Sample records for diagonal recurrent wavelet

  1. Wavelets and the squeezed states of quantum optics

    NASA Technical Reports Server (NTRS)

    Defacio, B.

    1992-01-01

    Wavelets are new mathematical objects which act as 'designer trigonometric functions.' To obtain a wavelet, the original function space of finite energy signals is generalized to a phase-space, and the translation operator in the original space has a scale change in the new variable adjoined to the translation. Localization properties in the phase-space can be improved and unconditional bases are obtained for a broad class of function and distribution spaces. Operators in phase space are 'almost diagonal' instead of the traditional condition of being diagonal in the original function space. These wavelets are applied to the squeezed states of quantum optics. The scale change required for a quantum wavelet is shown to be a Yuen squeeze operator acting on an arbitrary density operator.

  2. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  3. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Jawerth, Bjoern; Sweldens, Wim

    1993-01-01

    We present ideas on how to use wavelets in the solution of boundary value ordinary differential equations. Rather than using classical wavelets, we adapt their construction so that they become (bi)orthogonal with respect to the inner product defined by the operator. The stiffness matrix in a Galerkin method then becomes diagonal and can thus be trivially inverted. We show how one can construct an O(N) algorithm for various constant and variable coefficient operators.

  4. Directional filtering for block recovery using wavelet features

    NASA Astrophysics Data System (ADS)

    Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.

    2005-07-01

    When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.

  5. Texture Analysis of Recurrence Plots Based on Wavelets and PSO for Laryngeal Pathologies Detection.

    PubMed

    Souza, Taciana A; Vieira, Vinícius J D; Correia, Suzete E N; Costa, Silvana L N C; de A Costa, Washington C; Souza, Micael A

    2015-01-01

    This paper deals with the discrimination between healthy and pathological speech signals using recurrence plots and wavelet transform with texture features. Approximation and detail coefficients are obtained from the recurrence plots using Haar wavelet transform, considering one decomposition level. The considered laryngeal pathologies are: paralysis, Reinke's edema and nodules. Accuracy rates above 86% were obtained by means of the employed method.

  6. A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid

    NASA Astrophysics Data System (ADS)

    Sulaimanov, Z. M.; Shumilov, B. M.

    2017-10-01

    For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.

  7. Wavelets analysis for differentiating solid, non-macroscopic fat containing, enhancing renal masses: a pilot study

    NASA Astrophysics Data System (ADS)

    Varghese, Bino; Hwang, Darryl; Mohamed, Passant; Cen, Steven; Deng, Christopher; Chang, Michael; Duddalwar, Vinay

    2017-11-01

    Purpose: To evaluate potential use of wavelets analysis in discriminating benign and malignant renal masses (RM) Materials and Methods: Regions of interest of the whole lesion were manually segmented and co-registered from multiphase CT acquisitions of 144 patients (98 malignant RM: renal cell carcinoma (RCC) and 46 benign RM: oncocytoma, lipid-poor angiomyolipoma). Here, the Haar wavelet was used to analyze the grayscale images of the largest segmented tumor in the axial direction. Six metrics (energy, entropy, homogeneity, contrast, standard deviation (SD) and variance) derived from 3-levels of image decomposition in 3 directions (horizontal, vertical and diagonal) respectively, were used to quantify tumor texture. Independent t-test or Wilcoxon rank sum test depending on data normality were used as exploratory univariate analysis. Stepwise logistic regression and receiver operator characteristics (ROC) curve analysis were used to select predictors and assess prediction accuracy, respectively. Results: Consistently, 5 out of 6 wavelet-based texture measures (except homogeneity) were higher for malignant tumors compared to benign, when accounting for individual texture direction. Homogeneity was consistently lower in malignant than benign tumors irrespective of direction. SD and variance measured in the diagonal direction on the corticomedullary phase showed significant (p<0.05) difference between benign versus malignant tumors. The multivariate model with variance (3 directions) and SD (vertical direction) extracted from the excretory and pre-contrast phase, respectively showed an area under the ROC curve (AUC) of 0.78 (p < 0.05) in discriminating malignant from benign. Conclusion: Wavelet analysis is a valuable texture evaluation tool to add to a radiomics platforms geared at reliably characterizing and stratifying renal masses.

  8. Implementation in an FPGA circuit of Edge detection algorithm based on the Discrete Wavelet Transforms

    NASA Astrophysics Data System (ADS)

    Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia

    2017-07-01

    The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.

  9. Application of wavelet based MFDFA on Mueller matrix images for cervical pre-cancer detection

    NASA Astrophysics Data System (ADS)

    Zaffar, Mohammad; Pradhan, Asima

    2018-02-01

    A systematic study has been conducted on application of wavelet based multifractal de-trended fluctuation analysis (MFDFA) on Mueller matrix (MM) images of cervical tissue sections for early cancer detection. Changes in multiple scattering and orientation of fibers are observed by utilizing a discrete wavelet transform (Daubechies) which identifies fluctuations over polynomial trends. Fluctuation profiles, after 9th level decomposition, for all elements of MM qualitatively establish a demarcation of different grades of cancer from normal tissue. Moreover, applying MFDFA on MM images, Hurst exponent profiles for images of MM qualitatively are seen to display differences. In addition, the values of Hurst exponent increase for the diagonal elements of MM with increasing grades of the cervical cancer, while the value for the elements which correspond to linear polarizance decrease. However, for circular polarizance the value increases with increasing grades. These fluctuation profiles reveal the trend of local variation of refractive -indices and along with Hurst exponent profile, may serve as a useful biological metric in the early detection of cervical cancer. The quantitative measurements of Hurst exponent for diagonal and first column (polarizance governing elements) elements which reflect changes in multiple scattering and structural anisotropy in stroma, may be sensitive indicators of pre-cancer.

  10. Indirect adaptive fuzzy wavelet neural network with self- recurrent consequent part for AC servo system.

    PubMed

    Hou, Runmin; Wang, Li; Gao, Qiang; Hou, Yuanglong; Wang, Chao

    2017-09-01

    This paper proposes a novel indirect adaptive fuzzy wavelet neural network (IAFWNN) to control the nonlinearity, wide variations in loads, time-variation and uncertain disturbance of the ac servo system. In the proposed approach, the self-recurrent wavelet neural network (SRWNN) is employed to construct an adaptive self-recurrent consequent part for each fuzzy rule of TSK fuzzy model. For the IAFWNN controller, the online learning algorithm is based on back propagation (BP) algorithm. Moreover, an improved particle swarm optimization (IPSO) is used to adapt the learning rate. The aid of an adaptive SRWNN identifier offers the real-time gradient information to the adaptive fuzzy wavelet neural controller to overcome the impact of parameter variations, load disturbances and other uncertainties effectively, and has a good dynamic. The asymptotical stability of the system is guaranteed by using the Lyapunov method. The result of the simulation and the prototype test prove that the proposed are effective and suitable. Copyright © 2017. Published by Elsevier Ltd.

  11. Using Wavelet Bases to Separate Scales in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Michlin, Tracie L.

    This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.

  12. Wavelets in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Modisette, Jason Perry

    1997-09-01

    Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.

  13. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  14. Recurrence quantification analysis of heart rate variability and respiratory flow series in patients on weaning trials.

    PubMed

    Arcentales, Andrés; Giraldo, Beatriz F; Caminal, Pere; Benito, Salvador; Voss, Andreas

    2011-01-01

    Autonomic nervous system regulates the behavior of cardiac and respiratory systems. Its assessment during the ventilator weaning can provide information about physio-pathological imbalances. This work proposes a non linear analysis of the complexity of the heart rate variability (HRV) and breathing duration (T(Tot)) applying recurrence plot (RP) and their interaction joint recurrence plot (JRP). A total of 131 patients on weaning trials from mechanical ventilation were analyzed: 92 patients with successful weaning (group S) and 39 patients that failed to maintain spontaneous breathing (group F). The results show that parameters as determinism (DET), average diagonal line length (L), and entropy (ENTR), are statistically significant with RP for T(Tot) series, but not with HRV. When comparing the groups with JRP, all parameters have been relevant. In all cases, mean values of recurrence quantification analysis are higher in the group S than in the group F. The main differences between groups were found on the diagonal and vertical structures of the joint recurrence plot.

  15. Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting.

    PubMed

    Capizzi, Giacomo; Napoli, Christian; Bonanno, Francesco

    2012-11-01

    Solar radiation prediction is an important challenge for the electrical engineer because it is used to estimate the power developed by commercial photovoltaic modules. This paper deals with the problem of solar radiation prediction based on observed meteorological data. A 2-day forecast is obtained by using novel wavelet recurrent neural networks (WRNNs). In fact, these WRNNS are used to exploit the correlation between solar radiation and timescale-related variations of wind speed, humidity, and temperature. The input to the selected WRNN is provided by timescale-related bands of wavelet coefficients obtained from meteorological time series. The experimental setup available at the University of Catania, Italy, provided this information. The novelty of this approach is that the proposed WRNN performs the prediction in the wavelet domain and, in addition, also performs the inverse wavelet transform, giving the predicted signal as output. The obtained simulation results show a very low root-mean-square error compared to the results of the solar radiation prediction approaches obtained by hybrid neural networks reported in the recent literature.

  16. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  17. Parallel algorithms for computation of the manipulator inertia matrix

    NASA Technical Reports Server (NTRS)

    Amin-Javaheri, Masoud; Orin, David E.

    1989-01-01

    The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.

  18. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  19. Diagonal recurrent neural network based adaptive control of nonlinear dynamical systems using lyapunov stability criterion.

    PubMed

    Kumar, Rajesh; Srivastava, Smriti; Gupta, J R P

    2017-03-01

    In this paper adaptive control of nonlinear dynamical systems using diagonal recurrent neural network (DRNN) is proposed. The structure of DRNN is a modification of fully connected recurrent neural network (FCRNN). Presence of self-recurrent neurons in the hidden layer of DRNN gives it an ability to capture the dynamic behaviour of the nonlinear plant under consideration (to be controlled). To ensure stability, update rules are developed using lyapunov stability criterion. These rules are then used for adjusting the various parameters of DRNN. The responses of plants obtained with DRNN are compared with those obtained when multi-layer feed forward neural network (MLFFNN) is used as a controller. Also, in example 4, FCRNN is also investigated and compared with DRNN and MLFFNN. Robustness of the proposed control scheme is also tested against parameter variations and disturbance signals. Four simulation examples including one-link robotic manipulator and inverted pendulum are considered on which the proposed controller is applied. The results so obtained show the superiority of DRNN over MLFFNN as a controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Decision support system for diabetic retinopathy using discrete wavelet transform.

    PubMed

    Noronha, K; Acharya, U R; Nayak, K P; Kamath, S; Bhandary, S V

    2013-03-01

    Prolonged duration of the diabetes may affect the tiny blood vessels of the retina causing diabetic retinopathy. Routine eye screening of patients with diabetes helps to detect diabetic retinopathy at the early stage. It is very laborious and time-consuming for the doctors to go through many fundus images continuously. Therefore, decision support system for diabetic retinopathy detection can reduce the burden of the ophthalmologists. In this work, we have used discrete wavelet transform and support vector machine classifier for automated detection of normal and diabetic retinopathy classes. The wavelet-based decomposition was performed up to the second level, and eight energy features were extracted. Two energy features from the approximation coefficients of two levels and six energy values from the details in three orientations (horizontal, vertical and diagonal) were evaluated. These features were fed to the support vector machine classifier with various kernel functions (linear, radial basis function, polynomial of orders 2 and 3) to evaluate the highest classification accuracy. We obtained the highest average classification accuracy, sensitivity and specificity of more than 99% with support vector machine classifier (polynomial kernel of order 3) using three discrete wavelet transform features. We have also proposed an integrated index called Diabetic Retinopathy Risk Index using clinically significant wavelet energy features to identify normal and diabetic retinopathy classes using just one number. We believe that this (Diabetic Retinopathy Risk Index) can be used as an adjunct tool by the doctors during the eye screening to cross-check their diagnosis.

  1. Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier.

    PubMed

    Raghu, S; Sriraam, N; Kumar, G Pradeep

    2017-02-01

    Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.

  2. Heterogeneity wavelet kinetics from DCE-MRI for classifying gene expression based breast cancer recurrence risk.

    PubMed

    Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; Mies, Carolyn; Feldman, Michael; Rosen, Mark; Kontos, Despina

    2013-01-01

    Breast tumors are heterogeneous lesions. Intra-tumor heterogeneity presents a major challenge for cancer diagnosis and treatment. Few studies have worked on capturing tumor heterogeneity from imaging. Most studies to date consider aggregate measures for tumor characterization. In this work we capture tumor heterogeneity by partitioning tumor pixels into subregions and extracting heterogeneity wavelet kinetic (HetWave) features from breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to obtain the spatiotemporal patterns of the wavelet coefficients and contrast agent uptake from each partition. Using a genetic algorithm for feature selection, and a logistic regression classifier with leave one-out cross validation, we tested our proposed HetWave features for the task of classifying breast cancer recurrence risk. The classifier based on our features gave an ROC AUC of 0.78, outperforming previously proposed kinetic, texture, and spatial enhancement variance features which give AUCs of 0.69, 0.64, and 0.65, respectively.

  3. Fusing Image Data for Calculating Position of an Object

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance; Cheng, Yang; Liebersbach, Robert; Trebi-Ollenu, Ashitey

    2007-01-01

    A computer program has been written for use in maintaining the calibration, with respect to the positions of imaged objects, of a stereoscopic pair of cameras on each of the Mars Explorer Rovers Spirit and Opportunity. The program identifies and locates a known object in the images. The object in question is part of a Moessbauer spectrometer located at the tip of a robot arm, the kinematics of which are known. In the program, the images are processed through a module that extracts edges, combines the edges into line segments, and then derives ellipse centroids from the line segments. The images are also processed by a feature-extraction algorithm that performs a wavelet analysis, then performs a pattern-recognition operation in the wavelet-coefficient space to determine matches to a texture feature measure derived from the horizontal, vertical, and diagonal coefficients. The centroids from the ellipse finder and the wavelet feature matcher are then fused to determine co-location. In the event that a match is found, the centroid (or centroids if multiple matches are present) is reported. If no match is found, the process reports the results of the analyses for further examination by human experts.

  4. Pharmacokinetic Tumor Heterogeneity as a Prognostic Biomarker for Classifying Breast Cancer Recurrence Risk.

    PubMed

    Mahrooghy, Majid; Ashraf, Ahmed B; Daye, Dania; McDonald, Elizabeth S; Rosen, Mark; Mies, Carolyn; Feldman, Michael; Kontos, Despina

    2015-06-01

    Heterogeneity in cancer can affect response to therapy and patient prognosis. Histologic measures have classically been used to measure heterogeneity, although a reliable noninvasive measurement is needed both to establish baseline risk of recurrence and monitor response to treatment. Here, we propose using spatiotemporal wavelet kinetic features from dynamic contrast-enhanced magnetic resonance imaging to quantify intratumor heterogeneity in breast cancer. Tumor pixels are first partitioned into homogeneous subregions using pharmacokinetic measures. Heterogeneity wavelet kinetic (HetWave) features are then extracted from these partitions to obtain spatiotemporal patterns of the wavelet coefficients and the contrast agent uptake. The HetWave features are evaluated in terms of their prognostic value using a logistic regression classifier with genetic algorithm wrapper-based feature selection to classify breast cancer recurrence risk as determined by a validated gene expression assay. Receiver operating characteristic analysis and area under the curve (AUC) are computed to assess classifier performance using leave-one-out cross validation. The HetWave features outperform other commonly used features (AUC = 0.88 HetWave versus 0.70 standard features). The combination of HetWave and standard features further increases classifier performance (AUCs 0.94). The rate of the spatial frequency pattern over the pharmacokinetic partitions can provide valuable prognostic information. HetWave could be a powerful feature extraction approach for characterizing tumor heterogeneity, providing valuable prognostic information.

  5. Super-resolution algorithm based on sparse representation and wavelet preprocessing for remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Ruizhi; Gu, Lingjia; Fu, Haoyang; Sun, Chenglin

    2017-04-01

    An effective super-resolution (SR) algorithm is proposed for actual spectral remote sensing images based on sparse representation and wavelet preprocessing. The proposed SR algorithm mainly consists of dictionary training and image reconstruction. Wavelet preprocessing is used to establish four subbands, i.e., low frequency, horizontal, vertical, and diagonal high frequency, for an input image. As compared to the traditional approaches involving the direct training of image patches, the proposed approach focuses on the training of features derived from these four subbands. The proposed algorithm is verified using different spectral remote sensing images, e.g., moderate-resolution imaging spectroradiometer (MODIS) images with different bands, and the latest Chinese Jilin-1 satellite images with high spatial resolution. According to the visual experimental results obtained from the MODIS remote sensing data, the SR images using the proposed SR algorithm are superior to those using a conventional bicubic interpolation algorithm or traditional SR algorithms without preprocessing. Fusion algorithms, e.g., standard intensity-hue-saturation, principal component analysis, wavelet transform, and the proposed SR algorithms are utilized to merge the multispectral and panchromatic images acquired by the Jilin-1 satellite. The effectiveness of the proposed SR algorithm is assessed by parameters such as peak signal-to-noise ratio, structural similarity index, correlation coefficient, root-mean-square error, relative dimensionless global error in synthesis, relative average spectral error, spectral angle mapper, and the quality index Q4, and its performance is better than that of the standard image fusion algorithms.

  6. Detection of Acute Myocardial Infarction in a Pig Model Using the SAN-Atrial-AVN-His (SAAH) Electrocardiogram (ECG), Model PHS-A10, an Automated and Integrated Signals Recognition System

    PubMed Central

    Zhao, Wenjiao; Lu, Guihua; Liu, Li; Sun, Zhishan; Wu, Mingxin; Yi, Wenyan; Chen, Haiyan; Li, Yanhui

    2018-01-01

    Background The aim of this study was to compare the use of the standard 12-lead electrocardiogram (ECG) with the SAN-Atrial-AVN-His (SAAH) ECG (Model PHS-A10), a new automated and integrated signals recognition system that detects micro-waveforms within the P, QRS, and T-wave, in a pig model of acute myocardial infarction (MI). Material/Methods Six medium-sized domestic Chinese pigs underwent general anesthesia, and an angioplasty balloon was placed and dilated for 120 minutes in the first diagonal coronary artery arising from the left anterior descending (LAD) coronary artery. A standard ECG and a SAAH ECG (Model PHS-A10) were used to evaluate: 1) the number of wavelets in ST-T segment in lead V5; 2) the duration of the repolarization initial (Ri), or duration of the wavelets starting from the J-point to the endpoint of the wavelets in the ST interval; 3) the duration of the repolarization terminal (Rt), of the wavelets, starting from the endpoint of the wavelets in the ST interval to the cross-point of the T-wave and baseline; 4) the ratio Ri: Rt. Results Following coronary artery occlusion, duration of Ri and Ri/Rt increased, and Rt decreased, which was detected by the SAAH ECG (Model PHS-A10) within 12 seconds, compared with standard ECG that detected ST segment depression at 24 seconds following coronary artery occlusion. Conclusions The findings from this preliminary study in a pig model of acute MI support the need for clinical studies to evaluate the SAAH ECG (Model PHS-A10) for the early detection of acute MI. PMID:29502127

  7. Detection of Acute Myocardial Infarction in a Pig Model Using the SAN-Atrial-AVN-His (SAAH) Electrocardiogram (ECG), Model PHS-A10, an Automated and Integrated Signals Recognition System.

    PubMed

    Zhao, Wenjiao; Lu, Guihua; Liu, Li; Sun, Zhishan; Wu, Mingxin; Yi, Wenyan; Chen, Haiyan; Li, Yanhui; Tang, Lilong; Zeng, Jianping

    2018-03-04

    BACKGROUND The aim of this study was to compare the use of the standard 12-lead electrocardiogram (ECG) with the SAN-Atrial-AVN-His (SAAH) ECG (Model PHS-A10), a new automated and integrated signals recognition system that detects micro-waveforms within the P, QRS, and T-wave, in a pig model of acute myocardial infarction (MI). MATERIAL AND METHODS Six medium-sized domestic Chinese pigs underwent general anesthesia, and an angioplasty balloon was placed and dilated for 120 minutes in the first diagonal coronary artery arising from the left anterior descending (LAD) coronary artery. A standard ECG and a SAAH ECG (Model PHS-A10) were used to evaluate: 1) the number of wavelets in ST-T segment in lead V5; 2) the duration of the repolarization initial (Ri), or duration of the wavelets starting from the J-point to the endpoint of the wavelets in the ST interval; 3) the duration of the repolarization terminal (Rt), of the wavelets, starting from the endpoint of the wavelets in the ST interval to the cross-point of the T-wave and baseline; 4) the ratio Ri: Rt. RESULTS Following coronary artery occlusion, duration of Ri and Ri/Rt increased, and Rt decreased, which was detected by the SAAH ECG (Model PHS-A10) within 12 seconds, compared with standard ECG that detected ST segment depression at 24 seconds following coronary artery occlusion. CONCLUSIONS The findings from this preliminary study in a pig model of acute MI support the need for clinical studies to evaluate the SAAH ECG (Model PHS-A10) for the early detection of acute MI.

  8. Quantum dynamics calculations using symmetrized, orthogonal Weyl-Heisenberg wavelets with a phase space truncation scheme. III. Representations and calculations.

    PubMed

    Poirier, Bill; Salam, A

    2004-07-22

    In a previous paper [J. Theo. Comput. Chem. 2, 65 (2003)], one of the authors (B.P.) presented a method for solving the multidimensional Schrodinger equation, using modified Wilson-Daubechies wavelets, and a simple phase space truncation scheme. Unprecedented numerical efficiency was achieved, enabling a ten-dimensional calculation of nearly 600 eigenvalues to be performed using direct matrix diagonalization techniques. In a second paper [J. Chem. Phys. 121, 1690 (2004)], and in this paper, we extend and elaborate upon the previous work in several important ways. The second paper focuses on construction and optimization of the wavelength functions, from theoretical and numerical viewpoints, and also examines their localization. This paper deals with their use in representations and eigenproblem calculations, which are extended to 15-dimensional systems. Even higher dimensionalities are possible using more sophisticated linear algebra techniques. This approach is ideally suited to rovibrational spectroscopy applications, but can be used in any context where differential equations are involved.

  9. Redo coronary bypass grafting for congenital left main coronary atresia: a case report.

    PubMed

    Yajima, Shin; Toda, Koichi; Nishi, Hiroyuki; Yoshioka, Daisuke; Nakamura, Teruya; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Sawa, Yoshiki

    2017-05-15

    Congenital left main coronary atresia is an extremely rare coronary anomaly. Long-term surgical outcomes and the optimal management strategies for recurrence of ischemia remain uncertain. Herein, we present a case involving successful redo coronary artery bypass grafting for unstable angina 27 years after the initial coronary artery bypass grafting for congenital left main coronary atresia. A 33-year-old woman was referred to our department with unstable angina. At the age of 6, she had undergone coronary artery bypass grafting of the second diagonal branch using the left internal thoracic artery and the obtuse marginal branch using saphenous vein grafting for left main coronary atresia. Although a coronary angiogram showed a patent left internal thoracic artery graft to the second diagonal branch and a patent saphenous vein graft to the obtuse marginal branch, the left anterior descending artery was not being perfused by the grafts because of a disruption of blood flow to the left anterior descending artery from the left internal thoracic artery. Therefore, we performed a redo coronary artery bypass grafting using the in situ right internal thoracic artery to the first diagonal branch, which was to be connected to the left anterior descending artery, resulting in amelioration of the ischemia of the left anterior wall. The patient was discharged 10 days after the operation and has been in good health for over 3 years without recurrence of chest symptoms. Coronary revascularization using a saphenous vein and left internal thoracic artery grafts is effective in achieving an adequate blood supply to the distal coronary arteries, and this effect can last for decades. However, careful follow-up is necessary because recurrent myocardial ischemia due to the development of a coronary artery occlusion may occur in adulthood.

  10. Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks.

    PubMed

    Yoo, Sung Jin; Park, Jin Bae; Choi, Yoon Ho

    2006-12-01

    A new method for the robust control of flexible-joint (FJ) robots with model uncertainties in both robot dynamics and actuator dynamics is proposed. The proposed control system is a combination of the adaptive dynamic surface control (DSC) technique and the self-recurrent wavelet neural network (SRWNN). The adaptive DSC technique provides the ability to overcome the "explosion of complexity" problem in backstepping controllers. The SRWNNs are used to observe the arbitrary model uncertainties of FJ robots, and all their weights are trained online. From the Lyapunov stability analysis, their adaptation laws are induced, and the uniformly ultimately boundedness of all signals in a closed-loop adaptive system is proved. Finally, simulation results for a three-link FJ robot are utilized to validate the good position tracking performance and robustness against payload uncertainties and external disturbances of the proposed control system.

  11. Measure of the electroencephalographic effects of sevoflurane using recurrence dynamics.

    PubMed

    Li, Xiaoli; Sleigh, Jamie W; Voss, Logan J; Ouyang, Gaoxiang

    2007-08-31

    This paper proposes a novel method to interpret the effect of anesthetic agents (sevoflurane) on the neural activity, by using recurrence quantification analysis of EEG data. First, we reduce the artefacts in the scalp EEG using a novel filter that combines wavelet transforms and empirical mode decomposition. Then, the determinism in the recurrence plot is calculated. It is found that the determinism increases gradually with increasing the concentration of sevoflurane. Finally, a pharmacokinetic and pharmacodynamic (PKPD) model is built to describe the relationship between the concentration of sevoflurane and the processed EEG measure ('determinism' of the recurrence plot). A test sample of nine patients shows the recurrence in EEG data may track the effect of the sevoflurane on the brain.

  12. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

    PubMed

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  13. Multispectral image fusion based on fractal features

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.

  14. The effect of isoflurane anesthesia on the electroencephalogram assessed by harmonic wavelet bicoherence-based indices

    NASA Astrophysics Data System (ADS)

    Li, Duan; Li, Xiaoli; Hagihira, Satoshi; Sleigh, Jamie W.

    2011-10-01

    Bicoherence quantifies the degree of quadratic phase coupling among different frequency components within a signal. Previous studies, using Fourier-based methods of bicoherence calculation (FBIC), have demonstrated that electroencephalographic bicoherence can be related to the end-tidal concentration of inhaled anesthetic drugs. However, FBIC methods require excessively long sections of the encephalogram. This problem might be overcome by the use of wavelet-based methods. In this study, we compare FBIC and a recently developed wavelet bicoherence (WBIC) method as a tool to quantify the effect of isoflurane on the electroencephalogram. We analyzed a set of previously published electroencephalographic data, obtained from 29 patients who underwent elective abdominal surgery under isoflurane general anesthesia combined with epidural anesthesia. Nine potential indices of the electroencephalographic anesthetic effect were obtained from the WBIC and FBIC techniques. The relationship between each index and end-tidal concentrations of isoflurane was evaluated using correlation coefficients (r), the inter-individual variations (CV) of index values, the coefficient of determination (R2) of the PKPD models and the prediction probability (PK). The WBIC-based indices tracked anesthetic effects better than the traditional FBIC-based ones. The DiagBic_En index (derived from the Shannon entropy of the diagonal bicoherence values) performed best [r = 0.79 (0.66-0.92), CV = 0.08 (0.05-0.12), R2 = 0.80 (0.75-0.85), PK = 0.79 (0.75-0.83)]. Short data segments of ~10-30 s were sufficient to reliably calculate the indices of WBIC. The wavelet-based bicoherence has advantages over the traditional Fourier-based bicoherence in analyzing volatile anesthetic effects on the electroencephalogram.

  15. An hybrid neuro-wavelet approach for long-term prediction of solar wind

    NASA Astrophysics Data System (ADS)

    Napoli, Christian; Bonanno, Francesco; Capizzi, Giacomo

    2011-06-01

    Nowadays the interest for space weather and solar wind forecasting is increasing to become a main relevance problem especially for telecommunication industry, military, and for scientific research. At present the goal for weather forecasting reach the ultimate high ground of the cosmos where the environment can affect the technological instrumentation. Some interests then rise about the correct prediction of space events, like ionized turbulence in the ionosphere or impacts from the energetic particles in the Van Allen belts, then of the intensity and features of the solar wind and magnetospheric response. The problem of data prediction can be faced using hybrid computation methods so as wavelet decomposition and recurrent neural networks (RNNs). Wavelet analysis was used in order to reduce the data redundancies so obtaining representation which can express their intrinsic structure. The main advantage of the wavelet use is the ability to pack the energy of a signal, and in turn the relevant carried informations, in few significant uncoupled coefficients. Neural networks (NNs) are a promising technique to exploit the complexity of non-linear data correlation. To obtain a correct prediction of solar wind an RNN was designed starting on the data series. As reported in literature, because of the temporal memory of the data an Adaptative Amplitude Real Time Recurrent Learning algorithm was used for a full connected RNN with temporal delays. The inputs for the RNN were given by the set of coefficients coming from the biorthogonal wavelet decomposition of the solar wind velocity time series. The experimental data were collected during the NASA mission WIND. It is a spin stabilized spacecraft launched in 1994 in a halo orbit around the L1 point. The data are provided by the SWE, a subsystem of the main craft designed to measure the flux of thermal protons and positive ions.

  16. Recurrence quantification analysis of global stock markets

    NASA Astrophysics Data System (ADS)

    Bastos, João A.; Caiado, Jorge

    2011-04-01

    This study investigates the presence of deterministic dependencies in international stock markets using recurrence plots and recurrence quantification analysis (RQA). The results are based on a large set of free float-adjusted market capitalization stock indices, covering a period of 15 years. The statistical tests suggest that the dynamics of stock prices in emerging markets is characterized by higher values of RQA measures when compared to their developed counterparts. The behavior of stock markets during critical financial events, such as the burst of the technology bubble, the Asian currency crisis, and the recent subprime mortgage crisis, is analyzed by performing RQA in sliding windows. It is shown that during these events stock markets exhibit a distinctive behavior that is characterized by temporary decreases in the fraction of recurrence points contained in diagonal and vertical structures.

  17. Recurrence quantity analysis based on singular value decomposition

    NASA Astrophysics Data System (ADS)

    Bian, Songhan; Shang, Pengjian

    2017-05-01

    Recurrence plot (RP) has turned into a powerful tool in many different sciences in the last three decades. To quantify the complexity and structure of RP, recurrence quantification analysis (RQA) has been developed based on the measures of recurrence density, diagonal lines, vertical lines and horizontal lines. This paper will study the RP based on singular value decomposition which is a new perspective of RP study. Principal singular value proportion (PSVP) will be proposed as one new RQA measure and bigger PSVP means higher complexity for one system. In contrast, smaller PSVP reflects a regular and stable system. Considering the advantage of this method in detecting the complexity and periodicity of systems, several simulation and real data experiments are chosen to examine the performance of this new RQA.

  18. Recurrence plots of discrete-time Gaussian stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramdani, Sofiane; Bouchara, Frédéric; Lagarde, Julien; Lesne, Annick

    2016-09-01

    We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with an embedding dimension equal to 1. These results allow us to obtain theoretical values of three measures: (i) the recurrence rate (REC) (ii) the percent determinism (DET) and (iii) RP-based estimation of the ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes, namely first order autoregressive processes and fractional Gaussian noise. For these processes, we simulate a number of realizations and compare the RP-based estimations of the three selected measures to their theoretical values. These comparisons provide useful information on the quality of the estimations, such as the minimum required data length and threshold radius used to construct the RP.

  19. Application of cross recurrence plot for identification of temperature fluctuations synchronization in parallel minichannels

    NASA Astrophysics Data System (ADS)

    Grzybowski, H.; Mosdorf, R.

    2016-09-01

    The temperature fluctuations occurring in flow boiling in parallel minichannels with diameter of 1 mm have been experimentally investigated and analysed. The wall temperature was recorded at each minichannel outlet by thermocouple with 0.08 mm diameter probe. The time series where recorded during dynamic two-phase flow instabilities which are accompanied by chaotic temperature fluctuations. Time series were denoised using wavelet decomposition and were analysed using cross recurrence plots (CRP) which enables the study of two time series synchronization.

  20. Ultrasonographic Diagnosis of Cirrhosis Based on Preprocessing Using Pyramid Recurrent Neural Network

    NASA Astrophysics Data System (ADS)

    Lu, Jianming; Liu, Jiang; Zhao, Xueqin; Yahagi, Takashi

    In this paper, a pyramid recurrent neural network is applied to characterize the hepatic parenchymal diseases in ultrasonic B-scan texture. The cirrhotic parenchymal diseases are classified into 4 types according to the size of hypoechoic nodular lesions. The B-mode patterns are wavelet transformed , and then the compressed data are feed into a pyramid neural network to diagnose the type of cirrhotic diseases. Compared with the 3-layer neural networks, the performance of the proposed pyramid recurrent neural network is improved by utilizing the lower layer effectively. The simulation result shows that the proposed system is suitable for diagnosis of cirrhosis diseases.

  1. Rock classification based on resistivity patterns in electrical borehole wall images

    NASA Astrophysics Data System (ADS)

    Linek, Margarete; Jungmann, Matthias; Berlage, Thomas; Pechnig, Renate; Clauser, Christoph

    2007-06-01

    Electrical borehole wall images represent grey-level-coded micro-resistivity measurements at the borehole wall. Different scientific methods have been implemented to transform image data into quantitative log curves. We introduce a pattern recognition technique applying texture analysis, which uses second-order statistics based on studying the occurrence of pixel pairs. We calculate so-called Haralick texture features such as contrast, energy, entropy and homogeneity. The supervised classification method is used for assigning characteristic texture features to different rock classes and assessing the discriminative power of these image features. We use classifiers obtained from training intervals to characterize the entire image data set recovered in ODP hole 1203A. This yields a synthetic lithology profile based on computed texture data. We show that Haralick features accurately classify 89.9% of the training intervals. We obtained misclassification for vesicular basaltic rocks. Hence, further image analysis tools are used to improve the classification reliability. We decompose the 2D image signal by the application of wavelet transformation in order to enhance image objects horizontally, diagonally and vertically. The resulting filtered images are used for further texture analysis. This combined classification based on Haralick features and wavelet transformation improved our classification up to a level of 98%. The application of wavelet transformation increases the consistency between standard logging profiles and texture-derived lithology. Texture analysis of borehole wall images offers the potential to facilitate objective analysis of multiple boreholes with the same lithology.

  2. Prediction of paroxysmal atrial fibrillation using recurrence plot-based features of the RR-interval signal.

    PubMed

    Mohebbi, Maryam; Ghassemian, Hassan

    2011-08-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia and increases the risk of stroke. Predicting the onset of paroxysmal AF (PAF), based on noninvasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic intervention and to minimize risks for the patients. In this paper, we propose an effective PAF predictor which is based on the analysis of the RR-interval signal. This method consists of three steps: preprocessing, feature extraction and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the RR-interval signal is extracted. In the next step, the recurrence plot (RP) of the RR-interval signal is obtained and five statistically significant features are extracted to characterize the basic patterns of the RP. These features consist of the recurrence rate, length of longest diagonal segments (L(max )), average length of the diagonal lines (L(mean)), entropy, and trapping time. Recurrence quantification analysis can reveal subtle aspects of dynamics not easily appreciated by other methods and exhibits characteristic patterns which are caused by the typical dynamical behavior. In the final step, a support vector machine (SVM)-based classifier is used for PAF prediction. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database (AFPDB) which consists of both 30 min ECG recordings that end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, positive predictivity and negative predictivity were 97%, 100%, 100%, and 96%, respectively. The proposed methodology presents better results than other existing approaches.

  3. Recurrence Plots: a New Tool for Quantification of Cardiac Autonomic Nervous System Recovery after Transplant.

    PubMed

    Takakura, Isabela Thomaz; Hoshi, Rosangela Akemi; Santos, Márcio Antonio; Pivatelli, Flávio Correa; Nóbrega, João Honorato; Guedes, Débora Linhares; Nogueira, Victor Freire; Frota, Tuane Queiroz; Castelo, Gabriel Castro; Godoy, Moacir Fernandes de

    2017-01-01

    To evaluate a possible evolutionary post-heart transplant return of autonomic function using quantitative and qualitative information from recurrence plots. Using electrocardiography, 102 RR tachograms of 45 patients (64.4% male) who underwent heart transplantation and that were available in the database were analyzed at different follow-up periods. The RR tachograms were collected from patients in the supine position for about 20 minutes. A time series with 1000 RR intervals was analyzed, a recurrence plot was created, and the following quantitative variables were evaluated: percentage of determinism, percentage of recurrence, average diagonal length, Shannon entropy, and sample entropy, as well as the visual qualitative aspect. Quantitative and qualitative signs of heart rate variability recovery were observed after transplantation. There is evidence that autonomic innervation of the heart begins to happen gradually after transplantation. Quantitative and qualitative analyses of recurrence can be useful tools for monitoring cardiac transplant patients and detecting the gradual return of heart rate variability.

  4. In Search of Determinism-Sensitive Region to Avoid Artefacts in Recurrence Plots

    NASA Astrophysics Data System (ADS)

    Wendi, Dadiyorto; Marwan, Norbert; Merz, Bruno

    As an effort to reduce parameter uncertainties in constructing recurrence plots, and in particular to avoid potential artefacts, this paper presents a technique to derive artefact-safe region of parameter sets. This technique exploits both deterministic (incl. chaos) and stochastic signal characteristics of recurrence quantification (i.e. diagonal structures). It is useful when the evaluated signal is known to be deterministic. This study focuses on the recurrence plot generated from the reconstructed phase space in order to represent many real application scenarios when not all variables to describe a system are available (data scarcity). The technique involves random shuffling of the original signal to destroy its original deterministic characteristics. Its purpose is to evaluate whether the determinism values of the original and the shuffled signal remain closely together, and therefore suggesting that the recurrence plot might comprise artefacts. The use of such determinism-sensitive region shall be accompanied by standard embedding optimization approaches, e.g. using indices like false nearest neighbor and mutual information, to result in a more reliable recurrence plot parameterization.

  5. Recurrence quantity analysis based on matrix eigenvalues

    NASA Astrophysics Data System (ADS)

    Yang, Pengbo; Shang, Pengjian

    2018-06-01

    Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.

  6. Structures of the recurrence plot of heart rate variability signal as a tool for predicting the onset of paroxysmal atrial fibrillation.

    PubMed

    Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh

    2011-05-01

    This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively.

  7. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Ginsburg, Shoshana B.; Rusu, Mirabela; Kurhanewicz, John; Madabhushi, Anant

    2014-03-01

    In this study we explore the ability of a novel machine learning approach, in conjunction with computer-extracted features describing prostate cancer morphology on pre-treatment MRI, to predict whether a patient will develop biochemical recurrence within ten years of radiation therapy. Biochemical recurrence, which is characterized by a rise in serum prostate-specific antigen (PSA) of at least 2 ng/mL above the nadir PSA, is associated with increased risk of metastasis and prostate cancer-related mortality. Currently, risk of biochemical recurrence is predicted by the Kattan nomogram, which incorporates several clinical factors to predict the probability of recurrence-free survival following radiation therapy (but has limited prediction accuracy). Semantic attributes on T2w MRI, such as the presence of extracapsular extension and seminal vesicle invasion and surrogate measure- ments of tumor size, have also been shown to be predictive of biochemical recurrence risk. While the correlation between biochemical recurrence and factors like tumor stage, Gleason grade, and extracapsular spread are well- documented, it is less clear how to predict biochemical recurrence in the absence of extracapsular spread and for small tumors fully contained in the capsule. Computer{extracted texture features, which quantitatively de- scribe tumor micro-architecture and morphology on MRI, have been shown to provide clues about a tumor's aggressiveness. However, while computer{extracted features have been employed for predicting cancer presence and grade, they have not been evaluated in the context of predicting risk of biochemical recurrence. This work seeks to evaluate the role of computer-extracted texture features in predicting risk of biochemical recurrence on a cohort of sixteen patients who underwent pre{treatment 1.5 Tesla (T) T2w MRI. We extract a combination of first-order statistical, gradient, co-occurrence, and Gabor wavelet features from T2w MRI. To identify which of these T2w MRI texture features are potential independent prognostic markers of PSA failure, we implement a partial least squares (PLS) method to embed the data in a low{dimensional space and then use the variable importance in projections (VIP) method to quantify the contributions of individual features to classification on the PLS embedding. In spite of the poor resolution of the 1.5 T MRI data, we are able to identify three Gabor wavelet features that, in conjunction with a logistic regression classifier, yield an area under the receiver operating characteristic curve of 0.83 for predicting the probability of biochemical recurrence following radiation therapy. In comparison to both the Kattan nomogram and semantic MRI attributes, the ability of these three computer-extracted features to predict biochemical recurrence risk is demonstrated.

  8. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  9. Structures of the Recurrence Plot of Heart Rate Variability Signal as a Tool for Predicting the Onset of Paroxysmal Atrial Fibrillation

    PubMed Central

    Mohebbi, Maryam; Ghassemian, Hassan; Asl, Babak Mohammadzadeh

    2011-01-01

    This paper aims to propose an effective paroxysmal atrial fibrillation (PAF) predictor which is based on the analysis of the heart rate variability (HRV) signal. Predicting the onset of PAF, based on non-invasive techniques, is clinically important and can be invaluable in order to avoid useless therapeutic interventions and to minimize the risks for the patients. This method consists of four steps: Preprocessing, feature extraction, feature reduction, and classification. In the first step, the QRS complexes are detected from the electrocardiogram (ECG) signal and then the HRV signal is extracted. In the next step, the recurrence plot (RP) of HRV signal is obtained and six features are extracted to characterize the basic patterns of the RP. These features consist of length of longest diagonal segments, average length of the diagonal lines, entropy, trapping time, length of longest vertical line, and recurrence trend. In the third step, these features are reduced to three features by the linear discriminant analysis (LDA) technique. Using LDA not only reduces the number of the input features, but also increases the classification accuracy by selecting the most discriminating features. Finally, a support vector machine-based classifier is used to classify the HRV signals. The performance of the proposed method in prediction of PAF episodes was evaluated using the Atrial Fibrillation Prediction Database which consists of both 30-minutes ECG recordings end just prior to the onset of PAF and segments at least 45 min distant from any PAF events. The obtained sensitivity, specificity, and positive predictivity were 96.55%, 100%, and 100%, respectively. PMID:22606666

  10. Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng

    This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA)more » models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.« less

  11. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.

    PubMed

    Yildirim, Özal

    2018-05-01

    Long-short term memory networks (LSTMs), which have recently emerged in sequential data analysis, are the most widely used type of recurrent neural networks (RNNs) architecture. Progress on the topic of deep learning includes successful adaptations of deep versions of these architectures. In this study, a new model for deep bidirectional LSTM network-based wavelet sequences called DBLSTM-WS was proposed for classifying electrocardiogram (ECG) signals. For this purpose, a new wavelet-based layer is implemented to generate ECG signal sequences. The ECG signals were decomposed into frequency sub-bands at different scales in this layer. These sub-bands are used as sequences for the input of LSTM networks. New network models that include unidirectional (ULSTM) and bidirectional (BLSTM) structures are designed for performance comparisons. Experimental studies have been performed for five different types of heartbeats obtained from the MIT-BIH arrhythmia database. These five types are Normal Sinus Rhythm (NSR), Ventricular Premature Contraction (VPC), Paced Beat (PB), Left Bundle Branch Block (LBBB), and Right Bundle Branch Block (RBBB). The results show that the DBLSTM-WS model gives a high recognition performance of 99.39%. It has been observed that the wavelet-based layer proposed in the study significantly improves the recognition performance of conventional networks. This proposed network structure is an important approach that can be applied to similar signal processing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Recurrence quantification analysis of human postural fluctuations in older fallers and non-fallers.

    PubMed

    Ramdani, Sofiane; Tallon, Guillaume; Bernard, Pierre Louis; Blain, Hubert

    2013-08-01

    We investigate postural sway data dynamics in older adult fallers and non-fallers. Center of pressure (COP) signals were recorded during quiet standing in 28 older adults. The subjects were divided in two groups: with and without history of falls. COP time series were analyzed using recurrence quantification analysis (RQA) in both anteroposterior and mediolateral (ML) directions. Classical stabilometric variables (path length and range) were also computed. The results showed that RQA outputs quantifying predictability of COP fluctuations and Shannon entropy of recurrence plot diagonal line length distribution, were significantly higher in fallers, only for ML direction. In addition, the range of ML COP signals was also significantly higher in fallers. This result is in accordance with some findings of the literature and could be interpreted as an increased hip strategy in fallers. The RQA results seem coherent with the theory of loss of complexity with aging and disease. Our results suggest that RQA is a promising approach for the investigation of COP fluctuations in a frail population.

