Sample records for diameter impact craters

  1. Occurrence and mechanisms of impact melt emplacement at small lunar craters

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.

    2014-11-01

    Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.

  2. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  3. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  4. Crater dimensions from apollo data and supplemental sources

    USGS Publications Warehouse

    Pike, R.J.

    1976-01-01

    A catalog of crater dimensions that were compiled mostly from the new Apollo-based Lunar Topographic Orthophotomaps is presented in its entirety. Values of crater diameter, depth, rim height, flank width, circularity, and floor diameter (where applicable) are tabulated for a sample of 484 craters on the Moon and 22 craters on Earth. Systematic techniques of mensuration are detailed. The lunar craters range in size from 400 m to 300 km across and include primary impact craters of the main sequence, secondary impact craters, craterlets atop domes and cones, and dark-halo craters. The terrestrial craters are between 10 m and 22.5 km in diameter and were formed by meteorite impact. ?? 1976 D. Reidel Publishing Company.

  5. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  6. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, Mark J.

    2017-07-01

    Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.

  7. Distant Secondary Craters and Age Constraints on Young Martian Terrains

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Preblich, B.; Turtle, E.; Studer, D.; Artemieva, N.; Golombek, M.; Hurst, M.; Kirk, R.; Burr, D.

    2005-01-01

    Are small (less than approx. 1 km diameter) craters on Mars and the Moon dominated by primary impacts, by secondary impacts of much larger primary craters, or are both primaries and secondaries significant? This question is critical to age constraints for young terrains and for older terrains covering small areas, where only small craters are superimposed on the unit. If the martian rayed crater Zunil is representative of large impact events on Mars, then the density of secondaries should exceed the density of primaries at diameters a factor of 1000 smaller than that of the largest contributing primary crater. On the basis of morphology and depth/diameter measurements, most small craters on Mars could be secondaries. Two additional observations (discussed below) suggest that the production functions of Hartmann and Neukum predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.

  8. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  9. Physical properties of lunar craters

    NASA Astrophysics Data System (ADS)

    Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal

    2017-02-01

    The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100 (29.5%) craters exist near the equator, 131 (38.6%) are in the northern hemisphere and 108 (31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.

  10. Interior and Ejecta Morphologies of Impact Craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Klaybor, K.; Katz-Wigmore, J.

    2006-09-01

    We are utilizing Galileo SSI imagery of Ganymede to classify impact crater interior and ejecta morphologies. Although we are in the early stages of compiling our Catalog of Impact Craters on Ganymede, some interesting trends are beginning to emerge. Few craters display obvious ejecta morphologies, but 68 craters are classified as single layer ejecta and 3 as double layer ejecta. We see no obvious correlation of layered ejecta morphologies with terrain or latitude. All layered ejecta craters have diameters between 10 and 40 km. Sinuosity ("lobateness") and ejecta extent ("ejecta mobility ratio") of Ganymede layered ejecta craters are lower than for martian layered ejecta craters. This suggests less mobility of ejecta materials on Ganymede, perhaps due to the colder temperatures. Interior structures being investigated include central domes, peaks, and pits. 57 dome craters, 212 central peak craters, and 313 central pit craters have been identified. Central domes occur in 50-100 km diameter craters while peaks are found in craters between 20 and 50 km and central pit craters range between 29 and 74 km in diameter. The Galileo Regio region displays higher concentrations of central dome and central pit craters than other regions we have investigated. 67% of central pit craters studied to date are small pits, where the ratio of pit diameter to crater diameter is <0.2. Craters containing the three interior structures preferentially occur on darker terrain units, suggesting that an ice-silicate composition is more conducive to interior feature formation than pure ice alone. Results of this study have important implications not only for the formation of specific interior and ejecta morphologies on Ganymede but also for analogous features associated with Martian impact craters. This research is funded through NASA Outer Planets Research Program Award #NNG05G116G to N. G. Barlow.

  11. An object-based classification method for automatic detection of lunar impact craters from topographic data

    NASA Astrophysics Data System (ADS)

    Vamshi, Gasiganti T.; Martha, Tapas R.; Vinod Kumar, K.

    2016-05-01

    Identification of impact craters is a primary requirement to study past geological processes such as impact history. They are also used as proxies for measuring relative ages of various planetary or satellite bodies and help to understand the evolution of planetary surfaces. In this paper, we present a new method using object-based image analysis (OBIA) technique to detect impact craters of wide range of sizes from topographic data. Multiresolution image segmentation of digital terrain models (DTMs) available from the NASA's LRO mission was carried out to create objects. Subsequently, objects were classified into impact craters using shape and morphometric criteria resulting in 95% detection accuracy. The methodology developed in a training area in parts of Mare Imbrium in the form of a knowledge-based ruleset when applied in another area, detected impact craters with 90% accuracy. The minimum and maximum sizes (diameters) of impact craters detected in parts of Mare Imbrium by our method are 29 m and 1.5 km, respectively. Diameters of automatically detected impact craters show good correlation (R2 > 0.85) with the diameters of manually detected impact craters.

  12. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  13. Martian impact craters - Correlations of ejecta and interior morphologies with diameter, latitude, and terrain

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.; Bradley, Tracy L.

    1990-01-01

    An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.

  14. Increased depth-diameter ratios in the Medusae Fossae Formation deposits of Mars

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    Depth to diameter ratios for fresh impact craters on Mars are commonly cited as approximately 0.2 for simple craters and 0.1 for complex craters. Recent computation of depth-diameter ratios in the Amazonis-Memnonia region of Mars indicates that craters within the Medusae Fossae Formation deposits found in this region display greater depth-diameter ratios than expected for both simple and complex craters. Photoclinometric and shadow length techniques have been used to obtain depths of craters within the Amazonis-Memnonia region. The 37 craters in the 2 to 29 km diameter range and displaying fresh impact morphologies were identified in the area of study. This region includes the Amazonian aged upper and middle members of the Medusae Fossae Formation and Noachian aged cratered and hilly units. The Medusae Fossae Formation is characterized by extensive, flat to gently undulating deposits of controversial origin. These deposits appear to vary from friable to indurated. Early analysis of crater degradation in the Medusae Fossae region suggested that simple craters excavated to greater depths than expected based on the general depth-diameter relationships derived for Mars. However, too few craters were available in the initial analysis to estimate the actual depth-diameter ratios within this region. Although the analysis is continuing, we are now beginning to see a convergence towards specific values for the depth-diameter ratio depending on geologic unit.

