DOE Office of Scientific and Technical Information (OSTI.GOV)
Banasek, J. T., E-mail: jtb254@cornell.edu; Engelbrecht, J. T.; Pikuz, S. A.
2016-11-15
We have shown that Zeeman splitting of the sodium (Na) D-lines at 5890 and 5896 Å can be used to measure the magnetic field (B-field) produced in high current pulsed power experiments. We have measured the B-field next to a return current conductor in a hybrid X-pinch experiment near a peak current of about 500 kA. Na is deposited on the conductor and then is desorbed and excited by radiation from the hybrid X-pinch. The D-line emission spectrum implies B-fields of about 20 T with a return current post of 4 mm diameter or up to 120 T with amore » return current wire of 0.455 mm diameter. These measurements were consistent or lower than the expected B-field, thereby showing that basic Zeeman splitting can be used to measure the B-field in a pulsed-power-driven high-energy-density (HED) plasma experiment. We hope to extend these measurement techniques using suitable ionized species to measurements within HED plasmas.« less
Sensing a buried resonant object by single-channel time reversal.
Waters, Zachary J; Dzikowicz, Benjamin R; Holt, R Glynn; Roy, Ronald A
2009-07-01
Scaled laboratory experiments are conducted to assess the efficacy of iterative, single-channel time reversal for enhancement of monostatic returns from resonant spheres in the free field and buried in a sediment phantom. Experiments are performed in a water tank using a broad-band piston transducer operating between 0.4 and 1.5 MHz and calibrated using free surface reflections. Solid and hollow metallic spheres, 6.35 mm in diameter, are buried in a consolidation of 128-microm-mean- diameter spherical glass beads. The procedure consists of exciting the target object with a broadband pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Results indicate that the spectrum of the returns rapidly converges to the dominant mode in the backscattering response of the target. Signal-to-noise enhancement of the target echo is demonstrated for a target at several burial depths. Images generated by scanning the transducer over the location of multiple buried targets demonstrate the ability of the technique to distinguish between targets of differing type and to yield an enhancement of different modes within the response of a single target as a function of transducer position and processing bandwidth.
Raise cutting diameters for increased returns
H. Clay Smith; G. R., Jr. Trimble; Paul S. DeBald
1979-01-01
Diameter-limit cutting is widely used to harvest logs in eastern hardwoods. Studies show that cutting limits are often set so low that they sacrifice financial returns. The value of lumber cut from logs is largely dependent on the diameter, grade, and tree species. As tree size increases so does the proportion of higher grade lumber, and this is reflected in improved...
What do sales data tell us about implant survival?
Seemann, Rudolf; Jirku, Alexander; Wagner, Florian; Wutzl, Arno
2017-01-01
The aim of this study was to evaluate the influence of implant diameter, length and shape on a surrogate parameter of implant survival; i.e. the implant return rate in a big data analysis. A retrospective study was conducted and the factors influencing the success rates of 69,377 sold implants over a seven-year period were evaluated. The osseointegration program of a reseller provides reliable data of a single country. Implant loss rates were investigated using logistic regression models and regressed by implant type, diameter, and length. The return rate of 69,377 sold implants was 2.78% and comparable to implant loss rates in previous published prospective studies as its surrogate parameter. A total of 80% of implant returns had occurred within 157 days, and an additional 15% within 750.25 days. Diameters of 3.8 to 5.0mm showed the lowest return rates with its bottom in the 4.3mm implant whilst 6.0mm implants had significantly higher return rates. In comparison to the most sold implant length (13mm) shorter implants showed significantly higher early return rates. The study provides evidence that in cases of standard indications and sufficient bone, the use of screw typed dental implants with 3.8 or 4.3 diameter and 11 or 13 mm length shows the lowest implant return rates. Other implants may be selected only in specific indications.
What do sales data tell us about implant survival?
Seemann, Rudolf; Jirku, Alexander; Wagner, Florian; Wutzl, Arno
2017-01-01
Objective The aim of this study was to evaluate the influence of implant diameter, length and shape on a surrogate parameter of implant survival; i.e. the implant return rate in a big data analysis. Materials and methods A retrospective study was conducted and the factors influencing the success rates of 69,377 sold implants over a seven-year period were evaluated. The osseointegration program of a reseller provides reliable data of a single country. Implant loss rates were investigated using logistic regression models and regressed by implant type, diameter, and length. Results The return rate of 69,377 sold implants was 2.78% and comparable to implant loss rates in previous published prospective studies as its surrogate parameter. A total of 80% of implant returns had occurred within 157 days, and an additional 15% within 750.25 days. Diameters of 3.8 to 5.0mm showed the lowest return rates with its bottom in the 4.3mm implant whilst 6.0mm implants had significantly higher return rates. In comparison to the most sold implant length (13mm) shorter implants showed significantly higher early return rates. Conclusions The study provides evidence that in cases of standard indications and sufficient bone, the use of screw typed dental implants with 3.8 or 4.3 diameter and 11 or 13 mm length shows the lowest implant return rates. Other implants may be selected only in specific indications. PMID:28222128
Dupouy, Paul-Edouard; Büchner, Matthias; Paquier, Philippe; Trénec, Gérard; Vigué, Jacques
2010-02-01
The light reflected by an uncoated Fabry-Perot etalon presents dark rings which give a very sensitive measurement of the variations of the return optical path in the etalon. By measuring the diameters of these rings as a function of the etalon temperature T, we get a sensitive measurement of the derivative dn/dT of the index of refraction n. We have made this experiment with a fused silica etalon and we have achieved a 2% relative uncertainty on dn/dT, comparable to the uncertainty of the best experiments.
A study of the effect of pregnancy on muscle fibers of the rectus abdominis muscle of the rat.
Martin, W D
1979-11-01
Samples of the rectus abdominis muscle were taken from Sprague-Dawley rats at 0, 3, 6, 6, 12, 15, 18, and 21 days of pregnancy, and at 1, 3, 6, 9, 12, and 15 days of postpartum. Sections were incubated for actomyosin adenosine triphosphatase activity following preincubation at a basic pH. Muscle fibers within a unit area of each sample were identified as to fiber type according to their enzyme activity, and the population of each type counted. The proportion of each fiber type was calculated and the diameter of 24 fibers of each type measured. No changes were noted in the muscle fiber proportions through the course of the experiment. Differential changes in muscle fiber diameters were noted in each of the three muscle fiber types. Slow oxidative fibers underwent an increase in diameter through the last half of pregnancy. The diameter was further increased as stretch of the muscle was released after birth, and did not decrease in the postpartum period. Fast glycolytic fibers decreased in diameter during the last half of pregnancy, but returned to the prepregnancy diameter in the first postpartum day. The diameter of the fast oxidative glycolytic fibers remained unchanged through the course of pregnacy and in the postpartum period.
Lockheed design of a wind satellite (WINDSAT) experiment
NASA Technical Reports Server (NTRS)
Osmundson, John S.; Martin, Stephen C.
1985-01-01
WINDSAT is a proposed space based global wind measuring system. A Shuttleborne experiment is proposed as a proof of principle demonstration before development of a full operational system. WINDSAT goals are to measure wind speed and direction to + or - 1 m/s and 10 deg accuracy over the entire earth from 0 to 20 km altitude with 1 km altitude resolution. The wind measuring instrument is a coherent lidar incorporating a pulsed CO2 TEA laser transmitter and a continuously scanning 1.25 m diameter optical system. The wind speed is measured by heterodyne detecting the backscattered return laser radiation and measuring this frequency shift.
Modeling of SAR returns from a red pine stand
NASA Technical Reports Server (NTRS)
Lang, R. H.; Kilic, O.; Chauhan, N. S.; Ranson, J.
1992-01-01
Bright P-band radar returns from red pine forests have been observed on synthetic aperture radar (SAR) images in Bangor, Maine. A plot of red pine trees was selected for the characterization and modeling to understand the cause of the high P-band returns. The red pine stand under study consisted of mature trees. Diameter at breast height (DBH) measurements were made to determine stand density as a function of tree diameter. Soil moisture and bulk density measurements were taken along with ground rough surface profiles. Detailed biomass measurements of the needles, shoots, branches, and trunks were also taken. These site statistics have been used in a distorted Born approximation model of the forest. Computations indicate that the direct-reflected or the double-bounce contributions from the ground are responsible for the high observed P-band returns for HH polarization.
NASA Technical Reports Server (NTRS)
Dillman, Robert
2015-01-01
Entry mass at Mars is limited by the payload size that can be carried by a rigid capsule that can fit inside the launch vehicle fairing. Landing altitude at Mars is limited by ballistic coefficient (mass per area) of entry body. Inflatable technologies allow payload to use full diameter of launch fairing, and deploy larger aeroshell before atmospheric interface, landing more payload at a higher altitude. Also useful for return of large payloads from Low Earth Orbit (LEO).
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)
1991-01-01
A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.
Small-diameter roundwood, strong-post W-beam guardrail systems
David Kretschmann; Ronald Faller; John Reid; Jason Hascall; Dean Sicking; John Rohde
2006-01-01
Round guardrail posts may provide an important value-added option for small-diameter thinnings. Such posts require minimum processing and are believed to have higher strength for the equivalent rectangular volume. The resulting value-added product may bring a higher return compared to lumber. The obstacles to immediate utilization of ponderosa pine and Douglas-fir...
Small tractors for harvesting fuelwood in low-volume small-diameter hardwood stands
Neil K. Huyler; Chris B. LeDoux
1989-01-01
Much of the nonindustrial, private forest land in the Northeast is characterized by small diameter trees with low volume. Conventional harvesting systems used in logging these stands generally results in submarginal economic returns. Often, small-scale harvesting systems have economic advantages in these areas. Time and motion studies were conducted for several small...
Growth responses of mature loblolly pine to dead wood.manipulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulyshen, Michael D.; Horn, Scott; Hanula, James L.
Large-scale manipulations of dead wood in mature Pinus taeda L. stands in the southeastern United States included a major one-time input of logs (fivefold increase in log volume) created by felling trees onsite, annual removals of all dead wood above >10 cm in diameter and >60 cm in length, and a reference in which no manipulations took place. We returned over a decade later to determine how these treatments affected tree growth using increment cores. There were no significant differences in tree density, basal area or tree diameters among treatments at the time of sampling. Although tree growth was consistentlymore » higher in the log-input plots and lower in the removal plots, this was true even during the 5 year period before the experiment began. When growth data from this initial period were included in the model as a covariate, no differences in post-treatment tree growth were detected. It is possible that treatment effects will become apparent after more time has passed, however.« less
Investigating the use of small-diameter softwood as guardrail posts: static test results
David E. Kretschmann; Ron Faller; Jason Hascall; John Reid; Dean Sicking; John Rohde; Dick Shilts; Tim Nelson
2007-01-01
Round guardrail posts may provide an important value added option for small-diameter thinnings. Such posts require minimum processing and have been shown to have higher strength compared to the equivalent rectangular volume. The resulting value-added product may bring a higher return compared to lumber. The obstacles to immediate utilization of ponderosa pine and...
Carotid and Femoral Artery Intima-Media Thickness During 6 Months of Spaceflight.
Arbeille, Philippe; Provost, Romain; Zuj, Kathryn
2016-05-01
The objective was to determine the effects of 6 mo of microgravity exposure on conduit artery diameter and wall thickness. Diagnostic images of the common carotid artery (CC) and superficial femoral artery (FA) were obtained using echography which astronauts performed on themselves after receiving minimal training in the use of ultrasound imaging. Echographic video was recorded using a volume capture method directed by a trained sonographer on the ground through videoconferencing. Vessel properties were later assessed by processing the downlinked video. Data were collected from 10 astronauts who performed the echographic video capture at the beginning of the spaceflight (day 15) and near the end of the spaceflight (day 115 to 165). In-flight and postflight measurements were compared to preflight assessments. No significant changes with spaceflight were found for CC and FA diameter. Intima-media thickness (IMT) of the CC was found to be significantly increased (12% ± 4) in all astronauts during the spaceflight (early and late flight) and remained elevated 4 d after returning to Earth. Similarly, FA IMT was increased during the flight but returned to preflight levels 4 d postflight. The experiment demonstrated that, using the volume capture method of echography, untrained astronauts were able to capture enough echographic data to display vessel images of good quality for analysis. The increase in both CC and FA IMT during the flight suggest an adaptation to microgravity and to the confined environment of spaceflight which deserves further investigation.
Asteroid Return Mission Feasibility Study
NASA Technical Reports Server (NTRS)
Brophy, John R.; Gershman, Robert; Landau, Damon; Polk, James; Porter, Chris; Yeomans, Don; Allen, Carlton; Williams, Willie; Asphaug, Erik
2011-01-01
This paper describes an investigation into the technological feasibility of finding, characterizing, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the International Space Station (ISS) for scientific investigation, evaluation of its resource potential, determination of its internal structure and other aspects important for planetary defense activities, and to serve as a testbed for human operations in the vicinity of an asteroid. Reasonable projections suggest that several dozen candidates NEAs in the size range of interest (approximately 2-m diameter) will be known before the end of the decade from which a suitable target could be selected. The conceptual mission objective is to return an approximately 10,000-kg asteroid to the ISS in a total flight time of approximately 5 years using a single Evolved Expendable Launch Vehicle. Preliminary calculations indicate that this could be accomplished using a solar electric propulsion (SEP) system with high-power Hall thrusters and a maximum power into the propulsion system of approximately 40 kW. The SEP system would be used to provide all of the post-launch delta V. The asteroid would have an unrestricted Earth return Planetary Protection categorization, and would be curated at the ISS where numerous scientific and resource utilization experiments would be conducted. Asteroid material brought to the ground would be curated at the NASA Johnson Space Center. This preliminary study identified several areas where additional work is required, but no show stoppers were identified for the approach that would return an entire 10,000-kg asteroid to the ISS in a mission that could be launched by the end of this decade.
Orion Optical Navigation for Loss of Communication Lunar Return Contingencies
NASA Technical Reports Server (NTRS)
Getchius, Joel; Hanak, Chad; Kubitschek, Daniel G.
2010-01-01
The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.
NASA Technical Reports Server (NTRS)
Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.
2014-01-01
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
Matthew Bumgardner; Scott Bowe; Janice Wiedenbeck
2013-01-01
Research conducted in a variety of hardwood regions across the United States has indicated that utilization of small-diameter roundwood is hindered by a lack of markets. Efficient removal of such material could enable silvicultural practices to improve stand conditions and economic return for landowners. However, evidence from other studies has suggested that markets...
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Deshpande, Sunil P.; Johnson, Nicholas L.
1997-01-01
A flight experiment flown onboard the Mir space station as a part of the Euromir 95 mission is considered. The aim of the experiment was to develop a greater understanding of the effects of the space environment on materials. In addition to the active enumeration of particle impacts and trajectories, the aim was to capture hypervelocity particles for their return to earth. Postflight measurements were performed to determine the flux density, diameters and subsequent effects on various optical thermal control and structural materials. Sensors actively measured the atomic oxygen flux, the contamination depostion and their effects during the mission. Two clouds of small particles were detected during a period of 100 days onboard Mir. It is concluded that the measured momenta of these particles suggests that their size and velocity are such that they cause damage to optics and thermal control surfaces.
Subsonic Dynamics of Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.
1997-01-01
Subsonic dynamic stability tests performed in the NASA Langley 20-Foot Vertical Spin-Tunnel on a 0.238 scale model of the Stardust Sample Return Capsule are discussed. The tests reveal that the blunted 60 degree half-angle cone capsule is dynamically unstable at low subsonic conditions due to the aft location of the center-of-gravity (0.351 body diameters back from the nose). The divergent behavior of the capsule continued when the center-of-gravity was moved to 0.337 and 0.313 body diameters back from the nose. When the center-of-gravity was moved further forward to 0.290 body diameters back from the nose, the vehicle established itself in a limit cycle with amplitude around 10 degrees. Two afterbody modifications were examined which proved unsuccessful in alleviating the instability of the original design. Finally, the addition of different sized parachutes was examined as a means to stabilize the vehicle. The parachute tests indicate that a parachute with equivalent full scale drag area of at least 2.24 ft. is necessary to assure large perturbations are damped.
Determination of parameters for hypervelocity dust grains encountered in near-Earth space
NASA Technical Reports Server (NTRS)
Tanner, William G.; Maag, Carl R.; Alexander, W. Merle; Sappenfield, Patricia
1993-01-01
Primarily interest was in the determination of the population of micrometeoroids and space debris and interpretation of the hole size in a thin film or in a micropore foam returned from space with theoretical calculations describing the event. In order to augment the significance of the theoretical calculations of the impact event, an experiment designed to analyze the charge production due to hypervelocity impacts on thin films also produced data which described the penetration properties of micron and sub-micron sized projectiles. The thin film penetration sites in the 500 A and 1000 A aluminum films were counted and a size distribution function was derived. In the case of the very smallest dust grains, there were no independent measurements of velocities like that which existed for the larger dust grains (d(sub p) is less than or equal to 1 micron). The primary task then became to assess the relationship between the penetration hole and the particle diameter of the projectile which made the hole. The most promising means to assess the measure of the diameters of impacting grains came in the form of comparing cratering mechanics to penetration mechanics. Future experimentation will produce measurements of the cratering as opposed to the penetrating event. Particles encountered by surfaces while being flown in space will degrade that surface in a systematic manner even when the impact is with small hypervelocity particles, d(sub p) is less than or equal to 10 microns. Though not to a degree which would precipitate a catastrophic failure of a system, the degradation of the materials comprising the interconnected system will occur. It is the degradation of the optical system and the subsequent embrittlement of other materials that can lead to degradation if not to failure. It is to this end that research was conducted to compare the primary consequences for experiments which will be flown to those which have been returned.
Sui, Xiaohong; Huang, Yu; Feng, Fuchen; Huang, Chenhui; Chan, Leanne Lai Hang; Wang, Guoxing
2015-05-01
A novel 3-dimensional (3D) finite element model was established to systematically investigate the impact of the diameter (Φ) of disc electrodes and the electrode-to-retina distance on the effectiveness of stimulation. The 3D finite element model was established based on a disc platinum stimulating electrode and a 6-layered retinal structure. The ground electrode was placed in the extraocular space in direct attachment with sclera and treated as a distant return electrode. An established criterion of electric-field strength of 1000 Vm-1 was adopted as the activation threshold for RGCs. The threshold current (TC) increased linearly with increasing Φ and electrode-to-retina distance and remained almost unchanged with further increases in diameter. However, the threshold charge density (TCD) increased dramatically with decreasing electrode diameter. TCD exceeded the electrode safety limit for an electrode diameter of 50 µm at an electrode-to-retina distance of 50 to 200 μm. The electric field distributions illustrated that smaller electrode diameters and shorter electrode-to-retina distances were preferred due to more localized excitation of RGC area under stimulation of different threshold currents in terms of varied electrode size and electrode-to-retina distances. Under the condition of same-amplitude current stimulation, a large electrode exhibited an improved potential spatial selectivity at large electrode-to-retina distances. Modeling results were consistent with those reported in animal electrophysiological experiments and clinical trials, validating the 3D finite element model of epiretinal stimulation. The computational model proved to be useful in optimizing the design of an epiretinal stimulating electrode for prosthesis.
Li, Wei; Qiu, Yi
2007-05-20
Resumption of menstrual cycles is one of the indicators for restoration of reproductive capability in postpartum women. However, menstruation does not necessarily mean that ovulation has taken place. The aim of this study was to investigate the relation of supplementary feeding to return of menstruation and ovulation after delivery. A questionnaire was used to obtain data from 101 breastfeeding mothers. The following elements were analyzed: age, education level, breastfeeding practice, time of return of menstruation, contraceptive practice, and starting time of supplementary feeding during the lactation at intervals of 6 weeks to 18 months after delivery. The ovulation was continuously monitored by ultrasonography and basal body temperature (BBT) measurement. By ultrasonography, 53 of the 101 women (52.5%) had the first ovulation (follicle > 1.8 cm in diameter) within 154 days after delivery on average, among whom 11 (10.9%, 11/101) had restoration of ovulation within 4 months and 42 (41.6%, 42/101) had it after 4 months. In women with follicles > 1.8 cm in diameter (n = 53), the menstruation resumed (138 +/- 84) days after delivery, and the supplementary feeding was started at (4.0 +/- 1.1) months, which were significantly earlier than those in the women with follicular diameter < 1.7 cm (n = 48; (293 +/- 88) days, (5.1 +/- 1.3) months; t = 9.003, P < 0.01 and t = 4.566, P < 0.01). In the women with follicles < 1.8 cm in diameter, 30 had return of menstruation before the end of ultrasonographic monitoring, while only 8 in the women with follicular diameter < 1.7 cm had menstrual resumption at the same time (chi(2) = 16.91, P < 0.01). The starting time of supplementary feeding was positively correlated with the time of the restoration of menstruation (n = 100, r = 0.4764, P < 0.01) and first ovulation after delivery (n = 53, r = 0.5554, P < 0.01). In this series, no woman had pregnancy within 18 months postpartum. Supplementary feeding can affect the restoration of menstrual cycles and ovulation in lactating postpartum women.
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.
1992-01-01
Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.
Han, Chin-Yen; Lin, Chun-Chih; Goopy, Suzanne; Hsiao, Ya-Chu; Barnard, Alan
Elders often experience multiple chronic diseases associated with frequent early return visits to emergency departments (EDs). There is limited knowledge of the experiences and concerns of elders during ED return visits. The purpose of the research was to explore the experiences of elders during ED return visits, with a view toward identifying factors that contribute to return visits. The qualitative approach of phenomenography was used. Data were collected at one ED in a 3,000-bed medical center in Taiwan. Inclusion criteria were aged 65 or above and return visits to the ED within 72 hours of discharge from an index ED visit. The seven steps of qualitative data analysis for a phenomenographic study were employed to develop understanding of participants' experiences. Thirty return-visit elders were interviewed in 2014. Four categories of description were established from the participants' accounts. These were "being tricked by ED staff," "doctor shopping," "a sign of impending death," and "feeling fatalistic." The outcome space of elders with early return visits to ED was characterized as "seeking the answer." Index ED visits are linked to return visits for Taiwanese elders through physiological, psychological, and social factors.
Does Aggregated Returns Disclosure Increase Portfolio Risk Taking?
Beshears, John; Choi, James J; Laibson, David; Madrian, Brigitte C
2017-06-01
Many experiments have found that participants take more investment risk if they see returns less frequently, see portfolio-level returns (rather than each individual asset's returns), or see long-horizon (rather than one-year) historical return distributions. In contrast, we find that such information aggregation treatments do not affect total equity investment when we make the investment environment more realistic than in prior experiments. Previously documented aggregation effects are not robust to changes in the risky asset's return distribution or the introduction of a multi-day delay between portfolio choice and return realizations.
Experiences of occupational therapists returning to work after maternity leave.
Parcsi, Lisa; Curtin, Michael
2013-08-01
Returning to work after maternity leave can be a challenging, anxious and fraught experience for women, and has been portrayed in the literature as a generally negative experience. Interestingly, although occupational therapists were predominantly women, no research was found focussing on their experiences of returning to work after maternity leave. The aim of this research was to gain an insight into occupational therapists' experiences of returning to work following maternity leave. Principles of interpretive phenomenological analysis were used to explore the individual experiences of six Australian occupational therapists returning to work after a period of maternity leave. Individual semi-structured interviews lasting up to 90 minutes were conducted. Interviews were audio-recorded, transcribed and then analysed. Two major themes emerged from the analysis of interviews: compromise and feeling valued. The experience of returning to work was a process of compromise in which women found strategies to cope with their changing roles and demands, to find a balance between home and work life. The women wanted to feel valued by their managers and co-workers, as this enabled them to feel comfortable and confident with some of the compromises they made. Occupational therapists returning to work after maternity leave will make compromises so that they can balance their home and work life. Occupational therapists value managers and co-workers who understand the compromises women make when returning to work following maternity leave and who create a supportive workplace that acknowledges and values their contribution. © 2013 Occupational Therapy Australia.
Handling and analysis of ices in cryostats and glove boxes in view of cometary samples
NASA Technical Reports Server (NTRS)
Roessler, K.; Eich, G.; Heyl, M.; Kochan, H.; Oehler, A.; Patnaik, A.; Schlosser, W.; Schulz, R.
1989-01-01
Comet nucleus sample return mission and other return missions from planets and satellites need equipment for handling and analysis of icy samples at low temperatures under vacuum or protective gas. Two methods are reported which were developed for analysis of small icy samples and which are modified for larger samples in cometary matter simulation experiments (KOSI). A conventional optical cryostat system was modified to allow for transport of samples at 5 K, ion beam irradiation, and measurement in an off-line optical spectrophotometer. The new system consists of a removable window plug containing nozzles for condensation of water and volatiles onto a cold finger. This plug can be removed in a vacuum system, changed against another plug (e.g., with other windows (IR, VIS, VUV) or other nozzles). While open, the samples can be treated under vacuum with cooling by manipulators (cut, removal, sample taking, irradiation with light, photons, or ions). After bringing the plug back, the samples can be moved to another site of analysis. For handling the 30 cm diameter mineral-ice samples from the KOSI experiments an 80x80x80 cm glove box made out of plexiglass was used. The samples were kept in a liquid nitrogen bath, which was filled from the outside. A stream a dry N2 and evaporating gas from the bath purified the glove box from impurity gases and, in particular, H2O, which otherwise would condense onto the samples.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Astrophysics Data System (ADS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-11-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Technical Reports Server (NTRS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-01-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Does Aggregated Returns Disclosure Increase Portfolio Risk Taking?
Beshears, John; Choi, James J.; Laibson, David; Madrian, Brigitte C.
2016-01-01
Many experiments have found that participants take more investment risk if they see returns less frequently, see portfolio-level returns (rather than each individual asset’s returns), or see long-horizon (rather than one-year) historical return distributions. In contrast, we find that such information aggregation treatments do not affect total equity investment when we make the investment environment more realistic than in prior experiments. Previously documented aggregation effects are not robust to changes in the risky asset’s return distribution or the introduction of a multi-day delay between portfolio choice and return realizations. PMID:28553012
Experiences of contemplating returning to work for people living with HIV/AIDS.
Nixon, Stephanie; Renwick, Rebecca
2003-11-01
In the mid-1990s, medical advances dramatically altered the experience of living with HIV/AIDS. The shifting medical climate spurred new social and financial questions, such as the possibility of returning to work. In this qualitative study, the authors examine how people living with HIV/AIDS perceive, attach meaning to, and approach the experience of returning to work. Findings demonstrate that the participants are influenced by, and wrestle with, both the dominant societal perspective that "people should return to work," and the oppositional perspective that people living with HIV/AIDS "should not return to work." Theoretical understanding of the results is enhanced using the concepts of the "sick role" and the "hierarchy of identities." Findings have conceptual and methodological implications for literature in HIV/AIDS, return to work, and identity.
Rapid economic analysis of northern hardwood stand improvement options
William B. Leak
1980-01-01
Data and methodology are provided for projecting basal area, diameter, volumes, and values by product for northern hardwood stands, and for determining the rate of return on stand improvement investments. The method is rapid, requires a minimum amount of information, and should prove useful for on-the-ground economic analyses.
Maraia Capsule Flight Testing and Results for Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Strahan, Alan L.
2016-01-01
The Maraia concept is a modest size (150 lb., 30" diameter) capsule that has been proposed as an ISS based, mostly autonomous earth return capability to function either as an Entry, Descent, and Landing (EDL) technology test platform or as a small on-demand sample return vehicle. A flight test program has been completed including high altitude balloon testing of the proposed capsule shape, with the purpose of investigating aerodynamics and stability during the latter portion of the entry flight regime, along with demonstrating a potential recovery system. This paper includes description, objectives, and results from the test program.
NASA's Asteroid Redirect Mission (ARM)
NASA Technical Reports Server (NTRS)
Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.
2017-01-01
Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Gilgenbach, R. M.; Lau, Y. Y.; Weis, M. R.; Zhang, P.
2015-11-01
At the Michigan Accelerator for Inductive Z-Pinch Experiments (MAIZE) facility, a 1-MA Linear Transformer Driver (LTD) is being used to deliver 500-600 kA to cylindrical liners in order to study the magneto Rayleigh-Taylor (MRT), sausage, and kink instabilities in imploding and exploding Al plasmas. The liners studied in this experiment had thicknesses of 400 nm to 30 μm, heights of 1-2 cm, and diameters of 1-6 mm. The plasmas were imaged using 4-time-frame, laser shadowgraphy and shearing-interferometry at 532 nm. For imploding liners, the measured acceleration was found to be less than predicted from the current pulse, indicating significant diffusion of the azimuthal magnetic field. A simple experimental configuration is presented for ``end-on'' laser probing in the r- θ plane in order to study the interior of the liner. Finally, the effects of axial magnetic fields are determined by modifying the return current posts and incorporating external coils. Experimental growth rates are determined and discussed. This work was supported by DOE award DE-SC0012328. S.G. Patel supported by Sandia National Labs. D.A. Yager was supported by NSF fellowship grant DGE 1256260.
NASA Technical Reports Server (NTRS)
Brendley, K.; Chato, J. C.
1982-01-01
The parameters of the efflux from a helium dewar in space were numerically calculated. The flow was modeled as a one dimensional compressible ideal gas with variable properties. The primary boundary conditions are flow with friction and flow with heat transfer and friction. Two PASCAL programs were developed to calculate the efflux parameters: EFFLUZD and EFFLUXM. EFFLUXD calculates the minimum mass flow for the given shield temperatures and shield heat inputs. It then calculates the pipe lengths, diameter, and fluid parameters which satisfy all boundary conditions. Since the diameter returned by EFFLUXD is only rarely of nominal size, EFFLUXM calculates the mass flow and shield heat exchange for given pipe lengths, diameter, and shield temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.
2001-07-01
Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creekmore » net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.« less
Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA
NASA Technical Reports Server (NTRS)
Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M
2010-01-01
The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces
Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700
Heat and Bleach: A Cost-Efficient Method for Extracting Microplastics from Return Activated Sludge.
Sujathan, Surya; Kniggendorf, Ann-Kathrin; Kumar, Arun; Roth, Bernhard; Rosenwinkel, Karl-Heinz; Nogueira, Regina
2017-11-01
The extraction of plastic microparticles, so-called microplastics, from sludge is a challenging task due to the complex, highly organic material often interspersed with other benign microparticles. The current procedures for microplastic extraction from sludge are time consuming and require expensive reagents for density separation as well as large volumes of oxidizing agents for organic removal, often resulting in tiny sample sizes and thus a disproportional risk of sample bias. In this work, we present an improved extraction method tested on return activated sludge (RAS). The treatment of 100 ml of RAS requires only 6% hydrogen peroxide (H 2 O 2 ) for bleaching at 70 °C, followed by density separation with sodium nitrate/sodium thiosulfate (SNT) solution, and is completed within 24 h. Extracted particles of all sizes were chemically analyzed with confocal Raman microscopy. An extraction efficiency of 78 ± 8% for plastic particle sizes 20 µm and up was confirmed in a recovery experiment. However, glass shards with a diameter of less than 20 µm remained in the sample despite the density of glass exceeding the density of the separating SNT solution by 1.1 g/cm 3 . This indicates that density separation may be unreliable for particle sizes in the lower micrometer range.
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.
Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.
Children Moving "Home"? Everyday Experiences of Return Migration in Highly Skilled Households
ERIC Educational Resources Information Center
Hatfield, Madeleine E.
2010-01-01
Through its focus on children and return migration, this article addresses two invisibilities within migration research. It presents the experiences of children as equal movers in returning households, drawing on research with them in their domestic spaces. Exploring how children negotiate coming "home" and highlighting their experiences…
The use of small (2.7 mm) screws for arthroscopically guided repair of carpal chip fractures.
Wright, I M; Smith, M R W
2011-05-01
Removal of large chip fractures of the carpal bones and the osteochondral deficits that result, have been associated with a worse prognosis than removal of small fragments in similar locations. Reducing the articular defects by repair of large osteochondral fragments may have advantages over removal. Horses with osteochondral chip fractures that were of sufficient size and infrastructure to be repaired with small (2.7 mm diameter) AO/ASIF cortex screws were identified and repair effected by arthroscopically guided internal fixation. Thirty-three horses underwent surgery to repair 35 fractures of the dorsodistal radial carpal bone (n = 25), the dorsal margin of the radial facet of the third carpal bone (n = 9) and the intermediate facet of the distal radius (n = 1). There were no surgical complications and fractures healed satisfactorily in 26 of 28 horses and 23 horses returned to racing performance. Arthroscopically guided repair of carpal chip fractures with small diameter cortex screws is technically feasible and experiences with 33 cases suggest that this may have advantages over fragment removal in managing such cases. Surgeons treating horses with large chip fractures of the carpal bones should consider arthroscopically guided internal fixation as an alternative to removal. © 2010 EVJ Ltd.
Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming
2017-12-01
Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at < 0.53 mm aggregates. However, the contribution of SOC in macro- and micro-aggregates increased. Straw-applied paddy soil have a higher total SOC content but lower SOC contents at > 0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.
Investigation of Pipeline Concepts, Materials and Construction Techniques
1976-06-01
Tite" Ethyl "Bell-Ring" Johns-Manville "Ring-Tite" Rehau "Mechan-O-Joint". Weights for 4 Inch, 6 Inch, and 8 inch diameter pipes are 1.86 LB/FT...415 Avenida Pico San Clemento, California 92672 C58 I Returned Reply Useful Used In By USPS Received Information Concept Rehau Plastiks, Incorporated
Volume versus value maximization illustrated for Douglas-fir with thinning
Kurt H. Riitters; J. Douglas Brodie; Chiang Kao
1982-01-01
Economic and physical criteria for selecting even-aged rotation lengths are reviewed with examples of their optimizations. To demonstrate the trade-off between physical volume, economic return, and stand diameter, examples of thinning regimes for maximizing volume, forest rent, and soil expectation are compared with an example of maximizing volume without thinning. The...
Self-calibration performance in stereoscopic PIV acquired in a transonic wind tunnel
Beresh, Steven J.; Wagner, Justin L.; Smith, Barton L.
2016-03-16
Three stereoscopic PIV experiments have been examined to test the effectiveness of self-calibration under varied circumstances. Furthermore, we our measurements taken in a streamwise plane yielded a robust self-calibration that returned common results regardless of the specific calibration procedure, but measurements in the crossplane exhibited substantial velocity bias errors whose nature was sensitive to the particulars of the self-calibration approach. Self-calibration is complicated by thick laser sheets and large stereoscopic camera angles and further exacerbated by small particle image diameters and high particle seeding density. In spite of the different answers obtained by varied self-calibrations, each implementation locked onto anmore » apparently valid solution with small residual disparity and converged adjustment of the calibration plane. Thus, the convergence of self-calibration on a solution with small disparity is not sufficient to indicate negligible velocity error due to the stereo calibration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, Andrew John
A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacksmore » of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.« less
Partial Return Yoke for MICE Step IV and Final Step
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Holger; Plate, Stephen; Berg, J.Scott
2015-06-01
This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.
Partial return yoke for MICE step IV and final step
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, H.; Plate, S.; Berg, J. S.
2015-05-03
This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.
Estimating Returns to Education Using Different Natural Experiment Techniques
ERIC Educational Resources Information Center
Leigh, Andrew; Ryan, Chris
2008-01-01
How much do returns to education differ across different natural experiment methods? To test this, we estimate the rate of return to schooling in Australia using two different instruments for schooling: month of birth and changes in compulsory schooling laws. With annual pre-tax income as our measure of income, we find that the naive ordinary…
ERIC Educational Resources Information Center
Munroe, Elizabeth
2014-01-01
Teachers who have held leadership roles at the school, district, or provincial level have the potential to contribute to student and school success when they return to classroom teaching. The contrasting experiences of two teacher leaders who returned voluntarily to classroom teaching are analyzed using Owens's (2004) social constructivist theory…
Controlling hollow relativistic electron beam orbits with an inductive current divider
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...
2015-02-06
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2more » + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less
Logan, Gordon D.
2015-01-01
Bartlett (1958) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough “lead time” for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action. PMID:25633089
Lumber recovery from small-diameter ponderosa pine from Flagstaff, Arizona
Eini C. Lowell; David W. Green
2001-01-01
Thousands of acres of densely stocked ponderosa pine forests surround Flagstaff, AZ. These stands are at high risk of fire, insect, and disease outbreak. Stand density management activity can be expensive, but product recovery from the thinned material could help defray removal costs. This project evaluated the yield and economic return of lumber recovered from small-...
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted: to identify those experiments that could and should be done on a returned Martian sample in order to characterize its inorganic properties; to evaluate, insofar as can be done, the effects of potential biological sterilization of the sample by heating prior to its return; to identify particular analytical techniques needing further improvement in order to make optimum use of a returned sample; and to identify experiments to be done on simulants, with and without sterilization, that better define the limits of information available about the planet from analyses of returned samples.
Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1997-01-01
This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.
Effects of Centrifuge Diameter and Operation on Rodent Adaptation to Chronic Centrifugation
NASA Technical Reports Server (NTRS)
Fuller, Charles A.
1992-01-01
This study examined the responses of rats to centrifugation in a constant acceleration field (1.5 G). Centrifuge diameter (1.8m, 2.5m or 6.0m) and schedule of operation (Daily or weekly stop) varied between groups. Body mass, food consumption, water consumption and neurovestibular function were measured weekly. Body temperature and activity were continuously monitored using telemetry. A subset of subjects were videotaped (50 minutes per day) to allow for movement analysis. Exposure to a hyperdynamic field of this magnitude did cause the expected depression in the physiological variables monitored. Recovery was accomplished within a relatively rapid time frame; all variables returned to precentrifugation levels. In general, the magnitudes of the changes and the rate of recovery were similar at different centrifuge diameters and stopping frequency. There were cases, however, in which the magnitude of the response and/or the rate of recovery to a new steady-state were altered as a result of centrifuge diameter. In summary, these results indicate that stopping frequency has little, if any, effect on adaptation to chronic centrifugation. However, the angular velocity (omega), and therefore centrifuge diameter is an important consideration in the adaptation of an organism to chronic centrifugation.
Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.
2014-01-01
The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.
Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew; Naasz, Bo; Merill, Raymond G.; Qu, Min
2014-01-01
The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and/or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.
Factors influencing donor return.
Schlumpf, Karen S; Glynn, Simone A; Schreiber, George B; Wright, David J; Randolph Steele, Whitney; Tu, Yongling; Hermansen, Sigurd; Higgins, Martha J; Garratty, George; Murphy, Edward L
2008-02-01
To predict future blood donation behavior and improve donor retention, it is important to understand the determinants of donor return. A self-administered questionnaire was completed in 2003 by 7905 current donors. With data mining methods, all factors measured by the survey were ranked as possible predictors of actual return within 12 months. Significant factors were analyzed with logistic regression to determine predictors of intention and of actual return. Younger and minority donors were less likely to return in 12 months. Predictors of donor return were higher prior donation frequency, higher intention to return, a convenient place to donate, and having a good donation experience. Most factors associated with actual donor return were also associated with a high intention to return. Although not significant for actual return, feeling a responsibility to help others, higher empathetic concern, and a feeling that being a blood donor means more than just donating blood were related to high intention to return. Prior donation frequency, intention to return, donation experience, and having a convenient location appear to significantly predict donor return. Clearly, donor behavior is dependent on more than one factor alone. Altruistic behavior, empathy, and social responsibility items did not enter our model to predict actual return. A donor's stated intention to give again is positively related to actual return and, while not a perfect measure, might be a useful proxy when donor return cannot be determined.
ERIC Educational Resources Information Center
Einhellig, Katrina
2012-01-01
The purpose of this phenomenological research study was to understand the experiences of RN to BSN graduates within their educational experience and their subsequent reintegration into professional practice. The goal of the study was to elucidate the experiences of nurses as they returned for a baccalaureate degree in order to more fully…
Persistent left superior vena cava
Tyrak, Kamil W; Hołda, Mateusz K; Koziej, Mateusz; Piątek, Katarzyna; Klimek-Piotrowska, Wiesława
2017-01-01
Summary Persistent left superior vena cava (PLSVC) is the most common congenital malformation of thoracic venous return and is present in 0.3 to 0.5% of individuals in the general population. This heart specimen was dissected from a 35-yearold male cadaver whose cause of death was determined as non-cardiac. The heart was examined and we found a PLSVC draining into the coronary sinus. The right superior vena cava was present with a small-diameter ostium. An anomalous pulmonary vein pattern was observed; there was a common trunk to the left superior and left inferior pulmonary veins (diameter 17.8 mm) and an additional middle right pulmonary vein (diameter 2.7 mm) with two classic right pulmonary veins. The PLSVC draining into the coronary sinus had led to its enlargement, which could have altered the cardiac haemodynamics by significantly reducing the size of the left atrium and impeding its outflow via the mitral valve. PMID:28759082
An Automated Optical Fiber Puller for Use in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Smith, W. Scott (Technical Monitor)
2002-01-01
With the slowdown in space station construction, limiting astronaut time for scientific experiments, an effort is being made to automate certain experiments. One such experiment is production of heavy metal fluoride fibers in the microgravity environment. Previous work by this author and others have shown that microgravity inhibits crystallization of ZBLAN glass. Thus an automated experiment has been designed. This experiment will consist of several elements, one which includes the use of an autonomous robot to initiate fiber pulling. The first element will be to melt the preform to eliminate crystals. The preform tip will then be heated to the viscosity necessary for fiber drawing. The robot will initiate the draw and attach the fiber end to the take-up reel. Once fiber pulling has commenced, sensors will be used to detect a fiber break, whereupon the robot can re-initiate the pulling process. The fiber will be coated with a polymer and the polymer cured with ultraviolet light. A laser micrometer will be used to monitor fiber diameter. The experiment is designed so that up to 10 preforms can be pulled into fiber during one flight. The apparatus will be mounted on a free-flying carrier which will be placed into low-earth orbit from the cargo bay of the space shuttle by the shuttle robot arm. The experiment can be started by a signal from the shuttle or from the ground via telescience. The experiment will proceed automatically using specially designed algorithms and will be monitored from the ground. The carrier will be picked up by the shuttle before return to earth.
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Brohpy, John R.; Merrill, Raymond G.
2013-01-01
The Asteroid Retrieval Mission (ARM) is a robotic mission concept with the goal of returning a small (7 m diameter) near-Earth asteroid (NEA), or part of a large NEA, to a safe, stable orbit in cislunar space using a 50 kW-class solar electric propulsion (SEP) robotic spacecraft (40 kW available to the electric propulsion system) and currently available technologies. The mass of the asteroidal material returned from this mission is anticipated to be up to 1,000 metric tons, depending on the orbit of the target NEA and the thrust-to-weight and control authority of the SEP spacecraft. Even larger masses could be returned in the future as technological capability and operational experience improve. The use of high-power solar electric propulsion is the key enabling technology for this mission concept, and is beneficial or enabling for a variety of space missions and architectures where high-efficiency, low-thrust transfers are applicable. Many of the ARM operations and technologies could also be applicable to, or help inform, planetary defense efforts. These include the operational approaches and systems associated with the NEA approach, rendezvous, and station-keeping mission phases utilizing a low-thrust, high-power SEP spacecraft, along with interacting with, capturing, maneuvering, and processing the massive amounts of material associated with this mission. Additionally, the processed materials themselves (e.g., high-specific impulse chemical propellants) could potentially be used for planetary defense efforts. Finally, a ubiquitous asteroid retrieval and resource extraction infrastructure could provide the foundation of an on call planetary defense system, where a SEP fleet capable of propelling large masses could deliver payloads to deflect or disrupt a confirmed impactor in an efficient and timely manner.
The point of no return: A fundamental limit on the ability to control thought and action.
Logan, Gordon D
2015-01-01
Bartlett (1958. Thinking. New York: Basic Books) described the point of no return as a point of irrevocable commitment to action, which was preceded by a period of gradually increasing commitment. As such, the point of no return reflects a fundamental limit on the ability to control thought and action. I review the literature on the point of no return, taking three perspectives. First, I consider the point of no return from the perspective of the controlled act, as a locus in the architecture and anatomy of the underlying processes. I review experiments from the stop-signal paradigm that suggest that the point of no return is located late in the response system. Then I consider the point of no return from the perspective of the act of control that tries to change the controlled act before it becomes irrevocable. From this perspective, the point of no return is a point in time that provides enough "lead time" for the act of control to take effect. I review experiments that measure the response time to the stop signal as the lead time required for response inhibition in the stop-signal paradigm. Finally, I consider the point of no return in hierarchically controlled tasks, in which there may be many points of no return at different levels of the hierarchy. I review experiments on skilled typing that suggest different points of no return for the commands that determine what is typed and the countermands that inhibit typing, with increasing commitment to action the lower the level in the hierarchy. I end by considering the point of no return in perception and thought as well as action.
Profitability of precommercially thinning oak stump sprouts
John P. Dwyer; Daniel C. Dey; William B. Kurtz
1993-01-01
Thinning oak stump sprouts to a single stem at an early age will increase diameter growth of the released stem. However, precommercial thinning represents a substantial investment which must be carried for many years before any returns are realized. We estimated the incremental gains in yield and the present net worth for five crop-tree release treatments of 5-year-old...
55. View from ground level in building no. 105 showing ...
55. View from ground level in building no. 105 showing lower radar scanner switch with eighty-eight 1-1/2" diameter copper ion return RF balance tube systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Profitability of Precommericially Thinning Oak Stump Sprouts
John P. Dwyer; Daniel C. Dey; William B. Kurtz
1993-01-01
Thinning oak stump sprouts to a single stem at an early age will increase diameter growth of the released stem. However, percommercial thinning represents a substantial investment which must be carried for many years before any returns are realized. We estimated the incremental gains in yield and the present net worth for five crop-tree release treatments of 5-yr-old...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-11
...), proposing to study the feasibility of the Two Girls Creek Hydroelectric Project (Two Girls Creek Project or project) to be located on Two Girls Creek, near Sweet Home, Linn County, Oregon. The project would occupy...-diameter HDPE tailrace returning flows to Two Girls Creek above a natural fish barrier; and (5) a new 12...
Chang, Hsi-Tien
1989-01-01
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.
Study to investigate and evaluate means of optimizing the radar function for the space shuttle
NASA Technical Reports Server (NTRS)
1976-01-01
A detailed analysis of the spiral scan was performed for antenna sizes ranging from 20 inches to 36 inches in diameter and for search angles characteristic of both the radar and the communication acquisition modes. The power budgets for passive target radar detection were calculated for antenna diameters ranging from 20 to 36 inches. Dwell times commensurate with spiral scan were used for these budget calculations. The signal design for the candidate pulse Doppler system is summarized. Ground return analysis carried out for the passive target radar mode is examined, and the details are presented. A concluding description of the proposed candidate radar/communication system configuration is given.
Vaughn, Mark R.; Hafenrichter, Everett S.; Chapa, Agapito C.; Harris, Steven M.; Martinez, Marcus J.; Baty, Roy S.
2006-02-28
A system for clamping two tubular members together in an end-to-end relationship uses a split ring with a V-shaped outer rim that can engage a clamping surface on each member. The split ring has a relaxed closed state where the ends of the ring are adjacent and the outside diameter of the split ring is less than the minimum inside diameter of the members at their ends. The members are clamped when the split ring is spread into an elastically stretched position where the ring rim is pressed tightly against the interior surfaces of the members. Mechanisms are provided for removing the spreader so the split ring will return to the relaxed state, releasing the clamped members.
ERIC Educational Resources Information Center
Arencibia, J. Santiago; Moreno, Juan Manuel
2005-01-01
This paper presents the results of a two-year qualitative inquiry, carried out in Spain, on a rather neglected side of external support to schools: the personal and professional experience of external support agents when they go back to teaching. These ex-advisers are career teachers who return 'home' to school after having left it to serve for…
Zapata-Villa, Carolina; Agudelo-Suárez, Andrés A; Cardona-Arango, Doris; Ronda-Pérez, Elena
2017-12-14
This study aims to understand the migratory experience and the employment, work and health conditions of the returned migrants from Spain to Colombia. A qualitative study was conducted by means of 23 semi-structured interviews with Colombian returned migrant workers. Qualitative narrative content analysis was performed using Atlas.Ti software. Main findings are represented by nine categories emerged from the participants' discourses: (1) impact of the economic crisis on work and employment conditions in Spain, (2) economic crisis and return, (3) characteristics of returnees, (4) perception of the returnees about Colombia, (5) the role of social support networks, (6) employment and working conditions in Colombia, (7) health and wellbeing, (8) future plans and expectations, (9) the experience of being immigrant. Adjustment difficulties in participants are evidenced by the return migration process and the conditions of the social, political and economic system in Colombia. Return migration represents the reconfiguration of personal and working lives of this population. This situation requires the development of global policies and strategies in public health to facilitate the adaptation of these people.
ERIC Educational Resources Information Center
Magnuson, Connie
1992-01-01
Surveyed 211 returning staff from 25 camps and interviewed 19 returning staff to study factors that influence a counselor's decision to return to camp. Examined the following dimensions of motivation and hygiene factors: (1) stimulation or inspiration; (2) personal; (3) job-related experience; (4) living conditions and camp life; (5) camp…
NASA Astrophysics Data System (ADS)
Rassi, Erik M.; Codd, Sarah L.; Seymour, Joseph D.
2011-01-01
Flow in porous media and the resultant hydrodynamics are important in fields including but not limited to the hydrology, chemical, medical and petroleum industries. The observation and understanding of the hydrodynamics in porous media are critical to the design and optimal utilization of porous media, such as those seen in trickle-bed reactors, medical filters, subsurface flows and carbon sequestration. Magnetic resonance (MR) provides for a non-invasive technique that can probe the hydrodynamics on pore and bulk scale lengths; many previous works have characterized fully saturated porous media, while rapid MR imaging (MRI) methods in particular have previously been applied to partially saturated flows. We present time- and ensemble-averaged MR measurements to observe the effects on a bead pack partially saturated with air under flowing water conditions. The 10 mm internal diameter bead pack was filled with 100 μm borosilicate glass beads. Air was injected into the bead pack as water flowed simultaneously through the sample at 25 ml h-1. The initial partially saturated state was characterized with MRI density maps, free induction decay (FID) experiments, propagators and velocity maps before the water flow rate was increased incrementally from 25 to 500 ml h-1. After the maximum flow rate of 500 ml h-1, the MRI density maps, FID experiments, propagators and velocity maps were repeated and compared to the data taken before the maximum flow rate. This work shows that a partially saturated single-phase flow has global flow dynamics that return to characteristic flow statistics once a steady-state high flow rate has been reached. This high flow rate pushed out a significant amount of the air in the bead pack and caused the return of a preferential flow pattern. Velocity maps indicated that local flow statistics were not the same for the before and after blow out conditions. It has been suggested and shown previously that a flow pattern can return to similar statistics if the preceding flow history is similar.
Photon Doppler velocimetry measurements of transverse surface velocities
NASA Astrophysics Data System (ADS)
Johnson, C. R.; LaJeunesse, J. W.; Sable, P. A.; Dawson, A.; Hatzenbihler, A.; Borg, J. P.
2018-06-01
The goal of this work was to develop a technique for making transverse surface velocity measures utilizing Photon Doppler Velocimetry (PDV). Such a task is achieved by transmitting light and collecting Doppler-shifted light at an angle relative to the normal axis, where measured velocities are representative of a component of the transverse velocity. Because surface characteristics have an intrinsic effect on light scatter, different surface preparations were explored to direct reflectivity, including diffusion by means of sandpapering, or increasing retroreflectivity by coating with microspheres, milling v-cuts, and electrochemically etching grooves. Testing of these surface preparations was performed using an experiment featuring a 30 mm diameter aluminum disk rotating at 6000 or 6600 RPM. A single PDV collimator was positioned along the rotational axis of the disk at various angles, resolving the apparent transverse velocity. To characterize surface preparations, light return and velocities were recorded as a function of probe angle ranging from 0° to 51° from the surface normal for each preparation. Polished and electrochemically etched surfaces did not provide enough reflected light to resolve a beat frequency; however, sandpapered surfaces, retroreflective microspheres, and milled v-cuts provided adequate reflected light for incidence angles up to 51°. Applications of the surface preparations were then studied in gas gun experiments. Retroreflective microspheres were studied in a planar impact experiment, and milled v-cuts were studied in an oblique impact experiment. A normal and transverse profile of particle velocity was resolved in the oblique impact experiment.
2015-04-07
ISS043E091755 (04/07/2015) --- Expedition 43 Commander Terry Virts is seen here working inside of the Columbus laboratory on the Blood Pressure Regulation (BP Reg) experiment. Astronauts returning from long-duration space flights risk experiencing dizziness or fainting when they stand immediately after returning to Earth. This has an important health risk as it reduces the potential for astronauts to safely escape from an emergency situation. BP Reg will help researchers develop appropriate countermeasures so that astronauts returning from long-duration space flights will have very low risk of experiencing dizziness or fainting when they return to Earth.
2015-04-07
ISS043E091740 (04/07/2015) --- Expedition 43 Commander Terry Virts is seen here working inside of the Columbus laboratory on the Blood Pressure Regulation (BP Reg) experiment. Astronauts returning from long-duration space flights risk experiencing dizziness or fainting when they stand immediately after returning to Earth. This has an important health risk as it reduces the potential for astronauts to safely escape from an emergency situation. BP Reg will help researchers develop appropriate countermeasures so that astronauts returning from long-duration space flights will have very low risk of experiencing dizziness or fainting when they return to Earth.
Atmospheric lidar multi-user instrument system definition study
NASA Technical Reports Server (NTRS)
Greco, R. V. (Editor)
1980-01-01
A spaceborne lidar system for atmospheric studies was defined. The primary input was the Science Objectives Experiment Description and Evolutionary Flow Document. The first task of the study was to perform an experiment evolutionary analysis of the SEED. The second task was the system definition effort of the instrument system. The third task was the generation of a program plan for the hardware phase. The fourth task was the supporting studies which included a Shuttle deficiency analysis, a preliminary safety hazard analysis, the identification of long lead items, and development studies required. As a result of the study an evolutionary Lidar Multi-User Instrument System (MUIS) was defined. The MUIS occupies a full Spacelab pallet and has a weight of 1300 kg. The Lidar MUIS laser provides a 2 joule frequency doubled Nd:YAG laser that can also pump a tuneable dye laser wide frequency range and bandwidth. The MUIS includes a 1.25 meter diameter aperture Cassegrain receiver, with a moveable secondary mirror to provide precise alignment with the laser. The receiver can transmit the return signal to three single and multiple photomultiple tube detectors by use of a rotating fold mirror. It is concluded that the Lidar MUIS proceed to program implementation.
Controlling hollow relativistic electron beam orbits with an inductive current divider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.
2015-02-15
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). Themore » values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less
ERIC Educational Resources Information Center
Ding, Yueya
2015-01-01
Drawing on life history research, this study critically examines the transnational experiences of return Chinese immigrants from Canada in Beijing. Through the accounts of their experiences, it explores different integration and reintegration strategies, including self-adjustment, lifelong learning and flexible citizenship. A native concept of…
Chang, Hsi-Tien
1987-09-28
A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.