  13. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.

  14. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depeursinge, Adrien, E-mail: adrien.depeursinge@hevs.ch; Yanagawa, Masahiro; Leung, Ann N.

    Purpose: To investigate the importance of presurgical computed tomography (CT) intensity and texture information from ground-glass opacities (GGO) and solid nodule components for the prediction of adenocarcinoma recurrence. Methods: For this study, 101 patients with surgically resected stage I adenocarcinoma were selected. During the follow-up period, 17 patients had disease recurrence with six associated cancer-related deaths. GGO and solid tumor components were delineated on presurgical CT scans by a radiologist. Computational texture models of GGO and solid regions were built using linear combinations of steerable Riesz wavelets learned with linear support vector machines (SVMs). Unlike other traditional texture attributes, themore » proposed texture models are designed to encode local image scales and directions that are specific to GGO and solid tissue. The responses of the locally steered models were used as texture attributes and compared to the responses of unaligned Riesz wavelets. The texture attributes were combined with CT intensities to predict tumor recurrence and patient hazard according to disease-free survival (DFS) time. Two families of predictive models were compared: LASSO and SVMs, and their survival counterparts: Cox-LASSO and survival SVMs. Results: The best-performing predictive model of patient hazard was associated with a concordance index (C-index) of 0.81 ± 0.02 and was based on the combination of the steered models and CT intensities with survival SVMs. The same feature group and the LASSO model yielded the highest area under the receiver operating characteristic curve (AUC) of 0.8 ± 0.01 for predicting tumor recurrence, although no statistically significant difference was found when compared to using intensity features solely. For all models, the performance was found to be significantly higher when image attributes were based on the solid components solely versus using the entire tumors (p < 3.08 × 10{sup −5}). Conclusions: This study constitutes a novel perspective on how to interpret imaging information from CT examinations by suggesting that most of the information related to adenocarcinoma aggressiveness is related to the intensity and morphological properties of solid components of the tumor. The prediction of adenocarcinoma relapse was found to have low specificity but very high sensitivity. Our results could be useful in clinical practice to identify patients for which no recurrence is expected with a very high confidence using a presurgical CT scan only. It also provided an accurate estimation of the risk of recurrence after a given duration t from surgical resection (i.e., C-index = 0.81 ± 0.02)« less

  15. MATLAB for laser speckle contrast analysis (LASCA): a practice-based approach

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Laser Speckle Contrast Analysis (LASCA) is one of the most powerful modern methods for revealing blood dynamics. The experimental design and theory for this method are well established, and the computational recipie is often regarded to be trivial. However, the achieved performance and spatial resolution may considerable differ for different implementations. We comprise a minireview of known approaches to the spatial laser speckle contrast data processing and their realization in MATLAB code providing an explicit correspondence to the mathematical representation, a discussion of available implementations. We also present the algorithm based on the 2D Haar wavelet transform, also supplied with the program code. This new method provides an opportunity to introduce horizontal, vertical and diagonal speckle contrasts; it may be used for processing highly anisotropic images of vascular trees. We provide the comparative analysis of the accuracy of vascular pattern detection and the processing times with a special attention to details of the used MATLAB procedures.

  16. Sensorless control for permanent magnet synchronous motor using a neural network based adaptive estimator

    NASA Astrophysics Data System (ADS)

    Kwon, Chung-Jin; Kim, Sung-Joong; Han, Woo-Young; Min, Won-Kyoung

    2005-12-01

    The rotor position and speed estimation of permanent-magnet synchronous motor(PMSM) was dealt with. By measuring the phase voltages and currents of the PMSM drive, two diagonally recurrent neural network(DRNN) based observers, a neural current observer and a neural velocity observer were developed. DRNN which has self-feedback of the hidden neurons ensures that the outputs of DRNN contain the whole past information of the system even if the inputs of DRNN are only the present states and inputs of the system. Thus the structure of DRNN may be simpler than that of feedforward and fully recurrent neural networks. If the backpropagation method was used for the training of the DRNN the problem of slow convergence arise. In order to reduce this problem, recursive prediction error(RPE) based learning method for the DRNN was presented. The simulation results show that the proposed approach gives a good estimation of rotor speed and position, and RPE based training has requires a shorter computation time compared to backpropagation based training.

  17. Exploiting periodicity to extract the atrial activity in atrial arrhythmias

    NASA Astrophysics Data System (ADS)

    Llinares, Raul; Igual, Jorge

    2011-12-01

    Atrial fibrillation disorders are one of the main arrhythmias of the elderly. The atrial and ventricular activities are decoupled during an atrial fibrillation episode, and very rapid and irregular waves replace the usual atrial P-wave in a normal sinus rhythm electrocardiogram (ECG). The estimation of these wavelets is a must for clinical analysis. We propose a new approach to this problem focused on the quasiperiodicity of these wavelets. Atrial activity is characterized by a main atrial rhythm in the interval 3-12 Hz. It enables us to establish the problem as the separation of the original sources from the instantaneous linear combination of them recorded in the ECG or the extraction of only the atrial component exploiting the quasiperiodic feature of the atrial signal. This methodology implies the previous estimation of such main atrial period. We present two algorithms that separate and extract the atrial rhythm starting from a prior estimation of the main atrial frequency. The first one is an algebraic method based on the maximization of a cost function that measures the periodicity. The other one is an adaptive algorithm that exploits the decorrelation of the atrial and other signals diagonalizing the correlation matrices at multiple lags of the period of atrial activity. The algorithms are applied successfully to synthetic and real data. In simulated ECGs, the average correlation index obtained was 0.811 and 0.847, respectively. In real ECGs, the accuracy of the results was validated using spectral and temporal parameters. The average peak frequency and spectral concentration obtained were 5.550 and 5.554 Hz and 56.3 and 54.4%, respectively, and the kurtosis was 0.266 and 0.695. For validation purposes, we compared the proposed algorithms with established methods, obtaining better results for simulated and real registers.

  18. Phase synchronization of instrumental music signals

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Bhattacharya, D. K.

    2014-06-01

    Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures - Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.

  19. Log-Gabor Energy Based Multimodal Medical Image Fusion in NSCT Domain

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    Multimodal medical image fusion is a powerful tool in clinical applications such as noninvasive diagnosis, image-guided radiotherapy, and treatment planning. In this paper, a novel nonsubsampled Contourlet transform (NSCT) based method for multimodal medical image fusion is presented, which is approximately shift invariant and can effectively suppress the pseudo-Gibbs phenomena. The source medical images are initially transformed by NSCT followed by fusing low- and high-frequency components. The phase congruency that can provide a contrast and brightness-invariant representation is applied to fuse low-frequency coefficients, whereas the Log-Gabor energy that can efficiently determine the frequency coefficients from the clear and detail parts is employed to fuse the high-frequency coefficients. The proposed fusion method has been compared with the discrete wavelet transform (DWT), the fast discrete curvelet transform (FDCT), and the dual tree complex wavelet transform (DTCWT) based image fusion methods and other NSCT-based methods. Visually and quantitatively experimental results indicate that the proposed fusion method can obtain more effective and accurate fusion results of multimodal medical images than other algorithms. Further, the applicability of the proposed method has been testified by carrying out a clinical example on a woman affected with recurrent tumor images. PMID:25214889

  20. Temporal Variation of the Rotation of the Solar Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Xie, J. L.; Shi, X. J.; Xu, J. C.

    2017-04-01

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn

    Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less

  2. Cognitive frames in psychology: demarcations and ruptures.

    PubMed

    Yurevich, Andrey V

    2009-06-01

    As there seems to be a recurrent feeling of crisis in psychology, its present state is analyzed in this article. The author believes that in addition to the traditional manifestations that have dogged psychology since it emerged as an independent science some new features of the crisis have emerged. Three fundamental "ruptures" are identified: the "horizontal" rupture between various schools and trends, the "vertical" rupture between natural science and humanitarian psychology, and the "diagonal" rupture between academic research and applied practice of psychology. These manifestations of the crisis of psychology have recently been compounded by the crisis of its rationalistic foundations. This situation is described in terms of the cognitive systems in psychology which include meta-theories, paradigms, sociodigms and metadigms.

  3. The norms and variances of the Gabor, Morlet and general harmonic wavelet functions

    NASA Astrophysics Data System (ADS)

    Simonovski, I.; Boltežar, M.

    2003-07-01

    This paper deals with certain properties of the continuous wavelet transform and wavelet functions. The norms and the spreads in time and frequency of the common Gabor and Morlet wavelet functions are presented. It is shown that the norm of the Morlet wavelet function does not satisfy the normalization condition and that the normalized Morlet wavelet function is identical to the Gabor wavelet function with the parameter σ=1. The general harmonic wavelet function is developed using frequency modulation of the Hanning and Hamming window functions. Several properties of the general harmonic wavelet function are also presented and compared to the Gabor wavelet function. The time and frequency spreads of the general harmonic wavelet function are only slightly higher than the time and frequency spreads of the Gabor wavelet function. However, the general harmonic wavelet function is simpler to use than the Gabor wavelet function. In addition, the general harmonic wavelet function can be constructed in such a way that the zero average condition is truly satisfied. The average value of the Gabor wavelet function can approach a value of zero but it cannot reach it. When calculating the continuous wavelet transform, errors occur at the start- and the end-time indexes. This is called the edge effect and is caused by the fact that the wavelet transform is calculated from a signal of finite length. In this paper, we propose a method that uses signal mirroring to reduce the errors caused by the edge effect. The success of the proposed method is demonstrated by using a simulated signal.

  4. Optimal wavelets for biomedical signal compression.

    PubMed

    Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario

    2006-07-01

    Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.

  5. Wavelet-based Gaussian-mixture hidden Markov model for the detection of multistage seizure dynamics: A proof-of-concept study

    PubMed Central

    2011-01-01

    Background Epilepsy is a common neurological disorder characterized by recurrent electrophysiological activities, known as seizures. Without the appropriate detection strategies, these seizure episodes can dramatically affect the quality of life for those afflicted. The rationale of this study is to develop an unsupervised algorithm for the detection of seizure states so that it may be implemented along with potential intervention strategies. Methods Hidden Markov model (HMM) was developed to interpret the state transitions of the in vitro rat hippocampal slice local field potentials (LFPs) during seizure episodes. It can be used to estimate the probability of state transitions and the corresponding characteristics of each state. Wavelet features were clustered and used to differentiate the electrophysiological characteristics at each corresponding HMM states. Using unsupervised training method, the HMM and the clustering parameters were obtained simultaneously. The HMM states were then assigned to the electrophysiological data using expert guided technique. Minimum redundancy maximum relevance (mRMR) analysis and Akaike Information Criterion (AICc) were applied to reduce the effect of over-fitting. The sensitivity, specificity and optimality index of chronic seizure detection were compared for various HMM topologies. The ability of distinguishing early and late tonic firing patterns prior to chronic seizures were also evaluated. Results Significant improvement in state detection performance was achieved when additional wavelet coefficient rates of change information were used as features. The final HMM topology obtained using mRMR and AICc was able to detect non-ictal (interictal), early and late tonic firing, chronic seizures and postictal activities. A mean sensitivity of 95.7%, mean specificity of 98.9% and optimality index of 0.995 in the detection of chronic seizures was achieved. The detection of early and late tonic firing was validated with experimental intracellular electrical recordings of seizures. Conclusions The HMM implementation of a seizure dynamics detector is an improvement over existing approaches using visual detection and complexity measures. The subjectivity involved in partitioning the observed data prior to training can be eliminated. It can also decipher the probabilities of seizure state transitions using the magnitude and rate of change wavelet information of the LFPs. PMID:21504608

  6. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    2004-03-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  7. Wavelets in Physics

    NASA Astrophysics Data System (ADS)

    van den Berg, J. C.

    1999-08-01

    A guided tour J. C. van den Berg; 1. Wavelet analysis, a new tool in physics J.-P. Antoine; 2. The 2-D wavelet transform, physical applications J.-P. Antoine; 3. Wavelets and astrophysical applications A. Bijaoui; 4. Turbulence analysis, modelling and computing using wavelets M. Farge, N. K.-R. Kevlahan, V. Perrier and K. Schneider; 5. Wavelets and detection of coherent structures in fluid turbulence L. Hudgins and J. H. Kaspersen; 6. Wavelets, non-linearity and turbulence in fusion plasmas B. Ph. van Milligen; 7. Transfers and fluxes of wind kinetic energy between orthogonal wavelet components during atmospheric blocking A. Fournier; 8. Wavelets in atomic physics and in solid state physics J.-P. Antoine, Ph. Antoine and B. Piraux; 9. The thermodynamics of fractals revisited with wavelets A. Arneodo, E. Bacry and J. F. Muzy; 10. Wavelets in medicine and physiology P. Ch. Ivanov, A. L. Goldberger, S. Havlin, C.-K. Peng, M. G. Rosenblum and H. E. Stanley; 11. Wavelet dimension and time evolution Ch.-A. Guérin and M. Holschneider.

  8. Enhancing seismic P phase arrival picking based on wavelet denoising and kurtosis picker

    NASA Astrophysics Data System (ADS)

    Shang, Xueyi; Li, Xibing; Weng, Lei

    2018-01-01

    P phase arrival picking of weak signals is still challenging in seismology. A wavelet denoising is proposed to enhance seismic P phase arrival picking, and the kurtosis picker is applied on the wavelet-denoised signal to identify P phase arrival. It has been called the WD-K picker. The WD-K picker, which is different from those traditional wavelet-based pickers on the basis of a single wavelet component or certain main wavelet components, takes full advantage of the reconstruction of main detail wavelet components and the approximate wavelet component. The proposed WD-K picker considers more wavelet components and presents a better P phase arrival feature. The WD-K picker has been evaluated on 500 micro-seismic signals recorded in the Chinese Yongshaba mine. The comparison between the WD-K pickings and manual pickings shows the good picking accuracy of the WD-K picker. Furthermore, the WD-K picking performance has been compared with the main detail wavelet component combining-based kurtosis (WDC-K) picker, the single wavelet component-based kurtosis (SW-K) picker, and certain main wavelet component-based maximum kurtosis (MMW-K) picker. The comparison has demonstrated that the WD-K picker has better picking accuracy than the other three-wavelet and kurtosis-based pickers, thus showing the enhanced ability of wavelet denoising.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, L.H.

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scalemore » number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.« less

  10. Wavelet transforms with discrete-time continuous-dilation wavelets

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Rao, Raghuveer M.

    1999-03-01

    Wavelet constructions and transforms have been confined principally to the continuous-time domain. Even the discrete wavelet transform implemented through multirate filter banks is based on continuous-time wavelet functions that provide orthogonal or biorthogonal decompositions. This paper provides a novel wavelet transform construction based on the definition of discrete-time wavelets that can undergo continuous parameter dilations. The result is a transformation that has the advantage of discrete-time or digital implementation while circumventing the problem of inadequate scaling resolution seen with conventional dyadic or M-channel constructions. Examples of constructing such wavelets are presented.

  11. Time-frequency analysis of phonocardiogram signals using wavelet transform: a comparative study.

    PubMed

    Ergen, Burhan; Tatar, Yetkin; Gulcur, Halil Ozcan

    2012-01-01

    Analysis of phonocardiogram (PCG) signals provides a non-invasive means to determine the abnormalities caused by cardiovascular system pathology. In general, time-frequency representation (TFR) methods are used to study the PCG signal because it is one of the non-stationary bio-signals. The continuous wavelet transform (CWT) is especially suitable for the analysis of non-stationary signals and to obtain the TFR, due to its high resolution, both in time and in frequency and has recently become a favourite tool. It decomposes a signal in terms of elementary contributions called wavelets, which are shifted and dilated copies of a fixed mother wavelet function, and yields a joint TFR. Although the basic characteristics of the wavelets are similar, each type of the wavelets produces a different TFR. In this study, eight real types of the most known wavelets are examined on typical PCG signals indicating heart abnormalities in order to determine the best wavelet to obtain a reliable TFR. For this purpose, the wavelet energy and frequency spectrum estimations based on the CWT and the spectra of the chosen wavelets were compared with the energy distribution and the autoregressive frequency spectra in order to determine the most suitable wavelet. The results show that Morlet wavelet is the most reliable wavelet for the time-frequency analysis of PCG signals.

  12. Wavelets and distributed approximating functionals

    NASA Astrophysics Data System (ADS)

    Wei, G. W.; Kouri, D. J.; Hoffman, D. K.

    1998-07-01

    A general procedure is proposed for constructing father and mother wavelets that have excellent time-frequency localization and can be used to generate entire wavelet families for use as wavelet transforms. One interesting feature of our father wavelets (scaling functions) is that they belong to a class of generalized delta sequences, which we refer to as distributed approximating functionals (DAFs). We indicate this by the notation wavelet-DAFs. Correspondingly, the mother wavelets generated from these wavelet-DAFs are appropriately called DAF-wavelets. Wavelet-DAFs can be regarded as providing a pointwise (localized) spectral method, which furnishes a bridge between the traditional global methods and local methods for solving partial differential equations. They are shown to provide extremely accurate numerical solutions for a number of nonlinear partial differential equations, including the Korteweg-de Vries (KdV) equation, for which a previous method has encountered difficulties (J. Comput. Phys. 132 (1997) 233).

  13. Intelligent complementary sliding-mode control for LUSMS-based X-Y-theta motion control stage.

    PubMed

    Lin, Faa-Jeng; Chen, Syuan-Yi; Shyu, Kuo-Kai; Liu, Yen-Hung

    2010-07-01

    An intelligent complementary sliding-mode control (ICSMC) system using a recurrent wavelet-based Elman neural network (RWENN) estimator is proposed in this study to control the mover position of a linear ultrasonic motors (LUSMs)-based X-Y-theta motion control stage for the tracking of various contours. By the addition of a complementary generalized error transformation, the complementary sliding-mode control (CSMC) can efficiently reduce the guaranteed ultimate bound of the tracking error by half compared with the slidingmode control (SMC) while using the saturation function. To estimate a lumped uncertainty on-line and replace the hitting control of the CSMC directly, the RWENN estimator is adopted in the proposed ICSMC system. In the RWENN, each hidden neuron employs a different wavelet function as an activation function to improve both the convergent precision and the convergent time compared with the conventional Elman neural network (ENN). The estimation laws of the RWENN are derived using the Lyapunov stability theorem to train the network parameters on-line. A robust compensator is also proposed to confront the uncertainties including approximation error, optimal parameter vectors, and higher-order terms in Taylor series. Finally, some experimental results of various contours tracking show that the tracking performance of the ICSMC system is significantly improved compared with the SMC and CSMC systems.

  14. Distilling perfect GHZ states from two copies of non-GHZ-diagonal mixed states

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Wen; Tang, Shi-Qing; Yuan, Ji-Bing; Zhang, Deng-Yu

    2017-06-01

    It has been shown that a nearly pure Greenberger-Horne-Zeilinger (GHZ) state could be distilled from a large (even infinite) number of GHZ-diagonal states that can be obtained by depolarizing general multipartite mixed states (non-GHZ-diagonal states) through sequences of (probabilistic) local operations and classical communications. We here demonstrate that perfect GHZ states can be extracted, with certain probabilities, from two copies of non-GHZ-diagonal mixed states when some conditions are satisfied. This result implies that it is not necessary to depolarize these entangled mixed states to the GHZ-diagonal type, and that they are better than GHZ-diagonal states for distillation of pure GHZ states. We find a wide class of multipartite entangled mixed states that fulfill the requirements. Moreover, we display that the obtained result can be applied to practical noisy environments, e.g., amplitude-damping channels. Our findings provide an important complementarity to conventional GHZ-state distillation protocols (designed for GHZ-diagonal states) in theory, as well as having practical applications.

  15. Iterative algorithm for joint zero diagonalization with application in blind source separation.

    PubMed

    Zhang, Wei-Tao; Lou, Shun-Tian

    2011-07-01

    A new iterative algorithm for the nonunitary joint zero diagonalization of a set of matrices is proposed for blind source separation applications. On one hand, since the zero diagonalizer of the proposed algorithm is constructed iteratively by successive multiplications of an invertible matrix, the singular solutions that occur in the existing nonunitary iterative algorithms are naturally avoided. On the other hand, compared to the algebraic method for joint zero diagonalization, the proposed algorithm requires fewer matrices to be zero diagonalized to yield even better performance. The extension of the algorithm to the complex and nonsquare mixing cases is also addressed. Numerical simulations on both synthetic data and blind source separation using time-frequency distributions illustrate the performance of the algorithm and provide a comparison to the leading joint zero diagonalization schemes.

  16. Applying wavelet transforms to analyse aircraft-measured turbulence and turbulent fluxes in the atmospheric boundary layer over eastern Siberia

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    The wavelet spectral method was applied to aircraft-based measurements of atmospheric turbulence obtained during joint Russian-Japanese research on the atmospheric boundary layer near Yakutsk (eastern Siberia) in April-June 2000. Practical ways to apply Fourier and wavelet methods for aircraft-based turbulence data are described. Comparisons between Fourier and wavelet transform results are shown and they demonstrate, in conjunction with theoretical and experimental restrictions, that the Fourier transform method is not useful for studying non-homogeneous turbulence. The wavelet method is free from many disadvantages of Fourier analysis and can yield more informative results. Comparison of Fourier and Morlet wavelet spectra showed good agreement at high frequencies (small scales). The quality of the wavelet transform and corresponding software was estimated by comparing the original data with restored data constructed with an inverse wavelet transform. A Haar wavelet basis was inappropriate for the turbulence data; the mother wavelet function recommended in this study is the Morlet wavelet. Good agreement was also shown between variances and covariances estimated with different mathematical techniques, i.e. through non-orthogonal wavelet spectra and through eddy correlation methods.

  17. TU-AB-BRA-10: Prognostic Value of Intra-Radiation Treatment FDG-PET and CT Imaging Features in Locally Advanced Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J; Pollom, E; Durkee, B

    2015-06-15

    Purpose: To predict response to radiation treatment using computational FDG-PET and CT images in locally advanced head and neck cancer (HNC). Methods: 68 patients with State III-IVB HNC treated with chemoradiation were included in this retrospective study. For each patient, we analyzed primary tumor and lymph nodes on PET and CT scans acquired both prior to and during radiation treatment, which led to 8 combinations of image datasets. From each image set, we extracted high-throughput, radiomic features of the following types: statistical, morphological, textural, histogram, and wavelet, resulting in a total of 437 features. We then performed unsupervised redundancy removalmore » and stability test on these features. To avoid over-fitting, we trained a logistic regression model with simultaneous feature selection based on least absolute shrinkage and selection operator (LASSO). To objectively evaluate the prediction ability, we performed 5-fold cross validation (CV) with 50 random repeats of stratified bootstrapping. Feature selection and model training was solely conducted on the training set and independently validated on the holdout test set. Receiver operating characteristic (ROC) curve of the pooled Result and the area under the ROC curve (AUC) was calculated as figure of merit. Results: For predicting local-regional recurrence, our model built on pre-treatment PET of lymph nodes achieved the best performance (AUC=0.762) on 5-fold CV, which compared favorably with node volume and SUVmax (AUC=0.704 and 0.449, p<0.001). Wavelet coefficients turned out to be the most predictive features. Prediction of distant recurrence showed a similar trend, in which pre-treatment PET features of lymph nodes had the highest AUC of 0.705. Conclusion: The radiomics approach identified novel imaging features that are predictive to radiation treatment response. If prospectively validated in larger cohorts, they could aid in risk-adaptive treatment of HNC.« less

  18. High-performance wavelet engine

    NASA Astrophysics Data System (ADS)

    Taylor, Fred J.; Mellot, Jonathon D.; Strom, Erik; Koren, Iztok; Lewis, Michael P.

    1993-11-01

    Wavelet processing has shown great promise for a variety of image and signal processing applications. Wavelets are also among the most computationally expensive techniques in signal processing. It is demonstrated that a wavelet engine constructed with residue number system arithmetic elements offers significant advantages over commercially available wavelet accelerators based upon conventional arithmetic elements. Analysis is presented predicting the dynamic range requirements of the reported residue number system based wavelet accelerator.

  19. Wavelet tree structure based speckle noise removal for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Xin; Liu, Xuan; Liu, Yang

    2018-02-01

    We report a new speckle noise removal algorithm in optical coherence tomography (OCT). Though wavelet domain thresholding algorithms have demonstrated superior advantages in suppressing noise magnitude and preserving image sharpness in OCT, the wavelet tree structure has not been investigated in previous applications. In this work, we propose an adaptive wavelet thresholding algorithm via exploiting the tree structure in wavelet coefficients to remove the speckle noise in OCT images. The threshold for each wavelet band is adaptively selected following a special rule to retain the structure of the image across different wavelet layers. Our results demonstrate that the proposed algorithm outperforms conventional wavelet thresholding, with significant advantages in preserving image features.

  20. Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer.

    PubMed

    Tamez-Peña, Jose-Gerardo; Rodriguez-Rojas, Juan-Andrés; Gomez-Rueda, Hugo; Celaya-Padilla, Jose-Maria; Rivera-Prieto, Roxana-Alicia; Palacios-Corona, Rebeca; Garza-Montemayor, Margarita; Cardona-Huerta, Servando; Treviño, Victor

    2018-01-01

    In breast cancer, well-known gene expression subtypes have been related to a specific clinical outcome. However, their impact on the breast tissue phenotype has been poorly studied. Here, we investigate the association of imaging data of tumors to gene expression signatures from 71 patients with breast cancer that underwent pre-treatment digital mammograms and tumor biopsies. From digital mammograms, a semi-automated radiogenomics analysis generated 1,078 features describing the shape, signal distribution, and texture of tumors along their contralateral image used as control. From tumor biopsy, we estimated the OncotypeDX and PAM50 recurrence scores using gene expression microarrays. Then, we used multivariate analysis under stringent cross-validation to train models predicting recurrence scores. Few univariate features reached Spearman correlation coefficients above 0.4. Nevertheless, multivariate analysis yielded significantly correlated models for both signatures (correlation of OncotypeDX = 0.49 ± 0.07 and PAM50 = 0.32 ± 0.10 in stringent cross-validation and OncotypeDX = 0.83 and PAM50 = 0.78 for a unique model). Equivalent models trained from the unaffected contralateral breast were not correlated suggesting that the image signatures were tumor-specific and that overfitting was not a considerable issue. We also noted that models were improved by combining clinical information (triple negative status and progesterone receptor). The models used mostly wavelets and fractal features suggesting their importance to capture tumor information. Our results suggest that molecular-based recurrence risk and breast cancer subtypes have observable radiographic phenotypes. To our knowledge, this is the first study associating mammographic information to gene expression recurrence signatures.

  1. Radiogenomics analysis identifies correlations of digital mammography with clinical molecular signatures in breast cancer

    PubMed Central

    Tamez-Peña, Jose-Gerardo; Rodriguez-Rojas, Juan-Andrés; Gomez-Rueda, Hugo; Celaya-Padilla, Jose-Maria; Rivera-Prieto, Roxana-Alicia; Palacios-Corona, Rebeca; Garza-Montemayor, Margarita; Cardona-Huerta, Servando

    2018-01-01

    In breast cancer, well-known gene expression subtypes have been related to a specific clinical outcome. However, their impact on the breast tissue phenotype has been poorly studied. Here, we investigate the association of imaging data of tumors to gene expression signatures from 71 patients with breast cancer that underwent pre-treatment digital mammograms and tumor biopsies. From digital mammograms, a semi-automated radiogenomics analysis generated 1,078 features describing the shape, signal distribution, and texture of tumors along their contralateral image used as control. From tumor biopsy, we estimated the OncotypeDX and PAM50 recurrence scores using gene expression microarrays. Then, we used multivariate analysis under stringent cross-validation to train models predicting recurrence scores. Few univariate features reached Spearman correlation coefficients above 0.4. Nevertheless, multivariate analysis yielded significantly correlated models for both signatures (correlation of OncotypeDX = 0.49 ± 0.07 and PAM50 = 0.32 ± 0.10 in stringent cross-validation and OncotypeDX = 0.83 and PAM50 = 0.78 for a unique model). Equivalent models trained from the unaffected contralateral breast were not correlated suggesting that the image signatures were tumor-specific and that overfitting was not a considerable issue. We also noted that models were improved by combining clinical information (triple negative status and progesterone receptor). The models used mostly wavelets and fractal features suggesting their importance to capture tumor information. Our results suggest that molecular-based recurrence risk and breast cancer subtypes have observable radiographic phenotypes. To our knowledge, this is the first study associating mammographic information to gene expression recurrence signatures. PMID:29596496

  2. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    NASA Astrophysics Data System (ADS)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  3. Wavelet transforms as solutions of partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zweig, G.

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Wavelet transforms are useful in representing transients whose time and frequency structure reflect the dynamics of an underlying physical system. Speech sound, pressure in turbulent fluid flow, or engine sound in automobiles are excellent candidates for wavelet analysis. This project focused on (1) methods for choosing the parent wavelet for a continuous wavelet transform in pattern recognition applications and (2) the more efficient computation of continuous wavelet transforms by understanding the relationship between discrete wavelet transforms and discretized continuousmore » wavelet transforms. The most interesting result of this research is the finding that the generalized wave equation, on which the continuous wavelet transform is based, can be used to understand phenomena that relate to the process of hearing.« less

  4. Wavelet Transforms using VTK-m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaomeng; Sewell, Christopher Meyer

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach ofmore » performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.« less

  5. Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Casdagli, M. C.; Iasemidis, L. D.; Sackellares, J. C.; Roper, S. N.; Gilmore, R. L.; Savit, R. S.

    Invasive electroencephalographic (EEG) recordings from depth and subdural electrodes, performed in eight patients with temporal lobe epilepsy, are analyzed using a variety of nonlinear techniques. A surrogate data technique is used to find strong evidence for nonlinearities in epileptogenic regions of the brain. Most of these nonlinearities are characterized as “spiking” by a wavelet analysis. A small fraction of the nonlinearities are characterized as “recurrent” by a nonlinear prediction algorithm. Recurrent activity is found to occur in spatio-temporal patterns related to the location of the epileptogenic focus. Residual delay maps, used to characterize “lag-one nonlinearity”, are remarkably stationary for a given electrode, and exhibit striking variations among electrodes. The clinical and theoretical implications of these results are discussed.

  6. Dynamic Bayesian wavelet transform: New methodology for extraction of repetitive transients

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tsui, Kwok-Leung

    2017-05-01

    Thanks to some recent research works, dynamic Bayesian wavelet transform as new methodology for extraction of repetitive transients is proposed in this short communication to reveal fault signatures hidden in rotating machine. The main idea of the dynamic Bayesian wavelet transform is to iteratively estimate posterior parameters of wavelet transform via artificial observations and dynamic Bayesian inference. First, a prior wavelet parameter distribution can be established by one of many fast detection algorithms, such as the fast kurtogram, the improved kurtogram, the enhanced kurtogram, the sparsogram, the infogram, continuous wavelet transform, discrete wavelet transform, wavelet packets, multiwavelets, empirical wavelet transform, empirical mode decomposition, local mean decomposition, etc.. Second, artificial observations can be constructed based on one of many metrics, such as kurtosis, the sparsity measurement, entropy, approximate entropy, the smoothness index, a synthesized criterion, etc., which are able to quantify repetitive transients. Finally, given artificial observations, the prior wavelet parameter distribution can be posteriorly updated over iterations by using dynamic Bayesian inference. More importantly, the proposed new methodology can be extended to establish the optimal parameters required by many other signal processing methods for extraction of repetitive transients.

  7. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.

    PubMed

    Chitchian, Shahab; Fiddy, Michael; Fried, Nathaniel M

    2008-01-01

    Preservation of the cavernous nerves during prostate cancer surgery is critical in preserving sexual function after surgery. Optical coherence tomography (OCT) of the prostate nerves has recently been studied for potential use in nerve-sparing prostate surgery. In this study, the discrete wavelet transform and complex dual-tree wavelet transform are implemented for wavelet shrinkage denoising in OCT images of the rat prostate. Applying the complex dual-tree wavelet transform provides improved results for speckle noise reduction in the OCT prostate image. Image quality metrics of the cavernous nerves and signal-to-noise ratio (SNR) were improved significantly using this complex wavelet denoising technique.

  8. Optical phase distribution evaluation by using zero order Generalized Morse Wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Elmas, Merve Naz; Durmuş, ćaǧla; Coşkun, Emre; Tiryaki, Erhan; Özder, Serhat

    2017-02-01

    When determining the phase from the projected fringes by using continuous wavelet transform (CWT), selection of wavelet is an important step. A new wavelet for phase retrieval from the fringe pattern with the spatial carrier frequency in the x direction is presented. As a mother wavelet, zero order generalized Morse wavelet (GMW) is chosen because of the flexible spatial and frequency localization property, and it is exactly analytic. In this study, GMW method is explained and numerical simulations are carried out to show the validity of this technique for finding the phase distributions. Results for the Morlet and Paul wavelets are compared with the results of GMW analysis.

  9. Comparisons between real and complex Gauss wavelet transform methods of three-dimensional shape reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Dan, Youquan; Wang, Qingyuan

    2015-10-01

    The continuous wavelet transform (CWT) introduces an expandable spatial and frequency window which can overcome the inferiority of localization characteristic in Fourier transform and windowed Fourier transform. The CWT method is widely applied in the non-stationary signal analysis field including optical 3D shape reconstruction with remarkable performance. In optical 3D surface measurement, the performance of CWT for optical fringe pattern phase reconstruction usually depends on the choice of wavelet function. A large kind of wavelet functions of CWT, such as Mexican Hat wavelet, Morlet wavelet, DOG wavelet, Gabor wavelet and so on, can be generated from Gauss wavelet function. However, so far, application of the Gauss wavelet transform (GWT) method (i.e. CWT with Gauss wavelet function) in optical profilometry is few reported. In this paper, the method using GWT for optical fringe pattern phase reconstruction is presented first and the comparisons between real and complex GWT methods are discussed in detail. The examples of numerical simulations are also given and analyzed. The results show that both the real GWT method along with a Hilbert transform and the complex GWT method can realize three-dimensional surface reconstruction; and the performance of reconstruction generally depends on the frequency domain appearance of Gauss wavelet functions. For the case of optical fringe pattern of large phase variation with position, the performance of real GWT is better than that of complex one due to complex Gauss series wavelets existing frequency sidelobes. Finally, the experiments are carried out and the experimental results agree well with our theoretical analysis.

  10. Fault Analysis of Space Station DC Power Systems-Using Neural Network Adaptive Wavelets to Detect Faults

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun; Dolce, James L.

    1997-01-01

    This paper describes the application of neural network adaptive wavelets for fault diagnosis of space station power system. The method combines wavelet transform with neural network by incorporating daughter wavelets into weights. Therefore, the wavelet transform and neural network training procedure become one stage, which avoids the complex computation of wavelet parameters and makes the procedure more straightforward. The simulation results show that the proposed method is very efficient for the identification of fault locations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Jiasen; Yu Changshui; Song Heshan

    We propose a scheme for identifying an unknown Bell diagonal state. In our scheme the measurements are performed on the probe qubits instead of the Bell diagonal state. The distinct advantage is that the quantum state of the evolved Bell diagonal state ensemble plus probe states will still collapse on the original Bell diagonal state ensemble after the measurement on probe states; i.e., our identification is quantum state nondestructive. How to realize our scheme in the framework of cavity electrodynamics is also shown.

  12. Comparison between deterministic and statistical wavelet estimation methods through predictive deconvolution: Seismic to well tie example from the North Sea

    NASA Astrophysics Data System (ADS)

    de Macedo, Isadora A. S.; da Silva, Carolina B.; de Figueiredo, J. J. S.; Omoboya, Bode

    2017-01-01

    Wavelet estimation as well as seismic-to-well tie procedures are at the core of every seismic interpretation workflow. In this paper we perform a comparative study of wavelet estimation methods for seismic-to-well tie. Two approaches to wavelet estimation are discussed: a deterministic estimation, based on both seismic and well log data, and a statistical estimation, based on predictive deconvolution and the classical assumptions of the convolutional model, which provides a minimum-phase wavelet. Our algorithms, for both wavelet estimation methods introduce a semi-automatic approach to determine the optimum parameters of deterministic wavelet estimation and statistical wavelet estimation and, further, to estimate the optimum seismic wavelets by searching for the highest correlation coefficient between the recorded trace and the synthetic trace, when the time-depth relationship is accurate. Tests with numerical data show some qualitative conclusions, which are probably useful for seismic inversion and interpretation of field data, by comparing deterministic wavelet estimation and statistical wavelet estimation in detail, especially for field data example. The feasibility of this approach is verified on real seismic and well data from Viking Graben field, North Sea, Norway. Our results also show the influence of the washout zones on well log data on the quality of the well to seismic tie.

  13. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    This book provides an overview of the theory and practice of continuous and discrete wavelet transforms. Divided into seven chapters, the first three chapters of the book are introductory, describing the various forms of the wavelet transform and their computation, while the remaining chapters are devoted to applications in fluids, engineering, medicine and miscellaneous areas. Each chapter is well introduced, with suitable examples to demonstrate key concepts. Illustrations are included where appropriate, thus adding a visual dimension to the text. A noteworthy feature is the inclusion, at the end of each chapter, of a list of further resources from the academic literature which the interested reader can consult. The first chapter is purely an introduction to the text. The treatment of wavelet transforms begins in the second chapter, with the definition of what a wavelet is. The chapter continues by defining the continuous wavelet transform and its inverse and a description of how it may be used to interrogate signals. The continuous wavelet transform is then compared to the short-time Fourier transform. Energy and power spectra with respect to scale are also discussed and linked to their frequency counterparts. Towards the end of the chapter, the two-dimensional continuous wavelet transform is introduced. Examples of how the continuous wavelet transform is computed using the Mexican hat and Morlet wavelets are provided throughout. The third chapter introduces the discrete wavelet transform, with its distinction from the discretized continuous wavelet transform having been made clear at the end of the second chapter. In the first half of the chapter, the logarithmic discretization of the wavelet function is described, leading to a discussion of dyadic grid scaling, frames, orthogonal and orthonormal bases, scaling functions and multiresolution representation. The fast wavelet transform is introduced and its computation is illustrated with an example using the Haar wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The treatment on finance touches on the use of wavelets by other authors in studying stock prices, commodity behaviour, market dynamics and foreign exchange rates. The treatment on geophysics covers what was omitted from the fourth chapter, namely, seismology, well logging, topographic feature analysis and the analysis of climatic data. The text concludes with an assortment of other application areas which could only be mentioned in passing. Unlike most other publications in the subject, this book does not treat wavelet transforms in a mathematically rigorous manner but rather aims to explain the mechanics of the wavelet transform in a way that is easy to understand. Consequently, it serves as an excellent overview of the subject rather than as a reference text. Keeping the mathematics to a minimum and omitting cumbersome and detailed proofs from the text, the book is best-suited to those who are new to wavelets or who want an intuitive understanding of the subject. Such an audience may include graduate students in engineering and professionals and researchers in engineering and the applied sciences.

  14. Denoising embolic Doppler ultrasound signals using Dual Tree Complex Discrete Wavelet Transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2010-01-01

    Early and accurate detection of asymptomatic emboli is important for monitoring of preventive therapy in stroke-prone patients. One of the problems in detection of emboli is the identification of an embolic signal caused by very small emboli. The amplitude of the embolic signal may be so small that advanced processing methods are required to distinguish these signals from Doppler signals arising from red blood cells. In this study instead of conventional discrete wavelet transform, the Dual Tree Complex Discrete Wavelet Transform was used for denoising embolic signals. Performances of both approaches were compared. Unlike the conventional discrete wavelet transform discrete complex wavelet transform is a shift invariant transform with limited redundancy. Results demonstrate that the Dual Tree Complex Discrete Wavelet Transform based denoising outperforms conventional discrete wavelet denoising. Approximately 8 dB improvement is obtained by using the Dual Tree Complex Discrete Wavelet Transform compared to the improvement provided by the conventional Discrete Wavelet Transform (less than 5 dB).

  15. Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach

    NASA Astrophysics Data System (ADS)

    Aloui, Chaker; Jammazi, Rania

    2015-10-01

    In this article, we propose a wavelet-based approach to accommodate the stylized facts and complex structure of financial data, caused by frequent and abrupt changes of markets and noises. Specifically, we show how the combination of both continuous and discrete wavelet transforms with traditional financial models helps improve portfolio's market risk assessment. In the empirical stage, three wavelet-based models (wavelet-EGARCH with dynamic conditional correlations, wavelet-copula, and wavelet-extreme value) are considered and applied to crude oil price and US dollar exchange rate data. Our findings show that the wavelet-based approach provides an effective and powerful tool for detecting extreme moments and improving the accuracy of VaR and Expected Shortfall estimates of oil-exchange rate portfolios after noise is removed from the original data.

  16. PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang

    2016-11-01

    In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.

  17. Wavelet entropy characterization of elevated intracranial pressure.

    PubMed

    Xu, Peng; Scalzo, Fabien; Bergsneider, Marvin; Vespa, Paul; Chad, Miller; Hu, Xiao

    2008-01-01

    Intracranial Hypertension (ICH) often occurs for those patients with traumatic brain injury (TBI), stroke, tumor, etc. Pathology of ICH is still controversial. In this work, we used wavelet entropy and relative wavelet entropy to study the difference existed between normal and hypertension states of ICP for the first time. The wavelet entropy revealed the similar findings as the approximation entropy that entropy during ICH state is smaller than that in normal state. Moreover, with wavelet entropy, we can see that ICH state has the more focused energy in the low wavelet frequency band (0-3.1 Hz) than the normal state. The relative wavelet entropy shows that the energy distribution in the wavelet bands between these two states is actually different. Based on these results, we suggest that ICH may be formed by the re-allocation of oscillation energy within brain.

  18. Pressure profiles in detonation cells with rectangular and diagonal structures

    NASA Astrophysics Data System (ADS)

    Hanana, M.; Lefebvre, M. H.

    Experimental results presented in this work enable us to classify the three-dimensional structure of the detonation into two fundamental types: a rectangular structure and a diagonal structure. The rectangular structure is well documented in the literature and consists of orthogonal waves travelling independently from each another. The soot record in this case shows the classical diamond detonation cell exhibiting `slapping waves'. The experiments indicate that the diagonal structure is a structure with the triple point intersections moving along the diagonal line of the tube cross section. The axes of the transverse waves are canted at 45 degrees to the wall, accounting for the lack of slapping waves. It is possible to reproduce these diagonal structures by appropriately controlling the experimental ignition procedure. The characteristics of the diagonal structure show some similarities with detonation structure in round tube. Pressure measurements recorded along the central axis of the cellular structure show a series of pressure peaks, depending on the type of structure and the position inside the detonation cell. Pressure profiles measured for the whole length of the two types of detonation cells show that the intensity of the shock front is higher and the length of the detonation cell is shorter for the diagonal structures.

  19. Iterated oversampled filter banks and wavelet frames

    NASA Astrophysics Data System (ADS)

    Selesnick, Ivan W.; Sendur, Levent

    2000-12-01

    This paper takes up the design of wavelet tight frames that are analogous to Daubechies orthonormal wavelets - that is, the design of minimal length wavelet filters satisfying certain polynomial properties, but now in the oversampled case. The oversampled dyadic DWT considered in this paper is based on a single scaling function and tow distinct wavelets. Having more wavelets than necessary gives a closer spacing between adjacent wavelets within the same scale. As a result, the transform is nearly shift-invariant, and can be used to improve denoising. Because the associated time- frequency lattice preserves the dyadic structure of the critically sampled DWT it can be used with tree-based denoising algorithms that exploit parent-child correlation.

  20. 2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF CENTRAL BEND OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 2932 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  1. Acoustical Emission Source Location in Thin Rods Through Wavelet Detail Crosscorrelation

    DTIC Science & Technology

    1998-03-01

    NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION...ACOUSTICAL EMISSION SOURCE LOCATION IN THIN RODS THROUGH WAVELET DETAIL CROSSCORRELATION 6. AUTHOR(S) Jerauld, Joseph G. 5. FUNDING NUMBERS Grant...frequency characteristics of Wavelet Analysis. Software implementation now enables the exploration of the Wavelet Transform to identify the time of

  2. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification

    NASA Astrophysics Data System (ADS)

    Sharif, I.; Khare, S.