  15. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages.

    USGS Publications Warehouse

    Croft, S.K.; Kieffer, S.W.; Ahrens, T.J.

    1979-01-01

    We produced a series of decimeter-sized impact craters in blocks of ice near 0oC and -70oC and in ice-saturated sand near -70oC as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar satellites. Crater diameters in the ice-saturated sand were 2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were c.3 times larger. Martian impact crater energy versus diameter scaling may thus be a function of latitude. -from Authors

  16. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.

    2017-12-01

    Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.

  17. Moon-Mercury: Large impact structures, isostasy and average crustal viscosity

    USGS Publications Warehouse

    Schaber, G.G.; Boyce, J.M.; Trask, N.J.

    1977-01-01

    Thirty-five craters and basins larger than 200 km in diameter are recognized on the imaged portion (45%) of Mercury. If the unimaged portion of the planet is similarly cratered, a total of 78 such impact features may be present. Sixty-two craters and basins 200 km in diameter are recognized on the moon, a body with only half the cross-sectional area of Mercury. If surface areas are considered, however, Mercury is cratered only 70% as densely as the moon. The density of impact craters with diameters greater than 400 km on Mercury is only 30% of that on the moon, and for craters with diameters between 400 and 700 km, the density on Mercury is only 21% of the lunar crater density. The size-frequency distribution curve for the large Mercurian craters follows the same cumulative -2 slope as the lunar curve but lies well below the 10% surface saturation level characteristic of the lunar curve. This is taken as evidence that the old heavily cratered terrain on Mercury is, at least presently, not in a state of cratering equilibrium. The reduced density of large craters and basins on Mercury relative to the moon could be either a function of the crater-production rates on these bodies or an effect of different crustal histories. Resurfacing of the planet after the basin-forming period is ruled out by the presence of 54 craters and basins 100 km in diameter and larger (on the imaged portion of Mercury) that have either well-defined or poorly-defined secondary-crater fields. Total isostatic compensation of impact craters ???800 km in diameter indicates that the average viscosity of the Mercurian crust over the past 4+ aeons was the same as that for the moon (???1026.5 P). This calculated viscosity and the distribution of large craters and basins suggest that either the very early crustal viscosity on Mercury was less than that of the moon and the present viscosity greater, or the differences in large crater populations on the two bodies is indeed the result of variations in rates of crater production. ?? 1977.

  18. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  19. Secondary Craters

    NASA Image and Video Library

    2016-12-21

    This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of the lineated material on the crater floor. It is necessary to distinguish secondary craters from the primary impacts that we rely upon to estimate the ages of Martian surfaces. The large number of small craters clustered together here is typical of crater rays elsewhere on Mars and suggests that these are indeed, secondary impact craters. http://photojournal.jpl.nasa.gov/catalog/PIA14450

  20. Impact cratering on porous targets in the strength regime

    NASA Astrophysics Data System (ADS)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  1. Lost Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.; Stickle, A. M.

    2009-12-01

    The absence of a clearly identified crater (or craters) for the proposed YDB impact has raised questions concerning the reality of such an event. Geologic studies have identified impact deposits well before recognizing a causative crater (e.g., Chicxulub and Chesapeake Bay); some have yet to be discovered (e.g., Australasian tektite strewnfields). The absence of a crater, therefore, cannot be used as an argument against the reality of the YDB impact (and its possible consequences). The study here addresses how a large on-land impact during the late Pleistocene or early Holocene could avoid easy detection today. It does not argue the case for a YDB impact, since such evidence must come from the rock record. During the late Pleistocene, the receding Laurentide ice sheet still covered a significant portion of Canada. While a large (1km) body impacting vertically (90°) would penetrate such a low-impedance ice layer and excavate the substrate, an oblique impact couples more of its energy into the surface layer, thereby partially shielding the substrate. Three approaches address the effectiveness of this flak-jacket effect. First, hypervelocity impact experiments at the NASA Ames Vertical Gun Range investigated the effectiveness of low-impedance layers of different thicknesses for mitigating substrate damage. Second, selected experiments were compared with hydrocode models (see Stickle and Schultz, this volume) and extended to large scales. Third, comparisons were made with relict craters found in eroding sediment and ice covers on Mars. Oblique impacts (30 degrees) into soft particulates (no. 24 sand) covering a solid substrate (aluminum) have no effect on the final crater diameter for layer thicknesses exceeding a projectile diameter and result in only plastic deformation in the substrate. In contrast, a vertical impact requires a surface layer at least 3 times the projectile diameter to achieve the same diameter (with significant substrate damage). Oblique impacts into ice and plasticene layers over clear acrylic blocks allow assessing internal damage. These experiments reveal that low-impedance surface layers approaching 1 to 2 projectile diameters effectively shield the substrate from shock damage for impact angles less than 30 degrees. Missing craters (and relict crater roots) within ice-rich deposits on Mars illustrate the rapid erasure the impact record. Numerous small pedestal craters (crater diameter < 5km) occur at high latitudes and reflect the cyclic expansion and disappearance of polar ice/dust deposits up to 0.5 km thick. Much larger examples (> 50km), however, occur at low latitudes but are localized in certain regions where even thicker deposits (locally >2km) have been removed, uncovering a preserved Noachian landscape. Crater statistics further document this missing cratering record. Thick Pleistocene ice sheets on Earth would have played a similar role for the removal of terrestrial cratering record. We calculate that a crater as large as 15km in diameter formed by an oblique impact could have been effectively erased, except for dispersed ejecta containing shocked impactor relicts and a disturbed substrate. While plausible, evidence for specific missing events (e.g., the proposed YB impact) must be found in still-preserved ice layers and sediments.

