated the development of various novel liposome-like nanostructures with improved drug delivery performance. These nanostructures can be categorized into five major varieties, namely: (1) polymer-stabilized liposomes, (2) nanoparticle-stabilized liposomes, (3) core-shell lipid-polymer hybrid nanoparticles, (4) natural membrane-derived vesicles, and (5) natural membrane coated nanoparticles. They have received significant attention and have become popular drug delivery platforms. Herein, we discuss the unique strengths of these liposome-like platforms in drug delivery, with a particular emphasis on how liposome-inspired novel designs have led to improved therapeutic efficacy, and review recent progress made by each platform in advancing healthcare. PMID:24392221

  1. Brain drug delivery systems for neurodegenerative disorders.

    PubMed

    Garbayo, E; Ansorena, E; Blanco-Prieto, M J

    2012-09-01

    Neurodegenerative disorders (NDs) are rapidly increasing as population ages. However, successful treatments for NDs have so far been limited and drug delivery to the brain remains one of the major challenges to overcome. There has recently been growing interest in the development of drug delivery systems (DDS) for local or systemic brain administration. DDS are able to improve the pharmacological and therapeutic properties of conventional drugs and reduce their side effects. The present review provides a concise overview of the recent advances made in the field of brain drug delivery for treating neurodegenerative disorders. Examples include polymeric micro and nanoparticles, lipidic nanoparticles, pegylated liposomes, microemulsions and nanogels that have been tested in experimental models of Parkinson's, Alzheimer's and Huntington's disease. Overall, the results reviewed here show that DDS have great potential for NDs treatment.

  2. Drug delivery approaches for breast cancer.

    PubMed

    Singh, Santosh Kumar; Singh, Shriti; Lillard, James W; Singh, Rajesh

    2017-01-01

    Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs) delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach.

  3. Emulsion forming drug delivery system for lipophilic drugs.

    PubMed

    Wadhwa, Jyoti; Nair, Anroop; Kumria, Rachna

    2012-01-01

    In the recent years, there is a growing interest in the lipid-based formulations for delivery of lipophilic drugs. Due to their potential as therapeutic agents, preferably these lipid soluble drugs are incorporated into inert lipid carriers such as oils, surfactant dispersions, emulsions, liposomes etc. Among them, emulsion forming drug delivery systems appear to be a unique and industrially feasible approach to overcome the problem of low oral bioavailability associated with the BCS class II drugs. Self-emulsifying formulations are ideally isotropic mixtures of oils, surfactants and co-solvents that emulsify to form fine oil in water emulsions when introduced in aqueous media. Fine oil droplets would pass rapidly from stomach and promote wide distribution of drug throughout the GI tract, thereby overcome the slow dissolution step typically observed with solid dosage forms. Recent advances in drug carrier technologies have promulgated the development of novel drug carriers such as control release self-emulsifying pellets, microspheres, tablets, capsules etc. that have boosted the use of "self-emulsification" in drug delivery. This article reviews the different types of formulations and excipients used in emulsion forming drug delivery system to enhance the bioavailability of lipophilic drugs.

  4. Drug Delivery Research: The Invention Cycle.

    PubMed

    Park, Kinam

    2016-07-05

    Controlled drug delivery systems have been successful in introducing improved formulations for better use of existing drugs and novel delivery of biologicals. The initial success of producing many oral products and some injectable depot formulations, however, reached a plateau, and the progress over the past three decades has been slow. This is likely due to the difficulties of formulating hydrophilic, high molecular weight drugs, such as proteins and nucleic acids, for targeting specific cells, month-long sustained delivery, and pulsatile release. Since the approaches that have served well for delivery of small molecules are not applicable to large molecules, it is time to develop new methods for biologicals. The process of developing future drug delivery systems, termed as the invention cycle, is proposed, and it starts with clearly defining the problems for developing certain formulations. Once the problems are well-defined, creative imagination examines all potential options and selects the best answer and alternatives. Then, innovation takes over to generate unique solutions for developing new formulations that resolve the previously identified problems. Ultimately, the new delivery systems will have to go through a translational process to produce the final formulations for clinical use. The invention cycle also emphasizes examining the reasons for success of certain formulations, not just the reasons for failure of many systems. Implementation of the new invention cycle requires new mechanisms of funding the younger generation of scientists and a new way of identifying their achievements, thereby releasing them from the burden of short-termism.

  5. Ultrasonic Drug Delivery – A General Review

    PubMed Central

    Pitt, William G.; Husseini, Ghaleb A.; Staples, Bryant J.

    2006-01-01

    Ultrasound (US) has an ever-increasing role in the delivery of therapeutic agents including genetic material, proteins, and chemotherapeutic agents. Cavitating gas bodies such as microbubbles are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilize cell membranes and disrupt the vesicles that carry drugs. Thus the presence of microbubbles enormously enhances delivery of genetic material, proteins and smaller chemical agents. Delivery of genetic material is greatly enhanced by ultrasound in the presence of microbubbles. Attaching the DNA directly to the microbubbles or to gas-containing liposomes enhances gene uptake even further. US-enhanced gene delivery has been studied in various tissues including cardiac, vascular, skeletal muscle, tumor and even fetal tissue. US-enhanced delivery of proteins has found most application in transdermal delivery of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; it also makes the cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has upon cells and drug-carrying vesicles. PMID:16296719

  6. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    PubMed

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  7. Drug delivery systems for brain tumor therapy.

    PubMed

    Rautioa, Jarkko; Chikhale, Prashant J

    2004-01-01

    Brain tumors are one of the most lethal forms of cancer. They are extremely difficult to treat. Although, the rate of brain tumor incidence is relatively low, the field clearly lacks therapeutic strategies capable of overcoming barriers for effective delivery of drugs to brain tumors. Clinical failure of many potentially effective therapeutics for the treatment of brain tumors is usually not due to a lack of drug potency, but rather can be attributed to shortcomings in the methods by which a drug is delivered to the brain and into brain tumors. In response to the lack of efficacy of conventional drug delivery methods, extensive efforts have been made to develop novel strategies to overcome the obstacles for brain tumor drug delivery. The challenge is to design therapeutic strategies that deliver drugs to brain tumors in a safe and effective manner. This review provides some insight into several potential techniques that have been developed to improve drug delivery to brain tumors, and it should be helpful to clinicians and research scientists as well.

  8. Multilayered materials based on biopolymers as drug delivery systems.

    PubMed

    Vilela, Carla; Figueiredo, Ana R P; Silvestre, Armando J D; Freire, Carmen S R

    2017-02-01

    The design of efficient therapeutic delivery devices has become a tremendously active area of research with a strong contribution from the layer-by-layer (LbL) technology. The application of this simple yet firmly established technique for the design of drug reservoirs originates a multitude of multilayered systems of tailored architecture and with a high level of control of drug administration. Areas covered: This review will focus on the most recent and original research on LbL assemblies based on biopolymers including polysaccharides, polypeptides and proteins, with potential use in drug delivery. Herein, drug reservoirs consisting of multilayered planar films and capsules will be examined with emphasis on the ones benefiting from the non-cytotoxic and biocompatible nature of biopolymers, which are suitable to load, protect and release a high payload of toxic and fragile drugs. Expert opinion: The combination of biopolymers with LbL technology has undergone extensive research, still, there is a multitude of R&D opportunities for the design of smart drug delivery systems with distinct multilayered morphologies, low immunological response, non-invasive drug release devices, as well as the design of theranostic systems combining diagnostics and therapeutic features. Further developments in terms of scaling towards mass production in the pharmaceutical industry are expected in the long-term.

  9. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    PubMed Central

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  10. Applications of chitosan nanoparticles in drug delivery.

    PubMed

    Tajmir-Riahi, H A; Nafisi, Sh; Sanyakamdhorn, S; Agudelo, D; Chanphai, P

    2014-01-01

    We have reviewed the binding affinities of several antitumor drugs doxorubicin (Dox), N-(trifluoroacetyl) doxorubicin (FDox), tamoxifen (Tam), 4-hydroxytamoxifen (4-Hydroxytam), and endoxifen (Endox) with chitosan nanoparticles of different sizes (chitosan-15, chitosan-100, and chitosan-200 KD) in order to evaluate the efficacy of chitosan nanocarriers in drug delivery systems. Spectroscopic and molecular modeling studies showed the binding sites and the stability of drug-polymer complexes. Drug-chitosan complexation occurred via hydrophobic and hydrophilic contacts as well as H-bonding network. Chitosan-100 KD was the more effective drug carrier than the chitosan-15 and chitosan-200 KD.

  11. Nanoparticles and microparticles for skin drug delivery.

    PubMed

    Prow, Tarl W; Grice, Jeffrey E; Lin, Lynlee L; Faye, Rokhaya; Butler, Margaret; Becker, Wolfgang; Wurm, Elisabeth M T; Yoong, Corinne; Robertson, Thomas A; Soyer, H Peter; Roberts, Michael S

    2011-05-30

    Skin is a widely used route of delivery for local and systemic drugs and is potentially a route for their delivery as nanoparticles. The skin provides a natural physical barrier against particle penetration, but there are opportunities to deliver therapeutic nanoparticles, especially in diseased skin and to the openings of hair follicles. Whilst nanoparticle drug delivery has been touted as an enabling technology, its potential in treating local skin and systemic diseases has yet to be realised. Most drug delivery particle technologies are based on lipid carriers, i.e. solid lipid nanoparticles and nanoemulsions of around 300 nm in diameter, which are now considered microparticles. Metal nanoparticles are now recognized for seemingly small drug-like characteristics, i.e. antimicrobial activity and skin cancer prevention. We present our unpublished clinical data on nanoparticle penetration and previously published reports that support the hypothesis that nanoparticles >10nm in diameter are unlikely to penetrate through the stratum corneum into viable human skin but will accumulate in the hair follicle openings, especially after massage. However, significant uptake does occur after damage and in certain diseased skin. Current chemistry limits both atom by atom construction of complex particulates and delineating their molecular interactions within biological systems. In this review we discuss the skin as a nanoparticle barrier, recent work in the field of nanoparticle drug delivery to the skin, and future directions currently being explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Lung surfactant as a drug delivery system.

    PubMed

    Vermehren, C; Frokjaer, S; Aurstad, T; Hansen, J

    2006-01-03

    Lung surfactant is a complex mixture of mainly phospholipids and proteins. The composition leads to a unique spreading effect of the surfactant as well as spontaneous vesicle formation, which may be favourable characteristics of a drug delivery system for pulmonary delivery. The aim of study was to investigate the potential use of the surfactant extract, HL10 (LeoPharma, DK) as a drug delivery system. Studies involved incorporation of hydrophilic- and amphipathic model drugs (sucrose and acylated peptides) into HL10 and elucidation of the influence of surfactant proteins on the HL10 behaviour. Results showed that HL10 vesicles did not retain sucrose indicating formation of leaky vesicles. Studying the influence of surfactant proteins on release from DPPC-liposomes showed tendencies toward a protein-induced release. Hence, the surfactant proteins may influence the membrane lipid packing and characteristics resulting in leakiness of the membranes. Incorporation of acylated peptides into HL10 depended on the chain length rendering a successful incorporation of the peptide acylated with C14-acyl chains. This study suggests that HL10 may be a promising drug delivery system for the pulmonary delivery of amphipathic drug substances, e.g. therapeutically active acylated peptides (e.g. acylated insulin).

  13. Trojan Microparticles for Drug Delivery

    PubMed Central

    Anton, Nicolas; Jakhmola, Anshuman; Vandamme, Thierry F.

    2012-01-01

    During the last decade, the US Food and Drug Administration (FDA) have regulated a wide range of products, (foods, cosmetics, drugs, devices, veterinary, and tobacco) which may utilize micro and nanotechnology or contain nanomaterials. Nanotechnology allows scientists to create, explore, and manipulate materials in nano-regime. Such materials have chemical, physical, and biological properties that are quite different from their bulk counterparts. For pharmaceutical applications and in order to improve their administration (oral, pulmonary and dermal), the nanocarriers can be spread into microparticles. These supramolecular associations can also modulate the kinetic releases of drugs entrapped in the nanoparticles. Different strategies to produce these hybrid particles and to optimize the release kinetics of encapsulated drugs are discussed in this review. PMID:24300177

  14. Multi-access drug delivery network and stability

    PubMed Central

    Mitatha, S; Moongfangklang, N; Jalil, MA; Suwanpayak, N; Ali, J; Yupapin, PP

    2011-01-01

    A novel design of a multi-drug delivery network and diagnosis using a molecular network is proposed. By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required drug delivery targets can be achieved within the network. The advantage of the proposed system is that the diagnostic method can be used within a tiny system (thin film device or circuit), which is available as an embedded device for diagnostic use in patients. In practice, the large molecular networks such as ring, star, and bus networks can be integrated to form a large drug delivery system. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided by using the appropriate free spectrum range, which is analyzed and discussed in the terms of crosstalk effects. In this work, crosstalk effects of about 0.1% are noted, which can be neglected and does not affect the network stability. PMID:21980238

  15. Functional Cyclodextrin Polyrotaxanes for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Yui, Nobuhiko; Katoono, Ryo; Yamashita, Atsushi

    The mobility of cyclodextrins (CDs) threaded onto a linear polymeric chain and the dethreading of the CDs from the chain are the most fascinating features seen in polyrotaxanes. These structural characteristics are very promising for their possible applications in drug delivery. Enhanced multivalent interaction between ligand-receptor systems by using ligand-conjugated polyrotaxanes would be just one of the excellent properties related to the CD mobility. Gene delivery using cytocleavable polyrotaxanes is a more practical but highly crucial issue in drug delivery. Complexation of the polyrotaxanes with DNA and its intracellular DNA release ingeniously utilizes both CD mobility and polyrotaxane dissociation to achieve effective gene delivery. Such a supramolecular approach using CD-containing polyrotaxanes is expected to exploit a new paradigm of biomaterials.

  16. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  17. Nanoparticles and nanofibers for topical drug delivery

    PubMed Central

    Goyal, Ritu; Macri, Lauren K.; Kaplan, Hilton M.; Kohn, Joachim

    2016-01-01

    This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has—and will continue to have — a profound impact on both clinical outcomes and the development of new products. PMID:26518723

  18. Genetically engineered nanocarriers for drug delivery

    PubMed Central

    Shi, Pu; Gustafson, Joshua A; MacKay, J Andrew

    2014-01-01

    Cytotoxicity, low water solubility, rapid clearance from circulation, and off-target side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or non-polymeric. This review summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. PMID:24741309

  19. Nanoparticles in the ocular drug delivery

    PubMed Central

    Zhou, Hong-Yan; Hao, Ji-Long; Wang, Shuang; Zheng, Yu; Zhang, Wen-Song

    2013-01-01

    Ocular drug transport barriers pose a challenge for drug delivery comprising the ocular surface epithelium, the tear film and internal barriers of the blood-aqueous and blood-retina barriers. Ocular drug delivery efficiency depends on the barriers and the clearance from the choroidal, conjunctival vessels and lymphatic. Traditional drug administration reduces the clinical efficacy especially for poor water soluble molecules and for the posterior segment of the eye. Nanoparticles (NPs) have been designed to overcome the barriers, increase the drug penetration at the target site and prolong the drug levels by few internals of drug administrations in lower doses without any toxicity compared to the conventional eye drops. With the aid of high specificity and multifunctionality, DNA NPs can be resulted in higher transfection efficiency for gene therapy. NPs could target at cornea, retina and choroid by surficial applications and intravitreal injection. This review is concerned with recent findings and applications of NPs drug delivery systems for the treatment of different eye diseases. PMID:23826539

  20. Liposomes as delivery systems for antineoplastic drugs

    NASA Astrophysics Data System (ADS)

    Medina, Luis Alberto

    2014-11-01

    Liposome drug formulations are defined as pharmaceutical products containing active drug substances encapsulated within the lipid bilayer or in the interior aqueous space of the liposomes. The main importance of this drug delivery system is based on its drastic reduction in systemic dose and concomitant systemic toxicity that in comparison with the free drug, results in an improvement of patient compliance and in a more effective treatment. There are several therapeutic drugs that are potential candidates to be encapsulated into liposomes; particular interest has been focused in therapeutic and antineoplastic drugs, which are characterized for its low therapeutic index and high systemic toxicity. The use of liposomes as drug carriers has been extensively justified and the importance of the development of different formulations or techniques to encapsulate therapeutic drugs has an enormous value in benefit of patients affected by neoplastic diseases.

  1. Barriers to drug delivery in solid tumors

    PubMed Central

    Sriraman, Shravan Kumar; Aryasomayajula, Bhawani; Torchilin, Vladimir P

    2014-01-01

    Over the last decade, significant progress has been made in the field of drug delivery. The advent of engineered nanoparticles has allowed us to circumvent the initial limitations to drug delivery such as pharmacokinetics and solubility. However, in spite of significant advances to tumor targeting, an effective treatment strategy for malignant tumors still remains elusive. Tumors possess distinct physiological features which allow them to resist traditional treatment approaches. This combined with the complexity of the biological system presents significant hurdles to the site-specific delivery of therapeutic drugs. One of the key features of engineered nanoparticles is that these can be tailored to execute specific functions. With this review, we hope to provide the reader with a clear understanding and knowledge of biological barriers and the methods to exploit these characteristics to design multifunctional nanocarriers, effect useful dosing regimens and subsequently improve therapeutic outcomes in the clinic. PMID:25068098

  2. Collagen-coated microparticles in drug delivery.

    PubMed

    Sehgal, Praveen Kumar; Srinivasan, Aishwarya

    2009-07-01

    Advantages of drug-incorporated collagen particles have been described for the controlled delivery system for therapeutic actions. The attractiveness of collagen lies in its low immunogenicity and high biocompatibility. It is also recognized by the body as a natural constituent rather than a foreign body. Our research and development efforts are focused towards addressing some of the limitations of collagen, like the high viscosity of an aqueous phase, nondissolution in neutral pH buffers, thermal instability (denaturation) and biodegradability, to make it an ideal material for drug delivery with particular reference to microparticles. These limitations could be overcome by making collagen conjugates with other biomaterials or chemically modifying collagen monomer without affecting its triple helical conformation and maintaining its native properties. This article highlights collagen microparticles' present status as a carrier in drug delivery.

  3. Ultrasound-mediated gastrointestinal drug delivery.

    PubMed

    Schoellhammer, Carl M; Schroeder, Avi; Maa, Ruby; Lauwers, Gregory Yves; Swiston, Albert; Zervas, Michael; Barman, Ross; DiCiccio, Angela M; Brugge, William R; Anderson, Daniel G; Blankschtein, Daniel; Langer, Robert; Traverso, Giovanni

    2015-10-21

    There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn's and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease.

  4. Ultrasound-mediated gastrointestinal drug delivery

    PubMed Central

    Schoellhammer, Carl M.; Schroeder, Avi; Maa, Ruby; Lauwers, Gregory Yves; Swiston, Albert; Zervas, Michael; Barman, Ross; DiCiccio, Angela M.; Brugge, William R.; Anderson, Daniel G.; Blankschtein, Daniel; Langer, Robert; Traverso, Giovanni

    2016-01-01

    There is a significant clinical need for rapid and efficient delivery of drugs directly to the site of diseased tissues for the treatment of gastrointestinal (GI) pathologies, in particular, Crohn’s and ulcerative colitis. However, complex therapeutic molecules cannot easily be delivered through the GI tract because of physiologic and structural barriers. We report the use of ultrasound as a modality for enhanced drug delivery to the GI tract, with an emphasis on rectal delivery. Ultrasound increased the absorption of model therapeutics inulin, hydrocortisone, and mesalamine two- to tenfold in ex vivo tissue, depending on location in the GI tract. In pigs, ultrasound induced transient cavitation with negligible heating, leading to an order of magnitude enhancement in the delivery of mesalamine, as well as successful systemic delivery of a macromolecule, insulin, with the expected hypoglycemic response. In a rodent model of chemically induced acute colitis, the addition of ultrasound to a daily mesalamine enema (compared to enema alone) resulted in superior clinical and histological scores of disease activity. In both animal models, ultrasound treatment was well tolerated and resulted in minimal tissue disruption, and in mice, there was no significant effect on histology, fecal score, or tissue inflammatory cytokine levels. The use of ultrasound to enhance GI drug delivery is safe in animals and could augment the efficacy of GI therapies and broaden the scope of agents that could be delivered locally and systemically through the GI tract for chronic conditions such as inflammatory bowel disease. PMID:26491078

  5. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan; Joshi, Sachin; Reynolds, Adam

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  6. Local Drug Delivery to Prevent Restenosis

    PubMed Central

    Seedial, Stephen M.; Ghosh, Soumojit; Saunders, R. Scott; Suwanabol, Pasithorn A.; Shi, Xudong; Liu, Bo; Kent, K. Craig

    2013-01-01

    Introduction Despite significant advances in vascular biology, bioengineering and pharmacology, restenosis remains a limitation to the overall efficacy of vascular reconstructions, both percutaneous and open. Although the pathophysiology of intimal hyperplasia is complex, a number of drugs and/or molecular tools have been identified that can prevent restenosis. Moreover, the focal nature of this process lends itself to treatment with local drug administration. In this article we provide a broad overview of current and future techniques for local drug delivery that have been developed to prevent restenosis following vascular intervention. Methods A systematic electronic literature search using PubMed was performed for all accessible published articles through September 2012. In an effort to remain current, additional searches were performed for abstracts presented at relevant societal meetings, filed patents, clinical trials and funded NIH awards. Results The efficacy of local drug delivery has been demonstrated in the coronary circulation with the current clinical use of drug-eluting stents (DES). Until recently, however, DES were not found to be efficacious in the peripheral circulation. Further pursuit of intraluminal devices has led to the development of balloon-based technologies with a recent surge in trials involving drug-eluting balloons. Early data appears encouraging, particularly for treatment of lesions in the superficial femoral artery, with several devices having recently received the CE mark in Europe. Investigators have also explored periadventitial application of biomaterials containing anti-restenotic drugs, an approach that could be particularly useful for surgical bypass or endarterectomy. In the past systemic drug delivery has been unsuccessful, however, there has been recent exploration of intravenous delivery of drugs designed specifically to target injured or reconstructed arteries. Our review revealed a multitude of additional interesting

  7. Ultrasonic drug delivery--a general review.

    PubMed

    Pitt, William G; Husseini, Ghaleb A; Staples, Bryant J

    2004-11-01

    Ultrasound has an ever-increasing role in the delivery of therapeutic agents, including genetic material, protein and chemotherapeutic agents. Cavitating gas bodies, such as microbubbles, are the mediators through which the energy of relatively non-interactive pressure waves is concentrated to produce forces that permeabilise cell membranes and disrupt the vesicles that carry drugs. Thus, the presence of microbubbles enormously enhances ultrasonic delivery of genetic material, proteins and smaller chemical agents. Numerous reports show that the most efficient delivery of genetic material occurs in the presence of cavitating microbubbles. Attaching the DNA directly to the microbubbles, or to gas-containing liposomes, enhances gene uptake even further. Ultrasonic-enhanced gene delivery has been studied in various tissues, including cardiac, vascular, skeletal muscle, tumour and even fetal tissue. Ultrasonic-assisted delivery of proteins has found most application in transdermal transport of insulin. Cavitation events reversibly disrupt the structure of the stratus corneum to allow transport of these large molecules. Other hormones and small proteins could also be delivered transdermally. Small chemotherapeutic molecules are delivered in research settings from micelles and liposomes exposed to ultrasound. Cavitation appears to play two roles: it disrupts the structure of the carrier vesicle and releases the drug; and makes cell membranes and capillaries more permeable to drugs. There remains a need to better understand the physics of cavitation of microbubbles and the impact that such cavitation has on cells and drug-carrying vesicles.

  8. Light induced drug delivery into cancer cells.

    PubMed

    Shamay, Yosi; Adar, Lily; Ashkenasy, Gonen; David, Ayelet

    2011-02-01

    Cell-penetrating peptides (CPPs) can be used for intracellular delivery of a broad variety of cargoes, including various nanoparticulate pharmaceutical carriers. However, the cationic nature of all CPP sequences, and thus lack of cell specificity, limits their in vivo use for drug delivery applications. Here, we have devised and tested a strategy for site-specific delivery of dyes and drugs into cancer cells by using polymers bearing a light activated caged CPP (cCPP). The positive charge of Lys residues on the minimum sequence of the CPP penetratin ((52)RRMKWKK(58)) was masked with photo-cleavable groups to minimize non-specific adsorption and cellular uptake. Once illuminated by UV light, these protecting groups were cleaved, the positively charged CPP regained its activity and facilitated rapid intracellular delivery of the polymer-dye or polymer-drug conjugates into cancer cells. We have found that a 10-min light illumination time was sufficient to enhance the penetration of the polymer-CPP conjugates bearing the proapoptotic peptide, (D)(KLAKLAK)(2), into 80% of the target cells, and to promote a 'switch' like cytotoxic activity resulting a shift from 100% to 10% in cell viability after 2 h. This report provides an example for tumor targeting by means of light activation of cell-penetrating peptides for intracellular drug delivery.

  9. Transungual drug delivery: current status.

    PubMed

    Elkeeb, Rania; AliKhan, Ali; Elkeeb, Laila; Hui, Xiaoying; Maibach, Howard I

    2010-01-15

    Topical therapy is highly desirable in treating nail disorders due to its localized effects, which results in minimal adverse systemic events and possibly improved adherence. However, the effectiveness of topical therapies is limited by minimal drug permeability through the nail plate. Current research on nail permeation that focuses on altering the nail plate barrier by means of chemical treatments, penetration enhancers as well as physical and mechanical methods is reviewed. A new method of nail sampling is examined. Finally limitations of current ungual drug permeability studies are briefly discussed.

  10. Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery.

    PubMed

    Jin, Qiao; Chen, Yangjun; Wang, Yin; Ji, Jian

    2014-12-01

    Nanomaterials self-assembled from amphiphilic functional copolymers have emerged as safe and efficient nanocarriers for delivery of therapeutics. Surface engineering of the nanocarriers is extremely important for the design of drug delivery systems. Bioinspired zwitterions are considered as novel nonfouling materials to construct biocompatible and bioinert nanocarriers. As an alternative to poly(ethylene glycol) (PEG), zwitterions exhibit some unique properties that PEG do not have. In this review, we highlight recent progress of the design of drug nanocarriers using a zwitterionic strategy. The possible mechanism of stealth properties of zwitterions was proposed. The advantages of zwitterionic drug nanocarriers deriving from phosphorylcholine (PC), carboxybetaine (CB), and sulfobetaine (SB) are also discussed.

  11. Plasmon resonant liposomes for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Knights-Mitchell, Shellie S.; Romanowski, Marek

    2015-03-01

    Nanotechnology use in drug delivery promotes a reduction in systemic toxicity, improved pharmacokinetics, and better drug bioavailability. Liposomes continue to be extensively researched as drug delivery systems (DDS) with formulations such as Doxil® and Ambisome® approved by FDA and successfully marketed in the United States. However, the limited ability to precisely control release of active ingredients from these vesicles continues to challenge the broad implementation of this technology. Moreover, the full potential of the carrier to sequester drugs until it can reach its intended target has yet to be realized. Here, we describe a liposomal DDS that releases therapeutic doses of an anticancer drug in response to external stimulus. Earlier, we introduced degradable plasmon resonant liposomes. These constructs, obtained by reducing gold on the liposome surface, facilitate spatial and temporal release of drugs upon laser light illumination that ultimately induces an increase in temperature. In this work, plasmon resonant liposomes have been developed to stably encapsulate and retain doxorubicin at physiological conditions represented by isotonic saline at 37o C and pH 7.4. Subsequently, they are stimulated to release contents either by a 5o C increase in temperature or by laser illumination (760 nm and 88 mW/cm2 power density). Successful development of degradable plasmon resonant liposomes responsive to near-infrared light or moderate hyperthermia can provide a new delivery method for multiple lipophilic and hydrophilic drugs with pharmacokinetic profiles that limit clinical utility.

  12. Drug delivery system and breast cancer cells

    NASA Astrophysics Data System (ADS)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  13. Tuberculosis chemotherapy: current drug delivery approaches

    PubMed Central

    du Toit, Lisa Claire; Pillay, Viness; Danckwerts, Michael Paul

    2006-01-01

    Tuberculosis is a leading killer of young adults worldwide and the global scourge of multi-drug resistant tuberculosis is reaching epidemic proportions. It is endemic in most developing countries and resurgent in developed and developing countries with high rates of human immunodeficiency virus infection. This article reviews the current situation in terms of drug delivery approaches for tuberculosis chemotherapy. A number of novel implant-, microparticulate-, and various other carrier-based drug delivery systems incorporating the principal anti-tuberculosis agents have been fabricated that either target the site of tuberculosis infection or reduce the dosing frequency with the aim of improving patient outcomes. These developments in drug delivery represent attractive options with significant merit, however, there is a requisite to manufacture an oral system, which directly addresses issues of unacceptable rifampicin bioavailability in fixed-dose combinations. This is fostered by the need to deliver medications to patients more efficiently and with fewer side effects, especially in developing countries. The fabrication of a polymeric once-daily oral multiparticulate fixed-dose combination of the principal anti-tuberculosis drugs, which attains segregated delivery of rifampicin and isoniazid for improved rifampicin bioavailability, could be a step in the right direction in addressing issues of treatment failure due to patient non-compliance. PMID:16984627

  14. Ingestion of drugs by "parachuting": a unique drug delivery technique.

    PubMed

    Kenerson, Katherine L; Lear-Kaul, Kelly C

    2012-06-01

    "Parachuting" is a technique of drug delivery where medications or illicit drugs are ingested by wrapping the drug of choice in a covering, which then will dissolve or unravel in the gastrointestinal tract, thereby releasing the drug for absorption. Parachuting of drugs can entail crushing of a pill prior to packaging to theoretically increase the surface area for absorption or may involve the packaging of a higher than usual dose of a drug in attempts to attain a sustained-release effect as the "parachute" dissolves or unravels. A case is presented in which a prescription drug abuser known to parachute his medications dies from obstruction of his airway by the inhaled packet. Risks of parachuting any drug would include overdose and fatal toxic effect from the drug itself and adverse effects from the packaging including bowel obstruction or perforation, or airway obstruction.

  15. Drug delivery applications with ethosomes.

    PubMed

    Ainbinder, D; Paolino, D; Fresta, M; Touitou, E

    2010-10-01

    Ethosomes are specially tailored vesicular carriers able to efficiently deliver various molecules with different physicochemical properties into deep skin layers and across the skin. This paper reviews the unique characteristics of the ethosomal carriers, focusing on work carried out with drug containing ethosomal systems in animal models and in clinical studies. The paper concludes with a discussion on the safety of the ethosomal system applications.

  16. Intracranial drug delivery for subarachnoid hemorrhage.

    PubMed

    Macdonald, Robert Loch; Leung, Ming; Tice, Tom

    2012-01-01

    Tice and colleagues pioneered site-specific, sustained-release drug delivery to the brain almost 30 years ago. Currently there is one drug approved for use in this manner. Clinical trials in subarachnoid hemorrhage have led to approval of nimodipine for oral and intravenous use, but other drugs, such as clazosentan, hydroxymethylglutaryl CoA reductase inhibitors (statins) and magnesium, have not shown consistent clinical efficacy. We propose that intracranial delivery of drugs such as nimodipine, formulated in sustained-release preparations, are good candidates for improving outcome after subarachnoid hemorrhage because they can be administered to patients that are already undergoing surgery and who have a self-limited condition from which full recovery is possible.

  17. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery.

    PubMed

    Tu, Yingfeng; Peng, Fei; André, Alain A M; Men, Yongjun; Srinivas, Mangala; Wilson, Daniela A

    2017-02-28

    We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs.

  18. Biodegradable Hybrid Stomatocyte Nanomotors for Drug Delivery

    PubMed Central

    2017-01-01

    We report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers. The biodegradable motor system was further shown to move directionally with speeds up to 39 μm/s by converting chemical fuel, hydrogen peroxide, into mechanical motion as well as rapidly delivering the drug to the targeted cancer cell. Uptake by cancer cells and fast doxorubicin drug release was demonstrated during the degradation of the motor system. Such biodegradable nanomotors provide a convenient and efficient platform for the delivery and controlled release of therapeutic drugs. PMID:28187254

  19. Design strategies and applications of circulating cell-mediated drug delivery systems

    PubMed Central

    Kim, Gloria B.; Dong, Cheng; Yang, Jian

    2015-01-01

    Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based “live” targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems. PMID:25984572

  20. Vaginal drug delivery systems for HIV prevention.

    PubMed

    Rohan, Lisa Cencia; Sassi, Alexandra B

    2009-03-01

    Microbicides have become a principal focus for HIV prevention strategies. The successful design of drug delivery systems for vaginal microbicide drug candidates brings with it a multitude of challenges. It is imperative that the chemical and physical characteristics of the drug candidate and its mechanism of action be clearly understood and considered to successfully deliver and target drug candidates efficiently. In addition, an understanding of the dynamic nature of the vaginal environment, the tissue and innate barriers present, as well as patient preferences are critical considerations in the design of effective microbicide products. Although the majority of drug candidates clinically evaluated to date have been delivered using conventional semisolid aqueous-based gel dosage forms, drug delivery system design has recently been extended to include advanced delivery systems such as vaginal rings, quick-dissolve films, and tablets. Ultimately, it may be necessary to develop multiple dosage platforms for a single active agent to provide users with options that can be used within the constraints of their social environment, personal choice, and environmental conditions.