    2014-11-01

    With the number of channels in the hundreds instead of in the tens Hyper spectral imagery possesses much richer spectral information than multispectral imagery. The increased dimensionality of such Hyper spectral data provides a challenge to the current technique for analyzing data. Conventional classification methods may not be useful without dimension reduction pre-processing. So dimension reduction has become a significant part of Hyper spectral image processing. This paper presents a comparative analysis of the efficacy of Haar and Daubechies wavelets for dimensionality reduction in achieving image classification. Spectral data reduction using Wavelet Decomposition could be useful because it preserves the distinction among spectral signatures. Daubechies wavelets optimally capture the polynomial trends while Haar wavelet is discontinuous and resembles a step function. The performance of these wavelets are compared in terms of classification accuracy and time complexity. This paper shows that wavelet reduction has more separate classes and yields better or comparable classification accuracy. In the context of the dimensionality reduction algorithm, it is found that the performance of classification of Daubechies wavelets is better as compared to Haar wavelet while Daubechies takes more time compare to Haar wavelet. The experimental results demonstrate the classification system consistently provides over 84% classification accuracy.

  3. Wavelet median denoising of ultrasound images

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.

    2002-05-01

    Ultrasound images are contaminated with both additive and multiplicative noise, which is modeled by Gaussian and speckle noise respectively. Distinguishing small features such as fallopian tubes in the female genital tract in the noisy environment is problematic. A new method for noise reduction, Wavelet Median Denoising, is presented. Wavelet Median Denoising consists of performing a standard noise reduction technique, median filtering, in the wavelet domain. The new method is tested on 126 images, comprised of 9 original images each with 14 levels of Gaussian or speckle noise. Results for both separable and non-separable wavelets are evaluated, relative to soft-thresholding in the wavelet domain, using the signal-to-noise ratio and subjective assessment. The performance of Wavelet Median Denoising is comparable to that of soft-thresholding. Both methods are more successful in removing Gaussian noise than speckle noise. Wavelet Median Denoising outperforms soft-thresholding for a larger number of cases of speckle noise reduction than of Gaussian noise reduction. Noise reduction is more successful using non-separable wavelets than separable wavelets. When both methods are applied to ultrasound images obtained from a phantom of the female genital tract a small improvement is seen; however, a substantial improvement is required prior to clinical use.

  4. Wavelet detection of singularities in the presence of fractal noise

    NASA Astrophysics Data System (ADS)

    Noel, Steven E.; Gohel, Yogesh J.; Szu, Harold H.

    1997-04-01

    Here we detect singularities with generalized quadrature processing using the recently developed Hermitian Hat wavelet. Our intended application is radar target detection for the optimal fuzzing of ship self-defense munitions. We first develop a wavelet-based fractal noise model to represent sea clutter. We then investigate wavelet shrinkage as a way to reduce and smooth the noise before attempting wavelet detection. Finally, we use the complex phase of the Hermitian Hat wavelet to detect a simulated target singularity in the presence of our fractal noise.

  5. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  6. Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers

    DOE PAGES

    Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...

    2016-11-14

    Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less

  7. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Seo, Youngmin; Kim, Sungwon; Kisi, Ozgur; Singh, Vijay P.

    2015-01-01

    Reliable water level forecasting for reservoir inflow is essential for reservoir operation. The objective of this paper is to develop and apply two hybrid models for daily water level forecasting and investigate their accuracy. These two hybrid models are wavelet-based artificial neural network (WANN) and wavelet-based adaptive neuro-fuzzy inference system (WANFIS). Wavelet decomposition is employed to decompose an input time series into approximation and detail components. The decomposed time series are used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) for WANN and WANFIS models, respectively. Based on statistical performance indexes, the WANN and WANFIS models are found to produce better efficiency than the ANN and ANFIS models. WANFIS7-sym10 yields the best performance among all other models. It is found that wavelet decomposition improves the accuracy of ANN and ANFIS. This study evaluates the accuracy of the WANN and WANFIS models for different mother wavelets, including Daubechies, Symmlet and Coiflet wavelets. It is found that the model performance is dependent on input sets and mother wavelets, and the wavelet decomposition using mother wavelet, db10, can further improve the efficiency of ANN and ANFIS models. Results obtained from this study indicate that the conjunction of wavelet decomposition and artificial intelligence models can be a useful tool for accurate forecasting daily water level and can yield better efficiency than the conventional forecasting models.

  8. 6. VIEW OF WEST GATE ROAD CULVERT OF LOWER DIAGONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF WEST GATE ROAD CULVERT OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 2502 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  9. 7. VIEW OF WEAPONS DELIVERY ROAD CULVERT OF LOWER DIAGONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WEAPONS DELIVERY ROAD CULVERT OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 522 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  10. 5. VIEW OF WEST GATE ROAD CULVERT OF LOWER DIAGONAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF WEST GATE ROAD CULVERT OF LOWER DIAGONAL NO. 1 DRAIN, LOOKING 323' EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  11. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  12. The application of super wavelet finite element on temperature-pressure coupled field simulation of LPG tank under jet fire

    NASA Astrophysics Data System (ADS)

    Zhao, Bin

    2015-02-01

    Temperature-pressure coupled field analysis of liquefied petroleum gas (LPG) tank under jet fire can offer theoretical guidance for preventing the fire accidents of LPG tank, the application of super wavelet finite element on it is studied in depth. First, review of related researches on heat transfer analysis of LPG tank under fire and super wavelet are carried out. Second, basic theory of super wavelet transform is studied. Third, the temperature-pressure coupled model of gas phase and liquid LPG under jet fire is established based on the equation of state, the VOF model and the RNG k-ɛ model. Then the super wavelet finite element formulation is constructed using the super wavelet scale function as interpolating function. Finally, the simulation is carried out, and results show that the super wavelet finite element method has higher computing precision than wavelet finite element method.

  13. Wavelets

    NASA Astrophysics Data System (ADS)

    Strang, Gilbert

    1994-06-01

    Several methods are compared that are used to analyze and synthesize a signal. Three ways are mentioned to transform a symphony: into cosine waves (Fourier transform), into pieces of cosines (short-time Fourier transform), and into wavelets (little waves that start and stop). Choosing the best basis, higher dimensions, fast wavelet transform, and Daubechies wavelets are discussed. High-definition television is described. The use of wavelets in identifying fingerprints in the future is related.

  14. Wavelet based free-form deformations for nonrigid registration

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Niessen, Wiro J.; Klein, Stefan

    2014-03-01

    In nonrigid registration, deformations may take place on the coarse and fine scales. For the conventional B-splines based free-form deformation (FFD) registration, these coarse- and fine-scale deformations are all represented by basis functions of a single scale. Meanwhile, wavelets have been proposed as a signal representation suitable for multi-scale problems. Wavelet analysis leads to a unique decomposition of a signal into its coarse- and fine-scale components. Potentially, this could therefore be useful for image registration. In this work, we investigate whether a wavelet-based FFD model has advantages for nonrigid image registration. We use a B-splines based wavelet, as defined by Cai and Wang.1 This wavelet is expressed as a linear combination of B-spline basis functions. Derived from the original B-spline function, this wavelet is smooth, differentiable, and compactly supported. The basis functions of this wavelet are orthogonal across scales in Sobolev space. This wavelet was previously used for registration in computer vision, in 2D optical flow problems,2 but it was not compared with the conventional B-spline FFD in medical image registration problems. An advantage of choosing this B-splines based wavelet model is that the space of allowable deformation is exactly equivalent to that of the traditional B-spline. The wavelet transformation is essentially a (linear) reparameterization of the B-spline transformation model. Experiments on 10 CT lung and 18 T1-weighted MRI brain datasets show that wavelet based registration leads to smoother deformation fields than traditional B-splines based registration, while achieving better accuracy.

  15. Photoacoustic signals denoising of the glucose aqueous solutions using an improved wavelet threshold method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Xiong, Zhihua

    2016-10-01

    The photoacoustic signals denoising of glucose is one of most important steps in the quality identification of the fruit because the real-time photoacoustic singals of glucose are easily interfered by all kinds of noises. To remove the noises and some useless information, an improved wavelet threshld function were proposed. Compared with the traditional wavelet hard and soft threshold functions, the improved wavelet threshold function can overcome the pseudo-oscillation effect of the denoised photoacoustic signals due to the continuity of the improved wavelet threshold function, and the error between the denoised signals and the original signals can be decreased. To validate the feasibility of the improved wavelet threshold function denoising, the denoising simulation experiments based on MATLAB programmimg were performed. In the simulation experiments, the standard test signal was used, and three different denoising methods were used and compared with the improved wavelet threshold function. The signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) values were used to evaluate the performance of the improved wavelet threshold function denoising. The experimental results demonstrate that the SNR value of the improved wavelet threshold function is largest and the RMSE value is lest, which fully verifies that the improved wavelet threshold function denoising is feasible. Finally, the improved wavelet threshold function denoising was used to remove the noises of the photoacoustic signals of the glucose solutions. The denoising effect is also very good. Therefore, the improved wavelet threshold function denoising proposed by this paper, has a potential value in the field of denoising for the photoacoustic singals.

  16. Evaluation of the Use of Second Generation Wavelets in the Coherent Vortex Simulation Approach

    NASA Technical Reports Server (NTRS)

    Goldstein, D. E.; Vasilyev, O. V.; Wray, A. A.; Rogallo, R. S.

    2000-01-01

    The objective of this study is to investigate the use of the second generation bi-orthogonal wavelet transform for the field decomposition in the Coherent Vortex Simulation of turbulent flows. The performances of the bi-orthogonal second generation wavelet transform and the orthogonal wavelet transform using Daubechies wavelets with the same number of vanishing moments are compared in a priori tests using a spectral direct numerical simulation (DNS) database of isotropic turbulence fields: 256(exp 3) and 512(exp 3) DNS of forced homogeneous turbulence (Re(sub lambda) = 168) and 256(exp 3) and 512(exp 3) DNS of decaying homogeneous turbulence (Re(sub lambda) = 55). It is found that bi-orthogonal second generation wavelets can be used for coherent vortex extraction. The results of a priori tests indicate that second generation wavelets have better compression and the residual field is closer to Gaussian. However, it was found that the use of second generation wavelets results in an integral length scale for the incoherent part that is larger than that derived from orthogonal wavelets. A way of dealing with this difficulty is suggested.

  17. Enhancement of Signal-to-noise Ratio in Natural-source Transient Magnetotelluric Data with Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paulson, K. V.

    For audio-frequency magnetotelluric surveys where the signals are lightning-stroke transients, the conventional Fourier transform method often fails to produce a high quality impedance tensor. An alternative approach is to use the wavelet transform method which is capable of localizing target information simultaneously in both the temporal and frequency domains. Unlike Fourier analysis that yields an average amplitude and phase, the wavelet transform produces an instantaneous estimate of the amplitude and phase of a signal. In this paper a complex well-localized wavelet, the Morlet wavelet, has been used to transform and analyze audio-frequency magnetotelluric data. With the Morlet wavelet, the magnetotelluric impedance tensor can be computed directly in the wavelet transform domain. The lightning-stroke transients are easily identified on the dilation-translation plane. Choosing those wavelet transform values where the signals are located, a higher signal-to-noise ratio estimation of the impedance tensor can be obtained. In a test using real data, the wavelet transform showed a significant improvement in the signal-to-noise ratio over the conventional Fourier transform.

  18. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Du, Peijun; Tan, Kun; Xing, Xiaoshi

    2010-12-01

    Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously.

  19. The diagonalization of cubic matrices

    NASA Astrophysics Data System (ADS)

    Cocolicchio, D.; Viggiano, M.

    2000-08-01

    This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.

  20. Chaos in non-diagonal spatially homogeneous cosmological models in spacetime dimensions <=10

    NASA Astrophysics Data System (ADS)

    Demaret, Jacques; de Rop, Yves; Henneaux, Marc

    1988-08-01

    It is shown that the chaotic oscillatory behaviour, absent in diagonal homogeneous cosmological models in spacetime dimensions between 5 and 10, can be reestablished when off-diagonal terms are included. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, Santiago 9, Chile

  1. Assessing the performance of quantitative image features on early stage prediction of treatment effectiveness for ovary cancer patients: a preliminary investigation

    NASA Astrophysics Data System (ADS)

    Zargari, Abolfazl; Du, Yue; Thai, Theresa C.; Gunderson, Camille C.; Moore, Kathleen; Mannel, Robert S.; Liu, Hong; Zheng, Bin; Qiu, Yuchen

    2018-02-01

    The objective of this study is to investigate the performance of global and local features to better estimate the characteristics of highly heterogeneous metastatic tumours, for accurately predicting the treatment effectiveness of the advanced stage ovarian cancer patients. In order to achieve this , a quantitative image analysis scheme was developed to estimate a total of 103 features from three different groups including shape and density, Wavelet, and Gray Level Difference Method (GLDM) features. Shape and density features are global features, which are directly applied on the entire target image; wavelet and GLDM features are local features, which are applied on the divided blocks of the target image. To assess the performance, the new scheme was applied on a retrospective dataset containing 120 recurrent and high grade ovary cancer patients. The results indicate that the three best performed features are skewness, root-mean-square (rms) and mean of local GLDM texture, indicating the importance of integrating local features. In addition, the averaged predicting performance are comparable among the three different categories. This investigation concluded that the local features contains at least as copious tumour heterogeneity information as the global features, which may be meaningful on improving the predicting performance of the quantitative image markers for the diagnosis and prognosis of ovary cancer patients.

  2. The effects of high-frequency oscillations in hippocampal electrical activities on the classification of epileptiform events using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chiu, Alan W. L.; Jahromi, Shokrollah S.; Khosravani, Houman; Carlen, Peter L.; Bardakjian, Berj L.

    2006-03-01

    The existence of hippocampal high-frequency electrical activities (greater than 100 Hz) during the progression of seizure episodes in both human and animal experimental models of epilepsy has been well documented (Bragin A, Engel J, Wilson C L, Fried I and Buzsáki G 1999 Hippocampus 9 137-42 Khosravani H, Pinnegar C R, Mitchell J R, Bardakjian B L, Federico P and Carlen P L 2005 Epilepsia 46 1-10). However, this information has not been studied between successive seizure episodes or utilized in the application of seizure classification. In this study, we examine the dynamical changes of an in vitro low Mg2+ rat hippocampal slice model of epilepsy at different frequency bands using wavelet transforms and artificial neural networks. By dividing the time-frequency spectrum of each seizure-like event (SLE) into frequency bins, we can analyze their burst-to-burst variations within individual SLEs as well as between successive SLE episodes. Wavelet energy and wavelet entropy are estimated for intracellular and extracellular electrical recordings using sufficiently high sampling rates (10 kHz). We demonstrate that the activities of high-frequency oscillations in the 100-400 Hz range increase as the slice approaches SLE onsets and in later episodes of SLEs. Utilizing the time-dependent relationship between different frequency bands, we can achieve frequency-dependent state classification. We demonstrate that activities in the frequency range 100-400 Hz are critical for the accurate classification of the different states of electrographic seizure-like episodes (containing interictal, preictal and ictal states) in brain slices undergoing recurrent spontaneous SLEs. While preictal activities can be classified with an average accuracy of 77.4 ± 6.7% utilizing the frequency spectrum in the range 0-400 Hz, we can also achieve a similar level of accuracy by using a nonlinear relationship between 100-400 Hz and <4 Hz frequency bands only.

  3. Representation and design of wavelets using unitary circuits

    NASA Astrophysics Data System (ADS)

    Evenbly, Glen; White, Steven R.

    2018-05-01

    The representation of discrete, compact wavelet transformations (WTs) as circuits of local unitary gates is discussed. We employ a similar formalism as used in the multiscale representation of quantum many-body wave functions using unitary circuits, further cementing the relation established in the literature between classical and quantum multiscale methods. An algorithm for constructing the circuit representation of known orthogonal, dyadic, discrete WTs is presented, and the explicit representation for Daubechies wavelets, coiflets, and symlets is provided. Furthermore, we demonstrate the usefulness of the circuit formalism in designing WTs, including various classes of symmetric wavelets and multiwavelets, boundary wavelets, and biorthogonal wavelets.

  4. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  5. F-wave decomposition for time of arrival profile estimation.

    PubMed

    Han, Zhixiu; Kong, Xuan

    2007-01-01

    F-waves are distally recorded muscle responses that result from "backfiring" of motor neurons following stimulation of peripheral nerves. Each F-wave response is a superposition of several motor unit responses (F-wavelets). Initial deflection of the earliest F-wavelet defines the traditional F-wave latency (FWL) and earlier F-wavelet may mask F-wavelets traveling along slower (and possibly diseased) fibers. Unmasking the time of arrival (TOA) of late F-wavelets could improve the diagnostic value of the F-waves. An algorithm for F-wavelet decomposition is presented, followed by results of experimental data analysis.

  6. EEG analysis using wavelet-based information tools.

    PubMed

    Rosso, O A; Martin, M T; Figliola, A; Keller, K; Plastino, A

    2006-06-15

    Wavelet-based informational tools for quantitative electroencephalogram (EEG) record analysis are reviewed. Relative wavelet energies, wavelet entropies and wavelet statistical complexities are used in the characterization of scalp EEG records corresponding to secondary generalized tonic-clonic epileptic seizures. In particular, we show that the epileptic recruitment rhythm observed during seizure development is well described in terms of the relative wavelet energies. In addition, during the concomitant time-period the entropy diminishes while complexity grows. This is construed as evidence supporting the conjecture that an epileptic focus, for this kind of seizures, triggers a self-organized brain state characterized by both order and maximal complexity.

  7. 4. VIEW OF EAST PORTION OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF EAST PORTION OF LOWER DIAGONAL NO. 1 DRAIN LOOKING TOWARDS THE CENTRAL BEND, LOOKING 270t EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  8. 1. VIEW OF WEST PORTION OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF WEST PORTION OF LOWER DIAGONAL NO. 1 DRAIN LOOKING TOWARDS THE WEST GATE ROAD CULVERT, LOOKING 3052 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  9. 3. VIEW OF EAST PORTION OF LOWER DIAGONAL NO. 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF EAST PORTION OF LOWER DIAGONAL NO. 1 DRAIN LOOKING TOWARDS THE CENTRAL BEND, LOOKING 2742 EAST OF NORTH. - Truckee-Carson Irrigation District, Lower Diagonal No. 1 Drain, Bounded by West Gate Road & Weapons Delivery Road, Naval Air Station Fallon, Fallon, Churchill County, NV

  10. Simplicity and Typical Rank Results for Three-Way Arrays

    ERIC Educational Resources Information Center

    ten Berge, Jos M. F.

    2011-01-01

    Matrices can be diagonalized by singular vectors or, when they are symmetric, by eigenvectors. Pairs of square matrices often admit simultaneous diagonalization, and always admit block wise simultaneous diagonalization. Generalizing these possibilities to more than two (non-square) matrices leads to methods of simplifying three-way arrays by…

  11. Use of the wavelet transform to investigate differences in brain PET images between patient groups

    NASA Astrophysics Data System (ADS)

    Ruttimann, Urs E.; Unser, Michael A.; Rio, Daniel E.; Rawlings, Robert R.

    1993-06-01

    Suitability of the wavelet transform was studied for the analysis of glucose utilization differences between subject groups as displayed in PET images. To strengthen statistical inference, it was of particular interest investigating the tradeoff between signal localization and image decomposition into uncorrelated components. This tradeoff is shown to be controlled by wavelet regularity, with the optimal compromise attained by third-order orthogonal spline wavelets. Testing of the ensuing wavelet coefficients identified only about 1.5% as statistically different (p < .05) from noise, which then served to resynthesize the difference images by the inverse wavelet transform. The resulting images displayed relatively uniform, noise-free regions of significant differences with, due to the good localization maintained by the wavelets, very little reconstruction artifacts.

  12. Developing a New Computer-Aided Clinical Decision Support System for Prediction of Successful Postcardioversion Patients with Persistent Atrial Fibrillation.

    PubMed

    Sterling, Mark; Huang, David T; Ghoraani, Behnaz

    2015-01-01

    We propose a new algorithm to predict the outcome of direct-current electric (DCE) cardioversion for atrial fibrillation (AF) patients. AF is the most common cardiac arrhythmia and DCE cardioversion is a noninvasive treatment to end AF and return the patient to sinus rhythm (SR). Unfortunately, there is a high risk of AF recurrence in persistent AF patients; hence clinically it is important to predict the DCE outcome in order to avoid the procedure's side effects. This study develops a feature extraction and classification framework to predict AF recurrence patients from the underlying structure of atrial activity (AA). A multiresolution signal decomposition technique, based on matching pursuit (MP), was used to project the AA over a dictionary of wavelets. Seven novel features were derived from the decompositions and were employed in a quadratic discrimination analysis classification to predict the success of post-DCE cardioversion in 40 patients with persistent AF. The proposed algorithm achieved 100% sensitivity and 95% specificity, indicating that the proposed computational approach captures detailed structural information about the underlying AA and could provide reliable information for effective management of AF.

  13. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  14. A cross-sectional study comparing lateral and diagonal maximum weight shift in people with stroke and healthy controls and the correlation with balance, gait and fear of falling

    PubMed Central

    Meyer, Sarah; Beyens, Hilde; Dejaeger, Eddy; Verheyden, Geert

    2017-01-01

    Impaired balance is common post stroke and can be assessed by means of force-platforms measuring center of pressure (COP) displacements during static standing, or more dynamically during lateral maximum weight shift (MWS). However, activities of daily life also include diagonal MWS and since force platforms are nowadays commercially available, investigating lateral and diagonal MWS in a clinical setting might be feasible and clinically relevant. We investigated lateral and diagonal MWS while standing in patients with stroke (PwS) and healthy controls (HC), evaluated MWS towards the affected and the non-affected side for PwS and correlated MWS with measures of balance, gait and fear of falling. In a cross-sectional observational study including 36 ambulatory sub-acute inpatients and 32 age-matched HC, a force platform (BioRescue, RM Ingénierie, France) was used to measure lateral and diagonal MWS in standing. Clinical outcome measures collected were Berg Balance Scale and Community Balance and Mobility Scale (CBMS) for balance, 10-meter walk test (10MWT) for gait speed and Falls Efficacy Scale–international version for fear of falling. MWS for PwS towards the affected side was significantly smaller compared to HC (lateral: p = 0.029; diagonal-forward: p = 0.000). MWS for PwS was also significantly reduced towards the affected side in the diagonal-forward direction (p = 0.019) compared to the non-affected side of PwS. Strong correlations were found for MWS for PwS in the diagonal-forward direction towards the affected side, and clinical measures of balance (CBMS: r = 0.66) and gait speed (10MWT: r = 0.66). Our study showed that ambulatory sub-acute PwS, in comparison to HC, have decreased ability to shift their body weight diagonally forward in standing towards their affected side. This reduced ability is strongly related to clinical measures of balance and gait speed. Our results suggest that MWS in a diagonal-forward direction should receive attention in rehabilitation of ambulatory sub-acute PwS in an inpatient setting. PMID:28809939

  15. A cross-sectional study comparing lateral and diagonal maximum weight shift in people with stroke and healthy controls and the correlation with balance, gait and fear of falling.

    PubMed

    van Dijk, Margaretha M; Meyer, Sarah; Sandstad, Solveig; Wiskerke, Evelyne; Thuwis, Rhea; Vandekerckhove, Chesny; Myny, Charlotte; Ghosh, Nitesh; Beyens, Hilde; Dejaeger, Eddy; Verheyden, Geert

    2017-01-01

    Impaired balance is common post stroke and can be assessed by means of force-platforms measuring center of pressure (COP) displacements during static standing, or more dynamically during lateral maximum weight shift (MWS). However, activities of daily life also include diagonal MWS and since force platforms are nowadays commercially available, investigating lateral and diagonal MWS in a clinical setting might be feasible and clinically relevant. We investigated lateral and diagonal MWS while standing in patients with stroke (PwS) and healthy controls (HC), evaluated MWS towards the affected and the non-affected side for PwS and correlated MWS with measures of balance, gait and fear of falling. In a cross-sectional observational study including 36 ambulatory sub-acute inpatients and 32 age-matched HC, a force platform (BioRescue, RM Ingénierie, France) was used to measure lateral and diagonal MWS in standing. Clinical outcome measures collected were Berg Balance Scale and Community Balance and Mobility Scale (CBMS) for balance, 10-meter walk test (10MWT) for gait speed and Falls Efficacy Scale-international version for fear of falling. MWS for PwS towards the affected side was significantly smaller compared to HC (lateral: p = 0.029; diagonal-forward: p = 0.000). MWS for PwS was also significantly reduced towards the affected side in the diagonal-forward direction (p = 0.019) compared to the non-affected side of PwS. Strong correlations were found for MWS for PwS in the diagonal-forward direction towards the affected side, and clinical measures of balance (CBMS: r = 0.66) and gait speed (10MWT: r = 0.66). Our study showed that ambulatory sub-acute PwS, in comparison to HC, have decreased ability to shift their body weight diagonally forward in standing towards their affected side. This reduced ability is strongly related to clinical measures of balance and gait speed. Our results suggest that MWS in a diagonal-forward direction should receive attention in rehabilitation of ambulatory sub-acute PwS in an inpatient setting.

  16. Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets

    NASA Astrophysics Data System (ADS)

    Cifter, Atilla

    2011-06-01

    This paper introduces wavelet-based extreme value theory (EVT) for univariate value-at-risk estimation. Wavelets and EVT are combined for volatility forecasting to estimate a hybrid model. In the first stage, wavelets are used as a threshold in generalized Pareto distribution, and in the second stage, EVT is applied with a wavelet-based threshold. This new model is applied to two major emerging stock markets: the Istanbul Stock Exchange (ISE) and the Budapest Stock Exchange (BUX). The relative performance of wavelet-based EVT is benchmarked against the Riskmetrics-EWMA, ARMA-GARCH, generalized Pareto distribution, and conditional generalized Pareto distribution models. The empirical results show that the wavelet-based extreme value theory increases predictive performance of financial forecasting according to number of violations and tail-loss tests. The superior forecasting performance of the wavelet-based EVT model is also consistent with Basel II requirements, and this new model can be used by financial institutions as well.

  17. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    NASA Astrophysics Data System (ADS)

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  18. Analysis on Behaviour of Wavelet Coefficient during Fault Occurrence in Transformer

    NASA Astrophysics Data System (ADS)

    Sreewirote, Bancha; Ngaopitakkul, Atthapol

    2018-03-01

    The protection system for transformer has play significant role in avoiding severe damage to equipment when disturbance occur and ensure overall system reliability. One of the methodology that widely used in protection scheme and algorithm is discrete wavelet transform. However, characteristic of coefficient under fault condition must be analyzed to ensure its effectiveness. So, this paper proposed study and analysis on wavelet coefficient characteristic when fault occur in transformer in both high- and low-frequency component from discrete wavelet transform. The effect of internal and external fault on wavelet coefficient of both fault and normal phase has been taken into consideration. The fault signal has been simulate using transmission connected to transformer experimental setup on laboratory level that modelled after actual system. The result in term of wavelet coefficient shown a clearly differentiate between wavelet characteristic in both high and low frequency component that can be used to further design and improve detection and classification algorithm that based on discrete wavelet transform methodology in the future.

  19. Adjusting Wavelet-based Multiresolution Analysis Boundary Conditions for Robust Long-term Streamflow Forecasting Model

    NASA Astrophysics Data System (ADS)

    Maslova, I.; Ticlavilca, A. M.; McKee, M.

    2012-12-01

    There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.

  20. The 4D hyperspherical diffusion wavelet: A new method for the detection of localized anatomical variation.

    PubMed

    Hosseinbor, Ameer Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K; Chung, Moo K

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links Hyper-SPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the first-ever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM.

  1. The 4D Hyperspherical Diffusion Wavelet: A New Method for the Detection of Localized Anatomical Variation

    PubMed Central

    Hosseinbor, A. Pasha; Kim, Won Hwa; Adluru, Nagesh; Acharya, Amit; Vorperian, Houri K.; Chung, Moo K.

    2014-01-01

    Recently, the HyperSPHARM algorithm was proposed to parameterize multiple disjoint objects in a holistic manner using the 4D hyperspherical harmonics. The HyperSPHARM coefficients are global; they cannot be used to directly infer localized variations in signal. In this paper, we present a unified wavelet framework that links HyperSPHARM to the diffusion wavelet transform. Specifically, we will show that the HyperSPHARM basis forms a subset of a wavelet-based multiscale representation of surface-based signals. This wavelet, termed the hyperspherical diffusion wavelet, is a consequence of the equivalence of isotropic heat diffusion smoothing and the diffusion wavelet transform on the hypersphere. Our framework allows for the statistical inference of highly localized anatomical changes, which we demonstrate in the firstever developmental study on the hyoid bone investigating gender and age effects. We also show that the hyperspherical wavelet successfully picks up group-wise differences that are barely detectable using SPHARM. PMID:25320783

  2. Wavelet transform analysis of transient signals: the seismogram and the electrocardiogram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anant, K.S.

    1997-06-01

    In this dissertation I quantitatively demonstrate how the wavelet transform can be an effective mathematical tool for the analysis of transient signals. The two key signal processing applications of the wavelet transform, namely feature identification and representation (i.e., compression), are shown by solving important problems involving the seismogram and the electrocardiogram. The seismic feature identification problem involved locating in time the P and S phase arrivals. Locating these arrivals accurately (particularly the S phase) has been a constant issue in seismic signal processing. In Chapter 3, I show that the wavelet transform can be used to locate both the Pmore » as well as the S phase using only information from single station three-component seismograms. This is accomplished by using the basis function (wave-let) of the wavelet transform as a matching filter and by processing information across scales of the wavelet domain decomposition. The `pick` time results are quite promising as compared to analyst picks. The representation application involved the compression of the electrocardiogram which is a recording of the electrical activity of the heart. Compression of the electrocardiogram is an important problem in biomedical signal processing due to transmission and storage limitations. In Chapter 4, I develop an electrocardiogram compression method that applies vector quantization to the wavelet transform coefficients. The best compression results were obtained by using orthogonal wavelets, due to their ability to represent a signal efficiently. Throughout this thesis the importance of choosing wavelets based on the problem at hand is stressed. In Chapter 5, I introduce a wavelet design method that uses linear prediction in order to design wavelets that are geared to the signal or feature being analyzed. The use of these designed wavelets in a test feature identification application led to positive results. The methods developed in this thesis; the feature identification methods of Chapter 3, the compression methods of Chapter 4, as well as the wavelet design methods of Chapter 5, are general enough to be easily applied to other transient signals.« less

  3. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha

    2018-01-01

    Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.

  4. Islanding detection technique using wavelet energy in grid-connected PV system

    NASA Astrophysics Data System (ADS)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  5. Design of almost symmetric orthogonal wavelet filter bank via direct optimization.

    PubMed

    Murugesan, Selvaraaju; Tay, David B H

    2012-05-01

    It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel filter banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to optimize. The designed filters have good frequency response, flat group delay, almost symmetric filter coefficients, and symmetric wavelet function.

  6. Wavelets and molecular structure

    NASA Astrophysics Data System (ADS)

    Carson, Mike

    1996-08-01

    The wavelet method offers possibilities for display, editing, and topological comparison of proteins at a user-specified level of detail. Wavelets are a mathematical tool that first found application in signal processing. The multiresolution analysis of a signal via wavelets provides a hierarchical series of `best' lower-resolution approximations. B-spline ribbons model the protein fold, with one control point per residue. Wavelet analysis sets limits on the information required to define the winding of the backbone through space, suggesting a recognizable fold is generated from a number of points equal to 1/4 or less the number of residues. Wavelets applied to surfaces and volumes show promise in structure-based drug design.

  7. Polar Wavelet Transform and the Associated Uncertainty Principles

    NASA Astrophysics Data System (ADS)

    Shah, Firdous A.; Tantary, Azhar Y.

    2018-06-01

    The polar wavelet transform- a generalized form of the classical wavelet transform has been extensively used in science and engineering for finding directional representations of signals in higher dimensions. The aim of this paper is to establish new uncertainty principles associated with the polar wavelet transforms in L2(R2). Firstly, we study some basic properties of the polar wavelet transform and then derive the associated generalized version of Heisenberg-Pauli-Weyl inequality. Finally, following the idea of Beckner (Proc. Amer. Math. Soc. 123, 1897-1905 1995), we drive the logarithmic version of uncertainty principle for the polar wavelet transforms in L2(R2).

  8. A new fast direct solver for the boundary element method

    NASA Astrophysics Data System (ADS)

    Huang, S.; Liu, Y. J.

    2017-09-01

    A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.

  9. Steering Bell-diagonal states

    PubMed Central

    Quan, Quan; Zhu, Huangjun; Liu, Si-Yuan; Fei, Shao-Ming; Fan, Heng; Yang, Wen-Li

    2016-01-01

    We investigate the steerability of two-qubit Bell-diagonal states under projective measurements by the steering party. In the simplest nontrivial scenario of two projective measurements, we solve this problem completely by virtue of the connection between the steering problem and the joint-measurement problem. A necessary and sufficient criterion is derived together with a simple geometrical interpretation. Our study shows that a Bell-diagonal state is steerable by two projective measurements iff it violates the Clauser-Horne-Shimony-Holt (CHSH) inequality, in sharp contrast with the strict hierarchy expected between steering and Bell nonlocality. We also introduce a steering measure and clarify its connections with concurrence and the volume of the steering ellipsoid. In particular, we determine the maximal concurrence and ellipsoid volume of Bell-diagonal states that are not steerable by two projective measurements. Finally, we explore the steerability of Bell-diagonal states under three projective measurements. A simple sufficient criterion is derived, which can detect the steerability of many states that are not steerable by two projective measurements. Our study offers valuable insight on steering of Bell-diagonal states as well as the connections between entanglement, steering, and Bell nonlocality. PMID:26911250

  10. Wavelet-based 3-D inversion for frequency-domain airborne EM data

    NASA Astrophysics Data System (ADS)

    Liu, Yunhe; Farquharson, Colin G.; Yin, Changchun; Baranwal, Vikas C.

    2018-04-01

    In this paper, we propose a new wavelet-based 3-D inversion method for frequency-domain airborne electromagnetic (FDAEM) data. Instead of inverting the model in the space domain using a smoothing constraint, this new method recovers the model in the wavelet domain based on a sparsity constraint. In the wavelet domain, the model is represented by two types of coefficients, which contain both large- and fine-scale informations of the model, meaning the wavelet-domain inversion has inherent multiresolution. In order to accomplish a sparsity constraint, we minimize an L1-norm measure in the wavelet domain that mostly gives a sparse solution. The final inversion system is solved by an iteratively reweighted least-squares method. We investigate different orders of Daubechies wavelets to accomplish our inversion algorithm, and test them on synthetic frequency-domain AEM data set. The results show that higher order wavelets having larger vanishing moments and regularity can deliver a more stable inversion process and give better local resolution, while the lower order wavelets are simpler and less smooth, and thus capable of recovering sharp discontinuities if the model is simple. At last, we test this new inversion algorithm on a frequency-domain helicopter EM (HEM) field data set acquired in Byneset, Norway. Wavelet-based 3-D inversion of HEM data is compared to L2-norm-based 3-D inversion's result to further investigate the features of the new method.

  11. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  12. Analysis of the tennis racket vibrations during forehand drives: Selection of the mother wavelet.

    PubMed

    Blache, Y; Hautier, C; Lefebvre, F; Djordjevic, A; Creveaux, T; Rogowski, I

    2017-08-16

    The time-frequency analysis of the tennis racket and hand vibrations is of great interest for discomfort and pathology prevention. This study aimed to (i) to assess the stationarity of the vibratory signal of the racket and hand and (ii) to identify the best mother wavelet to perform future time-frequency analysis, (iii) to determine if the stroke spin, racket characteristics and impact zone can influence the selection of the best mother wavelet. A total of 2364 topspin and flat forehand drives were performed by fourteen male competitive tennis players with six different rackets. One tri-axial and one mono-axial accelerometer were taped on the racket throat and dominant hand respectively. The signal stationarity was tested through the wavelet spectrum test. Eighty-nine mother wavelet were tested to select the best mother wavelet based on continuous and discrete transforms. On average only 25±17%, 2±5%, 5±7% and 27±27% of the signal tested respected the hypothesis of stationarity for the three axes of the racket and the hand respectively. Regarding the two methods for the detection of the best mother wavelet, the Daubechy 45 wavelet presented the highest average ranking. No effect of the stroke spin, racket characteristics and impact zone was observed for the selection of the best mother wavelet. It was concluded that alternative approach to Fast Fourier Transform should be used to interpret tennis vibration signals. In the case where wavelet transform is chosen, the Daubechy 45 mother wavelet appeared to be the most suitable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Separability of three qubit Greenberger-Horne-Zeilinger diagonal states

    NASA Astrophysics Data System (ADS)

    Han, Kyung Hoon; Kye, Seung-Hyeok

    2017-04-01

    We characterize the separability of three qubit GHZ diagonal states in terms of entries. This enables us to check separability of GHZ diagonal states without decomposition into the sum of pure product states. In the course of discussion, we show that the necessary criterion of Gühne (2011 Entanglement criteria and full separability of multi-qubit quantum states Phys. Lett. A 375 406-10) for (full) separability of three qubit GHZ diagonal states is sufficient with a simpler formula. The main tool is to use entanglement witnesses which are tri-partite Choi matrices of positive bi-linear maps.

  14. Wavelets, non-linearity and turbulence in fusion plasmas

    NASA Astrophysics Data System (ADS)

    van Milligen, B. Ph.

    Introduction Linear spectral analysis tools Wavelet analysis Wavelet spectra and coherence Joint wavelet phase-frequency spectra Non-linear spectral analysis tools Wavelet bispectra and bicoherence Interpretation of the bicoherence Analysis of computer-generated data Coupled van der Pol oscillators A large eddy simulation model for two-fluid plasma turbulence A long wavelength plasma drift wave model Analysis of plasma edge turbulence from Langmuir probe data Radial coherence observed on the TJ-IU torsatron Bicoherence profile at the L/H transition on CCT Conclusions

  15. Bayesian reconstruction of gravitational wave bursts using chirplets

    NASA Astrophysics Data System (ADS)

    Millhouse, Margaret; Cornish, Neil; Littenberg, Tyson

    2017-01-01

    The BayesWave algorithm has been shown to accurately reconstruct unmodeled short duration gravitational wave bursts and to distinguish between astrophysical signals and transient noise events. BayesWave does this by using a variable number of sine-Gaussian (Morlet) wavelets to reconstruct data in multiple interferometers. While the Morlet wavelets can be summed together to produce any possible waveform, there could be other wavelet functions that improve the performance. Because we expect most astrophysical gravitational wave signals to evolve in frequency, modified Morlet wavelets with linear frequency evolution - called chirplets - may better reconstruct signals with fewer wavelets. We compare the performance of BayesWave using Morlet wavelets and chirplets on a variety of simulated signals.

  16. Research on artificial neural network intrusion detection photochemistry based on the improved wavelet analysis and transformation

    NASA Astrophysics Data System (ADS)

    Li, Hong; Ding, Xue

    2017-03-01

    This paper combines wavelet analysis and wavelet transform theory with artificial neural network, through the pretreatment on point feature attributes before in intrusion detection, to make them suitable for improvement of wavelet neural network. The whole intrusion classification model gets the better adaptability, self-learning ability, greatly enhances the wavelet neural network for solving the problem of field detection invasion, reduces storage space, contributes to improve the performance of the constructed neural network, and reduces the training time. Finally the results of the KDDCup99 data set simulation experiment shows that, this method reduces the complexity of constructing wavelet neural network, but also ensures the accuracy of the intrusion classification.

  17. Diagonalization and Jordan Normal Form--Motivation through "Maple"[R

    ERIC Educational Resources Information Center

    Glaister, P.

    2009-01-01

    Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package…

  18. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  19. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  20. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory A. (Inventor)

    2010-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  1. The Wavelet Element Method. Part 2; Realization and Additional Features in 2D and 3D

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Tabacco, Anita; Urban, Karsten

    1998-01-01

    The Wavelet Element Method (WEM) provides a construction of multiresolution systems and biorthogonal wavelets on fairly general domains. These are split into subdomains that are mapped to a single reference hypercube. Tensor products of scaling functions and wavelets defined on the unit interval are used on the reference domain. By introducing appropriate matching conditions across the interelement boundaries, a globally continuous biorthogonal wavelet basis on the general domain is obtained. This construction does not uniquely define the basis functions but rather leaves some freedom for fulfilling additional features. In this paper we detail the general construction principle of the WEM to the 1D, 2D and 3D cases. We address additional features such as symmetry, vanishing moments and minimal support of the wavelet functions in each particular dimension. The construction is illustrated by using biorthogonal spline wavelets on the interval.

  2. Wavelet analysis techniques applied to removing varying spectroscopic background in calibration model for pear sugar content

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Ying, Yibin; Lu, Huishan; Fu, Xiaping

    2005-11-01

    A new method is proposed to eliminate the varying background and noise simultaneously for multivariate calibration of Fourier transform near infrared (FT-NIR) spectral signals. An ideal spectrum signal prototype was constructed based on the FT-NIR spectrum of fruit sugar content measurement. The performances of wavelet based threshold de-noising approaches via different combinations of wavelet base functions were compared. Three families of wavelet base function (Daubechies, Symlets and Coiflets) were applied to estimate the performance of those wavelet bases and threshold selection rules by a series of experiments. The experimental results show that the best de-noising performance is reached via the combinations of Daubechies 4 or Symlet 4 wavelet base function. Based on the optimization parameter, wavelet regression models for sugar content of pear were also developed and result in a smaller prediction error than a traditional Partial Least Squares Regression (PLSR) mode.

  3. Speckle noise reduction in quantitative optical metrology techniques by application of the discrete wavelet transformation

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Effective suppression of speckle noise content in interferometric data images can help in improving accuracy and resolution of the results obtained with interferometric optical metrology techniques. In this paper, novel speckle noise reduction algorithms based on the discrete wavelet transformation are presented. The algorithms proceed by: (a) estimating the noise level contained in the interferograms of interest, (b) selecting wavelet families, (c) applying the wavelet transformation using the selected families, (d) wavelet thresholding, and (e) applying the inverse wavelet transformation, producing denoised interferograms. The algorithms are applied to the different stages of the processing procedures utilized for generation of quantitative speckle correlation interferometry data of fiber-optic based opto-electronic holography (FOBOEH) techniques, allowing identification of optimal processing conditions. It is shown that wavelet algorithms are effective for speckle noise reduction while preserving image features otherwise faded with other algorithms.

  4. Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis.

    PubMed

    Li, Sikun; Wang, Xiangzhao; Su, Xianyu; Tang, Feng

    2012-04-20

    This paper theoretically discusses modulus of two-dimensional (2D) wavelet transform (WT) coefficients, calculated by using two frequently used 2D daughter wavelet definitions, in an optical fringe pattern analysis. The discussion shows that neither is good enough to represent the reliability of the phase data. The differences between the two frequently used 2D daughter wavelet definitions in the performance of 2D WT also are discussed. We propose a new 2D daughter wavelet definition for reliability-guided phase unwrapping of optical fringe pattern. The modulus of the advanced 2D WT coefficients, obtained by using a daughter wavelet under this new daughter wavelet definition, includes not only modulation information but also local frequency information of the deformed fringe pattern. Therefore, it can be treated as a good parameter that represents the reliability of the retrieved phase data. Computer simulation and experimentation show the validity of the proposed method.

  5. Discrete wavelet approach to multifractality

    NASA Astrophysics Data System (ADS)

    Isaacson, Susana I.; Gabbanelli, Susana C.; Busch, Jorge R.

    2000-12-01

    The use of wavelet techniques for the multifractal analysis generalizes the box counting approach, and in addition provides information on eventual deviations of multifractal behavior. By the introduction of a wavelet partition function Wq and its corresponding free energy (beta) (q), the discrepancies between (beta) (q) and the multifractal free energy r(q) are shown to be indicative of these deviations. We study with Daubechies wavelets (D4) some 1D examples previously treated with Haar wavelets, and we apply the same ideas to some 2D Monte Carlo configurations, that simulate a solution under the action of an attractive potential. In this last case, we study the influence in the multifractal spectra and partition functions of four physical parameters: the intensity of the pairwise potential, the temperature, the range of the model potential, and the concentration of the solution. The wavelet partition function Wq carries more information about the cluster statistics than the multifractal partition function Zq, and the location of its peaks contributes to the determination of characteristic sales of the measure. In our experiences, the information provided by Daubechies wavelet sis slightly more accurate than the one obtained by Haar wavelets.