López-Helguera, I; López-Gatius, F; Garcia-Ispierto, I
2012-04-15
The aim of the present study was to characterize the early postpartum period in clinically healthy dairy cows by ultrasonography (US), endometrial cytology (EC), and white blood cell counts, and determine possible relationships between postpartum findings and subsequent reproductive performance. Fifty-three dairy cows were examined on Days 15 to 21 (Visit 1), 22 to 28 (Visit 2), and 29 to 35 (Visit 3) postpartum. The clinical examination included: examination of vaginal fluid, EC, transrectal palpation and ultrasonography of the genital tract (cervical diameter, endometrial thickness, presence of a corpus luteum [CL] or intrauterine fluid [IUF] and its echogenicity). Luteal activity (presence of a CL in a single visit), return to cyclicity (presence of a CL in 2 consecutive visits), and conception rate at 70 and 120 days postpartum were considered as the dependent variables in four consecutive binary logistic regression analyses. Factors affecting leukocyte counts were established by general linear model (GLM) repeated measures analysis of variance. Based on the odds ratio (OR), the likelihood of luteal activity was higher in multiparous than primiparous cows (OR = 3.75) and tended to diminish in cows showing increased endometrial thickness in Visit 1 (V1) (OR = 0.06). The likelihood of returning to cyclicity decreased for each centimeter increase in cervical diameter in V1 (OR = 0.14) and that of conception on Day 70 was lower in cows showing the presence of echogenic or anechogenic IUF in V1 (OR = 0.09 or OR = 0.13, respectively) compared with cows lacking IUF. Effects of parity and IUF were observed on neutrophil counts. Positive EC results were unrelated to the cumulative conception rate at 70 and 120 days in milk, whereas cows returning a positive EC result in V1 showed a greater likelihood of increased endometrial thickness. In conclusion, measuring cervical diameter, endometrial thickness, and detecting the echogenicity of IUF by ultrasonography from Days 15 to 21 postpartum in clinically normal cows is an appropriate tool to predict subsequent reproductive performance. Vaginal examination and transrectal palpation alone did not emerge as valuable predictors. Copyright © 2012 Elsevier Inc. All rights reserved.
The CMS experiment at the CERN LHC
NASA Astrophysics Data System (ADS)
CMS Collaboration; Chatrchyan, S.; Hmayakyan, G.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bauer, T.; Bergauer, T.; Bergauer, H.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Glaser, P.; Hartl, C.; Hoermann, N.; Hrubec, J.; Hänsel, S.; Jeitler, M.; Kastner, K.; Krammer, M.; Magrans de Abril, I.; Markytan, M.; Mikulec, I.; Neuherz, B.; Nöbauer, T.; Oberegger, M.; Padrta, M.; Pernicka, M.; Porth, P.; Rohringer, H.; Schmid, S.; Schreiner, T.; Stark, R.; Steininger, H.; Strauss, J.; Taurok, A.; Uhl, D.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Petrov, V.; Prosolovich, V.; Chekhovsky, V.; Dvornikov, O.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Marfin, I.; Mossolov, V.; Shumeiko, N.; Solin, A.; Stefanovitch, R.; Suarez Gonzalez, J.; Tikhonov, A.; Fedorov, A.; Korzhik, M.; Missevitch, O.; Zuyeuski, R.; Beaumont, W.; Cardaci, M.; DeLanghe, E.; DeWolf, E. A.; Delmeire, E.; Ochesanu, S.; Tasevsky, M.; Van Mechelen, P.; D'Hondt, J.; DeWeirdt, S.; Devroede, O.; Goorens, R.; Hannaert, S.; Heyninck, J.; Maes, J.; Mozer, M. U.; Tavernier, S.; Van Doninck, W.; Van Lancker, L.; Van Mulders, P.; Villella, I.; Wastiels, C.; Yu, C.; Bouhali, O.; Charaf, O.; Clerbaux, B.; DeHarenne, P.; DeLentdecker, G.; Dewulf, J. P.; Elgammal, S.; Gindroz, R.; Hammad, G. H.; Mahmoud, T.; Neukermans, L.; Pins, M.; Pins, R.; Rugovac, S.; Stefanescu, J.; Sundararajan, V.; Vander Velde, C.; Vanlaer, P.; Wickens, J.; Tytgat, M.; Assouak, S.; Bonnet, J. L.; Bruno, G.; Caudron, J.; DeCallatay, B.; DeFavereau DeJeneret, J.; DeVisscher, S.; Demin, P.; Favart, D.; Felix, C.; Florins, B.; Forton, E.; Giammanco, A.; Grégoire, G.; Jonckman, M.; Kcira, D.; Keutgen, T.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Schul, N.; Van der Aa, O.; Beliy, N.; Daubie, E.; Herquet, P.; Alves, G.; Pol, M. E.; Souza, M. H. G.; Vaz, M.; DeJesus Damiao, D.; Oguri, V.; Santoro, A.; Sznajder, A.; DeMoraes Gregores, E.; Iope, R. L.; Novaes, S. F.; Tomei, T.; Anguelov, T.; Antchev, G.; Atanasov, I.; Damgov, J.; Darmenov, N.; Dimitrov, L.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Stoykova, S.; Sultanov, G.; Trayanov, R.; Vankov, I.; Cheshkov, C.; Dimitrov, A.; Dyulendarova, M.; Glushkov, I.; Kozhuharov, V.; Litov, L.; Makariev, M.; Marinova, E.; Markov, S.; Mateev, M.; Nasteva, I.; Pavlov, B.; Petev, P.; Petkov, P.; Spassov, V.; Toteva, Z.; Velev, V.; Verguilov, V.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Jiang, C. H.; Liu, B.; Shen, X. Y.; Sun, H. S.; Tao, J.; Wang, J.; Yang, M.; Zhang, Z.; Zhao, W. R.; Zhuang, H. L.; Ban, Y.; Cai, J.; Ge, Y. C.; Liu, S.; Liu, H. T.; Liu, L.; Qian, S. J.; Wang, Q.; Xue, Z. H.; Yang, Z. C.; Ye, Y. L.; Ying, J.; Li, P. J.; Liao, J.; Xue, Z. L.; Yan, D. S.; Yuan, H.; Carrillo Montoya, C. A.; Sanabria, J. C.; Godinovic, N.; Puljak, I.; Soric, I.; Antunovic, Z.; Dzelalija, M.; Marasovic, K.; Brigljevic, V.; Kadija, K.; Morovic, S.; Fereos, R.; Nicolaou, C.; Papadakis, A.; Ptochos, F.; Razis, P. A.; Tsiakkouri, D.; Zinonos, Z.; Hektor, A.; Kadastik, M.; Kannike, K.; Lippmaa, E.; Müntel, M.; Raidal, M.; Rebane, L.; Aarnio, P. A.; Anttila, E.; Banzuzi, K.; Bulteau, P.; Czellar, S.; Eiden, N.; Eklund, C.; Engstrom, P.; Heikkinen, A.; Honkanen, A.; Härkönen, J.; Karimäki, V.; Katajisto, H. M.; Kinnunen, R.; Klem, J.; Kortesmaa, J.; Kotamäki, M.; Kuronen, A.; Lampén, T.; Lassila-Perini, K.; Lefébure, V.; Lehti, S.; Lindén, T.; Luukka, P. R.; Michal, S.; Moura Brigido, F.; Mäenpää, T.; Nyman, T.; Nystén, J.; Pietarinen, E.; Skog, K.; Tammi, K.; Tuominen, E.; Tuominiemi, J.; Ungaro, D.; Vanhala, T. P.; Wendland, L.; Williams, C.; Iskanius, M.; Korpela, A.; Polese, G.; Tuuva, T.; Bassompierre, G.; Bazan, A.; David, P. Y.; Ditta, J.; Drobychev, G.; Fouque, N.; Guillaud, J. P.; Hermel, V.; Karneyeu, A.; LeFlour, T.; Lieunard, S.; Maire, M.; Mendiburu, P.; Nedelec, P.; Peigneux, J. P.; Schneegans, M.; Sillou, D.; Vialle, J. P.; Anfreville, M.; Bard, J. P.; Besson, P.; Bougamont, E.; Boyer, M.; Bredy, P.; Chipaux, R.; Dejardin, M.; Denegri, D.; Descamps, J.; Fabbro, B.; Faure, J. L.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Jeanney, C.; Kircher, F.; Lemaire, M. C.; Lemoigne, Y.; Levesy, B.; Locci, E.; Lottin, J. P.; Mandjavidze, I.; Mur, M.; Pansart, J. P.; Payn, A.; Rander, J.; Reymond, J. M.; Rolquin, J.; Rondeaux, F.; Rosowsky, A.; Rousse, J. Y. A.; Sun, Z. H.; Tartas, J.; Van Lysebetten, A.; Venault, P.; Verrecchia, P.; Anduze, M.; Badier, J.; Baffioni, S.; Bercher, M.; Bernet, C.; Berthon, U.; Bourotte, J.; Busata, A.; Busson, P.; Cerutti, M.; Chamont, D.; Charlot, C.; Collard, C.; Debraine, A.; Decotigny, D.; Dobrzynski, L.; Ferreira, O.; Geerebaert, Y.; Gilly, J.; Gregory, C.; Guevara Riveros, L.; Haguenauer, M.; Karar, A.; Koblitz, B.; Lecouturier, D.; Mathieu, A.; Milleret, G.; Miné, P.; Paganini, P.; Poilleux, P.; Pukhaeva, N.; Regnault, N.; Romanteau, T.; Semeniouk, I.; Sirois, Y.; Thiebaux, C.; Vanel, J. C.; Zabi, A.; Agram, J. L.; Albert, A.; Anckenmann, L.; Andrea, J.; Anstotz, F.; Bergdolt, A. M.; Berst, J. D.; Blaes, R.; Bloch, D.; Brom, J. M.; Cailleret, J.; Charles, F.; Christophel, E.; Claus, G.; Coffin, J.; Colledani, C.; Croix, J.; Dangelser, E.; Dick, N.; Didierjean, F.; Drouhin, F.; Dulinski, W.; Ernenwein, J. P.; Fang, R.; Fontaine, J. C.; Gaudiot, G.; Geist, W.; Gelé, D.; Goeltzenlichter, T.; Goerlach, U.; Graehling, P.; Gross, L.; Hu, C. Guo; Helleboid, J. M.; Henkes, T.; Hoffer, M.; Hoffmann, C.; Hosselet, J.; Houchu, L.; Hu, Y.; Huss, D.; Illinger, C.; Jeanneau, F.; Juillot, P.; Kachelhoffer, T.; Kapp, M. R.; Kettunen, H.; Lakehal Ayat, L.; LeBihan, A. C.; Lounis, A.; Maazouzi, C.; Mack, V.; Majewski, P.; Mangeol, D.; Michel, J.; Moreau, S.; Olivetto, C.; Pallarès, A.; Patois, Y.; Pralavorio, P.; Racca, C.; Riahi, Y.; Ripp-Baudot, I.; Schmitt, P.; Schunck, J. P.; Schuster, G.; Schwaller, B.; Sigward, M. H.; Sohler, J. L.; Speck, J.; Strub, R.; Todorov, T.; Turchetta, R.; Van Hove, P.; Vintache, D.; Zghiche, A.; Ageron, M.; Augustin, J. E.; Baty, C.; Baulieu, G.; Bedjidian, M.; Blaha, J.; Bonnevaux, A.; Boudoul, G.; Brunet, P.; Chabanat, E.; Chabert, E. C.; Chierici, R.; Chorowicz, V.; Combaret, C.; Contardo, D.; Della Negra, R.; Depasse, P.; Drapier, O.; Dupanloup, M.; Dupasquier, T.; El Mamouni, H.; Estre, N.; Fay, J.; Gascon, S.; Giraud, N.; Girerd, C.; Guillot, G.; Haroutunian, R.; Ille, B.; Lethuillier, M.; Lumb, N.; Martin, C.; Mathez, H.; Maurelli, G.; Muanza, S.; Pangaud, P.; Perries, S.; Ravat, O.; Schibler, E.; Schirra, F.; Smadja, G.; Tissot, S.; Trocme, B.; Vanzetto, S.; Walder, J. P.; Bagaturia, Y.; Mjavia, D.; Mzhavia, A.; Tsamalaidze, Z.; Roinishvili, V.; Adolphi, R.; Anagnostou, G.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Karpinski, W.; Khomich, A.; Klein, K.; Kukulies, C.; Lübelsmeyer, K.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Weber, M.; Wittmer, B.; Wlochal, M.; Adamczyk, F.; Adolf, A.; Altenhöfer, G.; Bechstein, S.; Bethke, S.; Biallass, P.; Biebel, O.; Bontenackels, M.; Bosseler, K.; Böhm, A.; Erdmann, M.; Faissner, H.; Fehr, B.; Fesefeldt, H.; Fetchenhauer, G.; Frangenheim, J.; Frohn, J. H.; Grooten, J.; Hebbeker, T.; Hermann, S.; Hermens, E.; Hilgers, G.; Hoepfner, K.; Hof, C.; Jacobi, E.; Kappler, S.; Kirsch, M.; Kreuzer, P.; Kupper, R.; Lampe, H. R.; Lanske, D.; Mameghani, R.; Meyer, A.; Meyer, S.; Moers, T.; Müller, E.; Pahlke, R.; Philipps, B.; Rein, D.; Reithler, H.; Reuter, W.; Rütten, P.; Schulz, S.; Schwarthoff, H.; Sobek, W.; Sowa, M.; Stapelberg, T.; Szczesny, H.; Teykal, H.; Teyssier, D.; Tomme, H.; Tomme, W.; Tonutti, M.; Tsigenov, O.; Tutas, J.; Vandenhirtz, J.; Wagner, H.; Wegner, M.; Zeidler, C.; Beissel, F.; Davids, M.; Duda, M.; Flügge, G.; Giffels, M.; Hermanns, T.; Heydhausen, D.; Kalinin, S.; Kasselmann, S.; Kaussen, G.; Kress, T.; Linn, A.; Nowack, A.; Perchalla, L.; Poettgens, M.; Pooth, O.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.; Behrens, U.; Borras, K.; Flossdorf, A.; Hatton, D.; Hegner, B.; Kasemann, M.; Mankel, R.; Meyer, A.; Mnich, J.; Rosemann, C.; Youngman, C.; Zeuner, W. D.; Bechtel, F.; Buhmann, P.; Butz, E.; Flucke, G.; Hamdorf, R. H.; Holm, U.; Klanner, R.; Pein, U.; Schirm, N.; Schleper, P.; Steinbrück, G.; Van Staa, R.; Wolf, R.; Atz, B.; Barvich, T.; Blüm, P.; Boegelspacher, F.; Bol, H.; Chen, Z. Y.; Chowdhury, S.; DeBoer, W.; Dehm, P.; Dirkes, G.; Fahrer, M.; Felzmann, U.; Frey, M.; Furgeri, A.; Gregoriev, E.; Hartmann, F.; Hauler, F.; Heier, S.; Kärcher, K.; Ledermann, B.; Mueller, S.; Müller, Th; Neuberger, D.; Piasecki, C.; Quast, G.; Rabbertz, K.; Sabellek, A.; Scheurer, A.; Schilling, F. P.; Simonis, H. J.; Skiba, A.; Steck, P.; Theel, A.; Thümmel, W. H.; Trunov, A.; Vest, A.; Weiler, T.; Weiser, C.; Weseler, S.; Zhukov, V.; Barone, M.; Daskalakis, G.; Dimitriou, N.; Fanourakis, G.; Filippidis, C.; Geralis, T.; Kalfas, C.; Karafasoulis, K.; Koimas, A.; Kyriakis, A.; Kyriazopoulou, S.; Loukas, D.; Markou, A.; Markou, C.; Mastroyiannopoulos, N.; Mavrommatis, C.; Mousa, J.; Papadakis, I.; Petrakou, E.; Siotis, I.; Theofilatos, K.; Tzamarias, S.; Vayaki, A.; Vermisoglou, G.; Zachariadou, A.; Gouskos, L.; Karapostoli, G.; Katsas, P.; Panagiotou, A.; Papadimitropoulos, C.; Aslanoglou, X.; Evangelou, I.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Triantis, F. A.; Bencze, G.; Boldizsar, L.; Debreczeni, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Kovesarki, P.; Laszlo, A.; Odor, G.; Patay, G.; Sikler, F.; Veres, G.; Vesztergombi, G.; Zalan, P.; Fenyvesi, A.; Imrek, J.; Molnar, J.; Novak, D.; Palinkas, J.; Szekely, G.; Beni, N.; Kapusi, A.; Marian, G.; Radics, B.; Raics, P.; Szabo, Z.; Szillasi, Z.; Trocsanyi, Z. L.; Zilizi, G.; Bawa, H. S.; Beri, S. B.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J. M.; Kumar, A.; Singh, B.; Singh, J. B.; Arora, S.; Bhattacharya, S.; Chatterji, S.; Chauhan, S.; Choudhary, B. C.; Gupta, P.; Jha, M.; Ranjan, K.; Shivpuri, R. K.; Srivastava, A. K.; Choudhury, R. K.; Dutta, D.; Ghodgaonkar, M.; Kailas, S.; Kataria, S. K.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P. V.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Nayak, A.; Patil, M. R.; Sharma, S.; Sudhakar, K.; Acharya, B. S.; Banerjee, Sudeshna; Bheesette, S.; Dugad, S.; Kalmani, S. D.; Lakkireddi, V. R.; Mondal, N. K.; Panyam, N.; Verma, P.; Arfaei, H.; Hashemi, M.; Najafabadi, M. Mohammadi; Moshaii, A.; Paktinat Mehdiabadi, S.; Felcini, M.; Grunewald, M.; Abadjiev, K.; Abbrescia, M.; Barbone, L.; Cariola, P.; Chiumarulo, F.; Clemente, A.; Colaleo, A.; Creanza, D.; DeFilippis, N.; DePalma, M.; DeRobertis, G.; Donvito, G.; Ferorelli, R.; Fiore, L.; Franco, M.; Giordano, D.; Guida, R.; Iaselli, G.; Lacalamita, N.; Loddo, F.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; Mennea, M. S.; My, S.; Natali, S.; Nuzzo, S.; Papagni, G.; Pinto, C.; Pompili, A.; Pugliese, G.; Ranieri, A.; Romano, F.; Roselli, G.; Sala, G.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Trentadue, R.; Tupputi, S.; Zito, G.; Abbiendi, G.; Bacchi, W.; Battilana, C.; Benvenuti, A. C.; Boldini, M.; Bonacorsi, D.; Braibant-Giacomelli, S.; Cafaro, V. D.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Ciocca, C.; Codispoti, G.; Cuffiani, M.; D'Antone, I.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Finelli, S.; Giacomelli, P.; Giordano, V.; Giunta, M.; Grandi, C.; Guerzoni, M.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Odorici, F.; Paolucci, A.; Pellegrini, G.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Torromeo, G.; Travaglini, R.; Veronese, G. P.; Albergo, S.; Chiorboli, M.; Costa, S.; Galanti, M.; Gatto Rotondo, G.; Giudice, N.; Guardone, N.; Noto, F.; Potenza, R.; Saizu, M. A.; Salemi, G.; Sutera, C.; Tricomi, A.; Tuve, C.; Bellucci, L.; Brianzi, M.; Broccolo, G.; Catacchini, E.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Genta, C.; Landi, G.; Lenzi, P.; Macchiolo, A.; Maletta, F.; Manolescu, F.; Marchettini, C.; Masetti, L.; Mersi, S.; Meschini, M.; Minelli, C.; Paoletti, S.; Parrini, G.; Scarlini, E.; Sguazzoni, G.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M.; Colonna, D.; Daniello, L.; Fabbri, F.; Felli, F.; Giardoni, M.; La Monaca, A.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Paris, C.; Passamonti, L.; Pierluigi, D.; Ponzio, B.; Pucci, C.; Russo, A.; Saviano, G.; Fabbricatore, P.; Farinon, S.; Greco, M.; Musenich, R.; Badoer, S.; Berti, L.; Biasotto, M.; Fantinel, S.; Frizziero, E.; Gastaldi, U.; Gulmini, M.; Lelli, F.; Maron, G.; Squizzato, S.; Toniolo, N.; Traldi, S.; Banfi, S.; Bertoni, R.; Bonesini, M.; Carbone, L.; Cerati, G. B.; Chignoli, F.; D'Angelo, P.; DeMin, A.; Dini, P.; Farina, F. M.; Ferri, F.; Govoni, P.; Magni, S.; Malberti, M.; Malvezzi, S.; Mazza, R.; Menasce, D.; Miccio, V.; Moroni, L.; Negri, P.; Paganoni, M.; Pedrini, D.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Rovere, M.; Sala, L.; Sala, S.; Salerno, R.; Tabarelli de Fatis, T.; Tancini, V.; Taroni, S.; Boiano, A.; Cassese, F.; Cassese, C.; Cimmino, A.; D'Aquino, B.; Lista, L.; Lomidze, D.; Noli, P.; Paolucci, P.; Passeggio, G.; Piccolo, D.; Roscilli, L.; Sciacca, C.; Vanzanella, A.; Azzi, P.; Bacchetta, N.; Barcellan, L.; Bellato, M.; Benettoni, M.; Bisello, D.; Borsato, E.; Candelori, A.; Carlin, R.; Castellani, L.; Checchia, P.; Ciano, L.; Colombo, A.; Conti, E.; Da Rold, M.; Dal Corso, F.; DeGiorgi, M.; DeMattia, M.; Dorigo, T.; Dosselli, U.; Fanin, C.; Galet, G.; Gasparini, F.; Gasparini, U.; Giraldo, A.; Giubilato, P.; Gonella, F.; Gresele, A.; Griggio, A.; Guaita, P.; Kaminskiy, A.; Karaevskii, S.; Khomenkov, V.; Kostylev, D.; Lacaprara, S.; Lazzizzera, I.; Lippi, I.; Loreti, M.; Margoni, M.; Martinelli, R.; Mattiazzo, S.; Mazzucato, M.; Meneguzzo, A. T.; Modenese, L.; Montecassiano, F.; Neviani, A.; Nigro, M.; Paccagnella, A.; Pantano, D.; Parenti, A.; Passaseo, M.; Pedrotta, R.; Pegoraro, M.; Rampazzo, G.; Reznikov, S.; Ronchese, P.; Sancho Daponte, A.; Sartori, P.; Stavitskiy, I.; Tessaro, M.; Torassa, E.; Triossi, A.; Vanini, S.; Ventura, S.; Ventura, L.; Verlato, M.; Zago, M.; Zatti, F.; Zotto, P.; Zumerle, G.; Baesso, P.; Belli, G.; Berzano, U.; Bricola, S.; Grelli, A.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vicini, A.; Vitulo, P.; Viviani, C.; Aisa, D.; Aisa, S.; Ambroglini, F.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Bizzaglia, S.; Brunetti, M. T.; Caponeri, B.; Checcucci, B.; Covarelli, R.; Dinu, N.; Fanò, L.; Farnesini, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Moscatelli, F.; Passeri, D.; Piluso, A.; Placidi, P.; Postolache, V.; Santinelli, R.; Santocchia, A.; Servoli, L.; Spiga, D.; Azzurri, P.; Bagliesi, G.; Balestri, G.; Basti, A.; Bellazzini, R.; Benucci, L.; Bernardini, J.; Berretta, L.; Bianucci, S.; Boccali, T.; Bocci, A.; Borrello, L.; Bosi, F.; Bracci, F.; Brez, A.; Calzolari, F.; Castaldi, R.; Cazzola, U.; Ceccanti, M.; Cecchi, R.; Cerri, C.; Cucoanes, A. S.; Dell'Orso, R.; Dobur, D.; Dutta, S.; Fiori, F.; Foà, L.; Gaggelli, A.; Gennai, S.; Giassi, A.; Giusti, S.; Kartashov, D.; Kraan, A.; Latronico, L.; Ligabue, F.; Linari, S.; Lomtadze, T.; Lungu, G. A.; Magazzu, G.; Mammini, P.; Mariani, F.; Martinelli, G.; Massa, M.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Petragnani, G.; Petrucciani, G.; Profeti, A.; Raffaelli, F.; Rizzi, D.; Sanguinetti, G.; Sarkar, S.; Segneri, G.; Sentenac, D.; Serban, A. T.; Slav, A.; Spagnolo, P.; Spandre, G.; Tenchini, R.; Tolaini, S.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vos, M.; Zaccarelli, L.; Baccaro, S.; Barone, L.; Bartoloni, A.; Borgia, B.; Capradossi, G.; Cavallari, F.; Cecilia, A.; D'Angelo, D.; Dafinei, I.; DelRe, D.; Di Marco, E.; Diemoz, M.; Ferrara, G.; Gargiulo, C.; Guerra, S.; Iannone, M.; Longo, E.; Montecchi, M.; Nuccetelli, M.; Organtini, G.; Palma, A.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Safai Tehrani, F.; Zullo, A.; Alampi, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Benotto, F.; Biino, C.; Bolognesi, S.; Borgia, M. A.; Botta, C.; Brasolin, A.; Cartiglia, N.; Castello, R.; Cerminara, G.; Cirio, R.; Cordero, M.; Costa, M.; Dattola, D.; Daudo, F.; Dellacasa, G.; Demaria, N.; Dughera, G.; Dumitrache, F.; Farano, R.; Ferrero, G.; Filoni, E.; Kostyleva, G.; Larsen, H. E.; Mariotti, C.; Marone, M.; Maselli, S.; Menichetti, E.; Mereu, P.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Nervo, M.; Obertino, M. M.; Panero, R.; Parussa, A.; Pastrone, N.; Peroni, C.; Petrillo, G.; Romero, A.; Ruspa, M.; Sacchi, R.; Scalise, M.; Solano, A.; Staiano, A.; Trapani, P. P.; Trocino, D.; Vaniev, V.; Vilela Pereira, A.; Zampieri, A.; Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Kavka, C.; Penzo, A.; Kim, Y. E.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, J. C.; Kong, D. J.; Ro, S. R.; Son, D. C.; Park, S. Y.; Kim, Y. J.; Kim, J. Y.; Lim, I. T.; Pac, M. Y.; Lee, S. J.; Jung, S. Y.; Rhee, J. T.; Ahn, S. H.; Hong, B. S.; Jeng, Y. K.; Kang, M. H.; Kim, H. C.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Lim, J. K.; Moon, D. H.; Park, I. C.; Park, S. K.; Ryu, M. S.; Sim, K.-S.; Son, K. J.; Hong, S. J.; Choi, Y. I.; Castilla Valdez, H.; Sanchez Hernandez, A.; Carrillo Moreno, S.; Morelos Pineda, A.; Aerts, A.; Van der Stok, P.; Weffers, H.; Allfrey, P.; Gray, R. N. C.; Hashimoto, M.; Krofcheck, D.; Bell, A. J.; Bernardino Rodrigues, N.; Butler, P. H.; Churchwell, S.; Knegjens, R.; Whitehead, S.; Williams, J. C.; Aftab, Z.; Ahmad, U.; Ahmed, I.; Ahmed, W.; Asghar, M. I.; Asghar, S.; Dad, G.; Hafeez, M.; Hoorani, H. R.; Hussain, I.; Hussain, N.; Iftikhar, M.; Khan, M. S.; Mehmood, K.; Osman, A.; Shahzad, H.; Zafar, A. R.; Ali, A.; Bashir, A.; Jan, A. M.; Kamal, A.; Khan, F.; Saeed, M.; Tanwir, S.; Zafar, M. A.; Blocki, J.; Cyz, A.; Gladysz-Dziadus, E.; Mikocki, S.; Rybczynski, M.; Turnau, J.; Wlodarczyk, Z.; Zychowski, P.; Bunkowski, K.; Cwiok, M.; Czyrkowski, H.; Dabrowski, R.; Dominik, W.; Doroba, K.; Kalinowski, A.; Kierzkowski, K.; Konecki, M.; Krolikowski, J.; Kudla, I. M.; Pietrusinski, M.; Pozniak, K.; Zabolotny, W.; Zych, P.; Gokieli, R.; Goscilo, L.; Górski, M.; Nawrocki, K.; Traczyk, P.; Wrochna, G.; Zalewski, P.; Pozniak, K. T.; Romaniuk, R.; Zabolotny, W. M.; Alemany-Fernandez, R.; Almeida, C.; Almeida, N.; Araujo Vila Verde, A. S.; Barata Monteiro, T.; Bluj, M.; Da Mota Silva, S.; Tinoco Mendes, A. David; Freitas Ferreira, M.; Gallinaro, M.; Husejko, M.; Jain, A.; Kazana, M.; Musella, P.; Nobrega, R.; Rasteiro Da Silva, J.; Ribeiro, P. Q.; Santos, M.; Silva, P.; Silva, S.; Teixeira, I.; Teixeira, J. P.; Varela, J.; Varner, G.; Vaz Cardoso, N.; Altsybeev, I.; Babich, K.; Belkov, A.; Belotelov, I.; Bunin, P.; Chesnevskaya, S.; Elsha, V.; Ershov, Y.; Filozova, I.; Finger, M.; Finger, M., Jr.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gramenitski, I.; Kalagin, V.; Kamenev, A.; Karjavin, V.; Khabarov, S.; Khabarov, V.; Kiryushin, Y.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Kurenkov, A.; Lanev, A.; Lysiakov, V.; Malakhov, A.; Melnitchenko, I.; Mitsyn, V. V.; Moisenz, K.; Moisenz, P.; Movchan, S.; Nikonov, E.; Oleynik, D.; Palichik, V.; Perelygin, V.; Petrosyan, A.; Rogalev, E.; Samsonov, V.; Savina, M.; Semenov, R.; Sergeev, S.; Shmatov, S.; Shulha, S.; Smirnov, V.; Smolin, D.; Tcheremoukhine, A.; Teryaev, O.; Tikhonenko, E.; Urkinbaev, A.; Vasil'ev, S.; Vishnevskiy, A.; Volodko, A.; Zamiatin, N.; Zarubin, A.; Zarubin, P.; Zubarev, E.; Bondar, N.; Gavrikov, Y.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kozlov, V.; Lebedev, V.; Makarenkov, G.; Moroz, F.; Neustroev, P.; Obrant, G.; Orishchin, E.; Petrunin, A.; Shcheglov, Y.; Shchetkovskiy, A.; Sknar, V.; Skorobogatov, V.; Smirnov, I.; Sulimov, V.; Tarakanov, V.; Uvarov, L.; Vavilov, S.; Velichko, G.; Volkov, S.; Vorobyev, A.; Chmelev, D.; Druzhkin, D.; Ivanov, A.; Kudinov, V.; Logatchev, O.; Onishchenko, S.; Orlov, A.; Sakharov, V.; Smetannikov, V.; Tikhomirov, A.; Zavodthikov, S.; Andreev, Yu; Anisimov, A.; Duk, V.; Gninenko, S.; Golubev, N.; Gorbunov, D.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Pastsyak, A.; Postoev, V. E.; Sadovski, A.; Skassyrskaia, A.; Solovey, Alexander; Solovey, Anatoly; Soloviev, D.; Toropin, A.; Troitsky, S.; Alekhin, A.; Baldov, A.; Epshteyn, V.; Gavrilov, V.; Ilina, N.; Kaftanov, V.; Karpishin, V.; Kiselevich, I.; Kolosov, V.; Kossov, M.; Krokhotin, A.; Kuleshov, S.; Oulianov, A.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stepanov, N.; Stolin, V.; Vlasov, E.; Zaytsev, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Eyyubova, G.; Gribushin, A.; Ilyin, V.; Klyukhin, V.; Kodolova, O.; Kruglov, N. A.; Kryukov, A.; Lokhtin, I.; Malinina, L.; Mikhaylin, V.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Shamardin, L.; Sherstnev, A.; Snigirev, A.; Teplov, K.; Vardanyan, I.; Fomenko, A. M.; Konovalova, N.; Kozlov, V.; Lebedev, A. I.; Lvova, N.; Rusakov, S. V.; Terkulov, A.; Abramov, V.; Akimenko, S.; Artamonov, A.; Ashimova, A.; Azhgirey, I.; Bitioukov, S.; Chikilev, O.; Datsko, K.; Filine, A.; Godizov, A.; Goncharov, P.; Grishin, V.; Inyakin, A.; Kachanov, V.; Kalinin, A.; Khmelnikov, A.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Krinitsyn, A.; Levine, A.; Lobov, I.; Lukanin, V.; Mel'nik, Y.; Molchanov, V.; Petrov, V.; Petukhov, V.; Pikalov, V.; Ryazanov, A.; Ryutin, R.; Shelikhov, V.; Skvortsov, V.; Slabospitsky, S.; Sobol, A.; Sytine, A.; Talov, V.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Zelepoukine, S.; Lukyanov, V.; Mamaeva, G.; Prilutskaya, Z.; Rumyantsev, I.; Sokha, S.; Tataurschikov, S.; Vasilyev, I.; Adzic, P.; Anicin, I.; Djordjevic, M.; Jovanovic, D.; Maletic, D.; Puzovic, J.; Smiljkovic, N.; Aguayo Navarrete, E.; Aguilar-Benitez, M.; Ahijado Munoz, J.; Alarcon Vega, J. M.; Alberdi, J.; Alcaraz Maestre, J.; Aldaya Martin, M.; Arce, P.; Barcala, J. M.; Berdugo, J.; Blanco Ramos, C. L.; Burgos Lazaro, C.; Caballero Bejar, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Chercoles Catalán, J. J.; Colino, N.; Daniel, M.; DeLa Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Ferrando, A.; Fouz, M. C.; Francia Ferrero, D.; Garcia Romero, J.; Garcia-Abia, P.; Gonzalez Lopez, O.; Hernandez, J. M.; Josa, M. I.; Marin, J.; Merino, G.; Molinero, A.; Navarrete, J. J.; Oller, J. C.; Puerta Pelayo, J.; Puras Sanchez, J. C.; Ramirez, J.; Romero, L.; Villanueva Munoz, C.; Willmott, C.; Yuste, C.; Albajar, C.; de Trocóniz, J. F.; Jimenez, I.; Macias, R.; Teixeira, R. F.; Cuevas, J.; Fernández Menéndez, J.; Gonzalez Caballero, I.; Lopez-Garcia, J.; Naves Sordo, H.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Cano Fernandez, D.; Diaz Merino, I.; Duarte Campderros, J.; Fernandez, M.; Fernandez Menendez, J.; Figueroa, C.; Garcia Moral, L. A.; Gomez, G.; Gomez Casademunt, F.; Gonzalez Sanchez, J.; Gonzalez Suarez, R.; Jorda, C.; Lobelle Pardo, P.; Lopez Garcia, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Orviz Fernandez, P.; Patino Revuelta, A.; Rodrigo, T.; Rodriguez Gonzalez, D.; Ruiz Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Barbero, M.; Goldin, D.; Henrich, B.; Tauscher, L.; Vlachos, S.; Wadhwa, M.; Abbaneo, D.; Abbas, S. M.; Ahmed, I.; Akhtar, S.; Akhtar, M. I.; Albert, E.; Alidra, M.; Ashby, S.; Aspell, P.; Auffray, E.; Baillon, P.; Ball, A.; Bally, S. L.; Bangert, N.; Barillère, R.; Barney, D.; Beauceron, S.; Beaudette, F.; Benelli, G.; Benetta, R.; Benichou, J. L.; Bialas, W.; Bjorkebo, A.; Blechschmidt, D.; Bloch, C.; Bloch, P.; Bonacini, S.; Bos, J.; Bosteels, M.; Boyer, V.; Branson, A.; Breuker, H.; Bruneliere, R.; Buchmuller, O.; Campi, D.; Camporesi, T.; Caner, A.; Cano, E.; Carrone, E.; Cattai, A.; Chatelain, J. P.; Chauvey, M.; Christiansen, T.; Ciganek, M.; Cittolin, S.; Cogan, J.; Conde Garcia, A.; Cornet, H.; Corrin, E.; Corvo, M.; Cucciarelli, S.; Curé, B.; D'Enterria, D.; DeRoeck, A.; de Visser, T.; Delaere, C.; Delattre, M.; Deldicque, C.; Delikaris, D.; Deyrail, D.; Di Vincenzo, S.; Domeniconi, A.; Dos Santos, S.; Duthion, G.; Edera, L. M.; Elliott-Peisert, A.; Eppard, M.; Fanzago, F.; Favre, M.; Foeth, H.; Folch, R.; Frank, N.; Fratianni, S.; Freire, M. A.; Frey, A.; Fucci, A.; Funk, W.; Gaddi, A.; Gagliardi, F.; Gastal, M.; Gateau, M.; Gayde, J. C.; Gerwig, H.; Ghezzi, A.; Gigi, D.; Gill, K.; Giolo-Nicollerat, A. S.; Girod, J. P.; Glege, F.; Glessing, W.; Gomez-Reino Garrido, R.; Goudard, R.; Grabit, R.; Grillet, J. P.; Gutierrez Llamas, P.; Gutierrez Mlot, E.; Gutleber, J.; Hall-wilton, R.; Hammarstrom, R.; Hansen, M.; Harvey, J.; Hervé, A.; Hill, J.; Hoffmann, H. F.; Holzner, A.; Honma, A.; Hufnagel, D.; Huhtinen, M.; Ilie, S. D.; Innocente, V.; Jank, W.; Janot, P.; Jarron, P.; Jeanrenaud, M.; Jouvel, P.; Kerkach, R.; Kloukinas, K.; Kottelat, L. J.; Labbé, J. C.; Lacroix, D.; Lagrue, X.; Lasseur, C.; Laure, E.; Laurens, J. F.; Lazeyras, P.; LeGoff, J. M.; Lebeau, M.; Lecoq, P.; Lemeilleur, F.; Lenzi, M.; Leonardo, N.; Leonidopoulos, C.; Letheren, M.; Liendl, M.; Limia-Conde, F.; Linssen, L.; Ljuslin, C.; Lofstedt, B.; Loos, R.; Lopez Perez, J. A.; Lourenco, C.; Lyonnet, A.; Machard, A.; Mackenzie, R.; Magini, N.; Maire, G.; Malgeri, L.; Malina, R.; Mannelli, M.; Marchioro, A.; Martin, J.; Meijers, F.; Meridiani, P.; Meschi, E.; Meyer, T.; Meynet Cordonnier, A.; Michaud, J. F.; Mirabito, L.; Moser, R.; Mossiere, F.; Muffat-Joly, J.; Mulders, M.; Mulon, J.; Murer, E.; Mättig, P.; Oh, A.; Onnela, A.; Oriunno, M.; Orsini, L.; Osborne, J. A.; Paillard, C.; Pal, I.; Papotti, G.; Passardi, G.; Patino-Revuelta, A.; Patras, V.; Perea Solano, B.; Perez, E.; Perinic, G.; Pernot, J. F.; Petagna, P.; Petiot, P.; Petit, P.; Petrilli, A.; Pfeiffer, A.; Piccut, C.; Pimiä, M.; Pintus, R.; Pioppi, M.; Placci, A.; Pollet, L.; Postema, H.; Price, M. J.; Principe, R.; Racz, A.; Radermacher, E.; Ranieri, R.; Raymond, G.; Rebecchi, P.; Rehn, J.; Reynaud, S.; Rezvani Naraghi, H.; Ricci, D.; Ridel, M.; Risoldi, M.; Rodrigues Simoes Moreira, P.; Rohlev, A.; Roiron, G.; Rolandi, G.; Rumerio, P.; Runolfsson, O.; Ryjov, V.; Sakulin, H.; Samyn, D.; Santos Amaral, L. C.; Sauce, H.; Sbrissa, E.; Scharff-Hansen, P.; Schieferdecker, P.; Schlatter, W. D.; Schmitt, B.; Schmuecker, H. G.; Schröder, M.; Schwick, C.; Schäfer, C.; Segoni, I.; Sempere Roldán, P.; Sgobba, S.; Sharma, A.; Siegrist, P.; Sigaud, C.; Sinanis, N.; Sobrier, T.; Sphicas, P.; Spiropulu, M.; Stefanini, G.; Strandlie, A.; Szoncsó, F.; Taylor, B. G.; Teller, O.; Thea, A.; Tournefier, E.; Treille, D.; Tropea, P.; Troska, J.; Tsesmelis, E.; Tsirou, A.; Valls, J.; Van Vulpen, I.; Vander Donckt, M.; Vasey, F.; Vazquez Acosta, M.; Veillet, L.; Vichoudis, P.; Waurick, G.; Wellisch, J. P.; Wertelaers, P.; Wilhelmsson, M.; Willers, I. M.; Winkler, M.; Zanetti, M.; Bertl, W.; Deiters, K.; Dick, P.; Erdmann, W.; Feichtinger, D.; Gabathuler, K.; Hochman, Z.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; König, S.; Poerschke, P.; Renker, D.; Rohe, T.; Sakhelashvili, T.; Starodumov, A.; Aleksandrov, V.; Behner, F.; Beniozef, I.; Betev, B.; Blau, B.; Brett, A. M.; Caminada, L.; Chen, Z.; Chivarov, N.; Da Silva Di Calafiori, D.; Dambach, S.; Davatz, G.; Delachenal, V.; Della Marina, R.; Dimov, H.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dröge, M.; Eggel, C.; Ehlers, J.; Eichler, R.; Elmiger, M.; Faber, G.; Freudenreich, K.; Fuchs, J. F.; Georgiev, G. M.; Grab, C.; Haller, C.; Herrmann, J.; Hilgers, M.; Hintz, W.; Hofer, Hans; Hofer, Heinz; Horisberger, U.; Horvath, I.; Hristov, A.; Humbertclaude, C.; Iliev, B.; Kastli, W.; Kruse, A.; Kuipers, J.; Langenegger, U.; Lecomte, P.; Lejeune, E.; Leshev, G.; Lesmond, C.; List, B.; Luckey, P. D.; Lustermann, W.; Maillefaud, J. D.; Marchica, C.; Maurisset, A.; Meier, B.; Milenovic, P.; Milesi, M.; Moortgat, F.; Nanov, I.; Nardulli, A.; Nessi-Tedaldi, F.; Panev, B.; Pape, L.; Pauss, F.; Petrov, E.; Petrov, G.; Peynekov, M. M.; Pitzl, D.; Punz, T.; Riboni, P.; Riedlberger, J.; Rizzi, A.; Ronga, F. J.; Roykov, P. A.; Röser, U.; Schinzel, D.; Schöning, A.; Sourkov, A.; Stanishev, K.; Stoenchev, S.; Stöckli, F.; Suter, H.; Trüb, P.; Udriot, S.; Uzunova, D. G.; Veltchev, I.; Viertel, G.; von Gunten, H. P.; Waldmeier-Wicki, S.; Weber, R.; Weber, M.; Weng, J.; Wensveen, M.; Wittgenstein, F.; Zagoursky, K.; Alagoz, E.; Amsler, C.; Chiochia, V.; Hoermann, C.; Regenfus, C.; Robmann, P.; Rommerskirchen, T.; Schmidt, A.; Steiner, S.; Tsirigkas, D.; Wilke, L.; Blyth, S.; Chang, Y. H.; Chen, E. A.; Go, A.; Hung, C. C.; Kuo, C. M.; Li, S. W.; Lin, W.; Chang, P.; Chao, Y.; Chen, K. F.; Gao, Z.; Hou, G. W. S.; Hsiung, Y. B.; Lei, Y. J.; Lin, S. W.; Lu, R. S.; Shiu, J. G.; Tzeng, Y. M.; Ueno, K.; Velikzhanin, Y.; Wang, C. C.; Wang, M.-Z.; Aydin, S.; Azman, A.; Bakirci, M. N.; Basegmez, S.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis Topaksu, A.; Kisoglu, H.; Kurt, P.; Ozdemir, K.; Ozdes Koca, N.; Ozkurt, H.; Ozturk, S.; Polatöz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Önengüt, G.; Gamsizkan, H.; Sekmen, S.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Deliomeroglu, M.; Gülmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Grinev, B.; Lyubynskiy, V.; Senchyshyn, V.; Levchuk, L.; Lukyanenko, S.; Soroka, D.; Sorokin, P.; Zub, S.; Anjum, A.; Baker, N.; Hauer, T.; McClatchey, R.; Odeh, M.; Rogulin, D.; Solomonides, A.; Brooke, J. J.; Croft, R.; Cussans, D.; Evans, D.; Frazier, R.; Grant, N.; Hansen, M.; Head, R. D.; Heath, G. P.; Heath, H. F.; Hill, C.; Huckvale, B.; Jackson, J.; Lynch, C.; Mackay, C. K.; Metson, S.; Nash, S. J.; Newbold, D. M.; Presland, A. D.; Probert, M. G.; Reid, E. C.; Smith, V. J.; Tapper, R. J.; Walton, R.; Bateman, E.; Bell, K. W.; Brown, R. M.; Camanzi, B.; Church, I. T.; Cockerill, D. J. A.; Cole, J. E.; Connolly, J. F.; Coughlan, J. A.; Flower, P. S.; Ford, P.; Francis, V. B.; French, M. J.; Galagedera, S. B.; Gannon, W.; Gay, A. P. R.; Geddes, N. I.; Greenhalgh, R. J. S.; Halsall, R. N. J.; Haynes, W. J.; Hill, J. A.; Jacob, F. R.; Jeffreys, P. W.; Jones, L. L.; Kennedy, B. W.; Lintern, A. L.; Lodge, A. B.; Maddox, A. J.; Morrissey, Q. R.; Murray, P.; Patrick, G. N.; Pattison, C. A. X.; Pearson, M. R.; Quinton, S. P. H.; Rogers, G. J.; Salisbury, J. G.; Shah, A. A.; Shepherd-Themistocleous, C. H.; Smith, B. J.; Sproston, M.; Stephenson, R.; Taghavi, S.; Tomalin, I. R.; Torbet, M. J.; Williams, J. H.; Womersley, W. J.; Worm, S. D.; Xing, F.; Apollonio, M.; Arteche, F.; Bainbridge, R.; Barber, G.; Barrillon, P.; Batten, J.; Beuselinck, R.; Brambilla Hall, P. M.; Britton, D.; Cameron, W.; Clark, D. E.; Clark, I. W.; Colling, D.; Cripps, N.; Davies, G.; Della Negra, M.; Dewhirst, G.; Dris, S.; Foudas, C.; Fulcher, J.; Futyan, D.; Graham, D. J.; Greder, S.; Greenwood, S.; Hall, G.; Hassard, J. F.; Hays, J.; Iles, G.; Kasey, V.; Khaleeq, M.; Leaver, J.; Lewis, P.; MacEvoy, B. C.; Maroney, O.; McLeod, E. M.; Miller, D. G.; Nash, J.; Nikitenko, A.; Noah Messomo, E.; Noy, M.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Price, D. R.; Qu, X.; Raymond, D. M.; Rose, A.; Rutherford, S.; Ryan, M. J.; Sciacca, F.; Seez, C.; Sharp, P.; Sidiropoulos, G.; Stettler, M.; Stoye, M.; Striebig, J.; Takahashi, M.; Tallini, H.; Tapper, A.; Timlin, C.; Toudup, L.; Virdee, T.; Wakefield, S.; Walsham, P.; Wardrope, D.; Wingham, M.; Zhang, Y.; Zorba, O.; Da Via, C.; Goitom, I.; Hobson, P. R.; Imrie, D. C.; Reid, I.; Selby, C.; Sharif, O.; Teodorescu, L.; Watts, S. J.; Yaselli, I.; Hazen, E.; Heering, A.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Rohlf, J.; Sulak, L.; Varela Rodriguez, F.; Wu, S. X.; Avetisyan, A.; Bose, T.; Christofek, L.; Cutts, D.; Esen, S.; Hooper, R.; Landsberg, G.; Narain, M.; Nguyen, D.; Speer, T.; Tsang, K. V.; Breedon, R.; Case, M.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Fisyak, Y.; Friis, E.; Grim, G.; Holbrook, B.; Ko, W.; Kopecky, A.; Lander, R.; Lin, F. C.; Lister, A.; Maruyama, S.; Pellett, D.; Rowe, J.; Searle, M.; Smith, J.; Soha, A.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.; Andreev, V.; Arisaka, K.; Bonushkin, Y.; Chandramouly, S.; Cline, D.; Cousins, R.; Erhan, S.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Lisowski, B.; Matthey, C.; Mohr, B.; Mumford, J.; Otwinowski, S.; Pischalnikov, Y.; Rakness, G.; Schlein, P.; Shi, Y.; Tannenbaum, B.; Tucker, J.; Valuev, V.; Wallny, R.; Wang, H. G.; Yang, X.; Zheng, Y.; Andreeva, J.; Babb, J.; Campana, S.; Chrisman, D.; Clare, R.; Ellison, J.; Fortin, D.; Gary, J. W.; Gorn, W.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Layter, J. G.; Liu, F.; Liu, H.; Luthra, A.; Pasztor, G.; Rick, H.; Satpathy, A.; Shen, B. C.; Stringer, R.; Sytnik, V.; Tran, P.; Villa, S.; Wilken, R.; Wimpenny, S.; Zer-Zion, D.; Branson, J. G.; Coarasa Perez, J. A.; Dusinberre, E.; Kelley, R.; Lebourgeois, M.; Letts, J.; Lipeles, E.; Mangano, B.; Martin, T.; Mojaver, M.; Muelmenstaedt, J.; Norman, M.; Paar, H. P.; Petrucci, A.; Pi, H.; Pieri, M.; Rana, A.; Sani, M.; Sharma, V.; Simon, S.; White, A.; Würthwein, F.; Yagil, A.; Affolder, A.; Allen, A.; Campagnari, C.; D'Alfonso, M.; Dierlamm, A.; Garberson, J.; Hale, D.; Incandela, J.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Kyre, S.; Lamb, J.; Lowette, S.; Nikolic, M.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Shah, Y. S.; Stuart, D.; Swain, S.; Vlimant, J. R.; White, D.; Witherell, M.; Bornheim, A.; Bunn, J.; Chen, J.; Denis, G.; Galvez, P.; Gataullin, M.; Legrand, I.; Litvine, V.; Ma, Y.; Mao, R.; Nae, D.; Narsky, I.; Newman, H. B.; Orimoto, T.; Rogan, C.; Shevchenko, S.; Steenberg, C.; Su, X.; Thomas, M.; Timciuc, V.; van Lingen, F.; Veverka, J.; Voicu, B. R.; Weinstein, A.; Wilkinson, R.; Xia, Y.; Yang, Y.; Zhang, L. Y.; Zhu, K.; Zhu, R. Y.; Ferguson, T.; Jang, D. W.; Jun, S. Y.; Paulini, M.; Russ, J.; Terentyev, N.; Vogel, H.; Vorobiev, I.; Bunce, M.; Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Ford, W. T.; Givens, K.; Heyburn, B.; Johnson, D.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Agostino, L.; Alexander, J.; Blekman, F.; Cassel, D.; Das, S.; Duboscq, J. E.; Gibbons, L. K.; Heltsley, B.; Jones, C. D.; Kuznetsov, V.; Patterson, J. R.; Riley, D.; Ryd, A.; Stroiney, S.; Sun, W.; Thom, J.; Vaughan, J.; Wittich, P.; Beetz, C. P.; Cirino, G.; Podrasky, V.; Sanzeni, C.; Winn, D.; Abdullin, S.; Afaq, M. A.; Albrow, M.; Amundson, J.; Apollinari, G.; Atac, M.; Badgett, W.; Bakken, J. A.; Baldin, B.; Banicz, K.; Bauerdick, L. A. T.; Baumbaugh, A.; Berryhill, J.; Bhat, P. C.; Binkley, M.; Bloch, I.; Borcherding, F.; Boubekeur, A.; Bowden, M.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chevenier, G.; Chlebana, F.; Churin, I.; Cihangir, S.; Dagenhart, W.; Demarteau, M.; Dykstra, D.; Eartly, D. P.; Elias, J. E.; Elvira, V. D.; Evans, D.; Fisk, I.; Freeman, J.; Gaines, I.; Gartung, P.; Geurts, F. J. M.; Giacchetti, L.; Glenzinski, D. A.; Gottschalk, E.; Grassi, T.; Green, D.; Grimm, C.; Guo, Y.; Gutsche, O.; Hahn, A.; Hanlon, J.; Harris, R. M.; Hesselroth, T.; Holm, S.; Holzman, B.; James, E.; Jensen, H.; Johnson, M.; Joshi, U.; Klima, B.; Kossiakov, S.; Kousouris, K.; Kowalkowski, J.; Kramer, T.; Kwan, S.; Lei, C. M.; Leininger, M.; Los, S.; Lueking, L.; Lukhanin, G.; Lusin, S.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Moccia, S.; Mokhov, N.; Mrenna, S.; Murray, S. J.; Newman-Holmes, C.; Noeding, C.; O'Dell, V.; Paterno, M.; Petravick, D.; Pordes, R.; Prokofyev, O.; Ratnikova, N.; Ronzhin, A.; Sekhri, V.; Sexton-Kennedy, E.; Sfiligoi, I.; Shaw, T. M.; Skup, E.; Smith, R. P.; Spalding, W. J.; Spiegel, L.; Stavrianakou, M.; Stiehr, G.; Stone, A. L.; Suzuki, I.; Tan, P.; Tanenbaum, W.; Temple, L. E.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Wands, R.; Wenzel, H.; Whitmore, J.; Wicklund, E.; Wu, W. M.; Wu, Y.; Yarba, J.; Yarba, V.; Yumiceva, F.; Yun, J. C.; Zimmerman, T.; Acosta, D.; Avery, P.; Barashko, V.; Bartalini, P.; Bourilkov, D.; Cavanaugh, R.; Dolinsky, S.; Drozdetskiy, A.; Field, R. D.; Fu, Y.; Furic, I. K.; Gorn, L.; Holmes, D.; Kim, B. J.; Klimenko, S.; Konigsberg, J.; Korytov, A.; Kotov, K.; Levchenko, P.; Madorsky, A.; Matchev, K.; Mitselmakher, G.; Pakhotin, Y.; Prescott, C.; Ramond, L.; Ramond, P.; Schmitt, M.; Scurlock, B.; Stasko, J.; Stoeck, H.; Wang, D.; Yelton, J.; Gaultney, V.; Kramer, L.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Atramentov, O.; Bertoldi, M.; Dharmaratna, W. G. D.; Gershtein, Y.; Gleyzer, S. V.; Hagopian, S.; Hagopian, V.; Jenkins, C. J.; Johnson, K. F.; Prosper, H.; Simek, D.; Thomaston, J.; Baarmand, M.; Baksay, L.; Guragain, S.; Hohlmann, M.; Mermerkaya, H.; Ralich, R.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Barannikova, O.; Bazterra, V. E.; Betts, R. R.; Dragoiu, C.; Garcia-Solis, E. J.; Gerber, C. E.; Hofman, D. J.; Hollis, R.; Iordanova, A.; Khalatian, S.; Mironov, C.; Shabalina, E.; Smoron, A.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Ayan, A. S.; Briggs, R.; Cankocak, K.; Clarida, W.; Cooper, A.; Debbins, P.; Duru, F.; Fountain, M.; McCliment, E.; Merlo, J. P.; Mestvirishvili, A.; Miller, M. J.; Moeller, A.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Perera, L.; Schmidt, I.; Wang, S.; Yetkin, T.; Anderson, E. W.; Chakir, H.; Hauptman, J. M.; Lamsa, J.; Barnett, B. A.; Blumenfeld, B.; Chien, C. Y.; Giurgiu, G.; Gritsan, A.; Kim, D. W.; Lae, C. K.; Maksimovic, P.; Swartz, M.; Tran, N.; Baringer, P.; Bean, A.; Chen, J.; Coppage, D.; Grachov, O.; Murray, M.; Radicci, V.; Wood, J. S.; Zhukova, V.; Bandurin, D.; Bolton, T.; Kaadze, K.; Kahl, W. E.; Maravin, Y.; Onoprienko, D.; Sidwell, R.; Wan, Z.; Dahmes, B.; Gronberg, J.; Hollar, J.; Lange, D.; Wright, D.; Wuest, C. R.; Baden, D.; Bard, R.; Eno, S. C.; Ferencek, D.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kunori, S.; Lockner, E.; Ratnikov, F.; Santanastasio, F.; Skuja, A.; Toole, T.; Wang, L.; Wetstein, M.; Alver, B.; Ballintijn, M.; Bauer, G.; Busza, W.; Gomez Ceballos, G.; Hahn, K. A.; Harris, P.; Klute, M.; Kravchenko, I.; Li, W.; Loizides, C.; Ma, T.; Nahn, S.; Paus, C.; Pavlon, S.; Piedra Gomez, J.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G.; Sumorok, K.; Vaurynovich, S.; Wenger, E. A.; Wyslouch, B.; Bailleux, D.; Cooper, S.; Cushman, P.; DeBenedetti, A.; Dolgopolov, A.; Dudero, P. R.; Egeland, R.; Franzoni, G.; Gilbert, W. J.; Gong, D.; Grahl, J.; Haupt, J.; Klapoetke, K.; Kronkvist, I.; Kubota, Y.; Mans, J.; Rusack, R.; Sengupta, S.; Sherwood, B.; Singovsky, A.; Vikas, P.; Zhang, J.; Booke, M.; Cremaldi, L. M.; Godang, R.; Kroeger, R.; Reep, M.; Reidy, J.; Sanders, D. A.; Sonnek, P.; Summers, D.; Watkins, S.; Bloom, K.; Bockelman, B.; Claes, D. R.; Dominguez, A.; Eads, M.; Furukawa, M.; Keller, J.; Kelly, T.; Lundstedt, C.; Malik, S.; Snow, G. R.; Swanson, D.; Ecklund, K. M.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Strang, M.; Alverson, G.; Barberis, E.; Boeriu, O.; Eulisse, G.; McCauley, T.; Musienko, Y.; Muzaffar, S.; Osborne, I.; Reucroft, S.; Swain, J.; Taylor, L.; Tuura, L.; Gobbi, B.; Kubantsev, M.; Kubik, A.; Ofierzynski, R. A.; Schmitt, M.; Spencer, E.; Stoynev, S.; Szleper, M.; Velasco, M.; Won, S.; Andert, K.; Baumbaugh, B.; Beiersdorf, B. A.; Castle, L.; Chorny, J.; Goussiou, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolberg, T.; Marchant, J.; Marinelli, N.; McKenna, M.; Ruchti, R.; Vigneault, M.; Wayne, M.; Wiand, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Gu, J.; Killewald, P.; Ling, T. Y.; Rush, C. J.; Sehgal, V.; Williams, G.; Adam, N.; Chidzik, S.; Denes, P.; Elmer, P.; Garmash, A.; Gerbaudo, D.; Halyo, V.; Jones, J.; Marlow, D.; Olsen, J.; Piroué, P.; Stickland, D.; Tully, C.; Werner, J. S.; Wildish, T.; Wynhoff, S.; Xie, Z.; Huang, X. T.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Apresyan, A.; Arndt, K.; Barnes, V. E.; Bolla, G.; Bortoletto, D.; Bujak, A.; Everett, A.; Fahling, M.; Garfinkel, A. F.; Gutay, L.; Ippolito, N.; Kozhevnikov, Y.; Laasanen, A. T.; Liu, C.; Maroussov, V.; Medved, S.; Merkel, P.; Miller, D. H.; Miyamoto, J.; Neumeister, N.; Pompos, A.; Roy, A.; Sedov, A.; Shipsey, I.; Cuplov, V.; Parashar, N.; Bargassa, P.; Lee, S. J.; Liu, J. H.; Maronde, D.; Matveev, M.; Nussbaum, T.; Padley, B. P.; Roberts, J.; Tumanov, A.; Bodek, A.; Budd, H.; Cammin, J.; Chung, Y. S.; DeBarbaro, P.; Demina, R.; Ginther, G.; Gotra, Y.; Korjenevski, S.; Miner, D. C.; Sakumoto, W.; Slattery, P.; Zielinski, M.; Bhatti, A.; Demortier, L.; Goulianos, K.; Hatakeyama, K.; Mesropian, C.; Bartz, E.; Chuang, S. H.; Doroshenko, J.; Halkiadakis, E.; Jacques, P. F.; Khits, D.; Lath, A.; Macpherson, A.; Plano, R.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Watts, T. L.; Cerizza, G.; Hollingsworth, M.; Lazoflores, J.; Ragghianti, G.; Spanier, S.; York, A.; Aurisano, A.; Golyash, A.; Kamon, T.; Nguyen, C. N.; Pivarski, J.; Safonov, A.; Toback, D.; Weinberger, M.; Akchurin, N.; Berntzon, L.; Carrell, K. W.; Gumus, K.; Jeong, C.; Kim, H.; Lee, S. W.; McGonagill, B. G.; Roh, Y.; Sill, A.; Spezziga, M.; Thomas, R.; Volobouev, I.; Washington, E.; Wigmans, R.; Yazgan, E.; Bapty, T.; Engh, D.; Florez, C.; Johns, W.; Keskinpala, T.; Luiggi Lopez, E.; Neema, S.; Nordstrom, S.; Pathak, S.; Sheldon, P.; Andelin, D.; Arenton, M. W.; Balazs, M.; Buehler, M.; Conetti, S.; Cox, B.; Hirosky, R.; Humphrey, M.; Imlay, R.; Ledovskoy, A.; Phillips, D., II; Powell, H.; Ronquest, M.; Yohay, R.; Anderson, M.; Baek, Y. W.; Bellinger, J. N.; Bradley, D.; Cannarsa, P.; Carlsmith, D.; Crotty, I.; Dasu, S.; Feyzi, F.; Gorski, T.; Gray, L.; Grogg, K. S.; Grothe, M.; Jaworski, M.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Magrans de Abril, M.; Mohapatra, A.; Ott, G.; Smith, W. H.; Weinberg, M.; Wenman, D.; Atoian, G. S.; Dhawan, S.; Issakov, V.; Neal, H.; Poblaguev, A.; Zeller, M. E.; Abdullaeva, G.; Avezov, A.; Fazylov, M. I.; Gasanov, E. M.; Khugaev, A.; Koblik, Y. N.; Nishonov, M.; Olimov, K.; Umaraliev, A.; Yuldashev, B. S.