  2. Low-emissivity impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.

    1992-01-01

    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.

  3. The scaling of complex craters

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.

  4. Block Distribution Analysis of Impact Craters in the Tharsis and Elysium Planitia Regions on Mars

    NASA Astrophysics Data System (ADS)

    Button, N.; Karunatillake, S.; Diaz, C.; Zadei, S.; Rajora, V.; Barbato, A.; Piorkowski, M.

    2017-12-01

    The block distribution pattern of ejecta surrounding impact craters reveals clues about their formation. Using images from High Resolution Imaging Science Experiment (HiRISE) image onboard the Mars Reconnaissance Orbiter (MRO), we indentified two rayed impact craters on Mars with measurable ejecta fields to quantitatively investigate in this study. Impact Crater 1 (HiRISE image PSP_008011_1975) is located in the Tharsis region at 17.41°N, 248.75°E and is 175 m in diameter. Impact Crater 2 (HiRISE image ESP_018352_1805) is located in Elysium Planitia at 0.51°N, 163.14°E and is 320 m in diameter. Our block measurements, used to determine the area, were conducted using HiView. Employing methods similar to Krishna and Kumar (2016), we compared block size and axis ratio to block distance from the center of the crater, impact angle, and direction. Preliminary analysis of sixteen radial sectors around Impact Crater 1 revealed that in sectors containing mostly small blocks (less than 10 m2), the small blocks were ejected up to three times the diameter of the crater from the center of the crater. These small block-dominated sectors lacked blocks larger than 10 m2. Contrastingly, in large block-dominated sectors (larger than 30 m2) blocks rarely traveled farther than 200 m from the center of the crater. We also seek to determine the impact angle and direction. Krishna and Kumar (2016) calculate the b-value (N(a) = Ca-b; "N(a) equals the number of fragments or craters with a size greater than a, C is a constant, and -b is a power index") as a method to determine the impact direction. Our preliminary results for Impact Crater 1 did not clearly indicate the impact angle. With improved measurements and the assessment of Impact Crater 2, we will compare Impact Crater 1 to Impact Crater 2 as well as assess the impact angle and direction in order to determine if the craters are secondary craters. Hood, D. and Karunatillake, S. (2017), LPSC, Abstract #2640 Krishna, N., and P. S. Kumar (2016), Icarus, 264, 274-299

  5. Microcraters on lunar samples

    NASA Technical Reports Server (NTRS)

    Fechtig, H.; Gentner, W.; Hartung, J. B.; Nagel, K.; Neukum, G.; Schneider, E.; Storzer, D.

    1977-01-01

    The lunar microcrater phenomenology is described. The morphology of the lunar craters is in almost all aspects simulated in laboratory experiments in the diameter range from less than 1 nu to several millimeters and up to 60 km/s impact velocity. An empirically derived formula is given for the conversion of crater diameters into projectile diameters and masses for given impact velocities and projectile and target densities. The production size frequency distribution for lunar craters in the crater size range from approximately 1 nu to several millimeters in diameter is derived from various microcrater measurements within a factor of up to 5. Particle track exposure age measurements for a variety of lunar samples have been performed. They allow the conversion of the lunar crater size frequency production distributions into particle fluxes. The development of crater populations on lunar rocks under self-destruction by subsequent meteoroid impacts and crater overlap is discussed and theoretically described. Erosion rates on lunar rocks on the order of several millimeters per 10 yr are calculated. Chemical investigations of the glass linings of lunar craters yield clear evidence of admixture of projectile material only in one case, where the remnants of an iron-nickel micrometeorite have been identified.

  6. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.

  7. Dawn Framing Camera: Morphology and morphometry of impact craters on Ceres

    NASA Astrophysics Data System (ADS)

    Platz, T.; A; Nathues; Schäfer, M.; Hoffmann, M.; Kneissl, T.; Schmedemann, N.; Vincent, J.-B.; Büttner, I.; Gutierrez-Marques, P.; Ripken, J.; Russell, C. T.; Schäfer, T.; Thangjam, G. S.

    2015-10-01

    In the first approach images of Ceres we tried to discern the simple-to-complex transition diameter of impact craters. Limited by spatial resolution we found the smallest complex crater without central peak development to be around 21.4 km in diameter. Hence, the transition diameter is expected to be between 21.4 km and 10.6 km, the predicted transition diameter for an icy target. It appears likely that either Ceres' surface material contains a rocky component or has a laterally inhomogeneous composition ranging from icy to ice-rocky

  8. Effect of Cover Thickness on the Relationship of Surface Relief to Diameter of Northern Lowland QCDs on Mars

    NASA Technical Reports Server (NTRS)

    Buczkowski, D. L.; Frey, H. V.; McGill, G. E.

    2005-01-01

    Previous work has established that there is a relationship of surface relief to diameter for quasi-circular depressions (QCDs) around the Utopia Basin [1]. This relationship has been used to support the contention that the QCDs represent impact craters buried beneath a differentially compacting cover material. For any given regional cover thickness, total cover thickness is greater over the centers of completely buried craters than over their rims; thus total compaction is greater over the center of craters than their rims and topographic depressions will form. Since large craters are deeper than small craters, differential compaction models also predict that surface relief will be proportional to the diameter of the buried crater [2]. It is highly unlikely, however, that the material covering the QCD impact craters is a consistent thickness throughout the entire northern lowlands of Mars. We explore the effects that changes in cover thickness would have on the surface relief vs. diameter relationship of QCDs.

  9. Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.

  10. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    NASA Astrophysics Data System (ADS)

    van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.

    2017-12-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.

  11. Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts

    USGS Publications Warehouse

    Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.

    2017-01-01

    Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.