  6. A Comparative Analysis for Selection of Appropriate Mother Wavelet for Detection of Stationary Disturbances

    NASA Astrophysics Data System (ADS)

    Kamble, Saurabh Prakash; Thawkar, Shashank; Gaikwad, Vinayak G.; Kothari, D. P.

    2017-12-01

    Detection of disturbances is the first step of mitigation. Power electronics plays a crucial role in modern power system which makes system operation efficient but it also bring stationary disturbances in the power system and added impurities to the supply. It happens because of the non-linear loads used in modern day power system which inject disturbances like harmonic disturbances, flickers, sag etc. in power grid. These impurities can damage equipments so it is necessary to mitigate these impurities present in the supply very quickly. So, digital signal processing techniques are incorporated for detection purpose. Signal processing techniques like fast Fourier transform, short-time Fourier transform, Wavelet transform etc. are widely used for the detection of disturbances. Among all, wavelet transform is widely used because of its better detection capabilities. But, which mother wavelet has to use for detection is still a mystery. Depending upon the periodicity, the disturbances are classified as stationary and non-stationary disturbances. This paper presents the importance of selection of mother wavelet for analyzing stationary disturbances using discrete wavelet transform. Signals with stationary disturbances of various frequencies are generated using MATLAB. The analysis of these signals is done using various mother wavelets like Daubechies and bi-orthogonal wavelets and the measured root mean square value of stationary disturbance is obtained. The measured value obtained by discrete wavelet transform is compared with the exact RMS value of the frequency component and the percentage differences are presented which helps to select optimum mother wavelet.

  7. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization

    PubMed Central

    Wojcik, Roza; Vannatta, Michael

    2010-01-01

    Diagonal capillary electrophoresis is a form of two-dimensional capillary electrophoresis that employs identical separation modes in each dimension. The distal end of the first capillary incorporates an enzyme-based microreactor. Analytes that are not modified by the reactor will have identical migration times in the two capillaries and will generate spots that fall on the diagonal in a reconstructed two-dimensional electropherogram. Analytes that undergo enzymatic modification in the reactor will have a different migration time in the second capillary and will generate spots that fall off the diagonal in the electropherogram. We demonstrate the system with immobilized alkaline phosphatase to monitor the phosphorylation status of a mixture of peptides. This enzyme-based diagonal capillary electrophoresis assay appears to be generalizable; any post-translational modification can be detected as long as an immobilized enzyme is available that reacts with the modification under electrophoretic conditions. PMID:20099889

  8. Wavelet extractor: A Bayesian well-tie and wavelet extraction program

    NASA Astrophysics Data System (ADS)

    Gunning, James; Glinsky, Michael E.

    2006-06-01

    We introduce a new open-source toolkit for the well-tie or wavelet extraction problem of estimating seismic wavelets from seismic data, time-to-depth information, and well-log suites. The wavelet extraction model is formulated as a Bayesian inverse problem, and the software will simultaneously estimate wavelet coefficients, other parameters associated with uncertainty in the time-to-depth mapping, positioning errors in the seismic imaging, and useful amplitude-variation-with-offset (AVO) related parameters in multi-stack extractions. It is capable of multi-well, multi-stack extractions, and uses continuous seismic data-cube interpolation to cope with the problem of arbitrary well paths. Velocity constraints in the form of checkshot data, interpreted markers, and sonic logs are integrated in a natural way. The Bayesian formulation allows computation of full posterior uncertainties of the model parameters, and the important problem of the uncertain wavelet span is addressed uses a multi-model posterior developed from Bayesian model selection theory. The wavelet extraction tool is distributed as part of the Delivery seismic inversion toolkit. A simple log and seismic viewing tool is included in the distribution. The code is written in Java, and thus platform independent, but the Seismic Unix (SU) data model makes the inversion particularly suited to Unix/Linux environments. It is a natural companion piece of software to Delivery, having the capacity to produce maximum likelihood wavelet and noise estimates, but will also be of significant utility to practitioners wanting to produce wavelet estimates for other inversion codes or purposes. The generation of full parameter uncertainties is a crucial function for workers wishing to investigate questions of wavelet stability before proceeding to more advanced inversion studies.

  9. A novel neural-wavelet approach for process diagnostics and complex system modeling

    NASA Astrophysics Data System (ADS)

    Gao, Rong

    Neural networks have been effective in several engineering applications because of their learning abilities and robustness. However certain shortcomings, such as slow convergence and local minima, are always associated with neural networks, especially neural networks applied to highly nonlinear and non-stationary problems. These problems can be effectively alleviated by integrating a new powerful tool, wavelets, into conventional neural networks. The multi-resolution analysis and feature localization capabilities of the wavelet transform offer neural networks new possibilities for learning. A neural wavelet network approach developed in this thesis enjoys fast convergence rate with little possibility to be caught at a local minimum. It combines the localization properties of wavelets with the learning abilities of neural networks. Two different testbeds are used for testing the efficiency of the new approach. The first is magnetic flowmeter-based process diagnostics: here we extend previous work, which has demonstrated that wavelet groups contain process information, to more general process diagnostics. A loop at Applied Intelligent Systems Lab (AISL) is used for collecting and analyzing data through the neural-wavelet approach. The research is important for thermal-hydraulic processes in nuclear and other engineering fields. The neural-wavelet approach developed is also tested with data from the electric power grid. More specifically, the neural-wavelet approach is used for performing short-term and mid-term prediction of power load demand. In addition, the feasibility of determining the type of load using the proposed neural wavelet approach is also examined. The notion of cross scale product has been developed as an expedient yet reliable discriminator of loads. Theoretical issues involved in the integration of wavelets and neural networks are discussed and future work outlined.

  10. Urdu Nasta'liq text recognition using implicit segmentation based on multi-dimensional long short term memory neural networks.

    PubMed

    Naz, Saeeda; Umar, Arif Iqbal; Ahmed, Riaz; Razzak, Muhammad Imran; Rashid, Sheikh Faisal; Shafait, Faisal

    2016-01-01

    The recognition of Arabic script and its derivatives such as Urdu, Persian, Pashto etc. is a difficult task due to complexity of this script. Particularly, Urdu text recognition is more difficult due to its Nasta'liq writing style. Nasta'liq writing style inherits complex calligraphic nature, which presents major issues to recognition of Urdu text owing to diagonality in writing, high cursiveness, context sensitivity and overlapping of characters. Therefore, the work done for recognition of Arabic script cannot be directly applied to Urdu recognition. We present Multi-dimensional Long Short Term Memory (MDLSTM) Recurrent Neural Networks with an output layer designed for sequence labeling for recognition of printed Urdu text-lines written in the Nasta'liq writing style. Experiments show that MDLSTM attained a recognition accuracy of 98% for the unconstrained Urdu Nasta'liq printed text, which significantly outperforms the state-of-the-art techniques.

  11. A new method to detect transitory signatures and local time/space variability structures in the climate system: the scale-dependent correlation analysis

    NASA Astrophysics Data System (ADS)

    Rodó, Xavier; Rodríguez-Arias, Miquel-Àngel

    2006-10-01

    The study of transitory signals and local variability structures in both/either time and space and their role as sources of climatic memory, is an important but often neglected topic in climate research despite its obvious importance and extensive coverage in the literature. Transitory signals arise either from non-linearities, in the climate system, transitory atmosphere-ocean couplings, and other processes in the climate system evolving after a critical threshold is crossed. These temporary interactions that, though intense, may not last long, can be responsible for a large amount of unexplained variability but are normally considered of limited relevance and often, discarded. With most of the current techniques at hand these typology of signatures are difficult to isolate because the low signal-to-noise ratio in midlatitudes, the limited recurrence of the transitory signals during a customary interval of data considered. Also, there is often a serious problem arising from the smoothing of local or transitory processes if statistical techniques are applied, that consider all the length of data available, rather than taking into account the size of the specific variability structure under investigation. Scale-dependent correlation (SDC) analysis is a new statistical method capable of highlighting the presence of transitory processes, these former being understood as temporary significant lag-dependent autocovariance in a single series, or covariance structures between two series. This approach, therefore, complements other approaches such as those resulting from the families of wavelet analysis, singular-spectrum analysis and recurrence plots. A main feature of SDC is its high-performance for short time series, its ability to characterize phase-relationships and thresholds in the bivariate domain. Ultimately, SDC helps tracking short-lagged relationships among processes that locally or temporarily couple and uncouple. The use of SDC is illustrated in the present paper by means of some synthetic time-series examples of increasing complexity, and it is compared with wavelet analysis in order to provide a well-known reference of its capabilities. A comparison between SDC and companion techniques is also addressed and results are exemplified for the specific case of some relevant El Niño-Southern Oscillation teleconnections.

  12. On the Maximum Storage Capacity of the Hopfield Model

    PubMed Central

    Folli, Viola; Leonetti, Marco; Ruocco, Giancarlo

    2017-01-01

    Recurrent neural networks (RNN) have traditionally been of great interest for their capacity to store memories. In past years, several works have been devoted to determine the maximum storage capacity of RNN, especially for the case of the Hopfield network, the most popular kind of RNN. Analyzing the thermodynamic limit of the statistical properties of the Hamiltonian corresponding to the Hopfield neural network, it has been shown in the literature that the retrieval errors diverge when the number of stored memory patterns (P) exceeds a fraction (≈ 14%) of the network size N. In this paper, we study the storage performance of a generalized Hopfield model, where the diagonal elements of the connection matrix are allowed to be different from zero. We investigate this model at finite N. We give an analytical expression for the number of retrieval errors and show that, by increasing the number of stored patterns over a certain threshold, the errors start to decrease and reach values below unit for P ≫ N. We demonstrate that the strongest trade-off between efficiency and effectiveness relies on the number of patterns (P) that are stored in the network by appropriately fixing the connection weights. When P≫N and the diagonal elements of the adjacency matrix are not forced to be zero, the optimal storage capacity is obtained with a number of stored memories much larger than previously reported. This theory paves the way to the design of RNN with high storage capacity and able to retrieve the desired pattern without distortions. PMID:28119595

  13. A user's guide to the ssWavelets package

    Treesearch

    J.H. ​Gove

    2017-01-01

    ssWavelets is an R package that is meant to be used in conjunction with the sampSurf package (Gove, 2012) to perform wavelet decomposition on the results of a sampling surface simulation. In general, the wavelet filter decomposes the sampSurf simulation results by scale (distance), with each scale corresponding to a different level of the...

  14. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  15. A novel method of identifying motor primitives using wavelet decomposition*

    PubMed Central

    Popov, Anton; Olesh, Erienne V.; Yakovenko, Sergiy; Gritsenko, Valeriya

    2018-01-01

    This study reports a new technique for extracting muscle synergies using continuous wavelet transform. The method allows to quantify coincident activation of muscle groups caused by the physiological processes of fixed duration, thus enabling the extraction of wavelet modules of arbitrary groups of muscles. Hierarchical clustering and identification of the repeating wavelet modules across subjects and across movements, was used to identify consistent muscle synergies. Results indicate that the most frequently repeated wavelet modules comprised combinations of two muscles that are not traditional agonists and span different joints. We have also found that these wavelet modules were flexibly combined across different movement directions in a pattern resembling directional tuning. This method is extendable to multiple frequency domains and signal modalities.

  16. EnvironmentalWaveletTool: Continuous and discrete wavelet analysis and filtering for environmental time series

    NASA Astrophysics Data System (ADS)

    Galiana-Merino, J. J.; Pla, C.; Fernandez-Cortes, A.; Cuezva, S.; Ortiz, J.; Benavente, D.

    2014-10-01

    A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time-period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.

  17. Loads imposed on intermediate frames of stiffened shells

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1939-01-01

    The loads imposed on intermediate frames by the curvature of the longitudinal and by the diagonal-tension effects are treated. A new empirical method is proposed for analyzing diagonal-tension effects. The basic formulas of the pure diagonal-tension theory are used, and the part of the total shear S carried by diagonal tension is assumed to be given the expression S (sub DT) = S (1-tau sub o/tau)(sup n) where tau (sub o) is the critical shear stress, tau the total (nominal shear stress), and n = 3 - sigma/tau where sigma is the stress in the intermediate frame. Numerical examples illustrate all cases treated.

  18. Finite temperature dynamics of a Holstein polaron: The thermo-field dynamics approach

    NASA Astrophysics Data System (ADS)

    Chen, Lipeng; Zhao, Yang

    2017-12-01

    Combining the multiple Davydov D2 Ansatz with the method of thermo-field dynamics, we study finite temperature dynamics of a Holstein polaron on a lattice. It has been demonstrated, using the hierarchy equations of motion method as a benchmark, that our approach provides an efficient, robust description of finite temperature dynamics of the Holstein polaron in the simultaneous presence of diagonal and off-diagonal exciton-phonon coupling. The method of thermo-field dynamics handles temperature effects in the Hilbert space with key numerical advantages over other treatments of finite-temperature dynamics based on quantum master equations in the Liouville space or wave function propagation with Monte Carlo importance sampling. While for weak to moderate diagonal coupling temperature increases inhibit polaron mobility, it is found that off-diagonal coupling induces phonon-assisted transport that dominates at high temperatures. Results on the mean square displacements show that band-like transport features dominate the diagonal coupling cases, and there exists a crossover from band-like to hopping transport with increasing temperature when including off-diagonal coupling. As a proof of concept, our theory provides a unified treatment of coherent and incoherent transport in molecular crystals and is applicable to any temperature.

  19. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices

    NASA Astrophysics Data System (ADS)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-12-01

    We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.

  20. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  1. Remote sensing of soil organic matter of farmland with hyperspectral image

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohe; Wang, Lei; Yang, Guijun; Zhang, Liyan

    2017-10-01

    Monitoring soil organic matter (SOM) of cultivated land quantitively and mastering its spatial change are helpful for fertility adjustment and sustainable development of agriculture. The study aimed to analyze the response between SOM and reflectivity of hyperspectral image with different pixel size and develop the optimal model of estimating SOM with imaging spectral technology. The wavelet transform method was used to analyze the correlation between the hyperspectral reflectivity and SOM. Then the optimal pixel size and sensitive wavelet feature scale were screened to develop the inversion model of SOM. Result showed that wavelet transform of soil hyperspectrum was help to improve the correlation between the wavelet features and SOM. In the visible wavelength range, the susceptible wavelet features of SOM mainly concentrated 460 603 nm. As the wavelength increased, the wavelet scale corresponding correlation coefficient increased maximum and then gradually decreased. In the near infrared wavelength range, the susceptible wavelet features of SOM mainly concentrated 762 882 nm. As the wavelength increased, the wavelet scale gradually decreased. The study developed multivariate model of continuous wavelet transforms by the method of stepwise linear regression (SLR). The CWT-SLR models reached higher accuracies than those of univariate models. With the resampling scale increasing, the accuracies of CWT-SLR models gradually increased, while the determination coefficients (R2) fluctuated from 0.52 to 0.59. The R2 of 5*5 scale reached highest (0.5954), while the RMSE reached lowest (2.41 g/kg). It indicated that multivariate model based on continuous wavelet transform had better ability for estimating SOM than univariate model.

  2. Fast generation of computer-generated holograms using wavelet shrinkage.

    PubMed

    Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-01-09

    Computer-generated holograms (CGHs) are generated by superimposing complex amplitudes emitted from a number of object points. However, this superposition process remains very time-consuming even when using the latest computers. We propose a fast calculation algorithm for CGHs that uses a wavelet shrinkage method, eliminating small wavelet coefficient values to express approximated complex amplitudes using only a few representative wavelet coefficients.

  3. Determination of phase from the ridge of CWT using generalized Morse wavelet

    NASA Astrophysics Data System (ADS)

    Kocahan, Ozlem; Tiryaki, Erhan; Coskun, Emre; Ozder, Serhat

    2018-03-01

    The selection of wavelet is an important step in order to determine the phase from the fringe patterns. In the present work, a new wavelet for phase retrieval from the ridge of continuous wavelet transform (CWT) is presented. The phase distributions have been extracted from the optical fringe pattern by choosing the zero order generalized morse wavelet (GMW) as a mother wavelet. The aim of the study is to reveal the ways in which the two varying parameters of GMW affect the phase calculation. To show the validity of this method, an experimental study has been conducted by using the diffraction phase microscopy (DPM) setup; consequently, the profiles of red blood cells have been retrieved. The results for the CWT ridge technique with GMW have been compared with the results for the Morlet wavelet and the Paul wavelet; the results are almost identical for Paul and zero order GMW because of their degree of freedom. Also, for further discussion, the Fourier transform and the Stockwell transform have been applied comparatively. The outcome of the comparison reveals that GMWs are highly applicable to the research in various areas, predominantly biomedicine.

  4. On-Line Loss of Control Detection Using Wavelets

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J. (Technical Monitor); Thompson, Peter M.; Klyde, David H.; Bachelder, Edward N.; Rosenthal, Theodore J.

    2005-01-01

    Wavelet transforms are used for on-line detection of aircraft loss of control. Wavelet transforms are compared with Fourier transform methods and shown to more rapidly detect changes in the vehicle dynamics. This faster response is due to a time window that decreases in length as the frequency increases. New wavelets are defined that further decrease the detection time by skewing the shape of the envelope. The wavelets are used for power spectrum and transfer function estimation. Smoothing is used to tradeoff the variance of the estimate with detection time. Wavelets are also used as front-end to the eigensystem reconstruction algorithm. Stability metrics are estimated from the frequency response and models, and it is these metrics that are used for loss of control detection. A Matlab toolbox was developed for post-processing simulation and flight data using the wavelet analysis methods. A subset of these methods was implemented in real time and named the Loss of Control Analysis Tool Set or LOCATS. A manual control experiment was conducted using a hardware-in-the-loop simulator for a large transport aircraft, in which the real time performance of LOCATS was demonstrated. The next step is to use these wavelet analysis tools for flight test support.

  5. Quality of reconstruction of compressed off-axis digital holograms by frequency filtering and wavelets.

    PubMed

    Cheremkhin, Pavel A; Kurbatova, Ekaterina A

    2018-01-01

    Compression of digital holograms can significantly help with the storage of objects and data in 2D and 3D form, its transmission, and its reconstruction. Compression of standard images by methods based on wavelets allows high compression ratios (up to 20-50 times) with minimum losses of quality. In the case of digital holograms, application of wavelets directly does not allow high values of compression to be obtained. However, additional preprocessing and postprocessing can afford significant compression of holograms and the acceptable quality of reconstructed images. In this paper application of wavelet transforms for compression of off-axis digital holograms are considered. The combined technique based on zero- and twin-order elimination, wavelet compression of the amplitude and phase components of the obtained Fourier spectrum, and further additional compression of wavelet coefficients by thresholding and quantization is considered. Numerical experiments on reconstruction of images from the compressed holograms are performed. The comparative analysis of applicability of various wavelets and methods of additional compression of wavelet coefficients is performed. Optimum parameters of compression of holograms by the methods can be estimated. Sizes of holographic information were decreased up to 190 times.

  6. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  7. Efficacy Evaluation of Different Wavelet Feature Extraction Methods on Brain MRI Tumor Detection

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel; Kubat, Miroslav

    2014-03-01

    Automated Magnetic Resonance Imaging brain tumor detection and segmentation is a challenging task. Among different available methods, feature-based methods are very dominant. While many feature extraction techniques have been employed, it is still not quite clear which of feature extraction methods should be preferred. To help improve the situation, we present the results of a study in which we evaluate the efficiency of using different wavelet transform features extraction methods in brain MRI abnormality detection. Applying T1-weighted brain image, Discrete Wavelet Transform (DWT), Discrete Wavelet Packet Transform (DWPT), Dual Tree Complex Wavelet Transform (DTCWT), and Complex Morlet Wavelet Transform (CMWT) methods are applied to construct the feature pool. Three various classifiers as Support Vector Machine, K Nearest Neighborhood, and Sparse Representation-Based Classifier are applied and compared for classifying the selected features. The results show that DTCWT and CMWT features classified with SVM, result in the highest classification accuracy, proving of capability of wavelet transform features to be informative in this application.

  8. Fault Diagnosis for Micro-Gas Turbine Engine Sensors via Wavelet Entropy

    PubMed Central

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can’t be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient. PMID:22163734

  9. Fault diagnosis for micro-gas turbine engine sensors via wavelet entropy.

    PubMed

    Yu, Bing; Liu, Dongdong; Zhang, Tianhong

    2011-01-01

    Sensor fault diagnosis is necessary to ensure the normal operation of a gas turbine system. However, the existing methods require too many resources and this need can't be satisfied in some occasions. Since the sensor readings are directly affected by sensor state, sensor fault diagnosis can be performed by extracting features of the measured signals. This paper proposes a novel fault diagnosis method for sensors based on wavelet entropy. Based on the wavelet theory, wavelet decomposition is utilized to decompose the signal in different scales. Then the instantaneous wavelet energy entropy (IWEE) and instantaneous wavelet singular entropy (IWSE) are defined based on the previous wavelet entropy theory. Subsequently, a fault diagnosis method for gas turbine sensors is proposed based on the results of a numerically simulated example. Then, experiments on this method are carried out on a real micro gas turbine engine. In the experiment, four types of faults with different magnitudes are presented. The experimental results show that the proposed method for sensor fault diagnosis is efficient.

  10. Iterating the Number of Intersection Points of the Diagonals of Irregular Convex Polygons, or C (n, 4) the Hard Way!

    ERIC Educational Resources Information Center

    Hathout, Leith

    2007-01-01

    Counting the number of internal intersection points made by the diagonals of irregular convex polygons where no three diagonals are concurrent is an interesting problem in discrete mathematics. This paper uses an iterative approach to develop a summation relation which tallies the total number of intersections, and shows that this total can be…

  11. Research on the fault diagnosis of bearing based on wavelet and demodulation

    NASA Astrophysics Data System (ADS)

    Li, Jiapeng; Yuan, Yu

    2017-05-01

    As a most commonly-used machine part, antifriction bearing is extensively used in mechanical equipment. Vibration signal analysis is one of the methods to monitor and diagnose the running status of antifriction bearings. Therefore, using wavelet analysis for demising is of great importance in the engineering practice. This paper firstly presented the basic theory of wavelet analysis to study the transformation, decomposition and reconstruction of wavelet. In addition, edition software LabVIEW was adopted to conduct wavelet and demodulation upon the vibration signal of antifriction bearing collected. With the combination of Hilbert envelop demodulation analysis, the fault character frequencies of the demised signal were extracted to conduct fault diagnosis analysis, which serves as a reference for the wavelet and demodulation of the vibration signal in engineering practice.

  12. Scope and applications of translation invariant wavelets to image registration

    NASA Technical Reports Server (NTRS)

    Chettri, Samir; LeMoigne, Jacqueline; Campbell, William

    1997-01-01

    The first part of this article introduces the notion of translation invariance in wavelets and discusses several wavelets that have this property. The second part discusses the possible applications of such wavelets to image registration. In the case of registration of affinely transformed images, we would conclude that the notion of translation invariance is not really necessary. What is needed is affine invariance and one way to do this is via the method of moment invariants. Wavelets or, in general, pyramid processing can then be combined with the method of moment invariants to reduce the computational load.

  13. Correlation Filtering of Modal Dynamics using the Laplace Wavelet

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Lind, Rick; Brenner, Martin J.

    1997-01-01

    Wavelet analysis allows processing of transient response data commonly encountered in vibration health monitoring tasks such as aircraft flutter testing. The Laplace wavelet is formulated as an impulse response of a single mode system to be similar to data features commonly encountered in these health monitoring tasks. A correlation filtering approach is introduced using the Laplace wavelet to decompose a signal into impulse responses of single mode subsystems. Applications using responses from flutter testing of aeroelastic systems demonstrate modal parameters and stability estimates can be estimated by correlation filtering free decay data with a set of Laplace wavelets.

  14. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    NASA Astrophysics Data System (ADS)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  15. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  16. Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms

    DTIC Science & Technology

    2004-08-06

    wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus

  17. Sediment Dynamics in a Vegetated Tidally Influenced Interdistributary Island: Wax Lake, Louisiana

    DTIC Science & Technology

    2017-07-01

    60 Appendix A: Time Series of Wax Lake Hydrological Measurements...north-south wind stress (right). In each plot, the global wavelet spectrum is shown to the right of the wavelet plot, and and the original time series ...for Hs. The global wavelet spectrum is shown to the right of the wavelet plot, and and the original time series is shown below

  18. A lattice-based model of rotavirus epidemics

    NASA Astrophysics Data System (ADS)

    Lara-Sagahón, A.; Govezensky, T.; Méndez-Sánchez, R. A.; José, M. V.

    2006-01-01

    The cyclic recurrence of childhood rotavirus epidemics in unvaccinated populations provides one of the best documented phenomena in population dynamics and can become a paradigm for epidemic studies. Herein we analyse the monthly incidence of rotavirus infection from the city of Melbourne, Australia during 1976-2003. We show that there is an inverse nonlinear relationship of the cumulative distribution of the number of cases per month in a log-log plot. It is also shown that the rate of transmission of rotavirus infection follows a symmetric distribution centered on zero. A wavelet phase analysis of rotavirus epidemics is also carried out. We test the hypothesis that rotavirus dynamics could be a realization of a forest-fire model with sparks and with immune trees. Some statistical properties of this model turn out to be similar to the above results of actual rotavirus data.

  19. Implementing wavelet inverse-transform processor with surface acoustic wave device.

    PubMed

    Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan

    2013-02-01

    The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Implementation of the diagonalization-free algorithm in the self-consistent field procedure within the four-component relativistic scheme.

    PubMed

    Hrdá, Marcela; Kulich, Tomáš; Repiský, Michal; Noga, Jozef; Malkina, Olga L; Malkin, Vladimir G

    2014-09-05

    A recently developed Thouless-expansion-based diagonalization-free approach for improving the efficiency of self-consistent field (SCF) methods (Noga and Šimunek, J. Chem. Theory Comput. 2010, 6, 2706) has been adapted to the four-component relativistic scheme and implemented within the program package ReSpect. In addition to the implementation, the method has been thoroughly analyzed, particularly with respect to cases for which it is difficult or computationally expensive to find a good initial guess. Based on this analysis, several modifications of the original algorithm, refining its stability and efficiency, are proposed. To demonstrate the robustness and efficiency of the improved algorithm, we present the results of four-component diagonalization-free SCF calculations on several heavy-metal complexes, the largest of which contains more than 80 atoms (about 6000 4-spinor basis functions). The diagonalization-free procedure is about twice as fast as the corresponding diagonalization. Copyright © 2014 Wiley Periodicals, Inc.

  1. Bayesian block-diagonal variable selection and model averaging

    PubMed Central

    Papaspiliopoulos, O.; Rossell, D.

    2018-01-01

    Summary We propose a scalable algorithmic framework for exact Bayesian variable selection and model averaging in linear models under the assumption that the Gram matrix is block-diagonal, and as a heuristic for exploring the model space for general designs. In block-diagonal designs our approach returns the most probable model of any given size without resorting to numerical integration. The algorithm also provides a novel and efficient solution to the frequentist best subset selection problem for block-diagonal designs. Posterior probabilities for any number of models are obtained by evaluating a single one-dimensional integral, and other quantities of interest such as variable inclusion probabilities and model-averaged regression estimates are obtained by an adaptive, deterministic one-dimensional numerical integration. The overall computational cost scales linearly with the number of blocks, which can be processed in parallel, and exponentially with the block size, rendering it most adequate in situations where predictors are organized in many moderately-sized blocks. For general designs, we approximate the Gram matrix by a block-diagonal matrix using spectral clustering and propose an iterative algorithm that capitalizes on the block-diagonal algorithms to explore efficiently the model space. All methods proposed in this paper are implemented in the R library mombf. PMID:29861501

  2. Comparison between wavelet and wavelet packet transform features for classification of faults in distribution system

    NASA Astrophysics Data System (ADS)

    Arvind, Pratul

    2012-11-01

    The ability to identify and classify all ten types of faults in a distribution system is an important task for protection engineers. Unlike transmission system, distribution systems have a complex configuration and are subjected to frequent faults. In the present work, an algorithm has been developed for identifying all ten types of faults in a distribution system by collecting current samples at the substation end. The samples are subjected to wavelet packet transform and artificial neural network in order to yield better classification results. A comparison of results between wavelet transform and wavelet packet transform is also presented thereby justifying the feature extracted from wavelet packet transform yields promising results. It should also be noted that current samples are collected after simulating a 25kv distribution system in PSCAD software.

  3. Wavelets on the Group SO(3) and the Sphere S3

    NASA Astrophysics Data System (ADS)

    Bernstein, Swanhild

    2007-09-01

    The construction of wavelets relies on translations and dilations which are perfectly given in R. On the sphere translations can be considered as rotations but it difficult to say what are dilations. For the 2-dimensional sphere there exist two different approaches to obtain wavelets which are worth to be considered. The first concept goes back to Freeden and collaborators [2] which defines wavelets by means of kernels of spherical singular integrals. The other concept developed by Antoine and Vandergheynst and coworkers [3] is a purely group theoretical approach and defines dilations as dilations in the tangent plane. Surprisingly both concepts coincides for zonal functions. We will define wavelets on the 3-dimensional sphere by means of kernels of singular integrals and demonstrate that wavelets constructed by Antoine and Vandergheynst for zonal functions meet our definition.

  4. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hadi; Rajaee, Taher

    2017-01-01

    Simulation of groundwater level (GWL) fluctuations is an important task in management of groundwater resources. In this study, the effect of wavelet analysis on the training of the artificial neural network (ANN), multi linear regression (MLR) and support vector regression (SVR) approaches was investigated, and the ANN, MLR and SVR along with the wavelet-ANN (WNN), wavelet-MLR (WLR) and wavelet-SVR (WSVR) models were compared in simulating one-month-ahead of GWL. The only variable used to develop the models was the monthly GWL data recorded over a period of 11 years from two wells in the Qom plain, Iran. The results showed that decomposing GWL time series into several sub-time series, extremely improved the training of the models. For both wells 1 and 2, the Meyer and Db5 wavelets produced better results compared to the other wavelets; which indicated wavelet types had similar behavior in similar case studies. The optimal number of delays was 6 months, which seems to be due to natural phenomena. The best WNN model, using Meyer mother wavelet with two decomposition levels, simulated one-month-ahead with RMSE values being equal to 0.069 m and 0.154 m for wells 1 and 2, respectively. The RMSE values for the WLR model were 0.058 m and 0.111 m, and for WSVR model were 0.136 m and 0.060 m for wells 1 and 2, respectively.

  5. Inferring causal genomic alterations in breast cancer using gene expression data

    PubMed Central

    2011-01-01

    Background One of the primary objectives in cancer research is to identify causal genomic alterations, such as somatic copy number variation (CNV) and somatic mutations, during tumor development. Many valuable studies lack genomic data to detect CNV; therefore, methods that are able to infer CNVs from gene expression data would help maximize the value of these studies. Results We developed a framework for identifying recurrent regions of CNV and distinguishing the cancer driver genes from the passenger genes in the regions. By inferring CNV regions across many datasets we were able to identify 109 recurrent amplified/deleted CNV regions. Many of these regions are enriched for genes involved in many important processes associated with tumorigenesis and cancer progression. Genes in these recurrent CNV regions were then examined in the context of gene regulatory networks to prioritize putative cancer driver genes. The cancer driver genes uncovered by the framework include not only well-known oncogenes but also a number of novel cancer susceptibility genes validated via siRNA experiments. Conclusions To our knowledge, this is the first effort to systematically identify and validate drivers for expression based CNV regions in breast cancer. The framework where the wavelet analysis of copy number alteration based on expression coupled with the gene regulatory network analysis, provides a blueprint for leveraging genomic data to identify key regulatory components and gene targets. This integrative approach can be applied to many other large-scale gene expression studies and other novel types of cancer data such as next-generation sequencing based expression (RNA-Seq) as well as CNV data. PMID:21806811

  6. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  7. A wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Yang, Yanxi

    2018-05-01

    We present a new wavelet ridge extraction method employing a novel cost function in two-dimensional wavelet transform profilometry (2-D WTP). First of all, the maximum value point is extracted from two-dimensional wavelet transform coefficient modulus, and the local extreme value points over 90% of maximum value are also obtained, they both constitute wavelet ridge candidates. Then, the gradient of rotate factor is introduced into the Abid's cost function, and the logarithmic Logistic model is used to adjust and improve the cost function weights so as to obtain more reasonable value estimation. At last, the dynamic programming method is used to accurately find the optimal wavelet ridge, and the wrapped phase can be obtained by extracting the phase at the ridge. Its advantage is that, the fringe pattern with low signal-to-noise ratio can be demodulated accurately, and its noise immunity will be better. Meanwhile, only one fringe pattern is needed to projected to measured object, so dynamic three-dimensional (3-D) measurement in harsh environment can be realized. Computer simulation and experimental results show that, for the fringe pattern with noise pollution, the 3-D surface recovery accuracy by the proposed algorithm is increased. In addition, the demodulation phase accuracy of Morlet, Fan and Cauchy mother wavelets are compared.

  8. Harmonic analysis of electric locomotive and traction power system based on wavelet singular entropy

    NASA Astrophysics Data System (ADS)

    Dun, Xiaohong

    2018-05-01

    With the rapid development of high-speed railway and heavy-haul transport, the locomotive and traction power system has become the main harmonic source of China's power grid. In response to this phenomenon, the system's power quality issues need timely monitoring, assessment and governance. Wavelet singular entropy is an organic combination of wavelet transform, singular value decomposition and information entropy theory, which combines the unique advantages of the three in signal processing: the time-frequency local characteristics of wavelet transform, singular value decomposition explores the basic modal characteristics of data, and information entropy quantifies the feature data. Based on the theory of singular value decomposition, the wavelet coefficient matrix after wavelet transform is decomposed into a series of singular values that can reflect the basic characteristics of the original coefficient matrix. Then the statistical properties of information entropy are used to analyze the uncertainty of the singular value set, so as to give a definite measurement of the complexity of the original signal. It can be said that wavelet entropy has a good application prospect in fault detection, classification and protection. The mat lab simulation shows that the use of wavelet singular entropy on the locomotive and traction power system harmonic analysis is effective.

  9. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing

    NASA Astrophysics Data System (ADS)

    Ghanbari Mardasi, Amir; Wu, Nan; Wu, Christine

    2018-05-01

    In this paper, a high sensitive crack detection is experimentally realized and presented on a beam under certain deflection by optimizing spatial wavelet analysis. Due to the crack existence in the beam structure, a perturbation/slop singularity is induced in the deflection profile. Spatial wavelet transformation works as a magnifier to amplify the small perturbation signal at the crack location to detect and localize the damage. The profile of a deflected aluminum cantilever beam is obtained for both intact and cracked beams by a high resolution laser profile sensor. Gabor wavelet transformation is applied on the subtraction of intact and cracked data sets. To improve detection sensitivity, scale factor in spatial wavelet transformation and the transformation repeat times are optimized. Furthermore, to detect the possible crack close to the measurement boundaries, wavelet transformation edge effect, which induces large values of wavelet coefficient around the measurement boundaries, is efficiently reduced by introducing different windowing functions. The result shows that a small crack with depth of less than 10% of the beam height can be localized with a clear perturbation. Moreover, the perturbation caused by a crack at 0.85 mm away from one end of the measurement range, which is covered by wavelet transform edge effect, emerges by applying proper window functions.

  10. A wavelet-based statistical analysis of FMRI data: I. motivation and data distribution modeling.

    PubMed

    Dinov, Ivo D; Boscardin, John W; Mega, Michael S; Sowell, Elizabeth L; Toga, Arthur W

    2005-01-01

    We propose a new method for statistical analysis of functional magnetic resonance imaging (fMRI) data. The discrete wavelet transformation is employed as a tool for efficient and robust signal representation. We use structural magnetic resonance imaging (MRI) and fMRI to empirically estimate the distribution of the wavelet coefficients of the data both across individuals and spatial locations. An anatomical subvolume probabilistic atlas is used to tessellate the structural and functional signals into smaller regions each of which is processed separately. A frequency-adaptive wavelet shrinkage scheme is employed to obtain essentially optimal estimations of the signals in the wavelet space. The empirical distributions of the signals on all the regions are computed in a compressed wavelet space. These are modeled by heavy-tail distributions because their histograms exhibit slower tail decay than the Gaussian. We discovered that the Cauchy, Bessel K Forms, and Pareto distributions provide the most accurate asymptotic models for the distribution of the wavelet coefficients of the data. Finally, we propose a new model for statistical analysis of functional MRI data using this atlas-based wavelet space representation. In the second part of our investigation, we will apply this technique to analyze a large fMRI dataset involving repeated presentation of sensory-motor response stimuli in young, elderly, and demented subjects.

  11. Image Retrieval using Integrated Features of Binary Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Agarwal, Megha; Maheshwari, R. P.

    2011-12-01

    In this paper a new approach for image retrieval is proposed with the application of binary wavelet transform. This new approach facilitates the feature calculation with the integration of histogram and correlogram features extracted from binary wavelet subbands. Experiments are performed to evaluate and compare the performance of proposed method with the published literature. It is verified that average precision and average recall of proposed method (69.19%, 41.78%) is significantly improved compared to optimal quantized wavelet correlogram (OQWC) [6] (64.3%, 38.00%) and Gabor wavelet correlogram (GWC) [10] (64.1%, 40.6%). All the experiments are performed on Corel 1000 natural image database [20].

  12. Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms

    NASA Technical Reports Server (NTRS)

    Kurdila, Andrew J.; Sharpley, Robert C.

    1999-01-01

    This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.

  13. Watermarking on 3D mesh based on spherical wavelet transform.

    PubMed

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  14. Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Wang, Jian-Zhong

    1993-01-01

    We have designed a cubic spline wavelet decomposition for the Sobolev space H(sup 2)(sub 0)(I) where I is a bounded interval. Based on a special 'point-wise orthogonality' of the wavelet basis functions, a fast Discrete Wavelet Transform (DWT) is constructed. This DWT transform will map discrete samples of a function to its wavelet expansion coefficients in O(N log N) operations. Using this transform, we propose a collocation method for the initial value boundary problem of nonlinear PDE's. Then, we test the efficiency of the DWT transform and apply the collocation method to solve linear and nonlinear PDE's.

  15. Continuous time wavelet entropy of auditory evoked potentials.

    PubMed

    Cek, M Emre; Ozgoren, Murat; Savaci, F Acar

    2010-01-01

    In this paper, the continuous time wavelet entropy (CTWE) of auditory evoked potentials (AEP) has been characterized by evaluating the relative wavelet energies (RWE) in specified EEG frequency bands. Thus, the rapid variations of CTWE due to the auditory stimulation could be detected in post-stimulus time interval. This approach removes the probability of missing the information hidden in short time intervals. The discrete time and continuous time wavelet based wavelet entropy variations were compared on non-target and target AEP data. It was observed that CTWE can also be an alternative method to analyze entropy as a function of time. 2009 Elsevier Ltd. All rights reserved.

  16. A lung sound classification system based on the rational dilation wavelet transform.

    PubMed

    Ulukaya, Sezer; Serbes, Gorkem; Sen, Ipek; Kahya, Yasemin P

    2016-08-01

    In this work, a wavelet based classification system that aims to discriminate crackle, normal and wheeze lung sounds is presented. While the previous works related with this problem use constant low Q-factor wavelets, which have limited frequency resolution and can not cope with oscillatory signals, in the proposed system, the Rational Dilation Wavelet Transform, whose Q-factors can be tuned, is employed. Proposed system yields an accuracy of 95 % for crackle, 97 % for wheeze, 93.50 % for normal and 95.17 % for total sound signal types using energy feature subset and proposed approach is superior to conventional low Q-factor wavelet analysis.

  17. A human auditory tuning curves matched wavelet function.

    PubMed

    Abolhassani, Mohammad D; Salimpour, Yousef

    2008-01-01

    This paper proposes a new quantitative approach to the problem of matching a wavelet function to a human auditory tuning curves. The auditory filter shapes were derived from the psychophysical measurements in normal-hearing listeners using the variant of the notched-noise method for brief signals in forward and simultaneous masking. These filters were used as templates for the designing a wavelet function that has the maximum matching to a tuning curve. The scaling function was calculated from the matched wavelet function and by using these functions, low pass and high pass filters were derived for the implementation of a filter bank. Therefore, new wavelet families were derived.

  18. Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.

    PubMed

    Punys, Vytenis; Maknickas, Ramunas

    2011-01-01

    Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.

  19. A simulation study for determination of refractive index dispersion of dielectric film from reflectance spectrum by using Paul wavelet

    NASA Astrophysics Data System (ADS)

    Tiryaki, Erhan; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat

    2017-02-01

    In this work, the Continuous Wavelet Transform (CWT) with Paul wavelet was improved as a tool for determination of refractive index dispersion of dielectric film by using the reflectance spectrum of the film. The reflectance spectrum was generated theoretically in the range of 0.8333 - 3.3333 μm wavenumber and it was analyzed with presented method. Obtained refractive index determined from various resolution of Paul wavelet were compared with the input values, and the importance of the tunable resolution with Paul wavelet was discussed briefly. The noise immunity and uncertainty of the method was also studied.

  20. An efficient indexing scheme for binary feature based biometric database

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Sana, A.; Mehrotra, H.; Hwang, C. Jinshong

    2007-04-01

    The paper proposes an efficient indexing scheme for binary feature template using B+ tree. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The binarized approximation coefficient at second level is divided into four quadrants of equal size and Hamming distance (HD) for each quadrant with respect to sample template of all ones is measured. This HD value of each quadrant is used to generate upper and lower range values which are inserted into B+ tree. The nodes of tree at first level contain the lower and upper range values generated from HD of first quadrant. Similarly, lower and upper range values for the three quadrants are stored in the second, third and fourth level respectively. Finally leaf node contains the set of identifiers. At the time of identification, the test image is used to generate HD for four quadrants. Then the B+ tree is traversed based on the value of HD at every node and terminates to leaf nodes with set of identifiers. The feature vector for each identifier is retrieved from the particular bin of secondary memory and matched with test feature template to get top matches. The proposed scheme is implemented on ear biometric database collected at IIT Kanpur. The system is giving an overall accuracy of 95.8% at penetration rate of 34%.

  1. Highly efficient codec based on significance-linked connected-component analysis of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Chai, Bing-Bing; Vass, Jozsef; Zhuang, Xinhua

    1997-04-01

    Recent success in wavelet coding is mainly attributed to the recognition of importance of data organization. There has been several very competitive wavelet codecs developed, namely, Shapiro's Embedded Zerotree Wavelets (EZW), Servetto et. al.'s Morphological Representation of Wavelet Data (MRWD), and Said and Pearlman's Set Partitioning in Hierarchical Trees (SPIHT). In this paper, we propose a new image compression algorithm called Significant-Linked Connected Component Analysis (SLCCA) of wavelet coefficients. SLCCA exploits both within-subband clustering of significant coefficients and cross-subband dependency in significant fields. A so-called significant link between connected components is designed to reduce the positional overhead of MRWD. In addition, the significant coefficients' magnitude are encoded in bit plane order to match the probability model of the adaptive arithmetic coder. Experiments show that SLCCA outperforms both EZW and MRWD, and is tied with SPIHT. Furthermore, it is observed that SLCCA generally has the best performance on images with large portion of texture. When applied to fingerprint image compression, it outperforms FBI's wavelet scalar quantization by about 1 dB.

  2. Characteristic Analysis of Air-gun Source Wavelet based on the Vertical Cable Data

    NASA Astrophysics Data System (ADS)

    Xing, L.

    2016-12-01

    Air guns are important sources for marine seismic exploration. Far-field wavelets of air gun arrays, as a necessary parameter for pre-stack processing and source models, plays an important role during marine seismic data processing and interpretation. When an air gun fires, it generates a series of air bubbles. Similar to onshore seismic exploration, the water forms a plastic fluid near the bubble; the farther the air gun is located from the measurement, the more steady and more accurately represented the wavelet will be. In practice, hydrophones should be placed more than 100 m from the air gun; however, traditional seismic cables cannot meet this requirement. On the other hand, vertical cables provide a viable solution to this problem. This study uses a vertical cable to receive wavelets from 38 air guns and data are collected offshore Southeast Qiong, where the water depth is over 1000 m. In this study, the wavelets measured using this technique coincide very well with the simulated wavelets and can therefore represent the real shape of the wavelets. This experiment fills a technology gap in China.