  1. Optically generated ultrasound for enhanced drug delivery

    DOEpatents

    Visuri, Steven R.; Campbell, Heather L.; Da Silva, Luiz

    2002-01-01

    High frequency acoustic waves, analogous to ultrasound, can enhance the delivery of therapeutic compounds into cells. The compounds delivered may be chemotherapeutic drugs, antibiotics, photodynamic drugs or gene therapies. The therapeutic compounds are administered systemically, or preferably locally to the targeted site. Local delivery can be accomplished through a needle, cannula, or through a variety of vascular catheters, depending on the location of routes of access. To enhance the systemic or local delivery of the therapeutic compounds, high frequency acoustic waves are generated locally near the target site, and preferably near the site of compound administration. The acoustic waves are produced via laser radiation interaction with an absorbing media and can be produced via thermoelastic expansion, thermodynamic vaporization, material ablation, or plasma formation. Acoustic waves have the effect of temporarily permeabilizing the membranes of local cells, increasing the diffusion of the therapeutic compound into the cells, allowing for decreased total body dosages, decreased side effects, and enabling new therapies.

  2. Recent Perspectives in Ocular Drug Delivery

    PubMed Central

    Gaudana, Ripal; Jwala, J.; Boddu, Sai H. S.; Mitra, Ashim K.

    2015-01-01

    Anatomy and physiology of the eye makes it a highly protected organ. Designing an effective therapy for ocular diseases, especially for the posterior segment, has been considered as a formidable task. Limitations of topical and intravitreal route of administration have challenged scientists to find alternative mode of administration like periocular routes. Transporter targeted drug delivery has generated a great deal of interest in the field because of its potential to overcome many barriers associated with current therapy. Application of nanotechnology has been very promising in the treatment of a gamut of diseases. In this review, we have briefly discussed several ocular drug delivery systems such as microemulsions, nanosuspensions, nanoparticles, liposomes, niosomes, dendrimers, implants, and hydrogels. Potential for ocular gene therapy has also been described in this article. In near future, a great deal of attention will be paid to develop non-invasive sustained drug release for both anterior and posterior segment eye disorders. A better understanding of nature of ocular diseases, barriers and factors affecting in vivo performance, would greatly drive the development of new delivery systems. Current momentum in the invention of new drug delivery systems hold a promise towards much improved therapies for the treatment of vision threatening disorders. PMID:18758924

  3. Drug Delivery for Peripheral Nerve Regeneration

    DTIC Science & Technology

    2015-11-01

    Gale)(months 0-1) b. Optimize nanoporous membrane dimensions ......................(Gale...kinetics of NGF in vitro using our novel drug delivery conduit Material Fabrication The proposed device consists of two concentric tubes, a reservoir...suctioning of material into the conduits, any excess PLGA was allowed to drip out of the molds. The conduits were then placed vertically into a water

  4. Drug delivery strategies for poorly water-soluble drugs.

    PubMed

    Fahr, Alfred; Liu, Xiangli

    2007-07-01

    The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.

  5. Potential new methods for antiepileptic drug delivery.

    PubMed

    Fisher, Robert S; Ho, Jet

    2002-01-01

    Use of novel drug delivery methods could enhance the efficacy and reduce the toxicity of antiepileptic drugs (AEDs). Slow-release oral forms of medication or depot drugs such as skin patches might improve compliance and therefore seizure control. In emergency situations, administration via rectal, nasal or buccal mucosa can deliver the drug more quickly than can oral administration. Slow-release oral forms and rectal forms of AEDs are already approved for use, nasal and buccal administration is currently off-label and skin patches for AEDs are an attractive but currently hypothetical option. Therapies under development may result in the delivery of AEDs directly to the regions of the brain involved in seizures. Experimental protocols are underway to allow continuous infusion of potent excitatory amino acid antagonists into the CSF. In experiments with animal models of epilepsy, AEDs have been delivered successfully to seizure foci in the brain by programmed infusion pumps, acting in response to computerised EEG seizure detection. Inactive prodrugs can be given systemically and activated at the site of the seizure focus by locally released compounds. One such drug under development is DP-VPA (or DP16), which is cleaved to valproic acid (sodium valproate) by phospholipases at the seizure focus. Liposomes and nanoparticles are engineered micro-reservoirs of a drug, with attached antibodies or receptor-specific binding agents designed to target the particles to a specific region of the body. Liposomes in theory could deliver a high concentration of an AED to a seizure focus. Penetration of the blood-brain barrier can be accomplished by linking large particles to iron transferrin or biological toxins that can cross the barrier. In the near future, it is likely that cell transplants that generate neurotransmitters and neuromodulators will accomplish renewable endogenous drug delivery. However, the survival and viability of transplanted cells have yet to be demonstrated

  6. DNA nanomaterials for preclinical imaging and drug delivery.

    PubMed

    Jiang, Dawei; England, Christopher G; Cai, Weibo

    2016-10-10

    Besides being the carrier of genetic information, DNA is also an excellent biological organizer to establish well-designed nanostructures in the fields of material engineering, nanotechnology, and biomedicine. DNA-based materials represent a diverse nanoscale system primarily due to their predictable base pairing and highly regulated conformations, which greatly facilitate the construction of DNA nanostructures with distinct shapes and sizes. Integrating the emerging advancements in bioconjugation techniques, DNA nanostructures can be readily functionalized with high precision for many purposes ranging from biosensors to imaging to drug delivery. Recent progress in the field of DNA nanotechnology has exhibited collective efforts to employ DNA nanostructures as smart imaging agents or delivery platforms within living organisms. Despite significant improvements in the development of DNA nanostructures, there is limited knowledge regarding the in vivo biological fate of these intriguing nanomaterials. In this review, we summarize the current strategies for designing and purifying highly-versatile DNA nanostructures for biological applications, including molecular imaging and drug delivery. Since DNA nanostructures may elicit an immune response in vivo, we also present a short discussion of their potential toxicities in biomedical applications. Lastly, we discuss future perspectives and potential challenges that may limit the effective preclinical and clinical employment of DNA nanostructures. Due to their unique properties, we predict that DNA nanomaterials will make excellent agents for effective diagnostic imaging and drug delivery, improving patient outcome in cancer and other related diseases in the near future. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mucoadhesive drug delivery system: An overview

    PubMed Central

    Boddupalli, Bindu M.; Mohammed, Zulkar N. K.; Nath, Ravinder A.; Banji, David

    2010-01-01

    Mucoadhesive drug delivery systems interact with the mucus layer covering the mucosal epithelial surface, and mucin molecules and increase the residence time of the dosage form at the site of absorption. The drugs which have local action or those which have maximum absorption in gastrointestinal tract (GIT) require increased duration of stay in GIT. Thus, mucoadhesive dosage forms are advantageous in increasing the drug plasma concentrations and also therapeutic activity. In this regard, this review covers the areas of mechanisms and theories of mucoadhesion, factors influencing the mucoadhesive devices and also various mucoadhesive dosage forms. PMID:22247877

  8. Advanced materials and nanotechnology for drug delivery.

    PubMed

    Yan, Li; Yang, Yang; Zhang, Wenjun; Chen, Xianfeng

    2014-08-20

    Many biological barriers are of great importance. For example, stratum corneum, the outmost layer of skin, effectively protects people from being invaded by external microorganisms such as bacteria and viruses. Cell membranes help organisms maintain homeostasis by controlling substances to enter and leave cells. However, on the other hand, these biological barriers seriously restrict drug delivery. For instance, stratum corneum has a very dense structure and only allows very small molecules with a molecular weight of below 500 Da to permeate whereas most drug molecules are much larger than that. A wide variety of drugs including genes needs to enter cells for proper functioning but cell membranes are not permeable to them. To overcome these biological barriers, many drug-delivery routes are being actively researched and developed. In this research news, we will focus on two advanced materials and nanotechnology approaches for delivering vaccines through the skin for painless and efficient immunization and transporting drug molecules to cross cell membranes for high-throughput intracellular delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Structural DNA nanotechnology for intelligent drug delivery.

    PubMed

    Chao, Jie; Liu, Huajie; Su, Shao; Wang, Lianhui; Huang, Wei; Fan, Chunhai

    2014-11-01

    Drug delivery carriers have been popularly employed to improve solubility, stability, and efficacy of chemical and biomolecular drugs. Despite the rapid progress in this field, it remains a great challenge to develop an ideal carrier with minimal cytotoxicity, high biocompatibility and intelligence for targeted controlled release. The emergence of DNA nanotechnology offers unprecedented opportunities in this regard. Due to the unparalleled self-recognition properties of DNA molecules, it is possible to create numerous artificial DNA nanostructures with well-defined structures and DNA nanodevices with precisely controlled motions. More importantly, recent studies have proven that DNA nanostructures possess greater permeability to the membrane barrier of cells, which pave the way to developing new drug delivery carriers with nucleic acids, are summarized. In this Concept, recent advances on the design and fabrication of both static and dynamic DNA nanostructures, and the use of these nanostructures for the delivery of various types of drugs, are highlighted. It is also demonstrated that dynamic DNA nanostructures provide the required intelligence to realize logically controlled drug release. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Oral transmucosal drug delivery for pediatric use.

    PubMed

    Lam, Jenny K W; Xu, Yingying; Worsley, Alan; Wong, Ian C K

    2014-06-01

    The formulation of medicines for children remains a challenge. An ideal pediatric formulation must allow accurate dose administration and be in a dosage form that can be handled by the target age group. It is also important to consider the choices and the amount of excipients used in the formulation for this vulnerable age group. Although oral formulations are generally acceptable to most pediatric patients, they are not suitable for drugs with poor oral bioavailability or when a rapid clinical effect is required. In recent years, oral transmucosal delivery has emerged as an attractive route of administration for pediatric patients. With this route of administration, a drug is absorbed through the oral mucosa, therefore bypassing hepatic first pass metabolism and thus avoiding drug degradation or metabolism in the gastrointestinal tract. The high blood flow and relatively high permeability of the oral mucosa allow a quick onset of action to be achieved. It is a simple and non-invasive route of drug administration. However, there are several barriers that need to be overcome in the development of oral transmucosal products. This article aims to provide a comprehensive review of the current development of oral transmucosal delivery specifically for the pediatric population in order to achieve systemic drug delivery. The anatomical and physiological properties of the oral mucosa of infants and young children are carefully examined. The different dosage forms and formulation strategies that are suitable for young patients are discussed.

  11. Chitosan magnetic nanoparticles for drug delivery systems.

    PubMed

    Assa, Farnaz; Jafarizadeh-Malmiri, Hoda; Ajamein, Hossein; Vaghari, Hamideh; Anarjan, Navideh; Ahmadi, Omid; Berenjian, Aydin

    2017-06-01

    The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.

  12. Mucoadhesive polymeric platforms for controlled drug delivery.

    PubMed

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S

    2009-03-01

    The process of mucoadhesion involving a polymeric drug delivery platform is a complex one that includes wetting, adsorption and interpenetration of polymer chains amongst various other processes. The success and degree of mucoadhesion bonding is influenced by various polymer-based properties such as the degree of cross-linking, chain length and the presence of various functional groupings. The attractiveness of mucosal-targeted controlled drug delivery of active pharmaceutical ingredients (APIs), has led formulation scientists to engineer numerous polymeric systems for such tasks. Formulation scientists have at their disposal a range of in vitro and in vivo mucoadhesion testing setups in order to select candidate adhesive drug delivery platforms. As such, mucoadhesive systems have found wide use throughout many mucosal covered organelles for API delivery for local or systemic effect. Evolution of such mucoadhesive formulations has transgressed from first-generation charged hydrophilic polymer networks to more specific second-generation systems based on lectin, thiol and various other adhesive functional groups.

  13. Drug delivery optimization through Bayesian networks.

    PubMed Central

    Bellazzi, R.

    1992-01-01

    This paper describes how Bayesian Networks can be used in combination with compartmental models to plan Recombinant Human Erythropoietin (r-HuEPO) delivery in the treatment of anemia of chronic uremic patients. Past measurements of hematocrit or hemoglobin concentration in a patient during the therapy can be exploited to adjust the parameters of a compartmental model of the erythropoiesis. This adaptive process allows more accurate patient-specific predictions, and hence a more rational dosage planning. We describe a drug delivery optimization protocol, based on our approach. Some results obtained on real data are presented. PMID:1482938

  14. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery.

    PubMed

    Singh, Reena M P; Kumar, Anil; Pathak, Kamla

    2013-01-01

    The nasal route is an attractive target for administration of the drug of choice, particularly in overcoming disadvantages such as high first-pass metabolism and drug degradation in the gastrointestinal environment that are associated with the oral and other modes of administration. The major limitation associated is of rapid mucociliary clearance in the nasal delivery that results in low absorption and hence poor bioavailability. In order to overcome this, mucoadhesive in situ nasal gelling drug delivery systems have been explored to develop sustained/controlled delivery via nasal route. The present review critically evaluates the importance of in situ gel for the nasal delivery of drugs, and the polymers used in the formulation of in situ gel along with their mechanism of gelation. It also encompasses the research reports made in this arena of delivery system. The challenges of drug delivery through nose has led to development of in situ nasal gelling systems using a myriad of polymers to deliver the drugs, proteins, amino acids, hormones, vaccines and plasmid DNA for the local, systemic and central nervous system effects. Though a range of preclinical reports are available, clinical intricacies need to be critically worked out.

  15. Multifunctional High Drug Loading Nanocarriers for Cancer Drug Delivery

    NASA Astrophysics Data System (ADS)

    Jin, Erlei

    2011-12-01

    Most anticancer drugs have poor water-solubility, rapid blood clearance, low tumor-selectivity and severe systemic toxicity to healthy tissues. Thus, polymeric nanocarriers have been widely explored for anticancer drugs to solve these problems. However, polymer nanocarriers developed to date still suffer drawbacks including low drug loading contents, premature drug release, slow cellular internalization, slow intracellular drug release and thereby low therapeutic efficiency in cancer thermotherapy. Accordingly, in this dissertation, functional nanocapsules and nanoparticles including high drug loading liposome-like nanocapsules, high drug loading phospholipid-mimic nanocapsules with fast intracellular drug release, high drug loading charge-reversal nanocapsules, TAT based long blood circulation nanoparticles and charge-reversal nuclear targeted nanoparticles are designed and synthesized. These functional carriers have advantages such as high drug loading contents without premature drug release, fast cellular internalization and intracellular drug release, nuclear targeted delivery and long blood circulation. As a result, all these drug carriers show much higher in vitro and in vivo anti-cancer activities.

  16. A new brain drug delivery strategy: focused ultrasound-enhanced intranasal drug delivery.

    PubMed

    Chen, Hong; Chen, Cherry C; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (i.n.) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+i.n.) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After i.n. administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (i.v.) drug injection is employed, FUS was also applied after i.v. injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+i.n. enhanced drug delivery within the targeted region compared with that achieved by i.n. only. Despite the fact that the i.n. route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+i.n. was not significantly different from that of FUS+i.v.. As a new drug delivery platform, the FUS+i.n. technique is potentially useful for treating CNS diseases.

  17. A New Brain Drug Delivery Strategy: Focused Ultrasound-Enhanced Intranasal Drug Delivery

    PubMed Central

    Chen, Hong; Chen, Cherry C.; Acosta, Camilo; Wu, Shih-Ying; Sun, Tao; Konofagou, Elisa E.

    2014-01-01

    Central nervous system (CNS) diseases are difficult to treat because of the blood-brain barrier (BBB), which prevents most drugs from entering into the brain. Intranasal (IN) administration is a promising approach for drug delivery to the brain, bypassing the BBB; however, its application has been restricted to particularly potent substances and it does not offer localized delivery to specific brain sites. Focused ultrasound (FUS) in combination with microbubbles can deliver drugs to the brain at targeted locations. The present study proposed to combine these two different platform techniques (FUS+IN) for enhancing the delivery efficiency of intranasally administered drugs at a targeted location. After IN administration of 40 kDa fluorescently-labeled dextran as the model drug, FUS targeted at one region within the caudate putamen of mouse brains was applied in the presence of systemically administered microbubbles. To compare with the conventional FUS technique, in which intravenous (IV) drug injection is employed, FUS was also applied after IV injection of the same amount of dextran in another group of mice. Dextran delivery outcomes were evaluated using fluorescence imaging of brain slices. The results showed that FUS+IN enhanced drug delivery within the targeted region compared with that achieved by IN only. Despite the fact that the IN route has limited drug absorption across the nasal mucosa, the delivery efficiency of FUS+IN was not significantly different from that of FUS+IV. As a new drug delivery platform, the FUS+IN technique is potentially useful for treating CNS diseases. PMID:25279463

  18. Ultrasound-Mediated Polymeric Micelle Drug Delivery.

    PubMed

    Xia, Hesheng; Zhao, Yue; Tong, Rui

    2016-01-01

    The synthesis of multi-functional nanocarriers and the design of new stimuli-responsive means are equally important for drug delivery. Ultrasound can be used as a remote, non-invasive and controllable trigger for the stimuli-responsive release of nanocarriers. Polymeric micelles are one kind of potential drug nanocarrier. By combining ultrasound and polymeric micelles, a new modality (i.e., ultrasound-mediated polymeric micelle drug delivery) has been developed and has recently received increasing attention. A major challenge remaining in developing ultrasound-responsive polymeric micelles is the improvement of the sensitivity or responsiveness of polymeric micelles to ultrasound. This chapter reviews the recent advance in this field. In order to understand the interaction mechanism between ultrasound stimulus and polymeric micelles, ultrasound effects, such as thermal effect, cavitation effect, ultrasound sonochemistry (including ultrasonic degradation, ultrasound-initiated polymerization, ultrasonic in-situ polymerization and ultrasound site-specific degradation), as well as basic micellar knowledge are introduced. Ultrasound-mediated polymeric micelle drug delivery has been classified into two main streams based on the different interaction mechanism between ultrasound and polymeric micelles; one is based on the ultrasound-induced physical disruption of the micelle and reversible release of payload. The other is based on micellar ultrasound mechanochemical disruption and irreversible release of payload.

  19. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  20. Drug Delivery Nanoparticles in Skin Cancers

    PubMed Central

    Dianzani, Chiara; Zara, Gian Paolo; Maina, Giovanni; Pettazzoni, Piergiorgio; Pizzimenti, Stefania; Rossi, Federica; Gigliotti, Casimiro Luca; Ciamporcero, Eric Stefano; Daga, Martina; Barrera, Giuseppina

    2014-01-01

    Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies nanotechnology to highly specific medical interventions for prevention, diagnosis, and treatment of diseases, including cancer disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases. Nanoparticles offer many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug metabolism. They can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs for combination therapy. In this review, we discuss the recent advances in the use of different types of nanoparticles for systemic and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell carcinoma, squamous cell carcinoma, and melanoma has been reported. PMID:25101298

  1. Limited Efficiency of Drug Delivery to Specific Intracellular Organelles Using Subcellularly "Targeted" Drug Delivery Systems.

    PubMed

    Maity, Amit Ranjan; Stepensky, David

    2016-01-04

    Many drugs have been designed to act on intracellular targets and to affect intracellular processes inside target cells. For the desired effects to be exerted, these drugs should permeate target cells and reach specific intracellular organelles. This subcellular drug targeting approach has been proposed for enhancement of accumulation of these drugs in target organelles and improved efficiency. This approach is based on drug encapsulation in drug delivery systems (DDSs) and/or their decoration with specific targeting moieties that are intended to enhance the drug/DDS accumulation in the intracellular organelle of interest. During recent years, there has been a constant increase in interest in DDSs targeted to specific intracellular organelles, and many different approaches have been proposed for attaining efficient drug delivery to specific organelles of interest. However, it appears that in many studies insufficient efforts have been devoted to quantitative analysis of the major formulation parameters of the DDSs disposition (efficiency of DDS endocytosis and endosomal escape, intracellular trafficking, and efficiency of DDS delivery to the target organelle) and of the resulting pharmacological effects. Thus, in many cases, claims regarding efficient delivery of drug/DDS to a specific organelle and efficient subcellular targeting appear to be exaggerated. On the basis of the available experimental data, it appears that drugs/DDS decoration with specific targeting residues can affect their intracellular fate and result in preferential drug accumulation within an organelle of interest. However, it is not clear whether these approaches will be efficient in in vivo settings and be translated into preclinical and clinical applications. Studies that quantitatively assess the mechanisms, barriers, and efficiencies of subcellular drug delivery and of the associated toxic effects are required to determine the therapeutic potential of subcellular DDS targeting.

  2. Transdermal drug delivery: from micro to nano

    NASA Astrophysics Data System (ADS)

    Pegoraro, Carla; MacNeil, Sheila; Battaglia, Giuseppe

    2012-03-01

    Delivery across skin offers many advantages compared to oral or intravenous routes of drug administration. Skin however is highly impermeable to most molecules on the basis of size, hydrophilicity, lipophilicity and charge. For this reason it is often necessary to temporarily alter the barrier properties of skin for effective administration. This can be done by applying chemical enhancers, which alter the lipid structure of the top layer of skin (the stratum corneum, SC), by applying external forces such as electric currents and ultrasounds, by bypassing the stratum corneum via minimally invasive microneedles or by using nano-delivery vehicles that can cross and deliver their payload to the deeper layers of skin. Here we present a critical summary of the latest technologies used to increase transdermal delivery.

  3. Biomimetics in drug delivery systems: A critical review.

    PubMed

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-03-18

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems.

  4. Intracarotid Delivery of Drugs: The Potential and the Pitfalls

    PubMed Central

    Joshi, Shailendra; Meyers, Phillip M.; Ornstein, Eugene

    2014-01-01

    The major efforts to selectively deliver drugs to the brain in the last decade have relied on smart molecular techniques to penetrate the blood brain barrier while intraarterial drug delivery has drawn relatively little attention. In the last decade there have been rapid advances in endovascular techniques. Modern endovascular procedures can permit highly targeted drug delivery by intracarotid route. Intracarotid drug delivery can be the primary route of drug delivery or it could be used to facilitate the delivery of smart-neuropharmaceuticals. There have been few attempts to systematically understand the kinetics of intracarotid drugs. Anecdotal data suggests that intracarotid drug delivery is effective in the treatment of cerebral vasospasm, thromboembolic strokes, and neoplasms. Neuroanesthesiologists are frequently involved in the care of such high-risk patients. Therefore, it is necessary to understand the applications of intracarotid drug delivery and the unusual kinetics of intracarotid drugs. PMID:18719453

  5. Nasal-to-CNS drug delivery: where are we now and where are we heading? An industrial perspective.

    PubMed

    Landis, Margaret S; Boyden, Tracey; Pegg, Simon

    2012-02-01

    Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach. Further discoveries in nasal nanotechnology, targeted delivery devices and diagnostic olfactory imaging will serve to fuel the advancements in this area of drug delivery.

  6. Viruses as nanomaterials for drug delivery.

    PubMed

    Lockney, Dustin; Franzen, Stefan; Lommel, Steven

    2011-01-01

    Virus delivery vectors are one among the many nanomaterials that are being developed as drug delivery materials. This chapter focuses on methods utilizing plant virus nanoparticles (PVNs) synthesized from the Red clover necrotic mosaic virus (RCNMV). A successful vector must be able to effectively carry and subsequently deliver a drug cargo to a specific target. In the case of the PVNs, we describe two types of ways cargo can be loaded within these structures: encapsidation and infusion. Several targeting approaches have been used for PVNs based on bioconjugate chemistry. Herein, examples of such approaches will be given that have been used for RCNMV as well as for other PVNs in the literature. Further, we describe characterization of PVNs, in vitro cell studies that can be used to test the efficacy of a targeting vector, and potential routes for animal administration.

  7. Nanotechnology Approaches for Ocular Drug Delivery

    PubMed Central

    Xu, Qingguo; Kambhampati, Siva P.; Kannan, Rangaramanujam M.

    2013-01-01

    Blindness is a major health concern worldwide that has a powerful impact on afflicted individuals and their families, and is associated with enormous socio-economical consequences. The Middle East is heavily impacted by blindness, and the problem there is augmented by an increasing incidence of diabetes in the population. An appropriate drug/gene delivery system that can sustain and deliver therapeutics to the target tissues and cells is a key need for ocular therapies. The application of nanotechnology in medicine is undergoing rapid progress, and the recent developments in nanomedicine-based therapeutic approaches may bring significant benefits to address the leading causes of blindness associated with cataract, glaucoma, diabetic retinopathy and retinal degeneration. In this brief review, we highlight some promising nanomedicine-based therapeutic approaches for drug and gene delivery to the anterior and posterior segments. PMID:23580849

  8. Diatomite silica nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M.; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-07-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery.

  9. Inhalation drug delivery devices: technology update

    PubMed Central

    Ibrahim, Mariam; Verma, Rahul; Garcia-Contreras, Lucila

    2015-01-01

    The pulmonary route of administration has proven to be effective in local and systemic delivery of miscellaneous drugs and biopharmaceuticals to treat pulmonary and non-pulmonary diseases. A successful pulmonary administration requires a harmonic interaction between the drug formulation, the inhaler device, and the patient. However, the biggest single problem that accounts for the lack of desired effect or adverse outcomes is the incorrect use of the device due to lack of training in how to use the device or how to coordinate actuation and aerosol inhalation. This review summarizes the structural and mechanical features of aerosol delivery devices with respect to mechanisms of aerosol generation, their use with different formulations, and their advantages and limitations. A technological update of the current state-of-the-art designs proposed to overcome current challenges of existing devices is also provided. PMID:25709510

  10. Advanced drug delivery approaches against periodontitis.

    PubMed

    Joshi, Deeksha; Garg, Tarun; Goyal, Amit K; Rath, Goutam

    2016-01-01

    Periodontitis is an inflammatory disease of gums involving the degeneration of periodontal ligaments, creation of periodontal pocket and resorption of alveolar bone, resulting in the disruption of the support structure of teeth. According to WHO, 10-15% of the global population suffers from severe periodontitis. The disease results from the growth of a diverse microflora (especially anaerobes) in the pockets and release of toxins, enzymes and stimulation of body's immune response. Various local or systemic approaches were used for an effective treatment of periodontitis. Currently, controlled local drug delivery approach is more favorable as compared to systemic approach because it mainly focuses on improving the therapeutic outcomes by achieving factors like site-specific delivery, low dose requirement, bypass of first-pass metabolism, reduction in gastrointestinal side effects and decrease in dosing frequency. Overall it provides a safe and effective mode of treatment, which enhances patient compliance. Complete eradication of the organisms from the sites was not achieved by using various surgical and mechanical treatments. So a number of polymer-based delivery systems like fibers, films, chips, strips, microparticles, nanoparticles and nanofibers made from a variety of natural and synthetic materials have been successfully tested to deliver a variety of drugs. These systems are biocompatible and biodegradable, completely fill the pockets, and have strong retention on the target site due to excellent mucoadhesion properties. The review summarizes various available and recently developing targeted delivery devices for the treatment of periodontitis.

  11. Microneedle Coating Techniques for Transdermal Drug Delivery

    PubMed Central

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-01-01

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364

  12. Nanogel Carrier Design for Targeted Drug Delivery

    PubMed Central

    Eckmann, D. M.; Composto, R. J.; Tsourkas, A.; Muzykantov, V. R.

    2014-01-01

    Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions. PMID:25485112

  13. Microneedle Coating Techniques for Transdermal Drug Delivery.

    PubMed

    Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan

    2015-11-05

    Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates.

  14. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  15. Targeted Delivery of Protein Drugs by Nanocarriers

    PubMed Central

    Solaro, Roberto; Chiellini, Federica; Battisti, Antonella

    2010-01-01

    Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  16. Design, synthesis, and functionalization of nanomaterials for therapeutic drug delivery.

    PubMed

    Grandhi, Taraka Sai Pavan; Rege, Kaushal

    2014-01-01

    Nanomaterials have the potential to solve some of the toughest challenges facing modern medicine. Their unique optical, magnetic and chemical properties at the nanoscale make them different from their macroscale counterparts. Successful application of nanomaterials can revolutionize therapeutics, diagnostics and imaging in several biomedical applications. Self-assembled amphiphilic polymeric nanoparticles have been employed to carry poorly soluble chemotherapeutic drugs. Loading of anticancer chemotherapeutic drugs into self assembled polymeric nanoparticles have shown to increase their circulation time, tumor localization and therapeutic potential. This book chapter provides an introductory discussion to organic nanotechnologies for drug delivery. Promising advances in the field of nanomedicine will be discussed and an outlook to the future will be provided.

  17. Controlled Ocular Drug Delivery with Nanomicelles

    PubMed Central

    Vaishya, Ravi D.; Khurana, Varun; Patel, Sulabh; Mitra, Ashim K.

    2014-01-01

    Many vision threatening ocular diseases such as age-related macular degeneration (AMD), diabetic retinopathy, glaucoma, and proliferative vitreoretinopathy may result in blindness. Ocular drug delivery specifically to the intraocular tissues remains a challenging task due to the presence of various physiological barriers. Nonetheless, recent advancements in the field of nanomicelle based novel drug delivery system could fulfil these unmet needs. Nanomicelles consists of amphiphilic molecules that self-assemble in aqueous media to form organized supramolecular structures. Micelles can be prepared in various sizes (10 to 1000nm) and shapes depending on the molecular weights of the core and corona forming blocks. Nanomicelles have been an attractive carriers for their potential to solubilize hydrophobic molecules in aqueous solution. In addition, small size in nanometer range and highly modifiable surface properties have been reported to be advantageous in ocular drug delivery. In the present review various factors influencing rationale design of nanomicelles formulation and disposition are discussed along with case studies. Despite the progress in the field, influence of various properties of nanomicelles such as size, shape, surface charge, rigidity of structure on ocular disposition need to be studied in further details to develop an efficient nanocarrier system. PMID:24888969

  18. Protein and Peptide Drug Delivery: Oral Approaches

    PubMed Central

    Shaji, Jessy; Patole, V.

    2008-01-01

    Till recent, injections remained the most common means for administering therapeutic proteins and peptides because of their poor oral bioavailability. However, oral route would be preferred to any other route because of its high levels of patient acceptance and long term compliance, which increases the therapeutic value of the drug. Designing and formulating a polypeptide drug delivery through the gastro intestinal tract has been a persistent challenge because of their unfavorable physicochemical properties, which includes enzymatic degradation, poor membrane permeability and large molecular size. The main challenge is to improve the oral bioavailability from less than 1% to at least 30-50%. Consequently, efforts have intensified over the past few decades, where every oral dosage form used for the conventional small molecule drugs has been used to explore oral protein and peptide delivery. Various strategies currently under investigation include chemical modification, formulation vehicles and use of enzyme inhibitors, absorption enhancers and mucoadhesive polymers. This review summarizes different pharmaceutical approaches which overcome various physiological barriers that help to improve oral bioavailability that ultimately achieve formulation goals for oral delivery. PMID:20046732

  19. Iontophoretic drug delivery across the nail.

    PubMed

    Delgado-Charro, Maria Begoña

    2012-01-01

    Topical drug delivery to treat nail diseases such as onychomycosis and psoriasis is receiving increasing attention. Topical nail delivery is challenged by the complicated structure of the nail and the low permeability of most drugs across the nail plate. Considerable effort has been directed at developing methods to promote drug permeation across the nail plate. Iontophoresis efficiently enhances molecular transport across the skin and the eye and is now being tested for its potential in ungual delivery. This review covers the basic mechanisms of transport (electro-osmosis and -migration) and their relative contribution to nail iontophoresis as well as the key factors governing nail permselectivity and ionic transport numbers. Methodological issues concerning research in this area are summarized. The data available in vivo on nail iontophoresis of terbinafine specifically are reviewed in separate sections. Our understanding of nail iontophoresis has improved considerably since 2007; most decisively, the feasibility of nail iontophoresis in vivo has been clearly demonstrated. Future work is required to establish the adequate implementation of the technique so that its clinical efficacy to treat onychomycosis and nail psoriasis can be unequivocally determined.

  20. Ultrasound-mediated nail drug delivery system.

    PubMed

    Abadi, Danielle; Zderic, Vesna

    2011-12-01

    A novel ultrasound-mediated drug delivery system has been developed for treatment of a nail fungal disorder (onychomycosis) by improving delivery to the nail bed using ultrasound to increase the permeability of the nail. The slip-in device consists of ultrasound transducers and drug delivery compartments above each toenail. The device is connected to a computer, where a software interface allows users to select their preferred course of treatment. In in vitro testing, canine nails were exposed to 3 energy levels (acoustic power of 1.2 W and exposure durations of 30, 60, and 120 seconds). A stereo -microscope was used to determine how much of a drug-mimicking compound was delivered through the nail layers by measuring brightness on the cross section of each nail tested at each condition, where brightness level decreases coincide with increases in permeability. Each of the 3 energy levels tested showed statistical significance when compared to the control (P < .05) with a permeability factor of 1.3 after 30 seconds of exposure, 1.3 after 60 seconds, and 1.5 after 120 seconds, where a permeability factor of 1 shows no increase in permeability. Current treatments for onychomycosis include systemic, topical, and surgical. Even when used all together, these treatments typically take a long time to result in nail healing, thus making this ultrasound-mediated device a promising alternative.

  1. A model of axonal transport drug delivery

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Andrey V.

    2012-04-01

    In this paper a model of targeted drug delivery by means of active (motor-driven) axonal transport is developed. The model is motivated by recent experimental research by Filler et al. (A.G. Filler, G.T. Whiteside, M. Bacon, M. Frederickson, F.A. Howe, M.D. Rabinowitz, A.J. Sokoloff, T.W. Deacon, C. Abell, R. Munglani, J.R. Griffiths, B.A. Bell, A.M.L. Lever, Tri-partite complex for axonal transport drug delivery achieves pharmacological effect, Bmc Neuroscience 11 (2010) 8) that reported synthesis and pharmacological efficiency tests of a tri-partite complex designed for axonal transport drug delivery. The developed model accounts for two populations of pharmaceutical agent complexes (PACs): PACs that are transported retrogradely by dynein motors and PACs that are accumulated in the axon at the Nodes of Ranvier. The transitions between these two populations of PACs are described by first-order reactions. An analytical solution of the coupled system of transient equations describing conservations of these two populations of PACs is obtained by using Laplace transform. Numerical results for various combinations of parameter values are presented and their physical significance is discussed.