  12. Impact melting early in lunar history

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1979-01-01

    The total amount of impact melt produced during early lunar history is examined in light of theoretically and experimentally determined relations between crater diameter (D) and impact melt volume. The time dependence of the melt production is given by the time dependent impact rate as derived from cratering statistics for two different crater-size classes. Results show that small scale cratering (D less than or equal to 30 km) leads to melt volumes which fit selected observations specifying the amount of impact melt contained in the lunar regolith and in craters with diameters less than 10 km. Larger craters (D greater than 30 km) are capable of forming the abundant impact melt breccias found on the lunar surface. The group of large craters (D greater than 30 km) produces nearly 10 times as much impact melt as all the smaller craters, and thus, the large impacts dominate the modification of the lunar surface. A contradiction between the distribution of radiometric rock ages and a model of exponentially decreasing cratering rate going back to 4.5 b.y. is reflected in uncertainty in the distribution of impact melt as a function of time on the moon.

  13. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.

  14. Preliminary Geological Map of the Ac-H-2 Coniraya Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Pasckert, J. H.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Platz, T.; Nathues, A.; Hoffmann, M.; Marchi, S.; De Sanctis, M. C.; Russell, C. T.; Raymond, C. A.

    2015-12-01

    To better understand the geologic history of dwarf planet Ceres, the surface has been divided into 15 quadrangles that are systematically mapped on the basis of images obtained by NASA's Dawn spacecraft, which began orbiting Ceres in April 2015. We will report on preliminary mapping results for the Ac-H-2 Coniraya Quadrangle based on Framing Camera (FC) mosaics from the Dawn Approach (1.3 km/px) and Survey (415 m/px) orbits. This quadrangle is located between 21-66°N and 0-90°E and is dominated by mostly highly degraded impact craters of diameters between 50 and 200 km and clusters of small- to midsize impact craters. Color data show that this quadrangle is generally darker than most regions of the southern hemisphere. Two prominent impact craters in this quadrangle have been named Coniraya and Gaue crater, respectively. Coniraya is the largest more or less intact impact crater with a diameter of 136 km, centered at 65.8°N/40.5°E. It appears shallow and its crater rim is heavily degraded but still continuous. At the current image resolution, textural differences between the interior and exterior of the crater are not visible. With a diameter of 84 km, Gaue crater appears to be the freshest large impact crater in this quadrangle. It is located at the eastern border of the Coniraya Quadrangle with a small central peak at 30°N/85.7°E. The crater rim is quite sharp and the ejecta blanket can be traced around the crater to a distance of ~200km from the crater center. Most of the crater floor around the central peak is covered by a smooth uniform unit with a lower impact crater population than the surrounding surfaces. Color data show that this smooth unit is darker than the surrounding surfaces. A similar unit can be found on the floor of a complex cluster of 10-56 km diameter craters at 32°N/40°E. With upcoming higher resolution data we will refine our geologic map and will specifically investigate possible formation processes of these smooth units.

  15. Morphology of Lonar Crater, India: Comparisons and implications

    USGS Publications Warehouse

    Fudali, R.F.; Milton, D.J.; Fredriksson, K.; Dube, A.

    1980-01-01

    Lonar Crater is a young meteorite impact crater emplaced in Deccan basalt. Data from 5 drillholes, a gravity network, and field mapping are used to reconstruct its original dimensions, delineate the nature of the pre-impact target rocks, and interpret the emplacement mode of the ejecta. Our estimates of the pre-erosion dimensions are: average diameter of 1710 m; average rim height of 40 m (30-35 m of rim rock uplift, 5-10 m of ejected debris); depth of 230-245 m (from rim crest to crater floor). The crater's circularity index is 0.9 and is unlikely to have been lower in the past. There are minor irregularities in the original crater floor (present sediment-breccia boundary) possibly due to incipient rebound effects. A continuous ejecta blanket extends an average of 1410 m beyond the pre-erosion rim crest. In general, 'fresh' terrestrial craters, less than 10 km in diameter, have smaller depth/diameter and larger rim height/diameter ratios than their lunar counterparts. Both ratios are intermediate for Mercurian craters, suggesting that crater shape is gravity dependent, all else being equal. Lonar demonstrates that all else is not always equal. Its depth/diameter ratio is normal but, because of less rim rock uplift, its rim height/diameter ratio is much smaller than both 'fresh' terrestrial and lunar impact craters. The target rock column at Lonar consists of one or more layers of weathered, soft basalt capped by fresh, dense flows. Plastic deformation and/or compaction of this lower, incompetent material probably absorbed much of the energy normally available in the cratering process for rim rock uplift. A variety of features within the ejecta blanket and the immediately underlying substrate, plus the broad extent of the blanket boundaries, suggest that a fluidized debris surge was the dominant mechanism of ejecta transportation and deposition at Lonar. In these aspects, Lonar should be a good analog for the 'fluidized craters' of Mars. ?? 1980 D. Reidel Publishing Co.

  16. Lunar crater volumes - Interpretation by models of impact cratering and upper crustal structure

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1978-01-01

    Lunar crater volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. Craters smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while craters larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple craters to about 1.5 for complex craters. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex crater morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.

  17. Roadblocks on the kill curve: Testing the Raup hypothesis

    USGS Publications Warehouse

    Poag, C.W.

    1997-01-01

    The documented presence of two large (~100-km diameter), possibly coeval impact craters of late Eocene age, requires modification of the impact-kill curve proposed by David M. Raup. Though the estimated meteorite size for each crater alone is large enough to have produced considerable global environmental stress, no horizons of mass mortality or pulsed extinction are known to be associated with either crater or their ejecta deposits. Thus, either there is no fixed relationship between extinction magnitude and crater diameter, or a meteorite that would produce a crater of >100-km diameter is required to raise extinction rates significantly above a ~5% background level. Both impacts took place ~1-2 m.y. before the "Terminal Eocene Event" ( =early Oligocene pulsed extinction). Their collective long-term environmental effects, however, may have either delayed that extinction pulse or produced threshold conditions necessary for it to take place.