2008-08-01
The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 1034 cm-2 s-1 (1027 cm-2 s-1). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4π solid angle. Forward sampling calorimeters extend the pseudorapidity coverage to high values (|η| <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.
Fabrication of the Superferric Cyclotron Gas-stopper Magnet at NSCL at Michigan State University
NASA Astrophysics Data System (ADS)
Chouhan, S. S.; Bollen, G.; DeKamp, J.; Green, M. A.; Lawton, D.; Magsig, C.; Morrissey, D. J.; Ottarson, J.; Schwarz, S.; Zeller, A. F.
2014-05-01
The magnet for the cyclotron gas stopper is a newly designed, large warm-iron superconducting cyclotron sector gradient dipole. The maximum field in the centre (gap = 0.18 m) is 2.7 T. The outer diameter of magnet yoke is 4.0 m, with a pole radius of 1.1 m and B*ρ = 1.8 T m. The fabrication and assembly of the iron return yoke and twelve pole pieces is complete. Separate coils are mounted on the return yokes that have a total mass of about 167 metric tons of iron. This paper illustrates the design and the fabrication process for the cyclotron gas-stopper magnet that is being fabricated at MSU.
APPARATUS FOR CONTROL OF HIGH-ENERGY ACCELERATORS
Heard, H.G.
1961-10-24
A particle beam positioning control for a synchrotron or the like is described. The control includes means for selectively impressing a sinusoidal perturbation upon the rising voltage utilized to sweep the frequency of the f-m oscillator which is conventionally coupled to the accelerating electrode of a synchrotron. The perturbation produces a variation in the normal rate of change of frequency of the accelerating voltage applied to the accelerating electrode, resulting in an expansion or contraction of the particle beam orbit diameter during the perturbation. The beam may thus be controlled such that a portion strikes a target positioned close to the expanded or contracted orbit diameter and returns to the original orbit for further acceleration to the final energy. (AEC)
Women and men who have served in Afghanistan/Iraq: coming home.
Beder, Joan; Coe, Ray; Sommer, Darren
2011-01-01
The experience of war changes people - some will acknowledge that the changes are positive and some will feel the opposite or a combination, but that it changes a person cannot be disputed. For those who return, the experience of reintegration to civilian life or as a respite before redeployment can present numerous challenges. The research presented in this article reports the findings on interviews with over 800 service members who had returned from either Afghanistan or Iraq. The Post Deployment Reintegration Scale was used to refine the areas that respondents identified as positive or negative in their reintegration experience. Implications for practice with returning service members are noted.
Small D-type asteroids in the NEO population: new targets for space missions
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.
2018-06-01
In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.
The Student Returns: Challenges of the Returning Student.
ERIC Educational Resources Information Center
Marino, Carrie A.
According to a 1994 analysis of returning students, as many as 43% of all college students are currently over the age of 24. This influx of returning students demands a new look at existing pedagogical practices. The changing demographics of the classroom turn age and life experience into a consideration for pedagogy alongside race, class, and…
A Study of the Perception Toward School Teachers and Self of the Return Migrant Student.
ERIC Educational Resources Information Center
Prewitt-Diaz, Joseph O.; Seilhamer, E. Stella
Previous research suggests that most Puerto Rican students who have spent some years in the United States and then returned to Puerto Rico generally experience cultural adjustment problems, language difficulties, low self-esteem, and identity crises. This study compared attitudes of Puerto Rican return migrant students (those who have returned to…
The Things They Are Still Carrying
ERIC Educational Resources Information Center
Reader, William Walter
2017-01-01
Much research about the transition experiences of military combat veterans returning to civilian life and college emphasizes the role of identity development and post-secondary institutional support for veteran students during their time of transition. Contemporary discourse tends to frame return experience through the lens of post-traumatic…
Klevanger, Nina E; Fimland, Marius S; Johnsen, Roar; Rise, Marit B
2018-04-27
Facilitating return to work can be challenging due to the complexity of work disability. Few studies have examined rehabilitation programs based on Acceptance and Commitment Therapy that intend to support return to work, and none have investigated therapists' experience with providing such programs. The aim of this study was therefore to explore therapists' experience of addressing the return to work process in an inpatient occupational rehabilitation program based on Acceptance and Commitment Therapy. This was a qualitative interview study supported by participant observation. Therapists were interviewed regarding their experiences with addressing return to work in an inpatient occupational rehabilitation program based on Acceptance and Commitment Therapy. In addition, the rehabilitation program was investigated through participant observation. The interviews were analysed according to Interpretative Phenomenological Analysis and informed by an analysis of field notes from the participant observation. Acceptance and Commitment Therapy was experienced as a meaningful approach to facilitate return to work, as it allowed therapists to address all relevant aspects of the individual participant's life that might influence work participation. The therapists' twofold goal was to support participants in building both a meaningful life and sustainable work participation. To do so, they attempted to instil long-term and interrelated processes concerning ownership, causes of sick leave, relation to expectations, the values of work, and the scope of agency. Unfolding values connected to work participation might reconcile the tension between work and family life by integrating work with other areas of life. Providing work participation with personal meaning also seems especially commensurable with a context where economy presents a poor incentive for return to work. Therapists should, however, be attentive to the need to secure the prominence of return to work by relating participants' chosen themes explicitly to their return to work process. Therapists should also be aware of the dilemma that may arise when they attempt to refrain from providing advice while simultaneously encouraging actions they consider appropriate to facilitate sustainable work participation. In addition, having an individual-oriented approach to occupational rehabilitation may obscure the extent to which return to work is a multi-stakeholder process.
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
NASA Astrophysics Data System (ADS)
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Loftus, Russell; Nugent, Zoann; Graff, Lesley A; Schumacher, Frederick; Bernstein, Charles N; Singh, Harminder
2013-01-01
Patient experiences with endoscopy visits within a large central Canadian health region were evaluated to determine the relationship between the visit experience and the patients' willingness to return for future endoscopy, and to identify the factors associated with patients' willingness to return. A self-report survey was distributed to 1200 consecutive individuals undergoing an upper and⁄or lower gastrointestinal endoscopy at any one of the six hospital-based endoscopy facilities in the region. The Spearman correlation coefficient was used to assess the association between the patients' overall rating of the visits and willingness to return for repeat procedures under similar medical circumstances. Logistic regression analyses were performed to identify the factors associated with willingness to return for repeat endoscopy and overall satisfaction (rating) of the visit. A total of 529 (44%) individuals returned the questionnaire, with 45% rating the visit as excellent and 56% indicating they were extremely likely to return for repeat endoscopy. There was a low moderate correlation between overall rating of the visit and patients' willingness to return for repeat endoscopy (r=0.30). The factors independently associated with patient willingness to return for repeat endoscopy included perceived technical skills of the endoscopists (OR 2.7 [95% CI 1.3 to 5.5]), absence of pain during the procedure (OR 2.2 [95% CI 1.3 to 3.6]) and history of previous endoscopy (OR 2.4 [95% CI 1.4 to 4.1]). In contrast, the independent factors associated with the overall rating of the visit included information provided pre- and postprocedure, wait time before and on the day of the visit, and the physical environment. To facilitate patient return for needed endoscopy, it is important to assess patients' willingness to return because positive behavioural intent is not simply a function of satisfaction with the visit.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Francis, David O; Hall, Eric; Dang, Jennifer H; Vlacich, Gregory R; Netterville, James L; Vaezi, Michael F
2015-04-01
Dysphagia and esophageal stricture are frequent consequences of treatment for head and neck cancer. This study examines the effectiveness of the anterograde-retrograde rendezvous procedure and serial dilations in reestablishing esophageal patency to allow return to oral diet and gastrostomy tube removal in a cohort of patients with complete or near-complete esophageal stricture following nonsurgical cancer treatment. Retrospective review of patients treated with radiation therapy with or without concurrent chemotherapy presented with complete or near-complete esophageal stricture. Patients underwent serial dilations using combined anterograde-retrograde dilation (rendezvous) techniques. Medical records of patients having undergone treatment between 2006 and 2012 were reviewed, and semistructured interviews were also conducted to determine current swallowing function and actual patient experience. The primary outcome was swallowing improvement that allowed for return to oral diet and/or gastrostomy tube removal. Outcomes were compared between patients with complete and near-complete (<5 mm in diameter) strictures and univariate analysis performed to identify associations between patient, cancer, and treatment characteristics on odds of gastrostomy tube removal. Twenty-four patients (median age 59.5 years, 63% male, 91% Caucasian) underwent treatment. Fifty percent of patients had complete occlusion of the esophageal lumen. The majority of patients (92%) underwent either anterograde (54%) or combined antero-retrograde (38%) approach. Following a median (interquartile range) of 9 (6-20) dilation sessions, 42% of patients were able to return to an oral diet and/or had their gastrostomy tube removed. This outcome was independent of whether the stricture was complete or near complete (P = .67). Of patients who had their gastrostomy tubes removed, only 33.3% had ever smoked, compared to 92.3% of those whose tubes were not discharged (P = .007). Recannulation is possible even in cases of complete or near-complete stricture. Several factors appear to impact the likelihood of successful outcome, but in this study, only patients with a history of smoking had a significantly lower likelihood of return to full oral diet. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
High Resolution Exponential Modeling of Fully Polarized Radar Returns
1989-11-01
the Poincare I polarization sphere. To avoid this ambiguity, the following alterations to the tilt need to...at the back end, and back toward the front (delayed by one- half the cylinder diameter to account for the two-way propagation delay). The two scatterers...tail responses correspond to the trailing edge of the fuselage-cylinder and to the creeping wave response (delayed by one- half the cylinder
NASA Astrophysics Data System (ADS)
Diaz, Aaron A.; Burghard, Brion J.; Skorpik, James R.; Shepard, Chester L.; Samuel, Todd J.; Pappas, Richard A.
2003-07-01
The Pacific Northwest National Laboratory (PNNL) has developed a portable, battery-operated, handheld ultrasonic device that provides non-invasive container interrogation and material identification capabilities. The technique governing how the acoustic inspection device (AID) functions, involves measurements of ultrasonic pulses (0.1 to 5 MHz) that are launched into a container or material. The return echoes from these pulses are analyzed in terms of time-of-flight and frequency content to extract physical property measurements (the acoustic velocity and attenuation coefficient) of the material under test. The AID performs an automated analysis of the return echoes to identify the material, and detect contraband in the form of submerged packages and concealed compartments in liquid filled containers and solid-form commodities. An inspector can quickly interrogate outwardly innocuous commodity items such as shipping barrels, tanker trucks, and metal ingots. The AID can interrogate container sizes ranging from approximately 6 inches in diameter to over 96 inches in diameter and allows the inspector to sort liquid and material types into groups of like and unlike; a powerful method for discovering corrupted materials or miss-marked containers co-mingled in large shipments. This manuscript describes the functionality, capabilities and measurement methodology of the technology as it relates to homeland security applications.
Return Migration: A Study of College Graduates Returning to Rural U.S. Homes
ERIC Educational Resources Information Center
Mahoney, Elizabeth D.
2009-01-01
The purpose of this study is to explore perceptions of return migration experiences and gain knowledge from rural residents who have left to obtain a college education and start careers in non-rural areas, and who then returned to their rural hometowns with the social and economic benefits of a college education, and other valuable resources. This…
Stock optimizing in choice when a token deposit is the operant.
Widholm, J J; Silberberg, A; Hursh, S R; Imam, A A; Warren-Boulton, F R
2001-11-01
Each of 2 monkeys typically earned their daily food ration by depositing tokens in one of two slots. Tokens deposited in one slot dropped into a bin where they were kept (token kept). Deposits to a second slot dropped into a bin where they could be obtained again (token returned). In Experiment 1, a fixed-ratio (FR) 5 schedule that provided two food pellets was associated with each slot. Both monkeys preferred the token-returned slot. In Experiment 2, both subjects chose between unequal FR schedules with the token-returned slot always associated with the leaner schedule. When the FRs were 2 versus 3 and 2 versus 6, preferences were maintained for the token-returned slot; however, when the ratios were 2 versus 12, preference shifted to the token-kept slot. In Experiment 3, both monkeys chose between equal-valued concurrent variable-interval variable-interval schedules. Both monkeys preferred the slot that returned tokens. In Experiment 4, both monkeys chose between FRs that typically differed in size by a factor of 10. Both monkeys preferred the FR schedule that provided more food per trial. These data show that monkeys will choose so as to increase the number of reinforcers earned (stock optimizing) even when this preference reduces the rate of reinforcement (all reinforcers divided by session time).
Showler, A T; Robinson, J R C
2008-10-01
The standard practice of two or three preemptive insecticide applications at the start of pinhead (1-2-mm-diameter) squaring followed by threshold-triggered (when 10% of randomly selected squares have oviposition punctures) insecticide applications for boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), control does not provide reliable protection of cotton, Gossypium hirsutum L., lint production. This study, conducted during 2004 and 2005, showed that three to six fewer spray applications in a "proactive" approach, in which spraying began at the start of large (5.5-8-mm-diameter) square formation and continued at approximately 7-d intervals while large squares were abundant, resulted in fewer infested squares and 1.4- to 1.7-fold more lint than the standard treatment. Fewer sprays and increased yield made proactive spraying significantly more profitable than the standard approach, which resulted in relatively low or negative economic returns. Harvest at 75% boll-split in the proactive spray regime of 2005 resulted in four-fold greater economic return than cotton harvested at 40% boll-split because of improved protection of large squares and the elimination of late-season sprays inherent to standard spray regime despite the cost of an extra irrigation in the 75% boll-split treatments. The earlier, 40% harvest trigger does not avoid high late-season boll weevil pressure, which exerts less impact on bolls, the predominant form of fruiting body at that time, than on squares. Proactive spraying and harvest timing are based on an important relationship between nutrition, boll weevil reproduction, and economic inputs; therefore, the tactic of combining proaction with harvest at 75% boll-split is applicable where boll weevils are problematic regardless of climate or region, or whether an eradication program is ongoing.
Asset securitization and rate of return: A study on letters of guarantee
NASA Astrophysics Data System (ADS)
Wu, Binghui
2018-01-01
Using the theory of asset securitization, we analyze the feasibility of the securitization of letters of guarantee in theory. In the process of constructing the model of rate of return of securities backed by letters of guarantee, we propose two indices: the risk probability of asset-backed securities and the loss rate of asset-backed securities to analyze the cash flow of securities. On the basis of no arbitrage principle, the expression of rate of return of securities backed by letters of guarantee is put forward. In order to study the relationship between the rate of return of securities and other influential factor in the model, a simulation experiment is designed. The experiment results show that (i) an increasing risk probability of cash flow or a short maturity date also make the return rate of securities increase and (ii) the return rate of securities is higher in economic boom than that in economic recession when other parameters remain unchanged.
Mental Health Issues in Recently Returning Women Veterans: Implications for Practice
ERIC Educational Resources Information Center
Carlson, Bonnie E.; Stromwall, Layne K.; Lietz, Cynthia A.
2013-01-01
Increasing numbers of women are found in the military, and they are now performing roles very similar to those of male service members. More returning servicewomen and veterans have been exposed to stressful and traumatic experiences, such as combat and difficult living circumstances, and military sexual trauma is common. These experiences have…
Restrictions into Opportunities: How Boundaries in the Life Course Can Shape Educational Pathways
ERIC Educational Resources Information Center
ahmed Shafi, Adeela; Rose, Jo
2014-01-01
This study explores relationships between experiences in initial education, subsequent life experiences/opportunities and the decision to return to education later in life. Semi-structured interviews with seven female returners to education, focused initially upon the women's perceptions of their aspirations and motivations at various ages, how…
ERIC Educational Resources Information Center
Hast, Shawn E.
2013-01-01
This study addressed the need to enhance returning adult students' (RAS) educational experience by improving their relationship with traditional students. The purpose of this study was to examine, based upon Schlossberg's transition theory, the interpersonal relationship between RAS and traditional students at a community college that…
The Effects of Expectancy on Inhibition of Return
ERIC Educational Resources Information Center
Gabay, Shai; Henik, Avishai
2008-01-01
This research examined the influence of cue temporal predictability on inhibition of return (IOR). In exogenous attention experiments, the cue that summons attention is non-informative as to where the target will appear. However, it is predictive as to when it will appear. Because in most experiments there are equal numbers of trials for each…
Inhibition of Return and Object-Based Attentional Selection
ERIC Educational Resources Information Center
List, Alexandra; Robertson, Lynn C.
2007-01-01
Visual attention research has revealed that attentional allocation can occur in space- and/or object-based coordinates. Using the direct and elegant design of R. Egly, J. Driver, and R. Rafal (1994), the present experiments tested whether space- and object-based inhibition of return (IOR) emerge under similar time courses. The experiments were…
Returning to Work after the Onset of Illness: Experiences of Right Hemisphere Stroke Survivors
ERIC Educational Resources Information Center
Koch, Lynn; Egbert, Nichole; Coeling, Harriet; Ayers, Denise
2005-01-01
Experiences of right hemisphere stroke survivors in their attempts to return to work after the onset of stroke were explored through an interdisciplinary qualitative investigation. Key findings indicate that (a) participants experienced an array of functional limitations that precipitated employment changes; (b) employment changes had a…
A Realistic View of Returning to the Classroom after Cancer. Survival: A Double Entendre
ERIC Educational Resources Information Center
Zimmer, Heidi S.
2012-01-01
Returning to work after cancer treatment provides its own set of challenges. The purpose of this research paper is to inform cancer survivors of the reality of returning to work after treatment. From personal experience and stories from others getting back to a "normal" life is a large part of the recovery from cancer. Returning to work can be the…
Sample Handling Considerations for a Europa Sample Return Mission: An Overview
NASA Technical Reports Server (NTRS)
Fries, M. D.; Calaway, M. L.; Evans, C. A.; McCubbin, F. M.
2015-01-01
The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately.
Jacobs, Cale A; Burnham, Jeremy M; Makhni, Eric; Malempati, Chaitu S; Swart, Eric; Johnson, Darren L
2017-03-01
Younger patients and those with smaller hamstring autograft diameters have been shown to be at significantly greater risk of graft failure after anterior cruciate ligament (ACL) reconstruction. To date, there is no information in the literature about the clinical success and/or cost-effectiveness of increasing graft diameter by augmenting with semitendinosus allograft tissue for younger patients. Hybrid hamstring grafts are a cost-effective treatment option because of a reduced rate of graft failure. Cohort study (economic and decision analysis); Level of evidence, 3. We retrospectively identified patients younger than 18 years who had undergone ACL reconstruction by a single surgeon between 2010 and 2015. During this period, the operating surgeon's graft selection algorithm included the use of bone-patellar tendon-bone (BTB) autografts for the majority of patients younger than 18 years. However, hamstring autografts (hamstring) or hybrid hamstring autografts with allograft augment (hybrid) were used in skeletally immature patients and in those whom the surgeon felt might have greater difficulty with postoperative rehabilitation after BTB graft harvest. Patient demographics, graft type, graft diameter, the time the patient was cleared to return to activity, and the need for secondary surgical procedures were compared between the hamstring and hybrid groups. The clinical results were then used to assess the potential cost-effectiveness of hybrid grafts in this select group of young patients with an ACL injury or reconstruction. This study comprised 88 patients (hamstring group, n = 46; hybrid group, n = 42). The 2 groups did not differ in terms of age, sex, timing of return to activity, or prevalence of skeletally immature patients. Graft diameters were significantly smaller in the hamstring group (7.8 vs 9.9 mm; P < .001), which corresponded with a significantly greater rate of graft failure (13 of 46 [28.3%] vs 5 of 42 [11.9%]; P = .049). As a result of the reduced revision rate, the hybrid graft demonstrated incremental cost savings of US$2765 compared with the hamstring graft, and the hybrid graft was the preferred strategy in 89% of cases. Driven by increased graft diameters and the reduced risk of revision, hybrid grafts appear to be a more cost-effective treatment option in a subset of younger patients with an ACL injury.
The global topography of Bennu: altimetry, photoclinometry, and processing
NASA Astrophysics Data System (ADS)
Perry, M. E.; Barnouin, O. S.; Daly, M. G.; Seabrook, J.; Palmer, E. E.; Gaskell, R. W.; Craft, K. L.; Roberts, J. H.; Philpott, L.; Asad, M. Al; Johnson, C. L.; Nair, A. H.; Espiritu, R. C.; Nolan, M. C.; Lauretta, D. S.
2017-09-01
The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will spend two years observing (101955) Bennu and will then return pristine samples of carbonaceous material from the asteroid [1]. Launched in September 2016, OSIRISREx arrives at Bennu in August 2018, acquires a sample in July 2020, and returns the sample to Earth in September 2023. The instruments onboard OSIRIS-REx will measure the physical and chemical properties of this B-class asteroid, a subclass within the larger group of C-complex asteroids that might be organic-rich. At approximately 500m in average diameter [2], Bennu is sufficiently large to retain substantial regolith and as an Apollo asteroid with a low inclination (6°), it is one of the most accessible primitive near-Earth asteroid.
A Discordance Weighting Approach Estimating Occupational and Income Returns to Education.
Andersson, Matthew A
2018-04-23
Schooling differences between identical twins are often utilized as a natural experiment to estimate returns to education. Despite longstanding doubts about the truly random nature of within-twin-pair schooling discordance, such discordance has not yet been understood comprehensively, in terms of diverse between- and within-family peer, academic, familial, social, and health exposures. Here, a predictive analysis using national U.S. midlife twin data shows that within-pair schooling differences are endogenous to a variety of childhood exposures. Using discordance propensities, returns to education under a true natural experiment are simulated. Results for midlife occupation and income reveal differences in estimated returns to education that are statistically insignificant, suggesting that twin-based estimates of causal effects are robust. Moreover, identical and fraternal twins show similar levels of discordance endogeneity and similar responses to propensity weighting, suggesting that the identical twins may not provide demonstrably better leverage in the causal identification of educational returns.
NASA Technical Reports Server (NTRS)
Ross, D. K.; Anz-Meador, P.; Liou, J.C.; Opiela, J.; Kearsley, A. T.; Grime, G.; Webb, R.; Jeynes, C.; Palitsin, V.; Colaux, J.;
2014-01-01
The radiator shield on the Wide Field and Planetary Camera 2 (WFPC2) was subject to optical inspection following return from the Hubble Space Telescope (HST) in 2009. The survey revealed over 600 impact features of > 300 micrometers diameter, from exposure in space for 16 years. Subsequently, an international collaborative programme of analysis was organized to determine the origin of hypervelocity particles responsible for the damage. Here we describe examples of the numerous smaller micrometeoroid (MM) impact features (< 700 micrometers diameter) which excavated zinc orthotitanate (ZOT) paint from the radiator surface, but did not incorporate material from underlying Al alloy; larger impacts are described by [3]. We discuss recognition and interpretation of impactor remains, and MM compositions found on WFPC2.
Recirculating rotary gas compressor
Weinbrecht, John F.
1992-01-01
A positive displacement, recirculating Roots-type rotary gas compressor which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits (24 and 26) which return compressed discharge gas to the compressor housing (14), where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers (10 and 12) and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor.
Recirculating rotary gas compressor
Weinbrecht, J.F.
1992-02-25
A positive displacement, recirculating Roots-type rotary gas compressor is described which operates on the basis of flow work compression. The compressor includes a pair of large diameter recirculation conduits which return compressed discharge gas to the compressor housing, where it is mixed with low pressure inlet gas, thereby minimizing adiabatic heating of the gas. The compressor includes a pair of involutely lobed impellers and an associated port configuration which together result in uninterrupted flow of recirculation gas. The large diameter recirculation conduits equalize gas flow velocities within the compressor and minimize gas flow losses. The compressor is particularly suited to applications requiring sustained operation at higher gas compression ratios than have previously been feasible with rotary pumps, and is particularly applicable to refrigeration or other applications requiring condensation of a vapor. 12 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, L.G.; Catanach, R.A.
1998-07-01
Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.
Analysis of Acoustic Depth Sounder Signals with Artificial Neural Networks
1991-04-01
battery pack, processor, and mode switches and (2) a stainless steel shaft 1 meter long and 27 millimeters in diameter, containing 8 milliCurie of...returned signal which is not used in conventional depth sounders due to lack of real-time tools for interpreting the 36 information. The shape and...develop some software tools for conducting the research. Commercial programs for neural network implementation were available, but were "black box" in
Podlog, Leslie; Dimmock, James; Miller, John
2011-02-01
Evidence suggests that competitive athletes returning to sport following injury rehabilitation may experience a range of psychosocial concerns. The purpose of this paper is to review some of the psychosocial stresses common among returning athletes and to provide practitioner strategies for enhancing recovery outcomes. Findings are based on a database search of Sport Discus, Psychinfo, and Medline using sport injury, fear of re-injury, return to full activity. Salient apprehensions among athletes' returning to sport following injury were found to include: anxieties associated with re-injury; concerns about an inability to perform to pre-injury standards; feelings of isolation, a lack of athletic identity and insufficient social support; pressures to return to sport; and finally, self-presentational concerns about the prospect of appearing unfit, or lacking in skill in relation to competitors. The results suggest that athletes returning to sport from injury may experience concerns related to their sense of competence, autonomy and relatedness. Given its focus on competence, autonomy and relatedness issues, self-determination theory (SDT) is offered as a framework for understanding athlete concerns in the return to sport from injury. Practical suggestions for sport medicine practitioners, researchers and applied sport psychology specialists seeking to address athlete issues are provided using an SDT perspective. Copyright © 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Olatunji, Bunmi O.; Etzel, Erin N.; Ciesielski, Bethany G.
2010-01-01
Vasovagal sensations (e.g., dizziness, nausea, and fainting) are one of the main reasons people find blood donation unpleasant. A better understanding of predictors of vasovagal sensations during blood donation could inform interventions designed to increase donor return rates. The present investigation examined the extent to which experience with…
Returning to Study in Higher Education in Ghana: Experiences of Mature Undergraduate Women
ERIC Educational Resources Information Center
Adu-Yeboah, Christine; Forde, Linda Dzama
2011-01-01
This study was based on the assumption that in Ghana, women who return late to higher education combine domestic and academic work and, in the process, experience tensions and difficulties in the face of cultural and academic prejudice. It employed an interpretive qualitative research approach via narrative interviews with eight mature…
ERIC Educational Resources Information Center
Kraft, Matthew A.; Papay, John P.
2014-01-01
Although wide variation in teacher effectiveness is well established, much less is known about differences in teacher improvement over time. We document that average returns to teaching experience mask large variation across individual teachers and across groups of teachers working in different schools. We examine the role of school context in…
ERIC Educational Resources Information Center
Johnson, Matthew C.; Graceffo, James M.; Hayes, Jeffrey A.; Locke, Benjamin D.
2014-01-01
An increasing number of veterans are returning from war, many with mental health problems. Some of these returning veterans will enroll in college, and it is important that campus counseling centers can meet the needs of this population. This study examined psychological distress among students with and without military experience. Results…
ERIC Educational Resources Information Center
Tucker, Mark; Weaver, Debbi
2013-01-01
Students returning from an international business study tour program were interviewed about their experiences and perceptions of the professional and personal impact of the program. When interviews were conducted within 3-4 months of the students' return, mixed responses were received, with some students highly positive about their experiences,…
Why do some apheresis donors donate blood just once?
Ringwald, J; Lange, N; Rabe, C; Zimmermann, R; Strasser, E; Hendelmeier, M; Strobel, J; Eckstein, R
2007-11-01
More knowledge about the reasons for non-return of blood donors (BD) would enable blood donation services (BDS) to improve the efficacy of recruitment and retention programmes. We interviewed returning (RBD) and non-returning apheresis BDs (NRBD) of our university hospital-based BDS. A questionnaire was sent to 1218 individuals who passed the initial health check with no more than one subsequent blood donation. A similar questionnaire was answered by 235 randomly incoming RBDs. We asked for age, sex, profession, education level, motives to donate blood and, if applicable, reasons for non-return. These data were compared between NRBDs and RBDs and were analysed in relationship to the reasons for non-return. We received 267 answered questionnaires (21.9%). As 32 individuals indicated that they had been permanently deferred and 47 BDs had donated blood elsewhere, 188 NRBDs remained for further analysis. We found more women than men among NRBDs. Medical professions were less likely to return than students and trainees. Individuals motivated by personal experience, remuneration or a free health check were more likely to return than others. Whereas logistic reasons were of highest relevance for non-return in general, women indicated anxiety of blood donation as reason for non-return more often than men. Reducing women's anxiety of blood donation, reminding medical professions more intensively on blood donation and appealing to personal experience or a free health check may be the most promising approaches to increase BDs' return rates.
Ladegaard, Yun; Skakon, Janne; Elrond, Andreas Friis; Netterstrøm, Bo
2017-08-28
To examine how line managers experience and manage the return to work process of employees on sick leave due to work-related stress and to identify supportive and inhibiting factors. Semi-structured interviews with 15 line managers who have had employees on sick leave due to work-related stress. The grounded theory approach was employed. Even though managers may accept the overall concept of work-related stress, they focus on personality and individual circumstances when an employee is sick-listed due to work-related stress. The lack of a common understanding of stress creates room for this focus. Line managers experience cross-pressure, discrepancies between strategic and human-relationship perspectives and a lack of organizational support in the return to work process. Organizations should aim to provide support for line managers. Research-based knowledge and guidelines on work-related stress and return to work process are essential, as is the involvement of coworkers. A commonly accepted definition of stress and a systematic risk assessment is also important. Cross-pressure on line managers should be minimized and room for adequate preventive actions should be provided as such an approach could support both the return to work process and the implementation of important interventions in the work environment. Implication for rehabilitation Organizations should aim to provide support for line managers handling the return to work process. Cross-pressure on line managers should be minimized and adequate preventive actions should be provided in relation to the return to work process. Research-based knowledge and guidelines on work-related stress and return to work are essential. A common and formal definition of stress should be emphasized in the workplace.
Tahim, A S; Payne, K F B; Goodson, A M C; Cabot, L B; Fan, K
2014-05-01
Oral and maxillofacial surgery (OMFS) trainees in the UK have traditionally completed their dental undergraduate studies prior to returning to medical school. Recently, there have been increasing numbers of medical graduates who return to dental school before embarking on OMFS specialist training. There is limited research into the career motivation within this group and little guidance on how they may integrate the dental undergraduate course into their postgraduate training path. This study aims to evaluate these factors in more detail. Questionnaires and focus groups were used to evaluate prior surgical experience of qualified medics who return to dental school with the intention of pursuing a career in OMFS, along with the factors that affect the timing of their return to dental school. The average age of medical graduates entering dental school decreased during the study period. The average number of months each cohort of students spent as a practicing doctor prior to starting dentistry also reduced. Postgraduate experience in OMFS was highly variable, but the numbers of students who received alternative exposure to OMFS, such as undergraduate special study modules, medical school elective or taster weeks, increased. The key barriers that were carefully considered by these trainees before returning to university included the perceived increase in the length of training, trainees' prior surgical experience, financial implications and the impact on quality of life. A trainee's decision to return to study dentistry is a multifactorial process. Understanding when trainees decide to return to sit their dental degree is vital not only to provide guidance for future trainees but also to assist future workforce planning, thus aiding training, education and development within OMFS. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Busse, Jason W; Dolinschi, Roman; Clarke, Andrew; Scott, Liz; Hogg-Johnson, Sheilah; Amick, Benjamin C; Rivilis, Irina; Cole, Donald
2011-01-01
Return to work after a leave on disability is a common phenomenon, but little is known about the attitudes of employees or their supervisors towards the disability management process. We report on employee and supervisor feedback from one disability management experience. 389 consecutive employees from the Ontario offices of a single private Canadian insurance company returning to work from short-term disability, and their supervisors. We surveyed employees and their supervisors about their experience with, and attitudes towards, the disability management process. Of those surveyed, 88 employees and 75 supervisors provided data (response rates of 22.6% and 19.3% respectively). The majority of respondents (79.1% of employees and supervisors) endorsed positive attitudes towards their disability management experience. More than 25% of employees disagreed with the following three items: case managers contributed to recovery, case managers removed barriers to recovery, and sufficient support was provided in the return to work process. More than 25% of employees and managers reported that a commitment to modify an unhelpful work situation was not followed through. The majority of participating employees returning to work from short-term disability, and their supervisors, reported a high level of satisfaction with the disability management process. Areas that may benefit from attention include some aspects of case manager-employee interaction and ensuring that support during the return to work process is provided, including modification to work situations when appropriate.
Effect of Shock Precompression on the Critical Diameter of Liquid Explosives
NASA Astrophysics Data System (ADS)
Petel, Oren E.; Higgins, Andrew J.; Yoshinaka, Akio C.; Zhang, Fan
2006-07-01
The critical diameter of both ambient and shock-precompressed liquid nitromethane confined in PVC tubing are measured experimentally. The experiment was conducted for both amine sensitized and neat NM. In the precompression experiments, the explosive is compressed by a strong shock wave generated by a donor explosive and reflected from a high impedance anvil prior to being detonated by a secondary event. The pressures reached in the test sections prior to detonation propagation was approximately 7 and 8 GPa for amine sensitized and neat NM respectively. The results demonstrated a 30% - 65% decrease in the critical diameter for the shock-compressed explosives. This critical diameter decrease is observed despite a significant decrease in the predicted Von Neumann temperature of the detonation in the precompressed explosive. The results are discussed in the context of theoretical predictions based on thermal ignition theory and previous critical diameter measurements.
1984-08-01
transmissometer experiment. In these measure - ments, simple transmission measurements of laser radiation through a diameter of the plume are made. With...Air Force Rocket Propulsion Laboratory4{AFRPL). In one experiment, simple laser transmission measurements are made over a full diameter line of sight...consist of measure - ments of the polarization of laser radiation which has been scattered by plume particulates. The analysis is presented in Section
Scollon, Sarah; Bergstrom, Katie; McCullough, Laurence B; McGuire, Amy L; Gutierrez, Stephanie; Kerstein, Robin; Parsons, D Williams; Plon, Sharon E
2015-01-01
The return of genetic research results after death in the pediatric setting comes with unique complexities. Researchers must determine which results and through which processes results are returned. This paper discusses the experience over 15 years in pediatric cancer genetics research of returning research results after the death of a child and proposes a preventive ethics approach to protocol development in order to improve the quality of return of results in pediatric genomic settings. © 2015 American Society of Law, Medicine & Ethics, Inc.
Thruster residues on returned Mir solar panel
NASA Astrophysics Data System (ADS)
Harvey, Gale A.
2000-09-01
A solar panel with more than ten years space exposure was returned to Earth in January 1998. Several types of residues were deposited or transported onto the solar cell coverglasses during the space exposure. Self-contamination of SiOx films from the silicone potting compound was a major contamination of the coverglasses. A second type of contamination was thick, detergent-like residues of the order of a millimeter diameter on many, but not most of the coverglasses. A third, prevalent type of contamination was very thin irregular shaped films or patterns of a millimeter size which are readily visible in brilliant colors when the coverglasses are viewed with a 50x brightfield microscope. These prolific, overlapping, and almost ubiquitous patterns strongly suggest wetting on the surface. The probably cause of most of the wetted patterns on the returned Mir solar cell coverglasses is trace hydrazine nitrate in condensed water droplets produced as reaction products from Mir's and the Orbiters' hypergolic thrusters. This paper presents some of the wetted patterns, information regarding hypergolic reaction products, and type of thrusters associated with Mir operations.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Members of the STS-114 crew pose for a photo with workers installing the 30-foot-diameter C-band antenna (above them) and a smaller X-band antenna north of the Haulover Canal. The astronauts at left are Commander Eileen Collins; Mission Specialists Stephen Robinson, Soichi Noguchi, Wendy Lawrence and Charles Camarda (in center). At far right is Pilot James Kelly. The antennas are being tested during the launch of a Delta II rocket carrying NASAs MESSENGER spacecraft bound for the planet Mercury that will work together to create an image of the Delta rocket in flight. The test will evaluate the use of the radars as part of NASAs Return to Flight program for the Space Shuttle to observe possible debris coming from the Shuttle during launch. If successful, the radar configuration could be used on ships downrange, including on one of the solid rocket booster retrieval ships. And it may enable the return to launching Space Shuttles at night. The launch window for Return to Flight mission STS-114 is May 12 through June 3, 2005.
Chen, Pei; Cai, Xiaoxiao; Xu, Lijun; Zhang, Jing; Yang, Ying; Gao, Qianying; Ge, Jian; Yu, Keming; Zhuang, Jing
2017-09-01
To determine whether posterior chamber phakic implantable collamer lens (ICL) surgery in high myopia patients impedes oxygen saturation of retinal vessels. Mean oxygen saturation and diameter in retinal blood vessels were measured before and after ICL implantation surgery to correct high myopia refractive errors (i.e. -6.00 to -20.25 dioptres [D]), using an Oxymap T1 retinal oximeter. In 17 eyes of 17 patients, the Oxymap T1 retinal oximeter detected a small but significant decrease in oxygen saturation of retinal venules, 1-week postoperatively (compared to preoperative measurements). Moreover, at 1 week after ICL implantation, the diameter of patient retinal vessels had consistently contracted, compared to preoperative measurements. By 1 month after ICL surgery, however, both the oxygen saturation and retinal vessel diameter had returned to preoperative levels. Otherwise, no statistically significant difference in oxygen saturation and diameter of retinal arterioles was found when comparing their measurements before and 1 week after implantation. Stable levels of oxygen saturation in retinal vessels, as detected by the Oxymap T1 oximeter, show ICL implantation would not leave lasting impact or adverse effects to retina oxygen saturation in high myopia patients. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Grissom, Jason A.; Strunk, Katharine O.
2012-01-01
This study examines the relative distribution of salary schedule returns to experience for beginning and veteran teachers. We argue that districts are likely to benefit from structuring salary schedules with greater experience returns early in the teaching career. To test this hypothesis, we match salary data to school-level student performance…
Microgravity Testing of a Surface Sampling System for Sample Return from Small Solar System Bodies
NASA Technical Reports Server (NTRS)
Franzen, M. A.; Preble, J.; Schoenoff, M.; Halona, K.; Long, T. E.; Park, T.; Sears, D. W. G.
2004-01-01
The return of samples from solar system bodies is becoming an essential element of solar system exploration. The recent National Research Council Solar System Exploration Decadal Survey identified six sample return missions as high priority missions: South-Aitken Basin Sample Return, Comet Surface Sample Return, Comet Surface Sample Return-sample from selected surface sites, Asteroid Lander/Rover/Sample Return, Comet Nucleus Sample Return-cold samples from depth, and Mars Sample Return [1] and the NASA Roadmap also includes sample return missions [2] . Sample collection methods that have been flown on robotic spacecraft to date return subgram quantities, but many scientific issues (like bulk composition, particle size distributions, petrology, chronology) require tens to hundreds of grams of sample. Many complex sample collection devices have been proposed, however, small robotic missions require simplicity. We present here the results of experiments done with a simple but innovative collection system for sample return from small solar system bodies.
Mid-Air Retrieval of Heavy, Earth-Returning Space Systems
NASA Technical Reports Server (NTRS)
Kelly, John W.; Brierly, Gregory T.; Cruz, Josue; Lowry, Allen; Fogleman, Lynn; Johnson, Brian; Peterson, Kristina; Gibson, Ian; Neave, Matthew D.; Streetman, Brett;
2016-01-01
This subject technology has the potential to reduce cost for many Earth returning missions, both Government and commercial, including reentry vehicles, launch assets, and scientific experiments using balloons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congram, G.E.
When Plantation Pipe Line Co., Greensboro, NC purchased an adjacent tank farm containing six above ground steel storage tanks, the facilities had been idle for 18 months. As a result, major repairs and modifications were needed before the tanks and associated equipment could be returned to service. The main challenge, however, was to bring the 50-year old storage tanks up to operating standards as quickly and cost-effectively as possible. Varying degrees of restoration and a variety of procedures were implemented as solutions to the restoration project. Of particular concern was assuring the overall integrity of the steel tank bottoms andmore » that they were fully protected from internal and external corrosion. Work on the six newly-acquired tanks began in July 1994 and was completed in five months. Configurations ranged from 84 feet in diameter cone roof tanks with interior steel floaters to 110 in diameter tanks with open top floating roofs, to 140 feet in diameter cone roof tanks. All tanks were in different states of condition and many of the same maintenance procedures were used during restoration. This paper reviews the various renovation techniques used to restore these tanks to service.« less
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Journal of Rehabilitation Research and Development, Spring 1991. Volume 28, Number 2
1991-01-01
diameter extruded bars of nylon 6/6. Total requested to be returned to the ankle following the test manufacturing cost has been reduced drastically and part...Open bottle cap Spoon-feed meals Close bottle cap Feed snack Place drinking straw Remove drinking straw Open small refrigerator door Close small...Observed in this Study as Being Performed by a Monkey Helper Feeding Manipulating Objects Spoon-feed meals Feed snacks Wipe table top Hold sandwich
1994-04-01
variation in non-treatment factors that may affect growth or health such as soil, stand conditions and background and treatment EM field levels. The time...diameter growth residuals were much greater than expected given existing climatic conditions . In 1992, when the antenna returned to full power operation...growing seasons. If an enviromental factor which is not accounted for in the growth model significantly impacts seasonal height growth , then the observed
Application of a Novel Long-Reach Manipulator Concept to Asteroid Redirect Missions
NASA Technical Reports Server (NTRS)
Dorsey, John T.; Doggett, William R.; Jones, Thomas C.; King, Bruce D.
2015-01-01
A high priority mission currently being formulated by NASA is to capture all or part of an asteroid and return it to cis-lunar space for examination by an astronaut crew. Two major mission architectures are currently being considered: in the first (Mission Concept A), a spacecraft would rendezvous and capture an entire free flying asteroid (up to 14 meters in diameter), and in the second (Mission Concept B), a spacecraft would rendezvous with a large asteroid (which could include one of the Martian moons) and retrieve a boulder (up to 4 meters in diameter). A critical element of the mission is the system that will capture the asteroid or boulder material, enclose it and secure it for the return flight. This paper describes the design concepts, concept of operations, structural sizing and masses of capture systems that are based on a new and novel Tendon- Actuated Lightweight In-Space MANipulator (TALISMAN) general-purpose robotic system. Features of the TALISMAN system are described and the status of its technology development is summarized. TALISMAN-based asteroid material retrieval system concepts and concepts-of-operations are defined for each asteroid mission architecture. The TALISMAN-based capture systems are shown to dramatically increase operational versatility while reducing mission risk. Total masses of TALISMAN-based systems are presented, reinforcing the mission viability of using a manipulator-based approach for the asteroid redirect mission.
Geometric Limitations Of Ultrasonic Measurements
NASA Astrophysics Data System (ADS)
von Nicolai, C.; Schilling, F.
2006-12-01
Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.
Methanol Droplet Extinction in Carbon-Dioxide-Enriched Environments in Microgravity
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Nayagam, Vedha; Williams, Forman A.
2010-01-01
Diffusive extinction of methanol droplets with initial diameters between 1.25 mm and 1.72 mm, burning in a quiescent microgravity environment at one atmosphere pressure, was obtained experimentally for varying levels of ambient carbon-dioxide concentrations with a fixed oxygen concentration of 21% and a balance of nitrogen. These experiments serve as precursors to those which are beginning to be performed on the International Space Station and are motivated by the need to understand the effectiveness of carbon-dioxide as a fire suppressant in low-gravity environments. In these experiments, the flame standoff distance, droplet diameter, and flame radiation are measured as functions of time. The results show that the droplet extinction diameter depends on both the initial droplet diameter and the ambient concentration of carbon dioxide. Increasing the initial droplet diameter leads to an increased extinction diameter, while increasing the carbon-dioxide concentration leads to a slight decrease in the extinction diameter. These results are interpreted using a critical Damk hler number for extinction as predicted by an earlier theory, which is extended here to be applicable in the presence of effects of heat conduction along the droplet support fibers and of the volume occupied by the support beads
Development of Sample Verification System for Sample Return Missions
NASA Technical Reports Server (NTRS)
Toda, Risaku; McKinney, Colin; Jackson, Shannon P.; Mojarradi, Mohammad; Trebi-Ollennu, Ashitey; Manohara, Harish
2011-01-01
This paper describes the development of a proof of-concept sample verification system (SVS) for in-situ mass measurement of planetary rock and soil sample in future robotic sample return missions. Our proof-of-concept SVS device contains a 10 cm diameter pressure sensitive elastic membrane placed at the bottom of a sample canister. The membrane deforms under the weight of accumulating planetary sample. The membrane is positioned in proximity to an opposing substrate with a narrow gap. The deformation of the membrane makes the gap to be narrower, resulting in increased capacitance between the two nearly parallel plates. Capacitance readout circuitry on a nearby printed circuit board (PCB) transmits data via a low-voltage differential signaling (LVDS) interface. The fabricated SVS proof-of-concept device has successfully demonstrated approximately 1pF/gram capacitance change
Derue, D Scott; Wellman, Ned
2009-07-01
Prior research offers limited insight into the types of work experiences that promote leadership skill development and the ways that the person and context shape the developmental value of these experiences. In this article, the authors develop a series of hypotheses linking leadership skill development to features of the experience (developmental challenge), person (learning orientation), and context (feedback availability). Based on 225 on-the-job experiences across 60 managers, their results demonstrate that the relationship between developmental challenge and leadership skill development exhibits a pattern of diminishing returns. However, access to feedback can offset the diminishing returns associated with high levels of developmental challenge.
Miniaturized CARS microendoscope probe design for label-free intraoperative imaging
NASA Astrophysics Data System (ADS)
Chen, Xu; Wang, Xi; Xu, Xiaoyun; Cheng, Jie; Liu, Zhengfan; Weng, Sheng; Thrall, Michael J.; Goh, Alvin C.; McCormick, Daniel T.; Wong, Kelvin; Wong, Stephen T. C.
2014-03-01
A Coherent Anti-Stokes Raman Scattering (CARS) microendoscope probe for early stage label-free prostate cancer diagnosis at single cell resolution is presented. The handheld CARS microendoscope probe includes a customized micro-electromechanical systems (MEMS) scanning mirror as well as miniature optical and mechanical components. In our design, the excitation laser (pump and stokes beams) from the fiber is collimated, reflected by the reflecting mirror, and transmitted via a 2D MEMS scanning mirror and a micro-objective system onto the sample; emission in the epi-direction is returned through the micro-objective lens, MEMS and reflecting mirror, and collimation system, and finally the emission signal is collected by a photomultiplier tube (PMT). The exit pupil diameter of the collimator system is designed to match the diameter of the MEMS mirror and the entrance pupil diameter of the micro-objective system. The back aperture diameter of the micro-objective system is designed according to the largest MEMS scanning angle and the distance between the MEMS mirror and the back aperture. To increase the numerical aperture (NA) of the micro-objective system in order to enhance the signal collection efficiency, the back aperture diameter of the micro-objective system is enlarged with an upfront achromatic wide angle Keplerian telescope beam expander. The integration of a miniaturized micro-optics probe with optical fiber CARS microscopy opens up the possibility of in vivo molecular imaging for cancer diagnosis and surgical intervention.
Consideration of sample return and the exploration strategy for Mars
NASA Technical Reports Server (NTRS)
Bogard, D. C.; Duke, M. B.; Gibson, E. K.; Minear, J. W.; Nyquist, L. E.; Phinney, W. C.
1979-01-01
The scientific rationale and requirements for a Mars surface sample return were examined and the experience gained from the analysis and study of the returned lunar samples were incorporated into the science requirements and engineering design for the Mars sample return mission. The necessary data sets for characterizing Mars are presented. If further analyses of surface samples are to be made, the best available method is for the analysis to be conducted in terrestrial laboratories.
Conducting Return on Investment Analyses for Secondary and Postsecondary CTE: A Framework
ERIC Educational Resources Information Center
Hollenbeck, Kevin M.
2011-01-01
In recent work, the author has estimated the rate of return for several workforce development programs in the State of Washington, including secondary and postsecondary career and technical education (CTE; Hollenbeck, 2008). The returns are based on estimates of the net impact of CTE on individuals' labor market experiences and government income…
Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Brophy, John R.; Friedman, Louis
2012-01-01
This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into the solar system. The capture, transportation, examination, and dissection of an entire NEA would provide valuable information for planetary defense activities that may someday have to deflect a much larger near-Earth object. Transportation of the NEA to lunar orbit with a total flight time of 6 to 10 years would be enabled by a 40-kW solar electric propulsion system with a specific impulse of 3,000 s. The flight system could be launched to low-Earth orbit (LEO) on a single Atlas V-class launch vehicle, and return to lunar orbit a NEA with at least 28 times the mass launched to LEO. Longer flight times, higher power SEP systems, or a target asteroid in a particularly favorable orbit could increase the mass amplification factor from 28-to-1 to 70-to-1 or greater. The NASA GRC COMPASS team estimated the full life-cycle cost of an asteroid capture and return mission at approx.$2.6B.