  2. Drug Delivery to CNS: Challenges and Opportunities with Emphasis on Biomaterials Based Drug Delivery Strategies.

    PubMed

    Khambhla, Ekta; Shah, Viral; Baviskar, Kalpesh

    2016-01-01

    The current epoch has witnessed a lifestyle impregnated with stress, which is a major cause of several neurological disorders. High morbidity and mortality rate due to neurological diseases and disorders have generated a huge social impact. Despite voluminous research, patients suffering from fatal and/or debilitating CNS diseases such as brain tumors, HIV, encephalopathy, Alzheimer's, epilepsy, Parkinson's, migraine and multiple sclerosis outnumbered those suffering from systemic cancer or heart diseases. The brain being a highly sensitive neuronal organ, has evolved with vasculature barriers, which regulates the efflux and influx of substances to CNS. Treatment of CNS diseases/disorders is challenging because of physiologic, metabolic and biochemical obstacles created by these barriers which comprise mainly of BBB and BCFB. The inability of achieving therapeutically active concentration has become the bottleneck level difficulty, hampering the therapeutic efficiency of several promising drug candidates for CNS related disorders. Parallel maturation of an effective CNS drug delivery strategy with CNS drug discovery is the need of the hour. Recently, the focus of the pharmaceutical community has aggravated in the direction of developing novel and more efficient drug delivery systems, giving the potential of more effective and safer CNS therapies. The present review outlines several hurdles in drug delivery to the CNS along with ideal physicochemical properties desired in drug substance/formulation for CNS delivery. The review also focuses on different conventional and novel strategies for drug delivery to the CNS. The article also assesses and emphasizes on possible benefits of biomaterial based formulations for drug delivery to the CNS.

  3. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  4. Microemulsions based transdermal drug delivery systems.

    PubMed

    Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R

    2014-01-01

    Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.

  5. Phospholipid nanodisc engineering for drug delivery systems.

    PubMed

    Murakami, Tatsuya

    2012-06-01

    Biocompatible mesoscale nanoparticles (5-100 nm in diameter) are attractive tools for drug delivery. Among them are several types of liposomes and polymer micelles already in clinical trial or use. Generally, biocompatibility of such particles is achieved by coating them with polyethylene glycol (PEG). Without PEG coating, particles are quickly trapped in the reticuloendothelial system when intravenously administered. However, recent studies have revealed several potential problems with PEG coating, including antigenicity and restriction of cellular uptake. This has motivated the development of alternative drug and gene delivery vehicles, including chemically and genetically engineered high-density lipoprotein (HDL)-like nanodiscs or "bicelles". HDL is a naturally occurring mesoscale nanoparticle that normally ferries cholesterol around in the body. Its initial "nascent" form is thought to be a simple 10 nm disc of phospholipids in a bilayer, and can be easily synthesized in vitro by mixing recombinant apoA-I proteins with various phospholipids. In this review, the use of synthetic HDL-like phospholipid nanodiscs as biocompatible drug carriers is summarized, focussing on manufacturing, size-control, drug loading and cell targeting. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silk Electrogel Based Gastroretentive Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Wang, Qianrui

    Gastric cancer has become a global pandemic and there is imperative to develop efficient therapies. Oral dosing strategy is the preferred route to deliver drugs for treating the disease. Recent studies suggested silk electro hydrogel, which is pH sensitive and reversible, has potential as a vehicle to deliver the drug in the stomach environment. The aim of this study is to establish in vitro electrogelation e-gel based silk gel as a gastroretentive drug delivery system. We successfully extended the duration of silk e-gel in artificial gastric juice by mixing silk solution with glycerol at different ratios before the electrogelation. Structural analysis indicated the extended duration was due to the change of beta sheet content. The glycerol mixed silk e-gel had good doxorubicin loading capability and could release doxorubicin in a sustained-release profile. Doxorubicin loaded silk e-gels were applied to human gastric cancer cells. Significant cell viability decrease was observed. We believe that with further characterization as well as functional analysis, the silk e-gel system has the potential to become an effective vehicle for gastric drug delivery applications.

  7. Radionuclide imaging of liposomal drug delivery.

    PubMed

    van der Geest, Tessa; Laverman, Peter; Metselaar, Josbert M; Storm, Gert; Boerman, Otto C

    2016-09-01

    Ever since their discovery, liposomes have been radiolabeled to monitor their fate in vivo. Despite extensive preclinical studies, only a limited number of radiolabeled liposomal formulations have been examined in patients. Since they can play a crucial role in patient management, it is of importance to enable translation of radiolabeled liposomes into the clinic. Liposomes have demonstrated substantial advantages as drug delivery systems and can be efficiently radiolabeled. Potentially, radiolabeled drug-loaded liposomes form an elegant theranostic system, which can be tracked in vivo using single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. In this review, we discuss important aspects of liposomal research with a focus on the use of radiolabeled liposomes and their potential role in drug delivery and monitoring therapeutic effects. Radiolabeled drug-loaded liposomes have been poorly investigated in patients and no radiolabeled liposomes have been approved for use in clinical practice. Evaluation of the risks, pharmacokinetics, pharmacodynamics and toxicity is necessary to meet pharmaceutical and commercial requirements. It remains to be demonstrated whether the results found in animal studies translate to humans before radiolabeled liposomes can be implemented into clinical practice.

  8. Protein-Based Nanomedicine Platforms for Drug Delivery

    SciTech Connect

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong; Wang, Jun; Lin, Yuehe

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They are ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also

  9. Multifunctional Iron Oxide Nanoparticles for Diagnostics, Therapy and Macromolecule Delivery

    PubMed Central

    Yen, Swee Kuan; Padmanabhan, Parasuraman; Selvan, Subramanian Tamil

    2013-01-01

    In recent years, multifunctional nanoparticles (NPs) consisting of either metal (e.g. Au), or magnetic NP (e.g. iron oxide) with other fluorescent components such as quantum dots (QDs) or organic dyes have been emerging as versatile candidate systems for cancer diagnosis, therapy, and macromolecule delivery such as micro ribonucleic acid (microRNA). This review intends to highlight the recent advances in the synthesis and application of multifunctional NPs (mainly iron oxide) in theranostics, an area used to combine therapeutics and diagnostics. The recent applications of NPs in miRNA delivery are also reviewed. PMID:24396508

  10. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery

    NASA Astrophysics Data System (ADS)

    Islam, Nazrul; Ferro, Vito

    2016-07-01

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed.

  11. Topical Drug Delivery for Chronic Rhinosinusitis

    PubMed Central

    Liang, Jonathan; Lane, Andrew P.

    2013-01-01

    Chronic rhinosinusitis is a multifactorial disorder that may be heterogeneous in presentation and clinical course. While the introduction of endoscopic sinus surgery revolutionized surgical management and has led to significantly improved patient outcomes, medical therapy remains the foundation of long-term care of chronic rhinosinusitis, particularly in surgically recalcitrant cases. A variety of devices and pharmaceutical agents have been developed to apply topical medical therapy to the sinuses, taking advantage of the access provided by endoscopic surgery. The goal of topical therapy is to address the inflammation, infection, and mucociliary dysfunction that underlies the disease. Major factors that impact success include the patient’s sinus anatomy and the dynamics of the delivery device. Despite a growing number of topical treatment options, the evidence-based literature to support their use is limited. In this article, we comprehensively review current delivery methods and the available topical agents. We also discuss biotechnological advances that promise enhanced delivery in the future, and evolving pharmacotherapeutical compounds that may be added to rhinologist’s armamentarium. A complete understand of topical drug delivery is increasingly essential to the management of chronic rhinosinusitis when traditional forms of medical therapy and surgery have failed. PMID:23525506

  12. Multiscale benchmarking of drug delivery vectors.

    PubMed

    Summers, Huw D; Ware, Matthew J; Majithia, Ravish; Meissner, Kenith E; Godin, Biana; Rees, Paul

    2016-10-01

    Cross-system comparisons of drug delivery vectors are essential to ensure optimal design. An in-vitro experimental protocol is presented that separates the role of the delivery vector from that of its cargo in determining the cell response, thus allowing quantitative comparison of different systems. The technique is validated through benchmarking of the dose-response of human fibroblast cells exposed to the cationic molecule, polyethylene imine (PEI); delivered as a free molecule and as a cargo on the surface of CdSe nanoparticles and Silica microparticles. The exposure metrics are converted to a delivered dose with the transport properties of the different scale systems characterized by a delivery time, τ. The benchmarking highlights an agglomeration of the free PEI molecules into micron sized clusters and identifies the metric determining cell death as the total number of PEI molecules presented to cells, determined by the delivery vector dose and the surface density of the cargo. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles

    PubMed Central

    Cai, Shuang; Zhang, Qiuhong; Bagby, Taryn; Forrest, M. Laird

    2011-01-01

    The lymphatic system plays a crucial role in the immune system’s recognition and response to disease, and most solid cancers initially spread from the primary site via the tumor’s surrounding lymphatics before hematological dissemination. Hence, the lymphatic system is an important target for developing new vaccines, cancer treatments, and diagnostic agents. Targeting the lymphatic system by subcutaneous, intestinal, and pulmonary routes has been evaluated and subsequently utilized to improve lymphatic penetration and retention of drug molecules, reduce drug-related systemic toxicities, and enhance bioavailability of poorly soluble and unstable drugs. Lymphatic imaging is an essential tool for the detection and staging of cancer. New nano-based technologies offer improved detection and characterization of the nodal diseases, while new delivery devices can better target and confine treatments to tumors within the nodal space while sparing healthy tissues. This manuscript reviews recent advances in the field of lymphatic drug delivery and imaging and focuses specifically on the development ofliposomes and solid lipid nanoparticles for lymphatic introduction via the subcutaneous, intestinal, and pulmonary routes. PMID:21712055

  14. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  15. Oral drug delivery systems comprising altered geometric configurations for controlled drug delivery.

    PubMed

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E; du Toit, Lisa C; Ndesendo, Valence M K; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix(®) multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise(®), which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix(®) as well as "release modules assemblage", which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  16. Overview on gastroretentive drug delivery systems for improving drug bioavailability.

    PubMed

    Lopes, Carla M; Bettencourt, Catarina; Rossi, Alessandra; Buttini, Francesca; Barata, Pedro

    2016-08-20

    In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.

  17. Drug transport and drug delivery--the Midnight Sun meeting.

    PubMed

    Uchegbu, Ijeoma F

    2004-08-01

    The Midnight Sun Meeting on Drug Transport and Drug Delivery was held on the island of Tromso in northern Norway, where the sun does not set for 2 months during the summer. The meeting was hosted by the University of Tromso's newly established Institute of Pharmacy and the Controlled Release Society (Nordic Chapter). The meeting, attended by approximately 80 delegates from across Europe, showcased recent advances in drug transport through biological barriers, solid-state pharmaceuticals and particulate drug delivery systems. This report will focus on the particulate and solid-state pharmaceuticals sessions, in which lectures were given to demonstrate the benefits in cognitive function associated with omega-3 fish oils, the increase in drug release rates observed on the processing-induced deformation of tablet granules, and the size of polymeric particulates being directly and linearly related to the molecular weight of a polymer. The meeting was held as a single-session event, giving delegates the opportunity to attend all presentations. There was a small poster and exhibitor display, and the meeting attracted sponsorship from a number of companies, namely Polypure AS, Weifa AS, ProBioNeutraceuticals AS, Lipoid GmbH, Clavis Pharma AS and Thermometric AB.

  18. In Situ Forming Polymeric Drug Delivery Systems

    PubMed Central

    Madan, M.; Bajaj, A.; Lewis, S.; Udupa, N.; Baig, J. A.

    2009-01-01

    In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost. PMID:20490289

  19. Transdermal patch drug delivery interactions with exercise.

    PubMed

    Lenz, Thomas L; Gillespie, Nicole

    2011-03-01

    Transdermal drug delivery systems, such as the transdermal patch, continue to be a popular and convenient way to administer medications. There are currently several medications that use a transdermal patch drug delivery system. This article describes the potential untoward side effects of increased drug absorption through the use of a transdermal patch in individuals who exercise or participate in sporting events. Four studies have been reported that demonstrate a significant increase in the plasma concentration of nitroglycerin when individuals exercise compared with rest. Likewise, several case reports and two studies have been conducted that demonstrate nicotine toxicity and increased plasma nicotine while wearing a nicotine patch in individuals who exercise or participate in sporting events compared with rest. Healthcare providers, trainers and coaches should be aware of proper transdermal patch use, especially while exercising, in order to provide needed information to their respective patients and athletes to avoid potential untoward side effects. Particular caution should be given to individuals who participate in an extreme sporting event of long duration. Further research that includes more medications is needed in this area.

  20. [Studies on market of drug delivery system product and drug delivery system of compound Chinese medicine].

    PubMed

    Feng, Yi; Xu, De-Sheng; Hong, Yan-Long; Zhang, Ning; Ma, Yue-Ming

    2006-10-01

    Based on the progress in the world market of drug delivery system (DDS) product and the research profile of DDS of compound Chinese Medicine, The article puts forward a new method of studies on DDS of compound Chinese Medicine. It is expected that the theory of compatibility of compound Chinese Medicine can be shown and its role can be exerted to the largest extent with the application of pharmaceutics technology to change the mode of drug delivery of activated components of compound Chinese Medicine.

  1. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies.

    PubMed

    Chertok, Beata; Webber, Matthew J; Succi, Marc D; Langer, Robert

    2013-10-07

    Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.

  2. Drug Delivery Interfaces in the 21st Century: From Science Fiction Ideas to Viable Technologies

    PubMed Central

    Chertok, Beata; Webber, Matthew J.; Succi, Marc D.; Langer, Robert S.

    2013-01-01

    Early science fiction envisioned the future of drug delivery as targeted micron-scale submarines and ‘Cyborg’ body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery – the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the pre-defined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics. PMID:23915375

  3. Recent advances of controlled drug delivery using microfluidic platforms.

    PubMed

    Sanjay, Sharma T; Zhou, Wan; Dou, Maowei; Tavakoli, Hamed; Ma, Lei; Xu, Feng; Li, XiuJun

    2017-09-15

    Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery. Copyright

  4. Polymeric Nanomedicine for Cancer MR Imaging and Drug Delivery

    PubMed Central

    Khemtong, Chalermchai; Kessinger, Chase W.

    2010-01-01

    Multifunctional nanomedicine is emerging as a highly integrated platform that allows for molecular diagnosis, targeted drug delivery, and simultaneous monitoring and treatment of cancer. Advances in polymer and materials science are critical for the successful development of these multi-component nanocomposites in one particulate system with such a small size confinement (<200 nm). Currently, several nanoscopic therapeutic and diagnostic systems have been translated into clinical practices. In this feature article, we will provide an up-to-date review on the development and biomedical applications of nanocomposite materials for cancer diagnosis and therapy. Overview of each functional component, i.e. polymer carriers, MR imaging agents, and therapeutic drugs will be presented. Integration of different functional components will be illustrated in several highlighted examples to demonstrate the synergy of the multifunctional nanomedicine design. PMID:19521593

  5. Dendrimer based nanotherapeutics for ocular drug delivery

    NASA Astrophysics Data System (ADS)

    Kambhampati, Siva Pramodh

    PAMAM dendrimers are a class of well-defined, hyperbranched polymeric nanocarriers that are being investigated for ocular drug and gene delivery. Their favorable properties such as small size, multivalency and water solubility can provide significant opportunities for many biologically unstable drugs and allows potentially favorable ocular biodistribution. This work exploits hydroxyl terminated dendrimers (G4-OH) as drug/gene delivery vehicles that can target retinal microglia and pigment epithelium via systemic delivery with improved efficacy at much lower concentrations without any side effects. Two different drugs Triamcinolone acetonide (TA) and N-Acetyl Cysteine (NAC) conjugated to G4-OH dendrimers showed tailorable sustained release in physiological relevant solutions and were evaluated in-vitro and in-vivo. Dendrimer-TA conjugates enhanced the solubility of TA and were 100 fold more effective at lower concentrations than free TA in its anti-inflammatory activity in activated microglia and in suppressing VEGF production in hypoxic RPE cells. Dendrimers targeted activated microglia/macrophages and RPE and retained for a period of 21 days in I/R mice model. The relative retention of intravitreal and intravenous dendrimers was comparable, if a 30-fold intravenous dose is used; suggesting intravenous route targeting retinal diseases are possible with dendrimers. D-NAC when injected intravenously attenuated retinal and choroidal inflammation, significantly reduced (˜73%) CNV growth at early stage of AMD in rat model of CNV. A combination therapy of D-NAC + D-TA significantly suppressed microglial activation and promoted CNV regression in late stages of AMD without causing side-effects. G4-OH was modified with linker having minimal amine groups and incorporation of TA as a nuclear localization enhancer resulted in compact gene vectors with favorable safety profile and achieved high levels of transgene expression in hard to transfect human retinal pigment

  6. Biomedical Imaging in Implantable Drug Delivery Systems

    PubMed Central

    Zhou, Haoyan; Hernandez, Christopher; Goss, Monika; Gawlik, Anna; Exner, Agata A.

    2015-01-01

    Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant-body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS. PMID:25418857

  7. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications.

    PubMed

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1-10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific "architecture" and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases.

  8. Micro- and nano-fabricated implantable drug-delivery systems

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2013-01-01

    Implantable drug-delivery systems provide new means for achieving therapeutic drug concentrations over entire treatment durations in order to optimize drug action. This article focuses on new drug administration modalities achieved using implantable drug-delivery systems that are enabled by micro- and nano-fabrication technologies, and microfluidics. Recent advances in drug administration technologies are discussed and remaining challenges are highlighted. PMID:23323562

  9. Biopolymers as transdermal drug delivery systems in dermatology therapy.

    PubMed

    Basavaraj, K H; Johnsy, George; Navya, M A; Rashmi, R; Siddaramaiah

    2010-01-01

    The skin is considered a complex organ for drug delivery because of its structure. Drug delivery systems are designed for the controlled release of drugs through the skin into the systemic circulation, maintaining consistent efficacy and reducing the dose of the drugs and their related side effects. Transdermal drug delivery represents one of the most rapidly advancing areas of novel drug delivery. The excellent impervious nature of the skin is the greatest challenge that must be overcome for successful drug delivery. Today, polymers have been proven to be successful for long-term drug delivery applications as no single polymer can satisfy all of the requirements. Biopolymers in the field of dermal application are rare and the mechanisms that affect skin absorption are almost unknown. Biopolymers are widely used as drug delivery systems, but as such the use of biopolymers as drug delivery systems in dermatologic therapy is still in progress. Commonly used biopolymers include hydrocolloids, alginates, hydrogels, polyurethane, collagen, poly(lactic-co-glycolic acid), chitosan, proteins and peptides, pectin, siRNAs, and hyaluronic acid. These new and exciting methods for drug delivery are already increasing the number and quality of dermal and transdermal therapies. This article reviews current research on biopolymers and focuses on their potential as drug carriers, particularly in relation to the dermatologic aspects of their use.

  10. Breast Cancer-Targeted Nuclear Drug Delivery Overcoming Drug Resistance for Breast Cancer Chemotherapy

    DTIC Science & Technology

    2013-09-01

    degradable dendrimers and its applications for drug delivery .............................................. 23 3.1 Dendrimer design and synthesis...drug delivery .......................................................... 26 3.3 Dendrimer /lipid nanoassembly as “cluster bomb” for cascade tumor...degradable dendrimers and applied such dendrimers to formulate novel drug delivery systems to improve the limited penetration of anti-cancer drugs within

  11. Light activated liposomes: Functionality and prospects in ocular drug delivery.

    PubMed

    Lajunen, Tatu; Nurmi, Riikka; Kontturi, Leena; Viitala, Lauri; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto

    2016-12-28

    Ocular drug delivery, especially to the retina and choroid, is a major challenge in drug development. Liposome technology may be useful in ophthalmology in enabling new routes of delivery, prolongation of drug action and intracellular drug delivery, but drug release from the liposomes should be controlled. For that purpose, light activation may be an approach to release drug at specified time and site in the eye. Technical advances have been made in the field of light activated drug release, particularly indocyanine green loaded liposomes are a promising approach with safe materials and effective light triggered release of small and large molecules. This review discusses the liposomal drug delivery with light activated systems in the context of ophthalmic drug delivery challenges.

  12. The Research Progress of Targeted Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  13. Convection-enhanced drug delivery for gliomas

    PubMed Central

    Healy, Andrew T.; Vogelbaum, Michael A.

    2015-01-01

    In spite of aggressive multi-modality treatments, patients diagnosed with anaplastic astrocytoma and glioblastoma continue to display poor median survival. The success of our current conventional and targeted chemotherapies are largely hindered by systemic- and neurotoxicity, as well as poor central nervous system (CNS) penetration. Interstitial drug administration via convection-enhanced delivery (CED) is an alternative that potentially overcomes systemic toxicities and CNS delivery issues by directly bypassing the blood–brain barrier (BBB). This novel approach not only allows for directed administration, but also allows for newer, tumor-selective agents, which would normally be excluded from the CNS due to molecular size alone. To date, randomized trials of CED therapy have yet to definitely show survival advantage as compared with today's standard of care, however, early studies appear to have been limited by “first generation” delivery techniques. Taking into consideration lessons learned from early trials along with decades of research, newer CED technologies and therapeutic agents are emerging, which are reviewed herein. PMID:25722934

  14. Carbon Nanotropes: A Contemporary Paradigm in Drug Delivery

    PubMed Central

    Tripathi, Avinash C.; Saraf, Shubhini A.; Saraf, Shailendra K.

    2015-01-01

    Discovery of fullerenes and other nanosized carbon allotropes has opened a vast new field of possibilities in nanotechnology and has become one of the most promising research areas. Carbon nanomaterials have drawn interest as carriers of biologically pertinent molecules due to their distinctive physical, chemical and physiological properties. We have assigned the nomenclature “Carbon Nanotropes” to the nanosized carbon allotropes. Carbon nanotropes such as fullerenes, carbon nanotubes (CNTs) and graphenes, have exhibited wide applicability in drug delivery, owing to their small size and biological activity. The nanotherapeutics/diagnostics will allow a deeper understanding of human ills including cancer, neurodegenerative diseases, genetic disorders and various other complications. Recently, nanomaterials with multiple functions, such as drug carrier, MRI, optical imaging, photothermal therapy, etc., have become more and more popular in the domain of cancer and other areas of research. This review is an endeavor to bring together the usefulness of the carbon nanomaterials in the field of drug delivery. The last section of the review encompasses the recent patents granted on carbon nanotropes at United State Patent Trademark Office (USPTO) in the related field.

  15. Implantable microchip: the futuristic controlled drug delivery system.

    PubMed

    Sutradhar, Kumar Bishwajit; Sumi, Chandra Datta

    2016-01-01

    There is no doubt that controlled and pulsatile drug delivery system is an important challenge in medicine over the conventional drug delivery system in case of therapeutic efficacy. However, the conventional drug delivery systems often offer a limited by their inability to drug delivery which consists of systemic toxicity, narrow therapeutic window, complex dosing schedule for long term treatment etc. Therefore, there has been a search for the drug delivery system that exhibit broad enhancing activity for more drugs with less complication. More recently, some elegant study has noted that, a new type of micro-electrochemical system or MEMS-based drug delivery systems called microchip has been improved to overcome the problems related to conventional drug delivery. Moreover, micro-fabrication technology has enabled to develop the implantable controlled released microchip devices with improved drug administration and patient compliance. In this article, we have presented an overview of the investigations on the feasibility and application of microchip as an advanced drug delivery system. Commercial manufacturing materials and methods, related other research works and current advancement of the microchips for controlled drug delivery have also been summarized.

  16. Importance of novel drug delivery systems in herbal medicines

    PubMed Central

    Devi, V. Kusum; Jain, Nimisha; Valli, Kusum S.

    2010-01-01

    Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. Our country has a vast knowledge base of Ayurveda whose potential is only being realized in the recent years. However, the drug delivery system used for administering the herbal medicine to the patient is traditional and out-of-date, resulting in reduced efficacy of the drug. If the novel drug delivery technology is applied in herbal medicine, it may help in increasing the efficacy and reducing the side effects of various herbal compounds and herbs. This is the basic idea behind incorporating novel method of drug delivery in herbal medicines. Thus it is important to integrate novel drug delivery system and Indian Ayurvedic medicines to combat more serious diseases. For a long time herbal medicines were not considered for development as novel formulations owing to lack of scientific justification and processing difficulties, such as standardization, extraction and identification of individual drug components in complex polyherbal systems. However, modern phytopharmaceutical research can solve the scientific needs (such as determination of pharmacokinetics, mechanism of action, site of action, accurate dose required etc.) of herbal medicines to be incorporated in novel drug delivery system, such as nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, solid lipid nanoparticles and so on. This article summarizes various drug delivery technologies, which can be used for herbal actives together with some examples. PMID:22228938

  17. Importance of novel drug delivery systems in herbal medicines.

    PubMed

    Devi, V Kusum; Jain, Nimisha; Valli, Kusum S

    2010-01-01

    Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. Our country has a vast knowledge base of Ayurveda whose potential is only being realized in the recent years. However, the drug delivery system used for administering the herbal medicine to the patient is traditional and out-of-date, resulting in reduced efficacy of the drug. If the novel drug delivery technology is applied in herbal medicine, it may help in increasing the efficacy and reducing the side effects of various herbal compounds and herbs. This is the basic idea behind incorporating novel method of drug delivery in herbal medicines. Thus it is important to integrate novel drug delivery system and Indian Ayurvedic medicines to combat more serious diseases. For a long time herbal medicines were not considered for development as novel formulations owing to lack of scientific justification and processing difficulties, such as standardization, extraction and identification of individual drug components in complex polyherbal systems. However, modern phytopharmaceutical research can solve the scientific needs (such as determination of pharmacokinetics, mechanism of action, site of action, accurate dose required etc.) of herbal medicines to be incorporated in novel drug delivery system, such as nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes, solid lipid nanoparticles and so on. This article summarizes various drug delivery technologies, which can be used for herbal actives together with some examples.

  18. Light-sensitive intelligent drug delivery systems.

    PubMed

    Alvarez-Lorenzo, Carmen; Bromberg, Lev; Concheiro, Angel

    2009-01-01

    Drug delivery systems (DDS) capable of releasing an active molecule at the appropriate site and at a rate that adjusts in response to the progression of the disease or to certain functions/biorhythms of the organism are particularly appealing. Biocompatible materials sensitive to certain physiological variables or external physicochemical stimuli (intelligent materials) can be used for achieving this aim. Light-responsiveness is receiving increasing attention owing to the possibility of developing materials sensitive to innocuous electromagnetic radiation (mainly in the UV, visible and near-infrared range), which can be applied on demand at well delimited sites of the body. Some light-responsive DDS are of a single use (i.e. the light triggers an irreversible structural change that provokes the delivery of the entire dose) while others able to undergo reversible structural changes when cycles of light/dark are applied, behave as multi-switchable carriers (releasing the drug in a pulsatile manner). In this review, the mechanisms used to develop polymeric micelles, gels, liposomes and nanocomposites with light-sensitiveness are analyzed. Examples of the capability of some polymeric, lipidic and inorganic structures to regulate the release of small solutes and biomacromolecules are presented and the potential of light-sensitive carriers as functional components of intelligent DDS is discussed.

  19. Challenges in modelling nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.

    2016-01-01

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar.

  20. A microneedle roller for transdermal drug delivery.

    PubMed

    Park, Jung-Hwan; Choi, Seong-O; Seo, Soonmin; Choy, Young Bin; Prausnitz, Mark R

    2010-10-01

    Microneedle rollers have been used to treat large areas of skin for cosmetic purposes and to increase skin permeability for drug delivery. In this study, we introduce a polymer microneedle roller fabricated by inclined rotational UV lithography, replicated by micromolding hydrophobic polylactic acid and hydrophilic carboxy-methyl-cellulose. These microneedles created micron-scale holes in human and porcine cadaver skin that permitted entry of acetylsalicylic acid, Trypan blue and nanoparticles measuring 50nm and 200nm in diameter. The amount of acetylsalicylic acid delivered increased with the number of holes made in the skin and was 1-2 orders of magnitude greater than in untreated skin. Lateral diffusion in the skin between holes made by microneedles followed expected diffusional kinetics, with effective diffusivity values that were 23-160 times smaller than in water. Compared to inserting microneedles on a flat patch, the sequential insertion of microneedles row by row on a roller required less insertion force in full-thickness porcine skin. Overall, polymer microneedle rollers, prepared from replicated polymer films, offer a simple way to increase skin permeability for drug delivery.

  1. Challenges in modelling nanoparticles for drug delivery.

    PubMed

    Barnard, Amanda S

    2016-01-20

    Although there have been significant advances in the fields of theoretical condensed matter and computational physics, when confronted with the complexity and diversity of nanoparticles available in conventional laboratories a number of modeling challenges remain. These challenges are generally shared among application domains, but the impacts of the limitations and approximations we make to overcome them (or circumvent them) can be more significant one area than another. In the case of nanoparticles for drug delivery applications some immediate challenges include the incompatibility of length-scales, our ability to model weak interactions and solvation, the complexity of the thermochemical environment surrounding the nanoparticles, and the role of polydispersivity in determining properties and performance. Some of these challenges can be met with existing technologies, others with emerging technologies including the data-driven sciences; some others require new methods to be developed. In this article we will briefly review some simple methods and techniques that can be applied to these (and other) challenges, and demonstrate some results using nanodiamond-based drug delivery platforms as an exemplar.

  2. Collagen interactions: Drug design and delivery.

    PubMed

    An, Bo; Lin, Yu-Shan; Brodsky, Barbara

    2016-02-01

    Collagen is a major component in a wide range of drug delivery systems and biomaterial applications. Its basic physical and structural properties, together with its low immunogenicity and natural turnover, are keys to its biocompatibility and effectiveness. In addition to its material properties, the collagen triple-helix interacts with a large number of molecules that trigger biological events. Collagen interactions with cell surface receptors regulate many cellular processes, while interactions with other ECM components are critical for matrix structure and remodeling. Collagen also interacts with enzymes involved in its biosynthesis and degradation, including matrix metalloproteinases. Over the past decade, much information has been gained about the nature and specificity of collagen interactions with its partners. These studies have defined collagen sequences responsible for binding and the high-resolution structures of triple-helical peptides bound to its natural binding partners. Strategies to target collagen interactions are already being developed, including the use of monoclonal antibodies to interfere with collagen fibril formation and the use of triple-helical peptides to direct liposomes to melanoma cells. The molecular information about collagen interactions will further serve as a foundation for computational studies to design small molecules that can interfere with specific interactions or target tumor cells. Intelligent control of collagen biological interactions within a material context will expand the effectiveness of collagen-based drug delivery.

  3. Adapalene microemulsion for transfollicular drug delivery.

    PubMed

    Bhatia, Gaurav; Zhou, Yingcong; Banga, Ajay K

    2013-08-01

    The aim of this study was to develop a microemulsion formulation of adapalene for transfollicular delivery. A pseudoternary phase diagram was developed for microemulsion consisting of oleic acid as oil phase, tween 20 as surfactant, Transcutol® as cosurfactant, and deionized water. Differential tape stripping and confocal laser scanning microscopy were performed to determine the penetration of microemulsion through hair follicles. Transmission electron microscopy, dynamic light scattering, polarizing light microscopy, and differential scanning calorimetry were performed to characterize the microstructures of microemulsion. The pH and viscosity of the microemulsions were also determined. Permeation studies were carried out in vitro on porcine ear skin over a period of 24 h using Franz diffusion cells. The drug penetration in the hair follicles increased from 0.109 ± 0.03 to 0.292 ± 0.094 μg, as the microstructure of microemulsion shifted from oil-in-water to bi-continuous, with increase in water content of microemulsion. Confocal laser scanning microscopy images suggested that hair follicles provided the path for transfollicular permeation of adapalene microemulsion. These results suggest that microemulsion penetrated through hair follicles and are promising for transfollicular drug delivery. Copyright © 2013 Wiley Periodicals, Inc.

  4. Diatomite silica nanoparticles for drug delivery

    PubMed Central

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. PACS 87.85.J81.05.Rm; 61.46. + w PMID:25024689

  5. Diatomite silica nanoparticles for drug delivery.

    PubMed

    Ruggiero, Immacolata; Terracciano, Monica; Martucci, Nicola M; De Stefano, Luca; Migliaccio, Nunzia; Tatè, Rosarita; Rendina, Ivo; Arcari, Paolo; Lamberti, Annalisa; Rea, Ilaria

    2014-01-01

    Diatomite is a natural fossil material of sedimentary origin, constituted by fragments of diatom siliceous skeletons. In this preliminary work, the properties of diatomite nanoparticles as potential system for the delivery of drugs in cancer cells were exploited. A purification procedure, based on thermal treatments in strong acid solutions, was used to remove inorganic and organic impurities from diatomite and to make them a safe material for medical applications. The micrometric diatomite powder was reduced in nanoparticles by mechanical crushing, sonication, and filtering. Morphological analysis performed by dynamic light scattering and transmission electron microscopy reveals a particles size included between 100 and 300 nm. Diatomite nanoparticles were functionalized by 3-aminopropyltriethoxysilane and labeled by tetramethylrhodamine isothiocyanate. Different concentrations of chemically modified nanoparticles were incubated with cancer cells and confocal microscopy was performed. Imaging analysis showed an efficient cellular uptake and homogeneous distribution of nanoparticles in cytoplasm and nucleus, thus suggesting their potentiality as nanocarriers for drug delivery. 87.85.J81.05.Rm; 61.46. + w.

  6. Polymeric micelles for acyclovir drug delivery.

    PubMed

    Sawdon, Alicia J; Peng, Ching-An

    2014-10-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ɛ-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. (1)H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200nm and the CMCs of ACV-PCL-MPEG and ACV-PCL-chitosan were 2.0mgL(-1) and 6.6mgL(-1), respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic.