  18. Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages

    NASA Astrophysics Data System (ADS)

    Trang, D.; Gillis-Davis, J.; Boyce, J. M.

    2013-12-01

    The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of freshness for craters <8 km in diameter. We convert this graphical solution to a single function of two independent variables, observed degree of freshness and crater diameter. This function, which results in a corrected degree of freshness is found through a curve-fitting routine and corrects the degree of freshness for craters <8 km in diameter. As a result, we are able to derive absolute ages from the degree of freshness of craters with diameters from about ≤20 km down to a 1 km in diameter with a precision of ×230 million years.

  19. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  20. Phobos - Surface density of impact craters

    NASA Technical Reports Server (NTRS)

    Thomas, P.; Veverka, J.

    1977-01-01

    Revised crater counts for Phobos are presented which are based on uniform Mariner 9 imagery and Duxbury's (1974) map of the satellite. The contiguous portion of the satellite's surface on which all craters down to the limiting resolution of 0.2 to 0.3 km in diameter would be expected to be identified is delineated and found to contain 87 identifiable craters larger than 0.2 km in diameter. Analysis of the crater size distribution shows that the surface appears to be saturated for craters exceeding 1 km in diameter but the crater counts definitely fall below the saturation curve for smaller craters. Reasons for this fall-off are considered, and it is noted that too few craters are visible in Mariner 9 images of Deimos to permit meaningful crater counts on that satellite's surface. It is concluded that, contrary to a previous assertion, the surfaces of Phobos and Deimos are not known to be saturated with craters larger than 0.2 km in diameter.

  1. Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time.

  2. Secondary craters on Europa and implications for cratered surfaces.

    PubMed

    Bierhaus, Edward B; Chapman, Clark R; Merline, William J

    2005-10-20

    For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.

  3. Simultaneous impact and lunar craters

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1972-01-01

    The existence of large terrestrial impact crater doublets and crater doublets that have been inferred to be impact craters on Mars suggests that simultaneous impact of two or more bodies can occur at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.

  4. Fluid mechanical scaling of impact craters in unconsolidated granular materials

    NASA Astrophysics Data System (ADS)

    Miranda, Colin S.; Dowling, David R.

    2015-11-01

    A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.

  5. Surficial Geology of the Chicxulub Impact Crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approx. 240 km in diameter.

  6. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  7. Collisional and dynamical history of Gaspra

    NASA Technical Reports Server (NTRS)

    Greenberg, R.; Nolan, M. C.; Bottke, W. F., Jr.; Kolvoord, R. A.

    1993-01-01

    Interpretation of the impact record on Gaspra requires understanding of the effects of collisions on a target body of Gaspra's size and shape, recognition of impact features that may have different morphologies from craters on larger planets, and models of the geological processes that erase and modify impact features. Crater counts on the 140 sq km of Gaspra imaged at highest resolution by the Galileo spacecraft show a steep size-frequency distribution (cumulative power-law index near -3.5) from the smallest resolvable size (150 m diameter) up through the large feature (1.5 km diameter crater) of familiar crater-like morphology. In addition, there appear to be as many as eight roughly circular concavities with diameters greater than 3 km visible on the asteroid. If we restrict our crater counts to features with traditionally recognized crater morphologies, these concavities would not be included. However, if we define craters to include any concave structures that may represent local or regional damage at an impact size, then the larger features on Gaspra are candidates for consideration. Acceptance of the multi-km features as craters has been cautious for several reasons. First, scaling laws (the physically plausible algorithms for extrapolating from experimental data) indicate that Gaspra could not have sustained such large-crater-forming impacts without being disrupted; second, aside from concavity, the larger structures have no other features (e.g. rims) that can be identified with known impact craters; and third, extrapolation of the power-law size distribution for smaller craters predicts no craters larger than 3 km over the entire surface. On the other hand, recent hydrocode modeling of impacts shows that for given impact (albeit into a sphere), the crater size is much larger than given by scaling laws. Gaspra-size bodies can sustain formation of up to 8-km craters without disruption. Besides allowing larger impact craters, this result doubles the lifetime since the last catastrophic fragmentation event up to one billion years. Events that create multi-km craters also globally damage the material structure, such that regolith is produced, whether or not Gaspra 'initially' had a regolith, contrary to other models in which initial regolith is required in order to allow current regolith. Because the globally destructive shock wave precedes basin formation, crater size is closer to the large size extrapolated from gravity-scaling rather than the strength-scaling that had earlier been assumed for such small bodies. This mechanism may also help explain the existence of Stickney on Phobos. Moreover, rejection of the large concavities as craters based on unfamiliar morphology would be premature, because (aside from Stickney) we have no other data on such large impact structures on such a small, irregular body. The eight candidate concavities cover an area greater than that counted for smaller craters, because they are most apparent where small craters cannot be seen: on low resolution images and at the limb on high resolution images. We estimate that there are at least two with diameter greater than 4 km per 140 sq km, which would have to be accounted for in any model that claims these are impact craters.

  8. A Comparison of Crater-Size Scaling and Ejection-Speed Scaling During Experimental Impacts in Sand

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Cintala, M. J.; Johnson, M. K.

    2014-01-01

    Non-dimensional scaling relationships are used to understand various cratering processes including final crater sizes and the excavation of material from a growing crater. The principal assumption behind these scaling relationships is that these processes depend on a combination of the projectile's characteristics, namely its diameter, density, and impact speed. This simplifies the impact event into a single point-source. So long as the process of interest is beyond a few projectile radii from the impact point, the point-source assumption holds. These assumptions can be tested through laboratory experiments in which the initial conditions of the impact are controlled and resulting processes measured directly. In this contribution, we continue our exploration of the congruence between crater-size scaling and ejection-speed scaling relationships. In particular, we examine a series of experimental suites in which the projectile diameter and average grain size of the target are varied.