Effects of Hypergravity on Statocyst Development in Embryonic Aplysia californica
NASA Technical Reports Server (NTRS)
Pedrozo, Hugo A.; Wiederhold, Michael L.
1994-01-01
Aplysia californica is a marine gastropod mollusc with bilaterally paired statocysts as gravity-reccptor organs. Data from three experiments in which embryonic Aplysia californica were exposed to 2 x g arc discussed. The experimental groups were exposed to excess gravity until hatching (9-12 day), whereas control groups were maintained at normal gravity. Body diameter was measured before exposure to 2 x g. Statocyst, statolith and body diameter were each determined for samples of 20 embryos from each group on successive days. Exposure to excess gravity led to an increase in body size. Statocyst size was not affected by exposure to 2 x g. Statolith size decreased with treatment as indicated by smaller statolith-to-body ratios observed in the 2 x g group in all three experiments. Mean statolith diameter was significantly smaller for the 2 x g group in Experiment 1 but not in Experiments 2 and 3. Defective statocysts, characterized by very small or no statoliths, were found in the 2 x g group in Experiments 1 and 2.
Maternal perspectives on postpartum return to the workplace.
Nichols, Mary R; Roux, Gayle M
2004-01-01
To describe maternal perceptions about postpartum return to the workplace. The research framework was McCubbin and McCubbin's Resiliency Model of Family Stress, Adjustment, and Adaptation. Employed, postpartum women, who resided in six different states, were recruited from day care and primary care settings to participate in this descriptive study. Seventy-four employed, married women, who returned to the workplace within one year after childbirth. As part of a larger study, perceptions about combining multiple roles after return to the workplace are the focus for this report. Participants responded to open-ended questions about their return to the workplace during the first months after giving birth. Content analysis of those responses resulted in two major categories, Resiliency Challenges: Negative Aspects (role conflict/overload, family stress, family/child issues, finances, psychosocial issues) and Resiliency Building: Positive Aspects (social support, maternal role satisfaction, positive adaptation, career role satisfaction). The data support the premise that employed women view returning to the workforce as having more challenges than they expected because the experience was viewed as being mostly negative. Preparing for return to the workplace is an important, but neglected, topic that needs to be addressed and defined more clearly in the literature. Therefore, future research is needed to identify resources and interventions that will help women experience fewer challenges associated with postpartum employment.
Nunnerley, Joanne; Dunn, Jennifer; McPherson, Kathryn; Hooper, Gary; Woodfield, Tim
2016-01-01
This study looked at the influences on the return to work (RTW) in the first 2 years for people severely injured in the 22 February 2011 Christchurch earthquake. We used a constructivist grounded theory approach using semi-structured interviews to collect data from 14 people injured in the earthquake. Analysis elicited three themes that appeared to influence the process of RTW following the Christchurch earthquake. Living the earthquake experience, the individual's experiences of the earthquake and how their injury framed their expectations; rebuilding normality, the desire of the participants to return to life as it was; while dealing with the secondary effects of the earthquake includes the earthquake specific effects which were both barriers and facilitators to returning to work. The consequences of the earthquake impacted on experience, process and outcome of RTW for those injured in the Christchurch Earthquake. Work and RTW appeared key tools to enhance recovery after serious injury following the earthquake. The altered physical, social and economic environment must be considered when working on the return to work (RTW) of individuals with earthquake injuries. Providing tangible emotional and social support so injured earthquake survivors feel safe in their workplace may facilitate RTW. Engaging early with employers may assist the RTW of injured earthquake survivors.
NASA Technical Reports Server (NTRS)
Marchese, Anthony J.; Dryer, Fredrick L.; Choi, Mun Y.
1994-01-01
In order to develop an extensive envelope of test conditions for NASA's space-based Droplet Combustion Experiment (DCE) as well those droplet experiments which can be performed using a drop tower, the transient vaporization and combustion of methanol and n-heptane droplets were simulated using a recently developed fully time-dependent, spherically symmetric droplet combustion model. The transient vaporization of methanol and n-heptane was modeled to characterize the instantaneous gas phase composition surrounding the droplet prior to the introduction of an ignition source. The results for methanol/air showed that the entire gas phase surrounding a 2 mm methanol droplet deployed in zero-g .quickly falls outside the lean flammability limit. The gas phase surrounding an identically-sized n-heptane droplet, on the other hand, remains flammable. The combustion of methanol was then modeled considering a detailed gas phase chemical kinetic mechanism (168 steps, 26 species) and the effect of the dissolution of flame-generated water into the liquid droplet. These results were used to determine the critical ignition diameter required to achieve quasi-steady droplet combustion in a given oxidizing environment. For droplet diameters greater than the critical ignition diameter, the model predicted a finite diameter at which the flame would extinguish. These extinction diameters were found to vary significantly with initial droplet diameter. This phenomenon appears to be unique to the transient heat transfer, mass transfer and chemical kinetics of the system and thus has not been reported elsewhere to date. The extinction diameter was also shown to vary significantly with the liquid phase Lewis number since the amount of water present in the droplet at extinction is largely governed by the rate at which water is transported into the droplet via mass diffusion. Finally, the numerical results for n-heptane combustion were obtained using both 2 step and 96 step semi-emperical chemical kinetic mechanisms. Neither mechanism exhibited the variation of extinction diameter with initial diameter.
Negative Public Attitudes Towards Cancer Survivors Returning to Work: A Nationwide Survey in Korea.
Shim, Hye-Young; Shin, Ji-Yeon; Kim, Jong Heun; Kim, So-Young; Yang, Hyung-Kook; Park, Jong-Hyock
2016-04-01
Early diagnosis and an improved survival rate have emerged as important issues for cancer survivors returning to work during the prime of their working life. This study investigated the attitudes of the general public towards cancer survivors returning to work in Korea and attempted to identify the factors influencing this negative attitude. A general public perception survey regarding cancer survivors returning to work, targeting 2,000 individuals between 40-70 years of age, was conducted as face-to-face home visit. The public expressed a negative attitude towards cancer survivors returning to work, in terms of both perception and acceptance. Negative perception was higher among those in metropolitan areas compared with urban/rural areas (odds ratio [OR], 1.71), with monthly incomes < $2,000 compared with > $4,000 (OR, 1.54), and with patient care experience compared with those without (OR, 1.41). Negative acceptance was higher among those with monthly incomes < $2,000 compared with > $4,000 (OR, 1.71) and those with patient care experience compared with those without (OR, 1.54). The common factors between acceptance and perception that influenced negative attitude included area of residence, patient care experience, and monthly income. This study identified negative attitudes towards cancer survivors returning to work in South Korea and the factors influencing the reintegration of cancer survivors into society. It is necessary to promote community awareness and intervention activities to enable access to community, social, and individual units for the social reintegration of cancer survivors.
Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr
1998-11-01
We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.
Shuttle Atlantis in Mate-Demate Device Being Loaded onto SCA-747 for Return to Kennedy Space Center
NASA Technical Reports Server (NTRS)
1996-01-01
This photo shows a night view of the orbiter Atlantis being loaded onto one of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at the Dryden Flight Research Center, Edwards, California. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
ERIC Educational Resources Information Center
Lyons, Vivian H.; Moore, Megan; Guiney, Roxanne; Ayyagari, Rajiv C.; Thompson, Leah; Rivara, Frederick P.; Fleming, Robin; Crawley, Deborah; Harper, Dawn; Vavilala, Monica S.
2017-01-01
Background: Many students do not receive return to learn (RTL) services upon return to academics following a concussion. Methods: Using a mixed-methods approach, we conducted a survey of RTL practices and experiences in Washington State schools between January 2015 and June 2015. We then held a statewide summit of RTL stakeholders and used a…
Field Measurements of Heat Losses from Three Types of Heat Distribution Systems
1991-11-01
with the supply pipe on top of the 2.5-in.-thick mineral wool in each case. return pipe. The conduit has an outer diameter of ap- proximately 20 in...is 5-in. NPS schedule 40 steel. Each pipe is insulated with Instrumentation layout 2.5 in. of mineral wool pipe insulation. The location of the...common Only two manufacturers of mineral wool insulation conduit, trench and individual conduit sites, respec- have a product approved for use on
Lynöe, Niels; Wessel, Maja; Olsson, Daniel; Alexanderson, Kristina; Helgesson, Gert
2013-03-23
Previous research shows that how patients perceive encounters with healthcare staff may affect their health and self-estimated ability to return to work. The aim of the present study was to explore long-term sick-listed patients' encounters with social insurance office staff and the impact of these encounters on self-estimated ability to return to work. A random sample of long-term sick-listed patients (n = 10,042) received a questionnaire containing questions about their experiences of positive and negative encounters and item lists specifying such experiences. Respondents were also asked whether the encounters made them feel respected or wronged and how they estimated the effect of these encounters on their ability to return to work. Statistical analysis was conducted using 95% confidence intervals (CI) for proportions, and attributable risk (AR) with 95% CI. The response rate was 58%. Encounter items strongly associated with feeling respected were, among others: listened to me, believed me, and answered my questions. Encounter items strongly associated with feeling wronged were, among others: did not believe me, doubted my condition, and questioned my motivation to work. Positive encounters facilitated patients' self-estimated ability to return to work [26.9% (CI: 22.1-31.7)]. This effect was significantly increased if the patients also felt respected [49.3% (CI: 47.5-51.1)]. Negative encounters impeded self-estimated ability to return to work [29.1% (CI: 24.6-33.6)]; when also feeling wronged return to work was significantly further impeded [51.3% (CI: 47.1-55.5)]. Long-term sick-listed patients find that their self-reported ability to return to work is affected by positive and negative encounters with social insurance office staff. This effect is further enhanced by feeling respected or wronged, respectively.
Weckert, Christine; Stern, Cindy; Porritt, Kylie
2017-05-01
The objective of this systematic review is to identify and synthesize the best available evidence on the experiences and expectations of being involved in a program that aims to return nurses and midwives, who have acquired a musculoskeletal disorder (MSD) in the workplace, to work.The specific review questions are.
Return-to-work challenges following a work-related mild TBI: The injured worker perspective.
Mansfield, Elizabeth; Stergiou-Kita, Mary; Cassidy, John David; Bayley, Mark; Mantis, Steve; Kristman, Vicki; Kirsh, Bonnie; Gomez, Manuel; Jeschke, Mark G; Vartanian, Oshin; Moody, Joel; Colantonio, Angela
2015-01-01
To explore how individuals with work-related mild traumatic brain injury (wrMTBI) experience return-to-work (RTW) processes when returning to the workplace where the injury occurred. RTW experiences were explored using in-depth interviews and an inductive analytic approach. Qualitative analysis guided by the research question moved through phases of line-by-line and thematic coding through which categories and the interaction between categories emerged. Twelve workers diagnosed with a wrMTBI reported on their RTW experiences following wrMTBIs that occurred 3-5 years prior to the time of the interview. Participants perceived employer and workers' compensation factors as profoundly influencing their RTW experiences. Participants consistently reported that employers and workers' compensation representatives had an inadequate understanding of wrMTBI sequelae. Six of 12 participants were re-injured following their wrMTBI, with three of these injuries occurring at work. Employers, co-workers and workers' compensation representatives should be aware of wrMTBI sequelae so injured workers can receive appropriate supports and both stigmatization and re-injury can be mitigated. Greater attention to the structural and social elements of workplace and compensation environments could inform strategies to break down barriers to successful return-to-work following a wrMTBI.
Return-to-work challenges following a work-related mild TBI: The injured worker perspective.
Mansfield, Elizabeth; Stergiou-Kita, Mary; Cassidy, John David; Bayley, Mark; Mantis, Steve; Kristman, Vicki; Kirsh, Bonnie; Gomez, Manuel; Jeschke, Mark G; Vartanian, Oshin; Moody, Joel; Colantonio, Angela
2015-08-07
To explore how individuals with work-related mild traumatic brain injury (wrMTBI) experience return-to-work (RTW) processes when returning to the workplace where the injury occurred. RTW experiences were explored using in-depth interviews and an inductive analytic approach. Qualitative analysis guided by the research question moved through phases of line-by-line and thematic coding through which categories and the interaction between categories emerged. Twelve workers diagnosed with a wrMTBI reported on their RTW experiences following wrMTBIs that occurred 3-5 years prior to the time of the interview. Participants perceived employer and workers' compensation factors as profoundly influencing their RTW experiences. Participants consistently reported that employers and workers' compensation representatives had an inadequate understanding of wrMTBI sequelae. Six of 12 participants were re-injured following their wrMTBI, with three of these injuries occurring at work. Employers, co-workers and workers' compensation representatives should be aware of wrMTBI sequelae so injured workers can receive appropriate supports and both stigmatization and re-injury can be mitigated. Greater attention to the structural and social elements of workplace and compensation environments could inform strategies to break down barriers to successful return-to-work following a wrMTBI.
Kimbrel, Nathan A.; DeBeer, Bryann B.; Meyer, Eric C.; Silvia, Paul J.; Beckham, Jean C.; Young, Keith A.; Morissette, Sandra B.
2015-01-01
The objective of the present research was to test the hypotheses that: (1) Iraq/Afghanistan war veterans experience a wide range of psychiatric symptomatology (e.g., obsessive-compulsive symptoms, hypochondriasis, somatization); and (2) General psychiatric symptomatology among Iraq/Afghanistan war veterans is associated with their warzone experiences. To achieve this objective, Iraq/Afghanistan war veterans (N = 155) completed a screening questionnaire that assessed a wide range of psychiatric symptoms along with a measure of warzone experiences. As expected, returning veterans reported significant elevations across a wide range of clinical scales. Approximately three-fourths screened positive on at least one clinical subscale, and a third screened positive on five or more. In addition, nearly all of these conditions were associated with veterans’ warzone experiences (average r = 0.36); however, this association was much stronger among veterans with PTSD (average r = 0.33) than among veterans without PTSD (average r = 0.15). We also observed that approximately 18% of the variance in total psychiatric symptomatology was attributable to warzone experiences above and beyond the effects of childhood trauma and demographic factors. Taken together, these findings suggest that returning veterans experience a broad array of psychiatric symptoms that are strongly associated with their warzone experiences. PMID:25541538
COLLIDE: Collisions into Dust Experiment
NASA Technical Reports Server (NTRS)
Colwell, Joshua E.
1999-01-01
The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.
Large scale clear-water local pier scour experiments
Sheppard, D.M.; Odeh, M.; Glasser, T.
2004-01-01
Local clear-water scour tests were performed with three different diameter circular piles (0. 114, 0.305, and 0.914 m), three different uniform cohesionless sediment diameters (0.22, 0.80, and 2.90 mm) and a range of water depths and flow velocities. The tests were performed in the 6.1 m wide, 6.4 m deep, and 38.4 m long flume at the United States Geological Survey Conte Research Center in Turners Falls, Mass. These tests extend local scour data obtained in controlled experiments to prototype size piles and ratios of pile diameter to sediment diameter to 4,155. Supply water for this flow through flume was supplied by a hydroelectric power plant reservoir and the concentration of suspended fine sediment (wash load) could not be controlled. Equilibrium scour depths were found to depend on the wash load concentration. ?? ASCE.
A core handling device for the Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Gwynne, Owen
1989-01-01
A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.
The Preliminary Examination of Organics in the Returned Stardust Samples from Comet Wild 2
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Aleon, J.; Alexander, C.; Butterworth, A.; Clemett, S. J.; Cody, G.; Cooper, G.; Dworkin, J. P.; Flynn, G. J.; Gilles, M. K.
2006-01-01
The primary objective of STARDUST is to collect coma samples from comet 8lP/Wild 2. These samples were collected by impact onto aerogel tiles on Jan 2, 2004 when the spacecraft flew through the comet's coma at a relative velocity of about 6.1 km/sec. Measurements of dust impacts on the front of the spacecraft suggest that the aerogel particle collector was impacted by 2800 +/- 500 particles larger than 15 micron in diameter. Following recovery of the Sample Return Capsule (SRC) on Jan 15, 2006, the aerogel collector trays will be removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles will be removed and aerogel and cometary samples will be extracted for study. A number of different extraction techniques will be used, each optimized for the analytical technique that is to be used. The STARDUST Mission will carry out a 6 month preliminary examination (PE) of a small portion of the returned samples. The examination of the samples will be made by a number of subteams that will concentrate on specific aspects of the samples. One of these is the Organics PE Team (see the author list above for team members). These team members will use a number of analytical techniques to produce a preliminary characterization of the abundance and nature of the organics (if any) in the returned samples.
Organic and inorganic geochemistry of samples returned from Mars
NASA Technical Reports Server (NTRS)
Kotra, R. K.; Johnson, R. G.
1988-01-01
Although a tremendous amount of knowledge can be obtained by in situ experiments on Mars, greater benefits will be realized with the sample return mission from the perspective of exobiology. Sampling techniques are briefly discussed.
Returning from the War Zone: A Guide for Military Personnel
Hed Returning from the War Zone AGuide for Military Personnel Welcome home! Thank you for your service ... here in the U.S. Your experiences in the military and during deployment have helped make you more ...
Diameter Effect In Initiating Explosives, Numerical Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefrancois, A.; Benterou, J.; Roeske, F.
2006-02-10
The ability to safely machine small pieces of HE with the femtosecond laser allows diameter effect experiments to be performed in initiating explosives in order to study the failure diameter, the reduction of the detonation velocity and curvature versus the diameter. The reduced diameter configuration needs to be optimized, so that the detonation products of the first cylinder will not affect the measurement of the detonation velocity of the second cylinder with a streak camera. Different 2D axi-symmetrical configurations have been calculated to identify the best solution using the Ignition and Growth reactive flow model for LX16 Pellet with Ls-Dyna.
Family-friendly policies: general nurses' preferences and experiences.
Robinson, Sarah; Davey, Barbara; Murrells, Trevor
2003-01-01
While European Union policy emphasises that one of the aims of family-friendly working arrangements is to increasing gender equality, in the UK the focus has been primarily on workforce retention. Drawing on a study of Registered General Nurses who returned to work after breaks for maternity leave, this paper considers their preferences and experiences in light of current UK family-friendly policies and the implications of the findings for increasing gender equality. Questionnaires were completed by respondents in three regional health authorities and focused on the four to eight year period after qualification. The following topics were investigated: views about length of maternity break and reasons for returning to work sooner than preferred; hours sought after a return and hours obtained; the availability of preferred patterns of work and of flexible hours; retention of grade on return; the availability and use of workplace crèches, and childcare arrangements when children were unwell.
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, workers lift the Ares I-X crew module mock-up during a fit check with a mock-up of the service module. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
AAFE large deployable antenna development program: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.
Ramano, Enos
2016-01-01
Background Major depressive disorder (MDD) is worldwide one of the most concerning health problems as it is associated with reduced work productivity and permanent disability. Occupational therapists are often called upon to make a return-to-work decision on employees with MDD in order to facilitate continued employment. Sustaining employment is in alignment with achieving the Millennium Development Goal 1: Eradicating extreme poverty, as it is known that people suffering from mental health disorders are frequently denied employment opportunities leading to reduced financial resources and therefore possible poverty. Aim This study described occupational therapists’ experiences of formulating a return-to-work decision on employees with MDD. It formed part of a larger study. Setting Occupational therapists working in vocational rehabilitation or mental health in South Africa with a postgraduate qualification in vocational rehabilitation or mental health participated in the study. Method A qualitative research design was used. Two separate focus groups explored 11 occupational therapists’ experiences of formulating a return-to-work decision on employees with MDD. Ethics clearance number: S34/2007. Results Seven themes emerged, which were, (1) the biographical profile of the employee, (2) point of view of employer, (3) point of view of employee, (4) point of view of occupational therapist, (5) declaring the employee as temporary incapacitated, (6) declaring the employee as permanently incapacitated and (7) employee’s level of motivation. Conclusion Occupational therapists ought to have sound knowledge, skill, experience and the ability to collaborate with employees and employers in formulating a return-to-work decision. PMID:27380839
Comparison of Fixed Diameter-Limit and Selection Cutting in Northern Conifers
Laura S. Kenefic; Paul E. Sendak; John C. Brissette
2005-01-01
Diameter-limit cutting is a common type of harvest in which all merchantable trees above specific size thresholds are removed. Despite a long history of application, controlled experiments of these harvests are rare and the cumulative effects of repeated diameter-limit cuts are largely unknown. The Penobscot Experimental Forest in Maine is the location of a long-term...
Facility target insert shielding assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal
2015-10-06
Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less
Alagöz, Cengiz; Pekel, Gökhan; Alagöz, Neşe; Sayın, Nihat; Yüksel, Kemal; Yıldırım, Yusuf; Yazıcı, Ahmet Taylan
2016-12-01
Our aim was to evaluate the alterations of subfoveal choroidal thickness (SFCT), photoreceptor layer thickness (PRT), and retinal vessel diameter in the dark and light adaptation. Twenty-four eyes of 24 healthy volunteers (12 males, 12 females) were included in this cross-sectional and observational study. The SFCT, PRT, retinal arteriole, and venule caliber measurements were performed with spectral domain optical coherence tomography in the dark (0.0 cd/m 2 ) and under light (80 cd/m 2 ) adapted conditions. The mean age of the participants was 30.4 ± 4.4 years (range: 22-42). The SFCT increased statistically significantly in dark adaptation (p < 0.001), then returned to baseline values following light adaptation. The PRT, retinal arteriole, and venule caliber measurements were similar in the dark and light (p > 0.05). While SFCT increased, PRT, and retinal vessel diameter did not change following transition from light to dark.
Negative Public Attitudes Towards Cancer Survivors Returning to Work: A Nationwide Survey in Korea
Shim, Hye-Young; Shin, Ji-Yeon; Kim, Jong Heun; Kim, So-Young; Yang, Hyung-Kook; Park, Jong-Hyock
2016-01-01
Purpose Early diagnosis and an improved survival rate have emerged as important issues for cancer survivors returning to work during the prime of their working life. This study investigated the attitudes of the general public towards cancer survivors returning to work in Korea and attempted to identify the factors influencing this negative attitude. Materials and Methods A general public perception survey regarding cancer survivors returning to work, targeting 2,000 individuals between 40-70 years of age, was conducted as face-to-face home visit. Results The public expressed a negative attitude towards cancer survivors returning to work, in terms of both perception and acceptance. Negative perception was higher among those in metropolitan areas compared with urban/rural areas (odds ratio [OR], 1.71), with monthly incomes < $2,000 compared with > $4,000 (OR, 1.54), and with patient care experience compared with those without (OR, 1.41). Negative acceptance was higher among those with monthly incomes < $2,000 compared with > $4,000 (OR, 1.71) and those with patient care experience compared with those without (OR, 1.54). The common factors between acceptance and perception that influenced negative attitude included area of residence, patient care experience, and monthly income. Conclusion This study identified negative attitudes towards cancer survivors returning to work in South Korea and the factors influencing the reintegration of cancer survivors into society. It is necessary to promote community awareness and intervention activities to enable access to community, social, and individual units for the social reintegration of cancer survivors. PMID:26044157
Tiedtke, Corine; de Rijk, Angelique; Dierckx de Casterlé, Bernadette; Christiaens, Marie-Rose; Donceel, Peter
2010-07-01
To explore how female breast cancer patients experience work incapacity during the treatment and return-to-work phases and how interactions between patients and stakeholders affect this experience. Database search for full text articles published between January 1995 and January 2008 that focused on employed female breast cancer patients, factors related to work incapacity, and returning to work. Only results based on self-report data were included. Studies focusing on treatment, financial factors, rate of return, or absence were excluded. Six articles met the inclusion criteria. Women with breast cancer receive varied reactions but little advice about returning to work. Women were primarily concerned with disclosing the diagnosis to their employer and to relatives. Uncertainties about physical appearance, ability to work, and possible job loss affected the women's decisions about working during the treatment phase. After treatment, most women wanted to regain their 'normal life', but concentration and arm or fatigue problems potentially interfered. Although supportive work environments were helpful, the individual needs of women differed. Employers and employees need to find a balance in defining accommodating work. Many women received favourable support, but some reported feeling discriminated against. Many women re-evaluated the role of work in their lives after being confronted with breast cancer. Work adjustments could help women to keep their jobs during illness and recovery. To resolve women's concerns about returning to work, employers, physicians, and insurance institutions should consider increasing and improving communication with breast cancer patients and playing a more active and supportive role. Copyright (c) 2009 John Wiley & Sons, Ltd.
Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry.
Jones Ritten, Chian; Peck, Dannele; Ehmke, Mariah; Patalee, M A Buddhika
2018-04-03
While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than those in Utah or Montana. Further, engagement in off-farm employment increases an apiary's technical efficiency. The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in part, the historical decline in honey bee numbers.
Goodall, Stephen; King, Madeleine; Ewing, Jane; Smith, Narelle; Kenny, Patricia
2012-10-01
Life-threatening illnesses in young people are traumatic for patients and their families. Support services can help patients and families deal with various non-medical impacts of diagnosis, disease and treatment. The aim of this study was to determine which types of support are most valued by adolescents and young adults (AYA) with cancer or blood disorders and their families. A discrete choice experiment (DCE). Separate experiments were conducted with AYA and their carers. Completed surveys were returned by 83 patients and 78 carers. AYA preferred emotional support for themselves (either by counsellors and/or peers), emotional support for their family, financial support and assistance returning to school/work over services relating to cultural and spiritual needs. Covariate analysis indicated female AYA were more likely than males to prefer emotional support, while males were more likely to prefer assistance returning to work/school. Carers preferred emotional support for their AYA and assistance returning to school/work. Like AYA, they were indifferent about services relating to cultural and spiritual needs. Providing the types of support services that people prefer should maximise effectiveness. This study suggests that AYA patients require support services that included financial aid, assistance returning to work/study, emotional support for themselves and for their family. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Russell, G. R.
1976-01-01
Lasers utilizing atomic metallic vapors are considered with emphasis on a double discharge technique and multiply pulsed experiments. Data are presented on the effect of time delay after the first electrical discharge and the effect of lasant temperature along with results of absorption measurements utilizing a 13 mm diameter laser tube. Data obtained from multiply pulsed experiments for discharge diameters varying from 1 to 4 cm indicate that the efficiency increases with the pulsing rate.
Structure of colloidosomes with tunable particle density: Simulation versus experiment
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo; Salari, Johannes W. O.; Klumperman, Bert
2012-06-01
Colloidosomes are created in the laboratory from a Pickering emulsion of water droplets in oil. The colloidosomes have approximately the same diameter and by choosing (hairy) particles of different diameters it is possible to control the particle density on the droplets. The experiment is performed at room temperature. The radial distribution function of the assembly of (primary) particles on the water droplet is measured in the laboratory and in a computer experiment of a fluid model of particles with pairwise interactions on the surface of a sphere.
Removal of instrument signature from Mariner 9 television images of Mars
NASA Technical Reports Server (NTRS)
Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.
1975-01-01
The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.
Simulations of the modified gap experiment
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas
2017-01-01
Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.
Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity
NASA Technical Reports Server (NTRS)
Easton, John; Tien, James; Dietrich, Daniel
1999-01-01
The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that arises due to radiative heat loss from the flame to the surroundings.
Capillary Pumped Heat Transfer (CHT) Experiment
NASA Technical Reports Server (NTRS)
Hallinan, Kevin P.; Allen, J. S.
1998-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
Micrometeoroid Impacts and Optical Scatter in Space Environment
NASA Technical Reports Server (NTRS)
Heaney, James B.; Wang, Liqin L.; He, Charles C.
2010-01-01
This paper discusses the results of an attempt to use laboratory test data and empirically derived models to quantify the degree of surface damage and associated light scattering that might be expected from hypervelocity particle impacts in space environment. Published descriptions of the interplanetary dust environment were used as the sources of particle mass, size, and velocity estimates. Micrometeoroid sizes are predicted to be predominantly in the mass range 10(exp -5) g or less, with most having diameters near 1 micrometer, but some larger than I20 micrometers, with velocities near 20 kilometers per second. In a laboratory test, latex ( p = 1.1. grams per cubic centimeter) and iron (7.9 grams per cubic centimeter) particles with diameters ranging from 0.75 micrometers to 1.60 micrometers and with velocities ranging from 2.0 kilometers per second to 18.5 kilometers per second, were shot at a Be substrate mirror that had a dielectric coated gold reflecting surface. Scanning electron and atomic force microscopy were used to measure crater dimensions that were then associated with particle impact energies. These data were then fitted to empirical models derived from solar cell and other spacecraft surface components returned from orbit, as well as studies of impact craters studied on glassy materials returned from the lunar surface, to establish a link between particle energy and impact crater dimension. From these data, an estimate of total expected damaged area was computed and this result produced an estimate of expected surface scatter from the modeled environment.
A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY
NASA Astrophysics Data System (ADS)
Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.
2009-05-01
A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.
Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study
NASA Technical Reports Server (NTRS)
Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.
1982-01-01
Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.
The experience of returning to work.
Jansson, Inger; Björklund, Anita
2007-01-01
The purpose of this qualitative study was to explore from an environmental perspective the experiences of returning to work of former unemployed sickness absentees. Five separate focus-group interviews were carried out with themes concerning different environmental areas. The findings showed that the participants in their process of being off work and then attempting returning to work experienced a personal transition manifesting itself as a negative self-image, change of life-rhythm and restrictions in their roles and activities. In their progression, the participants experienced a need for reorientation and expressed feelings of alienation, and for that reason felt need of support from a network, especially a professional one. Regarding attitudes in society, the participants reported experiences of social stigmatization, both in mass media and in their immediate social environment, and an increasing egocentricity among their fellow-workers. They perceived their progression back to work as a 'time quarantine' and as a long and destructive wait for support. The findings indicate that the phenomenon of 'returning to work' after unemployment and sick leave could not be reduced to a single issue. It should rather be seen as a dynamic problem with individual and structural, environmental aspects.
The enablers and barriers to continue breast milk feeding in women returning to work.
Sulaiman, Zaharah; Liamputtong, Pranee; Amir, Lisa H
2016-04-01
To describe the enablers and barriers working women experience in continuing breast milk feeding after they return to work postpartum in urban Malaysia. In Malaysia, urban working women have low rates of breastfeeding and struggle to achieve the recommended 6 months exclusive breastfeeding. A qualitative enquiry based on a phenomenological framework and multiple methods were used to explore women's experiences in depth. Multiple qualitative methods using face-to-face interview and participant diary were used. Data collection took place in urban suburbs around Penang and Klang Valley, Malaysia from March-September 2011. Participants were 40 employed women with infants less than 24 months. Only 11 of the participants worked from home. Based on the women's experiences, we categorized them into three groups: 'Passionate' women with a strong determination and exclusively breastfed for 6 months, 'Ambivalent' women who initiated breastfeeding, but were unable to sustain exclusive breastfeeding after returning to work and 'Equivalent' women who introduced infant formula prior to returning to work. Passion and to a lesser extent intention, influenced women's choice. Women's characteristics played a greater role in their infant feeding outcomes than their work environment. © 2016 John Wiley & Sons Ltd.
Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment
NASA Technical Reports Server (NTRS)
Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet
1995-01-01
The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.
Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1993-01-01
A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.
Effect of the space environment on materials flown on the EURECA/TICCE-HVI experiment
NASA Astrophysics Data System (ADS)
Maag, Carl R.; Stevenson, Tim J.; Tanner, William G.; Borg, Janet
1995-02-01
The primary benefit of accurately quantifying and characterizing the space environmental effects on materials is longer instrument and spacecraft life. Knowledge of the limits of materials allows the designer to optimize the spacecraft design so that the required life is achieved. Materials such as radiator coatings that have excellent durability result in the design of smaller radiators than a radiator coated with a lower durability coating. This may reduce the weight of the spacecraft due to a more optimum design. Another benefit of characterizing materials is the quantification of outgassing properties. Spacecraft which have ultraviolet or visible sensor payloads are susceptible to contamination by outgassed volatile materials. Materials with known outgassing characteristics can be restricted in these spacecraft. Finally, good data on material characteristics improves the ability of analytical models to predict material performance. A flight experiment was conducted on the European Space Agency's European Retrievable Carrier (EuReCa) as part of the Timeband Capture Cell Experiment (TICCE). Our main objective was to gather additional data on the dust and debris environments, with the focus on understanding growth as a function of size (mass) for hypervelocity particles 1E-06 cm and larger. In addition to enumerating particle impacts, hypervelocity particles were to be captured and returned intact. Measurements were performed post-flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the experiment also provided a structure and sample holders for the exposure of passive material samples to the space environment, e.g., the effects of thermal cycling, atomic oxygen, etc. Preliminary results are presented, including the techniques used for intact capture of particles.
Flow and criticality in the open cycle gas core.
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Lofthouse, J. H.
1971-01-01
A series of flowing gas experiments using air, argon, and freon has been conducted in Idaho. The purpose is to study methods of obtaining flow patterns which would create maximum possible system reactivity consistent with an acceptably low uranium to coolant-gas loss ratio. These have been conducted on both ?two-dimensional' and truly three-dimensional spherical configurations of diameters 18 to 42 inches. The larger diameter is that proposed for a minimum cost flowing gas critical experiment, and the size extremes make extrapolations to the large 6 and 8 foot diameter configurations more reliable. Results show that large enough inner gas (fuel) volume fractions can be achieved to attain criticality.
NASA Astrophysics Data System (ADS)
White, Bradley W.; Tarver, Craig M.
2017-01-01
It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.
Alaszewski, Andy; Alaszewski, Helen; Potter, Jonathan; Penhale, Bridget
2007-12-30
This paper examines respondents' relationship with work following a stroke and explores their experiences including the perceived barriers to and facilitators of a return to employment. Our qualitative study explored the experiences and recovery of 43 individuals under 60 years who had survived a stroke. Participants, who had experienced a first stroke less than three months before and who could engage in in-depth interviews, were recruited through three stroke services in South East England. Each participant was invited to take part in four interviews over an 18-month period and to complete a diary for one week each month during this period. At the time of their stroke a minority of our sample (12, 28% of the original sample) were not actively involved in the labour market and did not return to the work during the period that they were involved in the study. Of the 31 participants working at the time of the stroke, 13 had not returned to work during the period that they were involved in the study, six returned to work after three months and nine returned in under three months and in some cases virtually immediately after their stroke. The participants in our study all valued work and felt that working, especially in paid employment, was more desirable than not working. The participants who were not working at the time of their stroke or who had not returned to work during the period of the study also endorsed these views. However they felt that there were a variety of barriers and practical problems that prevented them working and in some cases had adjusted to a life without paid employment. Participants' relationship with work was influenced by barriers and facilitators. The positive valuations of work were modified by the specific context of stroke, for some participants work was a cause of stress and therefore potentially risky, for others it was a way of demonstrating recovery from stroke. The value and meaning varied between participants and this variation was related to past experience and biography. Participants who wanted to work indicated that their ability to work was influenced by the nature and extent of their residual disabilities. A small group of participants had such severe residual disabilities that managing everyday life was a challenge and that working was not a realistic prospect unless their situation changed radically. The remaining participants all reported residual disabilities. The extent to which these disabilities formed a barrier to work depended on an additional range of factors that acted as either barriers or facilitator to return to work. A flexible working environment and supportive social networks were cited as facilitators of return to paid employment. Participants in our study viewed return to work as an important indicator of recovery following a stroke. Individuals who had not returned to work felt that paid employment was desirable but they could not overcome the barriers. Individuals who returned to work recognized the barriers but had found ways of managing them.
NASA Technical Reports Server (NTRS)
Richard, James A. (Inventor)
2012-01-01
A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.
NASA Astrophysics Data System (ADS)
Cai, Yunshen
Electrospinning produces submicron fibers from a wide range of polymer/solvent systems that enable a variety of different applications. In electrospinning process, a straight polymer/solvent charged jet is initially formed, followed by a circular moving jet in the shape of a cone, called the bending region. The process physics in the bending region are difficult to study since the jet diameter cannot be measured directly due to its rapid motion and small size ( microns and smaller), and due to complex coupling of multiple forces, mass transport, and changing jet geometry. Since the solutions studied are hydrophilic, they readily absorb ambient moisture. This thesis explores the role of the bending region in determining the resulting electrospun fiber diameter through a combined experimental and modeling analysis for a variety of hydrophilic polymer/solvent solutions. Electrospinning experiments were conducted over a broad range of operating conditions for 4 different polymer/solvent systems. Comparison of the final straight jet diameters to fiber diameters reveals that between 30% to 60% jet thinning occurs in the bending region. These experiments also reveal that relative humidity significantly affects the electrospinning process and final fiber diameter, even for non-aqueous solutions. A model is developed to obtain insight into the bending region process physics. Important ones include understanding the mass transport for non-aqueous hydrophilic jets (including solvent evaporation and water absorption on the jet surface, radial diffusion, and axial advection), and the coupling between the mass and force balances that determines the final fiber diameter. The absorption and evaporation physics is validated by evaporation experiments. The developed model predicts fiber diameter to within of 8%, even though the solution properties and operating conditions that determines net stretching forces and net evaporation rates vary over a large range. Model analysis reveals how the net evaporation rate affects the jet length and net stretching force, both of which ultimately determine the fiber diameter. It is also shown that the primary impact of RH on the process is through occupation of the surface states that limits solvent evaporation rate, rather than the amount of water absorbed. Correlation functions between process conditions, solution properties and the resulting fiber diameters are discussed.
Return to Play and Performance After Jones Fracture in National Basketball Association Athletes.
Begly, John P; Guss, Michael; Ramme, Austin J; Karia, Raj; Meislin, Robert J
2016-07-01
Basketball players are at risk for foot injuries, including Jones fractures. It is unknown how this injury affects the future play and performance of athletes. National Basketball Association (NBA) players who sustain Jones fractures of the base of the fifth metatarsal have high rates of return to play and do not experience a decrease in performance on return to competition when compared with preinjury and with control-matched peers. Retrospective cohort study. Level 5. Data on 26 elite basketball players with Jones fractures over 19 NBA seasons (1994-1995 to 2012-2013) were obtained from injury reports, press releases, player profiles, and online public databases. Variables included age, body mass index (BMI), player position, experience, and surgical treatment. Individual season statistics pre- and postinjury were collected. Twenty-six controls were identified by matched player position, age, and performance statistics. The mean age at the time of injury was 24.8 years, mean BMI was 24.7 kg/m(2), and the mean experience prior to injury was 4.1 NBA seasons. Return to previous level of competition was achieved by 85% of athletes. There was no change in player efficiency rating (PER) when pre- and postinjury performance was compared. When compared with controls, no decline in PER measured performance was identified. The majority of NBA players sustaining a Jones fracture return to their preinjury level of competition. These elite athletes demonstrate no decrease in performance on their return to play. Jones fractures are well-studied injuries in terms of etiology, diagnosis, and management. However, the effect of these injuries on future performance of athletes is unknown. Using the findings of our study, orthopaedic surgeons may be better prepared to counsel and educate elite athletes who sustain a Jones fracture. © 2015 The Author(s).
Tabor, Holly K.; Jamal, Seema M.; Yu, Joon-Ho; Crouch, Julia M.; Shankar, Aditi G.; Dent, Karin M.; Anderson, Nick; Miller, Damon A.; Futral, Brett T.; Bamshad, Michael J.
2016-01-01
A major challenge to implementing precision medicine is the need for an efficient and cost-effective strategy for returning individual genomic test results that is easily scalable and can be incorporated into multiple models of clinical practice. My46 is a web-based tool for managing the return of genetic results that was designed and developed to support a wide range of approaches to results disclosure, ranging from traditional face-to-face disclosure to self-guided models. My46 has five key functions: set and modify results return preferences, return results, educate, manage return of results, and assess return of results. These key functions are supported by six distinct modules and a suite of features that enhance the user experience, ease site navigation, facilitate knowledge sharing, and enable results return tracking. My46 is a potentially effective solution for returning results and supports current trends toward shared decision-making between patient and provider and patient-driven health management. PMID:27632689
ERIC Educational Resources Information Center
Colvin, Benie B.
2013-01-01
While the GI bill after WWII encouraged education for the older students, the combination of baby boomers and the rise of feminism have prompted a new wave of returning students to academia. The nontraditional student since the 1970s has often been an older female returning for a graduate degree. Making the decision to return has not been easy,…
Lawrence R. Gering; Dennis M. May
1995-01-01
A set of simple linear regression models for predicting diameter at breast height (dbh) from crown diamter and a set of similar models for predicting crown diamter from dbh were developed for four species groups in Harding County, TN. Data were obtained from 557 trees measured during hte 1989 USDA Southern Forest Experiment Station survey of the forest of Tennessee,...
Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes
NASA Astrophysics Data System (ADS)
Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.
2015-11-01
We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.
PLUTONIUM FUEL RODS FOR PREPARATION OF TRANSPLUTONIC ELEMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, W.J.
1962-02-01
Production by coextrusion of metallurgically bonded, Alclad, Al-7.35 wt% Pu alloy fuel rods with integral ends is discussed. The rods had a diameter of 0.94 in., length of, 60 in., and a nominal cladding thickness of 0.070 in. The Pu concentration was maintained at 83.3 g/rod. The coextrusion billets can be assembled with fuel cores in the as-cast condition. The casting hot-tops can be returned to the process stream. The process is useful for preparing transplutonic elements and production of high-exposure Pu. (J.R.D.)
An efficient cooling loop for connecting cryocooler to a helium reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.E.; Abbott, C.S.R.; Leitner, D.
2003-09-21
The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.
Hellman, Therese; Jonsson, Hans; Johansson, Ulla; Tham, Kerstin
2013-10-01
The aim was to describe and understand how connecting rehabilitation experiences and everyday life was characterised in the lived experiences during the rehabilitation in women with stress-related ill health. Five women were interviewed on three occasions during a rehabilitation programme and once 3 months later. Data were analysed using the Empirical, Phenomenological and Psychological method. The participants experienced connections between their rehabilitation and their previous, present and future everyday life influencing both rehabilitation and everyday life in a back-and-forth process. These connections were experienced in mind or in doing, mostly targeting the private arena in everyday life. Connecting rehabilitation experiences to their working situations was more challenging and feelings of frustration and being left alone were experienced. Although the participants described constructive connections between rehabilitation experiences and the private arena in everyday life, they mostly failed to experience connections that facilitated a positive return to work. Recommended support in the return to work process in rehabilitation comprises the provision of practical work-related activities during rehabilitation; being supportive in a constructive dialogue between the participant and the workplace, and continuing this support in follow-ups after the actual rehabilitation period. Rehabilitation for persons with stress-related ill health needs to focus on the private arena as well as the work situation in everyday life. Creative activities may enable experiences that inspire connections in mind and connections targeting the private arena in everyday life. The work situation needs to be thoroughly discussed during rehabilitation for enabling the participants to experience a support in the return to work process. Rehabilitation including practical work-related activities, support in a constructive dialogue between the participant and the manager at the workplace, and continued support in follow-ups targeting the workplace might be beneficial for successfully return to work.
Gilmour, Carole; Monk, Hilary; Hall, Helen
2013-07-01
Working women need to juggle work, child care and family to continue to breastfeed. This qualitative study's aim was to explore women's experiences of returning to work following the birth of their baby. Focus groups were held with women within one multi-campus university, who had commenced breastfeeding at birth and had returned to work or study within 12 months. In addition, educators working with babies in childcare centres on two of the campuses were interviewed. Thematic analysis was employed used Rogoff's (2003) three planes of analysis, the individual, the interpersonal and the cultural-institutional. Three themes, proximity, flexibility, and communication, were identified relating to the factors impacting on women and their choices to breastfeed or wean on returning to work. From a socio-cultural perspective these themes can be understood as situated within the interrelated contexts of workplace, child care and family. Limitations of the study include the small number of participants and recruitment from one university.
NASA Technical Reports Server (NTRS)
Thronson, Harley A.
2008-01-01
This viewgraph presentation discusses the science that can be accomplished by returning humans to space, and to the moon. With modest modifications to the planned future Constellation vehicle (i.e., the Orion Crew Exploration Vehicle), astronomers, and other scientist can anticipate major scientific accomplishments that would not otherwise be possible. Much of this can be attributed to the experience gained from the International Space Station Construction and the Hubble Space Telescope servicing missions.
2013-04-08
Details of 1D compression test Material: Florida coastal sand Mean diameter: 0.37(mm) Vessel: Stainless steel Vessel inner diameter 6.0(mm... turned out that the projectile deceleration behavior observed in the experiment is a consequence of the complicated compression behavior of sand...applicability of the proposed EOS into high-speed projectile impact experiment. It turned out that the projectile deceleration behavior observed in the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Seong Lee
Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less
Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.
Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong
2010-10-01
We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.
Illustrative case studies in the return of exome and genome sequencing results
Amendola, Laura M; Lautenbach, Denise; Scollon, Sarah; Bernhardt, Barbara; Biswas, Sawona; East, Kelly; Everett, Jessica; Gilmore, Marian J; Himes, Patricia; Raymond, Victoria M; Wynn, Julia; Hart, Ragan; Jarvik, Gail P
2015-01-01
Whole genome and exome sequencing tests are increasingly being ordered in clinical practice, creating a need for research exploring the return of results from these tests. A goal of the Clinical Sequencing and Exploratory Research (CSER) consortium is to gain experience with this process to develop best practice recommendations for offering exome and genome testing and returning results. Genetic counselors in the CSER consortium have an integral role in the return of results from these genomic sequencing tests and have gained valuable insight. We present seven emerging themes related to return of exome and genome sequencing results accompanied by case descriptions illustrating important lessons learned, counseling challenges specific to these tests and considerations for future research and practice. PMID:26478737
Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian
2010-01-01
This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.
The differential effects of full-time and part-time work status on breastfeeding.
Mandal, Bidisha; Roe, Brian Eric; Fein, Sara Beck
2010-09-01
Return to work is associated with diminished breastfeeding. Although more mothers breastfeed after returning to work compared to a decade ago, research has not documented the variations in breastfeeding initiation and duration based on full-time and part-time (less than 35h/week) work status. In this study, we clarify these differences. Longitudinal data from the Infant Feeding Practices Study II, collected between 2005 and 2007, for over 1400 mothers are used. In analyzing initiation, mother's work status was categorized by the expected number of hours she planned to work postpartum. In the duration model, work status was categorized based on the actual number of hours worked upon mother's return to employment after controlling for baby's age when she returned to work. Covariates in logistic and censored regressions included demographics, maternity leave, parity, past breastfeeding experience, hospital experience, and social support. Compared with expecting not to work, expecting to work <35h/week was not associated with breastfeeding initiation while expecting to work full-time decreased breastfeeding initiation. Compared with breastfeeding mothers who did not work, returning to work within 12 weeks regardless of work status and returning to work after 12 weeks while working more than 34h/week were associated with significantly shorter breastfeeding duration. Part-time work and increased amount of leave taken promote breastfeeding initiation and duration.
NASA Astrophysics Data System (ADS)
Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu
New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.
Canabrava, Sérgio; Rezende, Pedro Henriques; Eliazar, Glauber Coutinho; Figueiredo, Sophia Barbosa de; Resende, Arthur Fernandes; Batista, Wagner Duarte; Diniz-Filho, Alberto
2018-06-01
To evaluate the outcomes of the first 30 cataract surgeries performed with a new disposable, injector-free, small-pupil expansion device. This consecutive case series included 30 eyes from 29 patients who underwent cataract surgery using a new disposable small-pupil expansion device called the Canabrava Ring (AJL Ophthalmic S.A, Spain). It is the first iris expansion ring produced with indents that do not align with each other in the superior and inferior regions, resulting in a small vertical length (0.4 mm) that minimizes the risk of endothelial contact. All eyes had poorly dilated pupils of less than 5 mm preoperatively. Fifteen eyes had significant infective or traumatic pathologies preoperatively. Vertical and horizontal pupil diameters were evaluated preoperatively, intraoperatively, and 1 month postoperatively. The mean patient age was 64 ± 11.8 (standard deviation) years. The Canabrava Ring remained engaged throughout all surgeries, except one. All pupils were intraoperatively expanded to a diameter of 6.3 mm. Although preexisting pathology on the innervation of the pupils, the mean pupil diameter returns to a close preoperative size after 1 month surgery. The mean pupil diameters postoperatively and preoperatively were 4.41 and 3.77 mm, respectively (p<0.05). Postoperative complications occurred in eight eyes (one toxoplasmosis reactivation, one retinal detachment, one posterior capsule rupture, one posterior capsule opacification, and four posterior synechiae). These complications occurred in eyes with preexisting traumatic or infective pathologies or synechiae. The Canabrava Ring is effective for expanding and maintaining expansion of small pupils in cataract surgery. The increase in postoperative pupil diameter is clinically diminutive and can most likely be attributed to preexisting pathologies affecting pupil innervation. Further large-scale studies are required to support the present findings.
Duijkers, Ingrid J M; Klipping, Christine; Grob, Paul; Korver, Tjeerd
2010-10-01
To compare the effects on ovarian activity of two oral contraceptives containing nomegestrol acetate (NOMAC)/17 beta-oestradiol (E2) or drospirenone (DRSP)/ethinylestradiol (EE). In this open-label, randomised, six-cycle study, 32 subjects using NOMAC/E2 (2.5-1.5 mg; 24/4-day regimen) were compared to 16 subjects using DRSP/EE (3 mg-30 microg; 21/7-day regimen). Measurements included serum oestradiol, progesterone, follicle stimulating hormone (FSH) and luteinising hormone (LH), and ultrasonography of follicular diameter. No ovulations occurred during treatment. Progesterone was fully suppressed, with mean maximum values <2 nmol/l in both groups over all cycles. For NOMAC/E2, mean maximum follicular diameter decreased from 19.3 mm before treatment to between 6.9 and 8.2 mm during treatment, with no subject having a follicular diameter ≥15 mm. For DRSP/EE, a decrease from 19.6 to between 7.4 and 10.8 mm was observed, with two subjects (12.5%) having a maximum follicle diameter ≥15 mm. These findings were consistent with observed FSH reductions; full suppression of LH surges was observed in both groups. Post-treatment return of ovulation in both groups occurred on average 21 days after the last active tablet intake. NOMAC/E2 achieves consistent ovulation inhibition, with suppressive effects on the ovaries at least similar to those of DRSP/EE.
Laparoscopic inguinal hernia repair.
Hussein, M K; Khoury, G S; Taha, A M
1998-01-01
Open hernia repair is associated with significant postoperative pain and disability resulting in delayed return to full activity. Laparoscopic hernia repair has been advocated as the procedure that combines the benefit of tension-free repair with the preservation of the basic anatomy of the inguinal area. We present our experience with 803 laparoscopic hernia repairs in 517 patients over a period of 66 months (August 92 to February 98). The effects of the learning curve and the refinement of the technique had their impact on earlier results and complications. However, with more experience we found that the laparoscopic preperitoneal approach is safe and efficacious. There was no mortality. Most patients (85%) were discharged home within 24 h of the procedure and returned to full activity within 10 days. Patient satisfaction was excellent. The complication rate decreased and operative time was reduced with experience. This procedure is clearly indicated in patients who have recurrent or bilateral hernias. It is associated with shorter convalescence and a quick return to work.
Protection characteristics of a Faraday cage compromised by lightning burnthrough.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Bystrom, Edward; Jorgenson, Roy Eberhardt
2012-01-01
A lightning flash consists of multiple, high-amplitude but short duration return strokes. Between the return strokes is a lower amplitude, continuing current which flows for longer duration. If the walls of a Faraday cage are made of thin enough metal, the continuing current can melt a hole through the metal in a process called burnthrough. A subsequent return stroke can couple energy through this newly-formed hole. This LDRD is a study of the protection provided by a Faraday cage when it has been compromised by burnthrough. We initially repeated some previous experiments and expanded on them in terms of scopemore » and diagnostics to form a knowledge baseline of the coupling phenomena. We then used a combination of experiment, analysis and numerical modeling to study four coupling mechanisms: indirect electric field coupling, indirect magnetic field coupling, conduction through plasma and breakdown through the hole. We discovered voltages higher than those encountered in the previous set of experiments (on the order of several hundreds of volts).« less
NASA Astrophysics Data System (ADS)
He, Feng-Li; He, Jin; Deng, Xudong; Li, Da-Wei; Ahmad, Fiaz; Liu, Yang-Yang; Liu, Ya-Li; Ye, Ya-Jing; Zhang, Chen-Yan; Yin, Da-Chuan
2017-10-01
Melt electrospinning is a complex process, and many of the processing parameters can impact the result of fiber formation. In this paper, we conducted a systematic investigation on the impacts of the melt electrospinning parameters (including temperature, needle gauge, flow rate and collector speed) on the fiber diameter via an orthogonal design experiment. The straight single fibers were fabricated using melt electrospinning in a direct-writing way with a diameter varied from 9.68 ± 0.93 µm to 48.55 ± 3.72 µm. The results showed that the fiber diameter changed differently against different parameters: when the temperature or needle gauge increased, the fiber diameter increased first and then decreased; when the flow rate increased, the fiber diameter decreased first and then increased; when the collector speed increased, the fiber diameter decreased monotonously. We also found that the collector speed was the most influential factor while the needle gauge was least important in determining the diameter of the fiber. Moreover, the feasibility of melt electrospinning in a direct-writing way as a novel 3D printing technology had been demonstrated by fabricating both uniform and controllable structures with high accuracy, based on the optimal parameters from the orthogonal experiments. The promising results indicated that melt electrospinning can be developed as a powerful technique for fabricating miniatured parts with high resolution and controllable structures for versatile potential applications.
STS-102 Onboard Photograph-Multi-Purpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-01
A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Theoretical size controls of the giant Phaeocystis globosa colonies
NASA Astrophysics Data System (ADS)
Liu, Xiao; Smith, Walker O.; Tang, Kam W.; Doan, Nhu Hai; Nguyen, Ngoc Lam
2015-06-01
An unusual characteristic of the cosmopolitan haptophyte Phaeocystis globosa is its ability to form colonies of strikingly large size-up to 3 cm in diameter. The large size and the presence of a mucoid envelope are believed to contribute to the formation of dense blooms in Southeast Asia. We collected colonies of different sizes in shallow coastal waters of Viet Nam and conducted a series of measurements and experiments on individual colonies. Using these empirical data, we developed a simple carbon-based model to predict the growth and maximal size of P. globosa colonies. Our model suggests that growth of a colony from 0.2 cm to 1.4 cm (the maximal size in our samples) would take 16 days. This number, however, is strongly influenced by the maximal photosynthetic rate and other physiological parameters used in the model. The model also returns a specific growth rate of 0.30 d-1 for colonial cells, comparable to satellite estimates, but lower than have been measured for unicellular P. globosa in batch culture at similar temperatures. We attribute this low growth rate to not only the model uncertainties, but factors such as self-shading and diffusive limitation of nutrient uptake.
Women's postpartum maternity benefits and work experience.