  3. Spatially adaptive bases in wavelet-based coding of semi-regular meshes

    NASA Astrophysics Data System (ADS)

    Denis, Leon; Florea, Ruxandra; Munteanu, Adrian; Schelkens, Peter

    2010-05-01

    In this paper we present a wavelet-based coding approach for semi-regular meshes, which spatially adapts the employed wavelet basis in the wavelet transformation of the mesh. The spatially-adaptive nature of the transform requires additional information to be stored in the bit-stream in order to allow the reconstruction of the transformed mesh at the decoder side. In order to limit this overhead, the mesh is first segmented into regions of approximately equal size. For each spatial region, a predictor is selected in a rate-distortion optimal manner by using a Lagrangian rate-distortion optimization technique. When compared against the classical wavelet transform employing the butterfly subdivision filter, experiments reveal that the proposed spatially-adaptive wavelet transform significantly decreases the energy of the wavelet coefficients for all subbands. Preliminary results show also that employing the proposed transform for the lowest-resolution subband systematically yields improved compression performance at low-to-medium bit-rates. For the Venus and Rabbit test models the compression improvements add up to 1.47 dB and 0.95 dB, respectively.

  4. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  5. 186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Hu, Qing; Reno, John L.

    2009-01-01

    Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.

  6. A Wavelet Model for Vocalic Speech Coarticulation

    DTIC Science & Technology

    1994-10-01

    control vowel’s signal as the mother wavelet. A practical experiment is conducted to evaluate the coarticulation channel using samples 01 real speech...transformation from a control speech state (input) to an effected speech state (output). Specifically, a vowel produced in isolation is transformed into an...the wavelet transform of the effected vowel’s signal, using the control vowel’s signal as the mother wavelet. A practical experiment is conducted to

  7. Signal processing method and system for noise removal and signal extraction

    DOEpatents

    Fu, Chi Yung; Petrich, Loren

    2009-04-14

    A signal processing method and system combining smooth level wavelet pre-processing together with artificial neural networks all in the wavelet domain for signal denoising and extraction. Upon receiving a signal corrupted with noise, an n-level decomposition of the signal is performed using a discrete wavelet transform to produce a smooth component and a rough component for each decomposition level. The n.sup.th level smooth component is then inputted into a corresponding neural network pre-trained to filter out noise in that component by pattern recognition in the wavelet domain. Additional rough components, beginning at the highest level, may also be retained and inputted into corresponding neural networks pre-trained to filter out noise in those components also by pattern recognition in the wavelet domain. In any case, an inverse discrete wavelet transform is performed on the combined output from all the neural networks to recover a clean signal back in the time domain.

  8. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  9. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    NASA Astrophysics Data System (ADS)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  10. A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.

    PubMed

    Liao, Ke; Zhu, Min; Ding, Lei

    2013-08-01

    The present study investigated the use of transform sparseness of cortical current density on human brain surface to improve electroencephalography/magnetoencephalography (EEG/MEG) inverse solutions. Transform sparseness was assessed by evaluating compressibility of cortical current densities in transform domains. To do that, a structure compression method from computer graphics was first adopted to compress cortical surface structure, either regular or irregular, into hierarchical multi-resolution meshes. Then, a new face-based wavelet method based on generated multi-resolution meshes was proposed to compress current density functions defined on cortical surfaces. Twelve cortical surface models were built by three EEG/MEG softwares and their structural compressibility was evaluated and compared by the proposed method. Monte Carlo simulations were implemented to evaluate the performance of the proposed wavelet method in compressing various cortical current density distributions as compared to other two available vertex-based wavelet methods. The present results indicate that the face-based wavelet method can achieve higher transform sparseness than vertex-based wavelet methods. Furthermore, basis functions from the face-based wavelet method have lower coherence against typical EEG and MEG measurement systems than vertex-based wavelet methods. Both high transform sparseness and low coherent measurements suggest that the proposed face-based wavelet method can improve the performance of L1-norm regularized EEG/MEG inverse solutions, which was further demonstrated in simulations and experimental setups using MEG data. Thus, this new transform on complicated cortical structure is promising to significantly advance EEG/MEG inverse source imaging technologies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Exploration of EEG features of Alzheimer's disease using continuous wavelet transform.

    PubMed

    Ghorbanian, Parham; Devilbiss, David M; Hess, Terry; Bernstein, Allan; Simon, Adam J; Ashrafiuon, Hashem

    2015-09-01

    We have developed a novel approach to elucidate several discriminating EEG features of Alzheimer's disease. The approach is based on the use of a variety of continuous wavelet transforms, pairwise statistical tests with multiple comparison correction, and several decision tree algorithms, in order to choose the most prominent EEG features from a single sensor. A pilot study was conducted to record EEG signals from Alzheimer's disease (AD) patients and healthy age-matched control (CTL) subjects using a single dry electrode device during several eyes-closed (EC) and eyes-open (EO) resting conditions. We computed the power spectrum distribution properties and wavelet and sample entropy of the wavelet coefficients time series at scale ranges approximately corresponding to the major brain frequency bands. A predictive index was developed using the results from statistical tests and decision tree algorithms to identify the most reliable significant features of the AD patients when compared to healthy controls. The three most dominant features were identified as larger absolute mean power and larger standard deviation of the wavelet scales corresponding to 4-8 Hz (θ) during EO and lower wavelet entropy of the wavelet scales corresponding to 8-12 Hz (α) during EC, respectively. The fourth reliable set of distinguishing features of AD patients was lower relative power of the wavelet scales corresponding to 12-30 Hz (β) followed by lower skewness of the wavelet scales corresponding to 2-4 Hz (upper δ), both during EO. In general, the results indicate slowing and lower complexity of EEG signal in AD patients using a very easy-to-use and convenient single dry electrode device.

  12. Parameters effective on estimating a nonstationary mixed-phase wavelet using cumulant matching approach

    NASA Astrophysics Data System (ADS)

    Vosoughi, Ehsan; Javaherian, Abdolrahim

    2018-01-01

    Seismic inversion is a process performed to remove the effects of propagated wavelets in order to recover the acoustic impedance. To obtain valid velocity and density values related to subsurface layers through the inversion process, it is highly essential to perform reliable wavelet estimation such as cumulant matching approach. For this purpose, the seismic data were windowed in this work in such a way that two consecutive windows were only one sample apart. Also, we did not consider any fixed wavelet for any window and let the phase of each wavelet rotate in each sample in the window. Comparing the fourth order cumulant of the whitened trace and fourth-order moment of the all-pass operator in each window generated a cost function that should be minimized with a non-linear optimization method. In this regard, parameters effective on the estimation of the nonstationary mixed-phase wavelets were tested over the created nonstationary seismic trace at 0.82 s and 1.6 s. Besides, we compared the consequences of each parameter on estimated wavelets at two mentioned times. The parameters studied in this work are window length, taper type, the number of iteration, signal-to-noise ratio, bandwidth to central frequency ratio, and Q factor. The results show that applying the optimum values of the effective parameters, the average correlation of the estimated mixed-phase wavelets with the original ones is about 87%. Moreover, the effectiveness of the proposed approach was examined on a synthetic nonstationary seismic section with variable Q factor values alongside the time and offset axis. Eventually, the cumulant matching method was applied on a cross line of the migrated data from a 3D data set of an oilfield in the Persian Gulf. Also, the effect of the wrong Q estimation on the estimated mixed-phase wavelet was considered on the real data set. It is concluded that the accuracy of the estimated wavelet relied on the estimated Q and more than 10% error in the estimated value of Q is acceptable. Eventually, an 88% correlation was found between the estimated mixed-phase wavelets and the original ones for three horizons. The estimated wavelets applied to the data and the result of deconvolution processes was presented.

  13. Extracting fingerprint of wireless devices based on phase noise and multiple level wavelet decomposition

    NASA Astrophysics Data System (ADS)

    Zhao, Weichen; Sun, Zhuo; Kong, Song

    2016-10-01

    Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.

  14. The generalized Morse wavelet method to determine refractive index dispersion of dielectric films

    NASA Astrophysics Data System (ADS)

    Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat

    2017-04-01

    The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.

  15. Embedded wavelet packet transform technique for texture compression

    NASA Astrophysics Data System (ADS)

    Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay

    1995-09-01

    A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.

  16. Wavelet Decomposition for Discrete Probability Maps

    DTIC Science & Technology

    2007-08-01

    using other wavelet basis functions, such as those mentioned in Section 7 15 DSTO–TN–0760 References 1. P. M. Bentley and J . T . E. McDonnell. Wavelet...84, 1995. 0272-1716. 18. E. J . Stollnitz, T . D. DeRose, and D. H. Salesin. Wavelets for computer graphics: a primer. 2. Computer Graphics and...and Computer Modelling in 2006 from the University of South Australia, Mawson Lakes. Part of this de- gree was undertaken at the University of Twente

  17. Evidence for asymmetric inertial instability in the FIRE satellite dataset

    NASA Technical Reports Server (NTRS)

    Stevens, Duane E.; Ciesielski, Paul E.

    1990-01-01

    One of the main goals of the First ISCCP Regional Experiment (FIRE) is obtaining the basic knowledge to better interpret satellite image of clouds on regional and smaller scales. An analysis of a mesoscale circulation phenomenon as observed in hourly FIRE satellite images is presented. Specifically, the phenomenon of interest appeared on satellite images as a group of propagating cloud wavelets located on the edge of a cirrus canopy on the anticylonic side of a strong, upper-level subtropical jet. These wavelets, which were observed between 1300 and 2200 GMT on 25 February 1987, are seen most distinctly in the GOES-West infrared satellite picture at 1800 GMT. The purpose is to document that these wavelets were a manifestation of asymmetric inertial instability. During their lifetime, the wavelets were located over the North American synoptic sounding network, so that the meteorological conditions surrounding their occurrence could be examined. A particular emphasis of the analysis is on the jet streak in which the wavelets were imbedded. The characteristics of the wavelets are examined using hourly satellite imagery. The hypothesis that inertial instability is the dynamical mechanism responsible for generating the observed cloud wavelets was examined. To further substantiate this contention, the observed characteristics of the wavelets are compared to, and found to be consistent with, a theoretical model of inertia instability by Stevens and Ciesielski.

  18. Most suitable mother wavelet for the analysis of fractal properties of stride interval time series via the average wavelet coefficient

    PubMed Central

    Zhang, Zhenwei; VanSwearingen, Jessie; Brach, Jennifer S.; Perera, Subashan

    2016-01-01

    Human gait is a complex interaction of many nonlinear systems and stride intervals exhibit self-similarity over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree and can be interpreted as a biomarker of relative diseases. The previous study showed that the average wavelet method provides the most accurate results to estimate this scaling exponent when applied to stride interval time series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet method. This paper presents a comparative numerical analysis of sixteen mother wavelets using simulated and real fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good performance on the mean square error test for both short and long signals. Next, we comparatively analyzed these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and relatively low errors for short signal lengths. It can be considered as the most suitable mother function without the burden of considering the signal length. PMID:27960102

  19. Hierarchical analysis of spatial pattern and processes of Douglas-fir forests. Ph.D. Thesis, 10 Sep. 1991 Abstract Only

    NASA Technical Reports Server (NTRS)

    Bradshaw, G. A.

    1995-01-01

    There has been an increased interest in the quantification of pattern in ecological systems over the past years. This interest is motivated by the desire to construct valid models which extend across many scales. Spatial methods must quantify pattern, discriminate types of pattern, and relate hierarchical phenomena across scales. Wavelet analysis is introduced as a method to identify spatial structure in ecological transect data. The main advantage of the wavelet transform over other methods is its ability to preserve and display hierarchical information while allowing for pattern decomposition. Two applications of wavelet analysis are illustrated, as a means to: (1) quantify known spatial patterns in Douglas-fir forests at several scales, and (2) construct spatially-explicit hypotheses regarding pattern generating mechanisms. Application of the wavelet variance, derived from the wavelet transform, is developed for forest ecosystem analysis to obtain additional insight into spatially-explicit data. Specifically, the resolution capabilities of the wavelet variance are compared to the semi-variogram and Fourier power spectra for the description of spatial data using a set of one-dimensional stationary and non-stationary processes. The wavelet cross-covariance function is derived from the wavelet transform and introduced as a alternative method for the analysis of multivariate spatial data of understory vegetation and canopy in Douglas-fir forests of the western Cascades of Oregon.

  20. Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2015-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  1. Image processing for quantifying fracture orientation and length scale transitions during brittle deformation

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.

    2017-12-01

    We have implemented a novel image processing tool, namely two-dimensional (2D) Morlet wavelet analysis, capable of detecting changes occurring in fracture patterns at different scales of observation, and able of recognising the dominant fracture orientations and the spatial configurations for progressively larger (or smaller) scale of analysis. Because of its inherited anisotropy, the Morlet wavelet is proved to be an excellent choice for detecting directional linear features, i.e. regions where the amplitude of the signal is regular along one direction and has sharp variation along the perpendicular direction. Performances of the Morlet wavelet are tested against the 'classic' Mexican hat wavelet, deploying a complex synthetic fracture network. When applied to a natural fracture network, formed triaxially (σ1>σ2=σ3) deforming a core sample of the Hopeman sandstone, the combination of 2D Morlet wavelet and wavelet coefficient maps allows for the detection of characteristic scale orientation and length transitions, associated with the shifts from distributed damage to the growth of localised macroscopic shear fracture. A complementary outcome arises from the wavelet coefficient maps produced by increasing the wavelet scale parameter. These maps can be used to chart the variations in the spatial distribution of the analysed entities, meaning that it is possible to retrieve information on the density of fracture patterns at specific length scales during deformation.

  2. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    PubMed Central

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2017-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329

  3. Continuous Wavelet Transform Analysis of Acceleration Signals Measured from a Wave Buoy

    PubMed Central

    Chuang, Laurence Zsu-Hsin; Wu, Li-Chung; Wang, Jong-Hao

    2013-01-01

    Accelerometers, which can be installed inside a floating platform on the sea, are among the most commonly used sensors for operational ocean wave measurements. To examine the non-stationary features of ocean waves, this study was conducted to derive a wavelet spectrum of ocean waves and to synthesize sea surface elevations from vertical acceleration signals of a wave buoy through the continuous wavelet transform theory. The short-time wave features can be revealed by simultaneously examining the wavelet spectrum and the synthetic sea surface elevations. The in situ wave signals were applied to verify the practicality of the wavelet-based algorithm. We confirm that the spectral leakage and the noise at very-low-frequency bins influenced the accuracies of the estimated wavelet spectrum and the synthetic sea surface elevations. The appropriate thresholds of these two factors were explored. To study the short-time wave features from the wave records, the acceleration signals recorded from an accelerometer inside a discus wave buoy are analysed. The results from the wavelet spectrum show the evidence of short-time nonlinear wave events. Our study also reveals that more surface profiles with higher vertical asymmetry can be found from short-time nonlinear wave with stronger harmonic spectral peak. Finally, we conclude that the algorithms of continuous wavelet transform are practical for revealing the short-time wave features of the buoy acceleration signals. PMID:23966188

  4. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    PubMed Central

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  5. Robotic Compliant Motion Control for Aircraft Refueling Applications

    DTIC Science & Technology

    1988-12-01

    J. DUVALL 29 SEP 88 C-26 SUBROUTINE IMPCONST(CONST,MINV, BMAT ) Abstract: This subroutine calculates the 25 constants used by the Fortran subroutine...mass with center of gravity along the joint 6 axis. The desired mass and the damping ( BMAT ) matrices are assumed to be diagonal. Joints angles 4,5...constants. MINV -- A 2x2 matrix containing the elements of the inverse desired mass matrix (diagonal). BMAT -- A 2x2 matrix of damping coefficents (diagonal

  6. The ssWavelets package

    Treesearch

    Jeffrey H. Gove

    2017-01-01

    This package adds several classes, generics and associated methods as well as a few various functions to help with wavelet decomposition of sampling surfaces generated using sampSurf. As such, it can be thought of as an extension to sampSurf for wavelet analysis.

  7. High-performance implementation of Chebyshev filter diagonalization for interior eigenvalue computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pieper, Andreas; Kreutzer, Moritz; Alvermann, Andreas, E-mail: alvermann@physik.uni-greifswald.de

    2016-11-15

    We study Chebyshev filter diagonalization as a tool for the computation of many interior eigenvalues of very large sparse symmetric matrices. In this technique the subspace projection onto the target space of wanted eigenvectors is approximated with filter polynomials obtained from Chebyshev expansions of window functions. After the discussion of the conceptual foundations of Chebyshev filter diagonalization we analyze the impact of the choice of the damping kernel, search space size, and filter polynomial degree on the computational accuracy and effort, before we describe the necessary steps towards a parallel high-performance implementation. Because Chebyshev filter diagonalization avoids the need formore » matrix inversion it can deal with matrices and problem sizes that are presently not accessible with rational function methods based on direct or iterative linear solvers. To demonstrate the potential of Chebyshev filter diagonalization for large-scale problems of this kind we include as an example the computation of the 10{sup 2} innermost eigenpairs of a topological insulator matrix with dimension 10{sup 9} derived from quantum physics applications.« less

  8. Improving stochastic estimates with inference methods: calculating matrix diagonals.

    PubMed

    Selig, Marco; Oppermann, Niels; Ensslin, Torsten A

    2012-02-01

    Estimating the diagonal entries of a matrix, that is not directly accessible but only available as a linear operator in the form of a computer routine, is a common necessity in many computational applications, especially in image reconstruction and statistical inference. Here, methods of statistical inference are used to improve the accuracy or the computational costs of matrix probing methods to estimate matrix diagonals. In particular, the generalized Wiener filter methodology, as developed within information field theory, is shown to significantly improve estimates based on only a few sampling probes, in cases in which some form of continuity of the solution can be assumed. The strength, length scale, and precise functional form of the exploited autocorrelation function of the matrix diagonal is determined from the probes themselves. The developed algorithm is successfully applied to mock and real world problems. These performance tests show that, in situations where a matrix diagonal has to be calculated from only a small number of computationally expensive probes, a speedup by a factor of 2 to 10 is possible with the proposed method. © 2012 American Physical Society

  9. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide smoothed descriptions of the series at the scales deemed relevant.

  10. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan, China.

    PubMed

    Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng

    2017-07-01

    Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.

  11. Wavelet entropy of BOLD time series: An application to Rolandic epilepsy.

    PubMed

    Gupta, Lalit; Jansen, Jacobus F A; Hofman, Paul A M; Besseling, René M H; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2017-12-01

    To assess the wavelet entropy for the characterization of intrinsic aberrant temporal irregularities in the time series of resting-state blood-oxygen-level-dependent (BOLD) signal fluctuations. Further, to evaluate the temporal irregularities (disorder/order) on a voxel-by-voxel basis in the brains of children with Rolandic epilepsy. The BOLD time series was decomposed using the discrete wavelet transform and the wavelet entropy was calculated. Using a model time series consisting of multiple harmonics and nonstationary components, the wavelet entropy was compared with Shannon and spectral (Fourier-based) entropy. As an application, the wavelet entropy in 22 children with Rolandic epilepsy was compared to 22 age-matched healthy controls. The images were obtained by performing resting-state functional magnetic resonance imaging (fMRI) using a 3T system, an 8-element receive-only head coil, and an echo planar imaging pulse sequence ( T2*-weighted). The wavelet entropy was also compared to spectral entropy, regional homogeneity, and Shannon entropy. Wavelet entropy was found to identify the nonstationary components of the model time series. In Rolandic epilepsy patients, a significantly elevated wavelet entropy was observed relative to controls for the whole cerebrum (P = 0.03). Spectral entropy (P = 0.41), regional homogeneity (P = 0.52), and Shannon entropy (P = 0.32) did not reveal significant differences. The wavelet entropy measure appeared more sensitive to detect abnormalities in cerebral fluctuations represented by nonstationary effects in the BOLD time series than more conventional measures. This effect was observed in the model time series as well as in Rolandic epilepsy. These observations suggest that the brains of children with Rolandic epilepsy exhibit stronger nonstationary temporal signal fluctuations than controls. 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1728-1737. © 2017 International Society for Magnetic Resonance in Medicine.

  12. Wavelet-based fMRI analysis: 3-D denoising, signal separation, and validation metrics

    PubMed Central

    Khullar, Siddharth; Michael, Andrew; Correa, Nicolle; Adali, Tulay; Baum, Stefi A.; Calhoun, Vince D.

    2010-01-01

    We present a novel integrated wavelet-domain based framework (w-ICA) for 3-D de-noising functional magnetic resonance imaging (fMRI) data followed by source separation analysis using independent component analysis (ICA) in the wavelet domain. We propose the idea of a 3-D wavelet-based multi-directional de-noising scheme where each volume in a 4-D fMRI data set is sub-sampled using the axial, sagittal and coronal geometries to obtain three different slice-by-slice representations of the same data. The filtered intensity value of an arbitrary voxel is computed as an expected value of the de-noised wavelet coefficients corresponding to the three viewing geometries for each sub-band. This results in a robust set of de-noised wavelet coefficients for each voxel. Given the decorrelated nature of these de-noised wavelet coefficients; it is possible to obtain more accurate source estimates using ICA in the wavelet domain. The contributions of this work can be realized as two modules. First, the analysis module where we combine a new 3-D wavelet denoising approach with better signal separation properties of ICA in the wavelet domain, to yield an activation component that corresponds closely to the true underlying signal and is maximally independent with respect to other components. Second, we propose and describe two novel shape metrics for post-ICA comparisons between activation regions obtained through different frameworks. We verified our method using simulated as well as real fMRI data and compared our results against the conventional scheme (Gaussian smoothing + spatial ICA: s-ICA). The results show significant improvements based on two important features: (1) preservation of shape of the activation region (shape metrics) and (2) receiver operating characteristic (ROC) curves. It was observed that the proposed framework was able to preserve the actual activation shape in a consistent manner even for very high noise levels in addition to significant reduction in false positives voxels. PMID:21034833

  13. Admissible Diffusion Wavelets and Their Applications in Space-Frequency Processing.

    PubMed

    Hou, Tingbo; Qin, Hong

    2013-01-01

    As signal processing tools, diffusion wavelets and biorthogonal diffusion wavelets have been propelled by recent research in mathematics. They employ diffusion as a smoothing and scaling process to empower multiscale analysis. However, their applications in graphics and visualization are overshadowed by nonadmissible wavelets and their expensive computation. In this paper, our motivation is to broaden the application scope to space-frequency processing of shape geometry and scalar fields. We propose the admissible diffusion wavelets (ADW) on meshed surfaces and point clouds. The ADW are constructed in a bottom-up manner that starts from a local operator in a high frequency, and dilates by its dyadic powers to low frequencies. By relieving the orthogonality and enforcing normalization, the wavelets are locally supported and admissible, hence facilitating data analysis and geometry processing. We define the novel rapid reconstruction, which recovers the signal from multiple bands of high frequencies and a low-frequency base in full resolution. It enables operations localized in both space and frequency by manipulating wavelet coefficients through space-frequency filters. This paper aims to build a common theoretic foundation for a host of applications, including saliency visualization, multiscale feature extraction, spectral geometry processing, etc.

  14. S2LET: A code to perform fast wavelet analysis on the sphere

    NASA Astrophysics Data System (ADS)

    Leistedt, B.; McEwen, J. D.; Vandergheynst, P.; Wiaux, Y.

    2013-10-01

    We describe S2LET, a fast and robust implementation of the scale-discretised wavelet transform on the sphere. Wavelets are constructed through a tiling of the harmonic line and can be used to probe spatially localised, scale-dependent features of signals on the sphere. The reconstruction of a signal from its wavelets coefficients is made exact here through the use of a sampling theorem on the sphere. Moreover, a multiresolution algorithm is presented to capture all information of each wavelet scale in the minimal number of samples on the sphere. In addition S2LET supports the HEALPix pixelisation scheme, in which case the transform is not exact but nevertheless achieves good numerical accuracy. The core routines of S2LET are written in C and have interfaces in Matlab, IDL and Java. Real signals can be written to and read from FITS files and plotted as Mollweide projections. The S2LET code is made publicly available, is extensively documented, and ships with several examples in the four languages supported. At present the code is restricted to axisymmetric wavelets but will be extended to directional, steerable wavelets in a future release.

  15. Acoustic emission detection for mass fractions of materials based on wavelet packet technology.

    PubMed

    Wang, Xianghong; Xiang, Jianjun; Hu, Hongwei; Xie, Wei; Li, Xiongbing

    2015-07-01

    Materials are often damaged during the process of detecting mass fractions by traditional methods. Acoustic emission (AE) technology combined with wavelet packet analysis is used to evaluate the mass fractions of microcrystalline graphite/polyvinyl alcohol (PVA) composites in this study. Attenuation characteristics of AE signals across the composites with different mass fractions are investigated. The AE signals are decomposed by wavelet packet technology to obtain the relationships between the energy and amplitude attenuation coefficients of feature wavelet packets and mass fractions as well. Furthermore, the relationship is validated by a sample. The larger proportion of microcrystalline graphite will correspond to the higher attenuation of energy and amplitude. The attenuation characteristics of feature wavelet packets with the frequency range from 125 kHz to 171.85 kHz are more suitable for the detection of mass fractions than those of the original AE signals. The error of the mass fraction of microcrystalline graphite calculated by the feature wavelet packet (1.8%) is lower than that of the original signal (3.9%). Therefore, AE detection base on wavelet packet analysis is an ideal NDT method for evaluate mass fractions of composite materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Segmentation-based wavelet transform for still-image compression

    NASA Astrophysics Data System (ADS)

    Mozelle, Gerard; Seghier, Abdellatif; Preteux, Francoise J.

    1996-10-01

    In order to address simultaneously the two functionalities, content-based scalability required by MPEG-4, we introduce a segmentation-based wavelet transform (SBWT). SBWT takes into account both the mathematical properties of multiresolution analysis and the flexibility of region-based approaches for image compression. The associated methodology has two stages: 1) image segmentation into convex and polygonal regions; 2) 2D-wavelet transform of the signal corresponding to each region. In this paper, we have mathematically studied a method for constructing a multiresolution analysis (VjOmega)j (epsilon) N adapted to a polygonal region which provides an adaptive region-based filtering. The explicit construction of scaling functions, pre-wavelets and orthonormal wavelets bases defined on a polygon is carried out by using scaling functions is established by using the theory of Toeplitz operators. The corresponding expression can be interpreted as a location property which allow defining interior and boundary scaling functions. Concerning orthonormal wavelets and pre-wavelets, a similar expansion is obtained by taking advantage of the properties of the orthogonal projector P(V(j(Omega )) perpendicular from the space Vj(Omega ) + 1 onto the space (Vj(Omega )) perpendicular. Finally the mathematical results provide a simple and fast algorithm adapted to polygonal regions.

  17. Wavelet Types Comparison for Extracting Iris Feature Based on Energy Compaction

    NASA Astrophysics Data System (ADS)

    Rizal Isnanto, R.

    2015-06-01

    Human iris has a very unique pattern which is possible to be used as a biometric recognition. To identify texture in an image, texture analysis method can be used. One of method is wavelet that extract the image feature based on energy. Wavelet transforms used are Haar, Daubechies, Coiflets, Symlets, and Biorthogonal. In the research, iris recognition based on five mentioned wavelets was done and then comparison analysis was conducted for which some conclusions taken. Some steps have to be done in the research. First, the iris image is segmented from eye image then enhanced with histogram equalization. The features obtained is energy value. The next step is recognition using normalized Euclidean distance. Comparison analysis is done based on recognition rate percentage with two samples stored in database for reference images. After finding the recognition rate, some tests are conducted using Energy Compaction for all five types of wavelets above. As the result, the highest recognition rate is achieved using Haar, whereas for coefficients cutting for C(i) < 0.1, Haar wavelet has a highest percentage, therefore the retention rate or significan coefficient retained for Haaris lower than other wavelet types (db5, coif3, sym4, and bior2.4)

  18. 23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INCLINED END POST / VERTICAL / DIAGONAL / PORTAL BRACING DETAIL. VIEW TO SOUTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  19. Entropy of isolated quantum systems after a quench.

    PubMed

    Santos, Lea F; Polkovnikov, Anatoli; Rigol, Marcos

    2011-07-22

    A diagonal entropy, which depends only on the diagonal elements of the system's density matrix in the energy representation, has been recently introduced as the proper definition of thermodynamic entropy in out-of-equilibrium quantum systems. We study this quantity after an interaction quench in lattice hard-core bosons and spinless fermions, and after a local chemical potential quench in a system of hard-core bosons in a superlattice potential. The former systems have a chaotic regime, where the diagonal entropy becomes equivalent to the equilibrium microcanonical entropy, coinciding with the onset of thermalization. The latter system is integrable. We show that its diagonal entropy is additive and different from the entropy of a generalized Gibbs ensemble, which has been introduced to account for the effects of conserved quantities at integrability.

  20. Necessary and sufficient conditions for discrete wavelet frames in CN

    NASA Astrophysics Data System (ADS)

    Deepshikha; Vashisht, Lalit K.

    2017-07-01

    We present necessary and sufficient conditions with explicit frame bounds for a discrete wavelet system of the form {DaTk ϕ } a ∈ U(N) , k ∈IN to be a frame for the unitary space CN. It is shown that the canonical dual of a discrete wavelet frame for CN has the same structure. This is not true (well known) for canonical dual of a wavelet frame for L2(R) . Several numerical examples are given to illustrate the results.

  1. Skin image retrieval using Gabor wavelet texture feature.

    PubMed

    Ou, X; Pan, W; Zhang, X; Xiao, P

    2016-12-01

    Skin imaging plays a key role in many clinical studies. We have used many skin imaging techniques, including the recently developed capacitive contact skin imaging based on fingerprint sensors. The aim of this study was to develop an effective skin image retrieval technique using Gabor wavelet transform, which can be used on different types of skin images, but with a special focus on skin capacitive contact images. Content-based image retrieval (CBIR) is a useful technology to retrieve stored images from database by supplying query images. In a typical CBIR, images are retrieved based on colour, shape, texture, etc. In this study, texture feature is used for retrieving skin images, and Gabor wavelet transform is used for texture feature description and extraction. The results show that the Gabor wavelet texture features can work efficiently on different types of skin images. Although Gabor wavelet transform is slower compared with other image retrieval techniques, such as principal component analysis (PCA) and grey-level co-occurrence matrix (GLCM), Gabor wavelet transform is the best for retrieving skin capacitive contact images and facial images with different orientations. Gabor wavelet transform can also work well on facial images with different expressions and skin cancer/disease images. We have developed an effective skin image retrieval method based on Gabor wavelet transform, that it is useful for retrieving different types of images, namely digital colour face images, digital colour skin cancer and skin disease images, and particularly greyscale skin capacitive contact images. Gabor wavelet transform can also be potentially useful for face recognition (with different orientation and expressions) and skin cancer/disease diagnosis. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Necessary and sufficient condition for the realization of the complex wavelet

    NASA Astrophysics Data System (ADS)

    Keita, Alpha; Qing, Qianqin; Wang, Nengchao

    1997-04-01

    Wavelet theory is a whole new signal analysis theory in recent years, and the appearance of which is attracting lots of experts in many different fields giving it a deepen study. Wavelet transformation is a new kind of time. Frequency domain analysis method of localization in can-be- realized time domain or frequency domain. It has many perfect characteristics that many other kinds of time frequency domain analysis, such as Gabor transformation or Viginier. For example, it has orthogonality, direction selectivity, variable time-frequency domain resolution ratio, adjustable local support, parsing data in little amount, and so on. All those above make wavelet transformation a very important new tool and method in signal analysis field. Because the calculation of complex wavelet is very difficult, in application, real wavelet function is used. In this paper, we present a necessary and sufficient condition that the real wavelet function can be obtained by the complex wavelet function. This theorem has some significant values in theory. The paper prepares its technique from Hartley transformation, then, it gives the complex wavelet was a signal engineering expert. His Hartley transformation, which also mentioned by Hartley, had been overlooked for about 40 years, for the social production conditions at that time cannot help to show its superiority. Only when it came to the end of 70s and the early 80s, after the development of the fast algorithm of Fourier transformation and the hardware implement to some degree, the completely some positive-negative transforming method was coming to take seriously. W transformation, which mentioned by Zhongde Wang, pushed the studying work of Hartley transformation and its fast algorithm forward. The kernel function of Hartley transformation.

  3. Continuous wavelet transforms for the simultaneous quantitative analysis and dissolution testing of lamivudine-zidovudine tablets.

    PubMed

    Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli

    2013-01-01

    Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.

  4. Nonequilibrium thermo-chemical calculations using a diagonal implicit scheme

    NASA Technical Reports Server (NTRS)

    Imlay, Scott T.; Roberts, Donald W.; Soetrisno, Moeljo; Eberhardt, Scott

    1991-01-01

    A recently developed computer program for hypersonic vehicle flow analysis is described. The program uses a diagonal implicit algorithm to solve the equations of viscous flow for a gas in thermochemical nonequilibrium. The diagonal scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The program uses multiple zones of grids patched together and includes radiation wall and rarefied gas boundary conditions. Solutions are presented for hypersonic flows of air and hydrogen air mixtures.

  5. Multi-resolution analysis for ear recognition using wavelet features

    NASA Astrophysics Data System (ADS)

    Shoaib, M.; Basit, A.; Faye, I.

    2016-11-01

    Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.

  6. Non-stationary dynamics in the bouncing ball: A wavelet perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in

    2014-12-01

    The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less

  7. [Recognition of landscape characteristic scale based on two-dimension wavelet analysis].

    PubMed

    Gao, Yan-Ni; Chen, Wei; He, Xing-Yuan; Li, Xiao-Yu

    2010-06-01

    Three wavelet bases, i. e., Haar, Daubechies, and Symlet, were chosen to analyze the validity of two-dimension wavelet analysis in recognizing the characteristic scales of the urban, peri-urban, and rural landscapes of Shenyang. Owing to the transform scale of two-dimension wavelet must be the integer power of 2, some characteristic scales cannot be accurately recognized. Therefore, the pixel resolution of images was resampled to 3, 3.5, 4, and 4.5 m to densify the scale in analysis. It was shown that two-dimension wavelet analysis worked effectively in checking characteristic scale. Haar, Daubechies, and Symle were the optimal wavelet bases to the peri-urban landscape, urban landscape, and rural landscape, respectively. Both Haar basis and Symlet basis played good roles in recognizing the fine characteristic scale of rural landscape and in detecting the boundary of peri-urban landscape. Daubechies basis and Symlet basis could be also used to detect the boundary of urban landscape and rural landscape, respectively.

  8. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    PubMed

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  9. The wavelet response as a multiscale characterization of scattering processes at granular interfaces.

    PubMed

    Le Gonidec, Yves; Gibert, Dominique

    2006-11-01

    We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.

  10. Wavelet methodology to improve single unit isolation in primary motor cortex cells

    PubMed Central

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A.

    2016-01-01

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein’s unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. PMID:25794461

  11. Evaluating the Efficacy of Wavelet Configurations on Turbulent-Flow Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaomeng; Gruchalla, Kenny; Potter, Kristin

    2015-10-25

    I/O is increasingly becoming a significant constraint for simulation codes and visualization tools on modern supercomputers. Data compression is an attractive workaround, and, in particular, wavelets provide a promising solution. However, wavelets can be applied in multiple configurations, and the variations in configuration impact accuracy, storage cost, and execution time. While the variation in these factors over wavelet configurations have been explored in image processing, they are not well understood for visualization and analysis of scientific data. To illuminate this issue, we evaluate multiple wavelet configurations on turbulent-flow data. Our approach is to repeat established analysis routines on uncompressed andmore » lossy-compressed versions of a data set, and then quantitatively compare their outcomes. Our findings show that accuracy varies greatly based on wavelet configuration, while storage cost and execution time vary less. Overall, our study provides new insights for simulation analysts and visualization experts, who need to make tradeoffs between accuracy, storage cost, and execution time.« less

  12. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson's disease prediction.

    PubMed

    Khan, Maryam Mahsal; Mendes, Alexandre; Chalup, Stephan K

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson's disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results.

  13. Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction

    PubMed Central

    Mendes, Alexandre; Chalup, Stephan K.

    2018-01-01

    Wavelet Neural Networks are a combination of neural networks and wavelets and have been mostly used in the area of time-series prediction and control. Recently, Evolutionary Wavelet Neural Networks have been employed to develop cancer prediction models. The present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The search for a high quality ensemble is directed by a fitness function that incorporates the accuracy of the classifiers both independently and as part of the ensemble itself. The ensemble approach is tested on three publicly available biomedical benchmark datasets, one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation strategy. Our experimental results show that, for the first dataset, the performance was similar to previous studies reported in literature. On the second dataset, the Evolutionary Wavelet Neural Network ensembles performed better than all previous methods. The third dataset is relatively new and this study is the first to report benchmark results. PMID:29420578

  14. RANDOM MATRIX DIAGONALIZATION--A COMPUTER PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchel, K.; Greibach, R.J.; Porter, C.E.

    A computer prograra is described which generates random matrices, diagonalizes them and sorts appropriately the resulting eigenvalues and eigenvector components. FAP and FORTRAN listings for the IBM 7090 computer are included. (auth)

  15. Travelling waves and spatial hierarchies in measles epidemics

    NASA Astrophysics Data System (ADS)

    Grenfell, B. T.; Bjørnstad, O. N.; Kappey, J.

    2001-12-01

    Spatio-temporal travelling waves are striking manifestations of predator-prey and host-parasite dynamics. However, few systems are well enough documented both to detect repeated waves and to explain their interaction with spatio-temporal variations in population structure and demography. Here, we demonstrate recurrent epidemic travelling waves in an exhaustive spatio-temporal data set for measles in England and Wales. We use wavelet phase analysis, which allows for dynamical non-stationarity-a complication in interpreting spatio-temporal patterns in these and many other ecological time series. In the pre-vaccination era, conspicuous hierarchical waves of infection moved regionally from large cities to small towns; the introduction of measles vaccination restricted but did not eliminate this hierarchical contagion. A mechanistic stochastic model suggests a dynamical explanation for the waves-spread via infective `sparks' from large `core' cities to smaller `satellite' towns. Thus, the spatial hierarchy of host population structure is a prerequisite for these infection waves.

  16. Multifractality in plasma edge electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Neto, C. Rodrigues; Guimarães-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2008-08-01

    Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvão et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.

  17. A Diagonal-Steering-Based Binaural Beamforming Algorithm Incorporating a Diagonal Speech Localizer for Persons With Bilateral Hearing Impairment.

    PubMed

    Lee, Jun Chang; Nam, Kyoung Won; Jang, Dong Pyo; Kim, In Young

    2015-12-01

    Previously suggested diagonal-steering algorithms for binaural hearing support devices have commonly assumed that the direction of the speech signal is known in advance, which is not always the case in many real circumstances. In this study, a new diagonal-steering-based binaural speech localization (BSL) algorithm is proposed, and the performances of the BSL algorithm and the binaural beamforming algorithm, which integrates the BSL and diagonal-steering algorithms, were evaluated using actual speech-in-noise signals in several simulated listening scenarios. Testing sounds were recorded in a KEMAR mannequin setup and two objective indices, improvements in signal-to-noise ratio (SNRi ) and segmental SNR (segSNRi ), were utilized for performance evaluation. Experimental results demonstrated that the accuracy of the BSL was in the 90-100% range when input SNR was -10 to +5 dB range. The average differences between the γ-adjusted and γ-fixed diagonal-steering algorithms (for -15 to +5 dB input SNR) in the talking in the restaurant scenario were 0.203-0.937 dB for SNRi and 0.052-0.437 dB for segSNRi , and in the listening while car driving scenario, the differences were 0.387-0.835 dB for SNRi and 0.259-1.175 dB for segSNRi . In addition, the average difference between the BSL-turned-on and the BSL-turned-off cases for the binaural beamforming algorithm in the listening while car driving scenario was 1.631-4.246 dB for SNRi and 0.574-2.784 dB for segSNRi . In all testing conditions, the γ-adjusted diagonal-steering and BSL algorithm improved the values of the indices more than the conventional algorithms. The binaural beamforming algorithm, which integrates the proposed BSL and diagonal-steering algorithm, is expected to improve the performance of the binaural hearing support devices in noisy situations. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Master Lovas-Andai and equivalent formulas verifying the 8/33 two-qubit Hilbert-Schmidt separability probability and companion rational-valued conjectures

    NASA Astrophysics Data System (ADS)

    Slater, Paul B.

    2018-04-01

    We begin by investigating relationships between two forms of Hilbert-Schmidt two-rebit and two-qubit "separability functions"—those recently advanced by Lovas and Andai (J Phys A Math Theor 50(29):295303, 2017), and those earlier presented by Slater (J Phys A 40(47):14279, 2007). In the Lovas-Andai framework, the independent variable ɛ \\in [0,1] is the ratio σ (V) of the singular values of the 2 × 2 matrix V=D_2^{1/2} D_1^{-1/2} formed from the two 2 × 2 diagonal blocks (D_1, D_2) of a 4 × 4 density matrix D= ||ρ _{ij}||. In the Slater setting, the independent variable μ is the diagonal-entry ratio √{ρ _{11} ρ _ {44}/ρ _ {22 ρ _ {33}}}—with, of central importance, μ =ɛ or μ =1/ɛ when both D_1 and D_2 are themselves diagonal. Lovas and Andai established that their two-rebit "separability function" \\tilde{χ }_1 (ɛ ) (≈ ɛ ) yields the previously conjectured Hilbert-Schmidt separability probability of 29/64. We are able, in the Slater framework (using cylindrical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result. Further, we newly find its two-qubit, two-quater[nionic]-bit and "two-octo[nionic]-bit" counterparts, \\tilde{χ _2}(ɛ ) =1/3 ɛ ^2 ( 4-ɛ ^2) , \\tilde{χ _4}(ɛ ) =1/35 ɛ ^4 ( 15 ɛ ^4-64 ɛ ^2+84) and \\tilde{χ _8} (ɛ )= 1/1287ɛ ^8 ( 1155 ɛ ^8-7680 ɛ ^6+20160 ɛ ^4-25088 ɛ ^2+12740) . These immediately lead to predictions of Hilbert-Schmidt separability/PPT-probabilities of 8/33, 26/323 and 44482/4091349, in full agreement with those of the "concise formula" (Slater in J Phys A 46:445302, 2013), and, additionally, of a "specialized induced measure" formula. Then, we find a Lovas-Andai "master formula," \\tilde{χ _d}(ɛ )= ɛ ^d Γ (d+1)^3 _3\\tilde{F}_2( -{d/2,d/2,d;d/2+1,3 d/2+1;ɛ ^2) }/{Γ ( d/2+1) ^2}, encompassing both even and odd values of d. Remarkably, we are able to obtain the \\tilde{χ _d}(ɛ ) formulas, d=1,2,4, applicable to full (9-, 15-, 27-) dimensional sets of density matrices, by analyzing (6-, 9, 15-) dimensional sets, with not only diagonal D_1 and D_2, but also an additional pair of nullified entries. Nullification of a further pair still leads to X-matrices, for which a distinctly different, simple Dyson-index phenomenon is noted. C. Koutschan, then, using his HolonomicFunctions program, develops an order-4 recurrence satisfied by the predictions of the several formulas, establishing their equivalence. A two-qubit separability probability of 1-256/27 π ^2 is obtained based on the operator monotone function √{x}, with the use of \\tilde{χ _2}(ɛ ).