  7. Polymeric Micelles for Acyclovir Drug Delivery

    PubMed Central

    Sawdon, Alicia J.; Peng, Ching-An

    2014-01-01

    Polymeric prodrug micelles for delivery of acyclovir (ACV) were synthesized. First, ACV was used directly to initiate ring-opening polymerization of ε-caprolactone to form ACV-polycaprolactone (ACV-PCL). Through conjugation of hydrophobic ACV-PCL with hydrophilic methoxy poly(ethylene glycol) (MPEG) or chitosan, polymeric micelles for drug delivery were formed. 1H NMR, FTIR, and gel permeation chromatography were employed to show successful conjugation of MPEG or chitosan to hydrophobic ACV-PCL. Through dynamic light scattering, zeta potential analysis, transmission electron microscopy, and critical micelle concentration (CMC), the synthesized ACV-tagged polymeric micelles were characterized. It was found that the average size of the polymeric micelles was under 200 nm and the CMCs of ACV-PCLMPEG and ACV-PCL-chitosan were 2.0 mg L−1 and 6.6 mg L−1, respectively. The drug release kinetics of ACV was investigated and cytotoxicity assay demonstrates that ACV-tagged polymeric micelles were non-toxic. PMID:25193154

  8. Pairwise polymer blends for oral drug delivery.

    PubMed

    Marks, Joyann A; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2014-09-01

    Blends of polymers with complementary properties hold promise for addressing the diverse, demanding polymer performance requirements in amorphous solid dispersions (ASDs), but we lack comprehensive property understanding for blends of important ASD polymers. Herein, we prepare pairwise blends of commercially available polymers polyvinylpyrrolidone (PVP), the cationic acrylate copolymer Eudragit 100 (E100), hydroxypropyl methylcellulose acetate succinate (HPMCAS), carboxymethyl cellulose acetate butyrate (CMCAB), hydroxypropyl methylcellulose (HPMC), and the new derivative cellulose acetate adipate propionate (CAAdP). This study identifies miscible binary blends that may find use, for example, in ASDs for solubility and bioavailability enhancement of poorly water-soluble drugs. Differential scanning calorimetry, FTIR spectroscopy, and film clarity were used to determine blend miscibility. Several polymer combinations including HPMCAS/PVP, HPMC/CMCAB, and PVP/HPMC appear to be miscible in all proportions. In contrast, blends of E100/PVP and E100/HPMC showed a miscibility gap. Combinations of water-soluble and hydrophobic polymers like these may permit effective balancing of ASD performance criteria such as release rate and polymer-drug interaction to prevent nucleation and crystal growth of poorly soluble drugs. Miscible polymer combinations described herein will enable further study of their drug delivery capabilities, and provide a potentially valuable set of ASD formulation tools. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Antibody Drug Conjugate Bioinformatics: Drug Delivery through the Letterbox

    PubMed Central

    Vlachakis, Dimitrios

    2013-01-01

    Antibodies appear to be the first line of defence in the adaptive immune response of vertebrates and thereby are involved in a multitude of biochemical mechanisms, such as regulation of infection, autoimmunity, and cancer. It goes without saying that a full understanding of antibody function is required for the development of novel antibody-interacting drugs. These drugs are the Antibody Drug Conjugates (ADCs), which are a new type of targeted therapy, used for example for cancer. They consist of an antibody (or antibody fragment such as a single-chain variable fragment [scFv]) linked to a payload drug (often cytotoxic). Because of the targeting, the side effects should be lower and give a wider therapeutic window. Overall, the underlying principle of ADCs is to discern the delivery of a drug that is cytotoxic to a target that is cancerous, hoping to increase the antitumoural potency of the original drug by reducing adverse effects and side effects, such as toxicity of the cancer target. This is a pioneering field that employs state-of-the-art computational and molecular biology methods in the fight against cancer using ADCs. PMID:23853668

  10. Advances in drug delivery system for platinum agents based combination therapy

    PubMed Central

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-01-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy. PMID:26779373

  11. Advances in drug delivery system for platinum agents based combination therapy.

    PubMed

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-12-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy.

  12. Smart Nanoparticles for Drug Delivery: Boundaries and Opportunities

    PubMed Central

    Lee, Byung Kook; Yun, Yeon Hee; Park, Kinam

    2014-01-01

    Various pharmaceutical particles have been used in developing different drug delivery systems ranging from traditional tablets to state-of-the-art nanoparticle formulations. Nanoparticle formulations are unique in that the small size with huge surface area sometimes provides unique properties that larger particles and bulk materials do not have. Nanoparticle formulations have been used in improving the bioavailability of various drugs, in particular, poorly soluble drugs. Nanoparticle drug delivery systems have found their unique applications in targeted drug delivery to tumors. While nanoparticle formulations have been successful in small animal xenograft models, their translation to clinical applications has been very rare. Developing nanoparticle systems designed for targeted drug delivery, e.g., treating tumors in humans, requires clear understanding of the uniqueness of nanoparticles, as well as limitations and causes of failures in clinical applications. It also requires designing novel smart nanoparticle delivery systems that can increase the drug bioavailability and at the same time reduce the drug's side effects. PMID:25684780

  13. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  14. Engineering bioceramic microstructure for customized drug delivery

    NASA Astrophysics Data System (ADS)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 microg Vanc /m2 for Cris, 17.8 microg Vanc/m2 for Rhe and 6.03 microg Vanc /m2 for SCPC (p<0.05). Drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release was

  15. Dendrimeric micelles for controlled drug release and targeted delivery

    PubMed Central

    Ambade, Ashootosh V.; Savariar, Elamprakash N.; Thayumanavan, S.

    2008-01-01

    This review highlights the developments in dendrimer-based micelles for drug delivery. Dendrimers, the perfectly branched monodisperse macromolecules, have certain structural advantages that make them attractive candidates as drug carriers for controlled release or targeted delivery. As polymeric micelle-based approaches precede the work in dendrimers, these are also discussed briefly. The review concludes with a perspective on possible applications of biaryl-based dendrimeric micelles that exhibit environment-dependent conformations, in drug delivery. PMID:16053329

  16. [Research on intelligent controlled drug delivery with polymer].

    PubMed

    Zhang, Zhibin; Tang, Changwei; Chen, Huiqing; Shan, Lianhai; Wan, Changxiu

    2006-02-01

    The intelligent controlled drug delivery systems are a series of the preparations including microcapsules or nanocapsules composed of intelligent polymers and medication. The properties of preparations can change with the external stimuli such as pH value, temperature, chemical substance, light, electricity and magnetism. According to this properties, the drug delivery can be intelligently controlled. This paper has reviewed research on syntheses and applications of intelligent controlled drug delivery systems with polymers.

  17. Drug delivery from the oral cavity: focus on a novel mechatronic delivery device.

    PubMed

    Scholz, Oliver A; Wolff, Andy; Schumacher, Axel; Giannola, Libero I; Campisi, Giuseppina; Ciach, Tomasz; Velten, Thomas

    2008-03-01

    Dental drug delivery systems have been used for a long time, in particular for the local therapy of diseases affecting the oral cavity. Research today concentrates on the design of formulations to increase their retention time. Even today, however, prosthetic devices incorporating drug delivery are rarely used. Mainly, they are focused on prophylaxis and the release of antibacterial agents. However, as buccal delivery, because of its undeniable advantages, has become popular for systemic drug delivery, and prolonged well-controlled release has been identified as beneficial, especially for chronic diseases, a new class of delivery systems is evolving: highly miniaturized computerized delivery systems, integrated into a dental appliance. Dental delivery systems today are used in two ways: the main application is the local treatment of diseases affecting the oral cavity itself like periodontitis or fungal infections. The second is for systemic drug delivery.

  18. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  19. Albumin nanostructures as advanced drug delivery systems.

    PubMed

    Karimi, Mahdi; Bahrami, Sajad; Ravari, Soodeh Baghaee; Zangabad, Parham Sahandi; Mirshekari, Hamed; Bozorgomid, Mahnaz; Shahreza, Somayeh; Sori, Masume; Hamblin, Michael R

    2016-11-01

    One of the biggest impacts that the nanotechnology has made on medicine and biology, has been in the area of drug delivery systems (DDSs). Many drugs suffer from serious problems concerning insolubility, instability in biological environments, poor uptake into cells and tissues, sub-optimal selectivity for targets and unwanted side effects. Nanocarriers can be designed as DDSs to overcome many of these drawbacks. One of the most versatile building blocks to prepare these nanocarriers is the ubiquitous, readily available and inexpensive protein, serum albumin. Areas covered: This review covers the use of different types of albumin (human, bovine, rat, and chicken egg) to prepare nanoparticle and microparticle-based structures to bind drugs. Various methods have been used to modify the albumin structure. A range of targeting ligands can be attached to the albumin that can be recognized by specific cell receptors that are expressed on target cells or tissues. Expert opinion: The particular advantages of albumin used in DDSs include ready availability, ease of chemical modification, good biocompatibility, and low immunogenicity. The regulatory approvals that have been received for several albumin-based therapeutic agents suggest that this approach will continue to be successfully explored.

  20. Polymeric Microgels as Potential Drug Delivery Vesicles

    NASA Astrophysics Data System (ADS)

    McDonough, Ryan; Streletzky, Kiril; Bayachou, Mekki; Peiris, Pubudu

    2010-03-01

    The temperature dependent volume phase change of cross-linked amphiphilic molecules (microgels) suggests their use as drug delivery vesicles. Drug particles aggregate in the slightly hydrophobic microgel interior. They are stored in equilibrium until the critical temperature (Tv) is reached where the volume phase change limits available space, thus expelling the drugs. This loading property of hydroxypropylcellulose (HPC) microgels was tested using amperometric analytical techniques. Small molecules inside microgels do not approach the electrode surface, which decreases current signal. A room temperature (Troom) flow amperometric measurement comparing microgel/paracetamol solution with control paracetamol samples yielded about 20 percent concentration reduction in the microgel sample. Results from the steady-state electrochemical experiment confirm the 20 percent concentration drop in the microgel sample compared to the control sample at Troom. Using the steady-state experiment with a cyclic temperature ramp from Troom to beyond Tv showed that the paracetamol concentration change between the temperature extremes was greater for the microgels than for the controls. An evolving aspect of the study is the characterization of microgel shrinkage from in situ, temperature controlled liquid AFM images as compared to previously completed DLS characterization of the same microgel sample.

  1. Lipoidal Soft Hybrid Biocarriers of Supramolecular Construction for Drug Delivery

    PubMed Central

    Kumar, Dinesh; Sharma, Deepak; Singh, Gurmeet; Singh, Mankaran; Rathore, Mahendra Singh

    2012-01-01

    Lipid-based innovations have achieved new heights during the last few years as an essential component of drug development. The current challenge of drug delivery is liberation of drug agents at the right time in a safe and reproducible manner to a specific target site. A number of novel drug delivery systems has emerged encompassing various routes of administration, to achieve controlled and targeted drug delivery. Microparticulate lipoidal vesicular system represents a unique technology platform suitable for the oral and systemic administration of a wide variety of molecules with important therapeutic biological activities, including drugs, genes, and vaccine antigens. The success of liposomes as drug carriers has been reflected in a number of liposome-based formulations, which are commercially available or are currently undergoing clinical trials. Also, novel lipid carrier-mediated vesicular systems are originated. This paper has focused on the lipid-based supramolecular vesicular carriers that are used in various drug delivery and drug targeting systems. PMID:22888455

  2. Polymeric carriers: role of geometry in drug delivery

    PubMed Central

    Simone, Eric A; Dziubla, Thomas D; Muzykantov, Vladimir R

    2009-01-01

    The unique properties of synthetic nanostructures promise a diverse set of applications as carriers for drug delivery, which are advantageous in terms of biocompatibility, pharmacokinetics, targeting and controlled drug release. Historically, more traditional drug delivery systems have focused on spherical carriers. However, there is a growing interest in pursuing non-spherical carriers, such as elongated or filamentous morphologies, now available due to novel formulation strategies. Unique physiochemical properties of these supramolecular structures offer distinct advantages as drug delivery systems. In particular, results of recent studies in cell cultures and lab animals indicate that rational design of carriers of a given geometry (size and shape) offers an unprecedented control of their longevity in circulation and targeting to selected cellular and subcellular locations. This article reviews drug delivery aspects of non-spherical drug delivery systems, including material selection and formulation, drug loading and release, biocompatibility, circulation behavior, targeting and subcellular addressing. PMID:19040392

  3. Controlled drug delivery systems: past forward and future back.

    PubMed

    Park, Kinam

    2014-09-28

    Controlled drug delivery technology has progressed over the last six decades. This progression began in 1952 with the introduction of the first sustained release formulation. The 1st generation of drug delivery (1950-1980) focused on developing oral and transdermal sustained release systems and establishing controlled drug release mechanisms. The 2nd generation (1980-2010) was dedicated to the development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was largely focused on studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role in the 2nd generation of drug delivery technologies, and it will continue playing a leading role in the next generation. The best path towards a productive 3rd generation of drug delivery technology requires an honest, open dialog without any preconceived ideas of the past. The drug delivery field needs to take a bold approach to designing future drug delivery formulations primarily based on today's necessities, to produce the necessary innovations. The JCR provides a forum for sharing the new ideas that will shape the 3rd generation of drug delivery technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Controlled Drug Delivery Systems: Past Forward and Future Back

    PubMed Central

    Park, Kinam

    2014-01-01

    The controlled drug delivery technology has progressed over the last six decades. It began in 1952 with the introduction of the first sustained release formulation. The 1st generation (1950-1980) of drug delivery was focused on developing oral and transdermal sustained release systems and establishing the controlled drug release mechanisms. Attention of the 2nd generation (1980-2010) was dedicated to development of zero-order release systems, self-regulated drug delivery systems, long-term depot formulations, and nanotechnology-based delivery systems. The latter part of the 2nd generation was consumed mostly for studying nanoparticle formulations. The Journal of Controlled Release (JCR) has played a pivotal role during the 2nd generation of drug delivery technologies, and it will continue playing a leading role for the next generation. Taking the right path towards the productive 3rd generation of drug delivery technologies requires honest open dialogues without any preconceived ideas of the past. The drug delivery field needs to take a bold approach of designing the future drug delivery formulations first, based on today’s necessities, and produce necessary innovations. The JCR will provide the forum for sharing the new ideas that will shape the 3rd generation of drug delivery technologies. PMID:24794901

  5. Lipid formulation as a drug carrier for drug delivery.

    PubMed

    Tomii, Yoshifumi

    2002-01-01

    In recent years, a Drug Delivery System (DDS), a preparative approach attracts the attention in the development of new drugs. DDS focuses on the regulation of the in vivo dynamics, such as absorption, distribution, metabolism, and elimination, thereby improving the effectiveness and the safety of the drugs by an applicable use of drug preparation technologies. A conventional intravenous dosage form of Amphotericin B (AmB), Fungizone, is the most effective clinically available for treating fungal infections. However, the clinical efficacy of AmB is limited by its adverse effects. Several lipid formulations, such as Liposomal AmB (L-AmB), AmB lipid complex (ABLC), and AmB colloidal dispersion (ABCD), with reduced side effects have been developed. These formulations are reported to have excellent safety and efficacy. However, comparable efficacy can be achieved only when they are administered at high doses than AmB. One of the problems of using these formulations is that they are easily taken up by the reticuloendothelial system (RES). An artificial lipoprotein-like particles, a novel drug carrier Lipid Nano-Sphere (LNS), which is 25 - 50 nm in size and is composed of phospholipids and simple lipid. LNS show a higher plasma concentration of drugs and lower uptake by RES-tissue different forms other lipid base drug carriers. In vitro and in vivo, LNS incorporating AmB, NS-718, shows reduced toxicity, while maintaining activity against fungi. LNS have a unique characteristic as an effective carrier of AmB for treatment of fungal infection.

  6. Microencapsulation: A promising technique for controlled drug delivery

    PubMed Central

    Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.

    2010-01-01

    Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795

  7. Herbal Excipients in Novel Drug Delivery Systems

    PubMed Central

    Shirwaikar, A.; Shirwaikar, Annie; Prabu, S. Lakshmana; Kumar, G. Aravind

    2008-01-01

    The use of natural excipients to deliver the bioactive agents has been hampered by the synthetic materials. However advantages offered by these natural excipients are their being non-toxic, less expensive and freely available. The performance of the excipients partly determines the quality of the medicines. The traditional concept of the excipients as any component other than the active substance has undergone a substantial evolution from an inert and cheap vehicle to an essential constituent of the formulation. Excipients are any component other than the active substance(s) intentionally added to formulation of a dosage form. This article gives an overview of herbal excipients which are used in conventional dosage forms as well as novel drug delivery systems. PMID:20046764

  8. Ocular Drug Delivery for Glaucoma Management

    PubMed Central

    Gooch, Nathan; Molokhia, Sarah A.; Condie, Russell; Burr, Randon Michael; Archer, Bonnie; Ambati, Balamurali K.; Wirostko, Barbara

    2012-01-01

    Current glaucoma management modalities are hindered by low patient compliance and adherence. This can be due to highly complex treatment strategies or poor patient understanding. Treatments focus on the management or reduction of intraocular pressure. This is most commonly done through the use of daily topical eye drops. Unfortunately, despite effective therapies, glaucoma continues to progress, possibly due to patients not adhering to their treatments. In order to mitigate these patient compliance issues, many sustained release treatments are being researched and are entering the clinic. Conjunctival, subconjunctival, and intravitreal inserts, punctal plugs, and drug depots are currently in clinical development. Each delivery system has hurdles, yet shows promise and could potentially mitigate the current problems associated with poor patient compliance. PMID:24300188

  9. Drug delivery by organ-specific immunoliposomes

    SciTech Connect

    Maruyama, Kazuo; Mori, Atsuhide; Hunag, Leaf . Dept. of Biochemistry); Kennel, S.J. )

    1990-01-01

    Monoclonal antibodies highly specific to the mouse pulmonary endothelial cells were conjugated to liposomes. The resulting immunoliposomes showed high levels of lung accumulation when injected intravenously into mice. Optimal target binding and retention were achieved if the lipid composition included ganglioside GM{sub 1} to reduce the uptake of immunoliposomes by the reticuloendothelial system. Details of the construction and optimization of these organ-specific immunoliposomes are reviewed. The drug delivery potential of this novel liposome system was demonstrated in an experimental pulmonary metastasis model. Immunoliposomes containing a lipophilic prodrug of deoxyfluorouridine effectively prolonged the survival time of the tumor-bearing mice. This and other therapeutic applications of the immunoliposomes are discussed. 25 refs., 5 figs.

  10. Microneedle arrays for biosensing and drug delivery

    DOEpatents

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip

    2017-08-29

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  11. Microneedle arrays for biosensing and drug delivery

    DOEpatents

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip; Polsky, Ronen; Edwards, Thayne L.

    2017-08-22

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  12. Supramolecular hydrogels as drug delivery systems.

    PubMed

    Saboktakin, Mohammad Reza; Tabatabaei, Roya Mahdavi

    2015-04-01

    Drug delivery from a hydrogel carrier implanted under the kidney capsule is an innovative way to induce kidney tissue regeneration and/or prevent kidney inflammation or fibrosis. We report here on the development of supramolecular hydrogels for this application. Chain-extended hydrogelators containing hydrogen bonding units in the main chain, and bifunctional hydrogelators end-functionalized with hydrogen bonding moieties, were made. The influence of these hydrogels on the renal cortex when implanted under the kidney capsule was studied. The overall tissue response to these hydrogels was found to be mild, and minimal damage to the cortex was observed, using the infiltration of macrophages, formation of myofibroblasts, and the deposition of collagen III as relevant read-out parameters. Differences in tissue response to these hydrogels could be related to the different physico-chemical properties of the three hydrogels.

  13. Do companion diagnostics make economic sense for drug developers?

    PubMed

    Agarwal, Amit

    2012-09-15

    Drug developers are grappling with the impact of personalized medicine on their portfolios. The combination of molecular diagnostics with targeted biologic therapies has been hailed as a recent innovation with few historical analogs to guide behavior. However, if the definition of companion diagnostics is broadened to include any drug whose FDA approved label requires diagnostic testing before prescription then over 50 drugs across multiple therapeutic areas arise. Most importantly for current drug developers, these drugs represent a wide variety of market situations and with sufficient historical data to evaluate different commercialization strategies for the combination. Included in these examples are drugs which were not initially launched with companion diagnostics but were required to implement companion diagnostics after they were on the market for a period of time. The historical case studies demonstrate that companion diagnostics are neither a universal panacea nor an unmitigated disaster for drug developers but require an understanding of specific situations to determine the utility of companion diagnostics. Numerous case studies highlight how companion diagnostics have been a boon to drug developers including Iressa, statins, Soriatane, Arthrotec, Promacta, Nplate, Letairis, and Tracleer. Other examples provide lessons on how to avoid pitfalls such as Accutane, Ticlid, Tegretol, Ziagen, Actigall and Clozaril. By carefully evaluating these case studies, drug developers can gain insight on the appropriate companion diagnostic strategy to implement for their specific situation and develop the elements of a successful companion diagnostic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Biomimetic transport and rational drug delivery.

    PubMed

    Ranney, D F

    2000-01-15

    Medicine and pharmaceutics are encountering critical needs and opportunities for transvascular drug delivery that improves site targeting and tissue permeation by mimicking natural tissue addressing and transport mechanisms. This is driven by the accelerated development of genomic agents requiring targeted controlled release. Although rationally designed for in vitro activity, such agents are not highly effective in vivo, due to opsonization and degradation by plasma constituents, and failure to transport across the local vascular endothelium and tissue matrix. A growing knowledge of the addresses of the body can be applied to engineer "Bio-Logically" staged delivery systems with sequential bioaddressins complementary to the discontinuous compartments encountered--termed discontinuum pharmaceutics. Effective tissue targeting is accomplished by leukocytes, bacteria, and viruses. We are increasingly able to mimic their bioaddressins by genomic means. Approaches described in this commentary include: (a) endothelial-directed adhesion mediated by oligosaccharides and carbohydrates (e.g. dermatan sulfate as a mimic of sulfated CD44) and peptidomimetics interacting with adhesins, selectins, integrins, hyaluronans, and locally induced growth factors (e.g. vascular endothelial growth factor, VEGF) and coagulation factors (e.g. factor VIII antigen); (b) improved tissue permeation conferred by hydrophilically "cloaked" carrier systems; (c) "uncloaking" by matrix dilution or selective triggering near the target cells; and (d) target binding-internalization by terminally exposed hydrophobic moieties, cationic polymers, and receptor-binding lectins, peptides, or carbohydrates. This commentary also describes intermediate technology solutions (e.g. "hybrid drugs"), and highlights the high-resolution, dynamic magnetic resonance imaging and radiopharmaceutical imaging technologies plus the groups and organizations capable of accelerating these important initiatives.

  15. Nanodelivery: An Emerging Avenue for Nutraceuticals and Drug Delivery.

    PubMed

    Aklakur, Md; Asharf Rather, Mohd; Kumar, Neeraj

    2016-10-25

    Aquaculture has been globally recognized as the fastest growing food production sector which plays a major role in meeting the increasing demand for animal protein requirement. A consensus is growing that a dramatic increase in aquaculture is needed to supply future aquatic food needs. However, there are sustained problems with the aquaculture like disease outbreaks, chemical pollution, the environmental destruction, and inefficient feed utilization. These altogether raise question mark on sustainability of aquaculture. In spite of the several strategy adopted on national and international level, as improved laboratory facilities, diagnostic expertise, and control and therapeutic strategies in order to handle disease outbreaks more effectively. Aquaculture industry is under uncertainty and the progress has not matched that of the rapidly developing aquaculture sector. In order to control disease prevalence and ensure better health of system and sustainable production, the sector demand more technical innovation for the drug use, disease treatment, water quality management, production of tailored fish for suiting better health, productivity drive by epigenetic and nutrigenomic interaction, better breeding success by efficient delivery of maturation and spawning inducing agent, nutraceutical delivery for rapid growth promotion and culture time reduction, successful use of autotransgenic, and effective vaccine. Nanotechnology has a tremendous potential to revolutionize agriculture and allied fields including aquaculture and fisheries. For these multiple purposes effort, importance of nanotechnology and nanodelivery of drugs, vaccine, nutraceutical, inducing hormones, and growth-promoting anabolics open tremendous opportunity. The paper has been targeted to delineate the possible future application of nanodelivery for the aquaculture development.

  16. Light-switchable systems for remotely controlled drug delivery.

    PubMed

    Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung

    2017-09-06

    Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multiscale Imaging of Nanoparticle Drug Delivery.

    PubMed

    Dobrucki, Lawrence W; Pan, Dipanjan; Smith, Andrew M

    2015-01-01

    Nanoparticles have recently had a major impact on basic biosciences, the pharmaceutical industry, and preclinical and translational medicine by enabling targeted delivery of therapeutic cargo to cells and tissues. The capacity to specifically tailor the pharmacokinetics, biodistribution, and longterm fate of therapeutic molecules for specific diseases and to avoid off-target side effects is a tremendously promising capability of these materials. However targeting of nanoparticle therapies from systemic circulation is very inefficient, and our understanding of the fundamental processes dictating in vivo fate remains limited, making it challenging to determine how to optimally and rationally design these materials for maximum efficacy. Recently multi-modal, multi-scale imaging technologies have emerged that have helped to improve our insight into these processes. Theranostic imaging agents have provided real-time and quantitative readouts of drug distribution and therapeutic response, multimodal imaging platforms have allowed a multi-scale analysis of distribution from the levels of cells to tissues, and exciting applications in live-animal tissue microscopy have provided key insights at the cellular level. In this review, we describe how multiscale imaging has shaped our ability to optimize nanoparticle drugs and discuss future directions that are expected to further catalyze clinical translation.

  18. Nanostructured porous silicon-mediated drug delivery.

    PubMed

    Martín-Palma, Raúl J; Hernández-Montelongo, Jacobo; Torres-Costa, Vicente; Manso-Silván, Miguel; Muñoz-Noval, Álvaro

    2014-08-01

    The particular properties of nanostructured porous silicon (nanoPS) make it an attractive material for controlled and localized release of therapeutics within the body, aiming at increased efficacy and reduced risks of potential side effects. Since this is a rapidly evolving field as a consequence of the number of research groups involved, a critical review of the state of the art is necessary. In this work, the most promising and successful applications of nanoPS in the field of drug delivery are reviewed and discussed. Two key issues such as drug loading and release are also analyzed in detail. The development of multifunctional (hybrid) systems, aiming at imparting additional functionalities to the nanoPS particles such as luminescence, magnetic response and/or plasmonic effects (allowing simultaneous tracking and guiding), is also examined. Nanostructured materials based on silicon are promising platforms for pharmaceutical applications given their ability to degrade and low toxicity. However, a very limited number of clinical applications have been demonstrated so far.

  19. Detection and drug delivery from superhydrophobic materials

    NASA Astrophysics Data System (ADS)

    Falde, Eric John

    The wetting of a rough material is controlled by surface chemistry and morphology, the liquid phase, solutes, and surfactants that affect the surface tension with the gas phase, and environmental conditions such as temperature and pressure. Materials with high (>150°) apparent contact angles are known as superhydrophobic and are very resistant to wetting. However, in complex biological mixtures eventually protein adsorbs, fouling the surface and facilitating wetting on time scales from seconds to months. The work here uses the partially-wetted (Cassie-Baxter) to fully-wetted (Wenzel) state transition to control drug delivery and to perform surfactant detection via surface tension using hydrophobic and superhydrophobic materials. First there is an overview of the physics of the non-wetting state and the transition to wetting. Then there is a review of how wetting can be controlled by outside stimuli and applications of these materials. Next there is work presented on controlling drug release using superhydrophobic materials with controlled wetting rates, with both in vitro and in vivo results. Then there is work on developing a sensor based on this wetting state transition and its applications toward detecting solute levels in biological fluids for point-of-care diagnosis. Finally, there is work presented on using these sensors for detecting the alcohol content in wine and spirits.

  20. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug.

    PubMed

    Zhao, Kai; Li, Dan; Shi, Ci; Ma, Xueling; Rong, Guangu; Kang, Hong; Wang, Xiaohua; Sun, Bin

    2016-01-01

    Drug research and development has entered into the new epoch of innovation formulation, and the drug delivery system has been in the forefront of pharmaceutical innovation. Nanotechnology is widely used in fiber and textiles, electronics, space, agriculture, forensic science and medical therapeutics. It increasingly plays a significant role in drug delivery system. Compared with traditional delivery system, the nanoparticle drug delivery system has lots of merits, such as the high drug loading ability, the excellent biocompatibility, low toxicity, controlled and targeted drug release. We undertook a structured research of biodegradable polymeric nanoparticles used as delivery carrier for drug using a focused review question and inclusion/exclusion criteria. We have searched the bibliographic databases for peerreviewed research literature. The outstanding characteristics of the screened papers were described respectively, and a systematic content analysis methodology was used to analysis the findings. Seventy-three papers were included in the review, the majority defined leadership and governance approaches that had impacted upon the polymeric nanoparticles as the delivery carrier for drug in therapeutic applications and developments. Seven papers outlined the superiority characteristics of polymeric nanoparticles that applied in the field of vaccine. Forty-seven papers overviewed the application prospects of polymeric nanoparticles used as drug delivery carrier for cancer. These included current advances in research and clinical applications of polymeric nanoparticles. The review identified the drug delivery carrier of biodegradable polymeric nanoparticles, and we described the synthesis methods, applications and challenges of polymeric nanoparticles. The findings of this review identified that the biodegradable polymeric nanoparticles were used as delivery carrier for drug currently. It also indicates that the biodegradable polymeric nanoparticles play an

  1. Drug delivery systems for differential release in combination therapy.

    PubMed

    Zhang, Hongbin; Wang, Guojie; Yang, Huai

    2011-02-01

    Combination therapy with multiple therapeutic agents has wide applicability in medical and surgical treatment, especially in the treatment of cancer. Thus, new drug delivery systems that can differentially release two or more drugs are desired. Utilizing new techniques to engineer the established drug delivery systems and synthesizing new materials and designing carriers with new structures are feasible ways to fabricate proper multi-agent delivery systems, which are critical to meet requirements in the clinic and improve therapeutic efficacy. This paper aims to give an overview about the multi-agent delivery systems developed in the last decade for differential release in combination therapy. Multi-agent delivery systems from nanoscale to bulk scale, such as liposomes, micelles, polymer conjugates, nano/microparticles and hydrogels, developed over the last 10 years, have been collected and summarized. The characteristics of different delivery systems are described and discussed, including the structure of drug carriers, drug-loading techniques, release behaviors and consequent evaluation in biological assays. The chemical structure of drug delivery systems is the key to controlling the release of therapeutic agents in combination therapy, and the differential release of multiple drugs could be realized by the successful design of a proper delivery system. Besides biological evaluation in vitro and in vivo, it is important to speed up practical application of the resulting delivery systems.

  2. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems

    PubMed Central

    Kirui, Dickson K.; Ferrari, Mauro

    2016-01-01

    Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526

  3. Programmable biomaterials for dynamic and responsive drug delivery

    PubMed Central

    Stejskalová, Anna; Kiani, Mehrdad T

    2016-01-01

    Biomaterials are continually being designed that enable new methods for interacting dynamically with cell and tissues, in turn unlocking new capabilities in areas ranging from drug delivery to regenerative medicine. In this review, we explore some of the recent advances being made in regards to programming biomaterials for improved drug delivery, with a focus on cancer and infection. We begin by explaining several of the underlying concepts that are being used to design this new wave of drug delivery vehicles, followed by examining recent materials systems that are able to coordinate the temporal delivery of multiple therapeutics, dynamically respond to changing tissue environments, and reprogram their bioactivity over time. PMID:27190245

  4. Synthetic Tumor Networks for Screening Drug Delivery Systems

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Nichols, Joseph B.; Garson, Charles J.; Mills, Ivy R.; Matar, Majed M.; Fewell, Jason G.; Pant, Kapil

    2015-01-01

    Tumor drug delivery is a complex phenomenon affected by several elements in addition to drug or delivery vehicle’s physico-chemical properties. A key factor is tumor microvasculature with complex effects including convective transport, high interstitial pressure and enhanced vascular permeability due to the presence of “leaky vessels”. Current in vitro models of the tumor microenvironment for evaluating drug delivery are oversimplified and, as a result, show poor correlation with in vivo performance. In this study, we report on the development of a novel microfluidic platform that models the tumor microenvironment more accurately, with physiologically and morphologically realistic microvasculature including endothelial cell lined leaky capillary vessels along with 3D solid tumors. Endothelial cells and 3D spheroids of cervical tumor cells were co-cultured in the networks. Drug vehicle screening was demonstrated using GFP gene delivery by different formulations of nanopolymers. The synthetic tumor network was successful in predicting in vivo delivery efficiencies of the drug vehicles. The developed assay will have critical applications both in basic research, where it can be used to develop next generation delivery vehicles, and in drug discovery where it can be used to study drug transport and delivery efficacy in realistic tumor microenvironment, thereby enabling drug compound and/or delivery vehicle screening. PMID:25599856

  5. Clinical Considerations of Focal Drug Delivery In Cancer Treatment.

    PubMed

    Harris, Jamie; Chiu, Bill

    2017-02-24

    According to the US Center for Disease Control, cancer deaths are the second most common cause of mortality in both adults and children. Definitive treatment of solid tumors involves surgical resection with or without systemic chemotherapy and radiation. The advent of local drug delivery presents a unique treatment modality that can offer substantial benefits in cancer management. Local drug delivery offers targeted drug delivery to cancer tissues while minimizing side effects of the medications. Three main phases in solid tumor management exist for the treating physician: initial diagnosis with tissue biopsy, surgical resection with or without chemotherapy, and management of metastatic disease. Image guided studies, using modalities such as MRI, computerized tomography, and ultrasound to sample tumors have been described. The initial diagnosis phase offers a treatment window for local drug delivery with the aid of image guidance. After the diagnosis of malignancy is made, surgical resection can become an important part of tumor management. Currently, FDA approved local drug delivery systems are being used in concert with resection for intracranial glioma. Many other applications of implantation of local drug delivery at the time of surgery in other tumors, including breast and neuroblastoma, are being investigated. Finally, for patients who present with or progress to single sites of metastatic disease, such as brain or liver metastasis, studies have shown potential applications for local drug delivery as well. This review will discuss the current state of local drug delivery in the treatment of solid tumors and possible future directions.