Gjerdingen, D K; McGovern, P M; Chaloner, K M; Street, H B
1995-10-01
This study was conducted to describe women's perceptions of their maternity leave policy and its implementation, maternity leave benefits, postpartum work experience, and factors that relate to returning to work. Surveys were mailed to 436 married, recently employed, first-time mothers at 1, 3, 6, 9 and 12 months postpartum. Most respondents said they had written maternity leave policies they could understand, but they were not completely satisfied with their policies. The average 11.1-week maternity leave was considerably shorter than their 8-month ideal, and only 25.5% had the option of working part-time. A minority (35.8%) were allowed to use personal days to care for a sick infant. Most women were distressed about making child care arrangements. Compared with women who remained at home, those who returned to work complained of more respiratory, gynecologic, and breast symptoms. Relatively little is known about women's postpartum work experience. In this study, return to work after delivery was related to several demographic, occupational, and social factors and was associated with health problems and concerns about child care. With a majority of new mothers now returning to work, attention has recently been directed to factors that facilitate the merger of work and parenting roles. One such important factor is women's parental or maternity leave benefits, the focus of this study.
Müssener, Ulrika; Ståhl, Christian; Söderberg, Elsy
2015-01-01
Among the many aspects of the rehabilitation process that may be relevant for its outcome, the impact of encounters with various professionals has received little attention. The objective was to gain a deeper understanding of how individuals with experiences of being on sick leave perceive their encounters with professionals, and how such encounters affected their ability to return to work, as well as their attitudes towards the sickness insurance system. An inductive qualitative approach was used to analyze data from 20 interviews with men and women, aged 33-59, in Sweden who had experience of being on sick leave for at least 28 days. The study shows how interviewees encounters with professionals affected their self-confidence and perception of their ability to return to work. Professionals' treatment of people on sick leave seems to be affected by the structural prerequisites for offering support, where sickness insurance regulations are suggested to have a large impact. An encouraging and supportive attitude on the part of the professionals is essential for empowering people to handle obstacles during the rehabilitation process; whereas feeling rejected and belittled in the return to work process may lead to disempowerment, and/or delays in measures and longer periods on sick leave.
Effects of short vacations, vacation activities and experiences on employee health and well-being.
de Bloom, Jessica; Geurts, Sabine A E; Kompier, Michiel A J
2012-10-01
It was investigated (1) whether employee health and well-being (H&W) improve during short vacations (4-5 days), (2) how long this improvement lasts after returning home and resuming work and (3) to what extent vacation activities and experiences explain health improvements during and after short vacations. Eighty workers reported their H&W 2 weeks before vacation (Pre), during vacation (Inter), on the day of return (Post 1) and on the third and 10th day after returning home (Post 2 and Post 3, respectively). The results showed improvements in H&W during short vacations (d=0.62), although this effect faded out rather quickly. Partial correlations and regression analyses showed that employees reported higher H&W during vacation, the more relaxed and psychologically detached they felt, the more time they spent on conversations with the partner, the more pleasure they derived from their vacation activities and the lower the number of negative incidents during vacation. Experiences of relaxation and detachment from work positively influenced H&W even after returning home. Working during vacation negatively influenced H&W after vacation. In conclusion, short vacations are an effective, although not very long lasting, 'cure' to improve employees' H&W. Copyright © 2011 John Wiley & Sons, Ltd.
Klingeman, William E.; Mayfield, Albert; Myers, Scott; Taylor, Adam
2017-01-01
Thousand cankers disease, caused by the invasive bark beetle Pityophthorus juglandis Blackman and an associated fungal pathogen Geosmithia morbida M.Kolařík, E. Freeland, C. Utley, N. Tisserat, currently threatens the health of eastern black walnut (Juglans nigra L.) in North America. Both the beetle and pathogen have expanded beyond their native range via transport of infested walnut wood. Geosmithia morbida can develop in seedlings following inoculation, but the ability of P. juglandis to colonize young, small diameter trees has not been investigated. This study assessed the beetle’s colonization behavior on J. nigra nursery trees. Beetles were caged directly onto the stems of walnut seedlings from five nursery sources representing a range of basal stem diameter classes. Seedlings were also exposed to P. juglandis in a limited choice, field-based experiment comparing pheromone-baited and unbaited stems. When beetles were caged directly onto stems, they probed and attempted to colonize seedlings across the range of diameters and across sources tested, including stems as small as 0.5 cm in diameter. In the field experiment, beetles only attempted to colonize seedlings that were baited with a pheromone lure and appeared to prefer (though not statistically significant) the larger diameter trees. Despite several successful penetrations into the phloem, there was no evidence of successful progeny development within the young trees in either experiment. Further investigation is recommended to better elucidate the risk nursery stock poses as a pathway for thousand cankers disease causal organisms. PMID:28973569
Bearing the brunt: co-workers' experiences of work reintegration processes.
Dunstan, Debra A; MacEachen, Ellen
2013-03-01
Work disability research has found co-worker support to be a significant but under-recognised aspect of work reintegration (WR) processes. Although co-workers work alongside returning workers, their practical contribution to WR success or failure is often invisible to others. This study aimed to gain further insight into the role and contribution of co-workers in WR interventions. An exploratory qualitative pilot study was conducted in Toronto, Canada in 2011. Three focus groups were conducted with 13 co-workers, recruited for their direct experience of 'working alongside' a returning worker. An iterative data gathering and analysis process occurred. Themes were generated from categories in open-ended interview questions and new issues arising from the data. The findings detail co-workers' practical experiences of WR processes and their reflections on social and work conditions that impacted their participation. Co-workers' capacity to support returning workers was related to the quality of the WR arrangements, the relationship with the returning worker, work culture, and the duration of the required support. Workplace privacy and confidentiality requirements were identified as a key challenge for co-worker participation. The effects on co-workers of WR processes ranged from the opportunity to learn new skills to disillusionment and withdrawal from the workplace. In worst case scenarios, 'ripple effects' including emotional distress, physical injury and termination of co-workers' employment had occurred. Co-workers are not a neutral party in WR procedures. Formalizing the co-worker role to include communication, consideration and recognition might improve co-workers' WR experiences.
Acoustic positioning for space processing experiments
NASA Technical Reports Server (NTRS)
Whymark, R. R.
1974-01-01
An acoustic positioning system is described that is adaptable to a range of processing chambers and furnace systems. Operation at temperatures exceeding 1000 C is demonstrated in experiments involving the levitation of liquid and solid glass materials up to several ounces in weight. The system consists of a single source of sound that is beamed at a reflecting surface placed a distance away. Stable levitation is achieved at a succession of discrete energy minima contained throughout the volume between the reflector and the sound source. Several specimens can be handled at one time. Metal discs up to 3 inches in diameter can be levitated, solid spheres of dense material up to 0.75 inches diameter, and liquids can be freely suspended in l-g in the form of near-spherical droplets up to 0.25 inch diameter, or flattened liquid discs up to 0.6 inches diameter. Larger specimens may be handled by increasing the size of the sound source or by reducing the sound frequency.
The social interaction of return to work explored from co-workers experiences.
Tjulin, Åsa; MacEachen, Ellen; Stiwne, Elinor Edvardsson; Ekberg, Kerstin
2011-01-01
The objective was to explore the role and contribution of co-workers in the return-to-work process. The social interaction of co-workers in the return-to-work process are analysed within the framework of the Swedish national and local employer organisational return-to-work policies. An exploratory qualitative method was used, consisting of open-ended interviews with 33 workplace actors across seven work units. Organisational return-to-work policies were collected from the three public sector employers. The key findings that emerged during analysis showed that some co-workers have a more work-task oriented approach towards the return-to-work process, whilst others had a more social relational approach. In both situations, the social relations worked hand in hand with job tasks (how task were allocated, and how returning workers were supported by others) and could make or break the return-to-work process. A suggestion for improvement of return-to-work models and policies is the need to take into account the social relations amongst workplace actors, especially involving co-workers when planning for return-to-work interventions. Otherwise the proper attention to work arrangements, social communication and the role of co-workers in the return-to-work process might not be seen.
HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept
NASA Technical Reports Server (NTRS)
Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.
2016-01-01
This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a heritage design compressed gas system to minimize development costs. The data will be captured to both an onboard recorder and a recorder that is jettisoned and recovered separately from the reentry vehicle to mitigate risk. This paper provides an overview, including the architecture and flight concept of operations, for the proposed HULA flight experiment.
Subtractive Schooling and Betrayal
ERIC Educational Resources Information Center
Valenzuela, Angela
2008-01-01
To address the theme of this special issue--namely, the major challenges faced by teacher education in an increasing global society--the author finds herself returning to her earlier work. This return-intellectual-migration gives depth and meaning to the experience of immigration and speaks to the sensibilities (or lack thereof) that many teachers…
Understanding Transition Experiences of Combat Veterans Attending Community College
ERIC Educational Resources Information Center
Jones, Kevin C.
2017-01-01
The majority of research concerning student veterans has been conducted at the university level, with minimum analysis performed at the level where the vast majority of returning veterans attend school: the community college. While some research has discussed what services colleges and universities should offer returning veterans, little research…
AMTEC flight experiment progress and plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Underwood, M.L.; Dobbs, M.; Giglio, J.
1997-12-31
An experiment is being developed to validate the performance of AMTEC technology in the space microgravity environment. A group of AMTEC cells have been fabricated and assembled into an experiment module and instrumented for operation. The experiment is manifested as a Hitchhiker payload on STS-88 now planned for flight in July 1998. The AMTEC cells will be operated in space for up to ten days. The microgravity developed distribution of the sodium working fluid will be frozen in place before the cells are returned to Earth. Upon return the cells will be destructively evaluated to determine the location of themore » sodium and to assure that the sodium has been properly controlled by the sodium control elements. This paper describes the experiment purpose, status, and plans for the flight operations and data analysis. An overview of how this experiment fits into the overall AMTEC development is also provided.« less
Oiwa, H; Kawauchi, M; Chikada, M; Yagyu, K; Kotsuka, Y; Furuse, A
1995-01-01
A pulsatile total cavopulmonary shunt was successfully performed on a 5-year-old girl with hypoplastic right heart syndrome associated with abnormal systemic venous return; at the same time, modified mitral valve replacement was performed for mitral regurgitation. The right atrium, tricuspid valve and right ventricle were all extremely dimunitive. The diameter of the tricuspid valve was 50% of normal and the volume of the right ventricle was 8.6% of normal. In addition, there were severe subpumonary stenosis, a restrictive ventricular septal defect (VSD) and an atrial septal defect (ASD). The bilateral superior venae cavae (SVCs) and the hepatic vein drained to the left atrium, and the inferior vena cava was infrahepatically interrupted with a hemiazygos connection to the left superior vena cava. At the operation, each SVC was anastomosed end-to-side to each branch of the pulmonary artery (PA). The restrictive ventricular septal defect and stenotic subpulmonary lesion were left. The diameter of the ASD was reduced from 12 mm to 7 mm. The main PA was neither divided nor banded. The pulsatile blood flow from the left heart to the PA was regurated by a native restrictive VSD and stenotic subpulmonary lesion, and that from the right heart via the ASD was limited by reducing the size of the ASD. These described anatomic arrangements produced adequate antegrade pulsatile flow in the PA, which might prevent the development of pulmonary arteriovenous fistulae and, besides permit transfer of drainage of the hepatic vein from the left to the right atrium via the ASD in future.
Apollo 12 Lunar Module exhaust plume impingement on Lunar Surveyor III
NASA Astrophysics Data System (ADS)
Immer, Christopher; Metzger, Philip; Hintze, Paul E.; Nick, Andrew; Horan, Ryan
2011-02-01
Understanding plume impingement by retrorockets on the surface of the Moon is paramount for safe lunar outpost design in NASA's planned return to the Moon for the Constellation Program. Visual inspection, Scanning Electron Microscopy, and surface scanned topology have been used to investigate the damage to the Lunar Surveyor III spacecraft that was caused by the Apollo 12 Lunar Module's close proximity landing. Two parts of the Surveyor III craft returned by the Apollo 12 astronauts, Coupons 2050 and 2051, which faced the Apollo 12 landing site, show that a fine layer of lunar regolith coated the materials and was subsequently removed by the Apollo 12 Lunar Module landing rocket. The coupons were also pitted by the impact of larger soil particles with an average of 103 pits/cm 2. The average entry size of the pits was 83.7 μm (major diameter) × 74.5 μm (minor diameter) and the average estimated penetration depth was 88.4 μm. Pitting in the surface of the coupons correlates to removal of lunar fines and is likely a signature of lunar material imparting localized momentum/energy sufficient to cause cracking of the paint. Comparison with the lunar soil particle size distribution and the optical density of blowing soil during lunar landings indicates that the Surveyor III spacecraft was not exposed to the direct spray of the landing Lunar Module, but instead experienced only the fringes of the spray of soil. Had Surveyor III been exposed to the direct spray, the damage would have been orders of magnitude higher.
Weber, Elke U; Siebenmorgen, Niklas; Weber, Martin
2005-06-01
An experiment examined how the type and presentation format of information about investment options affected investors' expectations about asset risk, returns, and volatility and how these expectations related to asset choice. Respondents were provided with the names of 16 domestic and foreign investment options, with 10-year historical return information for these options, or with both. Historical returns were presented either as a bar graph of returns per year or as a continuous density distribution. Provision of asset names allowed for the investigation of the mechanisms underlying the home bias in investment choice and other asset familiarity effects. Respondents provided their expectations of future returns, volatility, and expected risk, and indicated the options they would choose to invest in. Expected returns closely resembled historical expected values. Risk and volatility perceptions both varied significantly as a function of the type and format of information, but in different ways. Expected returns and perceived risk, not predicted volatility, predicted portfolio decisions.
The role of social support in facilitating postpartum women's return to employment.
Killien, Marcia Gruis
2005-01-01
More than half of mothers with infants under 1 year are employed. This study explored the role of social support in facilitating women's return to employment during the 1st year postpartum. Analysis of existing longitudinal, repeated-measures questionnaire data gathered at 4 and 12 months postpartum. 94 postpartum women who were married or partnered, employed, and residing in a large urban area in the northwestern United States. Satisfaction with decision to return to work, role performance, work-family balance. Relationships between indicators of social support and return-to-work experiences were absent to modest. Satisfaction with child care was related to satisfaction with the decision to return to work. Workplace support was related to work-family balance at 12 months postpartum. Satisfactory child care arrangements and supportive relationships in the workplace are the most significant facilitators of women's return to work postpartum.
Parking Lot and Public Viewing Area for STS-4 Landing
NASA Technical Reports Server (NTRS)
1982-01-01
This aerial photo shows the large crowd of people and vehicles that assembled to watch the landing of STS-4 at Edwards Air Force Base in California in July 1982. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.
1996-03-01
The feasibility of conducting human missions to the Moon is examined assuming the use of three ``high leverage'' technologies: (1) a single-stage-to-orbit (SSTO) launch vehicle, (2) ``in-situ'' resource utilization (ISRU)—specifically ``lunar-derived'' liquid oxygen (LUNOX), and (3) LOX-augmented nuclear thermal rocket (LANTR) propulsion. Lunar transportation system elements consisting of a LANTR-powered lunar transfer vehicle (LTV) and a chemical propulsion lunar landing/Earth return vehicle (LERV) are configured to fit within the ``compact'' dimensions of the SSTO cargo bay (diameter: 4.6 m/length: 9.0 m) while satisfying an initial mass in low Earth orbit (IMLEO) limit of ˜60 t (3 SSTO launches). Using ˜8 t of LUNOX to ``reoxidize'' the LERV for a ``direct return'' flight to Earth reduces its size and mass allowing delivery to LEO on a single 20 t SSTO launch. Similarly, the LANTR engine's ability to operate at any oxygen/hydrogen mixture ratio from 0 to 7 with high specific impulse (˜940 to 515 s) is exploited to reduce hydrogen tank volume, thereby improving packaging of the LANTR LTV's ``propulsion'' and ``propellant modules''. Expendable and reusable, piloted and cargo missions and vehicle designs are presented along with estimates of LUNOX production required to support the different mission modes.
Sullivan, Martin; Fraser, Ethan J; Linklater, James; Harris, Craig; Morgan, Kieran
2017-06-01
Talar osteochondral lesions represent challenging clinical entities, particularly in high-demand athletes. Surgical treatment of large lesions often requires a 2-step procedure, or the use of osteotomy in the case of autologous osteochondral transfer, which can delay return to sport. A professional rugby league player underwent surgery for a complex injury to the ankle. A talar osteochondral lesion with a maximal diameter of 15 mm was treated in an arthroscopic fashion using the cartilage taken from the completely displaced osteochondral fragment. Cartilage was cut into chips and combined with bone graft product containing platelet-derived growth factor and a porous collagen scaffold. Autologous cartilage was then reimplanted arthroscopically. The patient was allowed full ankle motion from 2 weeks postoperatively, and weightbearing was commenced at 6 weeks. Follow-up imaging and functional outcomes, including return to sport, were assessed at regular intervals. The patient was able to return to professional rugby league by 23 weeks postoperatively. Magnetic resonance imaging at 16 months postoperatively showed restoration of the subchondral plate and osseous infill. At final follow-up, the patient remained pain free and was playing at preinjury level. This report describes good outcomes using a novel, 1-step cartilage repair technique to treat a large talar osteochondral lesion in a professional athlete. Level V: Expert opinion.
Amin, Nirav H; Old, Andrew B; Tabb, Loni P; Garg, Rohit; Toossi, Nader; Cerynik, Douglas L
2013-08-01
A complete rupture of the Achilles tendon is a devastating injury. Variables affecting return to competition and performance changes for National Basketball Association (NBA) players are not readily evident. Players in the NBA who ruptured their Achilles tendons and who underwent surgical repair would have more experience in the league, and the performance of those who were able to return to competition would be decreased when compared with their performance before injury and with their control-matched peers. Cohort study; Level of evidence, 3. Data for 18 basketball players with Achilles tendon repair over a 23-year period (1988-2011) were obtained from injury reports, press releases, and player profiles. Variables included age, body mass index (BMI), player position, and number of years playing in the league. Individual season statistics were obtained, and the NBA player efficiency rating (PER) was calculated for 2 seasons before and after injury. Controls were matched by playing position, number of seasons played, and performance statistics. Univariate and multivariate analyses were performed to assess the effect of each factor. At the time of injury, the average age was 29.7 years, average BMI was 25.6, and average playing experience was 7.6 years. Seven players never returned to play an NBA game, whereas 11 players returned to play 1 season, with 8 of those players returning for ≥2 seasons. Players who returned missed an average of 55.9 games. The PER was reduced by 4.57 (P = .003) in the first season and by 4.38 (P = .010) in the second season. When compared with controls, players demonstrated a significant decline in the PER the first season (P = .038) and second season (P = .081) after their return. The NBA players who returned to play after repair of complete Achilles tendon ruptures showed a significant decrease in playing time and performance. Thirty-nine percent of players never returned to play.
Dolan, Paul; Rudisill, Caroline
2014-03-01
Financial incentives have been used in a variety of settings to motivate behaviors that might not otherwise be undertaken. They have been highlighted as particularly useful in settings that require a single behavior, such as appointment attendance or vaccination. They also have differential effects based on socioeconomic status in some applications (e.g. smoking). To further investigate these claims, we tested the effect of providing different types of non-cash financial incentives on the return rates of chlamydia specimen samples amongst 16-24 year-olds in England. In 2011 and 2012, we ran a two-stage randomized experiment involving 2988 young people (1489 in Round 1 and 1499 in Round 2) who requested a chlamydia screening kit from Freetest.me, an online and text screening service run by Preventx Limited. Participants were randomized to control, or one of five types of financial incentives in Round 1 or one of four financial incentives in Round 2. We tested the effect of five types of incentives on specimen sample return; reward vouchers of differing values, charity donation, participation in a lottery, choices between a lottery and a voucher and including vouchers of differing values in the test kit prior to specimen return. Financial incentives of any type, did not make a significant difference in the likelihood of specimen return. The more deprived individuals were, as calculated using Index of Multiple Deprivation (IMD), the less likely they were to return a sample. The extent to which incentive structures influenced sample return was not moderated by IMD score. Non-cash financial incentives for chlamydia testing do not seem to affect the specimen return rate in a chlamydia screening program where test kits are requested online, mailed to requestors and returned by mail. They also do not appear more or less effective in influencing test return depending on deprivation level. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mitchell, T
2015-11-01
The aim was to explore the experiences of healthcare professionals (HCPs) who had treatment for cancer and then returned to work. The intention was to identify how HCPs' experiences differed to those of the general public with cancer, and also to explore how HCPs were reintegrated into the workplace following treatment. An interpretive phenomenological approach was employed and conversational interviews were undertaken with 13 women volunteers from a variety of healthcare disciplines including nursing, midwifery, social work, physiotherapy, radiography and general practice. During analysis 59 categories were constructed which were accommodated within 14 themes; six of which are reported here. Participants used knowledge to make sense of their diagnosis, severity and extent of cancer. Several participants covertly accessed their medical records to find out more about their clinical condition. Familiarity with both the environment and oncology personnel resulted in benefits and disadvantage in equal measure. Managers responded to participants' return to work in a variety of ways, and involvement of Occupational Health Departments was inconsistent. Healthcare professionals had distinctly unique experiences because of being patient and provider, and each made personal decisions about sharing their cancer experiences with patients. © 2015 John Wiley & Sons Ltd.
Fiber-Supported Droplet Combustion. Experiment 32
NASA Technical Reports Server (NTRS)
Dietrich, Daniel L.; Haggard, John B., Jr.; Nayagam, Vedha; Dryer, Frederick L.; Williams, Forman A.; Shaw, Ben D.
1998-01-01
Individual droplets with diameters ranging from about 2 mm to 5 mm were burned under microgravity conditions in air at 1 bar with an ambient temperature of 300 K. Each droplet was tethered by a silicon carbide fiber of 80 mm or 150 mm diameter to keep it in view of video recording, and, in some tests, a forced air flow was applied in a direction parallel to the fiber axis. Methanol, two methanol-water mixtures, two methanol-dodecanol mixtures, and two heptane-hexadecane mixtures were the fuels. Droplet diameters were measured as functions of time and compared with existing theoretical predictions. The prediction that methanol droplets extinguish at diameters that increase with increasing initial droplet diameter is verified by these experiments. In addition, the quasi-steady burning rate constant of the heptane-hexadecane mixtures appears to decrease with increasing droplet diameter; obscuration consistent with very heavy sooting, but without the formation of soot shells, is observed for the largest of these droplets. Forced convective flow around methanol droplets was found to increase the burning rate and to produce a ratio of downstream-to-upstream flame radius that remained constant as the droplet size decreased, a trend in agreement with earlier results obtained at higher convective velocities for smaller droplets having larger flame standoff ratios. There are a number of implications of the experimental results regarding droplet-combustion theory.
Genesis Spacecraft Science Canister Preliminary Inspection and Cleaning
NASA Technical Reports Server (NTRS)
Hittle, J. D.; Calaway, M. J.; Allton, J. H.; Warren, J. L.; Schwartz, C. M.; Stansbery, E. K.
2006-01-01
The Genesis science canister is an aluminum cylinder (75 cm diameter and 35 cm tall) hinged at the mid-line for opening. This canister was cleaned and assembled in an ISO level 4 (Class 10) clean room at Johnson Space Center (JSC) prior to launch. The clean solar collectors were installed and the canister closed in the cleanroom to preserve collector cleanliness. The canister remained closed until opened on station at Earth-Sun L1 for solar wind collection. At the conclusion of collection, the canister was again closed to preserve collector cleanliness during Earth return and re-entry. Upon impacting the dry Utah lakebed at 300 kph the science canister integrity was breached. The canister was returned to JSC. The canister shell was briefly examined, imaged, gently cleaned of dust and packaged for storage in anticipation of future detailed examination. The condition of the science canister shell noted during this brief examination is presented here. The canister interior components were packaged and stored without imaging due to time constraints.
The Stardust: A Successful Encounter with the Remarkable Comet Wild 2
NASA Technical Reports Server (NTRS)
Brownlee, D. E.; Anderson, J. D.; Atkins, K.; Bhaskaran, S.; Cheuvront, A. R.; Clark, B. C.; Duxbury, T. C.; Economou, T.; Hanner, M. S.; Hoerz, F.
2004-01-01
On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did in-situ compositional analysis of freshly released dust with a time-of-flight mass spectrometer. The primary goal of the mission is to collect >500 particles >15 m diameter and return them to Earth on January 15, 2006. The cometary particles ranging in size from a micron to approx.100 microns were collected in low density silica aerogel. After returning over a hundred 2x4x3 cm aerogel collection cells will be processed at the curatorial facility at the NASA Johnson Space Center and 5 to 100 micron size extracted cometary particles will be distributed to analysts by a system that will be based on the allocation procedures for cosmic dust, Antarctic meteorites and lunar samples.
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, workers lift the Ares I-X crew module mock-up from a work stand for a fit check with a mock-up of the service module. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, workers position the Ares I-X crew module mock-up onto a mock-up of the service module during a fit check of the hardware. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, workers lower the Ares I-X crew module mock-up onto a mock-up of the service module during a fit check of the hardware. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, the Ares I-X crew module mock-up hangs suspended from a crane as it is moved for a fit check with a mock-up of the service module. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center, the Ares I-X crew module mock-up is positioned onto a mock-up of the service module to determine that the pieces of hardware are a perfect fit. When fully developed, the 16-foot diameter crew module will furnish living space and reentry protection for future astronauts, and the service module’s main engine will be used to break out of lunar orbit for the return trip to Earth. Ares I-X is the test flight for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I launches. Targeted for the summer of 2009, the launch of the full-scale Ares I-X will be the first in a series of unpiloted rocket launches from Kennedy. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1989-01-01
Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.
Zonal Acoustic Velocimetry in 30-cm, 60-cm, and 3-m Laboratory Models of the Outer Core
NASA Astrophysics Data System (ADS)
Rojas, R.; Doan, M. N.; Adams, M. M.; Mautino, A. R.; Stone, D.; Lekic, V.; Lathrop, D. P.
2016-12-01
A knowledge of zonal flows and shear is key in understanding magnetic field dynamics in the Earth and laboratory experiments with Earth-like geometries. Traditional techniques for measuring fluid flow using visualization and particle tracking are not well-suited to liquid metal flows. This has led us to develop a flow measurement technique based on acoustic mode velocimetry adapted from helioseismology. As a first step prior to measurements in the liquid sodium experiments, we implement this technique in our 60-cm diameter spherical Couette experiment in air. To account for a more realistic experimental geometry, including deviations from spherical symmetry, we compute predicted frequencies of acoustic normal modes using the finite element method. The higher accuracy of the predicted frequencies allows the identification of over a dozen acoustic modes, and mode identification is further aided by the use of multiple microphones and by analyzing spectra together with those obtained at a variety of nearby Rossby numbers. Differences between the predicted and observed mode frequencies are caused by differences in flow patterns present in the experiment. We compare acoustic mode frequency splittings with theoretical predictions for stationary fluid and solid body flow condition with excellent agreement. We also use this technique to estimate the zonal shear in those experiments across a range of Rossby numbers. Finally, we report on initial attempts to use this in liquid sodium in the 3-meter diameter experiment and parallel experiments performed in water in the 30-cm diameter experiment.
The role of tragus on echolocating bat, Eptesicus fuscus
NASA Astrophysics Data System (ADS)
Chiu, Chen; Moss, Cynthia
2005-04-01
Echolocating bats produce ultrasonic vocal signals and utilize the returning echoes to detect, localize and track prey, and also to avoid obstacles. The pinna and tragus, two major components of the bats external ears, play important roles in filtering returning echoes. The tragus is generally believed to play a role in vertical sound localization. The purpose of this study is to further examine how manipulation of the tragus affects a free-flying bat's prey capture and obstacle avoidance behavior. The first part of this study involved a prey capture experiment, and the bat was trained to catch the tethered mealworms in a large room. The second experiment involved obstacle avoidance, and the bat's task was to fly through the largest opening from a horizontal wire array without touching the wires. In both experiments, the bat performed the tasks under three different conditions: with intact tragus, tragus-deflection and recovery from tragus-deflection. Significantly lower performance was observed in both experiments when tragi were glued down. However, the bat adjusted quickly and returned to baseline performance a few days after the manipulation. The results suggest that tragus-deflection does have effects on both the prey capture and obstacle avoidance behavior. [Work supported by NSF.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
Utilization of NASA Lewis mobile terminals for the Hermes satellite
NASA Technical Reports Server (NTRS)
Edelman, E. A.; Fiala, J. L.; Rizzolla, L.
1977-01-01
The paper describes the portable earth terminal (PET) and the transportable earth terminal (TET) which enable two-way television and voice communication. Both terminals were developed by NASA and utilize the high power of the Hermes satellite. PET is a bus-type vehicle which has receiving equipment for full duplex color television and which can transmit programs originating in either the on-board PET studio or in nearby buildings. PET has a collapsible 2.4-m diameter parabolic antenna interfacing with a 500-watt 14-GHz wideband TV transmitter and a 12-GHz wideband TV receiver system. TET uses two parabolic reflector antennas, 3 m and 1.2 m in diameter, mounted on a flat trailer towed by a truck. TET can receive and relay color TV signals, and its narrowband transmitter can serve as a return audio link permitting a question-and-answer format. Also described are uplink and downlink performance characteristics, operation procedures, and field demonstrations which enabled personnel at several hospitals to participate in a distant medical conference.
Investigation of air flow in open-throat wind tunnels
NASA Technical Reports Server (NTRS)
Jacobs, Eastman N
1930-01-01
Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.
A numerical study of zone-melting process for the thermoelectric material of Bi2Te3
NASA Astrophysics Data System (ADS)
Chen, W. C.; Wu, Y. C.; Hwang, W. S.; Hsieh, H. L.; Huang, J. Y.; Huang, T. K.
2015-06-01
In this study, a numerical model has been established by employing a commercial software; ProCAST, to simulate the variation/distribution of temperature and the subsequent microstructure of Bi2Te3 fabricated by zone-melting technique. Then an experiment is conducted to measure the temperature variation/distribution during the zone-melting process to validate the numerical system. Also, the effects of processing parameters on crystallization microstructure such as moving speed and temperature of heater are numerically evaluated. In the experiment, the Bi2Te3 powder are filled into a 30mm diameter quartz cylinder and the heater is set to 800°C with a moving speed 12.5 mm/hr. A thermocouple is inserted in the Bi2Te3 powder to measure the temperature variation/distribution of the zone-melting process. The temperature variation/distribution measured by experiment is compared to the results of numerical simulation. The results show that our model and the experiment are well matched. Then the model is used to evaluate the crystal formation for Bi2Te3 with a 30mm diameter process. It's found that when the moving speed is slower than 17.5 mm/hr, columnar crystal is obtained. In the end, we use this model to predict the crystal formation of zone-melting process for Bi2Te3 with a 45 mm diameter. The results show that it is difficult to grow columnar crystal when the diameter comes to 45mm.
Sample Return: What Happens to the Samples on Earth?
NASA Technical Reports Server (NTRS)
McNamara, Karen
2010-01-01
As space agencies throughout the world turn their attention toward human exploration of the Moon, Mars, and the solar system beyond, there has been an increase in the number of robotic sample return missions proposed as precursors to these human endeavors. In reality, however, we, as a global community, have very little experience with robotic sample return missions: 3 of the Russian Luna Missions successfully returned lunar material in the 1970s; 28 years later, in 2004, NASA s Genesis Mission returned material from the solar wind; and in 2006, NASA s Stardust Mission returned material from the Comet Wild2. [Note: The Japanese Hyabusa mission continues in space with the hope of returning material from the asteroid 25143 Itokawa.] We launch many spacecraft to LEO and return them to Earth. We also launch spacecraft beyond LEO to explore the planets, our solar system, and beyond. Some even land on these bodies. But these do not return. So as we begin to contemplate the sample return missions of the future, some common questions arise: "What really happens when the capsule returns?" "Where does it land?" "Who retrieves it and just how do they do that?" "Where does it go after that?" "How do the scientists get the samples?" "Do they keep them?" "Who is in charge?" The questions are nearly endless. The goal of this paper/presentation is to uncover many of the mysteries of the post-return phase of a mission - from the time the return body enters the atmosphere until the mission ends and the samples become part of a long term collection. The discussion will be based largely on the author s own experience with both the Genesis and Stardust missions. Of course, these two missions have a great deal in common, being funded by the same NASA Program (Discovery) and having similar team composition. The intent, however, is to use these missions as examples in order to highlight the general requirements and the challenges in defining and meeting those requirements for the final phase of sample return missions. The choices made by the Genesis and Stardust teams regarding recovery and sample handling will be discussed. These will be compared with the handling of returned lunar samples and the proposed handling of the Hyabusa samples as well. Finally, though none of these recent missions have been restricted within NASA s Planetary Protection Protocol, this is likely to change as missions venture farther from Earth. The implementation of Planetary Protection requirements will vary significantly based on mission scenario, however some of the potential implications of restricted Earth return will be considered.
Why Does the Law of One Price Fail? An Experiment on Index Mutual Funds*
Choi, James J.; Laibson, David; Madrian, Brigitte C.
2009-01-01
We conduct an experiment to evaluate why individuals invest in high-fee index funds. In our experiments, subjects allocate $10,000 across four S&P 500 index funds and are rewarded for their portfolio’s subsequent return. Subjects overwhelmingly fail to minimize fees. We can reject the hypothesis that subjects buy high-fee index funds because of bundled non-portfolio services. Search costs for fees matter, but even when we eliminate these costs, fees are not minimized. Instead, subjects place high weight on annualized returns since inception. Fees paid decrease with financial literacy. Interestingly, subjects who choose high-fee funds sense they are making a mistake. PMID:20495662
Wage Gaps Between the Public and Private Sectors in Spain.
ERIC Educational Resources Information Center
Lassibille, Gerard
1998-01-01
Estimates separate earnings equations by employment sector and gender in Spain and identifies returns to human capital, based on 1990-91 household survey data. Public wages are higher, and civil servants more highly educated. However, the public sector pays lower returns to education and experience. Earnings advantage is largest for least skilled…
Older Amateur Keyboard Players Learning for Self-Fulfilment
ERIC Educational Resources Information Center
Taylor, Angela
2011-01-01
This article investigates self-reported music learning experiences of 21 older amateur pianists and electronic keyboard players. Significant changes in their lives and the encouragement of friends were catalysts for returning to or taking up a keyboard instrument as an adult, although not all returners had positive memories of learning a keyboard…
Fostering Agency and Artistry in Dancers
ERIC Educational Resources Information Center
Chavasse, Amy
2015-01-01
Returning to the classroom each year is an act of radical repositioning. Even as I return to the knowledge, experience, and accumulated memories of my teaching and creative practice, I look to ways to restructure how I deliver information and search for new methodologies of learning. Acknowledging the fluid conditions that define teaching movement…
The Returned Prisoner of War: Factors in Family Reintegration
ERIC Educational Resources Information Center
McCubin, Hamilton I.; And Others
1975-01-01
Longitudinal study on 48 families of returned prisoners of war to identify factors to explain degree of reintegration of returnee into his family system. Four sets of data were considered: (1) background characteristics of husband and wife; (2) indices of family preparedness; (3) returnees' prison experiences and their psychiatric status; (4)…
Freirean Literacy and the Liberal Arts: Empowering the Returning Adult.
ERIC Educational Resources Information Center
Trivisonno, Ann
The "problem-posing" education model of Paulo Freire takes as its departure point the life experience of the learner, rather than the teacher's knowledge. Ursuline College (Cleveland, Ohio) created several courses for returning adult students that were based on Freire's ideas. One course called "Humanities Focus on Life" is for…
Early Election Returns and the Voting Behavior of Adolescent Voters
ERIC Educational Resources Information Center
Mann, Leon; And Others
1971-01-01
High school students participated in a field experiment that tested the effects of exposure to early election returns in a nonpartisan referendum. Students in the brighter classes changed their vote less frequently, but when they changed their preferences they showed a greater bandwagon effect. Students in the classes of lower academic achievement…
Predictors of visitors' intention to return to a nature-based recreation area
Jee In Yoon; Gerard Kyle
2010-01-01
This study explored predictors of recreationists' intention to return to Santee Cooper Country (SCC), a popular destination for angling-based tourism in South Carolina. Our hypothesized model indicated that recreationists' experience use history and place satisfaction would positively affect four dimensions of place attachment to SCC. Place attachment was...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clichici, Simona, E-mail: simonaclichici@yahoo.com; Biris, Alexandru Radu; Tabaran, Flaviu
2012-03-15
Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTsmore » (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF-KB increase in liver after MWCNTs ip injection. ► All the alterations, except plasma GSH, return to normal within 6 days.« less
Alaki, Sumer M; Safi, Ayman; Ouda, Soliman; Nadhreen, Alaa
this study was aimed at comparing dental stress in children having their first dental visit to those returning for dental treatment using salivary biomarkers of stress including salivary cortisol (s-cortisol), Immunoglobulin-A (s-IgA) and alpha-amylase (s-α-amylase). Additionally, the study was aimed at monitoring the change in stress in new patients as they progressed from the waiting to the clinical areas. salivary samples were collected from 40 children who had not been to a dentist before and similar samples were collected from 40 children who were returning for completion of dental treatment. Salivary cortisol, s-IgA and s-α-amylase concentrations were obtained by Enzyme-linked Immunosorbent Assay (ELISA). salivary cortisol levels were higher for new patients at the waiting area compared to that at the dental chair (p=0.05). Salivary alpha-amylase significantly increased in new patients while being seated in the dental chair. Returning patients had higher s-α-amylase (p=0.001) and s-IgA (p=0.016) compared to new patients. Returning patients had the lowest level of s-cortisol when providers were faculty pediatric dentists than with students and interns (p=0.035). children coming in for their first dental visit may experience dental stress at the waiting area before being seated for dental examination. Returning children may experience higher levels of stress compared to new child patients possibly due to previous dental exposure.
Return to work and cancer: the Australian experience.
McKay, Georgina; Knott, Vikki; Delfabbro, Paul
2013-03-01
Research suggests that for many cancer survivors, returning to work has a range of benefits. However, considerable barriers have been identified as influencing the quality of return to work outcomes. This study explored the perspectives of Australian cancer survivors, managers and employee assistance program (EAP) professionals to gain an understanding of the return to work process and factors that affect the experience. Focus groups and interviews were conducted with cancer survivors (n = 15), managers (n = 12), and EAP professionals / psychologists (n = 4) from public and private sectors. Thematic analysis was used to analyse the data to identify common and unique themes from the three participant groups. A range of drivers were identified including maintaining normality and regaining identity, which could act positively or negatively depending on survivors' coping ability and self awareness. Analysis revealed communication difficulties in the workplace that impact on emotional and practical support. Negotiating an employee's return is complex, influenced by the level of consultation with the employee and use of an ad hoc or structured process. Direct and indirect ways of supporting employees with cancer were identified, as was the need for colleague and manager support. This study supports previous research findings of the impact of cancer on work, and reveals managers' lack of knowledge on how to respond appropriately. The process of returning to work is complex, influenced by employees' and managers' attitudes, communication skills and coping abilities. Areas for workplace interventions to optimise support for the cancer survivor are described.
Bolek, Siegfried; Wittlinger, Matthias; Wolf, Harald
2012-09-15
When finding more food than one is able to carry home, should one come back to the site to exploit it further? This question is crucial for central place foragers that provide for a home place with brood or nest mates. The benefit of returning has to be weighed against the chance of finding food elsewhere and the resources available. Desert ants Cataglyphis fortis are well-studied examples when it comes to navigating back and forth between their nest and a foraging area, due to their primary reliance on path integration in the open and featureless desert habitat. The ants use path integration not only for a safe return from their foraging trips but also for future returns to plentiful feeding sites. The direction from the nest that has previously yielded food items is preferred for future foraging trips, a phenomenon termed sector fidelity. What prompts the ants to return to a particular site, and how faithfully they search for that place, has not been well studied. We examine the evaluation of food sources in channel experiments by varying both the number of food items in a feeder and the number of visits to the feeder before testing search distances of foragers returning to the feeding site. Ants exhibited more focused searches for plentiful food sources than for sources with only few food items upon their first return visit. After several successful visits, the ants always searched thoroughly for the food source, independent of the amount of food offered. Thus, desert ants consider both food abundance and reliability of food encounter, with corroborative learning of reliability gradually overriding the initial preference for plentiful feeders. The density of food items appears to be used by the ants as a proxy for food abundance. On the level of our analysis, the searches performed in the experimental channels are indistinguishable from those performed in the open desert terrain. The present results not only demonstrate how otherwise well-studied desert ants assess yield and experience with reliability of food sources, but also establish a model system for future study of how itemised food sources are exploited.
Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales
NASA Technical Reports Server (NTRS)
Breisacher, Kevin; Moder, Jeffrey
2010-01-01
For long-duration in-space storage of cryogenic propellants, an axial jet mixer is one concept for controlling tank pressure and reducing thermal stratification. Extensive ground-test data from the 1960s to the present exist for tank diameters of 10 ft or less. The design of axial jet mixers for tanks on the order of 30 ft diameter, such as those planned for the Ares V Earth Departure Stage (EDS) LH2 tank, will require scaling of available experimental data from much smaller tanks, as well designing for microgravity effects. This study will assess the ability for Computational Fluid Dynamics (CFD) to handle a change of scale of this magnitude by performing simulations of existing ground-based axial jet mixing experiments at two tank sizes differing by a factor of ten. Simulations of several axial jet configurations for an Ares V scale EDS LH2 tank during low Earth orbit (LEO) coast are evaluated and selected results are also presented. Data from jet mixing experiments performed in the 1960s by General Dynamics with water at two tank sizes (1 and 10 ft diameter) are used to evaluate CFD accuracy. Jet nozzle diameters ranged from 0.032 to 0.25 in. for the 1 ft diameter tank experiments and from 0.625 to 0.875 in. for the 10 ft diameter tank experiments. Thermally stratified layers were created in both tanks prior to turning on the jet mixer. Jet mixer efficiency was determined by monitoring the temperatures on thermocouple rakes in the tanks to time when the stratified layer was mixed out. Dye was frequently injected into the stratified tank and its penetration recorded. There were no velocities or turbulence quantities available in the experimental data. A commercially available, time accurate, multi-dimensional CFD code with free surface tracking (FLOW-3D from Flow Science, Inc.) is used for the simulations presented. Comparisons are made between computed temperatures at various axial locations in the tank at different times and those observed experimentally. The affect of various modeling parameters on the agreement obtained are assessed.
On-field performance of national football league players after return from concussion.
Kumar, Neil S; Chin, Matthew; O'Neill, Craig; Jakoi, Andre M; Tabb, Loni; Wolf, Michael
2014-09-01
There are few data examining the short-term effects of concussions on player performance upon return to play. This study examined changes in on-field performance and the influence of epidemiologic factors on performance and return to play. On-field performance is different in players who return within 7 days after concussion compared with players who miss at least 1 game. Case-control study; Level of evidence, 3. Players in the National Football League who were active during the 2008 to 2012 seasons were considered for inclusion. Weekly injury reports identified concussed players. All players played in at least 4 games before and after the game of injury (sentinel game) within the year of injury (sentinel year). Players who had missed games secondary to another injury or had sustained a second concussion within the sentinel year were excluded. The players' league profiles were used to determine age, position, body mass index, career experience, and games missed. ProFootballFocus performance scores determined player ratings. Statistical analysis used 2-sided t tests and both univariate and multivariate logistic regression models. There were a total of 131 concussions in the 124 players who qualified for this study; 55% of these players missed no games. Defensive secondary, wide receiver, and offensive line were the most commonly affected positions. Players who missed at least 1 game were younger and less experienced. Preinjury ProFootballFocus performance scores were similar to postinjury performance in players without games missed (0.16 vs 0.33; P = .129) and players who missed at least 1 game (-0.06 vs 0.10; P = .219). Age, body mass index, experience, and previous concussion did not correlate with changes in postinjury scores (P > .05). Older, more experienced players and players with late-season concussions were more likely to return to play without missing games (P < .05). The odds of returning within 7 days increased by 18% for each career year and by 40% for each game before the sentinel game within the sentinel year; these same odds decreased by 85% after introduction of newer treatment guidelines in 2009. No difference in player performance after concussion was found whether the player did or did not miss games before return. Return without missing games may be associated with experience and timing of injury within a season and less likely after newer guidelines. © 2014 The Author(s).
STS-66 Atlantis 747 SCA Ferry Flight Morning Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1994-01-01
The space shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (SCA) during takeoff for a return ferry flight to the Kennedy Space Center from Edwards, California. The STS-66 mission was dedicated to the third flight of the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3), part of NASA's Mission to Planet Earth program. The astronauts also deployed and retrieved a free-flying satellite designed to study the middle and lower thermospheres and perform a series of experiments covering life sciences research and microgravity processing. The landing was at 7:34 a.m. (PST) 14 November 1994, after being waved off from the Kennedy Space Center, Florida, due to adverse weather. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.
1995-01-01
The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.
Lost in translation: returning germline genetic results in genome-scale cancer research.
Johns, Amber L; McKay, Skye H; Humphris, Jeremy L; Pinese, Mark; Chantrill, Lorraine A; Mead, R Scott; Tucker, Katherine; Andrews, Lesley; Goodwin, Annabel; Leonard, Conrad; High, Hilda A; Nones, Katia; Patch, Ann-Marie; Merrett, Neil D; Pavlakis, Nick; Kassahn, Karin S; Samra, Jaswinder S; Miller, David K; Chang, David K; Pajic, Marina; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Zeps, Nikolajs; Gill, Anthony J; Biankin, Andrew V
2017-04-28
The return of research results (RoR) remains a complex and well-debated issue. Despite the debate, actual data related to the experience of giving individual results back, and the impact these results may have on clinical care and health outcomes, is sorely lacking. Through the work of the Australian Pancreatic Cancer Genome Initiative (APGI) we: (1) delineate the pathway back to the patient where actionable research data were identified; and (2) report the clinical utilisation of individual results returned. Using this experience, we discuss barriers and opportunities associated with a comprehensive process of RoR in large-scale genomic research that may be useful for others developing their own policies. We performed whole-genome (n = 184) and exome (n = 208) sequencing of matched tumour-normal DNA pairs from 392 patients with sporadic pancreatic cancer (PC) as part of the APGI. We identified pathogenic germline mutations in candidate genes (n = 130) with established predisposition to PC or medium-high penetrance genes with well-defined cancer associated syndromes or phenotypes. Variants from candidate genes were annotated and classified according to international guidelines. Variants were considered actionable if clinical utility was established, with regard to prevention, diagnosis, prognostication and/or therapy. A total of 48,904 germline variants were identified, with 2356 unique variants undergoing annotation and in silico classification. Twenty cases were deemed actionable and were returned via previously described RoR framework, representing an actionable finding rate of 5.1%. Overall, 1.78% of our cohort experienced clinical benefit from RoR. Returning research results within the context of large-scale genomics research is a labour-intensive, highly variable, complex operation. Results that warrant action are not infrequent, but the prevalence of those who experience a clinical difference as a result of returning individual results is currently low.
Return to Play and Performance After Jones Fracture in National Basketball Association Athletes
Begly, John P.; Guss, Michael; Ramme, Austin J.; Karia, Raj; Meislin, Robert J.
2015-01-01
Background: Basketball players are at risk for foot injuries, including Jones fractures. It is unknown how this injury affects the future play and performance of athletes. Hypothesis: National Basketball Association (NBA) players who sustain Jones fractures of the base of the fifth metatarsal have high rates of return to play and do not experience a decrease in performance on return to competition when compared with preinjury and with control-matched peers. Study Design: Retrospective cohort study. Level of Evidence: Level 5. Methods: Data on 26 elite basketball players with Jones fractures over 19 NBA seasons (1994-1995 to 2012-2013) were obtained from injury reports, press releases, player profiles, and online public databases. Variables included age, body mass index (BMI), player position, experience, and surgical treatment. Individual season statistics pre- and postinjury were collected. Twenty-six controls were identified by matched player position, age, and performance statistics. Results: The mean age at the time of injury was 24.8 years, mean BMI was 24.7 kg/m2, and the mean experience prior to injury was 4.1 NBA seasons. Return to previous level of competition was achieved by 85% of athletes. There was no change in player efficiency rating (PER) when pre- and postinjury performance was compared. When compared with controls, no decline in PER measured performance was identified. Conclusion: The majority of NBA players sustaining a Jones fracture return to their preinjury level of competition. These elite athletes demonstrate no decrease in performance on their return to play. Clinical Relevance: Jones fractures are well-studied injuries in terms of etiology, diagnosis, and management. However, the effect of these injuries on future performance of athletes is unknown. Using the findings of our study, orthopaedic surgeons may be better prepared to counsel and educate elite athletes who sustain a Jones fracture. PMID:26627111
Refractive and relativistic effects on ITER low field side reflectometer design.
Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V
2010-10-01
The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.
Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime
NASA Astrophysics Data System (ADS)
Ivanov, B. A.
2018-01-01
The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.
Comments on the Operation of Capillary Pumped Loop Devices in Low Gravity
NASA Technical Reports Server (NTRS)
Hallinan, K. P.; Allen, J. S.
1999-01-01
The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.
NASA Astrophysics Data System (ADS)
Grigoryan, Eleonora; Almeida, Eduardo; Mitashov, Victor
The pursuit of human space exploration requires detailed knowledge of microgravity-related changes in fundamental biological processes, and their effects on health. Normal regeneration of organs and tissues is one such fundamental process that allows maintenance of vitality and function of living organisms. Animal models of tissue regeneration include the newt (Pleurodeles waltl, Urodela) eye, which has been extensively used by our team in Russian Bion and Foton microgravity experiments since 1985, and in recent NASA 2.5 meter diameter centrifuge hypergravity experiments. In total, these experiments allow us to draw several broad conclusions: Newt lens regeneration is significantly altered in microgravity and hypergravity relative to 1g controls. Lenses formed in microgravity are larger and more developed than those regenerated in 1g controls; Microgravity alterations of lens regeneration can persist after spaceflight, and continue to affect repeated removal and regeneration of the lens after return to 1g; Microgravity increases the numbers of early stage regenerative proliferating BrdU-labeled cells in dorsal iris progenitors and in the lens regenerate. Regeneration under hypergravity conditions at 2g inhibits lens regeneration, and often causes retinal detachment. Molecular mechanisms regulating lens regeneration rate include FGF2 signaling, (a key pathway for eye tissue development and regeneration), and an expression of stress-related proteins - HSPs. In conclusion, regeneration of lens and other eye tissues in the newt is sensitive to, and regulated by the level of gravity mechanotransduction and developmental signaling pathways, with microgravity favoring stem cell progenitor proliferation, and gravity at 1g promoting terminal differentiation, while hypergravity at 2g often causes damage of delicate regenerating tissues.
Barriers and facilitators associated with return to work after stroke: a qualitative meta-synthesis.
Brannigan, Colm; Galvin, Rose; Walsh, Mary E; Loughnane, Cliona; Morrissey, Emma-Jane; Macey, Chris; Delargy, Mark; Horgan, N Frances
2017-02-01
To enhance the employment outcomes of individuals who experience a stroke, it is essential to understand the factors that determine successful return to work. The aim of this systematic review was to examine barriers to and facilitators of return to work after stroke from the perspective of people with stroke through the process of a qualitative meta-synthesis. A systematic literature search was conducted. Studies that employed qualitative methods to explore the experiences of individuals with stroke around return to work after stroke were included. The methodological quality of the studies was assessed by two independent reviewers. Overarching themes, concepts and interpretations were extracted from each individual study, compared and meta-synthesized. Fifteen studies were included and the overall methodological quality of the studies was good. Four broad themes emerged as factors associated with return to work after stroke. These included (i) the nature of the effects of stroke, (ii) the preparatory environment, (iii) personal coping strategies and internal challenges and (iv) the meaning of work. Return to work after stroke is a complex process which can be facilitated or impeded by organizational, social or personal factors, as well as accessibility to appropriate services. Implications for Rehabilitation Following a period of dedicated inpatient rehabilitation, there is a need to integrate community-support services to optimize return to work among stroke survivors. A dedicated community stroke support liaison officer may help to facilitate the transition between the hospital and the community and workplace environment. Education provided by healthcare professionals is necessary in the community and the workplace to ensure that family, friends and employers are aware of the impairments, activity limitations and participation restrictions of the stroke survivor.
Changes in experienced value of everyday occupations after nature-based vocational rehabilitation.
Pálsdóttir, Anna María; Grahn, Patrik; Persson, Dennis
2014-01-01
The aim of this study was to describe and assess changes in participants' experiences of everyday occupations after nature-based vocational rehabilitation (NBVR), to assess changes regarding symptoms of severe stress and the rate of return to work and possible association with experiencing the occupational value of everyday occupations. The NBVR was carried out by a transdisciplinary rehabilitation team and took place in a specially designed rehabilitation garden. The study had a longitudinal and mixed-method approach. Data concerning experiences of everyday occupations (Oval-pd), self-assessed occupational competence (OSA-F), health status (EQ-VAS, SCI-93), and sense of coherence (SOC-13) were collected before and after the intervention, and a one-year follow-up was carried out regarding returning to work. Semi-structured interviews were performed 12 weeks after the intervention. Significant changes were measured regarding perceived occupational values in daily life, symptoms of severe stress, and returning to work. Both the return to work rate and symptoms of severe stress were significantly associated with changed experience of everyday occupation. In the interviews, participants explained that they now had a slower pace of everyday life and that everyday occupations were more often related to nature and creativity. This could be interpreted as nature-based rehabilitation inducing changes through meaningful occupations in restorative environments, leading to a positive change in perceived values of everyday occupations.
Suitable pitch difference to realize anti-loosening performance for various bolts-nuts diameter
NASA Astrophysics Data System (ADS)
Kubo, S.; Tateishi, K.; Noda, N.-A.; Sano, Y.; Takase, Y.; Honda, K.
2018-06-01
In bolt-nut connection, the anti-loosening performance and high fatigue strength are always required with low cost to ensure the connected structure’s safety. In the previous study, a suitable pitch difference between the bolt-nut was obtained as α = 33 μm for M16 JIS bolt- nut through loosening experiment and FEM simulation for tightening process. However, other bolt-nut diameters have not been considered yet. In this paper, therefore, suitable pitch difference is considered for various diameters to realize anti-loosening performance. Since bolt-nut thread geometries are different depending on the diameter, they are expressed as approximate formula. Then, loosening force and anti-loosening force are considered by varying the diameter. Finally, suitable pitch difference {α }minsuit< α < {α }maxsuit was determined from mechanical condition.
U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22
NASA Astrophysics Data System (ADS)
Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.
2017-01-01
U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.
Performance Assessment of a Large Scale Pulsejet- Driven Ejector System
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Litke, Paul J.; Schauer, Frederick R.; Bradley, Royce P.; Hoke, John L.
2006-01-01
Unsteady thrust augmentation was measured on a large scale driver/ejector system. A 72 in. long, 6.5 in. diameter, 100 lb(sub f) pulsejet was tested with a series of straight, cylindrical ejectors of varying length, and diameter. A tapered ejector configuration of varying length was also tested. The objectives of the testing were to determine the dimensions of the ejectors which maximize thrust augmentation, and to compare the dimensions and augmentation levels so obtained with those of other, similarly maximized, but smaller scale systems on which much of the recent unsteady ejector thrust augmentation studies have been performed. An augmentation level of 1.71 was achieved with the cylindrical ejector configuration and 1.81 with the tapered ejector configuration. These levels are consistent with, but slightly lower than the highest levels achieved with the smaller systems. The ejector diameter yielding maximum augmentation was 2.46 times the diameter of the pulsejet. This ratio closely matches those of the small scale experiments. For the straight ejector, the length yielding maximum augmentation was 10 times the diameter of the pulsejet. This was also nearly the same as the small scale experiments. Testing procedures are described, as are the parametric variations in ejector geometry. Results are discussed in terms of their implications for general scaling of pulsed thrust ejector systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.