  9. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    NASA Technical Reports Server (NTRS)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  10. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    NASA Technical Reports Server (NTRS)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  11. Hydrocode Simulations of the Chesapeake Bay Impact

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Melosh, H. J.

    2004-01-01

    The Chesapeake Bay Impact Crater (CBIC) formed about 35 million years ago (late Eocene), in a shallow marine environment (400-600 m water depth). The crater is complex and developed in a multi-layer, rheologically-variable target that comprised 400-1000 meters of soft, water-saturated sediments overlying crystalline basement. Seismic reflection data illustrates that the Chesapeake Bay crater morphology - often described as an "inverted sombrero" - is similar to other marine-target impact craters. It consists of a approx. 1 - 1.5-km deep, highly disturbed central crater, surrounded by a shallower, less deformed basin. The inner crater has a diameter of approx. 40 km; the edge of the outer basin extends to 85-km diameter. The morphological divide between the inner and outer crater is termed the inner ring or peak ring. Little is known about the nature of the inner ring. Seismic reflection data show that the underlying basement is modestly uplifted; however, it is unclear whether the pristine surface expression of the inner ring was elevated above the floor of the outer crater.

  12. Analysis of impact craters of Mercury

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Martellato, E.; Marzari, F.; Massironi, M.; Capria, M. T.

    The size of an impact crater depends on many parameters. As a consequence, it is a demanding task to derive the physical and dynamical properties of the projectile from the knowledge of the crater diameter and making few assumptions. In this work we have assumed the same impact velocity of 34 km/s. We report the analysis of some impact crater on Mercury, based on the Mariner 10 images. We have used the classical scaling law (Schmidt and Housen, 1987) to obtain the impactor diameter and the experimental law proposed by OKeefe and Ahrens (1982) to calculate the melt volume produced. The calculations have been performed for different meteoroid compositions (iron, basalt, chondrite, and ice), assuming the surface composition of Mercury based on anorthosite.

  13. Age and effects of the Odessa meteorite impact, western Texas, USA

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Kring, David A.; Mayer, James H.; Goble, Ronald J.

    2005-12-01

    The Odessa meteorite craters (Texas, United States) include a main crater (˜160 m diameter, ˜30 m deep) plus four smaller meteorite craters. The main crater was sampled by coring (to 22 m depth) to better understand its origin and history. Dating by optically stimulated luminescence indicates that it was produced immediately prior to ca. 63.5 ± 4.5 ka. Sediment filling the crater includes impact breccias produced at the time of impact; wind-dominated silts with minor amounts of pond sediments deposited ca. 63.5 ka, probably just after the impact, and ca. 53 ± 2 ka; wind-dominated silt ca. 38 ± 1.7 ka; and playa muds with a wind-blown silt component younger than 36 ka. The environment was arid or semiarid at the time of impact based on characteristics of soils on the surrounding landscape. The impact caused severe damage within 2 km and produced >1000 km/hr winds and thermal pulse. Animals within a 1 1.5-km-diameter area were probably killed. This is only the second well-dated Pleistocene hypervelocity impact crater in North America.

  14. The nature of the gravity anomalies associated with large young lunar craters

    NASA Technical Reports Server (NTRS)

    Dvorak, J.; Phillips, R. J.

    1977-01-01

    The negative Bouguer anomalies (i.e., mass deficiencies) associated with four young lunar craters are analyzed. Model calculations based on generalizations made from studies of terrestrial impact structures suggest that the major contribution to the Bouguer anomaly for these lunar craters is due to a lens of brecciated material confined within the present crater rim crest and extending vertically to at least a depth of one-third the crater rim diameter. Calculations also reveal a systematic variation in the magnitude of the mass deficiencies with the cube of the crater diameter.

  15. Multivariate analyses of crater parameters and the classification of craters

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  16. The morphology of small fresh craters on Mars and the Moon

    NASA Astrophysics Data System (ADS)

    Daubar, Ingrid J.; Atwood-Stone, C.; Byrne, S.; McEwen, A. S.; Russell, P. S.

    2014-12-01

    The depth/diameter ratio for new meter- to decameter-scale Martian craters formed in the last ~20 years averages 0.23, only slightly deeper than that expected for simple primary craters on rocky surfaces. Large variations in depth/diameter (d/D) between impact sites indicate that differences between the sites such as target material properties, impact velocity, angle, and physical state of the bolide(s) are important in determining the depth of small craters in the strength regime. On the Moon, the d/D of random fresh small craters with similar diameters averages only 0.10, indicating that either the majority of them are unrecognized secondaries or some proportion are degraded primaries. Older craters such as these may be shallower due to erosional infilling, which is probably not linear over time but more effective over recently disturbed and steeper surfaces, processes that are not yet acting on the new Martian craters. Brand new meter- to decameter-scale craters such as the Martian ones studied here are statistically easily distinguishable as primaries, but the origins of older craters of the same size, such as the lunar ones in this study, are ambiguous.

  17. Investigation of the relationship of crater depths and diameters in selected regions of Mars

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Jen

    2013-03-01

    Impact craters are common geomorphological features on Mars. The density of craters is different among various regions. Higher crater density means older terrain. Craters can be divided into two types by the interior morphology: simple and complex. The cavity of Simple craters is bowl-shape, and complex craters display various interior features, such as central peaks. The depth/diameter ratio (d/D) of simple craters is larger than that of complex craters. The transition diameter from simple to complex morphologies ranges between 5 and 10 km, and is commonly cited to be about 7 km in the equatorial regions and 6 km near the poles, but the exact value also could vary with terrain type. In this research, seven regions, Amazonis Planitia, Arabia Terra, Chryse Planitia, Hesperia Planum, Isidis Planitia, Solis/Syria/Sinai Planum, and Terra Sirenum, were selected to investigate the onset diameter of complex craters and the relationship of crater diameter and depth in these regions on Mars in order to understand how the geology affects crater d/D. The analysis revealed that the slopes of the d/D relations are different, and these are linked to the surface material in different regions. The onset diameters in young volcanic regions with stronger material are slightly higher than older volcanic regions, and much higher than that of volatile regions. The research proves the different geological units can affect the morphology and morphometry of craters.