  6. Clinical applications of biomedical microdevices for controlled drug delivery.

    PubMed

    Gurman, Pablo; Miranda, Oscar R; Clayton, Kevin; Rosen, Yitzhak; Elman, Noel M

    2015-01-01

    Miniaturization of devices to micrometer and nanometer scales, combined with the use of biocompatible and functional materials, has created new opportunities for the implementation of drug delivery systems. Advances in biomedical microdevices for controlled drug delivery platforms promise a new generation of capabilities for the treatment of acute conditions and chronic illnesses, which require high adherence to treatment, in which temporal control over the pharmacokinetic profiles is critical. In addition, clinical conditions that require a combination of drugs with specific pharmacodynamic profiles and local delivery will benefit from drug delivery microdevices. This review provides a summary of various clinical applications for state-of-the-art controlled drug delivery microdevices, including cancer, endocrine and ocular disorders, and acute conditions such as hemorrhagic shock. Regulatory considerations for clinical translation of drug delivery microdevices are also discussed. Drug delivery microdevices promise a remarkable gain in clinical outcomes and a substantial social impact. A review of articles covering the field of microdevices for drug delivery was performed between January 1, 1990, and January 1, 2014, using PubMed as a search engine.

  7. Drug Delivery Approaches for the Treatment of Cervical Cancer

    PubMed Central

    Ordikhani, Farideh; Erdem Arslan, Mustafa; Marcelo, Raymundo; Sahin, Ilyas; Grigsby, Perry; Schwarz, Julie K.; Azab, Abdel Kareem

    2016-01-01

    Cervical cancer is a highly prevalent cancer that affects women around the world. With the availability of new technologies, researchers have increased their efforts to develop new drug delivery systems in cervical cancer chemotherapy. In this review, we summarized some of the recent research in systematic and localized drug delivery systems and compared the advantages and disadvantages of these methods. PMID:27447664

  8. Hydrogels for ocular drug delivery and tissue engineering

    PubMed Central

    Fathi, Marzieh; Barar, Jaleh; Aghanejad, Ayuob; Omidi, Yadollah

    2015-01-01

    Hydrogels, as crosslinked polymeric three dimensional networks, possess unique structure and behavior in response to the internal and/or external stimuli. As a result, they offer great prospective applications in drug delivery, cell therapy and human tissue engineering. Here, we highlight the potential of hydrogels in prolonged intraocular drug delivery and ocular surface therapy using stem cells incorporated hydrogels. PMID:26929918

  9. Nanoparticle-based drug delivery to the vagina: a review

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2014-01-01

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. PMID:24830303

  10. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers

    PubMed Central

    Ensign, Laura M.; Cone, Richard; Hanes, Justin

    2012-01-01

    Oral delivery is the most common method for drug administration. However, poor solubility, stability, and bioavailability of many drugs make achieving therapeutic levels via the gastrointestinal (GI) tract challenging. Drug delivery must overcome numerous hurdles, including the acidic gastric environment and the continuous secretion of mucus that protects the GI tract. Nanoparticle drug carriers that can shield drugs from degradation and deliver them to intended sites within the GI tract may enable more efficient and sustained drug delivery. However, the rapid secretion and shedding of GI tract mucus can significantly limit the effectiveness of nanoparticle drug delivery systems. Many types of nanoparticles are efficiently trapped in and rapidly removed by mucus, making controlled release in the GI tract difficult. This review addresses the protective barrier properties of mucus secretions, how mucus affects the fate of orally administered nanoparticles, and recent developments in nanoparticles engineered to penetrate the mucus barrier. PMID:22212900

  11. Potential of nanoparticulate drug delivery systems by intranasal administration.

    PubMed

    Ali, Javed; Ali, Mushir; Baboota, Sanjula; Sahani, Jasjeet Kaur; Ramassamy, Charles; Dao, Lé; Bhavna

    2010-05-01

    Due to number of problems related with oral, parenteral, rectal and other routes of drug administration, the interest of pharmaceutical scientists has increased towards exploring the possibilities of intranasal delivery of various drugs. Nasal drug delivery system is commonly known for the treatment of local ailments like cold, cough, rhinitis, etc. Efforts have been made to deliver various drugs, especially peptides and proteins, through nasal route for systemic use; utilizing the principles and concepts of various nanoparticulate drug delivery systems using various polymers and absorption promoters. The incorporation of drugs into nanoparticles might be a promising approach, since colloidal formulations have been shown to protect them from the degrading milieu in the nasal cavity and facilitate their transport across the mucosal barriers. The use of nanoparticles for vaccine delivery provides beneficial effect, by achieving good immune responses. This could be due to the fact that small particles can be transported preferentially by the lymphoid tissue of the nasal cavity (NALT). The brain gets benefited through the intranasal delivery as direct olfactory transport bypasses the blood brain barrier and nanoparticles are taken up and conveyed along cell processes of olfactory neurons through the cribriform plate to synaptic junctions with neurons of the olfactory bulb. The intranasal delivery is aimed at optimizing drug bioavailability for systemic drugs, as absorption decreases with increasing molecular weight, and for drugs, which are susceptible to enzymatic degradation such as proteins and polypeptides. This review discusses the potential benefits of using nanoparticles for nasal delivery of drugs and vaccines for brain, systemic and topical delivery. The article aims at giving an insight into nasal cavity, consideration of factors affecting and strategies to improve drug absorption through nasal route, pharmaceutical dosage forms and delivery systems with

  12. Different concepts of drug delivery in disease entities.

    PubMed

    Serafin, A; Stańczak, A

    2009-04-01

    This is a review of classical and novel concepts of drug delivery in particular diseases such as central nervous system disease, ophthalmic disease, cardiovascular disease, cancer and others. Nowadays, scientists are trying to propose efficient and selective drugs for the site of action, with best acceptance of patients, that can be metabolized to non-toxic derivatives. Prodrugs, soft drugs, codrugs are designed to maximize the amount of active drugs that reaches the site of action, through changing the physicochemical, biopharmaceutical or pharmacokinetic properties of the parent drugs. For last years different concepts of drug delivery have been developed to achieve the best patients' tolerance of a drug that has no undesirable properties. It is established that future studies will ameliorate drug properties so as to achieve the best drug delivery system.

  13. Advances in image-guided intratumoral drug delivery techniques

    PubMed Central

    Solorio, Luis; Patel, Ravi B; Wu, Hanping; Krupka, Tianyi; Exner, Agata A

    2017-01-01

    Image-guided drug delivery provides a means for treating a variety of diseases with minimal systemic involvement while concurrently monitoring treatment efficacy. These therapies are particularly useful to the field of interventional oncology, where elevation of tumor drug levels, reduction of systemic side effects and post-therapy assessment are essential. This review highlights three such image-guided procedures: transarterial chemoembolization, drug-eluting implants and convection-enhanced delivery. Advancements in medical imaging technology have resulted in a growing number of new applications, including image-guided drug delivery. This minimally invasive approach provides a comprehensive answer to many challenges with local drug delivery. Future evolution of imaging devices, image-acquisition techniques and multifunctional delivery agents will lead to a paradigm shift in patient care. PMID:22816134

  14. The impact of ageing on the barriers to drug delivery.

    PubMed

    Perrie, Yvonne; Badhan, Raj K Singh; Kirby, Daniel J; Lowry, Deborah; Mohammed, Afzal R; Ouyang, Defang

    2012-07-20

    Generally, we like to see ageing as a process that is happening to people older than ourselves. However the process of ageing impacts on a wide range of functions within the human body. Whilst many of the outcomes of ageing can now be delayed or reduced, age-related changes in cellular, molecular and physiological functionality of tissues and organs can also influence how drugs enter, distribute and are eliminated from the body. Therefore, the changing profile of barriers to drug delivery should be considered if we are to develop more age-appropriate medicines. Changes in the drug dissolution and absorption in older patients may require the formulation of oral delivery systems that offer enhanced retention at absorption sites to improve drug delivery. Alternatively, liquid and fast-melt dosage systems may address the need of patients who have difficulties in swallowing medication. Ageing-induced changes in the lung can also result in slower drug absorption, which is further compounded by disease factors, common in an ageing population, that reduce lung capacity. In terms of barriers to drug delivery to the eye, the main consideration is the tear film, which like other barriers to drug delivery, changes with normal ageing and can impact on the bioavailability of drugs delivery using eye drops and suspensions. In contrast, whilst the skin as a barrier changes with age, no significant difference in absorption of drugs from transdermal drug delivery is observed in different age groups. However, due to the age-related pharmacokinetic and pharmacodynamic changes, dose adaptation should still be considered for drug delivery across the skin. Overall it is clear that the increasing age demographic of most populations, presents new (or should that be older) barriers to effective drug delivery.

  15. Nanocrystal for ocular drug delivery: hope or hype.

    PubMed

    Sharma, Om Prakash; Patel, Viral; Mehta, Tejal

    2016-08-01

    The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.

  16. Positron Emission Tomography Image-Guided Drug Delivery: Current Status and Future Perspectives

    PubMed Central

    2015-01-01

    Positron emission tomography (PET) is an important modality in the field of molecular imaging, which is gradually impacting patient care by providing safe, fast, and reliable techniques that help to alter the course of patient care by revealing invasive, de facto procedures to be unnecessary or rendering them obsolete. Also, PET provides a key connection between the molecular mechanisms involved in the pathophysiology of disease and the according targeted therapies. Recently, PET imaging is also gaining ground in the field of drug delivery. Current drug delivery research is focused on developing novel drug delivery systems with emphasis on precise targeting, accurate dose delivery, and minimal toxicity in order to achieve maximum therapeutic efficacy. At the intersection between PET imaging and controlled drug delivery, interest has grown in combining both these paradigms into clinically effective formulations. PET image-guided drug delivery has great potential to revolutionize patient care by in vivo assessment of drug biodistribution and accumulation at the target site and real-time monitoring of the therapeutic outcome. The expected end point of this approach is to provide fundamental support for the optimization of innovative diagnostic and therapeutic strategies that could contribute to emerging concepts in the field of “personalized medicine”. This review focuses on the recent developments in PET image-guided drug delivery and discusses intriguing opportunities for future development. The preclinical data reported to date are quite promising, and it is evident that such strategies in cancer management hold promise for clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in enhanced quality of life for cancer patients. PMID:24865108

  17. Pharmacosomes: An Emerging Novel Vesicular Drug Delivery System for Poorly Soluble Synthetic and Herbal Drugs

    PubMed Central

    2013-01-01

    In the arena of solubility enhancement, several problems are encountered. A novel approach based on lipid drug delivery system has evolved, pharmacosomes. Pharmacosomes are colloidal, nanometric size micelles, vesicles or may be in the form of hexagonal assembly of colloidal drug dispersions attached covalently to the phospholipid. They act as befitting carrier for delivery of drugs quite precisely owing to their unique properties like small size, amphiphilicity, active drug loading, high entrapment efficiency, and stability. They help in controlled release of drug at the site of action as well as in reduction in cost of therapy, drug leakage and toxicity, increased bioavailability of poorly soluble drugs, and restorative effects. There has been advancement in the scope of this delivery system for a number of drugs used for inflammation, heart diseases, cancer, and protein delivery along with a large number of herbal drugs. Hence, pharmacosomes open new challenges and opportunities for improved novel vesicular drug delivery system. PMID:24106615

  18. The role of disposable inhalers in pulmonary drug delivery.

    PubMed

    de Boer, Anne H; Hagedoorn, Paul

    2015-01-01

    There is increasing interest in the pulmonary route for both local and systemically acting drugs, vaccines and diagnostics and new applications may require new inhaler technology to obtain the most therapeutically and/or cost-effective administration. Some of these new applications can benefit from the use of disposable inhalers. Current trends in pulmonary drug delivery are presented in this review as well as the possible contribution of disposable inhalers to the improvement of pulmonary administration therein. Arguments in favour of disposable inhalers and the starting points for development of devices and their formulations are discussed. Also, a brief review of the state of the art regarding current disposable inhaler development is given. Prerequisites for the use of disposable inhalers, particularly dry powder inhalers, in applications such as childhood vaccination and for preventing or stopping pandemic outbreaks of highly infectious diseases (like influenza, bird flu, SARS) are that they are simple, cheap and effective. Not only do the devices have to be simple in design, but the drug formulations should also be cheap. This may require a different approach as the formulation may not need to be adapted to improve the inhaler must be designed to enhance formulation dispersion.

  19. Drug Delivery Systems and Combination Therapy by Using Vinca Alkaloids

    PubMed Central

    Lee, Chun-Ting; Huang, Yen-Wei; Yang, Chih-Hui; Huang, Keng-Shiang

    2015-01-01

    Developing new methods for chemotherapy drug delivery has become a topic of great concern. Vinca alkaloids are among the most widely used chemotherapy reagents for tumor therapy; however, their side effects are particularly problematic for many medical doctors. To reduce the toxicity and enhance the therapeutic efficiency of vinca alkaloids, many researchers have developed strategies such as using liposome-entrapped drugs, chemical- or peptide-modified drugs, polymeric packaging drugs, and chemotherapy drug combinations. This review mainly focuses on the development of a vinca alkaloid drug delivery system and the combination therapy. Five vinca alkaloids (eg, vincristine, vinblastine, vinorelbine, vindesine, and vinflunine) are reviewed. PMID:25877096

  20. Novel Approaches in Formulation and Drug Delivery using Contact Lenses

    PubMed Central

    Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna

    2011-01-01

    The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device PMID:24826007

  1. Nanofibers based antibacterial drug design, delivery and applications.

    PubMed

    Ulubayram, Kezban; Calamak, Semih; Shahbazi, Reza; Eroglu, Ipek

    2015-01-01

    Infections caused by microorganisms like bacteria, fungi, etc. are the main obstacle in healing processes. Conventional antibacterial administration routes can be listed as oral, intravenous/intramuscular, topical and inhalation. These kinds of drug administrations are faced with critical vital issues such as; more rapid delivery of the drug than intended which can result in bacterial resistance, dose related systemic toxicity, tissue irritation and finally delayed healing process that need to be tackled. Recently, studies have been focused on new drug delivery systems, overcoming resistance and toxicological problems and finally localizing the molecules at the site of action in a proper dose. In this regard, many nanotechnological approaches such as nanoparticulate therapeutic systems have been developed to address accompanying problems mentioned above. Among them, drug loaded electrospun nanofibers propose main advantages like controlled drug delivery, high drug loading capacity, high encapsulation efficiency, simultaneous delivery of multiple drugs, ease of production and cost effectiveness for pharmaceutical and biomedical applications. Therefore, some particular attention has been devoted to the design of electrospun nanofibers as promising antibacterial drug carrier systems. A variety of antibacterials e.g., biocides, antibiotics, quaternary ammonium salts, triclosan, metallic nanoparticles (silver, titanium dioxide, and zinc oxide) and antibacterial polymers (chitosan, polyethyleneimine, etc.) have been impregnated by various techniques into nanofibers that exhibit strong antibacterial activity in standard assays. This review highlights the design and delivery of antibacterial drug loaded nanofibers with particular focus on their function in the fields of drug delivery, wound healing, tissue engineering, cosmetics and other biomedical applications.

  2. Microemulsion: New Insights into the Ocular Drug Delivery

    PubMed Central

    Hegde, Rahul Rama; Verma, Anurag; Ghosh, Amitava

    2013-01-01

    Delivery of drugs into eyes using conventional drug delivery systems, such as solutions, is a considerable challenge to the treatment of ocular diseases. Drug loss from the ocular surface by lachrymal fluid secretion, lachrymal fluid-eye barriers, and blood-ocular barriers are main obstacles. A number of ophthalmic drug delivery carriers have been made to improve the bioavailability and to prolong the residence time of drugs applied topically onto the eye. The potential use of microemulsions as an ocular drug delivery carrier offers several favorable pharmaceutical and biopharmaceutical properties such as their excellent thermodynamic stability, phase transition to liquid-crystal state, very low surface tension, and small droplet size, which may result in improved ocular drug retention, extended duration of action, high ocular absorption, and permeation of loaded drugs. Further, both lipophilic and hydrophilic characteristics are present in microemulsions, so that the loaded drugs can diffuse passively as well get significantly partitioned in the variable lipophilic-hydrophilic corneal barrier. This review will provide an insight into previous studies on microemulsions for ocular delivery of drugs using various nonionic surfactants, cosurfactants, and associated irritation potential on the ocular surface. The reported in vivo experiments have shown a delayed effect of drug incorporated in microemulsion and an increase in the corneal permeation of the drug. PMID:23936681

  3. Tumor Targeting Synergistic Drug Delivery by Self-Assembled Hybrid Nanovesicles to Overcome Drug Resistance.

    PubMed

    Gong, Meng-Qing; Wu, Cong; He, Xiao-Yan; Zong, Jing-Yi; Wu, Jin-Long; Zhuo, Ren-Xi; Cheng, Si-Xue

    2017-01-01

    To overcome multi-drug resistance (MDR) in tumor chemotherapy, a polymer/inorganic hybrid drug delivery platform with tumor targeting property and enhanced cell uptake efficiency was developed. To evaluate the applicability of our delivery platform for the delivery of different drug resistance inhibitors, two kinds of dual-drug pairs (doxorubicin/buthionine sulfoximine and doxorubicin/tariquidar, respectively) were loaded in heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles to realize simultaneous delivery of an anticancer drug and a drug resistance inhibitor into drug-resistant tumor cells. Prepared by self-assembly, the drug loaded hybrid nanovesicles with a mean size less than 210 nm and a negative zeta potential exhibit good stability in serum contained aqueous media. The in vitro cytotoxicity evaluation indicates that hybrid nanovesicles with tumor targeting biotin moieties have an enhanced tumor cell inhibitory effect. In addition, dual-drug loaded hybrid nanovesicles exhibit significantly stronger cell growth inhibition as compared with doxorubicin (DOX) mono-drug loaded nanovesicles due to the reduced intracellular glutathione (GSH) content by buthionine sulfoximine (BSO) or the P-glycoprotein (P-gp) inhibition by tariquidar (TQR). The tumor targeting nanovesicles prepared in this study, which can simultaneously deliver multiple drugs and effectively reverse drug resistance, have promising applications in drug delivery for tumor treatments. The polymer/inorganic hybrid drug delivery platform developed in this study has good applicability for the co-delivery of different anti-tumor drug/drug resistance inhibitor pairs to overcome MDR. Graphical Abstract A polymer/inorganic hybrid drug delivery platform with enhanced cell uptake was developed for tumor targeting synergistic drug delivery. The heparin-biotin/heparin/protamine sulfate/calcium carbonate nanovesicles prepared in this study can deliver an anticancer drug and a drug

  4. Facing the Truth about Nanotechnology in Drug Delivery

    PubMed Central

    Park, Kinam

    2013-01-01

    Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release. PMID:24490875

  5. Facile electrospinning of an efficient drug delivery system.

    PubMed

    Mei, Lan; Wang, Yuelong; Tong, Aiping; Guo, Gang

    2016-01-01

    Electrospinning is a facile method for fabricating fibers with diameters in the order of several nanometers to a few micrometers. This technology has great potential for preparing drug delivery systems (DDSs) and has received a great deal of attention in recent years. When combined with certain nanocarriers, such as micelles, nanoparticles or vesicles, an electrospun fiber membrane becomes an efficient and helpful platform for the above-mentioned formulations to achieve sustained and targeted drug release. The developmental process of electrospinning technology is briefly summarized and the drugs and the materials electrospun into drug delivery systems are listed . The application of electrospinning technology in the biomedical field and its current progress are emphasized. A safe, efficient and multifunctional electrospinning drug delivery system is urgently needed, which requires further studies. Cross-disciplinary strategies that cover pharmaceutical science, material science and computer science may provide guidance in bringing electrospinning technology in drug delivery to fruition.

  6. Facing the truth about nanotechnology in drug delivery.

    PubMed

    Park, Kinam

    2013-09-24

    Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targeted drug delivery to tumors. Numerous nanoparticle formulations have been designed and tested to great effect in small animal models, but the translation of the small animal results to clinical success has been limited. Successful translation requires revisiting the meaning of nanotechnology in drug delivery, understanding the limitations of nanoparticles, identifying the misconceptions pervasive in the field, and facing inconvenient truths. Nanoparticle approaches can have real impact in improving drug delivery by focusing on the problems at hand, such as enhancing their drug loading capacity, affinity to target cells, and spatiotemporal control of drug release.

  7. NanoART, neuroAIDS and CNS drug delivery

    PubMed Central

    Nowacek, Ari; Gendelman, Howard E

    2009-01-01

    A broad range of nanomedicines is being developed to improve drug delivery for CNS disorders. The structure of the blood–brain barrier (BBB), the presence of efflux pumps and the expression of metabolic enzymes pose hurdles for drug-brain entry. Nanoformulations can circumvent the BBB to improve CNS-directed drug delivery by affecting such pumps and enzymes. Alternatively, they can be optimized to affect their size, shape, and protein and lipid coatings to facilitate drug uptake, release and ingress across the barrier. This is important as the brain is a sanctuary for a broad range of pathogens including HIV-1. Improved drug delivery to the CNS would affect pharmacokinetic and drug biodistribution properties. This article focuses on how nanotechnology can serve to improve the delivery of antiretroviral medicines, termed nanoART, across the BBB and affect the biodistribution and clinical benefit for HIV-1 disease. PMID:19572821

  8. Controlled release for local delivery of drugs: barriers and models.

    PubMed

    Weiser, Jennifer R; Saltzman, W Mark

    2014-09-28

    Controlled release systems are an effective means for local drug delivery. In local drug delivery, the major goal is to supply therapeutic levels of a drug agent at a physical site in the body for a prolonged period. A second goal is to reduce systemic toxicities, by avoiding the delivery of agents to non-target tissues remote from the site. Understanding the dynamics of drug transport in the vicinity of a local drug delivery device is helpful in achieving both of these goals. Here, we provide an overview of controlled release systems for local delivery and we review mathematical models of drug transport in tissue, which describe the local penetration of drugs into tissue and illustrate the factors - such as diffusion, convection, and elimination - that control drug dispersion and its ultimate fate. This review highlights the important role of controlled release science in development of reliable methods for local delivery, as well as the barriers to accomplishing effective delivery in the brain, blood vessels, mucosal epithelia, and the skin.

  9. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  10. Prodrug-based nanoparticulate drug delivery strategies for cancer therapy.

    PubMed

    Luo, Cong; Sun, Jin; Sun, Bingjun; He, Zhonggui

    2014-11-01

    Despite the rapid developments in nanotechnology and biomaterials, the efficient delivery of chemotherapeutic agents is still challenging. Prodrug-based nanoassemblies have many advantages as a potent platform for anticancer drug delivery, such as improved drug availability, high drug loading efficiency, resistance to recrystallization upon encapsulation, and spatially and temporally controllable drug release. In this review, we discuss prodrug-based nanocarriers for cancer therapy, including nanosystems based on polymer-drug conjugates, self-assembling small molecular weight prodrugs and prodrug-encapsulated nanoparticles (NPs). In addition, we discuss new trends in the field of prodrug-based nanoassemblies that enhance the delivery efficiency of anticancer drugs, with special emphasis on smart stimuli-triggered drug release, hybrid nanoassemblies, and combination drug therapy.

  11. Computational simulation of drug delivery at molecular level.

    PubMed

    Li, Youyong; Hou, Tingjun

    2010-01-01

    The field of drug delivery is advancing rapidly. By controlling the precise level and/or location of a given drug in the body, side effects are reduced, doses are lowered, and new therapies are possible. Nonetheless, substantial challenges remain for delivering specific drugs into specific cells. Computational methods to predict the binding and dynamics between drug molecule and its carrier are increasingly desirable to minimize the investment in drug design and development. Significant progress in computational simulation is making it possible to understand the mechanism of drug delivery. This review summarizes the computational methods and progress of four categories of drug delivery systems: dendrimers, polymer micelle, liposome and carbon nanotubes. Computational simulations are particularly valuable in designing better drug carriers and addressing issues that are difficult to be explored by laboratory experiments, such as diffusion, dynamics, etc.

  12. Elastic liposomes as novel carriers: recent advances in drug delivery

    PubMed Central

    Hussain, Afzal; Singh, Sima; Sharma, Dinesh; Webster, Thomas J; Shafaat, Kausar; Faruk, Abdul

    2017-01-01

    Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields. PMID:28761343

  13. Marine Origin Polysaccharides in Drug Delivery Systems.

    PubMed

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  14. Kontrollierte therapeutische Systeme (Controlled drug delivery systems)

    NASA Astrophysics Data System (ADS)

    Ha, Suk-Woo; Wintermantel, Erich

    Es gibt eine grosse Anzahl von Arzneistoffen, die nicht mit der höchsten Effizienz eingesetzt werden können, weil das geeignete therapeutische System (drug delivery system) für die optimale Applikation fehlt. Viele Arzneistoffe setzen eine häufige Anwendung voraus und sind oft mit mehr oder weniger starken Nebenwirkungen oder aber mit Beeinträchtigungen von Arbeits- und Lebensrhythmus der Patienten verbunden. Der therapeutische Erfolg einer medikamentösen Behandlung setzt eine korrekte Diagnose, die Wahl der richtigen Wirksubstanz sowie ihr Vorliegen in geeigneter Darreichungsform voraus. Zudem muss ein genauer Verabreichungsplan erstellt werden, dessen Einhaltung seitens der Patienten eine wesentliche Voraussetzung für die optimale Wirkung des Arzneistoffes ist. Das Mass, mit dem eine Wirksubstanz therapeutisch voll genutzt werden kann, korreliert direkt mit der Darreichungsform, in der sie angewandt wird. Da viele hochwirksame Arzneimittel bereits existieren, hat sich, neben Neuentwicklungen, das Interesse im vergangenen Jahrzehnt der Optimierung von Arzneimittelwirkungen durch neue Darreichungsformen zugewandt.

  15. Marine Origin Polysaccharides in Drug Delivery Systems

    PubMed Central

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  16. Drug delivery and nanodetection in lung cancer.

    PubMed

    Badrzadeh, Fariba; Rahmati-Yamchi, Mohammad; Badrzadeh, Kazem; Valizadeh, Alireza; Zarghami, Nosratollah; Farkhani, Samad Mussa; Akbarzadeh, Abolfazl

    2016-01-01

    Lung carcinoma is the most widespread type of cancer worldwide, and is responsible for more deaths than other types of cancer. Lung cancer remains the chief cause of cancer-related deaths in both men and women worldwide, and is increasingly common in women. Each year, the number of deaths from lung cancer is greater than the number due to breast and colorectal cancer combined. Lung cancer accounted for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths in 2008. In Iran, lung cancer is one of the five leading tumors. Among females, it was the fourth most commonly diagnosed cancer, and the second leading cause of cancer death. Nanotechnology can be defined as the science and engineering involved in the design, characterization, and application of materials and devices whose smallest functional organization in at least one dimension is on the nanometer scale, i.e. one billionth of a meter. It is an exciting multidisciplinary field that involves the design and engineering of nano objects or nanotools with diameters less than 500 nanometers (nm), and it is one of the most interesting fields of the 21st century. Nanotechnology also offers the ability to detect diseases, such as tumors, much earlier than ever imaginable. This article presents nano devices for lung cancer detection and drug delivery systems.

  17. Giant Fullerenes for Target Specific Drug Delivery

    NASA Astrophysics Data System (ADS)

    Courtney, Robert; Kiefer, Boris

    2013-03-01

    Carbon nano-structures, such as giant fullerenes, have a great potential for biological and medical applications. Most of the previous research is dedicated to investigate the use of fullerenes as vehicles for carrying medication which is chemisorbed on the outside surface of the fullerenes. In contrast, using fullerenes as an enclosure was largely abandoned due to the high strength of the carbon-carbon bonds which has been perceived to prevent the rupturing of the fullerene to release their cargo. We performed atomistic computations based on classical force fields that will address this perception. Specifically we explore the physics and chemistry of OH functionalized carbon based giant fullerenes with diameters from 0.72 nm (60 atoms) to 5.7 nm (3840 atoms). The preliminary results show that OH functionalization on these fullerenes is not only viable but also provides a pH sensitive release mechanism. Furthermore our current results show that carbon-carbon bonds can be broken in low energy biological environments in the presence of a flow induced strain field. These insights may have implications for target specific drug delivery in general and cancer treatment in particular. We gratefully acknowledge support from BP-ENDURE (NIH R25GM097633).

  18. Hollow Pollen Shells to Enhance Drug Delivery

    PubMed Central

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  19. Multiparticulate chitosan-dispersed system for drug delivery.

    PubMed

    Shimono, Norihito; Takatori, Toshihito; Ueda, Masumi; Mori, Masaaki; Nakamura, Yasuhiko

    2003-06-01

    A multiparticulate chitosan-dispersed system (CDS), which is composed of the drug reservoir and the drug release-regulating layer, was developed for drug delivery. The drug release-regulating layer is a mixture of water-insoluble polymer and chitosan powder. The drug is released from CDS pellets in all regions of the gastrointestinal tract (from the stomach to the colon). CDS pellets containing chitosan powder were designed to dissolve chitosan powder partly in the release-regulating layer in the stomach and release part of drug. After passing through the stomach, the drug is released from CDS pellets at a constant speed in the small intestine. In the large intestine, CDS pellets were designed to disintegrate the remaining chitosan powder at an accelerated speed and the remaining drug in CDS pellets is released. The drug release rate can be controlled with the thickness of the chitosan-dispersed water-insoluble layer. Furthermore, for colon-specific drug delivery, an additional outer enteric coating is necessary to prevent drug release from CDS pellets in the stomach, because the chitosan-dispersed water-insoluble layer dissolves gradually under acidic conditions. The resulting enteric-coated CDS (E-CDS) pellets were found to permit colon-specific drug delivery. In this study, the multiparticulate CDS was adopted not only for colon-specific drug delivery but also for sustained drug release.

  20. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    PubMed

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules.

  1. Advances and Challenges of Liposome Assisted Drug Delivery

    PubMed Central

    Sercombe, Lisa; Veerati, Tejaswi; Moheimani, Fatemeh; Wu, Sherry Y.; Sood, Anil K.; Hua, Susan

    2015-01-01

    The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented. PMID:26648870

  2. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery

    PubMed Central

    Nair, Sreeja C.; Anoop, K. R.

    2012-01-01

    Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease. PMID:22470888

  3. Intraperiodontal pocket: An ideal route for local antimicrobial drug delivery.

    PubMed

    Nair, Sreeja C; Anoop, K R

    2012-01-01

    Periodontal pockets act as a natural reservoir filled with gingival crevicular fluid for the controlled release delivery of antimicrobials directly. This article reflects the present status of nonsurgical controlled local intrapocket delivery of antimicrobials in the treatment of periodontitis. These sites have specialty in terms of anatomy, permeability, and their ability to retain a delivery system for a desired length of time. A number of antimicrobial products and the composition of the delivery systems, its use, clinical results, and their release are summarized. The goal in using an intrapocket device for the delivery of an antimicrobial agent is the achievement and maintenance of therapeutic drug concentration for the desired period of time. Novel controlled drug delivery system are capable of improving patient compliance as well as therapeutic efficacy with precise control of the rate by which a particular drug dosage is released from a delivery system without the need for frequent administration. These are considered superior drug delivery system because of low cost, greater stability, non-toxicity, biocompatibility, non-immunogenicity, and are biodegradable in nature. This review also focus on the importance and ideal features of periodontal pockets as a drug delivery platform for designing a suitable dosage form along with its potential advantage and limitations. The microbes in the periodontal pocket could destroy periodontal tissues, and a complete knowledge of these as well as an ideal treatment strategy could be helpful in treating this disease.

  4. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  5. Polymer nanogels: a versatile nanoscopic drug delivery platform

    PubMed Central

    Chacko, Reuben T.; Ventura, Judy; Zhuang, Jiaming; Thayumanavan, S.

    2012-01-01

    In this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an “ideal” drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements. In particular, we point to the advantages that crosslinked polymeric systems bring to drug delivery. We review some of the synthetic methods of nanogel synthesis and conclude with the diverse applications in drug delivery where nanogels have been fruitfully employed. PMID:22342438

  6. Advances in chitosan-based drug delivery vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Liming; Sun, Yun; Wu, Yan

    2013-03-01

    Within the past few years, chitosan-based drug delivery vehicles have become some of the most attractive to be studied. In contrast to all other polysaccharides, chitosan has demonstrated its unique characteristics for drug delivery platforms, including its active primary amino groups for chemical modification, simple and mild preparation methods for the encapsulation of biomolecules or drugs, mucoadhesion to facilitate transport across mucosal barriers and so on. In this review, an overview of the various types of chitosan-based drug delivery systems is provided, with special focus on polymeric drug conjugates and drug nanocarriers. The first part of the review is concerned with the development and applications of polymeric chitosan-drug conjugates. Then the chitosan-based nanocarrier systems as well as their preparation methods and applications are further discussed.