  19. 4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. LOOKING SOUTHWEST AT LATTICED GUARDRAIL, DIAGONALS, ASPHALT DECK AND LACED ANGLES ON VERTICALS - Wayne County Bridge No. 122, Spanning West Fork Whitewater River at Main Street, Milton, Wayne County, IN

  20. Detail view of turnbuckle in diagonal member, with kodachrome film ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of turnbuckle in diagonal member, with kodachrome film box on right turnbuckle for scale. - Pennsylvania Railroad, Whitford Bridge, Spanning Amtrak tracks at Whitford Road, Whitford, Chester County, PA

  1. Detail of inclined end post, diagonal tension rods, and vertical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of inclined end post, diagonal tension rods, and vertical members with concrete encased lower chord. - Mowersville Road Bridge, Mowersville Road (Township Route 644) spanning Paxton Run, Mowersville, Franklin County, PA

  2. 16. DIAGONAL VIEW TO NORTHWEST OF 1895 ENGINE/PUMP HOUSE SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DIAGONAL VIEW TO NORTHWEST OF 1895 ENGINE/PUMP HOUSE SHOWING REPLACEMENT DIESEL ENGINE LOCATIONS AND ASSOCIATED COOLING EQUIPMENT WITH PIPING - Deer Island Pumping Station, Boston, Suffolk County, MA

  3. 30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BEARING SHOE / VERTICAL / DIAGONAL / UPPER AND LOWER CHORD DETAIL OF DECK TRUSS. VIEW TO NORTHEAST. - Abraham Lincoln Memorial Bridge, Spanning Missouri River on Highway 30 between Nebraska & Iowa, Blair, Washington County, NE

  4. A theoretical study of the dissociative recombination of SH+ with electrons through the 2Π states of SH.

    PubMed

    Kashinski, D O; Talbi, D; Hickman, A P; Di Nallo, O E; Colboc, F; Chakrabarti, K; Schneider, I F; Mezei, J Zs

    2017-05-28

    A quantitative theoretical study of the dissociative recombination of SH + with electrons has been carried out. Multireference, configuration interaction calculations were used to determine accurate potential energy curves for SH + and SH. The block diagonalization method was used to disentangle strongly interacting SH valence and Rydberg states and to construct a diabatic Hamiltonian whose diagonal matrix elements provide the diabatic potential energy curves. The off-diagonal elements are related to the electronic valence-Rydberg couplings. Cross sections and rate coefficients for the dissociative recombination reaction were calculated with a stepwise version of the multichannel quantum defect theory, using the molecular data provided by the block diagonalization method. The calculated rates are compared with the most recent measurements performed on the ion Test Storage Ring (TSR) in Heidelberg, Germany.

  5. Diagonal chromatography to study plant protein modifications.

    PubMed

    Walton, Alan; Tsiatsiani, Liana; Jacques, Silke; Stes, Elisabeth; Messens, Joris; Van Breusegem, Frank; Goormachtig, Sofie; Gevaert, Kris

    2016-08-01

    An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Vector coding of wavelet-transformed images

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Zhi, Cheng; Zhou, Yuanhua

    1998-09-01

    Wavelet, as a brand new tool in signal processing, has got broad recognition. Using wavelet transform, we can get octave divided frequency band with specific orientation which combines well with the properties of Human Visual System. In this paper, we discuss the classified vector quantization method for multiresolution represented image.

  7. Fabric wrinkle characterization and classification using modified wavelet coefficients and optimized support-vector-machine classifier

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel wrinkle evaluation method that uses modified wavelet coefficients and an optimized support-vector-machine (SVM) classification scheme to characterize and classify wrinkle appearance of fabric. Fabric images were decomposed with the wavelet transform (WT), and five parame...

  8. Measurement of entanglement entropy in the two-dimensional Potts model using wavelet analysis.

    PubMed

    Tomita, Yusuke

    2018-05-01

    A method is introduced to measure the entanglement entropy using a wavelet analysis. Using this method, the two-dimensional Haar wavelet transform of a configuration of Fortuin-Kasteleyn (FK) clusters is performed. The configuration represents a direct snapshot of spin-spin correlations since spin degrees of freedom are traced out in FK representation. A snapshot of FK clusters loses image information at each coarse-graining process by the wavelet transform. It is shown that the loss of image information measures the entanglement entropy in the Potts model.

  9. On the Daubechies-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a Daubechies-based wavelet basis is constructed and superconvergence is proven. That is, it will be proven that under the assumption of periodic boundary conditions that the differentiation matrix is accurate of order 2M, even though the approximation subspace can represent exactly only polynomials up to degree M-1, where M is the number of vanishing moments of the associated wavelet. It is illustrated that Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small-scale structure is present.

  10. EEG Artifact Removal Using a Wavelet Neural Network

    NASA Technical Reports Server (NTRS)

    Nguyen, Hoang-Anh T.; Musson, John; Li, Jiang; McKenzie, Frederick; Zhang, Guangfan; Xu, Roger; Richey, Carl; Schnell, Tom

    2011-01-01

    !n this paper we developed a wavelet neural network. (WNN) algorithm for Electroencephalogram (EEG) artifact removal without electrooculographic (EOG) recordings. The algorithm combines the universal approximation characteristics of neural network and the time/frequency property of wavelet. We. compared the WNN algorithm with .the ICA technique ,and a wavelet thresholding method, which was realized by using the Stein's unbiased risk estimate (SURE) with an adaptive gradient-based optimal threshold. Experimental results on a driving test data set show that WNN can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy data.

  11. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

    NASA Astrophysics Data System (ADS)

    Alam Khan, Najeeb; Razzaq, Oyoon Abdul

    2016-03-01

    In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

  12. Periodized Daubechies wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restrepo, J.M.; Leaf, G.K.; Schlossnagle, G.

    1996-03-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrated by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and their use ius illustrated in the approximation of two commonly used differential operators. The periodization of the connection coefficients in Galerkin schemes is presented in detail.

  13. Interactions between Uterine EMG at Different Sites Investigated Using Wavelet Analysis: Comparison of Pregnancy and Labor Contractions

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud; Terrien, Jérémy; Karlsson, Brynjar; Marque, Catherine

    2010-12-01

    This paper describes the use of the Morlet wavelet transform to investigate the difference in the time-frequency plane between uterine EMG signals recorded simultaneously on two different sites on women's abdomen, both during pregnancy and in labor. The methods used are wavelet transform, cross wavelet transform, phase/amplitude correlation, and phase synchronization. We computed the linear relationship and phase synchronization between uterine signals measured during the same contractions at two different sites on data obtained from women during pregnancy and labor. The results show that the Morlet wavelet transform can successfully analyze and quantify the relationship between uterine electrical activities at different sites and could be employed to investigate the evolution of uterine contraction from pregnancy to labor.

  14. Directional dual-tree rational-dilation complex wavelet transform.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2014-01-01

    Dyadic discrete wavelet transform (DWT) has been used successfully in processing signals having non-oscillatory transient behaviour. However, due to the low Q-factor property of their wavelet atoms, the dyadic DWT is less effective in processing oscillatory signals such as embolic signals (ESs). ESs are extracted from quadrature Doppler signals, which are the output of Doppler ultrasound systems. In order to process ESs, firstly, a pre-processing operation known as phase filtering for obtaining directional signals from quadrature Doppler signals must be employed. Only then, wavelet based methods can be applied to these directional signals for further analysis. In this study, a directional dual-tree rational-dilation complex wavelet transform, which can be applied directly to quadrature signals and has the ability of extracting directional information during analysis, is introduced.

  15. Performance of the Wavelet Decomposition on Massively Parallel Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.; LeMoigne, Jacqueline; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    Traditionally, Fourier Transforms have been utilized for performing signal analysis and representation. But although it is straightforward to reconstruct a signal from its Fourier transform, no local description of the signal is included in its Fourier representation. To alleviate this problem, Windowed Fourier transforms and then wavelet transforms have been introduced, and it has been proven that wavelets give a better localization than traditional Fourier transforms, as well as a better division of the time- or space-frequency plane than Windowed Fourier transforms. Because of these properties and after the development of several fast algorithms for computing the wavelet representation of any signal, in particular the Multi-Resolution Analysis (MRA) developed by Mallat, wavelet transforms have increasingly been applied to signal analysis problems, especially real-life problems, in which speed is critical. In this paper we present and compare efficient wavelet decomposition algorithms on different parallel architectures. We report and analyze experimental measurements, using NASA remotely sensed images. Results show that our algorithms achieve significant performance gains on current high performance parallel systems, and meet scientific applications and multimedia requirements. The extensive performance measurements collected over a number of high-performance computer systems have revealed important architectural characteristics of these systems, in relation to the processing demands of the wavelet decomposition of digital images.

  16. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  17. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    PubMed

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  18. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG

    PubMed Central

    Chen, Duo; Wan, Suiren; Xiang, Jing; Bao, Forrest Sheng

    2017-01-01

    In the past decade, Discrete Wavelet Transform (DWT), a powerful time-frequency tool, has been widely used in computer-aided signal analysis of epileptic electroencephalography (EEG), such as the detection of seizures. One of the important hurdles in the applications of DWT is the settings of DWT, which are chosen empirically or arbitrarily in previous works. The objective of this study aimed to develop a framework for automatically searching the optimal DWT settings to improve accuracy and to reduce computational cost of seizure detection. To address this, we developed a method to decompose EEG data into 7 commonly used wavelet families, to the maximum theoretical level of each mother wavelet. Wavelets and decomposition levels providing the highest accuracy in each wavelet family were then searched in an exhaustive selection of frequency bands, which showed optimal accuracy and low computational cost. The selection of frequency bands and features removed approximately 40% of redundancies. The developed algorithm achieved promising performance on two well-tested EEG datasets (accuracy >90% for both datasets). The experimental results of the developed method have demonstrated that the settings of DWT affect its performance on seizure detection substantially. Compared with existing seizure detection methods based on wavelet, the new approach is more accurate and transferable among datasets. PMID:28278203

  19. Wavelet-space Correlation Imaging for High-speed MRI without Motion Monitoring or Data Segmentation

    PubMed Central

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2014-01-01

    Purpose This study aims to 1) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and 2) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Methods Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called “wavelet-space correlation imaging”, is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Results Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Conclusion Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. PMID:25470230

  20. Multidimensional, mapping-based complex wavelet transforms.

    PubMed

    Fernandes, Felix C A; van Spaendonck, Rutger L C; Burrus, C Sidney

    2005-01-01

    Although the discrete wavelet transform (DWT) is a powerful tool for signal and image processing, it has three serious disadvantages: shift sensitivity, poor directionality, and lack of phase information. To overcome these disadvantages, we introduce multidimensional, mapping-based, complex wavelet transforms that consist of a mapping onto a complex function space followed by a DWT of the complex mapping. Unlike other popular transforms that also mitigate DWT shortcomings, the decoupled implementation of our transforms has two important advantages. First, the controllable redundancy of the mapping stage offers a balance between degree of shift sensitivity and transform redundancy. This allows us to create a directional, nonredundant, complex wavelet transform with potential benefits for image coding systems. To the best of our knowledge, no other complex wavelet transform is simultaneously directional and nonredundant. The second advantage of our approach is the flexibility to use any DWT in the transform implementation. As an example, we exploit this flexibility to create the complex double-density DWT: a shift-insensitive, directional, complex wavelet transform with a low redundancy of (3M - 1)/(2M - 1) in M dimensions. No other transform achieves all these properties at a lower redundancy, to the best of our knowledge. By exploiting the advantages of our multidimensional, mapping-based complex wavelet transforms in seismic signal-processing applications, we have demonstrated state-of-the-art results.

  1. Exact reconstruction with directional wavelets on the sphere

    NASA Astrophysics Data System (ADS)

    Wiaux, Y.; McEwen, J. D.; Vandergheynst, P.; Blanc, O.

    2008-08-01

    A new formalism is derived for the analysis and exact reconstruction of band-limited signals on the sphere with directional wavelets. It represents an evolution of a previously developed wavelet formalism developed by Antoine & Vandergheynst and Wiaux et al. The translations of the wavelets at any point on the sphere and their proper rotations are still defined through the continuous three-dimensional rotations. The dilations of the wavelets are directly defined in harmonic space through a new kernel dilation, which is a modification of an existing harmonic dilation. A family of factorized steerable functions with compact harmonic support which are suitable for this kernel dilation are first identified. A scale-discretized wavelet formalism is then derived, relying on this dilation. The discrete nature of the analysis scales allows the exact reconstruction of band-limited signals. A corresponding exact multi-resolution algorithm is finally described and an implementation is tested. The formalism is of interest notably for the denoising or the deconvolution of signals on the sphere with a sparse expansion in wavelets. In astrophysics, it finds a particular application for the identification of localized directional features in the cosmic microwave background data, such as the imprint of topological defects, in particular, cosmic strings, and for their reconstruction after separation from the other signal components.

  2. Texture feature extraction based on wavelet transform and gray-level co-occurrence matrices applied to osteosarcoma diagnosis.

    PubMed

    Hu, Shan; Xu, Chao; Guan, Weiqiao; Tang, Yong; Liu, Yana

    2014-01-01

    Osteosarcoma is the most common malignant bone tumor among children and adolescents. In this study, image texture analysis was made to extract texture features from bone CR images to evaluate the recognition rate of osteosarcoma. To obtain the optimal set of features, Sym4 and Db4 wavelet transforms and gray-level co-occurrence matrices were applied to the image, with statistical methods being used to maximize the feature selection. To evaluate the performance of these methods, a support vector machine algorithm was used. The experimental results demonstrated that the Sym4 wavelet had a higher classification accuracy (93.44%) than the Db4 wavelet with respect to osteosarcoma occurrence in the epiphysis, whereas the Db4 wavelet had a higher classification accuracy (96.25%) for osteosarcoma occurrence in the diaphysis. Results including accuracy, sensitivity, specificity and ROC curves obtained using the wavelets were all higher than those obtained using the features derived from the GLCM method. It is concluded that, a set of texture features can be extracted from the wavelets and used in computer-aided osteosarcoma diagnosis systems. In addition, this study also confirms that multi-resolution analysis is a useful tool for texture feature extraction during bone CR image processing.

  3. Synthesis of wavelet envelope in 2-D random media having power-law spectra: comparison with FD simulations

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Fehler, Michael C.

    2016-10-01

    The envelope broadening and the peak delay of the S-wavelet of a small earthquake with increasing travel distance are results of scattering by random velocity inhomogeneities in the earth medium. As a simple mathematical model, Sato proposed a new stochastic synthesis of the scalar wavelet envelope in 3-D von Kármán type random media when the centre wavenumber of the wavelet is in the power-law spectral range of the random velocity fluctuation. The essential idea is to split the random medium spectrum into two components using the centre wavenumber as a reference: the long-scale (low-wavenumber spectral) component produces the peak delay and the envelope broadening by multiple scattering around the forward direction; the short-scale (high-wavenumber spectral) component attenuates wave amplitude by wide angle scattering. The former is calculated by the Markov approximation based on the parabolic approximation and the latter is calculated by the Born approximation. Here, we extend the theory for the envelope synthesis of a wavelet in 2-D random media, which makes it easy to compare with finite difference (FD) simulation results. The synthetic wavelet envelope is analytically written by using the random medium parameters in the angular frequency domain. For the case that the power spectral density function of the random velocity fluctuation has a steep roll-off at large wavenumbers, the envelope broadening is small and frequency independent, and scattering attenuation is weak. For the case of a small roll-off, however, the envelope broadening is large and increases with frequency, and the scattering attenuation is strong and increases with frequency. As a preliminary study, we compare synthetic wavelet envelopes with the average of FD simulation wavelet envelopes in 50 synthesized random media, which are characterized by the RMS fractional velocity fluctuation ε = 0.05, correlation scale a = 5 km and the background wave velocity V0 = 4 km s-1. We use the radiation of a 2 Hz Ricker wavelet from a point source. For all the cases of von Kármán order κ = 0.1, 0.5 and 1, we find the synthetic wavelet envelopes are a good match to the characteristics of FD simulation wavelet envelopes in a time window starting from the onset through the maximum peak to the time when the amplitude decreases to half the peak amplitude.

  4. Line Interference Effects Using a Refined Robert-Bonamy Formalism: the Test Case of the Isotropic Raman Spectra of Autoperturbed N2

    NASA Technical Reports Server (NTRS)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck

    2014-01-01

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  5. An efficient sparse matrix multiplication scheme for the CYBER 205 computer

    NASA Technical Reports Server (NTRS)

    Lambiotte, Jules J., Jr.

    1988-01-01

    This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.

  6. Virial expansion for almost diagonal random matrices

    NASA Astrophysics Data System (ADS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    The algebra H of the dual -1 Hahn polynomials is derived and shown to arise in the Clebsch-Gordan problem of sl{sub -1}(2). The dual -1 Hahn polynomials are the bispectral polynomials of a discrete argument obtained from the q{yields}-1 limit of the dual q-Hahn polynomials. The Hopf algebra sl{sub -1}(2) has four generators including an involution, it is also a q{yields}-1 limit of the quantum algebra sl{sub q}(2) and furthermore, the dynamical algebra of the parabose oscillator. The algebra H, a two-parameter generalization of u(2) with an involution as additional generator, is first derived from the recurrence relation of themore » -1 Hahn polynomials. It is then shown that H can be realized in terms of the generators of two added sl{sub -1}(2) algebras, so that the Clebsch-Gordan coefficients of sl{sub -1}(2) are dual -1 Hahn polynomials. An irreducible representation of H involving five-diagonal matrices and connected to the difference equation of the dual -1 Hahn polynomials is constructed.« less

  8. Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions

    NASA Astrophysics Data System (ADS)

    Christensen, Neil

    2018-01-01

    We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.

  9. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  10. Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Zhao, Yang; Yi, Cai; Tsui, Kwok-Leung; Lin, Jianhui

    2018-02-01

    Rolling element bearings are widely used in various industrial machines, such as electric motors, generators, pumps, gearboxes, railway axles, turbines, and helicopter transmissions. Fault diagnosis of rolling element bearings is beneficial to preventing any unexpected accident and reducing economic loss. In the past years, many bearing fault detection methods have been developed. Recently, a new adaptive signal processing method called empirical wavelet transform attracts much attention from readers and engineers and its applications to bearing fault diagnosis have been reported. The main problem of empirical wavelet transform is that Fourier segments required in empirical wavelet transform are strongly dependent on the local maxima of the amplitudes of the Fourier spectrum of a signal, which connotes that Fourier segments are not always reliable and effective if the Fourier spectrum of the signal is complicated and overwhelmed by heavy noises and other strong vibration components. In this paper, sparsity guided empirical wavelet transform is proposed to automatically establish Fourier segments required in empirical wavelet transform for fault diagnosis of rolling element bearings. Industrial bearing fault signals caused by single and multiple railway axle bearing defects are used to verify the effectiveness of the proposed sparsity guided empirical wavelet transform. Results show that the proposed method can automatically discover Fourier segments required in empirical wavelet transform and reveal single and multiple railway axle bearing defects. Besides, some comparisons with three popular signal processing methods including ensemble empirical mode decomposition, the fast kurtogram and the fast spectral correlation are conducted to highlight the superiority of the proposed method.

  11. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  12. Wavelet Analyses and Applications

    ERIC Educational Resources Information Center

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  13. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  14. Wavelet methodology to improve single unit isolation in primary motor cortex cells.

    PubMed

    Ortiz-Rosario, Alexis; Adeli, Hojjat; Buford, John A

    2015-05-15

    The proper isolation of action potentials recorded extracellularly from neural tissue is an active area of research in the fields of neuroscience and biomedical signal processing. This paper presents an isolation methodology for neural recordings using the wavelet transform (WT), a statistical thresholding scheme, and the principal component analysis (PCA) algorithm. The effectiveness of five different mother wavelets was investigated: biorthogonal, Daubachies, discrete Meyer, symmetric, and Coifman; along with three different wavelet coefficient thresholding schemes: fixed form threshold, Stein's unbiased estimate of risk, and minimax; and two different thresholding rules: soft and hard thresholding. The signal quality was evaluated using three different statistical measures: mean-squared error, root-mean squared, and signal to noise ratio. The clustering quality was evaluated using two different statistical measures: isolation distance, and L-ratio. This research shows that the selection of the mother wavelet has a strong influence on the clustering and isolation of single unit neural activity, with the Daubachies 4 wavelet and minimax thresholding scheme performing the best. Copyright © 2015. Published by Elsevier B.V.

  15. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  16. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  17. Segmentation of dermoscopy images using wavelet networks.

    PubMed

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh

    2013-04-01

    This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.

  18. Wavelet based detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Gur, Berke M.; Niezrecki, Christopher

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of watercraft collisions in Florida's coastal waterways. Several boater warning systems, based upon manatee vocalizations, have been proposed to reduce the number of collisions. Three detection methods based on the Fourier transform (threshold, harmonic content and autocorrelation methods) were previously suggested and tested. In the last decade, the wavelet transform has emerged as an alternative to the Fourier transform and has been successfully applied in various fields of science and engineering including the acoustic detection of dolphin vocalizations. As of yet, no prior research has been conducted in analyzing manatee vocalizations using the wavelet transform. Within this study, the wavelet transform is used as an alternative to the Fourier transform in detecting manatee vocalizations. The wavelet coefficients are analyzed and tested against a specified criterion to determine the existence of a manatee call. The performance of the method presented is tested on the same data previously used in the prior studies, and the results are compared. Preliminary results indicate that using the wavelet transform as a signal processing technique to detect manatee vocalizations shows great promise.

  19. Flexural anchorage performance at diagonal crack locations.

    DOT National Transportation Integrated Search

    2010-12-01

    Large numbers of reinforced concrete deck girder bridges that were constructed during the interstate system expansion of the 1950s have developed diagonal cracking in the stems. Though compliant with design codes when constructed, many of these bridg...

  20. Assessment methodology for diagonally cracked reinforced concrete deck girders.

    DOT National Transportation Integrated Search

    2004-10-01

    This report details the results of a research program conducted to estimate the capacity and remaining life of 1950s : vintage conventionally reinforced concrete deck girder (RCDG) bridges with diagonal cracks. The investigation : encompassed fiel...

  1. Is the Diagonal Part of the Self-Energy Negligible within an Isolated Vortex in Weak-Coupling Superconductors?

    NASA Astrophysics Data System (ADS)

    Kurosawa, Noriyuki

    2018-02-01

    In the weak-coupling theory of superconductivity, the diagonal self-energy term is usually disregarded so that this term is already included in the renormalized chemical potential. Using the bulk solution, we can easily see that the term vanishes in the quasiclassical level. However, the validity of this treatment is obscured in nonuniform systems, such as quantized vortices. In this paper, we study an isolated vortex both analytically and numerically using the quasiclassical theory and demonstrate that the finite magnitude of the self-energy can emerge within a vortex in some odd-parity superconductors. We also find that the existence of diagonal self-energy can induce the breaking of the axisymmetry of vortices in chiral p-wave superconductors. This implies that the diagonal self-energy is not negligible within a vortex in odd-parity superconductors in general, even in the weak-coupling limit.

  2. Volumetric analysis of the diagonal band of Broca in patients with schizophrenia and affective disorders: A post-mortem study.

    PubMed

    Brisch, Ralf; Bernstein, Hans-Gert; Dobrowolny, Henrik; Krzyżanowska, Marta; Jankowski, Zbigniew; Bogerts, Bernhard; Gos, Tomasz

    2016-05-01

    The human diagonal band of Broca is connected to other parts of the limbic system, such as the hippocampus, that are involved in the pathology of schizophrenia. This study aimed to characterize the volume and anterior-to-posterior distance of the human diagonal band of Broca (vertical limb) from post-mortem brains obtained from three groups: healthy control subjects (N = 17), patients with schizophrenia (N = 26), and patients with affective disorders (N = 12). There were no significant differences in the volume or anterior-to-posterior distance in the patients with schizophrenia or affective disorders compared with the healthy control subjects. To date, this is the first post-mortem investigation measuring the volume and the anterior-to-posterior distance of the diagonal band of Broca (vertical limb) in patients with schizophrenia or affective disorders compared with healthy control subjects. © 2015 Wiley Periodicals, Inc.

  3. Multi-subject Manifold Alignment of Functional Network Structures via Joint Diagonalization.

    PubMed

    Nenning, Karl-Heinz; Kollndorfer, Kathrin; Schöpf, Veronika; Prayer, Daniela; Langs, Georg

    2015-01-01

    Functional magnetic resonance imaging group studies rely on the ability to establish correspondence across individuals. This enables location specific comparison of functional brain characteristics. Registration is often based on morphology and does not take variability of functional localization into account. This can lead to a loss of specificity, or confounds when studying diseases. In this paper we propose multi-subject functional registration by manifold alignment via coupled joint diagonalization. The functional network structure of each subject is encoded in a diffusion map, where functional relationships are decoupled from spatial position. Two-step manifold alignment estimates initial correspondences between functionally equivalent regions. Then, coupled joint diagonalization establishes common eigenbases across all individuals, and refines the functional correspondences. We evaluate our approach on fMRI data acquired during a language paradigm. Experiments demonstrate the benefits in matching accuracy achieved by coupled joint diagonalization compared to previously proposed functional alignment approaches, or alignment based on structural correspondences.

  4. Efficient spares matrix multiplication scheme for the CYBER 203

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.

    1984-01-01

    This work has been directed toward the development of an efficient algorithm for performing this computation on the CYBER-203. The desire to provide software which gives the user the choice between the often conflicting goals of minimizing central processing (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of three types of storage is selected for each diagonal. For each storage type, an initialization sub-routine estimates the CPU and storage requirements based upon results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the resources. The three storage types employed were chosen to be efficient on the CYBER-203 for diagonals which are sparse, moderately sparse, or dense; however, for many densities, no diagonal type is most efficient with respect to both resource requirements. The user-supplied weights dictate the choice.

  5. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  6. Diagonalization of complex symmetric matrices: Generalized Householder reflections, iterative deflation and implicit shifts

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.

    2017-12-01

    We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.

  7. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  8. Effective implementation of wavelet Galerkin method

    NASA Astrophysics Data System (ADS)

    Finěk, Václav; Šimunková, Martina

    2012-11-01

    It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.

  9. Wavelet-based energy features for glaucomatous image classification.

    PubMed

    Dua, Sumeet; Acharya, U Rajendra; Chowriappa, Pradeep; Sree, S Vinitha

    2012-01-01

    Texture features within images are actively pursued for accurate and efficient glaucoma classification. Energy distribution over wavelet subbands is applied to find these important texture features. In this paper, we investigate the discriminatory potential of wavelet features obtained from the daubechies (db3), symlets (sym3), and biorthogonal (bio3.3, bio3.5, and bio3.7) wavelet filters. We propose a novel technique to extract energy signatures obtained using 2-D discrete wavelet transform, and subject these signatures to different feature ranking and feature selection strategies. We have gauged the effectiveness of the resultant ranked and selected subsets of features using a support vector machine, sequential minimal optimization, random forest, and naïve Bayes classification strategies. We observed an accuracy of around 93% using tenfold cross validations to demonstrate the effectiveness of these methods.

  10. Improving ground-penetrating radar data in sedimentary rocks using deterministic deconvolution

    USGS Publications Warehouse

    Xia, J.; Franseen, E.K.; Miller, R.D.; Weis, T.V.; Byrnes, A.P.

    2003-01-01

    Resolution is key to confidently identifying unique geologic features using ground-penetrating radar (GPR) data. Source wavelet "ringing" (related to bandwidth) in a GPR section limits resolution because of wavelet interference, and can smear reflections in time and/or space. The resultant potential for misinterpretation limits the usefulness of GPR. Deconvolution offers the ability to compress the source wavelet and improve temporal resolution. Unlike statistical deconvolution, deterministic deconvolution is mathematically simple and stable while providing the highest possible resolution because it uses the source wavelet unique to the specific radar equipment. Source wavelets generated in, transmitted through and acquired from air allow successful application of deterministic approaches to wavelet suppression. We demonstrate the validity of using a source wavelet acquired in air as the operator for deterministic deconvolution in a field application using "400-MHz" antennas at a quarry site characterized by interbedded carbonates with shale partings. We collected GPR data on a bench adjacent to cleanly exposed quarry faces in which we placed conductive rods to provide conclusive groundtruth for this approach to deconvolution. The best deconvolution results, which are confirmed by the conductive rods for the 400-MHz antenna tests, were observed for wavelets acquired when the transmitter and receiver were separated by 0.3 m. Applying deterministic deconvolution to GPR data collected in sedimentary strata at our study site resulted in an improvement in resolution (50%) and improved spatial location (0.10-0.15 m) of geologic features compared to the same data processed without deterministic deconvolution. The effectiveness of deterministic deconvolution for increased resolution and spatial accuracy of specific geologic features is further demonstrated by comparing results of deconvolved data with nondeconvolved data acquired along a 30-m transect immediately adjacent to a fresh quarry face. The results at this site support using deterministic deconvolution, which incorporates the GPR instrument's unique source wavelet, as a standard part of routine GPR data processing. ?? 2003 Elsevier B.V. All rights reserved.

  11. Riding the Right Wavelet: Detecting Fracture and Fault Orientation Scale Transitions Using Morlet Wavelets

    NASA Astrophysics Data System (ADS)

    Rizzo, R. E.; Healy, D.; Farrell, N. J.; Smith, M.

    2016-12-01

    The analysis of images through two-dimensional (2D) continuous wavelet transforms makes it possible to acquire local information at different scales of resolution. This characteristic allows us to use wavelet analysis to quantify anisotropic random fields such as networks of fractures. Previous studies [1] have used 2D anisotropic Mexican hat wavelets to analyse the organisation of fracture networks from cm- to km-scales. However, Antoine et al. [2] explained that this technique can have a relatively poor directional selectivity. This suggests the use of a wavelet whose transform is more sensitive to directions of linear features, i.e. 2D Morlet wavelets [3]. In this work, we use a fully-anisotropic Morlet wavelet as implemented by Neupauer & Powell [4], which is anisotropic in its real and imaginary parts and also in its magnitude. We demonstrate the validity of this analytical technique by application to both synthetic - generated according to known distributions of orientations and lengths - and experimentally produced fracture networks. We have analysed SEM Back Scattered Electron images of thin sections of Hopeman Sandstone (Scotland, UK) deformed under triaxial conditions. We find that the Morlet wavelet, compared to the Mexican hat, is more precise in detecting dominant orientations in fracture scale transition at every scale from intra-grain fractures (µm-scale) up to the faults cutting the whole thin section (cm-scale). Through this analysis we can determine the relationship between the initial orientation of tensile microcracks and the final geometry of the through-going shear fault, with total areal coverage of the analysed image. By comparing thin sections from experiments at different confining pressures, we can quantitatively explore the relationship between the observed geometry and the inferred mechanical processes. [1] Ouillon et al., Nonlinear Processes in Geophysics (1995) 2:158 - 177. [2] Antoine et al., Cambridge University Press (2008) 192-194. [3] Antoine et al., Signal Processing (1993) 31:241 - 272. [4] Neupauer & Powell, Computer & Geosciences (2005) 31:456 - 471.

  12. Option pricing from wavelet-filtered financial series

    NASA Astrophysics Data System (ADS)

    de Almeida, V. T. X.; Moriconi, L.

    2012-10-01

    We perform wavelet decomposition of high frequency financial time series into large and small time scale components. Taking the FTSE100 index as a case study, and working with the Haar basis, it turns out that the small scale component defined by most (≃99.6%) of the wavelet coefficients can be neglected for the purpose of option premium evaluation. The relevance of the hugely compressed information provided by low-pass wavelet-filtering is related to the fact that the non-gaussian statistical structure of the original financial time series is essentially preserved for expiration times which are larger than just one trading day.

  13. Variable mass pendulum behaviour processed by wavelet analysis

    NASA Astrophysics Data System (ADS)

    Caccamo, M. T.; Magazù, S.

    2017-01-01

    The present work highlights how, in order to characterize the motion of a variable mass pendulum, wavelet analysis can be an effective tool in furnishing information on the time evolution of the oscillation spectral content. In particular, the wavelet transform is applied to process the motion of a hung funnel that loses fine sand at an exponential rate; it is shown how, in contrast to the Fourier transform which furnishes only an average frequency value for the motion, the wavelet approach makes it possible to perform a joint time-frequency analysis. The work is addressed at undergraduate and graduate students.

  14. Identification Method of Mud Shale Fractures Base on Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Xia, Weixu; Lai, Fuqiang; Luo, Han

    2018-01-01

    In recent years, inspired by seismic analysis technology, a new method for analysing mud shale fractures oil and gas reservoirs by logging properties has emerged. By extracting the high frequency attribute of the wavelet transform in the logging attribute, the formation information hidden in the logging signal is extracted, identified the fractures that are not recognized by conventional logging and in the identified fracture segment to show the “cycle jump”, “high value”, “spike” and other response effect is more obvious. Finally formed a complete wavelet denoising method and wavelet high frequency identification fracture method.

  15. Privacy Preserving Technique for Euclidean Distance Based Mining Algorithms Using a Wavelet Related Transform

    NASA Astrophysics Data System (ADS)

    Kadampur, Mohammad Ali; D. v. L. N., Somayajulu

    Privacy preserving data mining is an art of knowledge discovery without revealing the sensitive data of the data set. In this paper a data transformation technique using wavelets is presented for privacy preserving data mining. Wavelets use well known energy compaction approach during data transformation and only the high energy coefficients are published to the public domain instead of the actual data proper. It is found that the transformed data preserves the Eucleadian distances and the method can be used in privacy preserving clustering. Wavelets offer the inherent improved time complexity.

  16. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  17. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  18. Vaidya spacetime in the diagonal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezin, V. A., E-mail: berezin@inr.ac.ru; Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru; Eroshenko, Yu. N., E-mail: eroshenko@inr.ac.ru

    We have analyzed the transformation from initial coordinates (v, r) of the Vaidya metric with light coordinate v to the most physical diagonal coordinates (t, r). An exact solution has been obtained for the corresponding metric tensor in the case of a linear dependence of the mass function of the Vaidya metric on light coordinate v. In the diagonal coordinates, a narrow region (with a width proportional to the mass growth rate of a black hole) has been detected near the visibility horizon of the Vaidya accreting black hole, in which the metric differs qualitatively from the Schwarzschild metric andmore » cannot be represented as a small perturbation. It has been shown that, in this case, a single set of diagonal coordinates (t, r) is insufficient to cover the entire range of initial coordinates (v, r) outside the visibility horizon; at least three sets of diagonal coordinates are required, the domains of which are separated by singular surfaces on which the metric components have singularities (either g{sub 00} = 0 or g{sub 00} = ∞). The energy–momentum tensor diverges on these surfaces; however, the tidal forces turn out to be finite, which follows from an analysis of the deviation equations for geodesics. Therefore, these singular surfaces are exclusively coordinate singularities that can be referred to as false fire-walls because there are no physical singularities on them. We have also considered the transformation from the initial coordinates to other diagonal coordinates (η, y), in which the solution is obtained in explicit form, and there is no energy–momentum tensor divergence.« less

  19. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  20. Evidence of Large Fluctuations of Stock Return and Financial Crises from Turkey: Using Wavelet Coherency and Varma Modeling to Forecast Stock Return

    NASA Astrophysics Data System (ADS)

    Oygur, Tunc; Unal, Gazanfer

    Shocks, jumps, booms and busts are typical large fluctuation markers which appear in crisis. Models and leading indicators vary according to crisis type in spite of the fact that there are a lot of different models and leading indicators in literature to determine structure of crisis. In this paper, we investigate structure of dynamic correlation of stock return, interest rate, exchange rate and trade balance differences in crisis periods in Turkey over the period between October 1990 and March 2015 by applying wavelet coherency methodologies to determine nature of crises. The time period includes the Turkeys currency and banking crises; US sub-prime mortgage crisis and the European sovereign debt crisis occurred in 1994, 2001, 2008 and 2009, respectively. Empirical results showed that stock return, interest rate, exchange rate and trade balance differences are significantly linked during the financial crises in Turkey. The cross wavelet power, the wavelet coherency, the multiple wavelet coherency and the quadruple wavelet coherency methodologies have been used to examine structure of dynamic correlation. Moreover, in consequence of quadruple and multiple wavelet coherence, strongly correlated large scales indicate linear behavior and, hence VARMA (vector autoregressive moving average) gives better fitting and forecasting performance. In addition, increasing the dimensions of the model for strongly correlated scales leads to more accurate results compared to scalar counterparts.

  1. What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology

    NASA Astrophysics Data System (ADS)

    Schaefli, B.; Maraun, D.; Holschneider, M.

    2007-12-01

    Extreme hydrological events are often triggered by exceptional co-variations of the relevant hydrometeorological processes and in particular by exceptional co-oscillations at various temporal scales. Wavelet and cross wavelet spectral analysis offers promising time-scale resolved analysis methods to detect and analyze such exceptional co-oscillations. This paper presents the state-of-the-art methods of wavelet spectral analysis, discusses related subtleties, potential pitfalls and recently developed solutions to overcome them and shows how wavelet spectral analysis, if combined to a rigorous significance test, can lead to reliable new insights into hydrometeorological processes for real-world applications. The presented methods are applied to detect potentially flood triggering situations in a high Alpine catchment for which a recent re-estimation of design floods encountered significant problems simulating the observed high flows. For this case study, wavelet spectral analysis of precipitation, temperature and discharge offers a powerful tool to help detecting potentially flood producing meteorological situations and to distinguish between different types of floods with respect to the prevailing critical hydrometeorological conditions. This opens very new perspectives for the analysis of model performances focusing on the occurrence and non-occurrence of different types of high flow events. Based on the obtained results, the paper summarizes important recommendations for future applications of wavelet spectral analysis in hydrology.

  2. Application of wavelet analysis for monitoring the hydrologic effects of dam operation: Glen canyon dam and the Colorado River at lees ferry, Arizona

    USGS Publications Warehouse

    White, M.A.; Schmidt, J.C.; Topping, D.J.

    2005-01-01

    Wavelet analysis is a powerful tool with which to analyse the hydrologic effects of dam construction and operation on river systems. Using continuous records of instantaneous discharge from the Lees Ferry gauging station and records of daily mean discharge from upstream tributaries, we conducted wavelet analyses of the hydrologic structure of the Colorado River in Grand Canyon. The wavelet power spectrum (WPS) of daily mean discharge provided a highly compressed and integrative picture of the post-dam elimination of pronounced annual and sub-annual flow features. The WPS of the continuous record showed the influence of diurnal and weekly power generation cycles, shifts in discharge management, and the 1996 experimental flood in the post-dam period. Normalization of the WPS by local wavelet spectra revealed the fine structure of modulation in discharge scale and amplitude and provides an extremely efficient tool with which to assess the relationships among hydrologic cycles and ecological and geomorphic systems. We extended our analysis to sections of the Snake River and showed how wavelet analysis can be used as a data mining technique. The wavelet approach is an especially promising tool with which to assess dam operation in less well-studied regions and to evaluate management attempts to reconstruct desired flow characteristics. Copyright ?? 2005 John Wiley & Sons, Ltd.

  3. Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters

    NASA Astrophysics Data System (ADS)

    Abhayaratne, Charith

    2011-07-01

    Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.

  4. Diagnostic methodology for incipient system disturbance based on a neural wavelet approach

    NASA Astrophysics Data System (ADS)

    Won, In-Ho

    Since incipient system disturbances are easily mixed up with other events or noise sources, the signal from the system disturbance can be neglected or identified as noise. Thus, as available knowledge and information is obtained incompletely or inexactly from the measurements; an exploration into the use of artificial intelligence (AI) tools to overcome these uncertainties and limitations was done. A methodology integrating the feature extraction efficiency of the wavelet transform with the classification capabilities of neural networks is developed for signal classification in the context of detecting incipient system disturbances. The synergistic effects of wavelets and neural networks present more strength and less weakness than either technique taken alone. A wavelet feature extractor is developed to form concise feature vectors for neural network inputs. The feature vectors are calculated from wavelet coefficients to reduce redundancy and computational expense. During this procedure, the statistical features based on the fractal concept to the wavelet coefficients play a role as crucial key in the wavelet feature extractor. To verify the proposed methodology, two applications are investigated and successfully tested. The first involves pump cavitation detection using dynamic pressure sensor. The second pertains to incipient pump cavitation detection using signals obtained from a current sensor. Also, through comparisons between three proposed feature vectors and with statistical techniques, it is shown that the variance feature extractor provides a better approach in the performed applications.

  5. Flexural anchorage performance at diagonal crack locations : final report.

    DOT National Transportation Integrated Search

    2010-12-01

    Large numbers of reinforced concrete deck girder bridges that were constructed during the interstate system expansion of the 1950s have developed diagonal cracking in the stems. Though compliant with design codes when constructed, many of these bridg...

  6. 33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  7. Wavelets and Multifractal Analysis

    DTIC Science & Technology

    2004-07-01

    distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM001750, Wavelets and Multifractal Analysis (WAMA) Workshop held on 19-31 July 2004., The original...f)] . . . 16 2.5.4 Detrended Fluctuation Analysis [DFA(m)] . . . . . . . . . . . . . . . 17 2.6 Scale-Independent Measures...18 2.6.1 Detrended -Fluctuation- Analysis Power-Law Exponent (αD) . . . . . . 18 2.6.2 Wavelet-Transform Power-Law Exponent

  8. Target Detection and Classification Using Seismic and PIR Sensors

    DTIC Science & Technology

    2012-06-01

    time series analysis via wavelet - based partitioning,” Signal Process...regard, this paper presents a wavelet - based method for target detection and classification. The proposed method has been validated on data sets of...The work reported in this paper makes use of a wavelet - based feature extraction method , called Symbolic Dynamic Filtering (SDF) [12]–[14]. The

  9. Wavelet Transforms in Parallel Image Processing

    DTIC Science & Technology

    1994-01-27

    NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by

  10. Identification of large geomorphological anomalies based on 2D discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Doglioni, A.; Simeone, V.

    2012-04-01

    The identification and analysis based on quantitative evidences of large geomorphological anomalies is an important stage for the study of large landslides. Numerical geomorphic analyses represent an interesting approach to this kind of studies, allowing for a detailed and pretty accurate identification of hidden topographic anomalies that may be related to large landslides. Here a geomorphic numerical analyses of the Digital Terrain Model (DTM) is presented. The introduced approach is based on 2D discrete wavelet transform (Antoine et al., 2003; Bruun and Nilsen, 2003, Booth et al., 2009). The 2D wavelet decomposition of the DTM, and in particular the analysis of the detail coefficients of the wavelet transform can provide evidences of anomalies or singularities, i.e. discontinuities of the land surface. These discontinuities are not very evident from the DTM as it is, while 2D wavelet transform allows for grid-based analysis of DTM and for mapping the decomposition. In fact, the grid-based DTM can be assumed as a matrix, where a discrete wavelet transform (Daubechies, 1992) is performed columnwise and linewise, which basically represent horizontal and vertical directions. The outcomes of this analysis are low-frequency approximation coefficients and high-frequency detail coefficients. Detail coefficients are analyzed, since their variations are associated to discontinuities of the DTM. Detailed coefficients are estimated assuming to perform 2D wavelet transform both for the horizontal direction (east-west) and for the vertical direction (north-south). Detail coefficients are then mapped for both the cases, thus allowing to visualize and quantify potential anomalies of the land surface. Moreover, wavelet decomposition can be pushed to further levels, assuming a higher scale number of the transform. This may potentially return further interesting results, in terms of identification of the anomalies of land surface. In this kind of approach, the choice of a proper mother wavelet function is a tricky point, since it conditions the analysis and then their outcomes. Therefore multiple levels as well as multiple wavelet analyses are guessed. Here the introduced approach is applied to some interesting cases study of south Italy, in particular for the identification of large anomalies associated to large landslides at the transition between Apennine chain domain and the foredeep domain. In particular low Biferno valley and Fortore valley are here analyzed. Finally, the wavelet transforms are performed on multiple levels, thus trying to address the problem of which is the level extent for an accurate analysis fit to a specific problem. Antoine J.P., Carrette P., Murenzi R., and Piette B., (2003), Image analysis with two-dimensional continuous wavelet transform, Signal Processing, 31(3), pp. 241-272, doi:10.1016/0165-1684(93)90085-O. Booth A.M., Roering J.J., and Taylor Perron J., (2009), Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon, Geomorphology, 109(3-4), pp. 132-147, doi:10.1016/j.geomorph.2009.02.027. Bruun B.T., and Nilsen S., (2003), Wavelet representation of large digital terrain models, Computers and Geoscience, 29(6), pp. 695-703, doi:10.1016/S0098-3004(03)00015-3. Daubechies, I. (1992), Ten lectures on wavelets, SIAM.

  11. Multiresolution With Super-Compact Wavelets

    NASA Technical Reports Server (NTRS)

    Lee, Dohyung

    2000-01-01

    The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.

  12. The wavelet analysis for the assessment of microvascular function with the laser Doppler fluxmetry over the last 20 years. Looking for hidden informations.