  18. Orbital debris and meteoroid population as estimated from LDEF impact data

    NASA Technical Reports Server (NTRS)

    Zhang, Jingchang; Kessler, Donald J.

    1995-01-01

    Examination of LDEF's various surfaces shows numerous craters and holes due to hypervelocity impacts of meteoroids and man-made orbital debris. In this paper, the crater numbers as reported by Humes have been analyzed in an effort to understand the orbital debris and natural meteoroid environment in LEO. To determine the fraction of man-made to natural impacts, the side to top ratio of impacts and results of the Chemistry of Micrometeoroids Experiment are used. For craters in the 100 micron to 500 micron size range, about 25 percent to 30 percent of the impacts on the forward-facing surfaces and about 10 percent of the impacts on the trailing surfaces were estimated due to man-made orbital debris. A technique has been developed to convert crater numbers to particle fluxes, taking the fact into account that the distributions of impact velocity and incidence angle vary over the different surfaces of LDEF, as well as the ratio of the surface area flux to the cross-sectional area flux. Applying this technique, Humes' data concerning craters with limiting lip diameters of 100 micron, 200 micron and 500 micron have been converted into orbital debris and meteoroid fluxes ranging from about 20 micron to 200 micron particle diameter. The results exhibit good agreement with orbital debris model and meteoroid model. The converted meteoroid flux is slightly larger than Grun's model (by 40 to 70 percent). The converted orbital debris flux is slightly lower than Kessler's model for particle diameter smaller than about 30 micron and slightly larger than the model for particle diameter larger than about 40 micron. Taking also into account the IDE data point at about 0.8 micron particle diameter, it suggests to change the slope log (flux) versus log (diameter) of orbital debris flux in the 1 micron to 100 micron particle diameter range from 2.5 to 1.9.