  7. Layered Double Hydroxide-Based Nanocarriers for Drug Delivery

    PubMed Central

    Bi, Xue; Zhang, Hui; Dou, Liguang

    2014-01-01

    Biocompatible clay materials have attracted particular attention as the efficient drug delivery systems (DDS). In this article, we review developments in the use of layered double hydroxides (LDHs) for controlled drug release and delivery. We show how advances in the ability to synthesize intercalated structures have a significant influence on the development of new applications of these materials. We also show how modification and/or functionalization can lead to new biotechnological and biomedical applications. This review highlights the most recent progresses in research on LDH-based controlled drug delivery systems, focusing mainly on: (i) DDS with cardiovascular drugs as guests; (ii) DDS with anti-inflammatory drugs as guests; and (iii) DDS with anti-cancer drugs as guests. Finally, future prospects for LDH-based drug carriers are also discussed. PMID:24940733

  8. Recent developments in silicones for topical and transdermal drug delivery.

    PubMed

    Aliyar, Hyder; Schalau, Gerald

    2015-07-01

    Silicones have been used in medicines, cosmetics and medical devices for over 60 years. Polydimethylsiloxanes are polymers that are typically used either as an active in oral drug products or as excipients in topical and transdermal drug products. Inherent characteristics like hydrophobicity, adhesion and aesthetics allow silicones to offer function and performance to drug products. Recent technologies like swollen crosslinked silicone elastomer blend networks, sugar siloxanes, amphiphilic resin linear polymers and silicone hybrid pressure sensitive adhesives promise potential performance advantages and improved drug delivery efficacy. This article presents a review of recent silicone material developments focusing on their function as excipients influencing drug delivery in topical and transdermal systems.

  9. Recent Advances of Cocktail Chemotherapy by Combination Drug Delivery Systems

    PubMed Central

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-01-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end. PMID:26546751

  10. Recent advances of cocktail chemotherapy by combination drug delivery systems.

    PubMed

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-03-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in the clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end.

  11. Design, Characterization, and Optimization of Controlled Drug Delivery System Containing Antibiotic Drug/s

    PubMed Central

    Shelate, Pragna; Dave, Divyang

    2016-01-01

    The objective of this work was design, characterization, and optimization of controlled drug delivery system containing antibiotic drug/s. Osmotic drug delivery system was chosen as controlled drug delivery system. The porous osmotic pump tablets were designed using Plackett-Burman and Box-Behnken factorial design to find out the best formulation. For screening of three categories of polymers, six independent variables were chosen for Plackett-Burman design. Osmotic agent sodium chloride and microcrystalline cellulose, pore forming agent sodium lauryl sulphate and sucrose, and coating agent ethyl cellulose and cellulose acetate were chosen as independent variables. Optimization of osmotic tablets was done by Box-Behnken design by selecting three independent variables. Osmotic agent sodium chloride, pore forming agent sodium lauryl sulphate, and coating agent cellulose acetate were chosen as independent variables. The result of Plackett-Burman and Box-Behnken design and ANOVA studies revealed that osmotic agent and pore former had significant effect on the drug release up to 12 hr. The observed independent variables were found to be very close to predicted values of most satisfactory formulation which demonstrates the feasibility of the optimization procedure in successful development of porous osmotic pump tablets containing antibiotic drug/s by using sodium chloride, sodium lauryl sulphate, and cellulose acetate as key excipients. PMID:27610247

  12. A review of polymeric colloidal nanogels in transdermal drug delivery.

    PubMed

    Mavuso, Simphiwe; Marimuthu, Thashree; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2015-01-01

    Nanogel nanoparticles loaded with active compounds are referred to as Drug-loaded polymeric colloidal nanogels (DPCNs). These nanogels are emerging as promising carriers for transdermal drug delivery applications. Much interest has been directed towards the potential use of DPCNs to deliver a variety of drugs for either controlled or sustained drug delivery systems. Transdermal drug delivery systems (TDDS) have shown a number of beneficial properties such as improving patients compliance as they are conveniently dosed compared to intravenous and oral therapy. The use of TDDS depends on the effectiveness of the drug formulation to accumulate in sufficient concentrations at the specific targeted sites, hence the therapeutic significance of DPCNs in TDDS. Nanogels have a high drug loading capacity, biodegradability and biocompatibility, which are the key points in designing an efficient TDDS. The advanced development of DPCN has led to stimuli responsive drug delivery systems that release the entrapped drug under variable environmental incentives. The development of these drug delivery systems has created room for further research to characterize the physical and chemical properties of theses nanogels as well as their in vitro and in vivo behavior. Therefore this review presents an insight on the basic fabrication methods, advanced developments, limitations and therapeutic significance of the DPCN in TDDS as well as forthcoming potential applications. Despite these numerous positive scientific findings, efficient TDDS remains a challenge for pharmaceutical scientists and significant amount of research is still directed toward the development of superior TDDS.

  13. Niosomes: a controlled and novel drug delivery system.

    PubMed

    Rajera, Rampal; Nagpal, Kalpana; Singh, Shailendra Kumar; Mishra, Dina Nath

    2011-01-01

    During the past decade formulation of vesicles as a tool to improve drug delivery, has created a lot of interest amongst the scientist working in the area of drug delivery systems. Vesicular system such as liposomes, niosomes, transferosomes, pharmacosomes and ethosomes provide an alternative to improve the drug delivery. Niosomes play an important role owing to their nonionic properties, in such drug delivery system. Design and development of novel drug delivery system (NDDS) has two prerequisites. First, it should deliver the drug in accordance with a predetermined rate and second it should release therapeutically effective amount of drug at the site of action. Conventional dosage forms are unable to meet these requisites. Niosomes are essentially non-ionic surfactant based multilamellar or unilamellar vesicles in which an aqueous solution of solute is entirely enclosed by a membrane resulting from the organization of surfactant macromolecules as bilayer. Niosomes are formed on hydration of non-ionic surfactant film which eventually hydrates imbibing or encapsulating the hydrating aqueous solution. The main aim of development of niosomes is to control the release of drug in a sustained way, modification of distribution profile of drug and for targeting the drug to the specific body site. This paper deals with composition, characterization/evaluation, merits, demerits and applications of niosomes.

  14. Dendrimeric Systems and Their Applications in Ocular Drug Delivery

    PubMed Central

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2013-01-01

    Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed. PMID:24396306

  15. Inorganic Nanoporous Membranes for Immunoisolated Cell-Based Drug Delivery

    PubMed Central

    Mendelsohn, Adam; Desai, Tejal

    2014-01-01

    Materials advances enabled by nanotechnology have brought about promising approaches to improve the encapsulation mechanism for immunoisolated cell-based drug delivery. Cell-based drug delivery is a promising treatment for many diseases but has thus far achieved only limited clinical success. Treatment of insulin dependent diabetes mellitus (IDDM) by transplantation of pancreatic β-cells represents the most anticipated application of cell-based drug delivery technology. This review outlines the challenges involved with maintaining transplanted cell viability and discusses how inorganic nanoporous membranes may be useful in achieving clinical success. PMID:20384222

  16. Nanotechnology controlled drug delivery for treating bone diseases.

    PubMed

    Yang, Lei; Webster, Thomas J

    2009-08-01

    Rapid developments at the intersection of nanotechnology and controlled drug delivery have triggered exceptional growth in treating various bone diseases. As a result, over the past decade, nanotechnology has contributed tremendously to controlling drug delivery for treating various bone diseases, and in many cases, has led to increased bone regeneration. In this review paper, the recent experimental progress towards using nanotechnology to treat bone-specific diseases is reviewed. Novel applications of different types of nanomaterials (from nanoparticles to 3D nanostructured scaffolds) for treating bone diseases are summarized. In addition, fundamental principles for utilizing nanomaterials to create better drug delivery systems, especially for treating bone diseases and regenerating bone, are emphasized.

  17. Hydrogel-based biosensors and sensing devices for drug delivery.

    PubMed

    Peppas, Nicholas A; Van Blarcom, Diana Snelling

    2016-10-28

    In the past 15years drug delivery devices have received added attention, not only as passive systems of drug delivery that respond to the needs of the health care provider or the patient but have an added advantage or an added characteristic of being triggered by an external process of recognition of a cause, a disease or an analyte that leads to a triggering mechanism for specific drug delivery. In this review, we will examine some of the pioneering work in this field, and speak on the use of biodegradable, environmentally-responsive hydrogels as sensing components in novel microscale devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cyclodextrin nanoassemblies: a promising tool for drug delivery.

    PubMed

    Bonnet, Véronique; Gervaise, Cédric; Djedaïni-Pilard, Florence; Furlan, Aurélien; Sarazin, Catherine

    2015-09-01

    Among the biodegradable and nontoxic compounds that can form nanoparticles for drug delivery, amphiphilic cyclodextrins are very promising. Apart from ionic cyclodextrins, which have been extensively studied and reviewed because of their application in gene delivery, our purpose is to provide a clear description of the supramolecular assemblies of nonionic amphiphilic cyclodextrins, which can form nanoassemblies for controlled drug release. Moreover, we focus on the relationship between their structure and physicochemical characteristics, which is crucial for self assembly and drug delivery. We also highlight the importance of the nanoparticle technology preparation for the stability and application of this nanodevice.

  19. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  20. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  1. Nasal Drug Delivery in Traditional Persian Medicine

    PubMed Central

    Zarshenas, Mohammad Mehdi; Zargaran, Arman; Müller, Johannes; Mohagheghzadeh, Abdolali

    2013-01-01

    Background Over one hundred different pharmaceutical dosage forms have been recorded in literatures of Traditional Persian Medicine among which nasal forms are considerable. Objectives This study designed to derive the most often applied nasal dosage forms together with those brief clinical administrations. Materials and Methods In the current study remaining pharmaceutical manuscripts of Persia during 9th to 18th century AD have been studied and different dosage forms related to nasal application of herbal medicines and their therapeutic effects were derived. Results By searching through pharmaceutical manuscripts of medieval Persia, different nasal dosage forms involving eleven types related to three main groups are found. These types could be derived from powder, solution or liquid and gaseous forms. Gaseous form were classified into fumigation (Bakhoor), vapor bath (Enkebab), inhalation (Lakhlakheh), aroma agents (Ghalieh) and olfaction or smell (Shomoom). Nasal solutions were as drops (Ghatoor), nasal snuffing drops (Saoot) and liquid snuff formulations (Noshoogh). Powders were as nasal insufflation or snorting agents (Nofookh) and errhine or sternutator medicine (Otoos). Nasal forms were not applied only for local purposes. Rather systemic disorders and specially CNS complications were said to be a target for these dosage forms. Discussion While this novel type of drug delivery is known as a suitable substitute for oral and parenteral administration, it was well accepted and extensively mentioned in Persian medical and pharmaceutical manuscripts and other traditional systems of medicine as well. Accordingly, medieval pharmaceutical standpoints on nasal dosage forms could still be an interesting subject of study. Therefore, the current work can briefly show the pharmaceutical knowledge on nasal formulations in medieval Persia and clarify a part of history of traditional Persian pharmacy. PMID:24624204

  2. Nanotechnology for delivery of drugs and biomedical applications.

    PubMed

    Leucuta, Sorin Emilian

    2010-11-01

    Nanotechnology is a multidisciplinary scientific field that deals with the formulation, preparation, characterization and application of structures, devices and systems at nanometric scale. Area of concern is interdisciplinary, but with peculiarities, among others, medicine, pharmacy, biophysics, electronics, bioengineering, and molecular biology. Interest for modern nanotechnology lies in the creation and use of structures which have new properties because of their small size as well as the possibility of using these systems to control or manipulate biological structures at nanometric or atomic level. It will open the way to diagnosis and medical treatment to molecular level. This paper covers various fundamental and applied aspects of nanotechnology, in its chapters: introduction; nanoparticles (therapeutic polymers, polymeric nanoparticles, non-polymeric nanoparticles, liposomes, nanodevices) nanopharmaceutical systems used in diagnosis and therapy, in tissue engineering; pharmacokinetics and toxicity of nanoparticulate systems. Nanoparticulate systems have the potential to constitute a new generation of drug delivery systems. By their nature, nanodevices can be used as innovative diagnostic tool for detecting and monitoring disease, also for its treatment and use in developing new drugs.

  3. Cartilage-targeting drug delivery: can electrostatic interactions help?

    PubMed

    Bajpayee, Ambika G; Grodzinsky, Alan J

    2017-03-01

    Current intra-articular drug delivery methods do not guarantee sufficient drug penetration into cartilage tissue to reach cell and matrix targets at the concentrations necessary to elicit the desired biological response. Here, we provide our perspective on the utilization of charge-charge (electrostatic) interactions to enhance drug penetration and transport into cartilage, and to enable sustained binding of drugs within the tissue's highly negatively charged extracellular matrix. By coupling drugs to positively charged nanocarriers that have optimal size and charge, cartilage can be converted from a drug barrier into a drug reservoir for sustained intra-tissue delivery. Alternatively, a wide variety of drugs themselves can be made cartilage-penetrating by functionalizing them with specialized positively charged protein domains. Finally, we emphasize that appropriate animal models, with cartilage thickness similar to that of humans, must be used for the study of drug transport and retention in cartilage.

  4. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles.

    PubMed

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-11-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.

  5. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    PubMed Central

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  6. Nanoparticles for direct nose-to-brain delivery of drugs.

    PubMed

    Mistry, Alpesh; Stolnik, Snjezana; Illum, Lisbeth

    2009-09-08

    This review aims to evaluate the evidence for the existence of a direct nose-to-brain delivery route for nanoparticles administered to the nasal cavity and transported via the olfactory epithelium and/or via the trigeminal nerves directly to the CNS. This is relevant in the field of drug delivery as well as for new developments in nanotechnology. Experiments in animal models have shown that nano-sized drug delivery systems can enhance nose-to-brain delivery of drugs compared to equivalent drug solutions formulations. Protection of the drug from degradation and/or efflux back into the nasal cavity may partly be the reason for this effect of nanoparticles. It is uncertain, however, whether drug from the nanoparticles is being released in the nasal cavity or the nanoparticles carrying the drug are transported via the olfactory system or the trigeminal nerves into the CNS where the drug is released. Furthermore, toxicity of nanoparticulate drug delivery systems in the nasal cavity and/or in the CNS has not been extensively studied and needs to be considered carefully.

  7. Atopic Dermatitis: Drug Delivery Approaches in Disease Management.

    PubMed

    Lalan, Manisha; Baweja, Jitendra; Misra, Ambikanandan

    2015-01-01

    In this review, we describe the very basic of atopic dermatitis (AD), the established management strategies, and the advances in drug delivery approaches for successful therapeutic outcomes. The multifactorial pathophysiology of AD has given rise to the clinician's paradigm of topical and systemic therapy and potential combinations. However, incomplete remission of skin disorders like AD is a major challenge to be overcome. Recurrence is thought to be due to genetic and immunological etiologies and shortcomings in drug delivery. This difficulty has sparked research in nanocarrier-based delivery approaches as well as molecular biology-inspired stratagems to deal with the immunological imbalance and to address insufficiencies of delivery propositions. In this review, we assess various novel drug delivery strategies in terms of their success and utility. We present a brief compilation and assessment of management modalities to sensitize the readers to therapeutic scenario in AD.

  8. Polymeric Nanoparticle Drug Delivery Technologies for Oral Delivery Applications

    PubMed Central

    Pridgen, Eric M.; Alexis, Frank; Farokhzad, Omid C.

    2016-01-01

    Introduction Many therapeutics are limited to parenteral administration. Oral administration is a desirable alternative because of the convenience and increased compliance by patients, especially for chronic diseases that require frequent administration. Polymeric nanoparticles are one technology being developed to enable clinically feasible oral delivery. Areas covered This review discusses the challenges associated with oral delivery. Strategies used to overcome gastrointestinal barriers using polymeric nanoparticles will be considered, including mucoadhesive biomaterials and targeting of nanoparticles to transcytosis pathways associated with M cells and enterocytes. Applications of oral delivery technologies will also be discussed, such as oral chemotherapies, oral insulin, treatment of inflammatory bowel disease, and mucosal vaccinations. Expert opinion There have been many approaches used to overcome the transport barriers presented by the gastrointestinal tract, but most have been limited by low bioavailability. Recent strategies targeting nanoparticles to transcytosis pathways present in the intestines have demonstrated that it is feasible to efficiently transport both therapeutics and nanoparticles across the intestines and into systemic circulation after oral administration. Further understanding of the physiology and pathophysiology of the intestines could lead to additional improvements in oral polymeric nanoparticle technologies and enable the translation of these technologies to clinical practice. PMID:25813361

  9. Kinetics of reciprocating drug delivery to the inner ear.

    PubMed

    Pararas, Erin E Leary; Chen, Zhiqiang; Fiering, Jason; Mescher, Mark J; Kim, Ernest S; McKenna, Michael J; Kujawa, Sharon G; Borenstein, Jeffrey T; Sewell, William F

    2011-06-10

    Reciprocating drug delivery is a means of delivering soluble drugs directly to closed fluid spaces in the body via a single cannula without an accompanying fluid volume change. It is ideally suited for drug delivery into small, sensitive and unique fluid spaces such as the cochlea. We characterized the pharmacokinetics of reciprocating drug delivery to the scala tympani within the cochlea by measuring the effects of changes in flow parameters on the distribution of drug throughout the length of the cochlea. Distribution was assessed by monitoring the effects of DNQX, a reversible glutamate receptor blocker, delivered directly to the inner ear of guinea pigs using reciprocating flow profiles. We then modeled the effects of those parameters on distribution using both an iterative curve-fitting approach and a computational fluid dynamic model. Our findings are consistent with the hypothesis that reciprocating delivery distributes the drug into a volume in the base of the cochlea, and suggest that the primary determinant of distribution throughout more distal regions of the cochlea is diffusion. Increases in flow rate distributed the drug into a larger volume that extended more apically. Over short time courses (less than 2h), the apical extension, though small, significantly enhanced apically directed delivery of drug. Over longer time courses (>5h) or greater distances (>3mm), maintenance of drug concentration in the basal scala tympani may prove more advantageous for extending apical delivery than increases in flow rate. These observations demonstrate that this reciprocating technology is capable of providing controlled delivery kinetics to the closed fluid space in the cochlea, and may be suitable for other applications such as localized brain and retinal delivery. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Kinetics of Reciprocating Drug Delivery to the Inner Ear

    PubMed Central

    Leary Pararas, Erin E.; Chen, Zhiqiang; Fiering, Jason; Mescher, Mark J.; Kim, Ernest S.; McKenna, Michael J.; Kujawa, Sharon G.; Borenstein, Jeffrey T.; Sewell, William F.

    2011-01-01

    Reciprocating drug delivery is a means of delivering soluble drugs directly to closed fluid spaces in the body via a single cannula without an accompanying fluid volume change. It is ideally suited for drug delivery into small, sensitive and unique fluid spaces such as the cochlea. We characterized the pharmacokinetics of reciprocating drug delivery to the scala tympani within the cochlea by measuring the effects of changes in flow parameters on the distribution of drug throughout the length of the cochlea. Distribution was assessed by monitoring the effects of DNQX, a reversible glutamate receptor blocker, delivered directly to the inner ear of guinea pigs using reciprocating flow profiles. We then modeled the effects of those parameters on distribution using both an iterative curve-fitting approach and a computational fluid dynamic model. Our findings are consistent with the hypothesis that reciprocating delivery distributes the drug into a volume in the base of the cochlea, and suggest that the primary determinant of distribution throughout more distal regions of the cochlea is diffusion. Increases in flow rate distributed the drug into a larger volume that extended more apically. Over short time courses (less than 2 h), the apical extension, though small, significantly enhanced apically directed delivery of drug. Over longer time courses (>5 h) or greater distances (>3 mm), maintenance of drug concentration in the basal scala tympani may prove more advantageous for extending apical delivery than increases in flow rate. These observations demonstrate that this reciprocating technology is capable of providing controlled delivery kinetics to the closed fluid space in the cochlea, and may be suitable for other applications such as localized brain and retinal delivery. PMID:21385596

  11. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.

    PubMed

    Sahoo, Nityananda; Sahoo, Ranjan Ku; Biswas, Nikhil; Guha, Arijit; Kuotsu, Ketousetuo

    2015-11-01

    Novel drug delivery system using nanoscale materials with a broad spectrum of applications provides a new therapeutic foundation for technological integration and innovation. Nanoparticles are suitable drug carrier for various routes of administration as well as rapid recognition by the immune system. Gelatin, the biological macromolecule is a versatile drug/vaccine delivery carrier in pharmaceutical field due to its biodegradable, biocompatible, non-antigenicity and low cost with easy availability. The surface of gelatin nanoparticles can be modified with site-specific ligands, cationized with amine derivatives or, coated with polyethyl glycols to achieve targeted and sustained release drug delivery. Compared to other colloidal carriers, gelatin nanoparticles are better stable in biological fluids to provide the desired controlled and sustained release of entrapped drug molecules. The current review highlights the different formulation aspects of gelatin nanoparticles which affect the particle characteristics like zeta potential, polydispersity index, entrapment efficacy and drug release properties. It has also given emphasis on the major applications of gelatin nanoparticles in drug and vaccine delivery, gene delivery to target tissues and nutraceutical delivery for improving the poor bioavailabity of bioactive phytonutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    PubMed

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  13. Microneedles: a valuable physical enhancer to increase transdermal drug delivery.

    PubMed

    Escobar-Chávez, José Juan; Bonilla-Martínez, Dalia; Villegas-González, Martha Angélica; Molina-Trinidad, Eva; Casas-Alancaster, Norma; Revilla-Vázquez, Alma Luisa

    2011-07-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Recently, the use of micron-scale needles in increasing skin permeability has been proposed and shown to dramatically increase transdermal delivery. Microneedles have been fabricated with a range of sizes, shapes, and materials. Most in vitro drug delivery studies have shown these needles to increase skin permeability to a broad range of drugs that differ in molecular size and weight. In vivo studies have demonstrated satisfactory release of oligonucleotides and insulin and the induction of immune responses from protein and DNA vaccines. Microneedles inserted into the skin of human subjects were reported to be painless. For all these reasons, microneedles are a promising technology to deliver drugs into the skin. This review presents the main findings concerning the use of microneedles in transdermal drug delivery. It also covers types of microneedles, their advantages and disadvantages, enhancement mechanisms, and trends in transdermal drug delivery.

  14. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety

    PubMed Central

    Donnelly, Ryan F.; Raj Singh, Thakur Raghu; Woolfson, A. David

    2010-01-01

    Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN. PMID:20297904

  15. Preparation of drug delivery systems using supercritical fluid technology.

    PubMed

    Kompella, U B; Koushik, K

    2001-01-01

    Small changes in temperature and pressure near the critical region induce dramatic changes in the density and solubility of supercritical fluids, thereby facilitating the use of environmentally benign agents such as CO2 for their solvent and antisolvent properties in processing a wide variety of materials. While supercritical fluid technologies have been in commercial use in the food and chromatography industries for several years, only recently has this technology made inroads in the formulation of drug delivery systems. This review summarizes some of the recent applications of supercritical fluid technology in the preparation of drug delivery systems. Drugs containing polymeric particles, plain drug particles, solute-containing liposomes, and inclusion complexes of drug and carrier have been formulated using this technology. Also, polymer separation using this technology is enabling the selection of a pure fraction of a polymer, thereby allowing a more precise control of drug release from polymeric delivery systems.

  16. Emerging pressure-release materials for drug delivery.

    PubMed

    Ariga, Katsuhiko; Kawakami, Kohsaku; Hill, Jonathan P

    2013-11-01

    Drug delivery systems for non-specialist uses and application under field conditions are required for medical action in disaster situations and in developing countries. A possible solution for drug delivery under those conditions might be provided by mechanical manipulation of host-guest interactions that could allow drug release control by simple human actions such as hand motion. This editorial article presents recent research developments on control of molecular recognition, capture and release involving macroscopic mechanical motions. In particular, pressure-induced drug release from a cyclodextrin-linked gel has been used to realize controlled release of entrapped drugs upon applying an easy-to-perform mechanical procedure. These easy-action-based drug delivery systems can be applied at will by unskilled staff or patients and are expected to be used to assist medically patients in less-favorable environments anywhere in the world.

  17. Role of nanoparticle size, shape and surface chemistry in oral drug delivery.

    PubMed

    Banerjee, Amrita; Qi, Jianping; Gogoi, Rohan; Wong, Jessica; Mitragotri, Samir

    2016-09-28

    Nanoparticles find intriguing applications in oral drug delivery since they present a large surface area for interactions with the gastrointestinal tract and can be modified in various ways to address the barriers associated with oral delivery. The size, shape and surface chemistry of nanoparticles can greatly impact cellular uptake and efficacy of the treatment. However, the interplay between particle size, shape and surface chemistry has not been well investigated especially for oral drug delivery. To this end, we prepared sphere-, rod- and disc-shaped nanoparticles and conjugated them with targeting ligands to study the influence of size, shape and surface chemistry on their uptake and transport across intestinal cells. A triple co-culture model of intestinal cells was utilized to more closely mimic the intestinal epithelium. Results demonstrated higher cellular uptake of rod-shaped nanoparticles in the co-culture compared to spheres regardless of the presence of active targeting moieties. Transport of nanorods across the intestinal co-culture was also significantly higher than spheres. The findings indicate that nanoparticle-mediated oral drug delivery can be potentially improved with departure from spherical shape which has been traditionally utilized for the design of nanoparticles. We believe that understanding the role of nanoparticle geometry in intestinal uptake and transport will bring forth a paradigm shift in nanoparticle engineering for oral delivery and non-spherical nanoparticles should be further investigated and considered for oral delivery of therapeutic drugs and diagnostic materials.

  18. 76 FR 51038 - Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ... HUMAN SERVICES Food and Drug Administration Guidance for Industry on Residual Drug in Transdermal and Related Drug Delivery Systems; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the availability of a guidance for...

  19. Multifunctional inverse opal particles for drug delivery and monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Cheng, Yao; Wang, Huan; Ye, Baofen; Shang, Luoran; Zhao, Yuanjin; Gu, Zhongze

    2015-06-01

    Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials.Particle-based delivery systems have a demonstrated value for drug discovery and development. Here, we report a new type of particle-based delivery system that has controllable release and is self-monitoring. The particles were composed of poly(N-isopropylacrylamide) (pNIPAM) hydrogel with an inverse opal structure. The presence of macropores in the particles provides channels for active drug loading and release from the materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02324f

  20. Carbon nanotubes for delivery of small molecule drugs.

    PubMed

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.

  1. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  2. Coacervate delivery systems for proteins and small molecule drugs.

    PubMed

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  3. Coacervate delivery systems for proteins and small molecule drugs

    PubMed Central

    Johnson, Noah R; Wang, Yadong

    2015-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future. PMID:25138695

  4. Drug delivery systems for the treatment of ischemic stroke.

    PubMed

    Rhim, Taiyoun; Lee, Dong Yun; Lee, Minhyung

    2013-10-01

    Stroke is the third leading cause of death in the United States. Reduced cerebral blood flow causes acute damage to the brain due to excitotoxicity, reactive oxygen species (ROS), and ischemia. Currently, the main treatment for stroke is to revive the blood flow by using thrombolytic agents. Reviving blood flow also causes ischemia-reperfusion (I/R) damage. I/R damage results from inflammation and apoptosis and can persist for days to weeks, increasing the infarct size. Drugs can be applied to stroke to intervene in the sub-acute and chronic phases. Chemical, peptide, and genetic therapies have been evaluated to reduce delayed damage to the brain. These drugs have different characteristics, requiring that delivery carriers be developed based on these characteristics. The delivery route is another important factor affecting the efficiency of drug delivery. Various delivery routes have been developed, such as intravenous injection, intranasal administration, and local direct injection to overcome the blood-brain-barrier (BBB). In this review, the delivery carriers and delivery routes for peptide and gene therapies are discussed and examples are provided. Combined with new drugs, drug delivery systems will eventually provide useful treatments for ischemic stroke.

  5. Nanoparticle hardness controls the internalization pathway for drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-01-01

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.

  6. Nanoparticle hardness controls the internalization pathway for drug delivery.

    PubMed

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2015-02-14

    Nanoparticle (NP)-based drug delivery systems offer fundamental advantages over current therapeutic agents that commonly display a longer circulation time, lower toxicity, specific targeted release, and greater bioavailability. For successful NP-based drug delivery it is essential that the drug-carrying nanocarriers can be internalized by the target cells and transported to specific sites, and the inefficient internalization of nanocarriers is often one of the major sources for drug resistance. In this work, we use the dissipative particle dynamics simulation to investigate the effect of NP hardness on their internalization efficiency. Three simplified models of NP platforms for drug delivery, including polymeric NP, liposome and solid NP, are designed here to represent increasing nanocarrier hardness. Simulation results indicate that NP hardness controls the internalization pathway for drug delivery. Rigid NPs can enter the cell by a pathway of endocytosis, whereas for soft NPs the endocytosis process can be inhibited or frustrated due to wrapping-induced shape deformation and non-uniform ligand distribution. Instead, soft NPs tend to find one of three penetration pathways to enter the cell membrane via rearranging their hydrophobic and hydrophilic segments. Finally, we show that the interaction between nanocarriers and drug molecules is also essential for effective drug delivery.

  7. Formulation and Stability Aspects of Nanosized Solid Drug Delivery Systems.

    PubMed

    Szabo, Peter; Zelko, Romana

    2015-01-01

    Nano drug delivery systems are considered as useful means to remedy the problems of drugs of poor solubility, permeability and bioavailability, which became one of the most troublesome questions of the pharmaceutical industry. Different types of nanosized drug delivery systems have been developed and investigated for oral administration, providing auspicious solutions for drug development. In this paper nanosized drug delivery systems intended for oral administration are discussed based on the chemical nature of the carrier of drug molecules. Lipid nanoparticles comprising solid lipid nanoparticles, improved nanostructured lipid carriers and nanostructured silica- lipid hybrid particles have become popular in the formulation of lipophilic drugs of poor oral bioavailability. Polymeric nanoparticles including nanospheres and nanocapsules and polymeric fibrous systems have also emerged as potential drug delivery systems owing to their unique structure. The feasibility of surface functionalization of mesoporous materials and gold nanoparticles enables high level of control over particle characteristics making inorganic nanoparticles an exceptional formulation approach. The authors paid particular attention to the functionality-related stability of the reviewed delivery systems.

  8. Porous Inorganic Drug Delivery Systems-a Review.

    PubMed

    Sayed, E; Haj-Ahmad, R; Ruparelia, K; Arshad, M S; Chang, M-W; Ahmad, Z

    2017-02-28

    Innovative methods and materials have been developed to overcome limitations associated with current drug delivery systems. Significant developments have led to the use of a variety of materials (as excipients) such as inorganic and metallic structures, marking a transition from conventional polymers. Inorganic materials, especially those possessing significant porosity, are emerging as good candidates for the delivery of a range of drugs (antibiotics, anticancer and anti-inflammatories), providing several advantages in formulation and engineering (encapsulation of drug in amorphous form, controlled delivery and improved targeting). This review focuses on key selected developments in porous drug delivery systems. The review provides a short broad overview of porous polymeric materials for drug delivery before focusing on porous inorganic materials (e.g. Santa Barbara Amorphous (SBA) and Mobil Composition of Matter (MCM)) and their utilisation in drug dosage form development. Methods for their preparation and drug loading thereafter are detailed. Several examples of porous inorganic materials, drugs used and outcomes are discussed providing the reader with an understanding of advances in the field and realistic opportunities.

  9. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori

    PubMed Central

    Zhao, Shan; Lv, Yan; Zhang, Jian-Bin; Wang, Bing; Lv, Guo-Jun; Ma, Xiao-Jun

    2014-01-01

    Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world’s population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections. PMID:25071326

  10. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori.

    PubMed

    Zhao, Shan; Lv, Yan; Zhang, Jian-Bin; Wang, Bing; Lv, Guo-Jun; Ma, Xiao-Jun

    2014-07-28

    Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world's population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections.

  11. Development of Systems for Delivery of Antiviral Drugs.

    DTIC Science & Technology

    1986-10-31

    synthesis of CNS-targeted prodrug esters of ribavirin and selenazole, pharmacokinetic studies of drug distribution and sustained delivery of drug in the brain...The scope of the research program involves the synthesis of CNS-targeted prodrug esters of ribavirin and selenazole, pharmaco- kinetic, studies of...blood-brain barrier. Our initial efforts have been directed toward the synthesis of ribavirin prodrugs. Based upon the brain-specific delivery of, for

  12. The importance of nanoparticle shape in cancer drug delivery.

    PubMed

    Truong, Nghia P; Whittaker, Michael R; Mak, Catherine W; Davis, Thomas P

    2015-01-01

    Nanoparticles have been successfully used for cancer drug delivery since 1995. In the design of commercial nanoparticles, size and surface characteristics have been exploited to achieve efficacious delivery. However, the design of optimized drug delivery platforms for efficient delivery to disease sites with minimal off-target effects remains a major research goal. One crucial element of nanoparticle design influencing both pharmacokinetics and cell uptake is nanoparticle morphology (both size and shape). In this succinct review, the authors collate the recent literature to assess the current state of understanding of the influence of nanoparticle shape on the effectiveness of drug delivery with a special emphasis on cancer therapy. This review draws on studies that have focused on the role of nonspherical nanoparticles used for cancer drug delivery. In particular, the authors summarize the influence of nanoparticle shape on biocirculation, biodistribution, cellular uptake and overall drug efficacy. By comparing spherical and nonspherical nanoparticles, they establish some general design principles to serve as guidelines for developing the next generation of nanocarriers for drug delivery. Pioneering studies on nanoparticles show that nonspherical shapes show great promise as cancer drug delivery vectors. Filamentous or worm-like micelles together with other rare morphologies such as needles or disks may become the norm for next-generation drug carriers, though at present, traditional spherical micelles remain the dominant shape of nanocarriers described in the literature due to synthesis and testing difficulties. The few reports that do exist describing nonspherical nanoparticles show a number of favorable properties that should encourage more efforts to develop facile and versatile nanoparticle synthesis methodologies with the flexibility to create different shapes, tunable sizes and adaptable surface chemistries. In addition, the authors note that there is a

  13. Natural polymers, gums and mucilages as excipients in drug delivery.

    PubMed

    Kumar, Shobhit; Gupta, Satish Kumar

    2012-01-01

    Use of natural polymers, gums and mucilages in drug delivery systems has been weighed down by the synthetic materials. Natural based excipients offered advantages such as non-toxicity, less cost and abundantly availablity. Aqueous solubility of natural excipients plays an important role in their selection for designing immediate, controlled or sustained release formulations. This review article provide an overview of natural gum, polymers and mucilages as excipients in dosage forms as well as novel drug delivery systems.