    PubMed

    Martini, Romeo; Bagno, Andrea

    2018-04-14

    The wavelet analysis has been applied to the Laser Doppler Fluxmetry for assessing the frequency spectrum of the flowmotion to study the microvascular function waves.Although the application of wavelet analysis has allowed a detailed evaluation of the microvascular function, its use does not seem to be yet widespread over the last two decades.Aiming to improve the diffusion of this methodology, we herein present a systematic review of the literature about the application of the wavelet analysis to the laser Doppler fluxmetry signal. A computer research has been performed on PubMed and Scopus databases from January 1990 to December 2017. The used terms for the investigation have been "wavelet analysis", "wavelet transform analysis", "Morlet wavelet transform" along with the terms "laser Doppler", "laserdoppler" and/or "flowmetry" or "fluxmetry". One hundred and eighteen studies have been found. After the scrutiny, 97 studies reporting data on humans have been selected. Fifty-three studies, 54.0% (95% CI 44.2-63.6) pooled rate, have been performed on 892 healthy subjects and 44, 45,9 % (95% CI 36.3-55.7%) pooled rate have been performed on 1679 patients. No significant difference has been found between the two groups (p 0,81). On average, the number of studies published each year was 4.8 (95% CI 3.4-6.2). The trend of studies production has increased significantly from 1998 to 2017, (p 0.0006). But only the studies on patients have shown a significant increase trend along the years (p 0.0003), than the studies on healthy subjects (p 0.09).In conclusion, this review highlights that despite being a promising and interesting methodology for the study of the microcirculatory function, the wavelet analysis has remained still neglected.

  13. A new fractional wavelet transform

    NASA Astrophysics Data System (ADS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-03-01

    The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.

  14. Graph wavelet alignment kernels for drug virtual screening.

    PubMed

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2009-06-01

    In this paper, we introduce a novel statistical modeling technique for target property prediction, with applications to virtual screening and drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to summarize features capturing graph local topology. We design a novel graph kernel function to utilize the topology features to build predictive models for chemicals via Support Vector Machine classifier. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than ten fold speedup.

  15. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  16. Scalets, wavelets and (complex) turning point quantization

    NASA Astrophysics Data System (ADS)

    Handy, C. R.; Brooks, H. A.

    2001-05-01

    Despite the many successes of wavelet analysis in image and signal processing, the incorporation of continuous wavelet transform theory within quantum mechanics has lacked a compelling, first principles, motivating analytical framework, until now. For arbitrary one-dimensional rational fraction Hamiltonians, we develop a simple, unified formalism, which clearly underscores the complementary, and mutually interdependent, role played by moment quantization theory (i.e. via scalets, as defined herein) and wavelets. This analysis involves no approximation of the Hamiltonian within the (equivalent) wavelet space, and emphasizes the importance of (complex) multiple turning point contributions in the quantization process. We apply the method to three illustrative examples. These include the (double-well) quartic anharmonic oscillator potential problem, V(x) = Z2x2 + gx4, the quartic potential, V(x) = x4, and the very interesting and significant non-Hermitian potential V(x) = -(ix)3, recently studied by Bender and Boettcher.

  17. Digital transceiver implementation for wavelet packet modulation

    NASA Astrophysics Data System (ADS)

    Lindsey, Alan R.; Dill, Jeffrey C.

    1998-03-01

    Current transceiver designs for wavelet-based communication systems are typically reliant on analog waveform synthesis, however, digital processing is an important part of the eventual success of these techniques. In this paper, a transceiver implementation is introduced for the recently introduced wavelet packet modulation scheme which moves the analog processing as far as possible toward the antenna. The transceiver is based on the discrete wavelet packet transform which incorporates level and node parameters for generalized computation of wavelet packets. In this transform no particular structure is imposed on the filter bank save dyadic branching, and a maximum level which is specified a priori and dependent mainly on speed and/or cost considerations. The transmitter/receiver structure takes a binary sequence as input and, based on the desired time- frequency partitioning, processes the signal through demultiplexing, synthesis, analysis, multiplexing and data determination completely in the digital domain - with exception of conversion in and out of the analog domain for transmission.

  18. An introduction to wavelet analysis in oceanography and meteorology - With application to the dispersion of Yanai waves

    NASA Technical Reports Server (NTRS)

    Meyers, Steven D.; Kelly, B. G.; O'Brien, J. J.

    1993-01-01

    Wavelet analysis is a relatively new technique that is an important addition to standard signal analysis methods. Unlike Fourier analysis that yields an average amplitude and phase for each harmonic in a dataset, the wavelet transform produces an instantaneous estimate or local value for the amplitude and phase of each harmonic. This allows detailed study of nonstationary spatial or time-dependent signal characteristics. The wavelet transform is discussed, examples are given, and some methods for preprocessing data for wavelet analysis are compared. By studying the dispersion of Yanai waves in a reduced gravity equatorial model, the usefulness of the transform is demonstrated. The group velocity is measured directly over a finite range of wavenumbers by examining the time evolution of the transform. The results agree well with linear theory at higher wavenumber but the measured group velocity is reduced at lower wavenumbers, possibly due to interaction with the basin boundaries.

  19. Modular continuous wavelet processing of biosignals: extracting heart rate and oxygen saturation from a video signal

    PubMed Central

    2016-01-01

    A novel method of extracting heart rate and oxygen saturation from a video-based biosignal is described. The method comprises a novel modular continuous wavelet transform approach which includes: performing the transform, undertaking running wavelet archetyping to enhance the pulse information, extraction of the pulse ridge time–frequency information [and thus a heart rate (HRvid) signal], creation of a wavelet ratio surface, projection of the pulse ridge onto the ratio surface to determine the ratio of ratios from which a saturation trending signal is derived, and calibrating this signal to provide an absolute saturation signal (SvidO2). The method is illustrated through its application to a video photoplethysmogram acquired during a porcine model of acute desaturation. The modular continuous wavelet transform-based approach is advocated by the author as a powerful methodology to deal with noisy, non-stationary biosignals in general. PMID:27382479

  20. Two-Layer Fragile Watermarking Method Secured with Chaotic Map for Authentication of Digital Holy Quran

    PubMed Central

    Khalil, Mohammed S.; Khan, Muhammad Khurram; Alginahi, Yasser M.

    2014-01-01

    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small. PMID:25028681

  1. Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

    PubMed

    Khalil, Mohammed S; Kurniawan, Fajri; Khan, Muhammad Khurram; Alginahi, Yasser M

    2014-01-01

    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

  2. An improved wavelet-Galerkin method for dynamic response reconstruction and parameter identification of shear-type frames

    NASA Astrophysics Data System (ADS)

    Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping

    2018-04-01

    An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.

  3. Operational safety assessment of turbo generators with wavelet Rényi entropy from sensor-dependent vibration signals.

    PubMed

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-04-16

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals' wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance.

  4. Wavelet Analyses of Oil Prices, USD Variations and Impact on Logistics

    NASA Astrophysics Data System (ADS)

    Melek, M.; Tokgozlu, A.; Aslan, Z.

    2009-07-01

    This paper is related with temporal variations of historical oil prices and Dollar and Euro in Turkey. Daily data based on OECD and Central Bank of Turkey records beginning from 1946 has been considered. 1D-continuous wavelets and wavelet packets analysis techniques have been applied on data. Wavelet techniques help to detect abrupt changing's, increasing and decreasing trends of data. Estimation of variables has been presented by using linear regression estimation techniques. The results of this study have been compared with the small and large scale effects. Transportation costs of track show a similar variation with fuel prices. The second part of the paper is related with estimation of imports, exports, costs, total number of vehicles and annual variations by considering temporal variation of oil prices and Dollar currency in Turkey. Wavelet techniques offer a user friendly methodology to interpret some local effects on increasing trend of imports and exports data.

  5. Wavelet based analysis of multi-electrode EEG-signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Hein, Daniel A.; Tetzlaff, Ronald

    2005-06-01

    For many epilepsy patients seizures cannot sufficiently be controlled by an antiepileptic pharmacatherapy. Furthermore, only in small number of cases a surgical treatment may be possible. The aim of this work is to contribute to the realization of an implantable seizure warning device. By using recordings of electroenzephalographical(EEG) signals obtained from the department of epileptology of the University of Bonn we studied a recently proposed algorithm for the detection of parameter changes in nonlinear systems. Firstly, after calculating the crosscorrelation function between the signals of two electrodes near the epileptic focus, a wavelet-analysis follows using a sliding window with the so called Mexican-Hat wavelet. Then the Shannon-Entropy of the wavelet-transformed data has been determined providing the information content on a time scale in subject to the dilation of the wavelet-transformation. It shows distinct changes at the seizure onset for all dilations and for all patients.

  6. Denoising time-domain induced polarisation data using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Deo, Ravin N.; Cull, James P.

    2016-05-01

    Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.

  7. On wavelet analysis of auditory evoked potentials.

    PubMed

    Bradley, A P; Wilson, W J

    2004-05-01

    To determine a preferred wavelet transform (WT) procedure for multi-resolution analysis (MRA) of auditory evoked potentials (AEP). A number of WT algorithms, mother wavelets, and pre-processing techniques were examined by way of critical theoretical discussion followed by experimental testing of key points using real and simulated auditory brain-stem response (ABR) waveforms. Conclusions from these examinations were then tested on a normative ABR dataset. The results of the various experiments are reported in detail. Optimal AEP WT MRA is most likely to occur when an over-sampled discrete wavelet transformation (DWT) is used, utilising a smooth (regularity >or=3) and symmetrical (linear phase) mother wavelet, and a reflection boundary extension policy. This study demonstrates the practical importance of, and explains how to minimize potential artefacts due to, 4 inter-related issues relevant to AEP WT MRA, namely shift variance, phase distortion, reconstruction smoothness, and boundary artefacts.

  8. A study on multiresolution lossless video coding using inter/intra frame adaptive prediction

    NASA Astrophysics Data System (ADS)

    Nakachi, Takayuki; Sawabe, Tomoko; Fujii, Tetsuro

    2003-06-01

    Lossless video coding is required in the fields of archiving and editing digital cinema or digital broadcasting contents. This paper combines a discrete wavelet transform and adaptive inter/intra-frame prediction in the wavelet transform domain to create multiresolution lossless video coding. The multiresolution structure offered by the wavelet transform facilitates interchange among several video source formats such as Super High Definition (SHD) images, HDTV, SDTV, and mobile applications. Adaptive inter/intra-frame prediction is an extension of JPEG-LS, a state-of-the-art lossless still image compression standard. Based on the image statistics of the wavelet transform domains in successive frames, inter/intra frame adaptive prediction is applied to the appropriate wavelet transform domain. This adaptation offers superior compression performance. This is achieved with low computational cost and no increase in additional information. Experiments on digital cinema test sequences confirm the effectiveness of the proposed algorithm.

  9. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  10. Application of improved wavelet total variation denoising for rolling bearing incipient fault diagnosis

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jia, M. P.

    2018-06-01

    When incipient fault appear in the rolling bearing, the fault feature is too small and easily submerged in the strong background noise. In this paper, wavelet total variation denoising based on kurtosis (Kurt-WATV) is studied, which can extract the incipient fault feature of the rolling bearing more effectively. The proposed algorithm contains main steps: a) establish a sparse diagnosis model, b) represent periodic impulses based on the redundant wavelet dictionary, c) solve the joint optimization problem by alternating direction method of multipliers (ADMM), d) obtain the reconstructed signal using kurtosis value as criterion and then select optimal wavelet subbands. This paper uses overcomplete rational-dilation wavelet transform (ORDWT) as a dictionary, and adjusts the control parameters to achieve the concentration in the time-frequency plane. Incipient fault of rolling bearing is used as an example, and the result shows that the effectiveness and superiority of the proposed Kurt- WATV bearing fault diagnosis algorithm.

  11. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  12. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  13. Full waveform inversion using a decomposed single frequency component from a spectrogram

    NASA Astrophysics Data System (ADS)

    Ha, Jiho; Kim, Seongpil; Koo, Namhyung; Kim, Young-Ju; Woo, Nam-Sub; Han, Sang-Mok; Chung, Wookeen; Shin, Sungryul; Shin, Changsoo; Lee, Jaejoon

    2018-06-01

    Although many full waveform inversion methods have been developed to construct velocity models of subsurface, various approaches have been presented to obtain an inversion result with long-wavelength features even though seismic data lacking low-frequency components were used. In this study, a new full waveform inversion algorithm was proposed to recover a long-wavelength velocity model that reflects the inherent characteristics of each frequency component of seismic data using a single-frequency component decomposed from the spectrogram. We utilized the wavelet transform method to obtain the spectrogram, and the decomposed signal from the spectrogram was used as transformed data. The Gauss-Newton method with the diagonal elements of an approximate Hessian matrix was used to update the model parameters at each iteration. Based on the results of time-frequency analysis in the spectrogram, numerical tests with some decomposed frequency components were performed using a modified SEG/EAGE salt dome (A-A‧) line to demonstrate the feasibility of the proposed inversion algorithm. This demonstrated that a reasonable inverted velocity model with long-wavelength structures can be obtained using a single frequency component. It was also confirmed that when strong noise occurs in part of the frequency band, it is feasible to obtain a long-wavelength velocity model from the noise data with a frequency component that is less affected by the noise. Finally, it was confirmed that the results obtained from the spectrogram inversion can be used as an initial velocity model in conventional inversion methods.

  14. PLACING DIAGONALS IN CENTER PANEL. View is northnorthwest from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLACING DIAGONALS IN CENTER PANEL. View is north-northwest from the old suspension bridge, looking at upstream side of new bridge - South Fork Trinity River Bridge, State Highway 299 spanning South Fork Trinity River, Salyer, Trinity County, CA

  15. Detail of diagonal end post support bracket mounted to east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of diagonal end post support bracket mounted to east face of track girder, east span. View south - New York, New Haven & Hartford Railroad, Fort Point Channel Rolling Lift Bridge, Spanning Fort Point Channel, Boston, Suffolk County, MA

  16. On Negations and Algebras in Fuzzy Set Theory

    DTIC Science & Technology

    1986-03-19

    Esteva Departament de Matematiques i Estadistica ~ Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona !Spain) ABSTRACT Dual... Estadistica Universitat Politecnica de Catalunya Diagonal 649 08028 Barcelona (Spain) In Zadeh’s definition of Fuzzy Sets [1] the operations are defined

  17. 26. Typical top chord, vertical lattice, diagonal bracing and bottom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Typical top chord, vertical lattice, diagonal bracing and bottom chord assembly. View is of south side of center panels of 4th span. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  18. Reflection matrices with U q [osp(2) (2|2m)] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2017-09-01

    We propose a classification of the reflection K-matrices (solutions of the boundary Yang-Baxter equation) for the Uq[osp(2)(2\\vert 2m)]=Uq[C(2)(m+1)] vertex-model. We found four families of solutions, namely, the complete solutions, in which no elements of the reflection K-matrix is null, the block-diagonal solutions, the X-shape solutions and the diagonal solutions. We highlight that these diagonal K-matrices also hold for the Uq[osp(2)(2n+2\\vert 2m)]=Uq[D(2)(n+1, m)] vertex-model.

  19. Group Sparse Optimization by Alternating Direction Method

    DTIC Science & Technology

    2012-11-22

    to solving the following linear system: (β1G TG+ β2A TA)x = β1G T z −GTλ1 + β2AT b+ATλ2. (3.5) Note that GTG ∈ Rn×n is a diagonal matrix whose i-th...diagonal entry is the number of repetitions of xi in x̃. When the groups form an complete cover of the solution, the diagonal entries of GTG will be...positive, so GTG is invertible. In the next subsection, we will show that an incomplete cover case can be converted to a complete cover case by

  20. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations.

    PubMed

    Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

    2017-07-21

    Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

  1. Line interference effects using a refined Robert-Bonamy formalism: The test case of the isotropic Raman spectra of autoperturbed N{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulet, Christian, E-mail: Christian.boulet@u-psud.fr; Ma, Qiancheng; Thibault, Franck

    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N{sub 2} for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While inmore » the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N{sub 2}, opening the way to the analysis of more complex molecular systems.« less

  2. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  3. Off-diagonal ekpyrotic scenarios and equivalence of modified, massive and/or Einstein gravity

    NASA Astrophysics Data System (ADS)

    Vacaru, Sergiu I.

    2016-01-01

    Using our anholonomic frame deformation method, we show how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates and undergoing a phase of ultra-slow contraction can be constructed in massive gravity. In this paper, there are found and studied new classes of locally anisotropic and (in)homogeneous cosmological metrics with open and closed spatial geometries. The late time acceleration is present due to effective cosmological terms induced by nonlinear off-diagonal interactions and graviton mass. The off-diagonal cosmological metrics and related Stückelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaître-Robertson-Walker (FLRW) coordinates. We show that the solutions include matter, graviton mass and other effective sources modeling nonlinear gravitational and matter fields interactions in modified and/or massive gravity, with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects. There are stated and analyzed the conditions when such configurations mimic interesting solutions in general relativity and modifications and recast the general Painlevé-Gullstrand and FLRW metrics. Finally, we elaborate on a reconstruction procedure for a subclass of off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes, with an emphasis on open issues and observable signatures.

  4. A discrete Fourier-encoded, diagonal-free experiment to simplify homonuclear 2D NMR correlations

    NASA Astrophysics Data System (ADS)

    Huang, Zebin; Guan, Quanshuai; Chen, Zhong; Frydman, Lucio; Lin, Yulan

    2017-07-01

    Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.

  5. ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.

    2005-01-01

    ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.

  6. A wavelet approach to binary blackholes with asynchronous multitasking

    NASA Astrophysics Data System (ADS)

    Lim, Hyun; Hirschmann, Eric; Neilsen, David; Anderson, Matthew; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    Highly accurate simulations of binary black holes and neutron stars are needed to address a variety of interesting problems in relativistic astrophysics. We present a new method for the solving the Einstein equations (BSSN formulation) using iterated interpolating wavelets. Wavelet coefficients provide a direct measure of the local approximation error for the solution and place collocation points that naturally adapt to features of the solution. Further, they exhibit exponential convergence on unevenly spaced collection points. The parallel implementation of the wavelet simulation framework presented here deviates from conventional practice in combining multi-threading with a form of message-driven computation sometimes referred to as asynchronous multitasking.

  7. Objective research of auscultation signals in Traditional Chinese Medicine based on wavelet packet energy and support vector machine.

    PubMed

    Yan, Jianjun; Shen, Xiaojing; Wang, Yiqin; Li, Fufeng; Xia, Chunming; Guo, Rui; Chen, Chunfeng; Shen, Qingwei

    2010-01-01

    This study aims at utilising Wavelet Packet Transform (WPT) and Support Vector Machine (SVM) algorithm to make objective analysis and quantitative research for the auscultation in Traditional Chinese Medicine (TCM) diagnosis. First, Wavelet Packet Decomposition (WPD) at level 6 was employed to split more elaborate frequency bands of the auscultation signals. Then statistic analysis was made based on the extracted Wavelet Packet Energy (WPE) features from WPD coefficients. Furthermore, the pattern recognition was used to distinguish mixed subjects' statistical feature values of sample groups through SVM. Finally, the experimental results showed that the classification accuracies were at a high level.

  8. Peak finding using biorthogonal wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform muchmore » better than the FBI wavelets.« less

  9. Rejection of the maternal electrocardiogram in the electrohysterogram signal.

    PubMed

    Leman, H; Marque, C

    2000-08-01

    The electrohysterogram (EHG) signal is mainly corrupted by the mother's electrocardiogram (ECG), which remains present despite analog filtering during acquisition. Wavelets are a powerful denoising tool and have already proved their efficiency on the EHG. In this paper, we propose a new method that employs the redundant wavelet packet transform. We first study wavelet packet coefficient histograms and propose an algorithm to automatically detect the histogram mode number. Using a new criterion, we compute a best basis adapted to the denoising. After EHG wavelet packet coefficient thresholding in the selected basis, the inverse transform is applied. The ECG seems to be very efficiently removed.

  10. Impulse Noise Cancellation of Medical Images Using Wavelet Networks and Median Filters

    PubMed Central

    Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeid; Gheissari, Niloofar

    2012-01-01

    This paper presents a new two-stage approach to impulse noise removal for medical images based on wavelet network (WN). The first step is noise detection, in which the so-called gray-level difference and average background difference are considered as the inputs of a WN. Wavelet Network is used as a preprocessing for the second stage. The second step is removing impulse noise with a median filter. The wavelet network presented here is a fixed one without learning. Experimental results show that our method acts on impulse noise effectively, and at the same time preserves chromaticity and image details very well. PMID:23493998

  11. Wavelets for sign language translation

    NASA Astrophysics Data System (ADS)

    Wilson, Beth J.; Anspach, Gretel

    1993-10-01

    Wavelet techniques are applied to help extract the relevant parameters of sign language from video images of a person communicating in American Sign Language or Signed English. The compression and edge detection features of two-dimensional wavelet analysis are exploited to enhance the algorithms under development to classify the hand motion, hand location with respect to the body, and handshape. These three parameters have different processing requirements and complexity issues. The results are described for applying various quadrature mirror filter designs to a filterbank implementation of the desired wavelet transform. The overall project is to develop a system that will translate sign language to English to facilitate communication between deaf and hearing people.

  12. Structural health monitoring approach for detecting ice accretion on bridge cable using the Haar Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Andre, Julia; Kiremidjian, Anne; Liao, Yizheng; Georgakis, Christos; Rajagopal, Ram

    2016-04-01

    Ice accretion on cables of bridge structures poses serious risk to the structure as well as to vehicular traffic when the ice falls onto the road. Detection of ice formation, quantification of the amount of ice accumulated, and prediction of icefalls will increase the safety and serviceability of the structure. In this paper, an ice accretion detection algorithm is presented based on the Continuous Wavelet Transform (CWT). In the proposed algorithm, the acceleration signals obtained from bridge cables are transformed using wavelet method. The damage sensitive features (DSFs) are defined as a function of the wavelet energy at specific wavelet scales. It is found that as ice accretes on the cables, the mass of cable increases, thus changing the wavelet energies. Hence, the DSFs can be used to track the change of cables mass. To validate the proposed algorithm, we use the data collected from a laboratory experiment conducted at the Technical University of Denmark (DTU). In this experiment, a cable was placed in a wind tunnel as ice volume grew progressively. Several accelerometers were installed at various locations along the testing cable to collect vibration signals.

  13. Design of compactly supported wavelet to match singularities in medical images

    NASA Astrophysics Data System (ADS)

    Fung, Carrson C.; Shi, Pengcheng

    2002-11-01

    Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.

  14. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals.

    PubMed

    Li, Suyi; Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji; Diao, Shu

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO 2 ) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO 2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis.

  15. Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain

    PubMed Central

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality. PMID:23049544

  16. Medical image compression based on vector quantization with variable block sizes in wavelet domain.

    PubMed

    Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo

    2012-01-01

    An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.

  17. Adaptive zero-tree structure for curved wavelet image coding

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Wang, Demin; Vincent, André

    2006-02-01

    We investigate the issue of efficient data organization and representation of the curved wavelet coefficients [curved wavelet transform (WT)]. We present an adaptive zero-tree structure that exploits the cross-subband similarity of the curved wavelet transform. In the embedded zero-tree wavelet (EZW) and the set partitioning in hierarchical trees (SPIHT), the parent-child relationship is defined in such a way that a parent has four children, restricted to a square of 2×2 pixels, the parent-child relationship in the adaptive zero-tree structure varies according to the curves along which the curved WT is performed. Five child patterns were determined based on different combinations of curve orientation. A new image coder was then developed based on this adaptive zero-tree structure and the set-partitioning technique. Experimental results using synthetic and natural images showed the effectiveness of the proposed adaptive zero-tree structure for encoding of the curved wavelet coefficients. The coding gain of the proposed coder can be up to 1.2 dB in terms of peak SNR (PSNR) compared to the SPIHT coder. Subjective evaluation shows that the proposed coder preserves lines and edges better than the SPIHT coder.

  18. Adaptive Multilinear Tensor Product Wavelets

    DOE PAGES

    Weiss, Kenneth; Lindstrom, Peter

    2015-08-12

    Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how tomore » generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. In conclusion, we focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.« less

  19. Wavelet-based analysis of circadian behavioral rhythms.

    PubMed

    Leise, Tanya L

    2015-01-01

    The challenging problems presented by noisy biological oscillators have led to the development of a great variety of methods for accurately estimating rhythmic parameters such as period and amplitude. This chapter focuses on wavelet-based methods, which can be quite effective for assessing how rhythms change over time, particularly if time series are at least a week in length. These methods can offer alternative views to complement more traditional methods of evaluating behavioral records. The analytic wavelet transform can estimate the instantaneous period and amplitude, as well as the phase of the rhythm at each time point, while the discrete wavelet transform can extract the circadian component of activity and measure the relative strength of that circadian component compared to those in other frequency bands. Wavelet transforms do not require the removal of noise or trend, and can, in fact, be effective at removing noise and trend from oscillatory time series. The Fourier periodogram and spectrogram are reviewed, followed by descriptions of the analytic and discrete wavelet transforms. Examples illustrate application of each method and their prior use in chronobiology is surveyed. Issues such as edge effects, frequency leakage, and implications of the uncertainty principle are also addressed. © 2015 Elsevier Inc. All rights reserved.

  20. The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pita-Machado, Reinado; Perez-Diaz, Marlen, E-mail: mperez@uclv.edu.cu; Lorenzo-Ginori, Juan V., E-mail: mperez@uclv.edu.cu

    Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which aremore » not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions.« less

  1. Identification of speech transients using variable frame rate analysis and wavelet packets.

    PubMed

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  2. Research on the feature extraction and pattern recognition of the distributed optical fiber sensing signal

    NASA Astrophysics Data System (ADS)

    Wang, Bingjie; Sun, Qi; Pi, Shaohua; Wu, Hongyan

    2014-09-01

    In this paper, feature extraction and pattern recognition of the distributed optical fiber sensing signal have been studied. We adopt Mel-Frequency Cepstral Coefficient (MFCC) feature extraction, wavelet packet energy feature extraction and wavelet packet Shannon entropy feature extraction methods to obtain sensing signals (such as speak, wind, thunder and rain signals, etc.) characteristic vectors respectively, and then perform pattern recognition via RBF neural network. Performances of these three feature extraction methods are compared according to the results. We choose MFCC characteristic vector to be 12-dimensional. For wavelet packet feature extraction, signals are decomposed into six layers by Daubechies wavelet packet transform, in which 64 frequency constituents as characteristic vector are respectively extracted. In the process of pattern recognition, the value of diffusion coefficient is introduced to increase the recognition accuracy, while keeping the samples for testing algorithm the same. Recognition results show that wavelet packet Shannon entropy feature extraction method yields the best recognition accuracy which is up to 97%; the performance of 12-dimensional MFCC feature extraction method is less satisfactory; the performance of wavelet packet energy feature extraction method is the worst.

  3. Time-localized wavelet multiple regression and correlation

    NASA Astrophysics Data System (ADS)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  4. A Hybrid Wavelet-Based Method for the Peak Detection of Photoplethysmography Signals

    PubMed Central

    Jiang, Shanqing; Jiang, Shan; Wu, Jiang; Xiong, Wenji

    2017-01-01

    The noninvasive peripheral oxygen saturation (SpO2) and the pulse rate can be extracted from photoplethysmography (PPG) signals. However, the accuracy of the extraction is directly affected by the quality of the signal obtained and the peak of the signal identified; therefore, a hybrid wavelet-based method is proposed in this study. Firstly, we suppressed the partial motion artifacts and corrected the baseline drift by using a wavelet method based on the principle of wavelet multiresolution. And then, we designed a quadratic spline wavelet modulus maximum algorithm to identify the PPG peaks automatically. To evaluate this hybrid method, a reflective pulse oximeter was used to acquire ten subjects' PPG signals under sitting, raising hand, and gently walking postures, and the peak recognition results on the raw signal and on the corrected signal were compared, respectively. The results showed that the hybrid method not only corrected the morphologies of the signal well but also optimized the peaks identification quality, subsequently elevating the measurement accuracy of SpO2 and the pulse rate. As a result, our hybrid wavelet-based method profoundly optimized the evaluation of respiratory function and heart rate variability analysis. PMID:29250135

  5. Wavelet-based compression of pathological images for telemedicine applications

    NASA Astrophysics Data System (ADS)

    Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun

    2000-05-01

    In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.

  6. Local wavelet transform: a cost-efficient custom processor for space image compression

    NASA Astrophysics Data System (ADS)

    Masschelein, Bart; Bormans, Jan G.; Lafruit, Gauthier

    2002-11-01

    Thanks to its intrinsic scalability features, the wavelet transform has become increasingly popular as decorrelator in image compression applications. Throuhgput, memory requirements and complexity are important parameters when developing hardware image compression modules. An implementation of the classical, global wavelet transform requires large memory sizes and implies a large latency between the availability of the input image and the production of minimal data entities for entropy coding. Image tiling methods, as proposed by JPEG2000, reduce the memory sizes and the latency, but inevitably introduce image artefacts. The Local Wavelet Transform (LWT), presented in this paper, is a low-complexity wavelet transform architecture using a block-based processing that results in the same transformed images as those obtained by the global wavelet transform. The architecture minimizes the processing latency with a limited amount of memory. Moreover, as the LWT is an instruction-based custom processor, it can be programmed for specific tasks, such as push-broom processing of infinite-length satelite images. The features of the LWT makes it appropriate for use in space image compression, where high throughput, low memory sizes, low complexity, low power and push-broom processing are important requirements.

  7. 35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Coal Fuel Elevator (diagonal in center), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  8. 34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  9. Remaining life of reinforced concrete beams with diagonal-tension cracks : final report.

    DOT National Transportation Integrated Search

    2004-04-01

    This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-girder (RCDG) bridges with diagonal tension cracks. A database of 442 bridges constructed from 1947 to ...

  10. Remaining life of reinforced concrete beams with diagonal-tension cracks : appendix A & B.

    DOT National Transportation Integrated Search

    2004-04-01

    The appendices belong to "Remaining life of reinforced concrete beams with diagonal-tension cracks". : This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-...

  11. Remaining life of reinforced concrete beams with diagonal-tension cracks : appendix C & D.

    DOT National Transportation Integrated Search

    2004-04-01

    The appendices belong to "Remaining life of reinforced concrete beams with diagonal-tension cracks". : This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-...

  12. Magnetoacoustic waves propagating along a dense slab and Harris current sheet and their wavelet spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mészárosová, Hana; Karlický, Marian; Jelínek, Petr

    Currently, there is a common endeavor to detect magnetoacoustic waves in solar flares. This paper contributes to this topic using an approach of numerical simulations. We studied a spatial and temporal evolution of impulsively generated fast and slow magnetoacoustic waves propagating along the dense slab and Harris current sheet using two-dimensional magnetohydrodynamic numerical models. Wave signals computed in numerical models were used for computations of the temporal and spatial wavelet spectra for their possible comparison with those obtained from observations. It is shown that these wavelet spectra allow us to estimate basic parameters of waveguides and perturbations. It was foundmore » that the wavelet spectra of waves in the dense slab and current sheet differ in additional wavelet components that appear in association with the main tadpole structure. These additional components are new details in the wavelet spectrum of the signal. While in the dense slab this additional component is always delayed after the tadpole head, in the current sheet this component always precedes the tadpole head. It could help distinguish a type of the waveguide in observed data. We present a technique based on wavelets that separates wave structures according to their spatial scales. This technique shows not only how to separate the magnetoacoustic waves and waveguide structure in observed data, where the waveguide structure is not known, but also how propagating magnetoacoustic waves would appear in observations with limited spatial resolutions. The possibilities detecting these waves in observed data are mentioned.« less

  13. [Application of wavelet transform and neural network in the near-infrared spectrum analysis of oil shale].

    PubMed

    Li, Su-Yi; Ji, Yan-Ju; Liu, Wei-Yu; Wang, Zhi-Hong

    2013-04-01

    In the present study, an innovative method is proposed, employing both wavelet transform and neural network, to analyze the near-infrared spectrum data in oil shale survey. The method entails using db8 wavelet at 3 levels decomposition to process raw data, using the transformed data as the input matrix, and creating the model through neural network. To verify the validity of the method, this study analyzes 30 synthesized oil shale samples, in which 20 samples are randomly selected for network training, the other 10 for model prediction, and uses the full spectrum and the wavelet transformed spectrum to carry out 10 network models, respectively. Results show that the mean speed of the full spectrum neural network modeling is 570.33 seconds, and the predicted residual sum of squares (PRESS) and correlation coefficient of prediction are 0.006 012 and 0.843 75, respectively. In contrast, the mean speed of the wavelet network modeling method is 3.15 seconds, and the mean PRESS and correlation coefficient of prediction are 0.002 048 and 0.953 19, respectively. These results demonstrate that the wavelet neural network modeling method is significantly superior to the full spectrum neural network modeling method. This study not only provides a new method for more efficient and accurate detection of the oil content of oil shale, but also indicates the potential for applying wavelet transform and neutral network in broad near-infrared spectrum analysis.

  14. Comparison of automatic denoising methods for phonocardiograms with extraction of signal parameters via the Hilbert Transform

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-05-01

    Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.

  15. Sensor system for heart sound biomonitor

    NASA Astrophysics Data System (ADS)

    Maple, Jarrad L.; Hall, Leonard T.; Agzarian, John; Abbott, Derek

    1999-09-01

    Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually, rather than through a conventional stethoscope. A system whereby a digital stethoscope interfaces directly to a PC will be directly along with signal processing algorithms, adopted. The sensor is based on a noise cancellation microphone, with a 450 Hz bandwidth and is sampled at 2250 samples/sec with 12-bit resolution. Further to this, we discuss for comparison a piezo-based sensor with a 1 kHz bandwidth. A major problem is that the recording of the heart sound into these devices is subject to unwanted background noise which can override the heart sound and results in a poor visual representation. This noise originates from various sources such as skin contact with the stethoscope diaphragm, lung sounds, and other surrounding sounds such as speech. Furthermore we demonstrate a solution using 'wavelet denoising'. The wavelet transform is used because of the similarity between the shape of wavelets and the time-domain shape of a heartbeat sound. Thus coding of the waveform into the wavelet domain is achieved with relatively few wavelet coefficients, in contrast to the many Fourier components that would result from conventional decomposition. We show that the background noise can be dramatically reduced by a thresholding operation in the wavelet domain. The principle is that the background noise codes into many small broadband wavelet coefficients that can be removed without significant degradation of the signal of interest.

  16. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  17. The Brera Multiscale Wavelet ROSAT HRI Source Catalog. I. The Algorithm

    NASA Astrophysics Data System (ADS)

    Lazzati, Davide; Campana, Sergio; Rosati, Piero; Panzera, Maria Rosa; Tagliaferri, Gianpiero

    1999-10-01

    We present a new detection algorithm based on the wavelet transform for the analysis of high-energy astronomical images. The wavelet transform, because of its multiscale structure, is suited to the optimal detection of pointlike as well as extended sources, regardless of any loss of resolution with the off-axis angle. Sources are detected as significant enhancements in the wavelet space, after the subtraction of the nonflat components of the background. Detection thresholds are computed through Monte Carlo simulations in order to establish the expected number of spurious sources per field. The source characterization is performed through a multisource fitting in the wavelet space. The procedure is designed to correctly deal with very crowded fields, allowing for the simultaneous characterization of nearby sources. To obtain a fast and reliable estimate of the source parameters and related errors, we apply a novel decimation technique that, taking into account the correlation properties of the wavelet transform, extracts a subset of almost independent coefficients. We test the performance of this algorithm on synthetic fields, analyzing with particular care the characterization of sources in poor background situations, where the assumption of Gaussian statistics does not hold. In these cases, for which standard wavelet algorithms generally provide underestimated errors, we infer errors through a procedure that relies on robust basic statistics. Our algorithm is well suited to the analysis of images taken with the new generation of X-ray instruments equipped with CCD technology, which will produce images with very low background and/or high source density.

  18. Automated estimation of individual conifer tree height and crown diameter via Two-dimensional spatial wavelet analysis of lidar data

    Treesearch

    Michael J. Falkowski; Alistair M.S. Smith; Andrew T. Hudak; Paul E. Gessler; Lee A. Vierling; Nicholas L. Crookston

    2006-01-01

    We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved with lidar...

  19. Three-dimensional object recognitions from two-dimensional images using wavelet transforms and neural networks

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.

    1998-03-01

    3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.

  20. Intraoperative neuropathology of glioma recurrence: cell detection and classification

    NASA Astrophysics Data System (ADS)

    Abas, Fazly S.; Gokozan, Hamza N.; Goksel, Behiye; Otero, Jose J.; Gurcan, Metin N.

    2016-03-01

    Intraoperative neuropathology of glioma recurrence represents significant visual challenges to pathologists as they carry significant clinical implications. For example, rendering a diagnosis of recurrent glioma can help the surgeon decide to perform more aggressive resection if surgically appropriate. In addition, the success of recent clinical trials for intraoperative administration of therapies, such as inoculation with oncolytic viruses, may suggest that refinement of the intraoperative diagnosis during neurosurgery is an emerging need for pathologists. Typically, these diagnoses require rapid/STAT processing lasting only 20-30 minutes after receipt from neurosurgery. In this relatively short time frame, only dyes, such as hematoxylin and eosin (H and E), can be implemented. The visual challenge lies in the fact that these patients have undergone chemotherapy and radiation, both of which induce cytological atypia in astrocytes, and pathologists are unable to implement helpful biomarkers in their diagnoses. Therefore, there is a need to help pathologists differentiate between astrocytes that are cytologically atypical due to treatment versus infiltrating, recurrent, neoplastic astrocytes. This study focuses on classification of neoplastic versus non-neoplastic astrocytes with the long term goal of providing a better neuropathological computer-aided consultation via classification of cells into reactive gliosis versus recurrent glioma. We present a method to detect cells in H and E stained digitized slides of intraoperative cytologic preparations. The method uses a combination of the `value' component of the HSV color space and `b*' component of the CIE L*a*b* color space to create an enhanced image that suppresses the background while revealing cells on an image. A composite image is formed based on the morphological closing of the hue-luminance combined image. Geometrical and textural features extracted from Discrete Wavelet Frames and combined to classify cells into neoplastic and non-neoplastic categories. Experimental results show that there is a strong consensus between the proposed method's cell detection markings with those of the pathologist's. Experiments on 48 images from six patients resulted in F1-score as high as 87.48%, 88.08% and 86.12% for Reader 1, Reader 2 and the reader consensus, respectively. Classification results showed that for both readers, binary classification tree and support vector machine performed the best with F1-scores ranging 0.92 to 0.94.

  1. A new approach to global seismic tomography based on regularization by sparsity in a novel 3D spherical wavelet basis

    NASA Astrophysics Data System (ADS)

    Loris, Ignace; Simons, Frederik J.; Daubechies, Ingrid; Nolet, Guust; Fornasier, Massimo; Vetter, Philip; Judd, Stephen; Voronin, Sergey; Vonesch, Cédric; Charléty, Jean

    2010-05-01

    Global seismic wavespeed models are routinely parameterized in terms of spherical harmonics, networks of tetrahedral nodes, rectangular voxels, or spherical splines. Up to now, Earth model parametrizations by wavelets on the three-dimensional ball remain uncommon. Here we propose such a procedure with the following three goals in mind: (1) The multiresolution character of a wavelet basis allows for the models to be represented with an effective spatial resolution that varies as a function of position within the Earth. (2) This property can be used to great advantage in the regularization of seismic inversion schemes by seeking the most sparse solution vector, in wavelet space, through iterative minimization of a combination of the ℓ2 (to fit the data) and ℓ1 norms (to promote sparsity in wavelet space). (3) With the continuing increase in high-quality seismic data, our focus is also on numerical efficiency and the ability to use parallel computing in reconstructing the model. In this presentation we propose a new wavelet basis to take advantage of these three properties. To form the numerical grid we begin with a surface tesselation known as the 'cubed sphere', a construction popular in fluid dynamics and computational seismology, coupled with an semi-regular radial subdivison that honors the major seismic discontinuities between the core-mantle boundary and the surface. This mapping first divides the volume of the mantle into six portions. In each 'chunk' two angular and one radial variable are used for parametrization. In the new variables standard 'cartesian' algorithms can more easily be used to perform the wavelet transform (or other common transforms). Edges between chunks are handled by special boundary filters. We highlight the benefits of this construction and use it to analyze the information present in several published seismic compressional-wavespeed models of the mantle, paying special attention to the statistics of wavelet and scaling coefficients across scales. We also focus on the likely gains of future inversions of finite-frequency seismic data using a sparsity promoting penalty in combination with our new wavelet approach.

  2. 7. Typical top chord, vertical lattice, diagonals and strut assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Typical top chord, vertical lattice, diagonals and strut assembly for the 1st and 4th spans. View is of north side of 1st span. - Cleves Bridge, Spanning Great Miami River on U.S. Highway 50, Cleves, Hamilton County, OH

  3. Diagonal dominance for the multivariable Nyquist array using function minimization

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1977-01-01

    A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.

  4. Are we living near the center of a local void?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusin, Giulia; Pitrou, Cyril; Uzan, Jean-Philippe, E-mail: giulia.cusin@unige.ch, E-mail: pitrou@iap.fr, E-mail: uzan@iap.fr

    The properties of the cosmic microwave background (CMB) temperature and polarisation anisotropies measured by a static, off-centered observer located in a local spherically symmetric void, are described. In particular in this paper we compute, together with the standard 2-point angular correlation functions, the off-diagonal correlators, which are no more vanishing by symmetry. While the energy shift induced by the off-centered position of the observer can be suppressed by a proper choice of the observer velocity, a lensing-like effect on the CMB emission point remains. This latter effect is genuinely geometrical (e.g. non-degenerate with a boost) and reflects in the structuremore » of the off-diagonal correlators. At lowest order in this effect, the temperature and polarisation correlation matrices have non-vanishing diagonal elements, as usual, and all the off-diagonal terms are excited. This particular signature of a local void model allows one, in principle, to disentangle geometrical effects from local kinematical ones in CMB observations.« less

  5. Inertial sensor and method of use

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.

  6. A Partitioning Algorithm for Block-Diagonal Matrices With Overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina

    2008-02-02

    We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile ismore » performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.« less

  7. A diagonal algorithm for the method of pseudocompressibility. [for steady-state solution to incompressible Navier-Stokes equation

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1986-01-01

    The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.

  8. Multidimensional Coherent Spectroscopy of GaAs Excitons and Quantum Microcavity Polaritons

    NASA Astrophysics Data System (ADS)

    Wilmer, Brian L.

    Light-matter interactions associated with excitons and exciton related complexes are explored in bulk GaAs and semiconductor microcavities using multidimensional coherent spectroscopy (MDCS). This approach provides rich spectra determining quantum excitation pathways, structural influences on the excitons, and coherence times. Polarization, excitation density, and temperature-dependent MDCS is performed on excitons in strained bulk GaAs layers, probing the coherent response for differing amounts of strain. Biaxial tensile strain lifts the degeneracy of heavy-hole and light-hole valence states, leading to an observed splitting of the associated excitons at low temperature. Increasing the strain increases the magnitude of the heavy-/light- hole exciton peak splitting, induces an asymmetry in the off-diagonal interaction coherences, increases the difference in the heavy- and light- hole exciton homogenous linewidths, and increases the inhomogeneous broadening of both exciton species. All results arise from strain-induced variations in the local electronic environment, which is not uniform along the growth direction of the thin layers. For cross-linear polarized excitation, wherein excitonic signals give way to biexcitonic signals, the high-strain sample shows evidence of bound light-, heavy- and mixed- hole biexcitons. 2DCS maps the anticrossing associated with normal mode splitting in a semiconductor microcavity. For a detuning range near zero, it is observed that there are two diagonal features related to the intra-action of exciton-polariton branches and two off-diagonal features related to coherent interaction between the polaritons. At negative detuning, the line shape properties of the diagonal intra-action features are distinguishable and can be associated with cavity-like and exciton-like modes. A biexcitonic companion feature is observed, shifted from the exciton feature by the biexciton binding energy. Closer to zero detuning, all features are enhanced and the diagonal intra-action features become nearly equal in amplitude and linewidth. At positive detuning the exciton-like and cavity-like characteristics return to the diagonal intra-action features. Off-diagonal interaction features exhibit asymmetry in their amplitudes throughout the detuning range. The amplitudes are strongly modulated as the lower polariton branch crosses the bound biexciton energy determined from negatively detuned spectra.

  9. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold

    PubMed Central

    Navarro-Mesa, Juan L.; Juliá-Serdá, Gabriel; Ramírez-Ávila, G. Marcelo; Ravelo-García, Antonio G.