As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less
Pyrolysis of Large Black Liquor Droplets
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Dietrich, Daniel L.; T'ien, James S.; Wessel, Richard A.
2007-01-01
This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY)) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.
Pyrolysis of Large Black Liquor Droplets
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; T'ien, James S.; Dietrich, Daniel L.; Wessel, Richard A.
2007-01-01
This paper presents the results of experiments involving the pyrolysis of large black liquor droplets in the NASA KC-135 reduced gravity aircraft. The reduced gravity environment facilitated the study of droplets up to 9 mm in diameter extending the results of previous studies to droplet sizes that are similar to those encountered in recovery boilers. Single black liquor droplets were rapidly inserted into a 923 K oven. The primary independent variables were the initial droplet diameter (0.5 mm to 9 mm), the black liquor solids content (66.12% - 72.9% by mass), and the ambient oxygen mole fraction (0.0 - 0.21). Video records of the experiments provided size and shape of the droplets as a function of time. The results show that the particle diameter at the end of the drying stage (D(sub DRY) ) increases linearly with the initial particle diameter (D(sub O)). The results further show that the ratio of the maximum swollen diameter (D(sub MAX)) to D(sub O) decreases with increasing D(sub O) for droplets with D(sub O) less than 4 mm. This ratio was independent of D(sub O) for droplets with D(sub O) greater than 4 mm. The particle is most spherical at the end of drying, and least spherical at maximum swollen size, regardless of initial sphericity and droplet size.
The Effect of Reading Upon Pupil Dilation. Final Report.
ERIC Educational Resources Information Center
Carver, Ronald P.
The question of whether pupil diameter indicates information processing load during reading was investigated in three experiments involving 24 college students reading passages of varying difficulty. A TV camera and monitor, together with a video-recorder, were used to measure the diameter of the pupil under a reading condition and under three…
The mixability of angiographic contrast with arterial blood
Lieber, Baruch B.; Sadasivan, Chander; Hao, Qing; Seong, Jaehoon; Cesar, Liliana
2009-01-01
Purpose: Angiographic contrast that is routinely injected into arteries is used not only to evaluate arterial geometry but also in many cases to assess perfusion. The authors conducted two experiments to examine the dispersion of angiographic contrast injected antegradely into an artery under conditions similar to those found in selective (carotid artery) or superselective (circle of Willis) angiography in order to determine the distance from the catheter tip at which the contrast can be considered fully mixed with the blood. A third experiment investigated whether the contrast once mixed with blood will separate from the mixture under the gravitational field due to a density mismatch. Methods: Experiment I—Under high-speed angiographic acquisition, a bolus of contrast was injected through a catheter along the flow direction of a blood analog fluid flowing through a straight, long, cylindrical tube. The variation in grayscale intensity along the length of the tube was acquired and modeled as the step response to a second-order system. The distance from the catheter tip at which the contrast mixes with the working fluid, the mixing length, was determined as the length along the tube after which the step response settles to within 3% of the steady state value. Experiment II—A bolus of angiographic contrast was injected at rates varying from 0.1 to 1 cc∕s through three different catheter sizes in the left common carotid artery of three rabbits. The average cross-sectional grayscale intensity over one cardiac cycle was calculated at four locations along the artery: Immediately distal to the catheter tip, at location of maximum grayscale intensity, and at 10 and 20 arterial diameters from the catheter tip. The status of mixing within 10 arterial diameters was assessed by differences between the grayscale value at this location and that at the maximum and 20 arterial diameter location. Experiment III—Angiographic contrast was premixed by agitation in three separate vials containing normal saline, canine blood, and glycerol∕distilled-water mixture. The vials were then stationed vertically and angiographic images obtained every 5 min for 1 h. The average intensity of contrast along the vertical length of each vial was obtained for every time point to record any changes in the distribution of contrast over time. Results: The first experiment shows that angiographic contrast completely mixes with steady flowing blood analog fluid within about eight tube diameters of the injection site. The second experiment shows that contrast completely mixes with blood within ten arterial diameters under appropriate injection parameters. The third experiment shows that angiographic contrast does not separate from, or settle out of, contrast-carrying fluid mixtures for a period of 1 h. Conclusions: The results demonstrate that under typical injection conditions in the clinical setting, contrast issuing from the catheter completely mixes with the blood within ten artery diameters downstream of the catheter tip. Once mixed, it does not separate from the blood due to gravity. PMID:19994517
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanath, R. N.; Polaki, S. R.; Rajaraman, R.
The scaling behavior of hardness with ligament diameter and vacancy defect concentration in nanoporous Au (np-Au) has been investigated using a combination of Vickers Hardness, Scanning electron microscopy, and positron lifetime measurements. It is shown that for np-Au, the hardness scales with the ligament diameter with an exponent of −0.3, that is, at variance with the conventional Hall-Petch exponent of −0.5 for bulk systems, as seen in the controlled experiments on cold worked Au with varying grain size. The hardness of np-Au correlates with the vacancy concentration C{sub V} within the ligaments, as estimated from positron lifetime experiments, and scalesmore » as C{sub V}{sup 1/2}, pointing to the interaction of dislocations with vacancies. The distinctive Hall-Petch exponent of −0.3 seen for np-Au, with ligament diameters in the range of 5–150 nm, is rationalized by invoking the constrained motion of dislocations along the ligaments.« less
Biomimetic Signal Processing Using the Biosonar Measurement Tool (BMT)
NASA Astrophysics Data System (ADS)
Abawi, Ahmad T.; Hursky, Paul; Porter, Michael B.; Tiemann, Chris; Martin, Stephen
2004-11-01
In this paper data recorded on the Biosonar Measurement Tool (BMT) during a target echolocation experiment are used to 1) find ways to separate target echoes from clutter echoes, 2) analyze target returns and 3) find features in target returns that distinguish them from clutter returns. The BMT is an instrumentation package used in dolphin echolocation experiments developed at SPAWARSYSCEN. It can be held by the dolphin using a bite-plate during echolocation experiments and records the movement and echolocation strategy of a target-hunting dolphin without interfering with its motion through the search field. The BMT was developed to record a variety of data from a free-swimming dolphin engaged in a bottom target detection task. These data include the three dimensional location of the dolphin, including its heading, pitch roll and velocity as well as passive acoustic data recorded on three channels. The outgoing dolphin click is recorded on one channel and the resulting echoes are recorded on the two remaining channels. For each outgoing click the BMT records a large number of echoes that come from the entire ensonified field. Given the large number of transmitted clicks and the returned echoes, it is almost impossible to find a target return from the recorded data on the BMT. As a means of separating target echoes from those of clutter, an echo-mapping tool was developed. This tool produces an echomap on which echoes from targets (and other regular objects such as surface buoys, the side of a boat and so on) stack together as tracks, while echoes from clutter are scattered. Once these tracks are identified, the retuned echoes can easily be extracted for further analysis.
NASA Astrophysics Data System (ADS)
Tambun, R.; Sibagariang, Y.; Manurung, J.
2018-02-01
The buoyancy weighing-bar method is a novel method in the particle size distribution measurement. This method can measure particle size distributions of the settling particles and floating particles. In this study, the buoyancy weighing-bar method is applied to determine optimal time of biodiesel-glycerol separation. The buoyancy weighing-bar method can be applied to determine the separation time because biodiesel and glycerol have the different densities. The influences of diameter of weighing-bar by using the buoyancy weighing-bar method would be experimentally investigated. The diameters of weighing-bar in this experiment are 8 mm, 10 mm, 15 mm and 20 mm, while the graduated cylinder (diameter : 65 mm) is used as vessel. The samples used in this experiment are the mixture of 95 % of biodiesel and 5 % of glycerol. The data obtained by the buoyancy weighing-bar method are analized by using the gas chromatography to determine the purity of biodiesel. Based on the data obtained, the buoyancy weighing-bar method can be used to detect the separation time of biodiesel-glycerol by using the weighing-bar diameter of 8 mm, 10 mm, 15 mm and 20 mm, but the most accuracy in determination the biodiesel-glycerol separation time is obtained by using the weighing-bar diameter of 20 mm. The biodiesel purity of 97.97 % could be detected at 64 minutes by using the buoyancy weighing-bar method when the weighing-bar diameter of 20 mm is used.
Cardiovascular and Cerebrovascular Control on Return from ISS
NASA Technical Reports Server (NTRS)
Hughson, Richard Lee; Shoemaker, Joel Kevin; Blaber, Andrew Philip; Arbeille, Philippe; Greaves, Danielle Kathleen
2008-01-01
Cardiovascular and Cerebrovascular Control on Return from ISS (CCISS) will study the effects of long-duration spaceflight on crew members' heart functions and their blood vessels that supply the brain. Learning more about the cardiovascular and cerebrovascular systems could lead to specific countermeasures that might better protect future space travelers. This experiment is collaborative with the Canadian Space Agency.
A Perishable Inventory Model with Return
NASA Astrophysics Data System (ADS)
Setiawan, S. W.; Lesmono, D.; Limansyah, T.
2018-04-01
In this paper, we develop a mathematical model for a perishable inventory with return by assuming deterministic demand and inventory dependent demand. By inventory dependent demand, it means that demand at certain time depends on the available inventory at that time with certain rate. In dealing with perishable items, we should consider deteriorating rate factor that corresponds to the decreasing quality of goods. There are also costs involved in this model such as purchasing, ordering, holding, shortage (backordering) and returning costs. These costs compose the total costs in the model that we want to minimize. In the model we seek for the optimal return time and order quantity. We assume that after some period of time, called return time, perishable items can be returned to the supplier at some returning costs. The supplier will then replace them in the next delivery. Some numerical experiments are given to illustrate our model and sensitivity analysis is performed as well. We found that as the deteriorating rate increases, returning time becomes shorter, the optimal order quantity and total cost increases. When considering the inventory-dependent demand factor, we found that as this factor increases, assuming a certain deteriorating rate, returning time becomes shorter, optimal order quantity becomes larger and the total cost increases.
Identifying Key Drivers of Return Reversal with Dynamical Bayesian Factor Graph.
Zhao, Shuai; Tong, Yunhai; Wang, Zitian; Tan, Shaohua
2016-01-01
In the stock market, return reversal occurs when investors sell overbought stocks and buy oversold stocks, reversing the stocks' price trends. In this paper, we develop a new method to identify key drivers of return reversal by incorporating a comprehensive set of factors derived from different economic theories into one unified dynamical Bayesian factor graph. We then use the model to depict factor relationships and their dynamics, from which we make some interesting discoveries about the mechanism behind return reversals. Through extensive experiments on the US stock market, we conclude that among the various factors, the liquidity factors consistently emerge as key drivers of return reversal, which is in support of the theory of liquidity effect. Specifically, we find that stocks with high turnover rates or high Amihud illiquidity measures have a greater probability of experiencing return reversals. Apart from the consistent drivers, we find other drivers of return reversal that generally change from year to year, and they serve as important characteristics for evaluating the trends of stock returns. Besides, we also identify some seldom discussed yet enlightening inter-factor relationships, one of which shows that stocks in Finance and Insurance industry are more likely to have high Amihud illiquidity measures in comparison with those in other industries. These conclusions are robust for return reversals under different thresholds.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, William G.; Mcdonald, R. A.; Schaub, G. E.; Stephenson, Stepheni L.; Mcdonnell, J. A. M.; Maag, Carl R.
1994-01-01
The return of a pristine sample from a comet would lead to greater understanding of cometary structures, as well as offering insights into exobiology. The paper presented at the Discovery Program Workshop outlined a set of measurements for what was identified as a SOCCER-like interplanetary mission. Several experiments comprised the total instrumentation. This paper presents a summary of CCSR with an overview of three of the four major instruments. Details of the major dust dynamics experiment including trajectory are given in this paper. The instrument proposed here offers the opportunity for the return of cometary dust particles gathered in situ. The capture process has been employed aboard the space shuttle with successful results in returning samples to Earth for laboratory analysis. In addition, the sensors will measure the charge, mass, velocity, and size of cometary dust grains during the encounter. This data will help our understanding of dusty plasmas.
The value of information in a multi-agent market model. The luck of the uninformed
NASA Astrophysics Data System (ADS)
Tóth, B.; Scalas, E.; Huber, J.; Kirchler, M.
2007-01-01
We present an experimental and simulated model of a multi-agent stock market driven by a double auction order matching mechanism. Studying the effect of cumulative information on the performance of traders, we find a non monotonic relationship of net returns of traders as a function of information levels, both in the experiments and in the simulations. Particularly, averagely informed traders perform worse than the non informed and only traders with high levels of information (insiders) are able to beat the market. The simulations and the experiments reproduce many stylized facts of tick-by-tick stock-exchange data, such as fast decay of autocorrelation of returns, volatility clustering and fat-tailed distribution of returns. These results have an important message for everyday life. They can give a possible explanation why, on average, professional fund managers perform worse than the market index.
Ultrasound measurement of inferior vena cava diameters by emergency department nurses.
De Lorenzo, Robert A; Holbrook-Emmons, Victoria L
2014-01-01
Sonographic measurement of the inferior vena cava (IVC) diameter is a potentially important noninvasive estimate of fluid status. We researched whether nurses without prior ultrasonography experience could accurately obtain vena cava diameter measurements on models and subjects in comparison with those obtained by an expert sonographer. The design was a prospective educational study using a pre- and posttest of knowledge and a comparison of imaging performance between a subject and an expert sonographer. The setting was an urban teaching medical center with emergency nurses and a convenience sample of volunteer patients selected from the emergency department (ED). Nurses completed a written survey and a pretest to document prior training and experience in ultrasonography and assess baseline knowledge. A structured training program (3.5 hr in length) was provided over three sessions. Training consisted of didactic presentations, practice on phantoms (manikin models designed to provide the sonographic image of the human body when scanned by a trainee) and classmates, and one volunteer patient in the ED. Each nurse then measured IVC diameters on three different volunteer patients in transverse and longitudinal orientations using frozen images. An expert sonographer, blinded to subject results, performed the same examination. Correlations were determined, and a posttraining written examination was completed and results compared with the pretest using a pair-wise t test. Fourteen nurses, with a mean of 8 years' nursing experience (range = 2-18 years), participated. Nurse-expert R value correlation for the longitudinal orientation was 0.68 (95% confidence interval [CI] [0.35, 0.76]) and 0.59 (95% CI [0.47, 0.81]) for the transverse orientation. Posttest scores improved 8.2 percentage points (95% CI [4.0, 12.4]) from 83.3% to 91.5%. Following a brief training course, nurses with no prior sonography experience show moderately good correlation measuring the IVC diameter as compared with expert measurements, with better performance demonstrated in the longitudinal orientation.
Mark-recapture studies of host selection by Anopheles (Anopheles) vestitipennis.
Ulloa, Armando; Arredondo-Jiménez, Juan I; Rodriguez, Mario H; Fernández-Salas, Ildefonso
2002-03-01
We present herein the results of a series of mark-recapture experiments with female Anopheles vestitipennis. Theses experiments used human and animal hosts to assess the degree of anthropophily of field-caught specimens, originally collected on either host, and of their offspring. Fidelity of mosquitoes to particular hosts was estimated by recapturing marked host-seeking mosquitoes returning for a 2nd blood meal. Results indicated that mosquitoes seeking animal hosts were more faithful (80.48%; 33 of 41) in returning to their original host than were those seeking human hosts (63%; 49 of 78).
[Role of occupational rehabilitation therapy in returning to work: experimental experience].
Bazzini, Giacomo; Panigazzil, Monica; Prestifilippo, Elena; Capodaglio, Edda Maria; Candura, Stefano M; Scafa, Fabrizio; Nuccio, Carla; Cortese, Giovanni; Matarrese, Maria Rosaria; Miccio, Antonella
2014-01-01
The experimental experience is the result of combining cultural, clinical and scientific interest in rehabilitative, occupational and forensic mnedicine and in ergonomics. It deals with the rehabilitation and return at work of patients with physical disabilities caused by occupational trauma or disease. The programme described starts with a selection by INAIL and involves with an outpatient surgery inclusion. It is composed of: preliminary physical examination, functional assessment, the formulation of a rehabilitation plan and its successive implementation. At the end of the evaluation plan, there is a final assessment to identify outcome indicators and residual functional and work capacity.
Reintegration of Pakistani return migrants from the Middle East in the domestic labour market.
Arif, G M
1998-01-01
This study compared the unemployment rates among return migrants and nonmigrants and examined the reintegration pattern of returnees in the domestic labor market. The study utilized three data sets: the 1980 World Bank Survey of Return Migrant Households; the 1986 ILO/ARTEP Survey of Return Migrant Households; the 1991 Pakistan Integrated Household Survey. Findings showed that unemployment rates were much higher among return migrants than nonmigrants. Although this difference narrowed with the passage of time, even among those who returned to Pakistan at least 18 months prior to the surveys, more than 10% of workers were unemployed. The multivariate analysis further showed that returnees, irrespective of the period elapsed since their return, were more likely to be unemployed than nonmigrants. With respect to the reintegration pattern of return migrants, the study revealed that variables indicating their human capital, such as occupation and pre-migration and during-migration work experience, appear to have a greater influence on their post-return adjustment than the variables related to economic positions such as savings. The results also showed that the types of jobs unemployed returnees were looking for differed substantially from those held by employed return migrants. A possibility was that unemployed returnees could not save enough from their overseas earnings to become self-employed. Thus, provision of credit for self-employment seems to be the right way to accommodate these workers.
A solar-pumped Nd:YAG laser in the high collection efficiency regime
NASA Astrophysics Data System (ADS)
Lando, Mordechai; Kagan, Jacob; Linyekin, Boris; Dobrusin, Vadim
2003-07-01
Solar-pumped lasers can be used for space and terrestrial applications. We report on solar side-pumped Nd:YAG laser experiments, which included comprehensive beam quality measurements and demonstrated record collection efficiency and day long operation. A 6.75 m 2 segmented primary mirror was mounted on a commercial two-axis positioner and focused the solar radiation towards a stationary non-imaging-optics secondary concentrator, which illuminated a Nd:YAG laser rod. Solar side-pumped laser experiments were conducted in both the low and the high pumping density regimes. The low density system was composed of a 89 × 98-mm 2 aperture two-dimensional compound parabolic concentrator (CPC) and a 10-mm diameter 130-mm long Nd:YAG laser rod. The laser emitted up to 46 W and operated continuously for 5 h. The high density system was composed of a three-dimensional CPC with 98 mm entrance diameter and 24 mm exit diameter, followed by a two-dimensional CPC with a rectangular 24 × 33 mm 2 aperture. It pumped a 6-mm diameter 72 mm long Nd:YAG laser rod, which emitted up to 45 W. The results constitute a record collection efficiency of 6.7 W/m 2 of primary mirror. We compare the current results to previous solar side-pumped laser experiments, including experiments at higher pumping density but with low collection efficiency. Finally, we present a scaled up design for a 400 W laser pumped by a solar collection area of 60 m 2, incorporating simultaneously high collection efficiency and high pumping density.
Frivold, Gro; Slettebø, Åshild; Dale, Bjørg
2016-02-01
To illuminate relatives' experiences of everyday life after a loved one's stay in an intensive care unit. Relatives of intensive care patients experience considerable stress that can have a long-lasting effect on their everyday lives. Relatives frequently report anxiety, depression and complicated grief as a result of their experiences in the intensive care unit. A qualitative design was chosen. Thirteen relatives were interviewed 3 months to 1 year after the discharge or death of an intensive care unit patient. A phenomenological hermeneutical method was used to explore family members' lived experiences upon returning home after their loved ones' stay in the intensive care unit. Two themes emerged from the analysis of the data: (1) changes in everyday life and emotional reactions, and (2) managing changes and need of support and follow-up from the ICU. Family members experience changes in emotions, roles and responsibilities after returning home. They must maintain control of themselves and adapt to the changes to face the future. They cope by using their personal resources and support from others. Some are in further need of follow-up from the intensive care unit staff. Nursing education could focus increasingly more on the significance of communication and personal support, which helps family members cope during patients' stay and experience a sense of personal strength when returning home. Further research should address how to identify and support those with special needs after the intensive care unit stay. © 2016 John Wiley & Sons Ltd.
Large eccentric laser angioplasty catheter
NASA Astrophysics Data System (ADS)
Taylor, Kevin D.; Reiser, Christopher
1997-05-01
In response to recent demand for increased debulking of large diameter coronary vascular segments, a large eccentric catheter for excimer laser coronary angioplasty has been developed. The outer tip diameter is 2.0 mm and incorporates approximately 300 fibers of 50 micron diameter in a monorail- type percutaneous catheter. The basic function of the device is to ablate a coronary atherosclerotic lesion with 308 nm excimer laser pulses, while passing the tip of the catheter through the lesion. By employing multiple passes through the lesion, rotating the catheter 90 degrees after each pass, we expect to create luminal diameters close to 3 mm with this device. Design characteristics, in-vitro testing, and initial clinical experience is presented.
Misra, R D K; Depan, D; Shah, J
2013-08-21
The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.
Fast Neutron Spectrum Potassium Worth for Space Power Reactor Design Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Marshall, Margaret A.; Briggs, J. Blair
2015-03-01
A variety of critical experiments were constructed of enriched uranium metal (oralloy ) during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Ofmore » the hundreds of delayed critical experiments, one was performed that consisted of uranium metal annuli surrounding a potassium-filled, stainless steel can. The outer diameter of the annuli was approximately 13 inches (33.02 cm) with an inner diameter of 7 inches (17.78 cm). The diameter of the stainless steel can was 7 inches (17.78 cm). The critical height of the configurations was approximately 5.6 inches (14.224 cm). The uranium annulus consisted of multiple stacked rings, each with radial thicknesses of 1 inch (2.54 cm) and varying heights. A companion measurement was performed using empty stainless steel cans; the primary purpose of these experiments was to test the fast neutron cross sections of potassium as it was a candidate for coolant in some early space power reactor designs.The experimental measurements were performed on July 11, 1963, by J. T. Mihalczo and M. S. Wyatt (Ref. 1) with additional information in its corresponding logbook. Unreflected and unmoderated experiments with the same set of highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in the International Handbook for Evaluated Criticality Safety Benchmark Experiments (ICSBEP Handbook) with the identifier HEU MET FAST 051. Thin graphite reflected (2 inches or less) experiments also using the same set of highly enriched uranium metal parts are evaluated in HEU MET FAST 071. Polyethylene-reflected configurations are evaluated in HEU-MET-FAST-076. A stack of highly enriched metal discs with a thick beryllium top reflector is evaluated in HEU-MET-FAST-069, and two additional highly enriched uranium annuli with beryllium cores are evaluated in HEU-MET-FAST-059. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast neutron spectra assemblies were determined to be acceptable benchmark experiments. The calculated eigenvalues for both the detailed and the simple benchmark models are within ~0.26 % of the benchmark values for Configuration 1 (calculations performed using MCNP6 with ENDF/B-VII.1 neutron cross section data), but under-calculate the benchmark values by ~7s because the uncertainty in the benchmark is very small: ~0.0004 (1s); for Configuration 2, the under-calculation is ~0.31 % and ~8s. Comparison of detailed and simple model calculations for the potassium worth measurement and potassium mass coefficient yield results approximately 70 – 80 % lower (~6s to 10s) than the benchmark values for the various nuclear data libraries utilized. Both the potassium worth and mass coefficient are also deemed to be acceptable benchmark experiment measurements.« less
SPAR 6 experiment report containerless processing of glass experiment 74-42
NASA Technical Reports Server (NTRS)
Happe, R. A.
1980-01-01
Pertinent portions of the ground based research are described, including experiments leading to the selection of the flight sample composition: a silica modified gallia-calcia glass. Included are details of the preparation of an approximately .25 in diameter flight sample.
"Coffee, tea and me": moderate doses of caffeine affect sexual behavior in female rats.
Guarraci, Fay A; Benson, Anastasia
2005-11-01
The present study evaluated the effects of acute caffeine administration on paced mating behavior and partner preference in ovariectomized rats primed with estrogen and progesterone. In Experiment 1, female rats were tested for paced mating behavior following acute administration of caffeine (15 mg/kg). Caffeine shortened the latency to return to a male following an ejaculation. Although this dose of caffeine did not alter the likelihood of leaving a male after receiving sexual stimulation, locomotor activity did increase significantly. Experiment 2 evaluated the dose response characteristics of caffeine (7.5, 15, 30 mg/kg) administration on paced mating behavior. Replicating Experiment 1, caffeine at the lower doses shortened the latency to return to a male following an ejaculation. Finally, to determine whether the effects of caffeine (15 mg/kg) on contact-return latency reflect a change in sexual motivation or merely an inability to inhibit locomotion, rats were tested for partner preference (intact male vs. estrous female) following caffeine administration (Experiment 3). Although caffeine did not disrupt preference for a sexual partner, caffeine selectively increased visits to the male when physical contact was possible. Collectively, these results suggest that the effects of caffeine on female mating behavior may reflect an increase in both sexual motivation and locomotor activity.
NASA Technical Reports Server (NTRS)
Sato, Atsushige
1993-01-01
The human body consists of 10(exp 13) cells. Understanding the mechanisms by which the cells sense and respond to microgravity is very important as the basis for space biology. The cells were originally isolated aseptically from mammalian bodies and cultured in vitro. A set of cell culture vessels was developed to be applied to three kinds of space flight experiments. Experiment 1 is to practice the cell culture technique in a space laboratory and obtain favorable growth of the cells. Aseptic handling in tryspin treatment and medium renewal will be tested. The cells, following space flight, will be returned to the ground and cultured continuously to investigate the effects of space flight on the cellular characteristics. Experiment 2 is to examine the cytoskeletal structure of the cells under microgravity conditions. The cytoskeletal structure plays essential roles in the morphological construction, movements, axonal transport, and differentiation of the cells. The cells fixed during space flight will be returned and the cytoskeleton and ultrastructure observed using electron microscopy and fluorescence microscopy. Experiment 3 is to study the cellular productivity of valuable substances. The waste medium harvested during space flight are returned and quantitated for the cellular products. The effects of microgravity on mammalian cells will be clarified from the various aspects.
Return to work following disabling occupational injury--facilitators of employment continuation.
Young, Amanda E
2010-11-01
Return to work following occupational injury is an important rehabilitation milestone; however, it does not mark the end of the return-to-work process. Following a return to the workplace, workers can experience difficulties that compromise their rehabilitation gains. Although there has been investigation of factors related to a return to the workplace, little attention has been paid to understanding what facilitates continued return-to-work success as this paper aims to do. This study used data gathered during one-on-one telephone interviews with 146 people who experienced a work-related injury that resulted in their being unable to return to their pre-injury job, but who returned to work following an extended period of absence and the receipt of vocational services. Numerous return-to-work facilitators were reported, including features of the workers' environmental and personal contexts, as well as body function, activities, and participation. Influences that stood out included a perception that the work was appropriate, supportive workplace relationships, and a sense of satisfaction/achievement associated with being at work. The findings support the contention that initiatives aimed at improving return-to-work outcomes can go beyond the removal of barriers to include interventions to circumvent difficulties before they are encountered. Together with providing ideas for interventions, the study's findings offer an insight into research and theoretical development that might be undertaken to further the understanding of the return-to-work process and the factors that impact upon it.
Doki, Shotaro; Sasahara, Shinichiro; Hirai, Yasuhito; Oi, Yuichi; Matsuzaki, Ichiyo
2016-11-01
The aim of this study was to investigate the risk factors for absenteeism due to mental health problems with regard to company characteristics and systems for return to work in Japan. This was an Internet-based unmatched case-control study. Two hundred and fifty-eight workers who experienced over 28 days of sick leave due to mental health problems (cases) and 258 workers who have not taken sick leave (controls) were recruited. Company characteristics and the awareness and presence of systems for return to work were analysed as indicators of absenteeism. A total of 501 workers were included in the analysis. Females were less likely to experience absenteeism when adjustments were made for both the awareness and presence of systems [odds ratio (OR) = 0.51 and 0.41, respectively]. Large companies showed an increased risk of having absentee workers than small companies. The awareness of a gradual resumption system and the presence of a sick pay system were related to absenteeism (OR = 2.75 and 2.40, respectively). The awareness and presence of systems for return to work are related to the long-term absenteeism. The predictors of sex and company size are also related to the experience of the long-term absenteeism. To understand the effect of systems for return to work on absenteeism due to mental problems, further studies are needed.
NASA Technical Reports Server (NTRS)
Mcnutt, Ralph L., Jr.
1988-01-01
The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.;
2007-01-01
In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
NASA Technical Reports Server (NTRS)
Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas;
2007-01-01
In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.
Prophylactic salpingectomy in premenopausal low-risk women for ovarian cancer: primum non nocere.
Morelli, Michele; Venturella, Roberta; Mocciaro, Rita; Di Cello, Annalisa; Rania, Erika; Lico, Daniela; D'Alessandro, Pietro; Zullo, Fulvio
2013-06-01
The objective of this study is to compare ovarian function and surgical outcomes between patients affected by benign uterine pathologies submitted to total laparoscopic hysterectomy (TLH) plus salpingectomy and women in which standard TLH with adnexal preservation was performed. We retrospectively compared data of 79 patients who underwent TLH plus bilateral salpingectomy (group A), with those of 79 women treated by standard TLH without adnexectomy (sTLH) (group B). Ovarian reserve modification, expressed as the difference between 3 months post-operative and pre-operative values of Anti-Müllerian Hormone (AMH), Follicle Stimulating Hormone (FSH), Antral Follicle Count (AFC), mean ovarian diameters and Peak Systolic Velocity (PSV), was recorded for each patient. For each surgical procedure, operative time, variation of hemoglobin level (ΔHb), postoperative hospital stay, postoperative return to normal activity, and complication rate were recorded as secondary outcomes. According to our post-hoc analysis, this equivalence study resulted to have a statistical power of 96.8%. Significant difference was not observed between groups with respect to ΔAMH (p=0.35), ΔFSH (p=0.15), ΔAFC (p=0.09), Δ mean ovarian diameters (p=0.57) and ΔPSV (p=0.61). In addition, secondary outcomes such as operative time (p=0.79), ΔHb (p=0.41), postoperative hospital stay (p=0.16), postoperative return to normal activity (p=0.11) and complication rate also did not show any significant difference. The addition of bilateral salpingectomy to TLH for prevention of ovarian cancer in women who do not carry a BRCA1/2 mutations do not show negative effects on the ovarian function. In addition, no perioperative complications are related to the salpingectomy step in TLH. Copyright © 2013 Elsevier Inc. All rights reserved.
Power spectra at radio frequency of lightning return stroke waveforms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1989-01-01
The power spectra of the wideband (10 Hz to 100 kHz) magnetic field signals in a number of lightning return strokes (primarily first return strokes) measured during a lightning storm which occurred in Lindau, West Germany in August, 1984 have been calculated. The RF magnetic field data were obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks appearing in the spectra of many of the waveforms. An enhancement of power at frequencies of about 60-70 kHz is often seen in the spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
Tethers as Debris: Simulating Impacts of Tether Fragments on Shuttle Tiles
NASA Technical Reports Server (NTRS)
Evans, Steven W.
2004-01-01
The SPHC hydrodynamic code was used to simulate impacts of Kevlar and aluminum projectiles on a model of the LI-900 type insulating tiles used on Space Shuffle Orbiters The intent was to examine likely damage that such tiles might experience if impacted by orbital debris consisting of tether fragments. Projectile speeds ranged from 300 meters per second to 10 kilometers per second. Damage is characterized by penetration depth, tile surface-hole diameter, tile body-cavity diameter, coating fracture diameter, tether and cavity wall material phases, and deformation of the aluminum backwall.
Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.
2016-08-01
Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less
Fine fuel heating by radiant flux
David Frankman; Brent W. Webb; Bret W. Butler; Don J. Latham
2010-01-01
Experiments were conducted wherein wood shavings and Ponderosa pine needles in quiescent air were subjected to a steady radiation heat flux from a planar ceramic burner. The internal temperature of these particles was measured using fine diameter (0.076mm diameter) type K thermocouples. A narrow angle radiometer was used to determine the emissive power generated by the...
Spacing trials using the Nelder Wheel
Walter B. Mark
1983-01-01
The Nelder Wheel is a single tree systematic experimental design. Its major application is for plantation spacing experiments. The design allows for the testing of a number of spacings in a small area. Data obtained is useful in determining the response of stem diameter and crown diameter to spacing. Data is not compatible with data from conventional plots unless...
The central Appalachian hardwoods experience provides silvicultural tools for Ontario
Gary W. Miller; Ken A Elliott; Eric P. Boysen
1998-01-01
Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precommercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...
Meerts, Sarah H; Strnad, Helen K; Schairer, Rosemary S
2015-03-01
The present study tested the effects of lidocaine anesthetic ointment applied to the vaginocervical (Experiment 1) or clitoral-vaginocervical (Experiment 2) areas on the display of paced mating behavior over the course of five weekly tests in ovariectomized, hormone-primed, Long-Evans rats. Experiment 3 tested whether rats that acquired sexual experience without ointment application would exhibit altered paced mating behavior on a fifth test under clitoral-vaginocervical lidocaine or vehicle application. Although rats in Experiment 1 and Experiment 2 exhibited shorter contact-return latencies after intromission and reduced likelihood of leaving the male compartment following mounts and intromissions after gaining sexual experience, only rats that received clitoral-vaginocervical lidocaine exhibited altered paced mating behavior relative to vehicle. Specifically, clitoral-vaginocervical lidocaine resulted in shorter contact-return latency to ejaculation and greater percentage of time with the male. Paced mating behavior of sexually experienced rats in Experiment 3 was not disrupted when tested after clitoral-vaginocervical lidocaine treatment. Together, these studies suggest that the sensory input during repeated mating encounters affects the pattern of paced mating behavior that develops with sexual experience. Copyright © 2014 Elsevier Inc. All rights reserved.
Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils
NASA Technical Reports Server (NTRS)
Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.
2006-01-01
The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.
Genesis Solar-Wind Sample Return Mission: The Materials
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.
2003-01-01
The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.
Mahan, Shannon; Martin, Frederick; Taylor, Cathy
2015-01-01
The Upton Chamber in Massachusetts, an earth-covered stone structure 3.4 meters (m) in diameter, with a corbelled stone dome, and a 4.3 m long entrance passageway, is studied with the aim of determining whether optically stimulated luminescence (OSL) dating methods can be used to establish the approximate construction date of the entranceway. Three samples, taken from soil behind the lowest stones in the wall of the entrance passageway, returned OSL ages between 385 and 660 years ago (or from 1625 A.D. to 1350 A.D.; using the year 2011 as the 0 year). One sample, taken below the bottom of the artifact layers in an archeological test pit in front of the chamber entrance, returned OSL ages between 650 and 880 years ago. A modern sample collected from a nearby fluvial channel returned an age between 55 and 175 years. The Upton Chamber OSL sampling results are challenging to interpret because there are mixtures in the samples of both younger and older grains that likely result from human modification, root or soil processes, animal bioturbation (i.e. ants and worms), and/or partial bleaching. The ages were determined using the lowest component of the finite mixture model as applied to a distribution of quartz grains. Further research may enable us to determine whether older components are of anthropomorphic or geological origin.
Planning for the Paleomagnetic Investigations of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.
2016-12-01
The red planet is a magnetic planet. Mars' iron-rich surface is strongly magnetized, likely dating back to the Noachian period when the surface may have been habitable. Paleomagnetic measurements of returned samples could transform our understanding of the Martian dynamo and its connection to climatic and planetary thermal evolution. Because the original orientations of Martian meteorites are unknown, all Mars paleomagnetic studies to date have only been able to measure the paleointensity of the Martian field. Paleomagnetic studies from returned Martian bedrock samples would provide unprecedented geologic context and the first paleodirectional information on Martian fields. The Mars 2020 rover mission seeks to accomplish the first leg by preparing for the potential return of 31 1 cm-diameter cores of Martian rocks. The Returned Sample Science Board (RSSB) has been tasked to advise the Mars 2020 mission in how to best select and preserve samples optimized for paleomagnetic measurements. A recent community-based study (Weiss et al., 2014) produced a ranked list of key paleomagnetism science objectives, which included: 1) Determine the intensity of the Martian dynamo 2) Characterize the dynamo reversal frequency with magnetostratigraphy 3) Constrain the effects of heating and aqueous alteration on the samples 4) Constrain the history of Martian tectonics Guided by these objectives, the RSSB has proposed four key sample quality criteria to the Mars 2020 mission: (a) no exposure to fields >200 mT, (b) no exposure to temperatures >100 °C, (c) no exposure to pressures >0.1 GPa, and (d) acquisition of samples that are absolutely oriented with respect to bedrock with a half-cone uncertainty of <5°. Our measurements of a Mars 2020 prototype drill have found that criteria (a-c) should be met by the drilling process. Furthermore, the core plate strike and dip will be measured to better than 5° for intact drill cores; we are working with the mission to establish ways to determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.
On the development of nugget growth model for resistance spot welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Kang, E-mail: zhoukang326@126.com, E-mail: melcai@ust.hk; Cai, Lilong, E-mail: zhoukang326@126.com, E-mail: melcai@ust.hk
2014-04-28
In this paper, we developed a general mathematical model to estimate the nugget growth process based on the heat energy delivered into the welds by the resistance spot welding. According to the principles of thermodynamics and heat transfer, and the effect of electrode force during the welding process, the shape of the nugget can be estimated. Then, a mathematical model between heat energy absorbed and nugget diameter can be obtained theoretically. It is shown in this paper that the nugget diameter can be precisely described by piecewise fractal polynomial functions. Experiments were conducted with different welding operation conditions, such asmore » welding currents, workpiece thickness, and widths, to validate the model and the theoretical analysis. All the experiments confirmed that the proposed model can predict the nugget diameters with high accuracy based on the input heat energy to the welds.« less
Cue and Target Processing Modulate the Onset of Inhibition of Return
ERIC Educational Resources Information Center
Gabay, Shai; Chica, Ana B.; Charras, Pom; Funes, Maria J.; Henik, Avishai
2012-01-01
Inhibition of return (IOR) is modulated by task set and appears later in discrimination tasks than in detection tasks. Several hypotheses have been suggested to account for this difference. We tested three of these hypotheses in two experiments by examining the influence of cue and target level of processing on the onset of IOR. In the first…
ERIC Educational Resources Information Center
West, Kristine Lamm; Mykerezi, Elton
2011-01-01
This study examines the impact that collective bargaining has on multiple dimensions of teacher compensation, including average and starting salaries, early and late returns to experience, returns to graduate degrees, and the incidence of different pay for performance schemes. Using data from the School and Staffing Survey (SASS) and a more recent…
Highly-Skilled Colombian Immigrants in Spain: Do They Have to Return Home to Start up in Business?
ERIC Educational Resources Information Center
Bulla, Francisco Javier Matiz; Hormiga, Esther
2011-01-01
Purpose: The purpose of this paper is to understand why high-skilled immigrants from a developing country (Colombia) are returning to their home country to create businesses instead of starting up in their host country (Spain). Design/methodology/approach: A case study methodology was used to present the experiences of three high-skilled…
NASA Astrophysics Data System (ADS)
Fukushima, Taku; Hasegawa, Hideyuki; Kanai, Hiroshi
2011-07-01
Red blood cell (RBC) aggregation, as one of the determinants of blood viscosity, plays an important role in blood rheology, including the condition of blood. RBC aggregation is induced by the adhesion of RBCs when the electrostatic repulsion between RBCs weakens owing to increases in protein and saturated fatty acid levels in blood, excessive RBC aggregation leads to various circulatory diseases. This study was conducted to establish a noninvasive quantitative method for assessment of RBC aggregation. The power spectrum of ultrasonic RF echoes from nonaggregating RBCs, which shows the frequency property of scattering, exhibits Rayleigh behavior. On the other hand, ultrasonic RF echoes from aggregating RBCs contain the components of reflection, which have no frequency dependence. By dividing the measured power spectrum of echoes from RBCs in the lumen by that of echoes from a posterior wall of the vein in the dorsum manus, the attenuation property of the propagating medium and the frequency responses of transmitting and receiving transducers are removed from the former spectrum. RBC aggregation was assessed by the diameter of a scatterer, which was estimated by minimizing the square difference between the measured normalized power spectrum and the theoretical power spectrum. In this study, spherical scatterers with diameters of 5, 11, 15, and 30 µm were measured in basic experiments. The estimated scatterer diameters were close to the actual diameters. Furthermore, the transient change of the scatterer diameters were measured in an in vivo experiment with respect to a 24-year-old healthy male during the avascularization using a cuff. The estimated diameters (12-22 µm) of RBCs during avascularization were larger than the diameters (4-8 µm) at rest and after recirculation. These results show the possibility of the use of the proposed method for noninvasive assessment of RBC aggregation.
A Simple Space Station Rescue Vehicle
NASA Technical Reports Server (NTRS)
Petro, Andrew
1995-01-01
Early in the development of the Space Station it was determined that there is a need to have a vehicle which could be used in the event that the Space Station crew need to quickly depart and return to Earth when the Space Shuttle is not available. Unplanned return missions might occur because of a medical emergency, a major Space Station failure, or if there is a long-term interruption in the delivery of logistics to the Station. The rescue vehicle ms envisioned as a simple capsule-type spacecraft which would be maintained in a dormant state at the Station for several years and be quickly activated by the crew when needed. During the assembly phase for the International Space Station, unplanned return missions will be performed by the Russian Soyuz vehicle, which can return up to three people. When the Station assembly is complete there will be a need for rescue capability for up to six people. This need might be met by an additional Soyuz vehicle or by a new vehicle which might come from a variety of sources. This paper describes one candidate concept for a Space Station rescue vehicle. The proposed rescue vehicle design has the blunt-cone shape of the Apollo command module but with a larger diameter. The rescue vehicle would be delivered to the Station in the payload bay of the Space Shuttle. The spacecraft design can accommodate six to eight people for a one-day return mission. All of the systems for the mission including deorbit propulsion are contained within the conical spacecraft and so there is no separate service module. The use of the proven Apollo re-entry shape would greatly reduce the time and cost for development and testing. Other aspects of the design are also intended to minimize development cost and simplify operations. This paper will summarize the evolution of rescue vehicle concepts, the functional requirements for a rescue vehicle, and describe the proposed design.
Policy on manager involvement in work re-integration: managers' experiences in a Canadian setting.
Maiwald, Karin; Meershoek, Agnes; de Rijk, Angelique; Nijhuis, Frans J N
2014-01-01
In Canada and other countries, sickness absence among workers is a significant concern. Local return-to-work policies developed by both management and workers' representatives are preferred to tackle the problem. This article examines how managers perceive this local bipartite agreed upon return-to-work policy, wherein a social constructivist view on the policy process is taken. In-depth interviews were held with 10 managers on their experiences with execution of this policy in a Canadian healthcare organization. Interviews were transcribed verbatim and qualitative analyses were completed to gain deep insight into the managers' perspectives. Results show that the managers viewed themselves as a linchpin between the workplace and the worker. They did not feel heard by the other stakeholders, wrestled with worker's limitations, struggled getting plans adjusted and became overextended to meet return-to-work objectives. The study shows that the managers felt unable to meet the responsibilities the policy demanded and got less involved in the return-to-work process than this policy intended. RTW policy needs to balance on the one hand, flexibility to safeguard active involvement of managers and, on the other hand, strictness regarding taking responsibility by stakeholders, particularly the health care and re-integration professionals.
Gögler, E
1985-01-01
In different tables the most important faults with enteral sutures and anastomoses in general and at special operations are demonstrated: end-to-end anastomoses with congruent diameter, anastomoses with different diameters, B I, B II, low anterior resection, esophago-jejunostomy. Only if the surgeon has experience in standard technique, faults and risks with mechanical staplers and manual sutures, the advantage-progress of staplers will be effective avoiding special risks. Surgeons without experience may produce real catastrophes which may turn out hopeless without training in manual suture technique.
Modeling and Characterization of a Graphite Nanoplatelet/Epoxy Composite
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Chasiotis, I.; Chen, Q.; Gates, T. S.
2004-01-01
A micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli from the model are compared to measured values from the same material using Dynamical Mechanical Analysis, nanoindentation, and tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, in most cases, the model and experiments indicate that as the nanoplatelet diameter is increased, the storage and loss moduli decrease and increase, respectively.
Gender Influences on Return to Work After Mild Traumatic Brain Injury.
Stergiou-Kita, Mary; Mansfield, Elizabeth; Sokoloff, Sandra; Colantonio, Angela
2016-02-01
To examine the influence of gender on the return to work experience of workers who sustained a work-related mild traumatic brain injury (TBI). Qualitative study using in-depth telephone interviews. Community. Purposive sampling was used to recruit participants. Participants were adults (N=12; males, n=6, females, n=6) with a diagnosis of mild TBI sustained through a workplace injury. Not applicable. Not applicable. Our findings suggest that gender impacts return to work experiences in multiple ways. Occupational and breadwinner roles were significant for both men and women after work-related mild TBI. Women in this study were more proactive than men in seeking and requesting medical and rehabilitation services; however, the workplace culture may contribute to whether and how health issues are discussed. Among our participants, those who worked in supportive, nurturing (eg, feminine) workplaces reported more positive return to work (RTW) experiences than participants employed in traditionally masculine work environments. For all participants, employer and coworker relations were critical elements in RTW outcomes. The application of a gender analysis in this preliminary exploratory study revealed that gender is implicated in the RTW process on many levels for men and women alike. Further examination of the work reintegration processes that takes gender into account is necessary for the development of successful policy and practice for RTW after work-related MTBI. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Parslow, A; Simpson, D J
2017-06-01
A very limited safe anatomical window for transiliosacral implant placement exists in cats (<0·5 cm 2 ). Lag screw fixation requires multiple bilateral implants thus increasing the risk of iatrogenic trauma and implant interference. We describe a safe and effective method for bilateral sacroiliac fixation in cats using a single implant to minimise inadvertent iatrogenic damage to local structures and restore pelvic canal diameter. Eight cats underwent surgical fixation for traumatic bilateral sacroiliac luxation using a single smooth intramedullary pin. The pin spanned both ilial wings and sacrum. Implants were applied using a Universal C-guide. Pre- and postsurgery pelvic canal diameter ratios were calculated. Short-term follow-up was performed at 10 to 14 days postoperatively. Long-term follow-up was performed using the Feline Musculoskeletal Pain Index Questionnaire. Long-term radiographic assessment was available in two cases. The technique achieved safe and accurate implant position with precise sacroiliac joint reduction. Pelvic canal diameter ratios were restored to normal in all cases. Rapid return to normal hind leg function and excellent long-term clinical outcomes were achieved. This technique offers a simple, safe, repeatable and affordable technique for treating bilateral sacroiliac luxations in the cat without the aid of fluoroscopy. The procedure can be performed using surgical tools and inventory readily available in general small animal practices. © 2017 British Small Animal Veterinary Association.
Students' Stories of Studying Abroad: Reflections upon Return
ERIC Educational Resources Information Center
Costello, Jane
2015-01-01
Study abroad brings an enriching experience to students' academic and personal lives. This narrative essay relays two students' experiences with study abroad sojourns and touches upon their technology use during their study abroad as recounted in semi-structured interviews. Details of their cultural experiences and reflections thereof as well as…
Mertens, Gaëtan; Kuhn, Manuel; Raes, An K; Kalisch, Raffael; De Houwer, Jan; Lonsdorf, Tina B
2016-08-01
Prior research showed that mere instructions about the contingency between a conditioned stimulus (CS) and an unconditioned stimulus (US) can generate fear reactions to the CS. Little is known, however, about the extent to which actual CS-US contingency experience adds anything beyond the effect of contingency instructions. Our results extend previous studies on this topic in that it included fear potentiated startle as an additional dependent variable and examined return of fear (ROF) following reinstatement. We observed that CS-US pairings can enhance fear reactions beyond the effect of contingency instructions. Moreover, for all measures of fear, instructions elicited immediate fear reactions that could not be completely overridden by subsequent situational safety information. Finally, ROF following reinstatement for instructed CS+s was unaffected by actual experience. In summary, our results demonstrate the power of contingency instructions and reveal the additional impact of actual experience of CS-US pairings.
Experiments on a Miniature Hypervelocity Shock Tube
NASA Astrophysics Data System (ADS)
Tasker, Douglas; Johnson, Carl; Murphy, Michael; Lieber, Mark; MIMS Team
2013-06-01
A miniature explosively-driven shock tube, based on the Voitenko compressor design, has been designed to produce shock speeds in light gases in excess of 80 km/s. Voitenko compressors over 1 meter in diameter have been reported but here experiments on miniature shock tubes with ~1-mm bore diameters are described. In this design a 12-mm diameter explosive pellet drives a metal plate into a hemispherical gas compression chamber. Downstream from the piston a mica diaphragm separates the gas from an evacuated shock tube which is confined by a massive polymethylmethacrylate (PMMA) block. The diaphragm eventually ruptures under the applied pressure loading and the compressed gases escape into the evacuated shock tube at hyper velocities. The progress of gas shocks in the tube and bow shocks in the PMMA are monitored with an ultra-high-speed imaging system, the Shock Wave Image Framing Technique (SWIFT). The resulting time-resolved images yield two-dimensional visualizations of shock geometry and progression. By measuring both the gas and bow shocks, accurate and unequivocal measurements of shock position history are obtained. The experimental results were compared with those of hydrocode modeling to optimize the design. The first experiments were suboptimum in that the velocities were ~16 km/s. Progress with these experiments will be reported.
SpaceX Dragon returns on This Week @NASA- October 31, 2014
2014-10-31
The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!
How Financial Incentives Induce Disability Insurance Recipients to Return to Work.
Kostol, Andreas Ravndal; Mogstad, Magne
2014-02-01
Using a local randomized experiment that arises from a sharp discontinuity in Disability Insurance (DI) policy in Norway, we provide transparent and credible identification of how financial incentives induce DI recipients to return to work. We find that many DI recipients have considerable capacity to work that can be effectively induced by providing financial work incentives. We further show that providing work incentives to DI recipients may both increase their disposable income and reduce program costs. Our findings also suggest that targeted policies may be the most effective in encouraging DI recipients to return to work.
Jack Rabbit Pretest 2021E PT6 Photonic Doppler Velocimetry Data Volume 6 Section 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M M; Strand, O T; Bosson, S T
The Jack Rabbit Pretest (PT) 2021E PT6 experiment was fired on April 1, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT6, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The earliest PDV signal extinction was 54.2 microseconds at 30 millimeters. The latest PDV signal extinction time was 64.5 microseconds at the central axis. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters at 14.1 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1860 meters per second. At 55 millimeters the last measured velocity was 2408 meters per second. The low-to-high velocity ratio was 0.77. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 227 kilobars at 20.1 microseconds, indicating a late time chemical reaction in the LX-17 dead-zone. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 1.7 microseconds.« less
Jack Rabbit Pretest 2021E PT7 Photonic Doppler Velocimetry Data Volume 7 Section 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, M M; Strand, O T; Bosson, S T
The Jack Rabbit Pretest (PT) 2021E PT7 experiment was fired on April 3, 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory. This experiment is part of an effort to determine the properties of LX-17 in a regime where corner-turning behavior and dead-zone formation are not well understood. Photonic Doppler Velocimetry (PDV) measured diagnostic plate velocities confirming the presence of a persistent LX-17 dead-zone formation and the resultant impulse gradient applied under the diagnostic plate. The Jack Rabbit Pretest 2021E PT7, 160 millimeter diameter experiment returned data on all eight PDV probes. The probes measured on themore » central axis and at 20, 30, 35, 45, 55, 65, 75 millimeters from the central axis. The experiment was shot at an ambient room temperature of 65 degrees Fahrenheit. The PDV earliest signal extinction was 50.7 microseconds at 45 millimeters. The latest PDV signal extinction time was 65.0 microseconds at 20 millimeters. The measured velocity ranged from meters per second to thousands of meters per second. First detonation wave induced jump-off was measured at 55 millimeters and at 15.2 microseconds. The PDV data provided an unambiguous indication of dead-zone formation and an impulse gradient applied to the diagnostic plate. The central axis had a last measured velocity of 1447 meters per second. At 65 millimeters the last measured velocity was 2360 meters per second. The low-to-high velocity ratio was 0.61. Velocity data was integrated to compute diagnostic plate cross section profiles. Velocity data was differentiated to compute a peak pressure under the diagnostic plate at the central axis of 49 kilobars at 23.3 microseconds. Substantial motion (>1 m/s) of the diagnostic plate over the dead-zone is followed by detonation region motion within approximately 4.6 microseconds.« less
STS-102 Onboard Photograph Inside Multipurpose Logistics Module, Leonardo
NASA Technical Reports Server (NTRS)
2001-01-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
Synchrotron X-Ray Diffraction Studies of Olivine from Comet Wild 2
NASA Technical Reports Server (NTRS)
2008-01-01
We have analyzed a collection of the Comet Wild 2 coma grains returned by the NASA Stardust Mission, using micro-area Laue diffraction equipment. The purpose of the diffraction experiment is to permit the structure refinement of olivine including site occupancies. In addition to the intrinsic importance of the olivine structures for revealing the thermal history of Wild 2 materials, we wish to test reports that olivine recovered after hypervelocity capture in silica aerogel has undergone a basic structural change due to capture heating [1]. The diffraction equipment placed at beam line BL- 4B1 of PF, KEK was developed with a micropinhole and an imaging plate (Fuji Co. Ltd.) using the Laue method combined with polychromatic X-ray of synchrotron radiation operated at energy of 2.5 GeV. The incident beam is limited to 1.6 m in diameter by a micropinhole set just upstream of the sample [2, 3]. It is essential to apply a microbeam to obtain diffracted intensities with high signal to noise ratios. This equipment has been successfully applied to various extraterrestrial materials, including meteorites and interplanetary dust particles [4]. The Laue pattern of the sample C2067,1,111,4 (Fig. 1) was successfully taken on an imaging plate after a 120 minute exposure (Fig. 2).
Behr, Luc; Chetboul, Valérie; Sampedrano, Carolina Carlos; Vassiliki, Gouni; Pouchelon, Jean-Louis; Laborde, François; Borenstein, Nicolas
2007-04-01
To describe an open, beating heart surgical technique and use of a bovine pericardial prosthetic valve for mitral valve replacement (MVR) in the dog. Clinical case report. Male Bull Terrier (17-month-old, 26 kg) with mitral valve dysplasia and severe regurgitation. A bovine pericardial bioprosthesis was used to replace the mitral valve using an open beating heart surgical technique and cardiopulmonary bypass. Successful MVR was achieved using a beating heart technique. Mitral regurgitation resolved and cardiac performances improved (left ventricular end-diastolic diameter decreased from 57.6 to 48.7 mm, and left atrium/aorta ratio returned to almost normal, from 1.62 to 1.19). Cardiopulmonary by-pass time and total surgical duration were decreased compared with standard cardioplegic techniques. Surgical recovery was uneventful and on echocardiography 6 months later valve function was excellent. Considering the technique advantages (no cardiac arrest, ischemic reperfusion injury, and hypothermia, or the need for aortic dissection and cannulation for administration of cardioplegic solution), short-term mortality and morbidity may be reduced compared with standard cardioplegic techniques. Based on experience in this dog, beating heart mitral valvular replacement is a seemingly safe and viable option for the dog and bovine pericardial prosthesis may provide better long-term survival than mechanical prostheses.