  14. Mucus-penetrating nanoparticles for vaginal and gastrointestinal drug delivery

    NASA Astrophysics Data System (ADS)

    Ensign-Hodges, Laura

    A method that could provide more uniform and longer-lasting drug delivery to mucosal surfaces holds the potential to greatly improve the effectiveness of prophylactic and therapeutic approaches for numerous diseases and conditions, including sexually transmitted infections and inflammatory bowel disease. However, the body's natural defenses, including adhesive, rapidly cleared mucus linings coating nearly all entry points to the body not covered by skin, has limited the effectiveness of drug and gene delivery by nanoscale delivery systems. Here, we investigate the use of muco-inert mucus-penetrating nanoparticles (MPP) for improving vaginal and gastrointestinal drug delivery. Conventional hydrophobic nanoparticles strongly adhere to mucus, facilitating rapid clearance from the body. Here, we demonstrate that mucoadhesive polystyrene nanoparticles (conventional nanoparticles, CP) become mucus-penetrating in human cervicovaginal mucus (CVM) after pretreatment with sufficient concentrations of Pluronic F127. Importantly, the diffusion rate of large MPP did not change in F127 pretreated CVM, implying there is no affect on the native pore structure of CVM. Additionally, there was no increase in inflammatory cytokine release in the vaginal tract of mice after daily application of 1% F127 for one week. Importantly, HSV virus remains adherent in F127-pretreated CVM. Mucosal epithelia use osmotic gradients for fluid absorption and secretion. We hypothesized that hypotonically-induced fluid uptake could be advantageous for rapidly delivering drugs through mucus to the vaginal epithelium. We evaluated hypotonic formulations for delivering water-soluble drugs and for drug delivery with MPP. Hypotonic formulations markedly increased the rate at which drugs and MPP reached the epithelial surface. Additionally, hypotonic formulations greatly enhanced drug and MPP delivery to the entire epithelial surface, including deep into the vaginal folds (rugae) that isotonic formulations

  15. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation

    PubMed Central

    Rajan, Reshmy; Jose, Shoma; Mukund, V. P. Biju; Vasudevan, Deepa T.

    2011-01-01

    Transdermal administration of drugs is generally limited by the barrier function of the skin. Vesicular systems are one of the most controversial methods for transdermal delivery of active substances. The interest in designing transdermal delivery systems was relaunched after the discovery of elastic vesicles like transferosomes, ethosomes, cubosomes, phytosomes, etc. This paper presents the composition, mechanisms of penetration, manufacturing and characterization methods of transferosomes as transdermal delivery systems of active substances. For a drug to be absorbed and distributed into organs and tissues and eliminated from the body, it must pass through one or more biological membranes/barriers at various locations. Such a movement of drug across the membrane is called as drug transport. For the drugs to be delivered to the body, they should cross the membranous barrier. The concept of these delivery systems was designed in an attempt to concentrate the drug in the tissues of interest, while reducing the amount of drug in the remaining tissues. Hence, surrounding tissues are not affected by the drug. In addition, loss of drug does not happen due to localization of drug, leading to get maximum efficacy of the medication. Therefore, the phospholipid based carrier systems are of considerable interest in this era. PMID:22171309

  16. Nerve guidance channels as drug delivery vehicles.

    PubMed

    Piotrowicz, Alexandra; Shoichet, Molly S

    2006-03-01

    Nerve guidance channels (NGCs) have been shown to facilitate regeneration after transection injury to the peripheral nerve or spinal cord. Various therapeutic molecules, including neurotrophic factors, have improved regeneration and functional recovery after injury when combined with NGCs; however, their impact has not been maximized partly due to the lack of an appropriate drug delivery system. To address this limitation, nerve growth factor (NGF) was incorporated into NGCs of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate), P(HEMA-co-MMA). The NGCs were synthesized by a liquid-liquid centrifugal casting process and three different methods of protein incorporation were compared in terms of protein distribution and NGF release profile: (1) NGF was encapsulated (with BSA) in biodegradable poly(d,l-lactide-co-glycolide) 85/15 microspheres, which were combined with a PHEMA polymerization formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique; (2) pre-formed NGCs were imbibed with a solution of NGF/BSA and (3) NGF/BSA alone was combined with a PHEMA formulation and coated on the inside of pre-formed NGCs by a second liquid-liquid centrifugal casting technique. Using a fluorescently labelled model protein, the distribution of proteins in NGCs prepared with a coating of either protein-loaded microspheres or protein alone was found to be confined to the inner PHEMA layer. Sustained release of NGF was achieved from NGCs with either NGF-loaded microspheres or NGF alone incorporated into the inner layer, but not from channels imbibed with NGF. By day 28, NGCs with microspheres released a total of 220 pg NGF/cm of channel whereas those NGCs imbibed with NGF released 1040 pg/cm and those NGCs with NGF incorporated directly in a PHEMA layer released 8624 pg/cm. The release of NGF from NGCs with microspheres was limited by a slow-degrading microsphere formulation and by the maximum amount of microspheres that

  17. Synergistic effect of enhancers for transdermal drug delivery.

    PubMed

    Mitragotri, S

    2000-11-01

    Transdermal drug delivery offers a non-invasive route of drug administration, although its applications are limited by low skin permeability. Various enhancers including iontophoresis, chemicals, ultrasound, and electroporation have been shown to enhance transdermal drug transport. Although all these methods have been individually shown to enhance transdermal drug transport, their combinations have often been found to enhance transdermal transport more effectively than each of them alone. This paper summarizes literature studies on these combinations with respect to their efficacy and mechanisms.

  18. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review

    PubMed Central

    Kushwaha, Swatantra KS; Saxena, Prachi; Rai, AK

    2012-01-01

    Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist for past 10-20 years. As an isolated organ, eye is very difficult to study from a drug delivery point of view. Despite this limitation, improvements have been made with the objective of maintaining the drug in the biophase for an extended period. A major problem in ocular therapeutics is the attainment of an optimal drug concentration at the site of action. To achieve effective ophthalmic therapy, an adequate amount of active ingredient must be delivered and maintained within the eye. The most frequently used dosage forms, i.e., eye solution, eye ointments, eye gels, and eye suspensions are compromised in their effectiveness by several limitations leading to poor ocular bioavailability. Ophthalmic use of viscosity-enhancing agents, penetration enhancers, cyclodextrins, prodrug approaches, and ocular inserts, and the ready existing drug carrier systems along with their application to ophthalmic drug delivery are common to improve ocular bioavailability. Amongst these hydrogel (stimuli sensitive) systems are important, which undergo reversible volume and/or sol-gel phase transitions in response to physiological (temperature, pH and present of ions in organism fluids, enzyme substrate) or other external (electric current, light) stimuli. They help to increase in precorneal residence time of drug to a sufficient extent that an ocularly delivered drug can exhibit its maximum biological action. The concept of this innovative ophthalmic delivery approach is to decrease the systemic side effects and to create a more pronounced effect with lower doses of the drug. The present article describes the advantages and use stimuli sensitive of hydrogel systems in ophthalmic drug delivery. PMID:23119233

  19. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review.

    PubMed

    Kushwaha, Swatantra Ks; Saxena, Prachi; Rai, Ak

    2012-04-01

    Amongst the various routes of drug delivery, the field of ocular drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist for past 10-20 years. As an isolated organ, eye is very difficult to study from a drug delivery point of view. Despite this limitation, improvements have been made with the objective of maintaining the drug in the biophase for an extended period. A major problem in ocular therapeutics is the attainment of an optimal drug concentration at the site of action. To achieve effective ophthalmic therapy, an adequate amount of active ingredient must be delivered and maintained within the eye. The most frequently used dosage forms, i.e., eye solution, eye ointments, eye gels, and eye suspensions are compromised in their effectiveness by several limitations leading to poor ocular bioavailability. Ophthalmic use of viscosity-enhancing agents, penetration enhancers, cyclodextrins, prodrug approaches, and ocular inserts, and the ready existing drug carrier systems along with their application to ophthalmic drug delivery are common to improve ocular bioavailability. Amongst these hydrogel (stimuli sensitive) systems are important, which undergo reversible volume and/or sol-gel phase transitions in response to physiological (temperature, pH and present of ions in organism fluids, enzyme substrate) or other external (electric current, light) stimuli. They help to increase in precorneal residence time of drug to a sufficient extent that an ocularly delivered drug can exhibit its maximum biological action. The concept of this innovative ophthalmic delivery approach is to decrease the systemic side effects and to create a more pronounced effect with lower doses of the drug. The present article describes the advantages and use stimuli sensitive of hydrogel systems in ophthalmic drug delivery.

  20. Electroporation as an efficient physical enhancer for skin drug delivery.

    PubMed

    Escobar-Chávez, José Juan; Bonilla-Martínez, Dalia; Villegas-González, Martha Angélica; Revilla-Vázquez, Alma Luisa

    2009-11-01

    Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injection. However, the stratum corneum acts as a barrier that limits the penetration of substances through the skin. Application of high-voltage pulses to the skin increases its permeability (electroporation) and enables the delivery of various substances into and through the skin. The application of electroporation to the skin has been shown to increase transdermal drug delivery. Moreover, electroporation, used alone or in combination with other enhancement methods, expands the range of drugs (small to macromolecules, lipophilic or hydrophilic, charged or neutral molecules) that can be delivered transdermally. The efficacy of transport depends on the electrical parameters and the physicochemical properties of drugs. The in vivo application of high-voltage pulses is well tolerated, but muscle contractions are usually induced. The electrode and patch design is an important issue to reduce the discomfort of the electrical treatment in humans. This review presents the main findings in the field of electroporation-namely, transdermal drug delivery. Particular attention is paid to proposed enhancement mechanisms and trends in the field of topical and transdermal delivery.

  1. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    PubMed Central

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  2. Molecularly imprinted polymers as the future drug delivery devices.

    PubMed

    Luliński, Piotr

    2013-01-01

    In recent years, the investigations of new drug delivery systems have been directed on the development of some "intelligent" drug delivery devices that are able to directly respond to the patient's individual needs. New drug delivery systems should maximize the efficiency of administrated therapeutic agents and improve the patient's quality of life. Introduction of the new drug delivery devices is an important scientific goal, which could be achieved by combining new technologies and intelligent biomaterials. Molecular imprinting technology has a high potential for the preparation of optimized drug delivery forms. Here, molecularly imprinted polymers (MIPs) are promising new materials for such purposes, but their application in this field is nowadays at a developing stage. In this review, the principles of molecular imprinting and the recognition-release mechanisms of polymeric matrices are discussed. The potential application of molecularly imprinted materials as the future drug delivery systems with various administering routes (transdermal, ocular or oral) are presented, and some future prospects for the imprinted polymers are outlined.

  3. Annual update: drugs, diagnostics and devices.

    PubMed

    Berardinelli, Candace; Kupecz, Deborah

    2003-03-01

    As NPs continue to play an important role in health care as administers of prescriptions, the value of reviewing the latest Food and Drug Administration (FDA) approvals for new drugs and devices is immeasurable. In 2002, the FDA approved several new drugs and devices, as well as monitored previously approved drugs for adverse reactions and untoward events. This article provides a brief review of relevant primary care topics.

  4. Planar bioadhesive microdevices: a new technology for oral drug delivery

    PubMed Central

    Fox, Cade B.; Chirra, Hariharasudhan D.; Desai, Tejal A.

    2014-01-01

    The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery. PMID:25219863

  5. Planar bioadhesive microdevices: a new technology for oral drug delivery.

    PubMed

    Fox, Cade B; Chirra, Hariharasudhan D; Desai, Tejal A

    2014-01-01

    The oral route is the most convenient and least expensive route of drug administration. Yet, it is accompanied by many physiological barriers to drug uptake including low stomach pH, intestinal enzymes and transporters, mucosal barriers, and high intestinal fluid shear. While many drug delivery systems have been developed for oral drug administration, the physiological components of the gastro intestinal tract remain formidable barriers to drug uptake. Recently, microfabrication techniques have been applied to create micron-scale devices for oral drug delivery with a high degree of control over microdevice size, shape, chemical composition, drug release profile, and targeting ability. With precise control over device properties, microdevices can be fabricated with characteristics that provide increased adhesion for prolonged drug exposure, unidirectional release which serves to avoid luminal drug loss and enhance drug permeation, and protection of a drug payload from the harsh environment of the intestinal tract. Here we review the recent developments in microdevice technology and discuss the potential of these devices to overcome unsolved challenges in oral drug delivery.

  6. Drug delivery systems: polymers and drugs monitored by capillary electromigration methods.

    PubMed

    Simó, Carolina; Cifuentes, Alejandro; Gallardo, Alberto

    2003-11-25

    In this paper, different electromigration methods used to monitor drugs and polymers released from drug delivery systems are reviewed. First, an introduction to the most typical arrangements used as drug delivery systems (e.g., polymer-drug covalent conjugates, membrane or matrix-based devices) is presented. Next, the principles of different capillary electromigration procedures are discussed, followed by a revision on the different procedures employed to monitor the release of drugs and the degradation or solubilization of the polymeric matrices from drug delivery systems during both in vitro and in vivo assays. A critical comparison between these capillary electrophoretic methods and the more common chromatographic methods employed to analyze drugs and polymers from drug delivery systems is presented. Finally, future outlooks of these electromigration procedures in the controlled release field are discussed.

  7. Using exosomes, naturally-equipped nanocarriers, for drug delivery

    PubMed Central

    Batrakova, Elena V.; Kim, Myung Soo

    2015-01-01

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell–cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neuro-degenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations. PMID:26241750

  8. A review of nebulized drug delivery in COPD

    PubMed Central

    Tashkin, Donald P

    2016-01-01

    Current guidelines recommend inhaled pharmacologic therapy as the preferred route of administration for treating COPD. Bronchodilators (β2-agonists and antimuscarinics) are the mainstay of pharmacologic therapy in patients with COPD, with long-acting agents recommended for patients with moderate to severe symptoms or those who are at a higher risk for COPD exacerbations. Dry powder inhalers and pressurized metered dose inhalers are the most commonly used drug delivery devices, but they may be inadequate in various clinical scenarios (eg, the elderly, the cognitively impaired, and hospitalized patients). As more drugs become available in solution formulations, patients with COPD and their caregivers are becoming increasingly satisfied with nebulized drug delivery, which provides benefits similar to drugs delivered by handheld inhalers in both symptom relief and improved quality of life. This article reviews recent innovations in nebulized drug delivery and the important role of nebulized therapy in the treatment of COPD. PMID:27799757

  9. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  10. Oral Dispersible System: A New Approach in Drug Delivery System

    PubMed Central

    Hannan, P. A.; Khan, J. A.; Khan, A.; Safiullah, S.

    2016-01-01

    Dosage form is a mean used for the delivery of drug to a living body. In order to get the desired effect the drug should be delivered to its site of action at such rate and concentration to achieve the maximum therapeutic effect and minimum adverse effect. Since oral route is still widely accepted route but having a common drawback of difficulty in swallowing of tablets and capsules. Therefore a lot of research has been done on novel drug delivery systems. This review is about oral dispersible tablets a novel approach in drug delivery systems that are now a day's more focused in formulation world, and laid a new path that, helped the patients to build their compliance level with the therapy, also reduced the cost and ease the administration especially in case of pediatrics and geriatrics. Quick absorption, rapid onset of action and reduction in drug loss properties are the basic advantages of this dosage form. PMID:27168675

  11. Electrohydrodynamics: A facile technique to fabricate drug delivery systems

    PubMed Central

    Chakraborty, Syandan; Liao, I-Chien; Adler, Andrew; Leong, Kam W.

    2009-01-01

    Electrospinning and electrospraying are facile electrohydrodynamic fabrication methods that can generate drug delivery systems (DDS) through a one-step process. The nano-structured fiber and particle morphologies produced by these techniques offer tunable release kinetics applicable to diverse biomedical applications. Coaxial-electrospinning/electrospraying, a relatively new technique of fabricating core-shell fibers/particles have added to the versatility of these DDS by affording a near zero-order drug release kinetics, dampening of burst release, and applicability to a wider range of bioactive agents. Controllable electrospinning/spraying of fibers and particles and subsequent drug release from these chiefly polymeric vehicles depends on well-defined solution and process parameters. The additional drug delivery capability from electrospun fibers can further enhance the material’s functionality in tissue engineering applications. This review discusses the state-of-the-art of using electrohydrodynamic technique to generate nano-fiber/particles as drug delivery devices. PMID:19651167

  12. Using exosomes, naturally-equipped nanocarriers, for drug delivery.

    PubMed

    Batrakova, Elena V; Kim, Myung Soo

    2015-12-10

    Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are known to specialize in cell-cell communications and provide an exclusive approach for the delivery of various therapeutic agents to target cells. In addition, exosomes can be amended through their parental cells to express a targeting moiety on their surface, or supplemented with desired biological activity. Development and validation of exosome-based drug delivery systems are the focus of this review. Different techniques of exosome isolation, characterization, drug loading, and applications in experimental disease models and clinic are discussed. Exosome-based drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, cardiovascular, and neurodegenerative disorders. Overall, exosomes combine benefits of both synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.

  13. A Review on Composite Liposomal Technologies for Specialized Drug Delivery

    PubMed Central

    Mufamadi, Maluta S.; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Ndesendo, Valence M. K.

    2011-01-01

    The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications. PMID:21490759

  14. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials

  15. The integration of triggered drug delivery with real time quantification using FRET; creating a super 'smart' drug delivery system.

    PubMed

    Aibani, Noorjahan; da Costa, Paola Fontoura; Masterson, Jodie; Marino, Nino; Raymo, Françisco M; Callan, John; Callan, Bridgeen

    2017-08-18

    The ability to control drug release at a specific physiological target enables the possibility of an enhanced therapeutic effect with reduced off-target toxic side effects. The discipline of controlled drug release has grown to include most areas of medicine with examples in the literature of targeted drug delivery to the majority of organs within the human body. In addition, a variety of external stimuli used to meditate the drug release process have also been investigated. Nonetheless, the concurrent real time monitoring of drug release has not been widely studied. In this manuscript, we present a novel micellar drug delivery system that is not only capable of releasing its cargo when stimulated by light but also provides a real time analysis of the amount of cargo remaining. Controlled drug release from the delivery system was mediated by physicochemical changes of a spiropyran-merocyanine photochromic dyad, while drug quantification was enabled using a Förster Resonance Energy Transfer (FRET) relationship between the photochrome and a co-encapsulated BODIPY fluorophore. The percentage of drug released from the delivery system was significantly greater (24%) when exposed to light irradiation compared to an analogous control maintained in the dark (5%). Furthermore, the fluorescence read-out capability also enabled the drug-release process to be followed in living cells with a significantly reduced fluorescence emission observed for those cells incubated with the delivery system and exposed to light irradiation compared to control cells maintained in the dark. Combined, these results highlight the utility of this approach to theranostic drug delivery with the potential of light-triggered released together with a fluorescence read-out to enable quantification of the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interactive mixture as a rapid drug delivery system.

    PubMed

    Lee, Chin Chiat; Ong, Charlene Li Ching; Heng, Paul Wan Sia; Chan, Lai Wah; Wong, Tin Wui

    2008-02-01

    The effectiveness of an interactive mixture as a rapid drug delivery system is compared with that of a solid dispersion. The influences of drug load, particle size, and crystallinity of these test systems are investigated. The interactive mixtures and solid dispersions were prepared from polyethylene glycol (PEG) 3350 and hydrophobic nifedipine drug by means of physical mixing and melting methods, respectively. The formed products were subjected to drug particle size and crystallinity analyses, and dissolution tests. In comparison with the interactive mixtures, the solid dispersions with low drug load were more effective as a rapid drug delivery system, as the size of a given batch of drug particles was markedly reduced by the molten PEG 3350. The rate and extent of drug dissolution were mainly promoted by decreasing effective drug particle size. However, these were lower in the solid dispersions than in the interactive mixtures when a high load of fine drug particles was used as the starting material. This was attributed to drug coarsening during the preparation of the solid dispersion. Unlike solid dispersions, the interactive mixtures could accommodate a high load of fine drug particles without compromising its capacity to enhance the rate and extent of drug dissolution. The interactive mixture is appropriate for use to deliver a fine hydrophobic drug in a formulation requiring a high drug load.

  17. Carbon nanotubes: a potential concept for drug delivery applications.

    PubMed

    Kumar, Rakesh; Dhanawat, Meenakshi; Kumar, Sudhir; Singh, Brahma N; Pandit, Jayant K; Sinha, Vivek R

    2014-04-01

    The unique properties of carbon nanotubes (CNTs) make them a highly interesting and demandable nanocarrier in the field of nanoscience. CNTs facilitate efficient delivery of therapeutics like drugs, proteins, genes, nucleic acids, vitamins and lot more. Even though highly beneficial, the biocompatibility of CNTs is a major issue in their questioning their potential application in targeting drug delivery. Studies confirmed subdued toxicity of CNTs following slight modifications like functionalization, controlled dimensions, purification etc. A well-established mechanism for cellular internalization is an insistent need to attain a more efficient and targeted delivery. Recent patents have been thoroughly discussed in the text below.

  18. Current HPLC Methods for Assay of Nano Drug Delivery Systems.

    PubMed

    Tekkeli, Serife Evrim Kepekci; Kiziltas, Mustafa Volkan

    2017-01-01

    In nano drug formulations the mechanism of release is a critical process to recognize controlled and targeted drug delivery systems. In order to gain high bioavailability and specificity from the drug to reach its therapeutic goal, the active substance must be loaded into the nanoparticles efficiently. Therefore, the amount in biological fluids or tissues and the remaining amount in nano carriers are very important parameters to understand the potential of the nano drug delivery systems. For this aim, suitable and validated quantitation methods are required to determine released drug concentrations from nano pharmaceutical formulations. HPLC (High Performance Liquid Chromatography) is one of the most common techniques used for determination of released drug content out of nano drug formulations, in different physical conditions, over different periods of time. Since there are many types of HPLC methods depending on detector and column types, it is a challenge for the researchers to choose a suitable method that is simple, fast and validated HPLC techniques for their nano drug delivery systems. This review's goal is to compare HPLC methods that are currently used in different nano drug delivery systems in order to provide detailed and useful information for researchers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Drug Delivery Systems, CNS Protection, and the Blood Brain Barrier

    PubMed Central

    Upadhyay, Ravi Kant

    2014-01-01

    Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods. PMID:25136634

  20. Magnetic nanoparticle-based drug delivery for cancer therapy.

    PubMed

    Tietze, Rainer; Zaloga, Jan; Unterweger, Harald; Lyer, Stefan; Friedrich, Ralf P; Janko, Christina; Pöttler, Marina; Dürr, Stephan; Alexiou, Christoph

    2015-12-18

    Nanoparticles have belonged to various fields of biomedical research for quite some time. A promising site-directed application in the field of nanomedicine is drug targeting using magnetic nanoparticles which are directed at the target tissue by means of an external magnetic field. Materials most commonly used for magnetic drug delivery contain metal or metal oxide nanoparticles, such as superparamagnetic iron oxide nanoparticles (SPIONs). SPIONs consist of an iron oxide core, often coated with organic materials such as fatty acids, polysaccharides or polymers to improve colloidal stability and to prevent separation into particles and carrier medium [1]. In general, magnetite and maghemite particles are those most commonly used in medicine and are, as a rule, well-tolerated. The magnetic properties of SPIONs allow the remote control of their accumulation by means of an external magnetic field. Conjugation of SPIONs with drugs, in combination with an external magnetic field to target the nanoparticles (so-called "magnetic drug targeting", MDT), has additionally emerged as a promising strategy of drug delivery. Magnetic nanoparticle-based drug delivery is a sophisticated overall concept and a multitude of magnetic delivery vehicles have been developed. Targeting mechanism-exploiting, tumor-specific attributes are becoming more and more sophisticated. The same is true for controlled-release strategies for the diseased site. As it is nearly impossible to record every magnetic nanoparticle system developed so far, this review summarizes interesting approaches which have recently emerged in the field of targeted drug delivery for cancer therapy based on magnetic nanoparticles.

  1. Amorphous drug delivery systems: molecular aspects, design, and performance.

    PubMed

    Kaushal, Aditya Mohan; Gupta, Piyush; Bansal, Arvind Kumar

    2004-01-01

    The biopharmaceutical properties-especially the solubility and permeability-of a molecule contribute to its overall therapeutic efficacy. The newer tools of drug discovery have caused a shift in the properties of drug-like compounds, resulting in drugs with poor aqueous solubility and permeability, which offer delivery challenges, thus requiring considerable pharmaceutical manning. The modulation of solubility is a more viable option for enhancing bioavailability than permeability, because of the lack of "safe" approaches to enhance the latter. Solid-state manipulation in general, and amorphization in particular, are preferred ways of enhancing solubility and optimizing delivery of poorly soluble drugs. This review attempts to address the diverse issues pertaining to amorphous drug delivery systems. We discuss the various thermodynamic phenomenon such as glass transition, fragility, molecular mobility, devitrification kinetics, and molecular-level chemical interactions that contribute to the ease of formation, the solubility advantage, and the stability of amorphous drugs. The engineering of pharmaceutical alloys by solubilizing and stabilizing carriers, commonly termed solid dispersions, provide avenues for exploiting the benefits of amorphous systems. Carrier properties, mechanisms of drug release, and study of release kinetics help to improve the predictability of performance. The review also addresses the various barriers in the design of amorphous delivery systems, use of amorphous form in controlled release delivery systems, and their in vivo performance.

  2. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications

    PubMed Central

    Kalomiraki, Marina; Thermos, Kyriaki; Chaniotakis, Nikos A

    2016-01-01

    Dendrimers are large polymeric structures with nanosize dimensions (1–10 nm) and unique physicochemical properties. The major advantage of dendrimers compared with linear polymers is their spherical-shaped structure. During synthesis, the size and shape of the dendrimer can be customized and controlled, so the finished macromolecule will have a specific “architecture” and terminal groups. These characteristics will determine its suitability for drug delivery, diagnostic imaging, and as a genetic material carrier. This review will focus initially on the unique properties of dendrimers and their use in biomedical applications, as antibacterial, antitumor, and diagnostic agents. Subsequently, emphasis will be given to their use in drug delivery for ocular diseases. PMID:26730187

  3. Micro-Fluidic Device for Drug Delivery

    NASA Technical Reports Server (NTRS)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  4. Microsystems Technologies for Drug Delivery to the Inner Ear

    PubMed Central

    Leary Pararas, Erin E.; Borkholder, David A.; Borenstein, Jeffrey T.

    2012-01-01

    The inner ear represents one of the most technologically challenging targets for local drug delivery, but its clinical significance is rapidly increasing. The prevalence of sensorineural hearing loss and other auditory diseases, along with balance disorders and tinnitus, has spurred broad efforts to develop therapeutic compounds and regenerative approaches to treat these conditions, necessitating advances in systems capable of targeted and sustained drug delivery. The delicate nature of hearing structures combined with the relative inaccessibility of the cochlea by means of conventional delivery routes together necessitate significant advancements in both the precision and miniaturization of delivery systems, and the nature of the molecular and cellular targets for these therapies suggests that multiple compounds may need to be delivered in a time-sequenced fashion over an extended duration. Here we address the various approaches being developed for inner ear drug delivery, including micropump-based devices, reciprocating systems, and cochlear prosthesis-mediated delivery, concluding with an analysis of emerging challenges and opportunities for the first generation of technologies suitable for human clinical use. These developments represent exciting advances that have the potential to repair and regenerate hearing structures in millions of patients for whom no currently available medical treatments exist, a situation that requires them to function with electronic hearing augmentation devices or to live with severely impaired auditory function. These advances also have the potential for broader clinical applications that share similar requirements and challenges with the inner ear, such as drug delivery to the central nervous system. PMID:22386561

  5. Discovery and Delivery of Synergistic Chemotherapy Drug Combinations to Tumors

    NASA Astrophysics Data System (ADS)

    Camacho, Kathryn Militar

    Chemotherapy combinations for cancer treatments harbor immense therapeutic potentials which have largely been untapped. Of all diseases, clinical studies of drug combinations are the most prevalent in oncology, yet their effectiveness is disputable, as complete tumor regressions are rare. Our research has been devoted towards developing delivery vehicles for combinations of chemotherapy drugs which elicit significant tumor reduction yet limit toxicity in healthy tissue. Current administration methods assume that chemotherapy combinations at maximum tolerable doses will provide the greatest therapeutic effect -- a presumption which often leads to unprecedented side effects. Contrary to traditional administration, we have found that drug ratios rather than total cumulative doses govern combination therapeutic efficacy. In this thesis, we have developed nanoparticles to incorporate synergistic ratios of chemotherapy combinations which significantly inhibit cancer cell growth at lower doses than would be required for their single drug counterparts. The advantages of multi-drug incorporation in nano-vehicles are many: improved accumulation in tumor tissue via the enhanced permeation and retention effect, limited uptake in healthy tissue, and controlled exposure of tumor tissue to optimal synergistic drug ratios. To exploit these advantages for polychemotherapy delivery, two prominent nanoparticles were investigated: liposomes and polymer-drug conjugates. Liposomes represent the oldest class of nanoparticles, with high drug loading capacities and excellent biocompatibility. Polymer-drug conjugates offer controlled drug incorporations through reaction stoichiometry, and potentially allow for delivery of precise ratios. Here, we show that both vehicles, when armed with synergistic ratios of chemotherapy drugs, significantly inhibit tumor growth in an aggressive mouse breast carcinoma model. Furthermore, versatile drug incorporation methods investigated here can be broadly

  6. Drug delivery system based on chronobiology--A review.

    PubMed

    Mandal, Asim Sattwa; Biswas, Nikhil; Karim, Kazi Masud; Guha, Arijit; Chatterjee, Sugata; Behera, Mamata; Kuotsu, Ketousetuo

    2010-11-01

    With the advancement in the field of chronobiology, modern drug delivery approaches have been elevated to a new concept of chronopharmacology i.e. the ability to deliver the therapeutic agent to a patient in a staggered profile. However the major drawback in the development of such delivery system that matches the circadian rhythm requires the availability of precise technology (pulsatile drug delivery). The increasing research interest surrounding this delivery system has widened the areas of pharmaceutics in particular with many more sub-disciplines expected to coexist in the near future. This review on chronopharmaceutics gives a comprehensive emphasis on potential disease targets, revisits the existing technologies in hand and also addresses the theoretical approaches to emerging discipline such as genetic engineering and target based specific molecules. With the biological prospective approaches in delivering drugs it is well understood that safer and more realistic approaches in the therapy of diseases will be achieved in the days to come.

  7. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  8. Coaxial electrohydrodynamic atomization: microparticles for drug delivery applications.

    PubMed

    Davoodi, Pooya; Feng, Fang; Xu, Qingxing; Yan, Wei-Cheng; Tong, Yen Wah; Srinivasan, M P; Sharma, Vijay Kumar; Wang, Chi-Hwa

    2015-05-10

    As cancer takes its toll on human health and well-being, standard treatment techniques such as chemotherapy and radiotherapy often fall short of ideal solutions. In particular, adverse side effects due to excess dosage and collateral damage to healthy cells as well as poor patient compliance due to multiple administrations continue to pose challenges in cancer treatment. Thus, the development of appropriately engineered drug delivery systems (DDS) for effective, controlled and sustained delivery of drugs is of interest for patient treatment. Moreover, the physiopathological characteristics of tumors play an essential role in the success of cancer treatment. Here, we present an overview of the application of double-walled microparticles for local drug delivery with particular focus on the electrohydrodynamic atomization (EHDA) technique and its fabrication challenges. The review highlights the importance of a combination of experimental data and computational simulations for the design of an optimal delivery system. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy.

    PubMed

    Cai, Yuee; Xu, Yingqi; Chan, Hon Fai; Fang, Xiaobin; He, Chengwei; Chen, Meiwan

    2016-03-07

    Glycyrrhetinic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the root of licorice, has been used in hepatocellular carcinoma (HCC) therapy. Particularly, GA as a ligand in HCC therapy has been widely explored in different drug delivery systems, including liposomes, micelles, and nanoparticles. There is considerable interest worldwide with respect to the development of GA-modified drug delivery systems due to the extensive presence of GA receptors on the surface of hepatocyte. Up until now, much work has been focused on developing GA-modified drug delivery systems which bear good liver- or hepatocyte-targeted efficiency both in vitro and in vivo. Owing to its contribution in overcoming the limitations of low lipophilicity and poor bioavailability as well as its ability to promote receptor-mediated endocytosis, GA-modified drug delivery systems play an important role in enhancing liver-targeting efficacy and thus are focused on the treatment of HCC. Moreover, since GA-modified delivery systems present more favorable pharmacokinetic properties and hepatocyte-targeting effects, they may be a promising formulation for GA in the treatment of HCC. In this review, we will give an overview of GA-modified novel drug delivery systems, paying attention to their efficacy in treating HCC and discussing their mechanism and the treatment effects.