    2018-01-01

    Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability (HRV) feature selection process. Three parameters are crucial in RQA: those related to the embedding process (dimension and delay) and the threshold distance. There are no overall accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding an overall acceptable combination, sweeping a range of values for each of them simultaneously. Together with the commonly used RQA measures, we include features related to recurrence times, and features originating in the complex network theory. To the best of our knowledge, no author has used them all for sleep apnea previously. The best performing feature subset is entered into a Linear Discriminant classifier. The best results in the “Apnea-ECG Physionet database” and the “HuGCDN2014 database” are, according to the area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86 (Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of features, previously existing studies in the context of sleep apnea. We conclude that working with dimensions around 7–8 and delays about 4–5, and using for the threshold distance the Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best results. Therefore, we would recommend these reference values for future work when applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with the commonly used vertical and diagonal RQA measures, there are newly used features that contribute valuable information for apnea minutes discrimination. Therefore, they are especially interesting for characterization purposes. Using two different databases supports that the conclusions reached are potentially generalizable, and are not limited by database variability. PMID:29621264

  10. Improving the understanding of sleep apnea characterization using Recurrence Quantification Analysis by defining overall acceptable values for the dimensionality of the system, the delay, and the distance threshold.

    PubMed

    Martín-González, Sofía; Navarro-Mesa, Juan L; Juliá-Serdá, Gabriel; Ramírez-Ávila, G Marcelo; Ravelo-García, Antonio G

    2018-01-01

    Our contribution focuses on the characterization of sleep apnea from a cardiac rate point of view, using Recurrence Quantification Analysis (RQA), based on a Heart Rate Variability (HRV) feature selection process. Three parameters are crucial in RQA: those related to the embedding process (dimension and delay) and the threshold distance. There are no overall accepted parameters for the study of HRV using RQA in sleep apnea. We focus on finding an overall acceptable combination, sweeping a range of values for each of them simultaneously. Together with the commonly used RQA measures, we include features related to recurrence times, and features originating in the complex network theory. To the best of our knowledge, no author has used them all for sleep apnea previously. The best performing feature subset is entered into a Linear Discriminant classifier. The best results in the "Apnea-ECG Physionet database" and the "HuGCDN2014 database" are, according to the area under the receiver operating characteristic curve, 0.93 (Accuracy: 86.33%) and 0.86 (Accuracy: 84.18%), respectively. Our system outperforms, using a relatively small set of features, previously existing studies in the context of sleep apnea. We conclude that working with dimensions around 7-8 and delays about 4-5, and using for the threshold distance the Fixed Amount of Nearest Neighbours (FAN) method with 5% of neighbours, yield the best results. Therefore, we would recommend these reference values for future work when applying RQA to the analysis of HRV in sleep apnea. We also conclude that, together with the commonly used vertical and diagonal RQA measures, there are newly used features that contribute valuable information for apnea minutes discrimination. Therefore, they are especially interesting for characterization purposes. Using two different databases supports that the conclusions reached are potentially generalizable, and are not limited by database variability.

  11. A wavelet analysis of co-movements in Asian gold markets

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Kannadhasan, M.; Al-Yahyaee, Khamis Hamed; Yoon, Seong-Min

    2018-02-01

    This study assesses the cross-country co-movements of gold spot returns among the major gold consuming countries in Asia using wavelet-based analysis for a dataset spanning over 26 years. Wavelet-based analysis is used since it allows measuring co-movements in a time-frequency space. The results suggest intense and positive co-movements in Asia after the Asian financial crisis of 1997 at all frequencies. In addition, the Asian gold spot markets depict a state of impending perfect market integration. Finally, Thailand emerges as the potential market leader in all wavelet scales except one, which is led by India. The study has important implications for international diversification of a single-asset (gold) portfolio.

  12. Wavelet packets for multi- and hyper-spectral imagery

    NASA Astrophysics Data System (ADS)

    Benedetto, J. J.; Czaja, W.; Ehler, M.; Flake, C.; Hirn, M.

    2010-01-01

    State of the art dimension reduction and classification schemes in multi- and hyper-spectral imaging rely primarily on the information contained in the spectral component. To better capture the joint spatial and spectral data distribution we combine the Wavelet Packet Transform with the linear dimension reduction method of Principal Component Analysis. Each spectral band is decomposed by means of the Wavelet Packet Transform and we consider a joint entropy across all the spectral bands as a tool to exploit the spatial information. Dimension reduction is then applied to the Wavelet Packets coefficients. We present examples of this technique for hyper-spectral satellite imaging. We also investigate the role of various shrinkage techniques to model non-linearity in our approach.

  13. Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Lind, Rick

    1998-01-01

    Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.

  14. Numerical solution of the Black-Scholes equation using cubic spline wavelets

    NASA Astrophysics Data System (ADS)

    Černá, Dana

    2016-12-01

    The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.

  15. Phase synchronization based on a Dual-Tree Complex Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ferreira, Maria Teodora; Domingues, Margarete Oliveira; Macau, Elbert E. N.

    2016-11-01

    In this work, we show the applicability of our Discrete Complex Wavelet Approach (DCWA) to verify the phenomenon of phase synchronization transition in two coupled chaotic Lorenz systems. DCWA is based on the phase assignment from complex wavelet coefficients obtained by using a Dual-Tree Complex Wavelet Transform (DT-CWT). We analyzed two coupled chaotic Lorenz systems, aiming to detect the transition from non-phase synchronization to phase synchronization. In addition, we check how good is the method in detecting periods of 2π phase-slips. In all experiments, DCWA is compared with classical phase detection methods such as the ones based on arctangent and Hilbert transform showing a much better performance.

  16. Efficient conjugate gradient algorithms for computation of the manipulator forward dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Scheid, Robert E.

    1989-01-01

    The applicability of conjugate gradient algorithms for computation of the manipulator forward dynamics is investigated. The redundancies in the previously proposed conjugate gradient algorithm are analyzed. A new version is developed which, by avoiding these redundancies, achieves a significantly greater efficiency. A preconditioned conjugate gradient algorithm is also presented. A diagonal matrix whose elements are the diagonal elements of the inertia matrix is proposed as the preconditioner. In order to increase the computational efficiency, an algorithm is developed which exploits the synergism between the computation of the diagonal elements of the inertia matrix and that required by the conjugate gradient algorithm.

  17. 13. Detail, downstream side of Bridge Number 310.58, showing lower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail, downstream side of Bridge Number 310.58, showing lower chord connection, view to southeast, 210mm lens. The riveted portion of the bottom chord is at left, joined at the pin connection to the eyebars. The vertical intermediate post is a compression member, and is attached to one end of a floor beam that spans transversely below the bridge floor. There are paired diagonals to the left of the intermediate post, with a turnbuckled counter to rising diagonally to the right. The diagonals below the floor are bottom lateral members. - Southern Pacific Railroad Shasta Route, Bridge No. 310.58, Milepost 310.58, Sims, Shasta County, CA

  18. Discrete Fourier Transform in a Complex Vector Space

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  19. Spectral sharpening of color sensors: diagonal color constancy and beyond.

    PubMed

    Vazquez-Corral, Javier; Bertalmío, Marcelo

    2014-02-26

    It has now been 20 years since the seminal work by Finlayson et al. on the use of spectral sharpening of sensors to achieve diagonal color constancy. Spectral sharpening is still used today by numerous researchers for different goals unrelated to the original goal of diagonal color constancy e.g., multispectral processing, shadow removal, location of unique hues. This paper reviews the idea of spectral sharpening through the lens of what is known today in color constancy, describes the different methods used for obtaining a set of sharpening sensors and presents an overview of the many different uses that have been found for spectral sharpening over the years.

  20. Design of tree structured matched wavelet for HRV signals of menstrual cycle.

    PubMed

    Rawal, Kirti; Saini, B S; Saini, Indu

    2016-07-01

    An algorithm is presented for designing a new class of wavelets matched to the Heart Rate Variability (HRV) signals of the menstrual cycle. The proposed wavelets are used to find HRV variations between phases of menstrual cycle. The method finds the signal matching characteristics by minimising the shape feature error using Least Mean Square method. The proposed filter banks are used for the decomposition of the HRV signal. For reconstructing the original signal, the tree structure method is used. In this approach, decomposed sub-bands are selected based upon their energy in each sub-band. Thus, instead of using all sub-bands for reconstruction, sub-bands having high energy content are used for the reconstruction of signal. Thus, a lower number of sub-bands are required for reconstruction of the original signal which shows the effectiveness of newly created filter coefficients. Results show that proposed wavelets are able to differentiate HRV variations between phases of the menstrual cycle accurately than standard wavelets.

  1. Operational Safety Assessment of Turbo Generators with Wavelet Rényi Entropy from Sensor-Dependent Vibration Signals

    PubMed Central

    Zhang, Xiaoli; Wang, Baojian; Chen, Xuefeng

    2015-01-01

    With the rapid development of sensor technology, various professional sensors are installed on modern machinery to monitor operational processes and assure operational safety, which play an important role in industry and society. In this work a new operational safety assessment approach with wavelet Rényi entropy utilizing sensor-dependent vibration signals is proposed. On the basis of a professional sensor and the corresponding system, sensor-dependent vibration signals are acquired and analyzed by a second generation wavelet package, which reflects time-varying operational characteristic of individual machinery. Derived from the sensor-dependent signals’ wavelet energy distribution over the observed signal frequency range, wavelet Rényi entropy is defined to compute the operational uncertainty of a turbo generator, which is then associated with its operational safety degree. The proposed method is applied in a 50 MW turbo generator, whereupon it is proved to be reasonable and effective for operation and maintenance. PMID:25894934

  2. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  3. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  4. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Ren, Shouxin

    2005-10-01

    Simultaneous determination of Ni(II), Cd(II), Cu(II) and Zn(II) was studied by two methods, kernel partial least squares (KPLS) and wavelet packet transform partial least squares (WPTPLS), with xylenol orange and cetyltrimethyl ammonium bromide as reagents in the medium pH = 9.22 borax-hydrochloric acid buffer solution. Two programs, PKPLS and PWPTPLS, were designed to perform the calculations. Data reduction was performed using kernel matrices and wavelet packet transform, respectively. In the KPLS method, the size of the kernel matrix is only dependent on the number of samples, thus the method was suitable for the data matrix with many wavelengths and fewer samples. Wavelet packet representations of signals provide a local time-frequency description, thus in the wavelet packet domain, the quality of the noise removal can be improved. In the WPTPLS by optimization, wavelet function and decomposition level were selected as Daubeches 12 and 5, respectively. Experimental results showed both methods to be successful even where there was severe overlap of spectra.

  5. Onboard image compression schemes for modular airborne imaging spectrometer (MAIS) based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenyu; Wang, Jianyu

    1996-11-01

    In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.

  6. Block-based scalable wavelet image codec

    NASA Astrophysics Data System (ADS)

    Bao, Yiliang; Kuo, C.-C. Jay

    1999-10-01

    This paper presents a high performance block-based wavelet image coder which is designed to be of very low implementational complexity yet with rich features. In this image coder, the Dual-Sliding Wavelet Transform (DSWT) is first applied to image data to generate wavelet coefficients in fixed-size blocks. Here, a block only consists of wavelet coefficients from a single subband. The coefficient blocks are directly coded with the Low Complexity Binary Description (LCBiD) coefficient coding algorithm. Each block is encoded using binary context-based bitplane coding. No parent-child correlation is exploited in the coding process. There is also no intermediate buffering needed in between DSWT and LCBiD. The compressed bit stream generated by the proposed coder is both SNR and resolution scalable, as well as highly resilient to transmission errors. Both DSWT and LCBiD process the data in blocks whose size is independent of the size of the original image. This gives more flexibility in the implementation. The codec has a very good coding performance even the block size is (16,16).

  7. Analysis of embolic signals with directional dual tree rational dilation wavelet transform.

    PubMed

    Serbes, Gorkem; Aydin, Nizamettin

    2016-08-01

    The dyadic discrete wavelet transform (dyadic-DWT), which is based on fixed integer sampling factor, has been used before for processing piecewise smooth biomedical signals. However, the dyadic-DWT has poor frequency resolution due to the low-oscillatory nature of its wavelet bases and therefore, it is less effective in processing embolic signals (ESs). To process ESs more effectively, a wavelet transform having better frequency resolution than the dyadic-DWT is needed. Therefore, in this study two ESs, containing micro-emboli and artifact waveforms, are analyzed with the Directional Dual Tree Rational-Dilation Wavelet Transform (DDT-RADWT). The DDT-RADWT, which can be directly applied to quadrature signals, is based on rational dilation factors and has adjustable frequency resolution. The analyses are done for both low and high Q-factors. It is proved that, when high Q-factor filters are employed in the DDT-RADWT, clearer representations of ESs can be attained in decomposed sub-bands and artifacts can be successfully separated.

  8. Simultaneous compression and encryption for secure real-time secure transmission of sensitive video transmission

    NASA Astrophysics Data System (ADS)

    Al-Hayani, Nazar; Al-Jawad, Naseer; Jassim, Sabah A.

    2014-05-01

    Video compression and encryption became very essential in a secured real time video transmission. Applying both techniques simultaneously is one of the challenges where the size and the quality are important in multimedia transmission. In this paper we proposed a new technique for video compression and encryption. Both encryption and compression are based on edges extracted from the high frequency sub-bands of wavelet decomposition. The compression algorithm based on hybrid of: discrete wavelet transforms, discrete cosine transform, vector quantization, wavelet based edge detection, and phase sensing. The compression encoding algorithm treats the video reference and non-reference frames in two different ways. The encryption algorithm utilized A5 cipher combined with chaotic logistic map to encrypt the significant parameters and wavelet coefficients. Both algorithms can be applied simultaneously after applying the discrete wavelet transform on each individual frame. Experimental results show that the proposed algorithms have the following features: high compression, acceptable quality, and resistance to the statistical and bruteforce attack with low computational processing.

  9. Spectral information enhancement using wavelet-based iterative filtering for in vivo gamma spectrometry.

    PubMed

    Paul, Sabyasachi; Sarkar, P K

    2013-04-01

    Use of wavelet transformation in stationary signal processing has been demonstrated for denoising the measured spectra and characterisation of radionuclides in the in vivo monitoring analysis, where difficulties arise due to very low activity level to be estimated in biological systems. The large statistical fluctuations often make the identification of characteristic gammas from radionuclides highly uncertain, particularly when interferences from progenies are also present. A new wavelet-based noise filtering methodology has been developed for better detection of gamma peaks in noisy data. This sequential, iterative filtering method uses the wavelet multi-resolution approach for noise rejection and an inverse transform after soft 'thresholding' over the generated coefficients. Analyses of in vivo monitoring data of (235)U and (238)U were carried out using this method without disturbing the peak position and amplitude while achieving a 3-fold improvement in the signal-to-noise ratio, compared with the original measured spectrum. When compared with other data-filtering techniques, the wavelet-based method shows the best results.

  10. An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features

    NASA Technical Reports Server (NTRS)

    LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)

    2001-01-01

    With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.

  11. High-resolution time-frequency representation of EEG data using multi-scale wavelets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Cui, Wei-Gang; Luo, Mei-Lin; Li, Ke; Wang, Lina

    2017-09-01

    An efficient time-varying autoregressive (TVAR) modelling scheme that expands the time-varying parameters onto the multi-scale wavelet basis functions is presented for modelling nonstationary signals and with applications to time-frequency analysis (TFA) of electroencephalogram (EEG) signals. In the new parametric modelling framework, the time-dependent parameters of the TVAR model are locally represented by using a novel multi-scale wavelet decomposition scheme, which can allow the capability to capture the smooth trends as well as track the abrupt changes of time-varying parameters simultaneously. A forward orthogonal least square (FOLS) algorithm aided by mutual information criteria are then applied for sparse model term selection and parameter estimation. Two simulation examples illustrate that the performance of the proposed multi-scale wavelet basis functions outperforms the only single-scale wavelet basis functions or Kalman filter algorithm for many nonstationary processes. Furthermore, an application of the proposed method to a real EEG signal demonstrates the new approach can provide highly time-dependent spectral resolution capability.

  12. Doppler radar fall activity detection using the wavelet transform.

    PubMed

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  13. Multiscale wavelet representations for mammographic feature analysis

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  14. Wavelet energy-guided level set-based active contour: a segmentation method to segment highly similar regions.

    PubMed

    Achuthan, Anusha; Rajeswari, Mandava; Ramachandram, Dhanesh; Aziz, Mohd Ezane; Shuaib, Ibrahim Lutfi

    2010-07-01

    This paper introduces an approach to perform segmentation of regions in computed tomography (CT) images that exhibit intra-region intensity variations and at the same time have similar intensity distributions with surrounding/adjacent regions. In this work, we adapt a feature computed from wavelet transform called wavelet energy to represent the region information. The wavelet energy is embedded into a level set model to formulate the segmentation model called wavelet energy-guided level set-based active contour (WELSAC). The WELSAC model is evaluated using several synthetic and CT images focusing on tumour cases, which contain regions demonstrating the characteristics of intra-region intensity variations and having high similarity in intensity distributions with the adjacent regions. The obtained results show that the proposed WELSAC model is able to segment regions of interest in close correspondence with the manual delineation provided by the medical experts and to provide a solution for tumour detection. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery

    NASA Astrophysics Data System (ADS)

    Hoshi, Yoshinao; Yakabe, Natsuki; Isobe, Koichiro; Saito, Toshiki; Shitanda, Isao; Itagaki, Masayuki

    2016-05-01

    A new analytical method is proposed to determine the electrochemical impedance of lithium-ion rechargeable batteries (LIRB) from time domain data by wavelet transformation (WT). The WT is a waveform analysis method that can transform data in the time domain to the frequency domain while retaining time information. In this transformation, the frequency domain data are obtained by the convolution integral of a mother wavelet and original time domain data. A complex Morlet mother wavelet (CMMW) is used to obtain the complex number data in the frequency domain. The CMMW is expressed by combining a Gaussian function and sinusoidal term. The theory to select a set of suitable conditions for variables and constants related to the CMMW, i.e., band, scale, and time parameters, is established by determining impedance spectra from wavelet coefficients using input voltage to the equivalent circuit and the output current. The impedance spectrum of LIRB determined by WT agrees well with that measured using a frequency response analyzer.

  16. Wavelet-domain de-noising technique for THz pulsed spectroscopy

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Zaytsev, Kirill I.; Gavdush, Arsenii A.; Fokina, Irina N.; Karasik, Valeriy E.; Reshetov, Igor V.; Kudrin, Konstantin G.; Nosov, Pavel A.; Yurchenko, Stanislav O.

    2014-09-01

    De-noising of terahertz (THz) pulsed spectroscopy (TPS) data is an essential problem, since a noise in the TPS system data prevents correct reconstruction of the sample spectral dielectric properties and to perform the sample internal structure studying. There are certain regions in TPS signal Fourier spectrum, where Fourier-domain signal-to-noise ratio is relatively small. Effective de-noising might potentially expand the range of spectrometer spectral sensitivity and reduce the time of waveform registration, which is an essential problem for biomedical applications of TPS. In this work, it is shown how the recent progress in signal processing in wavelet-domain could be used for TPS waveforms de-noising. It demonstrates the ability to perform effective de-noising of TPS data using the algorithm of the Fast Wavelet Transform (FWT). The results of the optimal wavelet basis selection and wavelet-domain thresholding technique selection are reported. Developed technique is implemented for reconstruction of in vivo healthy and deseased skin samplesspectral characteristics at THz frequency range.

  17. An adaptive morphological gradient lifting wavelet for detecting bearing defects

    NASA Astrophysics Data System (ADS)

    Li, Bing; Zhang, Pei-lin; Mi, Shuang-shan; Hu, Ren-xi; Liu, Dong-sheng

    2012-05-01

    This paper presents a novel wavelet decomposition scheme, named adaptive morphological gradient lifting wavelet (AMGLW), for detecting bearing defects. The adaptability of the AMGLW consists in that the scheme can select between two filters, mean the average filter and morphological gradient filter, to update the approximation signal based on the local gradient of the analyzed signal. Both a simulated signal and vibration signals acquired from bearing are employed to evaluate and compare the proposed AMGLW scheme with the traditional linear wavelet transform (LWT) and another adaptive lifting wavelet (ALW) developed in literature. Experimental results reveal that the AMGLW outperforms the LW and ALW obviously for detecting bearing defects. The impulsive components can be enhanced and the noise can be depressed simultaneously by the presented AMGLW scheme. Thus the fault characteristic frequencies of bearing can be clearly identified. Furthermore, the AMGLW gets an advantage over LW in computation efficiency. It is quite suitable for online condition monitoring of bearings and other rotating machineries.

  18. Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA

    NASA Astrophysics Data System (ADS)

    Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu

    Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.

  19. Understanding the determinants of volatility clustering in terms of stationary Markovian processes

    NASA Astrophysics Data System (ADS)

    Miccichè, S.

    2016-11-01

    Volatility is a key variable in the modeling of financial markets. The most striking feature of volatility is that it is a long-range correlated stochastic variable, i.e. its autocorrelation function decays like a power-law τ-β for large time lags. In the present work we investigate the determinants of such feature, starting from the empirical observation that the exponent β of a certain stock's volatility is a linear function of the average correlation of such stock's volatility with all other volatilities. We propose a simple approach consisting in diagonalizing the cross-correlation matrix of volatilities and investigating whether or not the diagonalized volatilities still keep some of the original volatility stylized facts. As a result, the diagonalized volatilities result to share with the original volatilities either the power-law decay of the probability density function and the power-law decay of the autocorrelation function. This would indicate that volatility clustering is already present in the diagonalized un-correlated volatilities. We therefore present a parsimonious univariate model based on a non-linear Langevin equation that well reproduces these two stylized facts of volatility. The model helps us in understanding that the main source of volatility clustering, once volatilities have been diagonalized, is that the economic forces driving volatility can be modeled in terms of a Smoluchowski potential with logarithmic tails.

  20. Biomechanical pole and leg characteristics during uphill diagonal roller skiing.

    PubMed

    Lindinger, Stefan Josef; Göpfert, Caroline; Stöggl, Thomas; Müller, Erich; Holmberg, Hans-Christer

    2009-11-01

    Diagonal skiing as a major classical technique has hardly been investigated over the last two decades, although technique and racing velocities have developed substantially. The aims of the present study were to 1) analyse pole and leg kinetics and kinematics during submaximal uphill diagonal roller skiing and 2) identify biomechanical factors related to performance. Twelve elite skiers performed a time to exhaustion (performance) test on a treadmill. Joint kinematics and pole/plantar forces were recorded separately during diagonal roller skiing (9 degrees; 11 km/h). Performance was correlated to cycle length (r = 0.77; P < 0.05), relative leg swing (r = 0.71), and gliding time (r = 0.74), hip flexion range of motion (ROM) during swing (r = 0.73) and knee extension ROM during gliding (r = 0.71). Push-off demonstrated performance correlations for impulse of leg force (r = 0.84), relative duration (r= -0.76) and knee flexion (r = 0.73) and extension ROM (r = 0.74). Relative time to peak pole force was associated with performance (r = 0.73). In summary, diagonal roller skiing performance was linked to 1) longer cycle length, 2) greater impulse of force during a shorter push-off with larger flexion/extension ROMs in leg joints, 3) longer leg swing, and 4) later peak pole force, demonstrating the major key characteristics to be emphasised in training.

  1. Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method

    PubMed Central

    Falcão-Filho, Hilmo Barreto Leite; de Aguiar, Fábio Afrânio; Rodrigues, Renata Cristina Silveira; de Mattos, Maria da Gloria Chiarello; Ribeiro, Ricardo Faria

    2012-01-01

    PURPOSE Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS The results on the tightened side were significantly lower in Group C (6.43 ± 3.24 µm) when compared to Groups A (16.50 ± 7.55 µm) and B (16.27 ± 1.71 µm) (P<.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, 58.66±14.30 µm; Group B, 39.48±12.03 µm; Group C, 23.13±8.24 µm) (P<.05). CONCLUSION Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks. PMID:22737313

  2. Running wavelet archetype aids the determination of heart rate from the video photoplethysmogram during motion.

    PubMed

    Addison, Paul S; Foo, David M H; Jacquel, Dominique

    2017-07-01

    The extraction of heart rate from a video-based biosignal during motion using a novel wavelet-based ensemble averaging method is described. Running Wavelet Archetyping (RWA) allows for the enhanced extraction of pulse information from the time-frequency representation, from which a video-based heart rate (HRvid) can be derived. This compares favorably to a reference heart rate derived from a pulse oximeter.

  3. Noncoding sequence classification based on wavelet transform analysis: part II

    NASA Astrophysics Data System (ADS)

    Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez-Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.

    2017-09-01

    DNA sequences in human genome can be divided into the coding and noncoding ones. We hypothesize that the characteristic periodicities of the noncoding sequences are related to their function. We describe the procedure to identify these characteristic periodicities using the wavelet analysis. Our results show that three groups of noncoding sequences, each one with different biological function, may be differentiated by their wavelet coefficients within specific frequency range.

  4. Adaptive Filtering in the Wavelet Transform Domain Via Genetic Algorithms

    DTIC Science & Technology

    2004-08-01

    inverse transform process. 2. BACKGROUND The image processing research conducted at the AFRL/IFTA Reconfigurable Computing Laboratory has been...coefficients from the wavelet domain back into the original signal domain. In other words, the inverse transform produces the original signal x(t) from the...coefficients for an inverse wavelet transform, such that the MSE of images reconstructed by this inverse transform is significantly less than the mean squared

  5. Shearlet Features for Registration of Remotely Sensed Multitemporal Images

    NASA Technical Reports Server (NTRS)

    Murphy, James M.; Le Moigne, Jacqueline

    2015-01-01

    We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.

  6. Distributed Compressive Sensing

    DTIC Science & Technology

    2009-01-01

    example, smooth signals are sparse in the Fourier basis, and piecewise smooth signals are sparse in a wavelet basis [8]; the commercial coding standards MP3...including wavelets [8], Gabor bases [8], curvelets [35], etc., are widely used for representation and compression of natural signals, images, and...spikes and the sine waves of a Fourier basis, or the Fourier basis and wavelets . Signals that are sparsely represented in frames or unions of bases can

  7. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    NASA Astrophysics Data System (ADS)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  8. Wavelet-linear genetic programming: A new approach for modeling monthly streamflow

    NASA Astrophysics Data System (ADS)

    Ravansalar, Masoud; Rajaee, Taher; Kisi, Ozgur

    2017-06-01

    The streamflows are important and effective factors in stream ecosystems and its accurate prediction is an essential and important issue in water resources and environmental engineering systems. A hybrid wavelet-linear genetic programming (WLGP) model, which includes a discrete wavelet transform (DWT) and a linear genetic programming (LGP) to predict the monthly streamflow (Q) in two gauging stations, Pataveh and Shahmokhtar, on the Beshar River at the Yasuj, Iran were used in this study. In the proposed WLGP model, the wavelet analysis was linked to the LGP model where the original time series of streamflow were decomposed into the sub-time series comprising wavelet coefficients. The results were compared with the single LGP, artificial neural network (ANN), a hybrid wavelet-ANN (WANN) and Multi Linear Regression (MLR) models. The comparisons were done by some of the commonly utilized relevant physical statistics. The Nash coefficients (E) were found as 0.877 and 0.817 for the WLGP model, for the Pataveh and Shahmokhtar stations, respectively. The comparison of the results showed that the WLGP model could significantly increase the streamflow prediction accuracy in both stations. Since, the results demonstrate a closer approximation of the peak streamflow values by the WLGP model, this model could be utilized for the simulation of cumulative streamflow data prediction in one month ahead.

  9. Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.

    PubMed

    Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang

    2018-02-24

    This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.

  10. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects.

    PubMed

    Kim, Jinkwon; Min, Se Dong; Lee, Myoungho

    2011-06-27

    Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians.

  11. An efficient coding algorithm for the compression of ECG signals using the wavelet transform.

    PubMed

    Rajoub, Bashar A

    2002-04-01

    A wavelet-based electrocardiogram (ECG) data compression algorithm is proposed in this paper. The ECG signal is first preprocessed, the discrete wavelet transform (DWT) is then applied to the preprocessed signal. Preprocessing guarantees that the magnitudes of the wavelet coefficients be less than one, and reduces the reconstruction errors near both ends of the compressed signal. The DWT coefficients are divided into three groups, each group is thresholded using a threshold based on a desired energy packing efficiency. A binary significance map is then generated by scanning the wavelet decomposition coefficients and outputting a binary one if the scanned coefficient is significant, and a binary zero if it is insignificant. Compression is achieved by 1) using a variable length code based on run length encoding to compress the significance map and 2) using direct binary representation for representing the significant coefficients. The ability of the coding algorithm to compress ECG signals is investigated, the results were obtained by compressing and decompressing the test signals. The proposed algorithm is compared with direct-based and wavelet-based compression algorithms and showed superior performance. A compression ratio of 24:1 was achieved for MIT-BIH record 117 with a percent root mean square difference as low as 1.08%.

  12. An arrhythmia classification algorithm using a dedicated wavelet adapted to different subjects

    PubMed Central

    2011-01-01

    Background Numerous studies have been conducted regarding a heartbeat classification algorithm over the past several decades. However, many algorithms have also been studied to acquire robust performance, as biosignals have a large amount of variation among individuals. Various methods have been proposed to reduce the differences coming from personal characteristics, but these expand the differences caused by arrhythmia. Methods In this paper, an arrhythmia classification algorithm using a dedicated wavelet adapted to individual subjects is proposed. We reduced the performance variation using dedicated wavelets, as in the ECG morphologies of the subjects. The proposed algorithm utilizes morphological filtering and a continuous wavelet transform with a dedicated wavelet. A principal component analysis and linear discriminant analysis were utilized to compress the morphological data transformed by the dedicated wavelets. An extreme learning machine was used as a classifier in the proposed algorithm. Results A performance evaluation was conducted with the MIT-BIH arrhythmia database. The results showed a high sensitivity of 97.51%, specificity of 85.07%, accuracy of 97.94%, and a positive predictive value of 97.26%. Conclusions The proposed algorithm achieves better accuracy than other state-of-the-art algorithms with no intrasubject between the training and evaluation datasets. And it significantly reduces the amount of intervention needed by physicians. PMID:21707989

  13. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  14. An innovative approach for characteristic analysis and state-of-health diagnosis for a Li-ion cell based on the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Kim, Jonghoon; Cho, B. H.

    2014-08-01

    This paper introduces an innovative approach to analyze electrochemical characteristics and state-of-health (SOH) diagnosis of a Li-ion cell based on the discrete wavelet transform (DWT). In this approach, the DWT has been applied as a powerful tool in the analysis of the discharging/charging voltage signal (DCVS) with non-stationary and transient phenomena for a Li-ion cell. Specifically, DWT-based multi-resolution analysis (MRA) is used for extracting information on the electrochemical characteristics in both time and frequency domain simultaneously. Through using the MRA with implementation of the wavelet decomposition, the information on the electrochemical characteristics of a Li-ion cell can be extracted from the DCVS over a wide frequency range. Wavelet decomposition based on the selection of the order 3 Daubechies wavelet (dB3) and scale 5 as the best wavelet function and the optimal decomposition scale is implemented. In particular, this present approach develops these investigations one step further by showing low and high frequency components (approximation component An and detail component Dn, respectively) extracted from variable Li-ion cells with different electrochemical characteristics caused by aging effect. Experimental results show the clearness of the DWT-based approach for the reliable diagnosis of the SOH for a Li-ion cell.

  15. Wavelet-Based Signal and Image Processing for Target Recognition

    NASA Astrophysics Data System (ADS)

    Sherlock, Barry G.

    2002-11-01

    The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.

  16. Multiscale asymmetric orthogonal wavelet kernel for linear programming support vector learning and nonlinear dynamic systems identification.

    PubMed

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2014-05-01

    Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.

  17. Directional dual-tree complex wavelet packet transforms for processing quadrature signals.

    PubMed

    Serbes, Gorkem; Gulcur, Halil Ozcan; Aydin, Nizamettin

    2016-03-01

    Quadrature signals containing in-phase and quadrature-phase components are used in many signal processing applications in every field of science and engineering. Specifically, Doppler ultrasound systems used to evaluate cardiovascular disorders noninvasively also result in quadrature format signals. In order to obtain directional blood flow information, the quadrature outputs have to be preprocessed using methods such as asymmetrical and symmetrical phasing filter techniques. These resultant directional signals can be employed in order to detect asymptomatic embolic signals caused by small emboli, which are indicators of a possible future stroke, in the cerebral circulation. Various transform-based methods such as Fourier and wavelet were frequently used in processing embolic signals. However, most of the times, the Fourier and discrete wavelet transforms are not appropriate for the analysis of embolic signals due to their non-stationary time-frequency behavior. Alternatively, discrete wavelet packet transform can perform an adaptive decomposition of the time-frequency axis. In this study, directional discrete wavelet packet transforms, which have the ability to map directional information while processing quadrature signals and have less computational complexity than the existing wavelet packet-based methods, are introduced. The performances of proposed methods are examined in detail by using single-frequency, synthetic narrow-band, and embolic quadrature signals.

  18. Applications of wavelets in morphometric analysis of medical images

    NASA Astrophysics Data System (ADS)

    Davatzikos, Christos; Tao, Xiaodong; Shen, Dinggang

    2003-11-01

    Morphometric analysis of medical images is playing an increasingly important role in understanding brain structure and function, as well as in understanding the way in which these change during development, aging and pathology. This paper presents three wavelet-based methods with related applications in morphometric analysis of magnetic resonance (MR) brain images. The first method handles cases where very limited datasets are available for the training of statistical shape models in the deformable segmentation. The method is capable of capturing a larger range of shape variability than the standard active shape models (ASMs) can, by using the elegant spatial-frequency decomposition of the shape contours provided by wavelet transforms. The second method addresses the difficulty of finding correspondences in anatomical images, which is a key step in shape analysis and deformable registration. The detection of anatomical correspondences is completed by using wavelet-based attribute vectors as morphological signatures of voxels. The third method uses wavelets to characterize the morphological measurements obtained from all voxels in a brain image, and the entire set of wavelet coefficients is further used to build a brain classifier. Since the classification scheme operates in a very-high-dimensional space, it can determine subtle population differences with complex spatial patterns. Experimental results are provided to demonstrate the performance of the proposed methods.

  19. Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney: initial results in patients and healthy volunteers.

    PubMed

    Li, Sheng; Zöllner, Frank G; Merrem, Andreas D; Peng, Yinghong; Roervik, Jarle; Lundervold, Arvid; Schad, Lothar R

    2012-03-01

    Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Wavelet analysis of hemispheroid flow separation toward understanding human vocal fold pathologies

    NASA Astrophysics Data System (ADS)

    Plesniak, Daniel H.; Carr, Ian A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2014-11-01

    Physiological flows observed in human vocal fold pathologies, such as polyps and nodules, can be modeled by flow over a wall-mounted protuberance. The experimental investigation of flow separation over a surface-mounted hemispheroid was performed using particle image velocimetry (PIV) and measurements of surface pressure in a low-speed wind tunnel. This study builds on the hypothesis that the signatures of vortical structures associated with flow separation are imprinted on the surface pressure distributions. Wavelet decomposition methods in one- and two-dimensions were utilized to elucidate the flow behavior. First, a complex Gaussian wavelet was used for the reconstruction of surface pressure time series from static pressure measurements acquired from ports upstream, downstream, and on the surface of the hemispheroid. This was followed by the application of a novel continuous wavelet transform algorithm (PIVlet 1.2) using a 2D-Ricker wavelet for coherent structure detection on instantaneous PIV-data. The goal of this study is to correlate phase shifts in surface pressure with Strouhal numbers associated with the vortex shedding. Ultimately, the wavelet-based analytical framework will be aimed at addressing pulsatile flows. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  1. Wavelet processing techniques for digital mammography

    NASA Astrophysics Data System (ADS)

    Laine, Andrew F.; Song, Shuwu

    1992-09-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Similar to traditional coarse to fine matching strategies, the radiologist may first choose to look for coarse features (e.g., dominant mass) within low frequency levels of a wavelet transform and later examine finer features (e.g., microcalcifications) at higher frequency levels. In addition, features may be extracted by applying geometric constraints within each level of the transform. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet representations, enhanced by linear, exponential and constant weight functions through scale space. By improving the visualization of breast pathology we can improve the chances of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  2. Exploring an optimal wavelet-based filter for cryo-ET imaging.

    PubMed

    Huang, Xinrui; Li, Sha; Gao, Song

    2018-02-07

    Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.

  3. Wavelet Denoising of Radio Observations of Rotating Radio Transients (RRATs): Improved Timing Parameters for Eight RRATs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, M.; Schmid, N. A.; Cao, Z.-C.

    Rotating radio transients (RRATs) are sporadically emitting pulsars detectable only through searches for single pulses. While over 100 RRATs have been detected, only a small fraction (roughly 20%) have phase-connected timing solutions, which are critical for determining how they relate to other neutron star populations. Detecting more pulses in order to achieve solutions is key to understanding their physical nature. Astronomical signals collected by radio telescopes contain noise from many sources, making the detection of weak pulses difficult. Applying a denoising method to raw time series prior to performing a single-pulse search typically leads to a more accurate estimation ofmore » their times of arrival (TOAs). Taking into account some features of RRAT pulses and noise, we present a denoising method based on wavelet data analysis, an image-processing technique. Assuming that the spin period of an RRAT is known, we estimate the frequency spectrum components contributing to the composition of RRAT pulses. This allows us to suppress the noise, which contributes to other frequencies. We apply the wavelet denoising method including selective wavelet reconstruction and wavelet shrinkage to the de-dispersed time series of eight RRATs with existing timing solutions. The signal-to-noise ratio (S/N) of most pulses are improved after wavelet denoising. Compared to the conventional approach, we measure 12%–69% more TOAs for the eight RRATs. The new timing solutions for the eight RRATs show 16%–90% smaller estimation error of most parameters. Thus, we conclude that wavelet analysis is an effective tool for denoising RRATs signal.« less

  4. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  5. Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones.

    PubMed

    Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri

    2015-01-01

    Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and utilized in radial basis function neural network. Our simulation results indicate the accuracy of 92% classification using F1W2 method.

  6. Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chun; Wang, Yuan-Heng; You, Gene Jiing-Yun; Wei, Chih-Chiang

    2017-02-01

    Future climatic conditions likely will not satisfy stationarity assumption. To address this concern, this study applied three methods to analyze non-stationarity in hydrologic conditions. Based on the principle of identifying distribution and trends (IDT) with time-varying moments, we employed the parametric weighted least squares (WLS) estimation in conjunction with the non-parametric discrete wavelet transform (DWT) and ensemble empirical mode decomposition (EEMD). Our aim was to evaluate the applicability of non-parameter approaches, compared with traditional parameter-based methods. In contrast to most previous studies, which analyzed the non-stationarity of first moments, we incorporated second-moment analysis. Through the estimation of long-term risk, we were able to examine the behavior of return periods under two different definitions: the reciprocal of the exceedance probability of occurrence and the expected recurrence time. The proposed framework represents an improvement over stationary frequency analysis for the design of hydraulic systems. A case study was performed using precipitation data from major climate stations in Taiwan to evaluate the non-stationarity of annual maximum daily precipitation. The results demonstrate the applicability of these three methods in the identification of non-stationarity. For most cases, no significant differences were observed with regard to the trends identified using WLS, DWT, and EEMD. According to the results, a linear model should be able to capture time-variance in either the first or second moment while parabolic trends should be used with caution due to their characteristic rapid increases. It is also observed that local variations in precipitation tend to be overemphasized by DWT and EEMD. The two definitions provided for the concept of return period allows for ambiguous interpretation. With the consideration of non-stationarity, the return period is relatively small under the definition of expected recurrence time comparing to the estimation using the reciprocal of the exceedance probability of occurrence. However, the calculation of expected recurrence time is based on the assumption of perfect knowledge of long-term risk, which involves high uncertainty. When the risk is decreasing with time, the expected recurrence time will lead to the divergence of return period and make this definition inapplicable for engineering purposes.

  7. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...

  8. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...

  9. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...

  10. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...

  11. 27 CFR 9.217 - Happy Canyon of Santa Barbara.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Barbara viticultural area are titled: (1) Los Olivos, CA, 1995; (2) Figueroa Mountain, CA, 1995; (3) Lake... intersection of the Santa Lucia Ranger District diagonal line and Figueroa Mountain Road, a light-duty road... diagonal line, crossing onto the Figueroa Mountain map, and continuing east to its intersection with the...

  12. "NONLINEAR DYNAMIC SYSTEMS RESPONSE TO NON-STATIONARY EXCITATION USING THE WAVELET TRANSFORM"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPANOS, POL D.

    2006-01-15

    The objective of this research project has been the development of techniques for estimating the power spectra of stochastic processes using wavelet transform, and the development of related techniques for determining the response of linear/nonlinear systems to excitations which are described via the wavelet transform. Both of the objectives have been achieved, and the research findings have been disseminated in papers in archival journals and technical conferences.

  13. Fast, large-scale hologram calculation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Matsushima, Kyoji; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Ito, Tomoyoshi

    2018-04-01

    We propose a large-scale hologram calculation using WAvelet ShrinkAge-Based superpositIon (WASABI), a wavelet transform-based algorithm. An image-type hologram calculated using the WASABI method is printed on a glass substrate with the resolution of 65 , 536 × 65 , 536 pixels and a pixel pitch of 1 μm. The hologram calculation time amounts to approximately 354 s on a commercial CPU, which is approximately 30 times faster than conventional methods.

  14. Music Tune Restoration Based on a Mother Wavelet Construction

    NASA Astrophysics Data System (ADS)

    Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.

    2017-01-01

    It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.

  15. Experimental study on Statistical Damage Detection of RC Structures based on Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Zhu, X. Q.; Law, S. S.; Jayawardhan, M.

    2011-07-01

    A novel damage indicator based on wavelet packet transform is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single damage are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used for the damage monitoring and assessment of the structure.

  16. Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1992-01-01

    Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.

  17. Short-term data forecasting based on wavelet transformation and chaos theory

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Cunbin; Zhang, Liang

    2017-09-01

    A sketch of wavelet transformation and its application was given. Concerning the characteristics of time sequence, Haar wavelet was used to do data reduction. After processing, the effect of “data nail” on forecasting was reduced. Chaos theory was also introduced, a new chaos time series forecasting flow based on wavelet transformation was proposed. The largest Lyapunov exponent was larger than zero from small data sets, it verified the data change behavior still met chaotic behavior. Based on this, chaos time series to forecast short-term change behavior could be used. At last, the example analysis of the price from a real electricity market showed that the forecasting method increased the precision of the forecasting more effectively and steadily.

  18. Hyperspectral imaging with wavelet transform for classification of colon tissue biopsy samples

    NASA Astrophysics Data System (ADS)

    Masood, Khalid

    2008-08-01

    Automatic classification of medical images is a part of our computerised medical imaging programme to support the pathologists in their diagnosis. Hyperspectral data has found its applications in medical imagery. Its usage is increasing significantly in biopsy analysis of medical images. In this paper, we present a histopathological analysis for the classification of colon biopsy samples into benign and malignant classes. The proposed study is based on comparison between 3D spectral/spatial analysis and 2D spatial analysis. Wavelet textural features in the wavelet domain are used in both these approaches for classification of colon biopsy samples. Experimental results indicate that the incorporation of wavelet textural features using a support vector machine, in 2D spatial analysis, achieve best classification accuracy.

  19. Wavelet analysis for wind fields estimation.

    PubMed

    Leite, Gladeston C; Ushizima, Daniela M; Medeiros, Fátima N S; de Lima, Gilson G

    2010-01-01

    Wind field analysis from synthetic aperture radar images allows the estimation of wind direction and speed based on image descriptors. In this paper, we propose a framework to automate wind direction retrieval based on wavelet decomposition associated with spectral processing. We extend existing undecimated wavelet transform approaches, by including à trous with B(3) spline scaling function, in addition to other wavelet bases as Gabor and Mexican-hat. The purpose is to extract more reliable directional information, when wind speed values range from 5 to 10 ms(-1). Using C-band empirical models, associated with the estimated directional information, we calculate local wind speed values and compare our results with QuikSCAT scatterometer data. The proposed approach has potential application in the evaluation of oil spills and wind farms.

  20. Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.

    PubMed

    Cowlagi, Raghvendra V; Tsiotras, Panagiotis

    2012-10-01

    We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.

Top