International Space Station (ISS)
2003-03-08
The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.
International Space Station (ISS)
2001-03-01
Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
International Space Station (ISS)
2001-03-08
STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.
The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement
Jackson, Scott I.
2016-11-17
As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less
Identifying Key Drivers of Return Reversal with Dynamical Bayesian Factor Graph
Zhao, Shuai; Tong, Yunhai; Wang, Zitian; Tan, Shaohua
2016-01-01
In the stock market, return reversal occurs when investors sell overbought stocks and buy oversold stocks, reversing the stocks’ price trends. In this paper, we develop a new method to identify key drivers of return reversal by incorporating a comprehensive set of factors derived from different economic theories into one unified dynamical Bayesian factor graph. We then use the model to depict factor relationships and their dynamics, from which we make some interesting discoveries about the mechanism behind return reversals. Through extensive experiments on the US stock market, we conclude that among the various factors, the liquidity factors consistently emerge as key drivers of return reversal, which is in support of the theory of liquidity effect. Specifically, we find that stocks with high turnover rates or high Amihud illiquidity measures have a greater probability of experiencing return reversals. Apart from the consistent drivers, we find other drivers of return reversal that generally change from year to year, and they serve as important characteristics for evaluating the trends of stock returns. Besides, we also identify some seldom discussed yet enlightening inter-factor relationships, one of which shows that stocks in Finance and Insurance industry are more likely to have high Amihud illiquidity measures in comparison with those in other industries. These conclusions are robust for return reversals under different thresholds. PMID:27893780
PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.
2015-09-01
In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
Plume capture by a migrating ridge: Analog geodynamic experiments
NASA Astrophysics Data System (ADS)
Mendez, J. S.; Hall, P.
2010-12-01
Paleomagnetic data from the Hawaii-Emperor Seamount Chain (HESC) suggests that the Hawaiian hotspot moved rapidly (~40 mm/yr) between 81 - 47 Ma but has remained relatively stationary since that time. This implies that the iconic bend in the HESC may in fact reflect the transition from a period of rapid hotspot motion to a stationary state, rather than a change in motion of the Pacific plate. Tarduno et al. (2009) have suggested that this period of rapid hotspot motion might be the surface expression of a plume conduit returning to a largely vertical orientation after having been “captured” and tilted by a migrating mid-ocean ridge. We report on a series of analog fluid dynamic experiments designed to characterize the interaction between a migrating spreading center and a thermally buoyant mantle plume. Experiments were conducted in a clear acrylic tank (100 cm x 70 cm x 50 cm) filled with commercial grade high-fructose corn syrup. Plate-driven flow is modeled by dragging two sheets of Mylar film (driven by independent DC motors) in opposite directions over the surface of the fluid. Ridge migration is achieved by moving the point at which the mylar sheets diverge using a separate motor drive. Buoyant plume flow is modeled using corn syrup introduced into the bottom of the tank from an external, heated, pressurized reservoir. Small (~2 mm diameter), neutrally buoyant Delrin spheres are mixed into reservoir of plume material to aid in visualization. Plate velocities and ridge migration rate are controlled and plume temperature monitored using LabView software. Experiments are recorded using digital video which is then analyzed using digital image analysis software to track the position and shape of the plume conduit throughout the course of the experiment. The intersection of the plume conduit with the surface of the fluid is taken as an analog for the locus of hotspot volcanism and tracked as a function of time to obtain a hotspot migration rate. Experiments are scaled to the Earth's mantle through a combination of a Peclet number and a plume buoyancy number. A range of spreading rates, ridge migration rates, and plume excess temperatures representative of the Earth are considered.
Local endwall heat/mass-transfer distributions in pin fin channels
NASA Astrophysics Data System (ADS)
Lau, S. C.; Kim, Y. S.; Han, J. C.
1987-10-01
Naphthalene sublimination experiments were conducted to study the effects of the pin configuration, the pin length-to-diameter ratio, and the entrance length on local endwall heat/mass transfer in a channel with short pin fins (pin length-to-diameter ratios of 0.5 and 1.0). The detailed distributions of the local endwall heat/mass-transfer coefficient were obtained for staggered and aligned arrays of pin fins, for the spanwise pin spacing-to-diameter ratio of 2.5, and for streamwise pin spacing-to-diameter ratios of 1.25 and 2.5. The Reynolds numbers were kept at about 33,000. Overall- and row-averaged Nusselt numbers compared very well with those from previous heat-transfer studies.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.
2017-01-01
Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.
Sample Acquisition and Caching architecture for the Mars Sample Return mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.
This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.
NASA Astrophysics Data System (ADS)
Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.
2014-12-01
Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389
Return to contact sports following infectious mononucleosis: the role of serial ultrasonography.
O'Connor, Tony E; Skinner, Liam J; Kiely, Patrick; Fenton, John E
2011-08-01
Splenic rupture is a rare but potentially fatal complication of infectious mononucleosis. Athletes returning to contact sports following infectious mononucleosis are at potential risk of splenic rupture secondary to abdominal trauma. No clear consensus exists as to when it is safe to allow these athletes to return to contact sports. Suggested periods of abstinence have ranged from 2 weeks to 6 months. We outline our experiences with the use of abdominal ultrasonography at 1 month after the diagnosis of infectious mononucleosis as a means of determining when athletes can safely return to contact sports. Our study group was made up of 19 such patients (mean age: 16.7 yr). We found that 16 of these patients (84%) had normal splenic dimensions on ultrasonography 1 month after diagnosis, and they were therefore allowed to return to contact sports. While the remaining 3 patients had an enlarged spleen at 1 month, their splenic dimensions had all returned to normal when ultrasonographic examination was repeated at 2 months postdiagnosis. We conclude that serial abdominal ultrasonography allows for informed decision making in determining when athletes can safely return to contact sports following infectious mononucleosis.
Magner, Antoinette; Phillipi, Carrie Anne
2015-02-01
In the United States, many women stop breastfeeding within the first month that they return to work. Working mothers experience challenges in maintaining milk supply and finding the time and space to express breast milk or feed their babies in workplace settings. Changing attitudes and culture within the workplace may be accomplished in conjunction with ensuring compliance with state and federal laws regarding breastfeeding to improve breastfeeding rates after return to work. Employee wellness programs can be 1 avenue to promote breastfeeding and human milk donation as healthy behaviors. © The Author(s) 2014.
Solar heating system at Security State Bank, Starkville, Mississippi
NASA Technical Reports Server (NTRS)
1980-01-01
The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters.
CLASHING BEAM PARTICLE ACCELERATOR
Burleigh, R.J.
1961-04-11
A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.
Rosander, Sondra; Nause-Osthoff, Rebecca; Voepel-Lewis, Terri; Tait, Alan R
2015-10-01
Children with attention-deficit hyperactivity disorder (ADHD) may experience pain differently compared to other children, yet the evidence is equivocal regarding whether pain is heightened or dampened. This prospective observational study, therefore, was designed to compare the postoperative pain experiences in children with and without ADHD. Children aged 7-17 years with a diagnosis of ADHD (n = 119) who were scheduled for a surgical procedure requiring postoperative pain management and a matched cohort of children without ADHD were recruited (n = 122). Postoperative pain scores and analgesic use were recorded for 1 week, as was parents' estimate of their child's return to normal activity. There were no differences in highest pain scores between children with ADHD (3.3 ± 2.5, 0-10 numerical rating scale) and those without (2.8 ± 1.9). Postoperative opioid use was also similar on day 1 following surgery (0.12 ± 0.3 mg·kg(-1) vs 0.08 mg·kg(-1 ) ± 0.1 morphine equivalents, respectively). Children with ADHD, however, had a significantly longer return to normal activity (4.9 ± 3.8 vs 3.8 ± 3.0 days; P < 0.05). Results suggest that there were no differences in the postoperative pain experiences of children with and without ADHD. However, the observation that children with ADHD took longer to return to baseline activity will be important in educating parents regarding their child's postoperative experience. © 2015 John Wiley & Sons Ltd.
Asteroid Redirection Mission Evaluation Using Multiple Landers
NASA Astrophysics Data System (ADS)
Bazzocchi, Michael C. F.; Emami, M. Reza
2018-06-01
In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.
Afterbody Heating Characteristics of a Proposed Mars Sample Return Orbiter
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Heiner, Nicholas C.; Olguin, Daniella M.; Cheatwood, F. McNeil; Gnoffo, Peter A.
2001-01-01
Aeroheating wind-tunnel tests were conducted on a 0.028 scale model of an orbiter concept considered for a possible Mars sample return mission. The primary experimental objectives were to characterize hypersonic near wake closure and determine if shear layer impingement would occur on the proposed orbiter afterbody at incidence angles necessary for a Martian aerocapture maneuver. Global heat transfer mappings, surface streamline patterns, and shock shapes were obtained in the NASA Langley 20-inch Mach 6 Air and CF4 Tunnels for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 1,400 to 415,000, angles of attack ranging from -5 to 10 degrees at 0, 3, and 6 deg sideslip, and normal-shock density, ratios of 5 and 12. Laminar, transitional, and turbulent shear layer impingement on the cylindrical afterbody was inferred from the measurements and resulted in a localized heating maximum that ranged from 40 to 75% of the reference forebody stagnation point heating. Comparison of laminar heating prediction to experimental measurement along the orbiter afterbody highlight grid alignment challenges associated with numerical simulation of three-dimensional separated wake flows.
Asteroid Redirection Mission Evaluation Using Multiple Landers
NASA Astrophysics Data System (ADS)
Bazzocchi, Michael C. F.; Emami, M. Reza
2018-01-01
In this paper, a low-thrust tugboat redirection method is assessed using multiple spacecraft for a target range of small near-Earth asteroids. The benefits of a landed configuration of tugboat spacecraft in formation are examined for the redirection of a near-Earth asteroid. The tugboat method uses a gimballed thruster with a highly collimated ion beam to generate a thrust on the asteroid. The target asteroid range focuses on near-Earth asteroids smaller than 150 m in diameter, and carbonaceous (C-type) asteroids, due to the volatiles available for in-situ utilization. The assessment focuses primarily on the three key parameters, i.e., the asteroid mass redirected, the timeframe for redirection, and the overall system cost. An evaluation methodology for each parameter is discussed in detail, and the parameters are employed to determine the expected return and feasibility of the redirection mission. The number of spacecraft employed is optimized along with the electrical power needed for each spacecraft to ensure the highest possible return on investment. A discussion of the optimization results and the benefits of spacecraft formation for the tugboat method are presented.
Asteroid Redirect Mission Proximity Operations for Reference Target Asteroid 2008 EV5
NASA Technical Reports Server (NTRS)
Reeves, David M.; Mazanek, Daniel D.; Cichy, Benjamin D.; Broschart, Steve B.; Deweese, Keith D.
2016-01-01
NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed.
Fine structure in RF spectra of lightning return stroke wave forms
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Thomson, D. J.; Maclennan, C. G.; Rinnert, K.; Krider, E. P.
1988-01-01
The power spectra of the wide-band (10 Hz to 100 kHz) magnetic-field signals for a number of lightning return strokes measured during a thunderstorm which occurred in Lindau in August, 1984 have been calculated. The RF magnetic field data are obtained with the engineering unit of the Galileo Jupiter Probe lightning experiment. Each return stroke data stream is passed through an adaptive filter designed to whiten its spectrum. The spectra of the magnetic field data definitely show fine structure, with two or three distinct peaks in the spectra of many of the waveforms. A peak at f of about 60-70 kHz is often seen in the power spectra of the waveform time segments preceding and following the rise-to-peak amplitude of the return stroke.
Fragment size distribution in viscous bag breakup of a drop
NASA Astrophysics Data System (ADS)
Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.
2015-11-01
In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 <= We <= 16 for Oh <= 0.1. Experiments are conducted using phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.
Horizontal electric fields from lightning return strokes
NASA Technical Reports Server (NTRS)
Thomson, E. M.; Medelius, P. J.; Rubinstein, M.; Uman, M. A.; Johnson, J.
1988-01-01
An experiment to measure simultaneously the wideband horizontal and vertical electric fields from lightning return strokes is described. Typical wave shapes of the measured horizontal and vertical fields are presented, and the horizontal fields are characterized. The measured horizontal fields are compared with calculated horizontal fields obtained by applying the wavetilt formula to the vertical fields. The limitations and sources of error in the measurement technique are discussed.
"It's Now We've Crossed Pease River": Themes of Voyage and Return in Texas Folk Songs
ERIC Educational Resources Information Center
Baake, Ken
2010-01-01
Stories of development from childhood to adulthood or of journeying through a life-changing experience to gain new knowledge are replete in oral and written tradition, as exemplified by the Greek epic of Odysseus and countless other tales. Often the hero journeys naively to an alien land and then, with great difficulty, returns home wiser but…
ERIC Educational Resources Information Center
Nelson, James Byron
2016-01-01
The manuscript presents a Visual Basic[superscript R] for Applications function that operates within Microsoft Office Excel[superscript R] to return the area below the curve for a given F within a specified non-central F distribution. The function will be of use to Excel users without programming experience wherever a non-central F distribution is…
ERIC Educational Resources Information Center
Moore, M. Keith; Meltzoff, Andrew N.
2004-01-01
Fourteen-month-old infants saw an object hidden inside a container and were removed from the disappearance locale for 24 hr. Upon their return, they searched correctly for the hidden object, demonstrating object permanence and long-term memory. Control infants who saw no disappearance did not search. In Experiment 2, infants returned to see the…
Essential skills for students who are returning to study.
Hendry, Charles; Farley, Alistair H
Returning to study can be a stressful time for many students. In this article the authors consider ways in which studying at a university may differ from previous study experiences and explore how students can make best use of library and other resources. Studying at home has particular challenges and these are discussed as well as a range of skills that are essential to effective study.
Clinical providers' experiences with returning results from genomic sequencing: an interview study.
Wynn, Julia; Lewis, Katie; Amendola, Laura M; Bernhardt, Barbara A; Biswas, Sawona; Joshi, Manasi; McMullen, Carmit; Scollon, Sarah
2018-05-08
Current medical practice includes the application of genomic sequencing (GS) in clinical and research settings. Despite expanded use of this technology, the process of disclosure of genomic results to patients and research participants has not been thoroughly examined and there are no established best practices. We conducted semi-structured interviews with 21 genetic and non-genetic clinicians returning results of GS as part of the NIH funded Clinical Sequencing Exploratory Research (CSER) Consortium projects. Interviews focused on the logistics of sessions, participant/patient reactions and factors influencing them, how the sessions changed with experience, and resources and training recommended to return genomic results. The length of preparation and disclosure sessions varied depending on the type and number of results and their implications. Internal and external databases, online resources and result review meetings were used to prepare. Respondents reported that participants' reactions were variable and ranged from enthusiasm and relief to confusion and disappointment. Factors influencing reactions were types of results, expectations and health status. A recurrent challenge was managing inflated expectations about GS. Other challenges included returning multiple, unanticipated and/or uncertain results and navigating a rare diagnosis. Methods to address these challenges included traditional genetic counseling techniques and modifying practice over time in order to provide anticipatory guidance and modulate expectations. Respondents made recommendations to improve access to genomic resources and genetic referrals to prepare future providers as the uptake of GS increases in both genetic and non-genetic settings. These findings indicate that returning genomic results is similar to return of results in traditional genetic testing but is magnified by the additional complexity and potential uncertainty of the results. Managing patient expectations, initially identified in studies of informed consent, remains an ongoing challenge and highlights the need to address this issue throughout the testing process. The results of this study will help to guide future providers in the disclosure of genomic results and highlight educational needs and resources necessary to prepare providers. Future research on the patient experience, understanding and follow-up of recommendations is needed to more fully understand the disclosure process.
Martian crater counts on Elysium Mons
NASA Technical Reports Server (NTRS)
Mcbride, Kathleen; Barlow, Nadine G.
1990-01-01
Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. Crater-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the craters on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only craters 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary craters. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create crater distribution curves. There are no craters larger than 1 km within the Elysium Mons caldera. Craters that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A crater frequency distribution analysis is presented.
Estimation of the lower flammability limit of organic compounds as a function of temperature.
Rowley, J R; Rowley, R L; Wilding, W V
2011-02-15
A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
A sampler for capturing larval and juvenile Atlantic menhaden
Hedrick, J.D.; Hedrick, L.R.; Margraf, F.J.
2005-01-01
Interest in capturing larval and juvenile Atlantic menhaden Brevoortia tyrannus for use in laboratory studies required the design and construction of a sampling device that would allow us to make collections of live fish from open-water areas. Our device for capturing 1-2.5-in larval-juvenile fish was constructed of a stainless steel frame that supported a 9.84-ft-long (3-m-long)5 cone plankton net with a 3.28-ft-diameter (1-m-diameter) opening and a 0.04-in (1-mm) mesh size. Although the plankton net was similar to that used during typical larval fish collections, the cod end was constructed of Plexiglas and was nearly watertight; this prevented impingement and injury to larval fish and provided a calm-water environment. The cod end was designed for quick release from the plankton net, and the entire cod end could be submerged into a 75-gal onboard holding tank. This design and technique obviated the netting or emerging of fish from the water until they were returned to the laboratory. ?? Copyright by the American Fisheries Society 2005.
Effects of pomegranate extract on blood flow and running time to exhaustion.
Trexler, Eric T; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Wingfield, Hailee L
2014-09-01
Recent research has shown that dietary nitrate has favorable effects on blood flow and exercise performance. The purpose of this randomized, double-blind, placebo-controlled crossover study was to investigate the acute effects of pomegranate extract on blood flow, vessel diameter, and exercise performance in active individuals. Nineteen men and women (mean ± SD: age, 22.2 ± 2.2 years; height, 174.8 ± 10.7 cm; body mass, 71.9 ± 13.5 kg) were randomly assigned to a placebo (PL) or pomegranate extract (PE) group. Participants performed a maximal oxygen consumption treadmill test to determine peak velocity (PV). Participants returned after 24-48 h and ingested either PL or PE. Brachial artery blood flow was assessed using ultrasound at baseline and 30 min post-ingestion (30minPI). Three treadmill runs to exhaustion were performed at 90%, 100%, and 110% PV. Blood flow was assessed immediately after each exercise bout and 30 min postexercise (30minPEx). After a 7-10 day washout, participants repeated the same procedures, ingesting the opposite supplement. Separate repeated measures ANOVAs were performed for blood flow, vessel diameter, and time to exhaustion (TTE). Blood flow was significantly augmented (p = 0.033) 30minPI with PE in comparison with PL. Vessel diameter was significantly larger (p = 0.036) 30minPEx with PE. Ingestion of PE was found to significantly augment TTE at 90% (p = 0.009) and 100% PV (p = 0.027). Acute ingestion of PE 30 min before exercise may enhance vessel diameter and blood flow and delay fatigue during exercise. Results of the current study indicate that PE is ergogenic for intermittent running, eliciting beneficial effects on blood flow.
Hayes, Taylor R; Petrov, Alexander A
2016-02-01
The ability to adaptively shift between exploration and exploitation control states is critical for optimizing behavioral performance. Converging evidence from primate electrophysiology and computational neural modeling has suggested that this ability may be mediated by the broad norepinephrine projections emanating from the locus coeruleus (LC) [Aston-Jones, G., & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450, 2005]. There is also evidence that pupil diameter covaries systematically with LC activity. Although imperfect and indirect, this link makes pupillometry a useful tool for studying the locus coeruleus norepinephrine system in humans and in high-level tasks. Here, we present a novel paradigm that examines how the pupillary response during exploration and exploitation covaries with individual differences in fluid intelligence during analogical reasoning on Raven's Advanced Progressive Matrices. Pupillometry was used as a noninvasive proxy for LC activity, and concurrent think-aloud verbal protocols were used to identify exploratory and exploitative solution periods. This novel combination of pupillometry and verbal protocols from 40 participants revealed a decrease in pupil diameter during exploitation and an increase during exploration. The temporal dynamics of the pupillary response was characterized by a steep increase during the transition to exploratory periods, sustained dilation for many seconds afterward, and followed by gradual return to baseline. Moreover, the individual differences in the relative magnitude of pupillary dilation accounted for 16% of the variance in Advanced Progressive Matrices scores. Assuming that pupil diameter is a valid index of LC activity, these results establish promising preliminary connections between the literature on locus coeruleus norepinephrine-mediated cognitive control and the literature on analogical reasoning and fluid intelligence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinke, I.; Lehmkühler, F., E-mail: felix.lehmkuehler@desy.de; Schroer, M. A.
2016-06-15
In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Steinke, I.; Walther, M.; Lehmkühler, F.; ...
2016-06-01
In this study we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 μm and 20 μm at a jet length of several hundred μm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXSmore » and WAXS experiments. Finally, as a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.« less
Godard, Beatrice
2016-01-01
Research Ethics Boards (REBs) are expected to evaluate protocols planning the use of Next Generation Sequencing technologies (NGS), assuring that any genomic finding will be properly managed. As Canadian REBs play a central role in the disclosure of such results, we deemed it important to examine the views and experience of REB members on the return of aggregated research results, individual research results (IRRs) and incidental findings (IFs) in current genomic research. With this intent, we carried out a web-based survey, which showed that 59.7% of respondents viewed the change from traditional sequencing to NGS as more than a technical substitution, and that 77% of respondents agreed on the importance of returning aggregated research results, the most compelling reasons being the recognition of participants’ contribution and increasing the awareness of scientific progress. As for IRRs specifically, 50% of respondents were in favour of conveying such information, even when they only indicated the probability that a condition may develop. Current regulations and risk to participants were considered equally important, and much more than financial costs, when considering the return of IRRs and IFs. Respondents indicated that the financial aspect of offering genetic counseling was the least important matter when assessing it as a requisite. Granting agencies were named as mainly responsible for funding, while the organizing and returning of IRRs and IFs belonged to researchers. However, views in these matters differ according to respondents’ experience. Our results draw attention to the need for improved guidance when considering the organizational and financial aspects of returning genetic research results, so as to better fulfill the ethical and moral principles that are to guide such undertakings. PMID:27167380
Back to School After Cancer Treatment: Making Sense of the Adolescent Experience.
Choquette, Anne; Rennick, Janet E; Lee, Virginia
2016-01-01
Little is known about the influence of cancer on the adolescent's developing self-identity and social relationships as he/she transitions back to school following cancer treatment. The purpose of this study was to explore the meaning of returning to school for adolescents who have completed cancer treatment. In this qualitative study, in-depth interviews using an interpretive descriptive approach were conducted with 11 adolescents (aged 13-17 years) who had completed treatment for cancer. The transcripts of the audiotaped interviews were analyzed thematically and reviewed by the study team. Three main themes suggested that the return to school hallmarked the end of an illness episode and a welcome return to a sense of well-being: (a) being on the right track, (b) bridging two worlds, and (c) establishing a new life at school. Nearly all adolescents described being negatively impacted by the cancer experience. However, the ability to maintain friendships during the transition emerged as particularly salient to allow the adolescents to rise above the challenges and residual effects of cancer treatment. Returning to school following cancer treatment affects adolescents' beliefs about themselves, their self-identity, and their social relationships. Understanding the meaning that adolescents ascribed to returning to school facilitated the development of practice recommendations to improve adjustment to school. Our study findings illuminate an important gap in the existing resources for adolescents in the posttreatment phase of cancer. Recommendations to promote healthy psychosocial development are proposed to better support adolescents during the reintegration to school.
Readjusting one's life in the tension inherent in work and motherhood.
Alstveit, Marit; Severinsson, Elisabeth; Karlsen, Bjørg
2011-10-01
This paper is a report on a study undertaken to interpret employed first-time mothers' experiences of returning to work after maternity leave, in a Norwegian context. Despite the increasing rate of employed fertile women and increasing welfare benefits to support the work-life balance, the first years after giving birth are described as being the most demanding on mothers' health. However, little is known about mothers' experiences of returning to work after maternity leave. The study included nine Norwegian employees who were individually interviewed during the first months after their return to work following maternity leave. The interviews were conducted during 2009 and interpreted using a method grounded in hermeneutics. Overall, the meaning of returning to work was interpreted as 'Readjusting one's life in the tension inherent in work and motherhood'. This comprehensive theme was based on three sub-themes: (a) Striving to manage the workload and taking responsibility for the best interests of the child, (b) Struggling with feelings of not being a good enough mother, and (c) Maintaining a balance between sensitivity and self-confidence. Returning to work after maternity leave appears to be a transitional phase that can be critical to the well-being of first-time mothers. To support women during this phase, employers and public health nurses should monitor the work in relation to the women's capacity and value their competence both as employees and mothers. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Luo, Shi-Xiang; Liu, Jun-E; Cheng, Andy S K; Xiao, Shu-Qin; Su, Ya-Li; Feuerstein, Michael
2018-02-14
Aim To determine whether breast cancer survivors (BCS) at work following the diagnosis and/or treatment of breast cancer, in a rapidly developing country such as China experience similar to return to work challenges as reported in nations with established return to work (RTW) policy and procedures for employees with cancer. Methods Semi-structured interviews were conducted with 16 BCS who returned to work following diagnosis and/or primary cancer treatment. An Interpretative Phenomenological Analysis was used to investigate responses. Results Three recurring themes emerged: (1) challenges at work related to residual effects of diagnosis and/or primary treatment; (2) positive and negative responses from employers and/or supervisors; and (3) positive and negative responses from co-workers/colleagues. Although several participants experienced a high level of workplace support, there was a subgroup that did report challenges related to symptom burden, cognitive limitations, and both positive and negative responses by employers and co-workers were reported. Conclusions Findings indicate similar challenges in BCS who RTW during and/or following cancer treatment in both rapidly developing and developed nations. Results suggest that regardless of the existence of workplace policies and practices related to RTW for workers with a history of cancer, a subgroup of BCS experience similar challenges when returning to work. These findings highlight the international nature of RTW challenges and suggest the need for more global efforts to develop and evaluate workplace interventions to assist with these similarities.
Return migration: changing roles of men and women.
Sakka, D; Dikaiou, M; Kiosseoglou, G
1999-01-01
This article addresses changes in gender roles among returning migrant families. It focuses on Greek returnees from the Federal Republic of Germany and explores changes in task sharing behavior and gender role attitudes resulting from changes in the sociocultural environments. A group of return migrants was compared with a group of non-migrants, both living in villages in the District of Drama, Greece. Groups were interviewed to investigate the extent to which each spouse shared house tasks, as well as their attitudes towards sharing and gender role in the family. The t-test for independent samples was used to determine mean differences between the two groups. In addition to demographic variables, those concerning the "time lived abroad" and the "number of years in Greece" after return were inserted into a series of regression analyses. Findings showed that migrants' task sharing and gender role attitudes were influenced differently by the migration-repatriation experience and subsequent cultural alternation. Results also suggest that migrant couples either take on new patterns of behavior or maintain traditional ones only when these were congruent with the financial aims of the family or can be integrated into living conditions in Greece upon return. Furthermore, migrants seem to adopt a more "traditional" attitude than non-migrants toward the participation of women in family decision making. From the study, it is suggested that gender role change is an on-going process influenced by the migration-repatriation experience, as well the factors, which accompany movement between the two countries.
Mode I Fracture Toughness of Rock - Intrinsic Property or Pressure-Dependent?
NASA Astrophysics Data System (ADS)
Stoeckhert, F.; Brenne, S.; Molenda, M.; Alber, M.
2016-12-01
The mode I fracture toughness of rock is usually regarded as an intrinsic material parameter independent of pressure. However, most fracture toughness laboratory tests are conducted only at ambient pressure. To investigate fracture toughness of rock under elevated pressures, sleeve fracturing laboratory experiments were conducted with various rock types and a new numerical method was developed for the evaluation of these experiments. The sleeve fracturing experiments involve rock cores with central axial boreholes that are placed in a Hoek triaxial pressure cell to apply an isostatic confining pressure. A polymere tube is pressurized inside these hollow rock cylinders until they fail by tensile fracturing. Numerical simulations incorporating fracture mechanical models are used to obtain a relation between tensile fracture propagation and injection pressure. These simulations indicate that the magnitude of the injection pressure at specimen failure is only depending on the fracture toughness of the tested material, the specimen dimensions and the magnitude of external loading. The latter two are known parameters in the experiments. Thus, the fracture toughness can be calculated from the injection pressure recorded at specimen breakdown. All specimens had a borehole diameter to outer diameter ratio of about 1:10 with outer diameters of 40 and 62 mm. The length of the specimens was about two times the diameter. Maximum external loading was 7.5 MPa corresponding to maximum injection pressures at specimen breakdown of about 100 MPa. The sample set tested in this work includes Permian and Carboniferous sandstones, Jurassic limestones, Triassic marble, Permian volcanic rocks and Devonian slate from Central Europe. The fracture toughness values determined from the sleeve fracturing experiments without confinement using the new numerical method were found to be in good agreement with those from Chevron bend testing according to the ISRM suggested methods. At elevated confining pressures, the results indicate a significant positive correlation between fracture toughness and confining pressure for most tested rock types.
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Spinhirne, James D.; Campbell, James R.; Berkoff, Timothy A.; Bates, David; Starr, David OC. (Technical Monitor)
2001-01-01
The determination of the vertical distribution of aerosols and clouds over the ocean is needed for accurate retrievals of ocean color from satellites observations. The presence of absorbing aerosol layers, especially at altitudes above the boundary layer, has been shown to influence the calculation of ocean color. Also, satellite data must be correctly screened for the presence of clouds, particularly cirrus, in order to measure ocean color. One instrument capable of providing this information is a lidar, which uses pulses of laser light to profile the vertical distribution of aerosol and cloud layers in the atmosphere. However, lidar systems prior to the 1990s were large, expensive, and not eye-safe which made them unsuitable for cruise deployments. During the 1990s the first small, autonomous, and eye-safe lidar system became available: the micro-pulse lidar, or MPL. The MPL is a compact and eye-safe lidar system capable of determining the range of aerosols and clouds by firing a short pulse of laser light (523 nm) and measuring the time-of-flight from pulse transmission to reception of a returned signal. The returned signal is a function of time, converted into range using the speed of light, and is proportional to the amount of light backscattered by atmospheric molecules (Rayleigh scattering), aerosols, and clouds. The MPL achieves ANSI eye-safe standards by sending laser pulses at low energy (micro-J) and expanding the beam to 20.32 cm in diameter. A fast pulse-repetition-frequency (2500 Hz) is used to achieve a good signal-to-noise, despite the low output energy. The MPL has a small field-of-view (< 100 micro-rad) and signals received with the instrument do not contain multiple scattering effects. The MPL has been used successfully at a number of long-term sites and also in several field experiments around the world.
Bilateral transaxillary endoscopic total thyroidectomy.
Miyano, Go; Lobe, Thom E; Wright, Simon K
2008-02-01
Minimal-access thyroid surgery using various techniques is well described. The present study reviews our initial experience with total thyroidectomy using a robotic-assisted bilateral transaxillary endoscopic approach (R-BAEA) and a non-robotic-assisted bilateral transaxillary endoscopic approach (BAEA) to assess it's safety and feasibility. The study group was 13 consecutive patients who were candidates for total thyroidectomy with benign thyroid disease. Two young adult patients who were older than 20 years and 2 teenage patients who underwent a transaxillary endoscopic thyroid lobectomy were excluded from this study that was composed of 9 children. A detailed description of the surgical technique is provided. Eight patients were female and one was male. The mean age was 13.5 +/- 3.0 years. Two R-BAEAs and 7 BAEAs were performed. The initial diagnosis was Graves disease in all 9 cases. The mean operating time was 385 minutes (range, 364-407 minutes) for R-BAEA and 259 minutes (range, 135-385 minutes) for BAEA. The mean diameter of the resected specimens was 5.9 cm (range, 4.5-8.3 cm); the mean intraoperative blood loss was 15.0 mL (range, 10-30 mL). The recurrent laryngeal nerve and parathyroid glands were identified and preserved intact in all cases. No patients required conversion. There was one instance of postoperative wound erythema, and 2 patients experienced hypocalcemia that resolved spontaneously. Two patients with large glands experienced a transient postoperative hoarseness. The mean total postoperative morphine dose administered in the first 24 hours was 1.5 mg (range, 0-4 mg). Postoperative pain was minimal, and cosmetic results were considered excellent by all patients. All except one were discharged the day after surgery and returned immediately to normal activities. Total thyroidectomy using BAEA with or without robotic assistance is feasible and safe. The advantages of this approach are no cervical scar, no significant morbidity, less postoperative pain, and early return to normal activity compared with other published techniques.
Laser guide star pointing camera for ESO LGS Facilities
NASA Astrophysics Data System (ADS)
Bonaccini Calia, D.; Centrone, M.; Pedichini, F.; Ricciardi, A.; Cerruto, A.; Ambrosino, F.
2014-08-01
Every observatory using LGS-AO routinely has the experience of the long time needed to bring and acquire the laser guide star in the wavefront sensor field of view. This is mostly due to the difficulty of creating LGS pointing models, because of the opto-mechanical flexures and hysteresis in the launch and receiver telescope structures. The launch telescopes are normally sitting on the mechanical structure of the larger receiver telescope. The LGS acquisition time is even longer in case of multiple LGS systems. In this framework the optimization of the LGS systems absolute pointing accuracy is relevant to boost the time efficiency of both science and technical observations. In this paper we show the rationale, the design and the feasibility tests of a LGS Pointing Camera (LPC), which has been conceived for the VLT Adaptive Optics Facility 4LGSF project. The LPC would assist in pointing the four LGS, while the VLT is doing the initial active optics cycles to adjust its own optics on a natural star target, after a preset. The LPC allows minimizing the needed accuracy for LGS pointing model calibrations, while allowing to reach sub-arcsec LGS absolute pointing accuracy. This considerably reduces the LGS acquisition time and observations operation overheads. The LPC is a smart CCD camera, fed by a 150mm diameter aperture of a Maksutov telescope, mounted on the top ring of the VLT UT4, running Linux and acting as server for the client 4LGSF. The smart camera is able to recognize within few seconds the sky field using astrometric software, determining the stars and the LGS absolute positions. Upon request it returns the offsets to give to the LGS, to position them at the required sky coordinates. As byproduct goal, once calibrated the LPC can calculate upon request for each LGS, its return flux, its fwhm and the uplink beam scattering levels.
M and D SIG progress report: Laboratory simulations of LDEF impact features
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Bernhard, R. P.; See, T. H.; Atkinson, D.; Allbrooks, M.
1992-01-01
Laboratory impact experiments are needed to understand the relationship between a measured penetration hole diameter and associated projectile dimension in the thermal blankets of experiment A0178, which occupied some 16 sq. m. These blankets are composed of 125 micron thick Teflon that has an Ag/enconel second mirror surface, backed by organic binder and Chemglaze paint for a total thickness of some 170 microns. While dedicated experiments are required to understand the penetration behavior of this compound target in detail, we report here on impact simulations sponsored by other projects into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both exposed and unexposed, for a refined understanding of the LDEF's collisional environment. We employed a light gas gun to launch soda-lime glass spheres from 50 to 3200 microns in diameter that impacted targets of variable thickness. Penetration measurements are given.
Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Pais, Salvatore Cezar
1999-01-01
The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.
Cushner-Weinstein, Sandra; Berl, Madison; Salpekar, Jay A; Johnson, Jami L; Pearl, Phillip L; Conry, Joan A; Kolodgie, Marian; Scully, Audrey; Gaillard, William D; Weinstein, Steven L
2007-02-01
Children with epilepsy attending a condition-specific overnight camp were evaluated for behavioral changes over 3 consecutive years, using a modification of the Vineland Adaptive Behavioral Scale. Trained counselors completed pre- and postcamp assessments for each camper. Repeated-measures MANOVA was used to analyze effects of the camp experience for each year, with respect to gender and age. Repeated-measures ANOVA was conducted to evaluate long-term effects from year-to-year comparisons for return campers, following three successive camp experiences. A significant change in social interaction was observed over 3 years. Despite some decline at the start of camp in consecutive years, the overall trend for return campers suggests a positive cumulative impact of continued camp participation, with improvements in the domains of social interaction, responsibility, and communication. A condition-specific camp designed for children with epilepsy can improve adaptive behaviors and social interactions. Overall net gains appear to increase over time, suggesting additional benefits for return campers.
Finding the Return Path: Landmark Position Effects and the Influence of Perspective
Karimpur, Harun; Röser, Florian; Hamburger, Kai
2016-01-01
Much research has been done on how people find their way from one place to another. Compared to that, there is less research available on how people find back from the destination to their origin. We first present theoretical approaches to perceptual and cognitive processes involved in finding a return path, including concepts, such as visibility, structural salience, and allocentric versus egocentric perspective, followed by a series of three experiments. In these experiments, we presented subjects intersections that contained landmark information on different positions. In order to investigate the processes involved, we used different measures, such as route-continuation (in learning direction and in opposite direction) and free-recall of route information. In summary, the results demonstrate the importance of landmark positions at intersections (structural salience in combination with perspective) and that finding the return path is more difficult than reproducing the same route from the learning condition. All findings will be discussed with respect to the current research literature on landmark-based wayfinding. PMID:28066283
Travel Schooling: Helping Children Learn through Travel.
ERIC Educational Resources Information Center
Byrnes, Deborah A.
2001-01-01
Provides information for teachers to help parents create rewarding and educational travel experiences for children. Examines the benefits of travel schooling, fundamental elements of a meaningful travel schooling experience, fostering cross cultural sensitivity through travel, and returning to the traditional classroom. (SD)
Wide-angle Optical Telescope for the EUSO Experiments
NASA Technical Reports Server (NTRS)
Hillman, L. W.; Takahaski, Y.; Zuccaro, A.; Lamb, D.; Pitalo, K.; Lopado, A.; Keys, A.
2003-01-01
Future spacebased air shower experiments, including the planned Extreme Universe Space Observatory (EUSO) mission, require a wide-angle telescope in the near-UV wavelengths 330 - 400 nm. Widest possible target aperture of earth's atmosphere, such as greater than 10(exp 5) square kilometers sr, can be viewed within the field-of-view of 30 degrees from space. EUSO's optical design is required to be compact, being constrained by the allocated mass and diameter for use in space. Two doublesided Fresnel lenses with 2.5-m diameter are chosen for the baseline design. It satisfies the imaging resolution of 0.1 degree over the 30-degree field of view.
Cylinder Expansion Experiments and Measured Product Isentropes for XTX-8004 Explosive
NASA Astrophysics Data System (ADS)
Jackson, Scott
2015-06-01
We present cylinder expansion data from full-scale (25.4-mm inner diameter) and half-scale (12.7-mm inner diameter) experiments with XTX-8004 explosive, composed of 80% RDX explosive and 20% Sylgard 182 silicone elastomer. An analytic method is reviewed and used to recover detonation product isentropes from the experimental data, which are presented in the standard JWL form. The cylinder expansion data was found to scale well, indicating ideal detonation behavior across the test scales. The analytically determined product JWLs were found to agree well with those produced via iterative hydrocode methods, but required significantly less computational effort.
Failure Analysis of T-38 Aircraft Burst Hydraulic Aileron Return Line
NASA Technical Reports Server (NTRS)
Martinez, J. E.; Figert, J. D.; Paton, R. M.; Nguyen, S. D.; Flint, A.
2012-01-01
During maintenance troubleshooting for fluctuating hydraulic pressures, a technician found that a right hand aileron return line, on the flight hydraulic side, was ruptured (Fig. 1, 2). This tubing is part of the Hydraulic Flight Control Aileron Return Reducer to Aileron Manifold and is suspected to be original to the T-38 Talon trainer aircraft. Ailerons are small hinged sections on the outboard portion of a wing used to generate rolling motion thereby banking the aircraft. The ailerons work by changing the effective shape of the airfoil of the outer portion of the wing [1]. The drawing, Northrop P/N 3-43033-55 (6/1960), specifies that the line is made from 0.375 inch OD, aluminum 5052-0 tubing with a 0.049 inch wall thickness. WW-T-787 requires the tube shall be seamless and uniform in quality and temper [2]. The test pressure for this line is 3000 psi, and the operational pressure for this line is estimated to be between 45 psi and 1500 psi based on dynamic loading during flight. Examination of the fracture surface found evidence of arrest bands originating on the inner diameter (Fig 3). Ductile dimples are observed on the tube fractures (Fig. 4). The etched cross-section revealed thinning and work-hardening in the burst region (Fig. 5). The wall thickness just outside the work-hardened fracture region measured 0.035". Barlow's Formula: P = 2St/D, where P is burst pressure, S is allowable stress, t is wall thickness and D is the outer diameter of tube. Using the ultimate tensile strength of 28 ksi and a measured wall thickness of 0.035 inches at burst, P = 5.2 ksi (burst pressure). Using the yield of 13 ksi (YS) for aluminum 5052-0, plastic deformation will happen at P = 2.4 ksi suggesting plastic deformation occurred at a proof pressure of 3.0 ksi. Conclusion: The burst resulted from high stress, low-cycle fatigue. Evidence of arrest bands originating on the inner diameter. Fracture is predominately shear dimples, characteristic of high load ductile fractures (Fig 6). Section wall reduction in the burst region. Plastic deformation and thinning of the out-of-specification tube wall likely happened during the initial proof testing years ago. Metallography of tubing away from rupture site confirmed tubing was seamless. Based on the tube microstructure, it is likely that the initial wall thickness was about 30 % thinner than the requirement of 0.049 inches. Fracture initiated on the ID and progressed to the OD (shear lip). The tube is made of the correct material of 5052-0 aluminum as verified using Optical Emission Spectroscopy (Table 2). The tubing hardness tested 77 HV100 (77 HRE). This hardness is slightly above the requirement for 70 HRE maximum for aluminum 5052-0 in AMS 2658C [3].
Gallium ion-assisted room temperature synthesis of small-diameter ZnO nanorods.
Cho, Seungho; Kim, Semi; Lee, Kun-Hong
2011-09-15
We report a method for synthesizing small-diameter ZnO nanorods at room temperature (20 °C), under normal atmospheric pressure (1 atm), and using a relatively short reaction time (1 h) by adding gallium salts to the reaction solution. The ZnO nanorods were, on average, 92 nm in length and 9 nm in diameter and were single crystalline in nature. Quantitative analyses revealed that gallium atoms were not incorporated into the synthesized nanocrystals. On the basis of the experimental results, we propose a mechanism for the formation of small-diameter ZnO nanorods in the presence of gallium ions. The optical properties were probed by UV-Vis diffuse reflectance spectroscopy. The absorption band of the small-diameter ZnO nanorods was blue-shifted relative to the absorption band of the ~230 nm diameter ZnO nanorods (control samples). Control experiments demonstrated that the absence of metal ion-containing precipitants (except ZnO) at room temperature is essential, and that the ZnO nanorod diameter distributions were narrow for the stirred reaction solution and broad when prepared without stirring. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Roth, Tanja; Sprenger, Lisa; Odenbach, Stefan; Häfeli, Urs O.
2018-04-01
Microfluidic spirals are able to focus non-spherical microparticles in diluted suspension due to the Dean effect. A secondary flow establishes in a curved channel, consisting of two counter-rotating vortices, which transport particles to an equilibrium position near the inner wall of the channel. The relevant size parameter, which is responsible for successful focusing, is the ratio between the particle diameter of a sphere and the hydraulic diameter, which is a characteristic of the microfluidic spiral. A non-spherical particle has not one but several different size parameters. This study investigated the minor and major axes, the equivalent spherical diameter, and the maximal rotational diameter as an equivalent to the spherical diameter. Using a polydimethylsiloxane (PDMS)-based microfluidic device with spirals, experiments were conducted with artificial peanut-shaped and ellipsoidal particles sized between 3 and 9 μm as well as with the bacteria Bacillus subtilis. Our investigations show that the equivalent spherical diameter, the major axis, and the maximal rotational diameter of a non-spherical particle can predict successful focusing. The minor axis is not suitable for this purpose. Non-spherical particles focused when the ratio of their equivalent spherical diameter to the hydraulic diameter of the channel was larger than 0.07. The particles also focused when the ratio between the maximal rotational diameter or the major axis and the hydraulic diameter was larger than 0.01. These results may help us to separate non-spherical biological particles, such as circulating tumor cells or pathogenic bacteria, from blood in future experimental studies.
Hopkins-Chadwick, Denise L
2012-01-01
Many military nurses find a period of transition is necessary in order to fully return to work after deployment. Coworkers and supervisors can be a positive or negative force in that transition. Using data from a larger study, evidence-based strategies to support nurses who return to nursing work after deployment were developed. Having an understanding of what returning nurses say about their "coming home" phase can help coworkers and supervisors be a positive force in work transition. A table of tasks with explanations is provided to assist coworkers and supervisors in facilitating the transition back to noncombat nurse work.
Sample Return Primer and Handbook
NASA Technical Reports Server (NTRS)
Barrow, Kirk; Cheuvront, Allan; Faris, Grant; Hirst, Edward; Mainland, Nora; McGee, Michael; Szalai, Christine; Vellinga, Joseph; Wahl, Thomas; Williams, Kenneth;
2007-01-01
This three-part Sample Return Primer and Handbook provides a road map for conducting the terminal phase of a sample return mission. The main chapters describe element-by-element analyses and trade studies, as well as required operations plans, procedures, contingencies, interfaces, and corresponding documentation. Based on the experiences of the lead Stardust engineers, the topics include systems engineering (in particular range safety compliance), mission design and navigation, spacecraft hardware and entry, descent, and landing certification, flight and recovery operations, mission assurance and system safety, test and training, and the very important interactions with external support organizations (non-NASA tracking assets, landing site support, and science curation).
Timing matters: length of leave and working mothers' daily reentry regrets.
Wiese, Bettina S; Ritter, Johannes O
2012-11-01
Dealing with developmental tasks in work and family domains is an important challenge for young and middle-aged adults. We investigated a transition that has evolved into a normative task for women, namely, the retransition back to paid work following maternity leave. In a diary study with 149 mothers who had just returned to work, we examined the daily experienced regrets concerning this return. In addition to personal resources (i.e., emotional stability, feeling prepared for the transition) and financial requirements needed to return to work, daily experienced family stress predicted decisional regrets. Moreover, our results suggest that leave length is related to psychological resilience in the face of day-to-day stress experiences: Late returners reported fewer regrets in general and were unaffected by daily family stress. Return-to-work regrets, in turn, were predictive of withdrawal intentions. This underlines the relevancy of the timing of the transition back to work in terms of successful development during this life phase.
Harding, David J.; Morenoff, Jeffrey D.; Herbert, Claire W.
2012-01-01
Poor urban communities experience high rates of incarceration and prisoner reentry. This paper examines the residences where former prisoners live after prison, focusing on returns to pre-prison social environments, residential mobility, and the role of intermediate sanctions. Drawing on a unique dataset that follows a cohort of Michigan parolees released in 2003 over time using administrative records, we examine returns to pre-prison environments, both immediately after prison and in the months and years after release. We then investigate the role of intermediate sanctions – punishments for parole violations that are less severe than returning to prison – in residential mobility among parolees. Our results show low rates of return to former neighborhoods and high rates of residential mobility after prison, a significant portion of which is driven by intermediate sanctions resulting from criminal justice system supervision. These results suggest that, through parole supervision, the criminal justice system generates significant residential mobility. PMID:23645931
Cratering Equations for Zinc Orthotitanate Coated Aluminum
NASA Technical Reports Server (NTRS)
Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon
2009-01-01
The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the multiple craters. Samples were obtained from the HST largest craters for examination by electron microscope equipped with x-ray spectrometers to determine impactor source (micrometeoroid or orbital debris). In an attempt to estimate the MMOD particle diameters that produced these craters, this paper will present equations for spall diameter, crater depth and crater diameter in Z93 coated aluminum. The equations will be based on hypervelocity impact tests of Z93 painted aluminum at the NASA White Sands Test Facility. Equations inputs for velocities beyond the testable regime are expected from hydrocode simulations of Z93 coated aluminum using CTH and ANSYS AUTODYN.
[Micropore filters for measuring red blood cell deformability and their pore diameters].
Niu, X; Yan, Z
2001-09-01
Micropore filters are the most important components in micropore filtration testes for assessing red blood cell (RBC) deformability. With regard to their appearance and filtration behaviors, comparisons are made for different kinds of filters currently in use. Nickel filters with regular geometric characteristics are found to be more sensitive to the effects of physical, chemical, especially pathological factors on the RBC deformability. We have critically reviewed the following viewpoint that filters with 3 microns pore diameter are more sensitive to cell volume than to internal viscosity while filters with 5 microns pore diameter are just the opposite. After analyzing the experiment results with 3 microns and 5 microns filters, we point out that filters with smaller pore diameters are more suitable for assessing the RBC deformability.
The Asteroid Redirect Mission (ARM)
NASA Technical Reports Server (NTRS)
Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.
2016-01-01
To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time.
Angus, J
2001-09-01
Several authors argue that women's lives are conditioned by social locations such as class, race, ethnicity, age, and chronic illness or (dis)ability. Patterns of advantage and disadvantage, domination and oppression are formed which constitute the groundwork of women's health. An institutional ethnography was designed to follow the experiences of 18 women on their return home following aortocoronary bypass surgery. Using the narratives of 3 women as examples, the author highlights the everyday activities pursued by the women in the first month after their return home. The author describes the circumstances under which the activities occurred and discusses the social relations reflected in the descriptions. From this analysis it is argued that research and substantive work would benefit from a more critical understanding of women's different experiences of the home and of home care.
Hilton, Gillean; Unsworth, Carolyn; Murphy, Gregory
2018-07-01
This review sought to answer the question "What are the barriers and facilitators influencing people's experience of return to work following spinal cord injury?" Studies that met the selection criteria were identified, presented and critically appraised using National Institute for Health and Care Excellence guidelines. Thematic synthesis was completed with studies possessing strong methodological rigor. Synthesis and interpretation involved three stages; coding of primary data; development of descriptive themes reflective of the primary data; and establishment of analytical themes to answer the review question. Data from nine papers were included in the thematic synthesis. Several descriptive themes and three analytical themes were drawn from the data to answer the research question. Analytical themes included: a matrix of personal and environmental factors exists requiring complex navigation in order to create possibilities and opportunities for postinjury employment; the process of seeking or gaining employment shares a reciprocal relationship with the temporal nature of adjustment to spinal cord injury; and there is an intrinsic need for occupational engagement through paid employment. Returning to or gaining employment after spinal cord injury is a fundamentally difficult experience for people. Multiple strategies are required to support the navigation of the process. There is, however, a need in people with spinal cord injury, to be a worker, and with that comes the inherent benefits of being employed. Implications for rehabilitation Returning to work should be a significant focus of spinal cord injury rehabilitation. Employment is both possible and health promoting following spinal cord injury. Multiple strategies are required to support people to navigate the return to work process. It is important to be cognizant of the individual motivations for being a worker and the complexity of the adjustment process. Spinal cord injury centers can provide a consistent and supportive framework and culture of positivity about employment after spinal cord injury.
Electrode spanning with partial tripolar stimulation mode in cochlear implants.
Wu, Ching-Chih; Luo, Xin
2014-12-01
The perceptual effects of electrode spanning (i.e., the use of nonadjacent return electrodes) in partial tripolar (pTP) mode were tested on a main electrode EL8 in five cochlear implant (CI) users. Current focusing was controlled by σ (the ratio of current returned within the cochlea), and current steering was controlled by α (the ratio of current returned to the basal electrode). Experiment 1 tested whether asymmetric spanning with α = 0.5 can create additional channels around standard pTP stimuli. It was found that in general, apical spanning (i.e., returning current to EL6 rather than EL7) elicited a pitch between those of standard pTP stimuli on main electrodes EL8 and EL9, while basal spanning (i.e., returning current to EL10 rather than EL9) elicited a pitch between those of standard pTP stimuli on main electrodes EL7 and EL8. The pitch increase caused by apical spanning was more salient than the pitch decrease caused by basal spanning. To replace the standard pTP channel on the main electrode EL8 when EL7 or EL9 is defective, experiment 2 tested asymmetrically spanned pTP stimuli with various α, and experiment 3 tested symmetrically spanned pTP stimuli with various σ. The results showed that pitch increased with decreasing α in asymmetric spanning, or with increasing σ in symmetric spanning. Apical spanning with α around 0.69 and basal spanning with α around 0.38 may both elicit a similar pitch as the standard pTP stimulus. With the same σ, the symmetrically spanned pTP stimulus was higher in pitch than the standard pTP stimulus. A smaller σ was thus required for symmetric spanning to match the pitch of the standard pTP stimulus. In summary, electrode spanning is an effective field-shaping technique that is useful for adding spectral channels and handling defective electrodes with CIs.
NASA Astrophysics Data System (ADS)
Johnson, W.; Repasky, K. S.; Nehrir, A. R.; Carlsten, J.
2011-12-01
A differential absorption lidar (DIAL) for monitoring carbon dioxide (CO2) is under development at Montana State University using commercially available parts. Two distributed feedback (DFB) lasers, one at the on-line wavelength and one at the off-line wavelength are used to injection seed a fiber amplifier. The DIAL operates in the 1.57 micron carbon dioxide absorption band at an on-line wavelength of 1.5714060 microns. The laser transmitter produces 40 μJ pulses with a pulse duration of 1 μs and a pulse repetition frequency of 20 kHz. The scattered light from the laser transmitter is collected using a 28 cm diameter Schmidt-Cassegrain telescope. The light collected by the telescope is collimated and then filtered using a 0.8 nm FWHM narrowband interference filter. After the optical filter, the light is coupled into a multimode optical fiber with a 1000 μm core diameter. The output from the optical fiber is coupled into a photomultiplier tube (PMT) used to monitor the return signal. The analog output from the PMT is next incident on a discriminator producing TTL logic pulses for photon counting. The output from the PMT and discriminator is monitored using a multichannel scalar card allowing the counting of the TTL pulses as a function of range. Data from the DIAL instrument is collected in the following manner. The fiber amplifier is injection seeded first with the on-line DFB laser. The return signal as a function of range is integrated using the multichannel scalar for a user defined time, typically set at 6 s. The off-line DFB laser is then used to injection seed the fiber amplifier and the process is repeated. This process is repeated for a user defined period. The CO2 concentration as a function of range is calculated using the on-line and off-line return signals with the DIAL equation. A comparison of the CO2 concentration measured using the DIAL instrument at 1.5 km and a Li-Cor LI-820 in situ sensor located at 1.5 km from the DIAL over a 2.5 hour period indicate that the CO2 DIAL has an accuracy of ±20 parts per million (PPM).
Calculation of induced voltages on overhead lines caused by inclined lightning strokes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakakibara, A.
1989-01-01
Equations to calculate the inducing scalar and vector potentials produced by inclined return strokes are shown. Equations are also shown for calculating the induced voltages on overhead lines where horizontal components of inducing vector potential exist. The adequacy of the calculation method is demonstrated by field experiments. Using these equations, induced voltages on overhead lines are calculated for a variety of directions of return strokes.