  10. Polymeric Micro- and Nanofabricatced Devices for Oral Drug Delivery

    NASA Astrophysics Data System (ADS)

    Fox, Cade Brylee

    While oral drug administration is by far the most preferred route, it is accompanied by many barriers that limit drug uptake such as the low pH of the stomach, metabolic and proteolytic enzymes, and limited permeability of the intestinal epithelium. As a result, many drugs ranging from small molecules to biological therapeutics have limited oral bioavailability, precluding them from oral administration. To address this issue, microfabrication has been applied to create planar, asymmetric devices capable of binding to the lining of the gastrointestinal tract and releasing drug at high concentrations, thereby increasing oral drug uptake. While the efficacy of these devices has been validated in vitro and in vivo, modifying their surfaces with nanoscale features has potential to refine their properties for enhanced drug delivery. This dissertation first presents an approach to fabricate polymeric microdevices coated with nanowires in a rapid, high throughput manner. The nanowires demonstrate rapid drug localization onto the surface of these devices via capillary action and increased adhesion to epithelial tissue, suggesting that this fabrication technique can be used to create devices with enhanced properties for oral drug delivery. Also presented are microdevices sealed with nanostraw membranes. The nanostraw membranes provide sustained drug release by limiting drug efflux from the devices, prevent drug degradation by limiting influx of outside biomolecules, and enhance device bioadhesion by penetrating into the mucus layer of the intestinal lining. Finally, an approach that dramatically increases the capacity and efficiency of drug loading into microdevices over previous methods is presented. A picoliter-volume printer is used to print drug directly into device reservoirs in an automated fashion. The technologies presented here expand the capabilities of microdevices for oral drug delivery by incorporating nanoscale structures that enhance device bioadhesion

  11. Design optimization of a novel pMDI actuator for systemic drug delivery.

    PubMed

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  12. Novel drug delivery system: an immense hope for diabetics.

    PubMed

    Rai, Vineet Kumar; Mishra, Nidhi; Agrawal, Ashish Kumar; Jain, Sanyog; Yadav, Narayan Prasad

    2016-09-01

    Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.

  13. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  14. Electrically responsive smart hydrogels in drug delivery: a review.

    PubMed

    Kulkarni, R V; Biswanath, Sa

    2007-01-01

    Recently, much of the research activity has been focused on the development of stimuli-responsive hydrogels. Such hydrogels can show a response to the external or internal stimuli in the form of rapid changes in the physical nature of the polymeric network. This hydrogel property can be utilized for drug delivery applications. A literature search suggests that current research related to stimuli responsive drug delivery systems deals with temperature sensitive, pH sensitive, glucose sensitive and bio-molecule sensitive hydrogels. Electrically responsive hydrogels have also been recently developed in the form of gel matrices, implants and membranes for drug delivery. Control over the release of drugs such as quantity and timing, is essential to optimize drug therapy. Reports say that the electrically controlled in vitro and in vivo drug release studies have been carried out on polyelectrolyte hydrogels. A pulsatile pattern of drug release was achieved with the alternative application and removal of the electrical stimulus. This article gives an overview of the latest developments in the formulation of drug delivery systems using electrically responsive hydrogels.

  15. Basics and recent advances in peptide and protein drug delivery

    PubMed Central

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2014-01-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed. PMID:24228993

  16. Basics and recent advances in peptide and protein drug delivery.

    PubMed

    Bruno, Benjamin J; Miller, Geoffrey D; Lim, Carol S

    2013-11-01

    While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.

  17. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.

    PubMed

    Callender, Shannon P; Mathews, Jessica A; Kobernyk, Katherine; Wettig, Shawn D

    2017-06-30

    Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Hydrazone linkages in pH responsive drug delivery systems.

    PubMed

    Sonawane, Sandeep J; Kalhapure, Rahul S; Govender, Thirumala

    2017-03-01

    Stimuli-responsive polymeric drug delivery systems using various triggers to release the drug at the sites have become a major focus area. Among various stimuli-responsive materials, pH-responsiveness has been studied extensively. The materials used for fabricating pH-responsive drug delivery systems include a specific chemical functionality in their structure that can respond to changes in the pH of the surrounding environment. Various chemical functionalities, for example, acetal, amine, ortho ester, amine and hydrazone, have been used to design materials that are capable of releasing their payload at the acidic pH conditions of the tumor or infection sites. Hydrazone linkages are significant synthons for numerous transformations and have gained importance in pharmaceutical sciences due to their various biological and clinical applications. These linkages have been employed in various drug delivery vehicles, such as linear polymers, star shaped polymers, dendrimers, micelles, liposomes and inorganic nanoparticles, for pH-responsive drug delivery. This review paper focuses on the synthesis and characterization methods of hydrazone bond containing materials and their applications in pH-responsive drug delivery systems. It provides detailed suggestions as guidelines to materials and formulation scientists for designing biocompatible pH-responsive materials with hydrazone linkages and identifying future studies.

  19. Drug Delivery Systems for Imaging and Therapy of Parkinson's Disease

    PubMed Central

    Gunay, Mine Silindir; Ozer, A. Yekta; Chalon, Sylvie

    2016-01-01

    Background: Although a variety of therapeutic approaches are available for the treatment of Parkinson’s disease, challenges limit effective therapy. Among these challenges are delivery of drugs through the blood brain barier to the target brain tissue and the side effects observed during long term administration of antiparkinsonian drugs. The use of drug delivery systems such as liposomes, niosomes, micelles, nanoparticles, nanocapsules, gold nanoparticles, microspheres, microcapsules, nanobubbles, microbubbles and dendrimers is being investigated for diagnosis and therapy. Methods: This review focuses on formulation, development and advantages of nanosized drug delivery systems which can penetrate the central nervous system for the therapy and/or diagnosis of PD, and highlights future nanotechnological approaches. Results: It is esential to deliver a sufficient amount of either therapeutic or radiocontrast agents to the brain in order to provide the best possible efficacy or imaging without undesired degradation of the agent. Current treatments focus on motor symptoms, but these treatments generally do not deal with modifying the course of Parkinson’s disease. Beyond pharmacological therapy, the identification of abnormal proteins such as α-synuclein, parkin or leucine-rich repeat serine/threonine protein kinase 2 could represent promising alternative targets for molecular imaging and therapy of Parkinson's disease. Conclusion: Nanotechnology and nanosized drug delivery systems are being investigated intensely and could have potential effect for Parkinson’s disease. The improvement of drug delivery systems could dramatically enhance the effectiveness of Parkinson’s Disease therapy and reduce its side effects. PMID:26714584

  20. Nano-sized platforms for vaginal drug delivery.

    PubMed

    El-Hammadi, Mazen M; Arias, Jose L

    2015-01-01

    Nano-sized systems have shown promise for efficient vaginal drug delivery providing sustained drug release and enhanced permeation. In parallel with advancements in drug discovery of new vaginal therapeutic agents, such as peptides, proteins, nucleic material, antigens, hormones, and microbicides, nanoplatforms are gaining momentum as prospective vectors for these agents. Thus far, extensive research in this arena has been focused on local delivery to the mucus vagina. However, an improved understanding of vaginal route, advantages offered by the vaginal route including being non-invasive and bypassing hepatic first-effect metabolism, and recent success achieved by vaginal drug nanocarriers may open the door for extensive nanotechnology- based research to explore the viability of systemic administration via this route. The review analyzes the possibilities given by nanoplatform-based delivery systems in the vaginal delivery of active agents. Special insight is given to the most important aspects to be considered during nanomedicine development and preclinical evaluation, i.e., the anatomy and physiology of the vagina, advantages of vaginal route of drug administration, and barriers to vaginal drug delivery. Finally, an updated analysis of the recent advancements of nanomedicine technologies and their potential progress into the clinic is compiled in this work.

  1. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery

    PubMed Central

    Lombardo, Domenico; Calandra, Pietro; Barreca, Davide; Magazù, Salvatore; Kiselev, Mikhail A.

    2016-01-01

    The development of smart nanocarriers for the delivery of therapeutic drugs has experienced considerable expansion in recent decades, with the development of new medicines devoted to cancer treatment. In this respect a wide range of strategies can be developed by employing liposome nanocarriers with desired physico-chemical properties that, by exploiting a combination of a number of suitable soft interactions, can facilitate the transit through the biological barriers from the point of administration up to the site of drug action. As a result, the materials engineer has generated through the bottom up approach a variety of supramolecular nanocarriers for the encapsulation and controlled delivery of therapeutics which have revealed beneficial developments for stabilizing drug compounds, overcoming impediments to cellular and tissue uptake, and improving biodistribution of therapeutic compounds to target sites. Herein we present recent advances in liposome drug delivery by analyzing the main structural features of liposome nanocarriers which strongly influence their interaction in solution. More specifically, we will focus on the analysis of the relevant soft interactions involved in drug delivery processes which are responsible of main behaviour of soft nanocarriers in complex physiological fluids. Investigation of the interaction between liposomes at the molecular level can be considered an important platform for the modeling of the molecular recognition processes occurring between cells. Some relevant strategies to overcome the biological barriers during the drug delivery of the nanocarriers are presented which outline the main structure-properties relationships as well as their advantages (and drawbacks) in therapeutic and biomedical applications. PMID:28335253

  2. Drug delivery approaches for the treatment of glioblastoma multiforme.

    PubMed

    Fakhoury, Marc

    2016-09-01

    Glioblastoma multiforme (GBM) is by far the most common and aggressive form of glial tumor. It is characterized by a highly proliferative population of cells that invade surrounding tissue and that frequently recur after surgical resection and chemotherapy. Over the last decades, a number of promising novel pharmacological approaches have been investigated, but most of them have failed clinical trials due to some side-effects such as toxicity and poor drug delivery to the brain. The major obstacle in the treatment of GBM is the presence of the blood-brain barrier (BBB). Due to their relatively high molecular weight, most therapeutic drugs fail to cross the BBB from the blood circulation. This paper sheds light on the characteristics of GBM and the challenges of current pharmacological treatments. A closer look is given to the role of nanotechnology in the field of drug delivery, and its application in the treatment of brain tumors such as GBM. For this purpose, effort was made to select the most recent studies using predefined search criteria that included at least one of the following keywords in the PubMed and Medline databases: glioblastoma, drug delivery, blood-brain barrier, nanotechnology, and nanoparticle. Breakthrough in nanotechnology offers promising applications in cancer therapy and targeted drug delivery. However, more efforts need to be devoted to the development of novel therapeutic strategies that enable the delivery of drugs to desired areas of the brain with limited side-effects and higher therapeutic efficiency.

  3. A Molecular Communication System Model for Particulate Drug Delivery Systems.

    PubMed

    Chahibi, Youssef; Pierobon, Massimiliano; Song, Sang Ok; Akyildiz, Ian F

    2013-12-01

    The goal of a drug delivery system (DDS) is to convey a drug where the medication is needed, while, at the same time, preventing the drug from affecting other healthy parts of the body. Drugs composed of micro- or nano-sized particles (particulate DDS) that are able to cross barriers which prevent large particles from escaping the bloodstream are used in the most advanced solutions. Molecular communication (MC) is used as an abstraction of the propagation of drug particles in the body. MC is a new paradigm in communication research where the exchange of information is achieved through the propagation of molecules. Here, the transmitter is the drug injection, the receiver is the drug delivery, and the channel is realized by the transport of drug particles, thus enabling the analysis and design of a particulate DDS using communication tools. This is achieved by modeling the MC channel as two separate contributions, namely, the cardiovascular network model and the drug propagation network. The cardiovascular network model allows to analytically compute the blood velocity profile in every location of the cardiovascular system given the flow input by the heart. The drug propagation network model allows the analytical expression of the drug delivery rate at the targeted site given the drug injection rate. Numerical results are also presented to assess the flexibility and accuracy of the developed model. The study of novel optimization techniques for a more effective and less invasive drug delivery will be aided by this model, while paving the way for novel communication techniques for Intrabody communication networks.

  4. Chitosan nanoparticles for oral drug and gene delivery

    PubMed Central

    Bowman, Katherine; Leong, Kam W

    2006-01-01

    Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems. PMID:17722528

  5. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    PubMed Central

    Gonçalves, Catarina; Pereira, Paula; Gama, Miguel

    2010-01-01

    Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  6. External triggering and triggered targeting strategies for drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Yanfei; Kohane, Daniel S.

    2017-06-01

    Drug delivery systems that are externally triggered to release drugs and/or target tissues hold considerable promise for improving the treatment of many diseases by minimizing nonspecific toxicity and enhancing the efficacy of therapy. These drug delivery systems are constructed from materials that are sensitive to a wide range of external stimuli, including light, ultrasound, electrical and magnetic fields, and specific molecules. The responsiveness conferred by these materials allows the release of therapeutics to be triggered on demand and remotely by a physician or patient. In this Review, we describe the rationales for such systems and the types of stimuli that can be deployed, and provide an outlook for the field.

  7. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  8. Dissolving Microneedles for Transdermal Drug Delivery

    PubMed Central

    Lee, Jeong Woo; Park, Jung-Hwan; Prausnitz, Mark R.

    2008-01-01

    Microfabrication technology has been adapted to produce micron-scale needles as a safer and painless alternative to hypodermic needle injection, especially for protein biotherapeutics and vaccines. This study presents a design that encapsulates molecules within microneedles that dissolve within the skin for bolus or sustained delivery and leave behind no biohazardous sharp medical waste. A fabrication process was developed based on casting a viscous aqueous solution during centrifugation to fill a micro-fabricated mold with biocompatible carboxymethylcellulose or amylopectin formulations. This process encapsulated sulforhodamine B, bovine serum albumin, and lysozyme; lysozyme was shown to retain full enzymatic activity after encapsulation and to remain 96% active after storage for two months at room temperature. Microneedles were also shown to be strong enough to insert into cadaver skin and then to dissolve within minutes. Bolus delivery was achieved by encapsulating molecules just within microneedle shafts. For the first time, sustained delivery over hours to days was achieved by encapsulating molecules within the microneedle backing, which served as a controlled release reservoir that delivered molecules by a combination of swelling the backing with interstitial fluid drawn out of the skin and molecule diffusion into the skin via channels formed by dissolved microneedles. We conclude that dissolving microneedles can be designed to gently encapsulate molecules, insert into skin, and enable bolus or sustained release delivery. PMID:18261792

  9. Biodegradation-tunable mesoporous silica nanorods for controlled drug delivery.

    PubMed

    Park, Sung Bum; Joo, Young-Ho; Kim, Hyunryung; Ryu, WonHyoung; Park, Yong-il

    2015-05-01

    Mesoporous silica in the forms of micro- or nanoparticles showed great potentials in the field of controlled drug delivery. However, for precision control of drug release from mesoporous silica-based delivery systems, it is critical to control the rate of biodegradation. Thus, in this study, we demonstrate a simple and robust method to fabricate "biodegradation-tunable" mesoporous silica nanorods based on capillary wetting of anodic aluminum oxide (AAO) template with an aqueous alkoxide precursor solution. The porosity and nanostructure of silica nanorods were conveniently controlled by adjusting the water/alkoxide molar ratio of precursor solutions, heat-treatment temperature, and Na addition. The porosity and biodegradation kinetics of the fabricated mesoporous nanorods were analyzed using N2 adsorption/desorption isotherm, TGA, DTA, and XRD. Finally, the performance of the mesoporous silica nanorods as drug delivery carrier was demonstrated with initial burst and subsequent "zero-order" release of anti-cancer drug, doxorubicin.

  10. Design of Nanoparticle-Based Carriers for Targeted Drug Delivery

    PubMed Central

    Ren, Muqing; Duval, Kayla; Guo, Xing; Chen, Zi

    2016-01-01

    Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this article, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting and physical targeting), compare methods of action, advantages, limitations, and the current stage of research. For the most commonly used nanoparticle carriers, fabrication methods are also reviewed. This is followed by a review of computational simulations and models on nanoparticle-based drug delivery. PMID:27398083

  11. Emerging application of quantum dots for drug delivery and therapy.

    PubMed

    Qi, Lifeng; Gao, Xiaohu

    2008-03-01

    Quantum dots have proven themselves as powerful fluorescent probes, especially for long-term, multiplexed, and quantitative imaging and detection. Newly engineered quantum dots with integrated targeting, imaging and therapeutic functionalities have become excellent material to study drug delivery in cells and small animals. This fluorescent 'prototype' will provide important information in the rational design of biocompatible drug carriers and will serve as a superior alternative to magnetic and radioactive imaging contrast agents in preclinical drug screening, validation and delivery research. This Editorial article is not intended to offer a comprehensive review on drug delivery, but to highlight the breakthroughs in the emerging applications of quantum dots in this field and to provide our perspective on future research.

  12. Hydrogel-Forming Microneedle Arrays for Enhanced Transdermal Drug Delivery

    PubMed Central

    Donnelly, Ryan F; Singh, Thakur Raghu Raj; Garland, Martin J; Migalska, Katarzyna; Majithiya, Rita; McCrudden, Cian M; Kole, Prashant Laxman; Mahmood, Tuan Mazlelaa Tuan; McCarthy, Helen O; Woolfson, A David

    2012-01-01

    Unique microneedle arrays prepared from crosslinked polymers, which contain no drug themselves, are described. They rapidly take up skin interstitial fluid upon skin insertion to form continuous, unblockable, hydrogel conduits from attached patch-type drug reservoirs to the dermal microcirculation. Importantly, such microneedles, which can be fabricated in a wide range of patch sizes and microneedle geometries, can be easily sterilized, resist hole closure while in place, and are removed completely intact from the skin. Delivery of macromolecules is no longer limited to what can be loaded into the microneedles themselves and transdermal drug delivery is now controlled by the crosslink density of the hydrogel system rather than the stratum corneum, while electrically modulated delivery is also a unique feature. This technology has the potential to overcome the limitations of conventional microneedle designs and greatly increase the range of the type of drug that is deliverable transdermally, with ensuing benefits for industry, healthcare providers and, ultimately, patients. PMID:23606824

  13. Drug delivery systems improve pharmaceutical profile and facilitate medication adherence.

    PubMed

    Wertheimer, Albert I; Santella, Thomas M; Finestone, Albert J; Levy, Richard A

    2005-01-01

    Innovations in dosage forms and dose delivery systems across a wide range of medications offer substantial clinical advantages, including reduced dosing frequency and improved patient adherence; minimized fluctuation of drug concentrations and maintenance of blood levels within a desired range; localized drug delivery; and the potential for reduced adverse effects and increased safety. The advent of new large-molecule drugs for previously untreatable or only partially treatable diseases is stimulating the development of suitable delivery systems for these agents. Although advanced formulations may be more expensive than conventional dosage forms, they often have a more favorable pharmacologic profile and can be cost-effective. Inclusion of these dosage forms on drug formulary lists may help patients remain on therapy and reduce the economic and social burden of care.

  14. Recent advances in liposome surface modification for oral drug delivery.

    PubMed

    Nguyen, Thanh Xuan; Huang, Lin; Gauthier, Mario; Yang, Guang; Wang, Qun

    2016-05-01

    Oral delivery via the gastrointestinal (GI) tract is the dominant route for drug administration. Orally delivered liposomal carriers can enhance drug solubility and protect the encapsulated theraputic agents from the extreme conditions found in the GI tract. Liposomes, with their fluid lipid bilayer membrane and their nanoscale size, can significantly improve oral absorption. Unfortunately, the clinical applications of conventional liposomes have been hindered due to their poor stability and availability under the harsh conditions typically presented in the GI tract. To overcome this problem, the surface modification of liposomes has been investigated. Although liposome surface modification has been extensively studied for oral drug delivery, no review exists so far that adequately covers this topic. The purpose of this paper is to summarize and critically analyze emerging trends in liposome surface modification for oral drug delivery.

  15. Micro and Nanoparticle Drug Delivery Systems for Preventing Allotransplant Rejection

    PubMed Central

    Fisher, James D.; Acharya, Abhinav P.; Little, Steven R.

    2015-01-01

    Despite decades of advances in transplant immunology, tissue damage caused by acute allograft rejection remains the primary cause of morbidity and mortality in the transplant recipient. Moreover, the long-term sequelae of lifelong immunosuppression leaves patients at risk for developing a host of other deleterious conditions. Controlled drug delivery using micro- and nanoparticles (MNPs) is an effective way to deliver higher local doses of a given drug to specific tissues and cells while mitigating systemic effects. Herein, we review several descriptions of MNP immunotherapies aimed at prolonging allograft survival. We also discuss developments in the field of biomimetic drug delivery that use MNP constructs to induce and recruit our bodies' own suppressive immune cells. Finally, we comment on the regulatory pathway associated with these drug delivery systems. Collectively, it is our hope the studies described in this review will help to usher in a new era of immunotherapy in organ transplantation. PMID:25937032

  16. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  17. Use of microwave in processing of drug delivery systems.

    PubMed

    Wong, T W

    2008-04-01

    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.

  18. Experimental and simulation studies on focused ultrasound triggered drug delivery.

    PubMed

    Jin, Zhen; Choi, Yongjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2017-01-01

    To improve drug delivery efficiency in cancer therapy, many researchers have recently concentrated on drug delivery systems that use anticancer drug loaded micro- or nanoparticles. In addition, induction methods, such as ultrasound, magnetic field, and infrared light, have been considered as active induction methods for drug delivery. Among these, focused ultrasound has been regarded as a promising candidate for the active induction method of drug delivery system because it can penetrate a deep site in soft tissue, and its energy can be focused on the targeted lesion. In this research, we employed focused ultrasound as an active induction method. For an anticancer drug loaded microparticles, we fabricated poly-lactic-co-glycolic acid docetaxel (PLGA-DTX) nanoparticle encapsulated alginate microbeads using the single-emulsion technique and the aeration method. To select the appropriate operating parameter for the focused ultrasound, we measured the pressure and temperature induced by the focused ultrasound at the focal area using a needle-type hydrophone and a digital thermal detector, respectively. Additionally, we conducted a simulation of focused ultrasound using COMSOL Multiphysics 4.3a. The experimental measurement results were compared with the simulation results. In addition, the drug release rates of the PLGA-DTX-encapsulated alginate microbeads induced by the focused ultrasound were tested. Through these experiments, we determined that the appropriate focused ultrasound parameter was peak pressure of 1 MPa, 10 cycle/burst, and burst period of 20 μSec. Finally, we performed the cell cytotoxicity and drug uptake test with focused ultrasound induction and found that the antitumor effect and drug uptake efficiency were significantly enhanced by the focused ultrasound induction. Thus, we confirmed that focused ultrasound can be an effective induction method for an anticancer drug delivery system.

  19. Smart surface-enhanced Raman scattering traceable drug delivery systems

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tang, Yonghong; Dai, Sheng; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells.A novel smart nanoparticle-based system has been developed for tracking intracellular drug delivery through surface-enhanced Raman scattering (SERS). This new drug delivery system (DDS) shows targeted cytotoxicity towards cancer cells via pH-cleavable covalent carboxylic hydrazone links and the SERS tracing capability based on gold@silica nanocarriers. Doxorubicin, as a model anticancer drug, was employed to compare SERS with conventional fluorescence tracing approaches. It is evident that SERS demonstrates higher sensitivity and resolution, revealing intracellular details, as the strengths of the original Raman signals can be amplified by SERS. Importantly, non-destructive SERS will provide the designed DDS with great autonomy and potential to study the dynamic procedures of non-fluorescent drug delivery into living cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03869g

  20. Nanocrystal technology, drug delivery and clinical applications

    PubMed Central

    Junghanns, Jens-Uwe A H; Müller, Rainer H

    2008-01-01

    Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview. PMID:18990939

  1. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  2. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System

    PubMed Central

    Jagdale, Swati; Pawar, Saylee

    2017-01-01

    Purpose: Ofloxacin is a fluoroquinolone with broad-spectrum antibacterial action, used in treatment of systemic and local infections. Ofloxacin is BCS class II drug having low solubility, high permeability with short half-life. The present work was aimed to design, develop and optimize gellified emulsion of Ofloxacin to provide site targeted drug delivery. Transdermal drug delivery will enhance the bioavailability of the drug giving controlled drug release. Methods: Transdermal drug delivery system was designed with gelling agent (Carbopol 940 and HPMC K100M), oil phase (oleic acid) and emulsifying agent (Tween 80: Span 80). Effect of concentration of gelling agent on release of drug from transdermal delivery was studied by 32 factorial design. Emulgel was evaluated for physical appearance, pH, drug content, viscosity, spreadability, antimicrobial activity, in- vitro diffusion study and ex-vivo diffusion study. Results: FE-SEM study of the emulsion batch B5 has revealed formation of emulsion globules of approximately size 6-8 µm with -11.2 mV zeta potential showing good stability for the emulsion. Carbopol 940 had shown greater linear effect on drug release and viscosity of the formulations due to its high degree of gelling. In-vitro diffusion study through egg membrane had shown 88.58±1.82 % drug release for optimized batch F4. Ex-vivo diffusion study through goat skin indicated 76.68 ± 2.52% drug release. Conclusion: Controlled release Ofloxacin emulgel exhibiting good in-vitro and ex-vivo drug release proving good antimicrobial property was formulated. PMID:28761825

  3. Gellified Emulsion of Ofloxacin for Transdermal Drug Delivery System.

    PubMed

    Jagdale, Swati; Pawar, Saylee

    2017-06-01

    Purpose: Ofloxacin is a fluoroquinolone with broad-spectrum antibacterial action, used in treatment of systemic and local infections. Ofloxacin is BCS class II drug having low solubility, high permeability with short half-life. The present work was aimed to design, develop and optimize gellified emulsion of Ofloxacin to provide site targeted drug delivery. Transdermal drug delivery will enhance the bioavailability of the drug giving controlled drug release. Methods: Transdermal drug delivery system was designed with gelling agent (Carbopol 940 and HPMC K100M), oil phase (oleic acid) and emulsifying agent (Tween 80: Span 80). Effect of concentration of gelling agent on release of drug from transdermal delivery was studied by 3(2) factorial design. Emulgel was evaluated for physical appearance, pH, drug content, viscosity, spreadability, antimicrobial activity, in- vitro diffusion study and ex-vivo diffusion study. Results: FE-SEM study of the emulsion batch B5 has revealed formation of emulsion globules of approximately size 6-8 µm with -11.2 mV zeta potential showing good stability for the emulsion. Carbopol 940 had shown greater linear effect on drug release and viscosity of the formulations due to its high degree of gelling. In-vitro diffusion study through egg membrane had shown 88.58±1.82 % drug release for optimized batch F4. Ex-vivo diffusion study through goat skin indicated 76.68 ± 2.52% drug release. Conclusion: Controlled release Ofloxacin emulgel exhibiting good in-vitro and ex-vivo drug release proving good antimicrobial property was formulated.

  4. Nanoparticle-based drug delivery to the vagina: a review.

    PubMed

    Ensign, Laura M; Cone, Richard; Hanes, Justin

    2014-09-28

    Vaginal drug administration can improve prophylaxis and treatment of many conditions affecting the female reproductive tract, including sexually transmitted diseases, fungal and bacterial infections, and cancer. However, achieving sustained local drug concentrations in the vagina can be challenging, due to the high permeability of the vaginal epithelium and expulsion of conventional soluble drug dosage forms. Nanoparticle-based drug delivery platforms have received considerable attention for vaginal drug delivery, as nanoparticles can provide sustained release, cellular targeting, and even intrinsic antimicrobial or adjuvant properties that can improve the potency and/or efficacy of prophylactic and therapeutic modalities. Here, we review the use of polymeric nanoparticles, liposomes, dendrimers, and inorganic nanoparticles for vaginal drug delivery. Although most of the work toward nanoparticle-based drug delivery in the vagina has been focused on HIV prevention, strategies for treatment and prevention of other sexually transmitted infections, treatment for reproductive tract cancer, and treatment of fungal and bacterial infections are also highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Towards soft robotic devices for site-specific drug delivery.

    PubMed

    Alici, Gursel

    2015-01-01

    Considerable research efforts have recently been dedicated to the establishment of various drug delivery systems (DDS) that are mechanical/physical, chemical and biological/molecular DDS. In this paper, we report on the recent advances in site-specific drug delivery (site-specific, controlled, targeted or smart drug delivery are terms used interchangeably in the literature, to mean to transport a drug or a therapeutic agent to a desired location within the body and release it as desired with negligibly small toxicity and side effect compared to classical drug administration means such as peroral, parenteral, transmucosal, topical and inhalation) based on mechanical/physical systems consisting of implantable and robotic drug delivery systems. While we specifically focus on the robotic or autonomous DDS, which can be reprogrammable and provide multiple doses of a drug at a required time and rate, we briefly cover the implanted DDS, which are well-developed relative to the robotic DDS, to highlight the design and performance requirements, and investigate issues associated with the robotic DDS. Critical research issues associated with both DDSs are presented to describe the research challenges ahead of us in order to establish soft robotic devices for clinical and biomedical applications.

  6. Calcium carbonate nanoparticles as cancer drug delivery system.

    PubMed

    Maleki Dizaj, Solmaz; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro; Lotfipour, Farzaneh

    2015-01-01

    Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration. Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated. According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.

  7. Using DNA nanotechnology to produce a drug delivery system

    NASA Astrophysics Data System (ADS)

    Huyen La, Thi; Thu Thuy Nguyen, Thi; Phuc Pham, Van; Huyen Nguyen, Thi Minh; Huan Le, Quang

    2013-03-01

    Drug delivery to cancer cells in chemotherapy is one of the most advanced research topics. The effectiveness of the current cancer treatment drugs is limited because they are not capable of distinguishing between cancer cells and normal cells so that they kill not only cancer cells but also normal ones. To overcome this disadvantage by profiting from the differences in physical and chemical properties between cancer and normal cells, nanoparticles (NPs) delivering a drug are designed in a specific manner such that they can distinguish the cancer cells from the normal ones and are targeted only to the cancer cells. Currently, there are various drug delivery systems with many advantages, but sharing some common disadvantages such as difficulty with controlling the size, low encapsulation capacity and low stability. With the development and success of DNA nanotechnology, DNA strands are used to create effective drug delivery NPs with precisely controlled size and structure, safety and high stability. This article presents our study on drug encapsulation in DNA nanostructure which loaded docetaxel and curcumin in a desire to create a new and effective drug delivery system with high biological compatibility. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November, 2012, Ha Long, Vietnam.

  8. An emerging platform for drug delivery: aerogel based systems.

    PubMed

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation.

  9. Silicon-polymer hybrid materials for drug delivery.

    PubMed

    McInnes, Steven J P; Voelcker, Nicolas H

    2009-09-01

    Silicon and its oxides are widely used in biomaterials research, tissue engineering and drug delivery. These materials are highly biocompatible, easily surface functionalized, degrade into nontoxic silicic acid and can be processed into various forms such as micro- and nano-particles, monoliths, membranes and micromachined structures. The large surface area of porous forms of silicon and silica (up to 1200 m2/g) permits high drug loadings. The degradation kinetics of silicon- and silica-based materials can be tailored by coating or grafting with polymers. Incorporation of polymers also improves control over drug-release kinetics. The use of stimuli-responsive polymers has enabled environmental stimuli-triggered drug release. Simultaneously, silicon microfabrication techniques have facilitated the development of sophisticated implantable drug-delivery microdevices. This paper reviews the synthesis, novel properties and biomedical applications of silicon-polymer hybrid materials with particular emphasis on drug delivery. The biocompatible and bioresorptive properties of mesoporous silica and porous silicon make these materials attractive candidates for use in biomedical applications. The combination of polymers with silicon-based materials has generated a large range of novel hybrid materials tailored to applications in localized and systemic drug delivery.

  10. Insights into drug delivery across the nail plate barrier.

    PubMed

    Saner, Manish V; Kulkarni, Abhijeet D; Pardeshi, Chandrakantsing V

    2014-11-01

    Topical therapy is at the forefront in treating nail ailments (especially onychomycosis and nail psoriasis) due to its local effects, which circumvents systemic adverse events, improves patient compliance and reduces treatment cost. However, the success of topical therapy has been hindered due to poor penetration of topical therapeutics across densely keratinized nail plate barrier. For effective topical therapy across nail plate, ungual drug permeation must be enhanced. Present review is designed to provide an insight into prime aspects of transungual drug delivery viz. nail structure and physiology, various onychopathies, techniques of nail permeation enhancement and in vitro models for trans-nail drug permeation studies. Updated list of drug molecules studied across the nail plate and key commercial products have been furnished with sufficient depth. Patents pertinent to, and current clinical status of transungual drug delivery have also been comprehensively reviewed. This is the first systematic critique encompassing the detailed aspects of transungual drug delivery. In our opinion, transungual drug delivery is a promising avenue for researchers to develop novel formulations, augmenting pharmaceutical industries to commercialize the products for nail disorders.

  11. Pulmonary drug delivery: a role for polymeric nanoparticles?

    PubMed

    d'Angelo, Ivana; Conte, Claudia; Miro, Agnese; Quaglia, Fabiana; Ungaro, Francesca

    2015-01-01

    Pulmonary drug delivery represents the best way of treating lung diseases, since it allows direct delivery of the drug to the site of action, with few systemic effects. Meanwhile, the lungs may be used as a portal of entry to the body, allowing systemic delivery of drugs via the airway surfaces into the bloodstream. In both cases, the therapeutic effect of the inhaled drug can be optimized by embedding it in appropriately engineered inhalable carriers, which can protect the drug against lung defense mechanisms and promote drug transport across the extracellular and cellular barriers. To this purpose, the attention has been very recently focused on polymeric nanoparticles (NPs). The aim of this review is to offer an overview on the recent advances in NPs for pulmonary drug delivery. After a description of the main challenges encountered in developing novel inhaled products, the design rules to engineer polymeric NPs for inhalation, and in so doing to overcome barriers imposed by the lungs anatomy and physiology, are described. Then, the state-of-art on inhalable biocompatible polymeric NPs based on enzymatically-degradable natural polymers and biodegradable poly(ester)s is presented, with a special focus on NP-based dry powders for inhalation. Finally, the in vitro/in vivo models useful to address the never-ending toxicological debate related to the use of NPs for inhalation are described.

  12. Silk Fibroin-Based Nanoparticles for Drug Delivery

    PubMed Central

    Zhao, Zheng; Li, Yi; Xie, Mao-Bin

    2015-01-01

    Silk fibroin (SF) is a protein-based biomacromole