Communication and collaboration among return-to-work stakeholders.
Russell, Elizabeth; Kosny, Agnieszka
2018-05-17
Workers who are injured or become ill on the job are best able to return-to-work when stakeholders involved in their case collaborate and communicate. This study examined health care providers' and case managers' engagement in rehabilitation and return-to-work following workplace injury or illness. In-depth interviews were conducted with 97 health care providers and 34 case managers in four Canadian provinces about their experiences facilitating rehabilitation and return-to-work, and interacting with system stakeholders. A qualitative thematic content analysis demonstrated two key findings. Firstly, stakeholders were challenged to collaborate as a result of: barriers to interdisciplinary and cross-professional communication; philosophical differences about the timing and appropriateness of return-to-work; and confusion among health care providers about the workers' compensation system. Secondly, these challenges adversely affected the co-ordination of patient care, and consequentially, injured workers often became information conduits, and effective and timely treatment and return-to-work was sometimes negatively impacted. Communication challenges between health care providers and case managers may negatively impact patient care and alienate treating health care providers. Discussion about role clarification, the appropriateness of early return-to-work, how paperwork shapes health care providers' role expectations, and strengthened inter-professional communication are considered. Implications for Rehabilitation Administrative and conceptual barriers in workers' compensation systems challenge collaboration and communication between health care providers and case managers. Injured workers may become conduits of incorrect information, resulting in adversarial relationships, overturned health care providers' recommendations, and their disengagement from rehabilitation and return-to-work. Stakeholders should clarify the role of health care providers during rehabilitation and return-to-work and the appropriateness of early return-to-work to mitigate recurring challenges. Communication procedures between health care specialists may disrupt these challenges, increasing the likelihood of timely and effective rehabilitation and return-to-work.
Ståhl, Christian; Müssener, Ulrika; Svensson, Tommy
2012-01-01
In 2008, time limits were introduced in Swedish sickness insurance, comprising a pre-defined schedule for return-to-work. The purpose of this study was to explore experienced consequences of these time limits. Sick-listed persons, physicians, insurance officials and employers were interviewed regarding the process of sick-listing, rehabilitation and return-to-work in relation to the reform. The study comprises qualitative interviews with 11 sick-listed persons, 4 insurance officials, 5 employers and 4 physicians (n = 24). Physicians, employers, and sick-listed persons described insurance officials as increasingly passive, and that responsibility for the process was placed on the sick-listed. Several ethical dilemmas were identified, where officials were forced to act against their ethical principles. Insurance officials' principle of care often clashed with the standardization of the process, that is based on principles of egalitarianism and equal treatment. The cases reported in this study suggest that a policy for activation and early return-to-work in some cases has had the opposite effect: central actors remain passive and the responsibility is placed on the sick-listed, who lacks the strength and knowledge to understand and navigate through the system. The standardized insurance system here promoted experiences of procedural injustice, for both officials and sick-listed persons.
Lunar Plant Biology - A Review of the Apollo Era
NASA Astrophysics Data System (ADS)
Ferl, Robert J.; Paul, Anna-Lisa
2010-04-01
Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.
Lunar plant biology--a review of the Apollo era.
Ferl, Robert J; Paul, Anna-Lisa
2010-04-01
Recent plans for human return to the Moon have significantly elevated scientific interest in the lunar environment with emphasis on the science to be done in preparation for the return and while on the lunar surface. Since the return to the Moon is envisioned as a dedicated and potentially longer-term commitment to lunar exploration, questions of the lunar environment and particularly its impact on biology and biological systems have become a significant part of the lunar science discussion. Plants are integral to the discussion of biology on the Moon. Plants are envisioned as important components of advanced habitats and fundamental components of advanced life-support systems. Moreover, plants are sophisticated multicellular eukaryotic life-forms with highly orchestrated developmental processes, well-characterized signal transduction pathways, and exceedingly fine-tuned responses to their environments. Therefore, plants represent key test organisms for understanding the biological impact of the lunar environment on terrestrial life-forms. Indeed, plants were among the initial and primary organisms that were exposed to returned lunar regolith from the Apollo lunar missions. This review discusses the original experiments involving plants in association with the Apollo samples, with the intent of understanding those studies within the context of the first lunar exploration program and drawing from those experiments the data to inform the studies critical within the next lunar exploration science agenda.
NASA Astrophysics Data System (ADS)
Shurshakov, Vyacheslav; Akatov, Yu; Petrov, V.; Kartsev, I.; Polenov, Boris; Petrov, V.; Lyagushin, V.
In the space experiment MATROSHKA-R, the spherical tissue equivalent phantom (30 kg mass, 35 cm diameter and 10 cm central spherical cave) made in Russia has been installed in the star board crew cabin of the ISS Service Module. Due to the specially chosen phantom shape and size, the chord length distributions of the detector locations are attributed to self-shielding properties of the critical organs in a real human body. If compared with the anthropomorphic phantom Rando used inside and outside the ISS, the spherical phantom has lower mass, smaller size, and requires less crew time for the detector retrieval; its tissue-equivalent properties are closer to the standard human body tissue than the Rando-phantom material. In the first phase of the experiment the dose measurements were realized with only passive detectors (thermoluminescent and solid state track detectors). There were two experimental sessions with the spherical phantom in the crew cabin, (1) from Jan. 29, 2004 to Apr. 30, 2004 and (2) from Aug. 11, 2004 to Oct. 10, 2005. The detectors are placed inside the phantom along the axes of 20 containers and on the phantom outer surface in 32 pockets of the phantom jacket. The results obtained with the passive detectors returned to the ground after each session show the dose difference on the phantom surface as much as a factor of 2, the highest dose being observed close to the outer wall of the crew cabin, and the lowest dose being in the opposite location along the phantom diameter. Maximum dose rate measured in the phantom (0.31 mGy/day) is obviously due to the galactic cosmic ray (GCR) and Earth' radiation belt contribution on the ISS trajectory. Minimum dose rate (0.15 mGy/day) is caused mainly by the strongly penetrating GCR particles and is observed behind more than 5 g/cm2 tissue shielding. Critical organ doses, mean-tissue and effective doses of a crew member in the crew cabin are also estimated with the spherical phantom. The estimated effective dose rate (about 0.49 mSv/day at radiation quality factor of 2.6) is from 12 to 15 per cent lower than the averaged dose on the phantom surface as dependent on the body attitude.
NASA Astrophysics Data System (ADS)
Noviello, Jessica; Barnouin, Olivier S.; Ernst, Carolyn M.; Daly, Michael
2014-11-01
Asteroid 25143 Itokawa is a near-Earth irregular asteroid 535 by 294 by 209 meters in size [1]. The surface topography can be divided into the smooth lowlands and the rocky highlands. The origins of these regions could be due to the surface flow of fines from high to low points of gravitational potential [2]. Previous block studies conducted by Michikami et al. [3] and Mazrouei et al. [4] reported average size frequency distribution (SFD) indices on blocks larger than 6 m in diameter to be -3.1 ± 0.1 and -3.5 ± 0.1, respectively. Noviello et al. [5] reported preliminary results showing that blocks from 0.1 to 6 m in diameter had significantly lower SFD indices. They also reported that SFDs created from lowland image analyses consistently yield indices of around -2.71 ± 0.01, while the SFDs from highland images yield indices of roughly -2.00 ± 0.01 at the same scale. There are a number of geologic processes that could be responsible for the observed differences in SFD indices between different topographical regions. To quantify the effects of seismic shaking on SFD indices, we conducted simple laboratory experiments. Blocks were placed in a bin and slowly covered with sand and gravel, and then subjected to periods of moderate shaking in 10-second increments. The same methods used in the observational study were then applied to the experimental blocks to quantify the change in SFD index as the blocks were first covered and subsequently revealed. The initial results are: 1) As blocks are covered, in general the indices decrease; 2) Seismic shaking restores the indices; and 3) Larger blocks reappear faster than smaller rocks after shaking. This has implications for interpreting results of block count studies (the brazil nut effect [6]) and sample return missions, while also providing details about the physical expression of certain geologic processes on small bodies. [1] Fujiwara, A. et al., (2006) Science, 312, 1330-1334. [2] Miyamoto, H. et al., (2007) Science, 316, 1011-1014. [3] Michikami, T. et al., (2008) Earth Planets Space, 60, 13-20. [4] Mazrouei, S. et al., (2014) Icarus 229, 181-189. [5] Noviello, J. L. et al., (2014) LPSC XLV, Abstract #1587. [6] Asphaug, E., et al. (2001) LPSC XXXII, Abstract #1708.
NASA Astrophysics Data System (ADS)
Kitt, R.; Kalda, J.
2006-03-01
The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.
Nair, P R
1999-01-01
This article reviews the situation of labor migrants from Kerala state, India, who were 40-60% of all contract workers in the Middle East and who returned after the mid-1980s. Descriptions are provided of the characteristics of return migrants, the Kerala economy, return migration policies, and impact studies of returnees. About 500,000 returned to Kerala. Returnees were middle aged, with low levels of education, skills, and experience. About 50% of returnees remained unemployed. The other 50% either retired or sought self-employment or other wage labor. Surveys conducted in 1985, 1987, 1993-93, and 1997 reveal that returnees peaked during the 1990s. By 1997, returnees to the Kadinamkulam panchayat included about one-sixth who were women. Most returnees had worked in Saudi Arabia, United Arab Emirates, and Kuwait. The reasons for return were poor working and living conditions, lack of opportunity or contract for staying longer, or forced repatriation. Upon return, 50% of the women and about 16% of the men remained unemployed. Return wages were about the same as before the migration. Returnees complained about the lack of support from government and society. Impact studies do not differentiate migration effects from development effects in general. Evaluation should focus on multidimensional impacts and individual attainment of emigration goals.
Laborda, Mario A.; Miller, Ralph R.
2013-01-01
Fear conditioning and experimental extinction have been presented as models of anxiety disorders and exposure therapy, respectively. Moreover, the return of fear serves as a model of relapse after exposure therapy. Here we present two experiments, with rats as subjects in a lick suppression preparation, in which we assessed the additive effects of two different treatments to attenuate the return of fear. First, we evaluated whether two phenomena known to generate return of fear (i.e., spontaneous recovery and renewal) summate to produce a stronger reappearance of extinguished fear. At test, rats evaluated outside the extinction context following a long delay after extinction (i.e., a delayed context shift) exhibited greater return of extinguished fear than rats evaluated outside the extinction context alone, but return of extinguished fear following a delayed context shift did not significantly differ from the return of fear elicited in rats tested following a long delay after extinction alone. Additionally, extinction in multiple contexts and a massive extinction treatment each attenuated the strong return of fear produced by a delayed context shift. Moreover, the conjoint action of these treatments was significantly more successful in preventing the reappearance of extinguished fear, suggesting that extensive cue exposure administered in several different therapeutic settings has the potential to reduce relapse after therapy for anxiety disorders, more than either manipulation alone. PMID:23611075
Warheit, D B; Kellar, K A; Hartsky, M A
1992-10-01
Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1 week and 1 month postexposure. Increased pulmonary cell labeling was measured in terminal bronchiolar cells immediately after exposure but returned to control values 1 week later. Fiber clearance studies demonstrated a transient increase in the numbers of retained fibers at 1 week postexposure, with rapid clearance of fibers thereafter. The transient increase in the number of fibers could be due to transverse cleaving of the fibers, since the average lengths of retained fibers continued to decrease over time. In this regard, a progressive decrease in the mean lengths and diameters of inhaled fibers was measured over a 6-month postexposure period.(ABSTRACT TRUNCATED AT 400 WORDS)
Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B
NASA Astrophysics Data System (ADS)
May, Chadd M.; Tarver, Craig M.
2014-05-01
Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.
Diameter Effect Curve and Detonation Front Curvature Measurements for ANFO
NASA Astrophysics Data System (ADS)
Catanach, R. A.; Hill, L. G.
2002-07-01
Diameter effect and front curvature measurements are reported for rate stick experiments on commercially available prilled ANFO (ammonium-nitrate/fuel-oil) at ambient temperature. The shots were fired in paper tubes so as to provide minimal confinement. Diameters ranged from 77 mm (approximately failure diameter) to 205 mm, with the tube length being ten diameters in all cases. Each detonation wave shape was fit with an analytic form, from which the local normal velocity Dn, and local total curvature kappa, were generated as a function of radius R, then plotted parametrically to generate a Dn(kappa) function. The observed behavior deviates substantially from that of previous explosives, for which curves for different diameters overlay well for small kappa but diverge for large kappa, and for which kappa increases monotonically with R. For ANFO, we find that Dn(kappa) curves for individual sticks 1) show little or no overlap--with smaller sticks lying to the right of larger ones, 2) exhibit a large velocity deficit with little kappa variation, and 3) reach a peak kappa at an intermediate R.
ERIC Educational Resources Information Center
School Science Review, 1979
1979-01-01
Included is information regarding: fabrication of light emitting diodes, their operation as semiconductors, and an experiment demonstrating electroluminescence; experimenting with Random Access Memory (RAM) circuits; demonstrating Coriolis effect; measuring the diameter of an electron beam, E.H.T. meters; launching a trolley by catapult; a "random…
Characterization of copper and nichrome wires for safety fuse
NASA Astrophysics Data System (ADS)
Murdani, E.
2016-11-01
Fuse is an important component of an electrical circuit to limiting the current through the electrical circuit for electrical equipment safety. Safety fuses are made of a conductor such as copper and nichrome wires. The aim of this research was to determine the maximum current that can flow in the conductor wires (copper and nichrome). In the experiment used copper and nichrome wires by varying the length of wires (0.2 cm to 20 cm) and diameter of wires (0.1, 0.2, 0.3, 0.4 and 0.5) mm until maximum current reached that marked by melted or broken wire. From this experiment, it will be obtained the dependences data of maximum current to the length and diameter of wires. All data are plotted and it's known as a standard curve. The standard curve will provide an alternative choice of replacing fuse wire according to the maximum current requirement, including the wire type (copper and nichrome wires) and wire dimensions (length and diameter of wire).
Observations of condensation nuclei in the 1987 airborne Antarctic ozone experiment
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Smith, S. D.; Ferry, G. V.; Loewenstein, M.
1988-01-01
The condensation nucleus counter (CNC) flown of the NASA ER-2 in the Airborne Antarctic Ozone Experiment provides a measurement of the number mixing ratio of particles which can be grown by exposure to supersaturated n-butyl alcohol vapor to diameters of a few microns. Such particles are referred to as condensation nuclei (CN). The ER-2 CNC was calibrated with aerosols of known size and concentration and was found to provide an accurate measure of the number concentration of particles larger than about 0.02 micron. Since the number distribution of stratospheric aerosols is usually dominated by particles less than a few tenths of micron in diameter, the upper cutoff of the ER-2 CNC has not been determined experimentally. However, theory suggests that the sampling and counting efficiency should remain near one for particles as large as 1 micron in diameter. Thus, the CN mixing ratio is usually a good measure of the mixing ratio of submicron particles.
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.
2012-01-01
Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.
The Effect of Visual Signals on Spatial Decision Making
ERIC Educational Resources Information Center
Danziger, Shai; Rafal, Robert
2009-01-01
We examined the effect of an irrelevant visual transient on the decision where to look for a hidden object. Participants also performed a conventional "inhibition of return" localization task. In Experiments 1 and 2 the two tasks were blocked and in Experiments 3 and 4 they were randomly interleaved. In every experiment there was a bias to select…
"More Aware of Everything": Exploring the Returnee Experience in American Higher Education
ERIC Educational Resources Information Center
Haines, David
2013-01-01
At the intersection of the topics of migration and diversity in higher education lies the experience of people who grow up overseas, or who go overseas for education or military service, and then return as college students. This article addresses their experience, drawing from a series of exploratory interviews conducted--as part of a broader…
ERIC Educational Resources Information Center
Ballantyne, Roy; Packer, Jan
2011-01-01
This paper argues the need for the providers of ecotourism and other free-choice environmental learning experiences to promote the adoption of environmentally sustainable actions beyond their own sites, when visitors return to their home environments. Previous research indicates that although visitors often leave such experiences with a heightened…
Abdussamad, A M; Gauly, M; Holtz, W
2015-01-01
Two experiments were conducted. The purpose of Experiment 1 was to investigate whether viability of bovine semen stored in liquid nitrogen (-196°C) will be adversely affected by temporary exposure to dry ice (-79°C). It was convincingly shown that post thaw-motility was not affected, regardless whether semen was thawed immediately or after being returned to liquid nitrogen. Shipping or temporary storage on dry ice, thus, is a viable option. In Experiment 2, refreezing of frozen-thawed semen was attempted. The proportion of motile spermatozoa was reduced by a factor of ten to between 6.0 % and 7.4 %, regardless whether thawing occurred directly after removal from liquid nitrogen or after an interim period on dry ice. When semen was refrozen on dry ice before being returned to liquid nitrogen, motility rates were significantly improved (13.0 % to 17.0 %, P<0.05). In both experiments sperm cells that remained motile displayed vigorous forward movement and normal morphological appearance.
Phase rainbow refractometry for accurate droplet variation characterization.
Wu, Yingchun; Promvongsa, Jantarat; Saengkaew, Sawitree; Wu, Xuecheng; Chen, Jia; Gréhan, Gérard
2016-10-15
We developed a one-dimensional phase rainbow refractometer for the accurate trans-dimensional measurements of droplet size on the micrometer scale as well as the tiny droplet diameter variations at the nanoscale. The dependence of the phase shift of the rainbow ripple structures on the droplet variations is revealed. The phase-shifting rainbow image is recorded by a telecentric one-dimensional rainbow imaging system. Experiments on the evaporating monodispersed droplet stream show that the phase rainbow refractometer can measure the tiny droplet diameter changes down to tens of nanometers. This one-dimensional phase rainbow refractometer is capable of measuring the droplet refractive index and diameter, as well as variations.
Unsteady Ejector Performance: An Experimental Investigation Using a Resonance Tube Driver
NASA Technical Reports Server (NTRS)
Wilson, Jack; Paxson, Daniel E.
2002-01-01
A statistically designed experiment to characterize thrust augmentation for unsteady ejectors has been conducted at the NASA Glenn Research Center. The variable parameters included ejector diameter, length, and nose radius. The pulsed jet driving the ejectors was produced by a shrouded resonance (or Hartmann-Sprenger) tube. In contrast to steady ejectors, an optimum ejector diameter was found, which coincided with the diameter of the vortex ring created at the pulsed jet exit. Measurements of ejector exit velocity using a hot-wire permitted evaluation of the mass augmentation ratio, which was found to correlate to thrust augmentation following a formula derived for steady ejectors.
Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A
2018-02-01
Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the extrudate swell, 19% for the density, and 29% for the modulus.
Validating the BISON fuel performance code to integral LWR experiments
Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...
2016-03-24
BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi
2003-01-01
The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.
Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Leatherman, P. R.; Cleis, R.; Spinhirne, J.; Fugate, R. Q.
1997-01-01
Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes. Phase I of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) experiment demonstrated the first propagation of an atmosphere-compensated laser beam to the lunar retroreflectors. A 1.06-micron Nd:YAG laser beam was propagated through the full aperture of the 1.5-m telescope at the Starfire Optical Range (SOR), Kirtland Air Force Base, New Mexico, to the Apollo 15 retroreflector array at Hadley Rille. Laser guide-star adaptive optics were used to compensate turbulence-induced aberrations across the transmitter's 1.5-m aperture. A 3.5-m telescope, also located at the SOR, was used as a receiver for detecting the return signals. JPL-supplied Chebyshev polynomials of the retroreflector locations were used to develop tracking algorithms for the telescopes. At times we observed in excess of 100 photons returned from a single pulse when the outgoing beam from the 1.5-m telescope was corrected by the adaptive optics system. No returns were detected when the outgoing beam was uncompensated. The experiment was conducted from March through September 1994, during the first or last quarter of the Moon.
NASA Astrophysics Data System (ADS)
Waters, Zachary John
The presence of noise and coherent returns from clutter often confounds efforts to acoustically detect and identify target objects buried in inhomogeneous media. Using iterative time reversal with a single channel transducer, returns from resonant targets are enhanced, yielding convergence to a narrowband waveform characteristic of the dominant mode in a target's elastic scattering response. The procedure consists of exciting the target with a broadband acoustic pulse, sampling the return using a finite time window, reversing the signal in time, and using this reversed signal as the source waveform for the next interrogation. Scaled laboratory experiments (0.4-2 MHz) are performed employing a piston transducer and spherical targets suspended in the free field and buried in a sediment phantom. In conjunction with numerical simulations, these experiments provide an inexpensive and highly controlled means with which to examine the efficacy of the technique. Signal-to-noise enhancement of target echoes is demonstrated. The methodology reported provides a means to extract both time and frequency information for surface waves that propagate on an elastic target. Methods developed in the laboratory are then applied in medium scale (20-200 kHz) pond experiments for the detection of a steel shell buried in sandy sediment.
Effect of grain port length-diameter ratio on combustion performance in hybrid rocket motors
NASA Astrophysics Data System (ADS)
Cai, Guobiao; Zhang, Yuanjun; Tian, Hui; Wang, Pengfei; Yu, Nanjia
2016-11-01
The objectives of this study are to develop a more accurate regression rate considering the oxidizer mass flow and the fuel grain geometry configuration with numerical and experimental investigations in polyethylene (PE)/90% hydrogen peroxide (HP) hybrid rocket. Firstly, a 2-D axisymmetric CFD model with turbulence, chemistry reaction, solid-gas coupling is built to investigate the combustion chamber internal flow structure. Then a more accurate regression formula is proposed and the combustion efficiency changing with the length-diameter ratio is studied. A series experiments are conducted in various oxidizer mass flow to analyze combustion performance including the regression rate and combustion efficiency. The regression rates are measured by the fuel mass reducing and diameter changing. A new regression rate formula considering the fuel grain configuration is proposed in this paper. The combustion efficiency increases with the length-diameter ratio changing. To improve the performance of a hybrid rocket motor, the port length-diameter ratio is suggested 10-12 in the paper.
High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure.
Zhou, Guorui; Wu, Qiang; Kumar, Rahul; Ng, Wai Pang; Liu, Hao; Niu, Longfei; Lalam, Nageswara; Yuan, Xiaodong; Semenova, Yuliya; Farrell, Gerald; Yuan, Jinhui; Yu, Chongxiu; Zeng, Jie; Tian, Gui Yun; Fu, Yong Qing
2017-06-16
A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
Gilzenrat, Mark S.; Nieuwenhuis, Sander; Jepma, Marieke; Cohen, Jonathan D.
2010-01-01
An important dimension of cognitive control is the adaptive regulation of the balance between exploitation (pursuing known sources of reward) and exploration (seeking new ones) in response to changes in task utility. Recent studies have suggested that the locus coeruleus–norepinephrine system may play an important role in this function and that pupil diameter can be used to index locus coeruleus activity. On the basis of this, we reasoned that pupil diameter may correlate closely with control state and associated changes in behavior. Specifically, we predicted that increases in baseline pupil diameter would be associated with decreases in task utility and disengagement from the task (exploration), whereas reduced baseline diameter (but increases in task-evoked dilations) would be associated with task engagement (exploitation). Findings in three experiments were consistent with these predictions, suggesting that pupillometry may be useful as an index of both control state and, indirectly, locus coeruleus function. PMID:20498349
Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination.
Meaney, Paul M; Gregory, Andrew P; Seppälä, Jan; Lahtinen, Tapani
2016-03-01
We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies.
Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination
Meaney, Paul M.; Gregory, Andrew P.; Seppälä, Jan; Lahtinen, Tapani
2016-01-01
We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies. PMID:27346890
Parametric Investigation of Thrust Augmentation by Ejectors on a Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Wilson, Jack; Sgondea, Alexandru; Paxson, Daniel E.; Rosenthal, Bruce N.
2006-01-01
A parametric investigation has been made of thrust augmentation of a 1 in. diameter pulsed detonation tube by ejectors. A set of ejectors was used which permitted variation of the ejector length, diameter, and nose radius, according to a statistical design of experiment scheme. The maximum augmentation ratios for each ejector were fitted using a polynomial response surface, from which the optimum ratios of ejector diameter to detonation tube diameter, and ejector length and nose radius to ejector diameter, were found. Thrust augmentation ratios above a factor of 2 were measured. In these tests, the pulsed detonation device was run on approximately stoichiometric air-hydrogen mixtures, at a frequency of 20 Hz. Later measurements at a frequency of 40 Hz gave lower values of thrust augmentation. Measurements of thrust augmentation as a function of ejector entrance to detonation tube exit distance showed two maxima, one with the ejector entrance upstream, and one downstream, of the detonation tube exit. A thrust augmentation of 2.5 was observed using a tapered ejector.
Percussive Augmenter of Rotary Drills (PARoD)
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Hasenoehrl, Jennifer; Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Ostlund, Patrick; Aldrich, Jack
2013-01-01
Increasingly, NASA exploration mission objectives include sample acquisition tasks for in-situ analysis or for potential sample return to Earth. To address the requirements for samplers that could be operated at the conditions of the various bodies in the solar system, a piezoelectric actuated percussive sampling device was developed that requires low preload (as low as 10 N) which is important for operation at low gravity. This device can be made as light as 400 g, can be operated using low average power, and can drill rocks as hard as basalt. Significant improvement of the penetration rate was achieved by augmenting the hammering action by rotation and use of a fluted bit to provide effective cuttings removal. Generally, hammering is effective in fracturing drilled media while rotation of fluted bits is effective in cuttings removal. To benefit from these two actions, a novel configuration of a percussive mechanism was developed to produce an augmenter of rotary drills. The device was called Percussive Augmenter of Rotary Drills (PARoD). A breadboard PARoD was developed with a 6.4 mm (0.25 in) diameter bit and was demonstrated to increase the drilling rate of rotation alone by 1.5 to over 10 times. The test results of this configuration were published in a previous publication. Further, a larger PARoD breadboard with a 50.8 mm (2.0 in) diameter bit was developed and tested. This paper presents the design, analysis and test results of the large diameter bit percussive augmenter.
Comparison of skin responses from macroscopic and microscopic UV challenges
NASA Astrophysics Data System (ADS)
Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos
2011-03-01
The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base, Drag Chute Deploy
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 and 31 March necessitated a landing at the backup site at Edwards. This photo shows the drag chute deployed to help the shuttle roll to a stop. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was payload commander and mission specialist-1. Mission specialists were Richard Clifford, Linda Godwin and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis touches down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time on 31 March 1996 after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. She was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both March 30 and March 31 necessitated a landing at the backup site at Edwards AFB. Mission commander for STS-76 was Kevin P. Chilton. Richard A. Searfoss was the pilot. Serving as payload commander and mission specialist-1 was Ronald M. Sega. Mission specialist-2 was Richard Clifford. Linda Godwin served as mission specialist-3, and Shannon Lucid was mission specialist-4. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-76 Landing - Space Shuttle Atlantis Lands at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1996-01-01
The space shuttle Atlantis prepares to touch down on the runway at Edwards, California, at approximately 5:29 a.m. Pacific Standard Time after completing the highly successful STS-76 mission to deliver Astronaut Shannon Lucid to the Russian Space Station Mir. Lucid was the first American woman to serve as a Mir station researcher. Atlantis was originally scheduled to land at Kennedy Space Center, Florida, but bad weather there both 30 March and 31 March necessitated a landing at the backup site at Edwards on the latter date. Mission commander for STS-76 was Kevin P. Chilton, and Richard A. Searfoss was the pilot. Ronald M. Sega was the payload commander and mission specialist-1. Other mission specialists were Richard Clifford, Linda Godwin, and Shannon Lucid. The mission also featured a spacewalk while Atlantis was docked to Mir and experiments aboard the SPACEHAB module. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Landing at Edwards
NASA Technical Reports Server (NTRS)
1989-01-01
The STS-29 Space Shuttle Discovery mission lands at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch of a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five-man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-58 Landing at Edwards with Drag Chute
NASA Technical Reports Server (NTRS)
1993-01-01
A drag chute slows the space shuttle Columbia as it rolls to a perfect landing concluding NASA's longest mission at that time, STS-58, at the Ames-Dryden Flight Research Facility (later redesignated the Dryden Flight Research Center), Edwards, California, with a 8:06 a.m. (PST) touchdown 1 November 1993 on Edward's concrete runway 22. The planned 14 day mission, which began with a launch from Kennedy Space Center, Florida, at 7:53 a.m. (PDT), October 18, was the second spacelab flight dedicated to life sciences research. Seven Columbia crewmembers performed a series of experiments to gain more knowledge on how the human body adapts to the weightless environment of space. Crewmembers on this flight included: John Blaha, commander; Rick Searfoss, pilot; payload commander Rhea Seddon; mission specialists Bill MacArthur, David Wolf, and Shannon Lucid; and payload specialist Martin Fettman. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-29 Landing Approach at Edwards
NASA Technical Reports Server (NTRS)
1989-01-01
The STS-29 Space Shuttle Discovery mission approaches for a landing at NASA's then Ames-Dryden Flight Research Facility, Edwards AFB, California, early Saturday morning, 18 March 1989. Touchdown was at 6:35:49 a.m. PST and wheel stop was at 6:36:40 a.m. on runway 22. Controllers chose the concrete runway for the landing in order to make tests of braking and nosewheel steering. The STS-29 mission was very successful, completing the launch a Tracking and Data Relay communications satellite, as well as a range of scientific experiments. Discovery's five man crew was led by Commander Michael L. Coats, and included pilot John E. Blaha and mission specialists James P. Bagian, Robert C. Springer, and James F. Buchli. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Gender and rural-urban migration in China.
Davin, D
1996-02-01
Many men and women in China are migrating in search of better economic opportunities. Young women who migrate to urban centers in search of opportunity may stay away from their home villages for several years. At some point, however, they are likely to return home. This article considers the effect which such circular migration is having upon gender relations in China. The author's argument is presented in sections on China's 1990 census, migration and the sexual division of labor, migration and child care, the influence of returning migrants, the influence of young female returnees, and the fertility of returnees. She speculates that the demands and expectations of young women who return to their villages after spending some time earning high wages in urban areas will be affected by urban norms. While their return may lead to initial conflict, it is likely that the women will retain greater personal autonomy from their urban experience. Their return is also likely to lead to a higher degree of material consumption in the rural areas. Present circular migration in China has the potential to return human and financial resources to the villages, thereby helping to prevent the urban-rural gap between economic, social, cultural, and educational factors from growing even wider.
Maternal perspectives on the return of genetic results: context matters.
Lakes, Kimberley D; Vaughan, Elaine; Lemke, Amy; Jones, Marissa; Wigal, Timothy; Baker, Dean; Swanson, James M; Burke, Wylie
2013-01-01
The objectives of this study were to study maternal preferences for the return of their child's genetic results and to describe the experiences, perceptions, attitudes, and values that are brought to bear when individuals from different racial and cultural backgrounds consider participating in genetic research. We recruited women with diverse sociodemographic profiles to participate in seven focus groups. Twenty-eight percent of participants self-identified as Hispanic; 49% as White, non-Hispanic; and 21% as Asian or Asian American. Focus groups were conducted in English or Spanish and were audio-recorded and transcribed verbatim. Transcripts were analyzed using qualitative thematic methods. Results indicated that preferences and decisions regarding the return of results may depend on both research and individual contextual factors. Participants understood the return of results as a complex issue, where individual and cultural differences in preferences are certain to arise. Another key finding was that participants desired an interpersonal, dynamic, flexible process that accommodated individual preferences and contextual differences for returning results. Our findings indicate a need to have well-developed systems for allowing participants to make and change over time their choices regarding the return of their child's genetic results. Copyright © 2012 Wiley Periodicals, Inc.
Leonhardt, Sara D; Kaluza, Benjamin F; Wallace, Helen; Heard, Tim A
2016-10-01
To date, no study has investigated how landscape structural (visual) alterations affect navigation and thus homing success in stingless bees. We addressed this question in the Australian stingless bee Tetragonula carbonaria by performing marking, release and re-capture experiments in landscapes differing in habitat homogeneity (i.e., the proportion of elongated ground features typically considered prominent visual landmarks). We investigated how landscape affected the proportion of bees and nectar foragers returning to their hives as well as the earliest time bees and foragers returned. Undisturbed landscapes with few landmarks (that are conspicuous to the human eye) and large proportions of vegetation cover (natural forests) were classified visually/structurally homogeneous, and disturbed landscapes with many landmarks and fragmented or no extensive vegetation cover (gardens and plantations) visually/structurally heterogeneous. We found that proportions of successfully returning nectar foragers and earliest times first bees and foragers returned did not differ between landscapes. However, most bees returned in the visually/structurally most (forest) and least (garden) homogeneous landscape, suggesting that they use other than elongated ground features for navigation and that return speed is primarily driven by resource availability in a landscape.
Skotnicka, Justyna
2013-01-01
The aim of the survey was to establish whether PTSD is present among Polish soldiers returning from a one-year deployment to Iraq and an analysis of its individual symptoms. Sixty soldiers were examined, including 30 who returned from the Iraqi mission and 30 who remained in Poland. Five analysing devices were used: (IPSA), (STAI), (BDI), a PTSD questionnaire and a socio-demographical form. A significant number of soldiers experienced a traumatic event during the mission in Iraq. Although the Iraq deployment did not change the level of depression and anxiety among the two groups of soldiers, disproportions were found in the range of anger level intensity, which was significantly higher among soldiers who returned from Iraq. Stabilisation mission and the experience of a traumatic event influenced the biological and psychological functioning patterns among soldiers who returned from Iraq. The manifestations of this were emotional and physiological reactions that the soldiers experienced (nightmares, excessive sweating, increased heartbeat rate, stressful reactions in situations similar to the traumatic occurrence and intensified responses to them). However, contrary to the assumptions, it was not concluded that soldiers who returned from Iraq are suffering from PTSD.
Anticipating the reaction: public concern about sample return missions
NASA Technical Reports Server (NTRS)
Race, M. S.
1994-01-01
Shifts in public attitude that may affect extraterrestrial sample return include increased public participation in the legal and regulatory environment, institutionalized public vigilance, politicization of technological debates and shifts in the nature of public decision-making, and a risk-averse public accustomed to mass media coverage that focuses on hazards and disasters. The ice-minus recombinant DNA experiment is used as an example of the effects of public opinion on scientific experimentation.
2010-01-01
individuals with EHS experience long-term complica- tions that may include multisystem organ (liver, kidney, muscle ) and neurologic damage, as well as... reduced exercise capacity and heat intolerance (12,52,57,69). Animal and human research suggest late or untreated EHS may result in organ damage that...collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Froh, Elizabeth B; Spatz, Diane L
2016-11-01
The Surgeon General's Call to Action to Support Breastfeeding details the need for comprehensive employer lactation support programs. Our institution has an extensive employee lactation program, and our breastfeeding initiation and continuation rates are statistically significantly higher than state and national data, with more than 20% of our employees breastfeeding for more than 1 year. The objective of this research was complete secondary data analysis of qualitative data collected as part of a larger study on breastfeeding outcomes. In the larger study, 545 women who returned to work full or part time completed an online survey with the ability to provide free text qualitative data and feedback regarding their experiences with breastfeeding after return to work. Qualitative data were pulled from the online survey platform. The responses to these questions were analyzed using conventional content analysis by the research team (2 PhD-prepared nurse researchers trained and experienced in qualitative methodologies and 1 research assistant) in order to complete a thematic analysis of the survey data. Analysis of the data yielded 5 major themes: (1) positive reflections, (2) nonsupportive environment/work culture, (3) supportive environment/work culture, (4) accessibility of resources, and (5) internal barriers. The themes that emerged from this research clearly indicate that even in a hospital with an extensive employee lactation program, women have varied experiences-some more positive than others. Returning to work while breastfeeding requires time and commitment of the mother, and a supportive employee lactation program may ease that transition of return to work.
Stroke patients' experiences of return to work.
Medin, Jennie; Barajas, Josefin; Ekberg, Kerstin
2006-09-15
Purpose. The aim of this study was to describe the experience of return to work (RTW) after stroke from the patient's perspective.Method. Six patients who had their first ever stroke in 2001, were <65 years of age and were working at the time of their stroke were included. Information was obtained via an open-ended interview. The material was transcribed verbatim and analysed using Giorgi's empirical phenomenology.Results. Rehabilitation was perceived as primarily aimed at restoring bodily functions and a return to everyday activities, rather than at promoting a return to work. It was not experienced as adapted to the participants' needs or their age. The workplace was experienced as very important in the rehabilitation process. When the informants experienced that the rehabilitation professionals were not taking action, they took control of the situation themselves. The informants expressed pride in their own capacity to take the initiative and in their ability to take action. Both self-employed and employed informants said they had possibilities and opportunities to take action since their work situation was flexible. The informants' adaptation to a new role at work was perceived as facilitated by the understanding and positive attitude of co-workers.Conclusion. Among this group of stroke patients, the individual patient's capacity and ability to return to work was enhanced by motivation or "will" and self-efficacy in combination with external support. Self-efficacy was not only a personal trait or internal factor; it was enhanced and encouraged in interaction with contextual conditions. There are similarities between the RTW process and processes of health promotion.
A Biomechanical Comparison of Allograft Tendons for Ligament Reconstruction.
Palmer, Jeremiah E; Russell, Joseph P; Grieshober, Jason; Iacangelo, Abigail; Ellison, Benjamin A; Lease, T Dylan; Kim, Hyunchul; Henn, R Frank; Hsieh, Adam H
2017-03-01
Allograft tendons are frequently used for ligament reconstruction about the knee, but they entail availability and cost challenges. The identification of other tissues that demonstrate equivalent performance to preferred tendons would improve limitations. Hypothesis/Purpose: We compared the biomechanical properties of 4 soft tissue allograft tendons: tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), and semitendinosus (ST). We hypothesized that allograft properties would be similar when standardized by the looped diameter. Controlled laboratory study. This study consisted of 2 arms evaluating large and small looped-diameter grafts: experiment A consisted of TA, TP, and PL tendons (n = 47 each) with larger looped diameters of 9.0 to 9.5 mm, and experiment B consisted of TA, TP, PL, and ST tendons (n = 53 each) with smaller looped diameters of 7.0 to 7.5 mm. Each specimen underwent mechanical testing to measure the modulus of elasticity (E), ultimate tensile force (UTF), maximal elongation at failure, ultimate tensile stress (UTS), and ultimate tensile strain (UTε). Experiment A: No significant differences were noted among tendons for UTF, maximal elongation at failure, and UTϵ. UTS was significantly higher for the PL (54 MPa) compared with the TA (44 MPa) and TP (43 MPa) tendons. E was significantly higher for the PL (501 MPa) compared with the TP (416 MPa) tendons. Equivalence testing showed that the TP and PL tendon properties were equivalent or superior to those of the TA tendons for all outcomes. Experiment B: All groups exhibited a similar E. UTF was again highest in the PL tendons (2294 N) but was significantly different from only the ST tendons (1915 N). UTϵ was significantly higher for the ST (0.22) compared with the TA (0.19) and TP (0.19) tendons. Equivalence testing showed that the TA, TP, and PL tendon properties were equivalent or superior to those of the ST tendons. Compared with TA tendons, TP and PL tendons of a given looped diameter exhibited noninferior initial biomechanical strength and stiffness characteristics. ST tendons were mostly similar to TA tendons but exhibited a significantly higher elongation/UTϵ and smaller cross-sectional area. For smaller looped-diameter grafts, all tissues were noninferior to ST tendons. In contrast to previous findings, PL tendons proved to be equally strong. The results of this study should encourage surgeons to use these soft tissue allografts interchangeably, which is important as the number of ligament reconstructions performed with allografts continues to rise.
Scaling law deduced from impact-cratering experiments on basalt targets
NASA Astrophysics Data System (ADS)
Takagi, Y.; Hasegawa, S.; Suzuki, A.
2014-07-01
Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also expressed by the π parameters. The figure shows the relation of the normalized volume and the π_3 parameter. A clear dependency on the projectile density is shown in the figure. Multiple regression analyses yield the relation π_V ∝ π_3^{-1.04 ± 0.14} π_4^{0.45 ± 0.18} . Other results and comparisons with those of previous studies are presented in the paper.
Douglas, Anna; Carter, Rachel; Li, Mengya; Pint, Cary L
2018-06-06
Small-diameter carbon nanotubes (CNTs) often require increased sophistication and control in synthesis processes, but exhibit improved physical properties and greater economic value over their larger-diameter counterparts. Here, we study mechanisms controlling the electrochemical synthesis of CNTs from the capture and conversion of ambient CO 2 in molten salts and leverage this understanding to achieve the smallest-diameter CNTs ever reported in the literature from sustainable electrochemical synthesis routes, including some few-walled CNTs. Here, Fe catalyst layers are deposited at different thicknesses onto stainless steel to produce cathodes, and atomic layer deposition of Al 2 O 3 is performed on Ni to produce a corrosion-resistant anode. Our findings indicate a correlation between the CNT diameter and Fe metal layer thickness following electrochemical catalyst reduction at the cathode-molten salt interface. Further, catalyst coarsening during long duration synthesis experiments leads to a 2× increase in average diameters from 3 to 60 min durations, with CNTs produced after 3 min exhibiting a tight diameter distribution centered near ∼10 nm. Energy consumption analysis for the conversion of CO 2 into CNTs demonstrates energy input costs much lower than the value of CNTs-a concept that strictly requires and motivates small-diameter CNTs-and is more favorable compared to other costly CO 2 conversion techniques that produce lower-value materials and products.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics
NASA Astrophysics Data System (ADS)
Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi
2018-05-01
A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.
NASA Technical Reports Server (NTRS)
Knolle, Ernst G.
1994-01-01
This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.
Enterprise - First Tailcone Off Free Flight
NASA Technical Reports Server (NTRS)
1977-01-01
The Space Shuttle prototype Enterprise flies free after being released from NASA's 747 Shuttle Carrier Aircraft (SCA) to begin a powerless glide flight back to NASA's Dryden Flight Research Center, Edwards, California, on its fourth of the five free flights in the Shuttle program's Approach and Landing Tests (ALT), 12 October 1977. The tests were carried out at Dryden to verify the aerodynamic and control characteristics of the orbiters in preperation for the first space mission with the orbiter Columbia in April 1981. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Landing at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
NASA Dryden Flight Research Center pilot Tom McMurtry lands NASA's Shuttle Carrier Aircraft with Space Shuttle Discovery attached at Rockwell Aerospace's Palmdale, California, facility about 1:00 p.m. Pacific Daylight Time (PDT). There for nine months of scheduled maintenance, Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Discovery Being Unloaded from SCA-747 at Palmdale, California, Maintenance Facility
NASA Technical Reports Server (NTRS)
1995-01-01
Space Shuttle Discovery being unloaded from NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) at Rockwell Aerospace's Palmdale facility for nine months of scheduled maintenance. Discovery and the 747 were completing a two-day flight from Kennedy Space Center, Florida, that began at 7:04 a.m. Eastern Standard Time on 27 September and included an overnight stop at Salt Lake City International Airport, Utah. At the conclusion of this mission, Discovery had flown 21 shuttle missions, totaling more than 142 days in orbit. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle in Mate-Demate Device being Loaded onto SCA-747
NASA Technical Reports Server (NTRS)
1991-01-01
At NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, technicians begin the task of mounting the Space Shuttle Atlantis atop NASA's 747 Shuttle Carrier Aircraft (NASA #911) for the ferry flight back to the Kennedy Space Center, Florida, following its STS-44 flight 24 November - 1 December 1991. Post-flight servicing of the orbiters, and the mating operation, is carried out at Dryden at the Mate-Demate Device (MDD), the large gantry-like structure that hoists the spacecraft to various levels during post-space flight processing and attachment to the 747. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-68 747 SCA Ferry Flight Takeoff for Delivery to Kennedy Space Center, Florida
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Columbia, atop NASA's 747 Shuttle Carrier Aircraft (SCA), taking off for the Kennedy Space Center shortly after its landing on 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS Challenger Mated to 747 SCA for Initial Delivery to Florida
NASA Technical Reports Server (NTRS)
1982-01-01
The Space Shuttle orbiter Challenger atop NASA's Boeing 747 Shuttle Carrier Aircraft (SCA), NASA 905, after leaving the Dryden Flight Research Center, Edwards, California, for the ferry flight that took the orbiter to the Kennedy Space Center in Florida for its first launch. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Enterprise Mated to 747 SCA for Delivery to Smithsonian
NASA Technical Reports Server (NTRS)
1983-01-01
The Space Shuttle Enterprise atop the NASA 747 Shuttle Carrier Aircraft as it leaves NASA's Dryden Flight Research Center, Edwards, California. The Enterprise, first orbiter built, was not spaceflight rated and was used in 1977 to verify the landing, approach, and glide characteristics of the orbiters. It was also used for engineering fit-checks at the shuttle launch facilities. Following approach and landing tests in 1977 and its use as an engineering vehicle, Enterprise was donated to the National Air and Space Museum in Washington, D.C. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
STS-35 Leaves Dryden on 747 Shuttle Carrier Aircraft (SCA) Bound for Kennedy Space Center
NASA Technical Reports Server (NTRS)
1990-01-01
The first rays of the morning sun light up the side of NASA's Boeing 747 Shuttle Carrier Aircraft (SCA) as it departs for the Kennedy Space Center, Florida, with the orbiter from STS-35 attached to its back. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. Martin Marietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Shuttle Columbia Post-landing Tow - with Reflection in Water
NASA Technical Reports Server (NTRS)
1982-01-01
A rare rain allowed this reflection of the Space Shuttle Columbia as it was towed 16 Nov. 1982, to the Shuttle Processing Area at NASA's Ames-Dryden Flight Research Facility (from 1976 to 1981 and after 1994, the Dryden Flight Research Center), Edwards, California, following its fifth flight in space. Columbia was launched on mission STS-5 11 Nov. 1982, and landed at Edwards Air Force Base on concrete runway 22. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines withtwo solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the mission. They are then removed after the Space Shuttle returns to Earth and can be reused on future flights. Some of these orbital laboratories, like the Spacelab, provide facilities for several specialists to conduct experiments in such fields as medicine, astronomy, and materials manufacturing. Some types of satellites deployed by Space Shuttles include those involved in environmental and resources protection, astronomy, weather forecasting, navigation, oceanographic studies, and other scientific fields. The Space Shuttles can also launch spacecraft into orbits higher than the Shuttle's altitude limit through the use of Inertial Upper Stage (IUS) propulsion units. After release from the Space Shuttle payload bay, the IUS is ignited to carry the spacecraft into deep space. The Space Shuttles are also being used to carry elements of the International Space Station into space where they are assembled in orbit. The Space Shuttles were built by Rockwell International's Space Transportation Systems Division, Downey, California. Rockwell's Rocketdyne Division (now part of Boeing) builds the three main engines, and Thiokol, Brigham City, Utah, makes the solid rocket booster motors. MartinMarietta Corporation (now Lockheed Martin), New Orleans, Louisiana, makes the external tanks. Each orbiter (Space Shuttle) is 121 feet long, has a wingspan of 78 feet, and a height of 57 feet. The Space Shuttle is approximately the size of a DC-9 commercial airliner and can carry a payload of 65,000 pounds into orbit. The payload bay is 60 feet long and 15 feet in diameter. Each main engine is capable of producing a sea level thrust of 375,000 pounds and a vacuum (orbital) thrust of 470,000 pounds. The engines burn a mixture of liquid oxygen and liquid hydrogen. In orbit, the Space Shuttles circle the earth at a speed of 17,500 miles per hour with each orbit taking about 90 minutes. A Space Shuttle crew sees a sunrise or sunset every 45 minutes. When Space Shuttle flights began in April 1981, Dryden Flight Research Center, Edwards, California, was the primary landing site for the Shuttles. Now Kennedy Space Center, Florida, is the primary landing site with Dryden remaining as the principal alternate landing site.
Effects of space flight on locomotor control
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki
1999-01-01
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
NASA Technical Reports Server (NTRS)
Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.
2015-01-01
Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.
Return to work and workplace activity limitations following total hip or knee replacement.
Sankar, A; Davis, A M; Palaganas, M P; Beaton, D E; Badley, E M; Gignac, M A
2013-10-01
Total hip (THR) and knee (TKR) replacements increasingly are performed on younger people making return to work a salient outcome. This research evaluates characteristics of individuals with early and later return to work following THR and TKR. Additionally, at work limitations pre-surgery and upon returning to work, and factors associated with work limitations were evaluated. 190 THR and 170 TKR of a total 931 cohort participants were eligible (i.e., working or on short-term disability pre-surgery). They completed questionnaires pre-surgery and 1, 3, 6 and 12 months post-surgery that included demographics, type of occupation, and the Workplace Activity Limitations Scale (WALS). 166 (87%) and 144 (85%) returned to work by 12 months following THR and TKR, respectively. Early (1 month) return to work was associated with, male gender, university education, working in business, finance or administration, and low physical demand work. People with THR returned to work earlier than those with TKR. For both groups, less pain and every day functional limitations were associated with less workplace activity limitations at the time return to work. The majority of individuals working prior to surgery return to work following hip or knee replacement for osteoarthritis (OA) and experience fewer limitations at work than pre-surgery. The changing workforce dynamics and trends toward surgery at younger ages mean that these are important outcomes for clinicians to assess. Additionally, this is important information for employers in understanding continued participation in employment for people with OA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Critical Incidents in the Experiences of Japanese Returnees
ERIC Educational Resources Information Center
Ford, Keith
2009-01-01
In this study, I explore the experiences of five Japanese returnees ("kikokushijo"). The participants recorded taped monologues or wrote narratives reflecting on their time spent living abroad and of returning to Japan. These retrospective life stories revealed four prominent themes of conflict: group orientation; bullying and…
Korzycki, Monica; Korzycki, Martha; Shaw, Lynn
2008-01-01
This study examined system barriers that precluded injured workers from accessing services and supports in the return-to-work (RTW) process. A grounded theory approach was used to investigate injured worker experiences. Methods included in-depth telephone interviews and the constant comparative method to analyze the data. Findings revealed that consumers experienced tensions or a tug-of-war between the RTW system, the health care system, and in accessing and using knowledge. Over time consumers reflected upon these tensions and initiated strategies to enhance return to function and RTW. Insights from consumer-driven strategies that might inform future policy change and promote positive service delivery for injured workers are examined.
Returns to nursing education: rural and nonrural practice.
Pan, S; Straub, L
1997-01-01
This study uses data from a national sample of registered nurses to compare earnings of nurses in rural and nonrural practice. The comparisons, conditioned by the nurses' education level, are analogous to the concept of "returns to human capital investment" used in labor economics. A general linear model is applied within a framework of labor economics analysis. Results show that nurses with more education receive less for their investment if they practice in rural areas. Work experience and employment setting are also related to lower annualized earnings for rural practice. One exception to the otherwise consistent findings is that returns to advanced practice nursing are higher in rural areas. Results and policy implications are discussed.
The Asteroid Redirect Mission (ARM)
NASA Astrophysics Data System (ADS)
Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald
2016-07-01
To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed ARM concept would leverage several key ongoing activities in human exploration, space technology, and planetary defense. The ARRM is planned to launch at the end of 2021 and the ARCM is scheduled for late 2026. Mission Objectives: The Asteroid Redirect Mission is designed to address the need for flight experience in cis-lunar space and provide opportunities for testing the systems, technologies, and capabilities that will be required for future human operations in deep space. A principle objective of the ARM is the development of a high-power Solar Electric Propulsion (SEP) vehicle, and the demonstration that it can operate for many years in interplanetary space, which is critical for deep-space exploration missions. A second prime objective of ARM is to conduct a human spaceflight mission involving in-space inter-action with a natural object, in order to provide the systems and operational experience that will be required for eventual human exploration of the Mars system, including the moons Phobos and Deimos. The ARCM provides a focus for the early flights of the Orion program. Astronauts will participate in the scientific in-space investigation of nearly pristine asteroid material, at most only minimally altered by the capture process. The ARCM will provide the opportunity for human explorers to work in space with asteroid material, testing the activities that would be performed and tools that would be needed for later exploration of primitive body surfaces in deep space. The operational experience would be gained close to our home planet, making it a significantly more affordable approach to obtaining this experience. Target Asteroid Candidates: NASA has identified the NEA (341843) 2008 EV5 as the reference target for the ARRM, but is also carrying three other NEAs as potential options [(25143) Itokawa, (162173) Ryugu, and (101955) Bennu]. NASA is continuing to search for additional candidate asteroid targets for ARM. The final target selection for the ARRM will be made approximately a year before launch, but there is a strong recommendation from the scientific and resource utilization communities that the ARM target be volatile and organic rich. Three of the proposed candidates are carbonaceous NEAs. Specifically, the ARRM reference target, 2008 EV5 is a carbonaceous (C-type) asteroid that has been remotely characterized (via visual, infrared, and radar wavelengths), is believed to be hydrated, and provides significant return mass (boulders on the surface greater than 20 metric tons). It also has an advantage in that the orbital dynamics of the NEA fall within the current baseline mission timeline of five years between the return of the robotic vehicle to cis-lunar space and the launch of the ARCM. Therefore, NEA 2008 EV5 provides a valid target that can be used to help with formulation and development efforts. Input to ARM and Future Activities: In the fall of 2015, NASA chartered the Formulation Assessment and Support Team (FAST) to provide timely inputs for mission requirement formulation in support of the ARRM Requirements Closure Technical Interchange Meeting (TIM) in mid-December of 2015, to assist in developing an initial list of potential mission investigations, and to provide input on potential hosted payloads and partnerships. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. As of December 2015, the FAST has been formally retired and the FAST final report was publically released in February of 2016. However, plans have been made to stand up an ARM Investigation Team (IT), which is expected be formed in 2016. The multidisciplinary IT will assist with the definition and support of mission investigations, support ARM program-level and project-level functions, and support NASA Head-quarters interactions with the science and technology communities through mission formulation, mission design and vehicle development, and mission implementation.
LOH- RadGene experiment at Cell Biology Experiment Facility (CBEF)
2009-02-20
ISS018-E-034074 (20 Feb. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the LOH- RadGene experiment near the Cell Biology Experiment Facility (CBEF) in the Kibo laboratory of the International Space Station. This experiment investigates alterations in immature immune cells that have been exposed to cosmic radiation. The samples were placed in culture bags and launched to the ISS on the STS-126 mission. After the experiment, frozen samples will be returned to the ground on the STS-119 mission.
Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie
2017-02-01
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
NASA Astrophysics Data System (ADS)
Gil, Mariana; Farina, Walter Marcelo
2002-05-01
This paper addresses, what determines that experienced forager honeybees return to places where they have previously exploited nectar. Although there was already some evidence that dance and trophallaxis can cause bees to return to feed, the fraction of unemployed foragers that follow dance or receive food from employed foragers before revisiting the feeder was unknown. We found that 27% of the experienced foragers had no contact with the returning foragers inside the hive. The most common interactions were dance following (64%) and trophallaxis (21%). The great variability found in the amount of interactions suggests that individual bees require different stimulation before changing to the foraging mode. This broad disparity negatively correlated with the number of days after marking at the feeder, a variable that is closely related to the foraging experience, suggesting that a temporal variable might affect the decision-making in reactivated foragers.