  19. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024839','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024839"><span>Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.</p> <p>2002-01-01</p> <p>Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940015911&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940015911&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbarlow"><span>Morphologic and morphometric studies of impact craters in the northern plains of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1993-01-01</p> <p>Fresh impact craters in the northern plains of Mars display a variety of morphologic and morphometric properties. Ejecta morphologies range from radial to fluidized, interior features include central peaks and central pits, fluidized morphologies display a range of sinuosities, and depth-diameter ratios are being measured to determine regional variations. Studies of the martian northern plains over the past five years have concentrated in three areas: (1) determining correlations of ejecta morphologies with crater diameter, latitude, and underlying terrain; (2) determining variations in fluidized ejecta blanket sinuosity across the planet; and (3) measurement of depth-diameter ratios and determination of regional variations in this ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070011619','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070011619"><span>Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.</p> <p>2007-01-01</p> <p>Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P33B4033B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P33B4033B"><span>Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bray, V. J.; Schenk, P.</p> <p>2014-12-01</p> <p>The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests that there might be a larger range of 'pristine' crater depths on Pluto than on bodies with higher mean impact velocity. This might affect our ability to define a pristine crater depth as a starting point for crater infill and relaxation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100004496&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danticipation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100004496&hterms=anticipation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Danticipation"><span>Data Collected During the Post-Flight Survey of Micrometeoroid and Orbital Debris Impact Features on the Hubble Wide Field Planetary Camera 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Opiela, J. N.; Liou, J.-C.; Anz-Meador, P. D.</p> <p>2010-01-01</p> <p>Over a period of five weeks during the summer of 2009, personnel from the NASA's Orbital Debris Program Office and Meteoroid Environment Office performed a post-flight examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator. The objective was to record details about all micrometeoroid and orbital debris (MMOD) impact features with diameters of 300 micron and larger. The WFPC-2 was located in a clean room at NASA's Goddard Space Flight Center. Using a digital microscope, the team examined and recorded position, diameter, and depth information for each of 685 craters. Taking advantage of the digital microscope's data storage and analysis features, the actual measurements were extracted later from the recorded images, in an office environment at the Johnson Space Center. Measurements of the crater include depth and diameter. The depth was measured from the undisturbed paint surface to the deepest point within the crater. Where features penetrate into the metal, both the depth in metal and the paint thickness were measured. In anticipation of hypervelocity tests and simulations, several diameter measurements were taken: the spall area, the area of any bare metal, the area of any discolored ("burned") metal, and the lips of the central crater. In the largest craters, the diameter of the crater at the surface of the metal was also measured. The location of each crater was recorded at the time of inspection. This paper presents the methods and results of the crater measurement effort, including the size and spatial distributions of the impact features. This effort will be followed by taking the same measurements from hypervelocity impact targets simulating the WFPC-2 radiator. Both data sets, combined with hydrocode simulation, will help validate or improve the MMOD environment in low Earth orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..299...68T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..299...68T"><span>A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tornabene, Livio L.; Watters, Wesley A.; Osinski, Gordon R.; Boyce, Joseph M.; Harrison, Tanya N.; Ling, Victor; McEwen, Alfred S.</p> <p>2018-01-01</p> <p>We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ∼1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from ;problematic; craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347 ± 0.021)D0.537 ± 0.017 and dr = (0.323 ± 0.017)D0.538 ± 0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-1980-A80-7034.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-1980-A80-7034.html"><span>ARC-1980-A80-7034</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1980-11-12</p> <p>Range : 660,000 kilometers (400,000 miles) Time : 5:05 am PST This Voyager 1 picture of Mimas shows a large impact structure at 110 degrees W Long., located on that face of the moon which leads Mimas in its orbit. The feature, about 130 kilometers in diameter (80 miles), is more than 1/4 the diameter of the entire moon. This is a particularly interesting feature in view of its large diameter compared with the size of the satellite, and may have the largest crater diameter/satillite diameter ratio in the solar system. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15-45 kilometers in diameter, can be seen scattered across the surface, particularly alon the terminator. Mimas is one of the smaller Saturnian satellites with a low density implying its chief component is ice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22462.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22462.html"><span>A New Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-05-29</p> <p>NASA's Mars Reconnaissance Orbiter (MRO) keeps finding new impact sites on Mars. This one occurred within the dense secondary crater field of Corinto Crater, to the north-northeast. The new crater and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new crater will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter. https://photojournal.jpl.nasa.gov/catalog/PIA22462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840035671&hterms=pit+final&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpit%2Bfinal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840035671&hterms=pit+final&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dpit%2Bfinal"><span>A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1983-01-01</p> <p>The hypothesis that palimpsests and anomalous pit craters are essentially pristine crater forms derived from high-velocity impacts and/or impacts into an ice crust with preimpact temperatures near melting is explored. The observational data are briefly reviewed, and an impact model is proposed for the direct formation of a palimpsest from an impact when the modification flow which produces the final crater is dominated by 'wet' fluid flow, as opposed to the 'dry' granular flow which produces normal craters. Conditions of 'wet' modification occur when the volume of impact melt remaining in the transient crater attains a volume comparable to the transient crater. The normal crater-palimpsest transition is found to occur for sufficiently large impacts or sufficiently fast impactors. The range of crater diameters and morphological characteristics inferred from the impact model is consistent with the observed characteristics of palimpsests and anomalous pit craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011964','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011964"><span>Mass mortality and extraterrestrial impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jansa, L. F.; Gradstein, F. M.; Pierre-Aubry, M.</p> <p>1988-01-01</p> <p>The discovery of iridium enrichment at the Cretaceous/Tertiary boundary resulted in formulation of hypothesis of a cometary or asteroid impact as the cause of the biological extinctions at this boundary. Subsequent discoveries of geochemical anomalies at major stratigraphic boundaries like the Precambrian/Cambrian, Permian/Triassic, Middle/Late Jurassic, resulted in the application of similar extraterrestrial impact theories to explain biological changes at these boundaries. Until recently the major physical evidence, as is the location of the impact crater site, to test the impact induced biological extinction was lacking. The diameter of such a crater would be in the range of 60 to 100 km. The recent discovery of the first impact crater in the ocean provide the first opportunity to test the above theory. The crater, named Montagnais and located on the outer shelf off Nova Scotia, Canada, has a minimum diameter of 42 km, with some evidence to a diameter of more than 60 km. At the Montagnais impact site, micropaleontological analysis of the uppermost 80 m of the fall-back breccia represented by a mixture of pre-impact sediments and basement rocks which fills the crater and of the basal 50 m of post-impact marine sediments which overly the impact deposits, revealed presence of diversified foraminiferal and nannoplankton assemblages. The sediments which are intercalated within the uppermost part of the fall-back breccia, had to be deposited before the meteorite impact. The post-impact deposits were laid down almost immediately after the impact as also supported by the micropaleontological data. In conclusion, micropaleontological studies of sediments from the first submarine impact crater site identified in the ocean did not reveal any mass extinction or significant biological changes at the impact site or in the proximal deep ocean basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940006210','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940006210"><span>Dimensional scaling for impact cratering and perforation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watts, Alan; Atkinson, Dale; Rieco, Steve</p> <p>1993-01-01</p> <p>This report summarizes the development of two physics-based scaling laws for describing crater depths and diameters caused by normal incidence impacts into aluminum and TFE Teflon. The report then describes equations for perforations in aluminum and TFE Teflon for normal impacts. Lastly, this report also studies the effects of non-normal incidence on cratering and perforation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.........6R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.........6R"><span>Planetary Surface Properties, Cratering Physics, and the Volcanic History of Mars from a New Global Martian Crater Database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robbins, Stuart James</p> <p></p> <p>Impact craters are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. Craters appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact craters were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 craters statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the crater is a secondary impact. This database allowed exploration of global crater type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic crater scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary craters in relation to their primary crater. It also allowed the discovery of vast distant clusters of secondary craters over 5000 km from their primary crater, Lyot. Finally, significantly smaller craters were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P43B3985H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P43B3985H"><span>The Global Contribution of Secondary Craters on the Icy Satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoogenboom, T.; Johnson, K. E.; Schenk, P.</p> <p>2014-12-01</p> <p>At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sciencedirect.com/science/article/pii/S0019103509003753','USGSPUBS'); return false;" href="http://www.sciencedirect.com/science/article/pii/S0019103509003753"><span>Impact craters on Titan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,</p> <p>2010-01-01</p> <p>Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037384','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037384"><span>Impact craters on Titan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.</p> <p>2010-01-01</p> <p>Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2240K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2240K"><span>Why do complex impact craters have elevated crater rims?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim</p> <p>2014-05-01</p> <p>Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that reverse faulting induced by radially outward directed maximum stresses during the excavation flow may be responsible for the elevation of complex crater rims. This hypothesis is tested at terrestrial craters whose apparent crater rims are often confined by circumferential faults [7]. References:[1] Shoemaker, E. M. (1963) The Solar System, 4, 301-336. [2] Poelchau M.H. et al. (2009), JGR, 114, E01006. [3] Settle, M., and Head, J.W., (1977), Icarus, 31, 123. [4] McGetchin, T. R., et al., (1973), EPSL, 20, 226.[5] Krüger T. et al. (2014), LPSC 45, #1834. [6] Sturm, S. et al. (2014), LPSC 45, 1801. [7] Turtle, E. et al. (2005), GSA-SP. 384, 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19444.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19444.html"><span>Overview of the Impact Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-29</p> <p>On April 30th, this region of Mercury's surface will have a new crater! Traveling at 3.91 kilometers per second (over 8,700 miles per hour), the MESSENGER spacecraft will collide with Mercury's surface, creating a crater estimated to be 16 meters (52 feet) in diameter. The large, 400-kilometer-diameter (250-mile-diameter), impact basin Shakespeare occupies the bottom left quarter of this image. Shakespeare is filled with smooth plains material, likely due to extensive lava flooding the basin in the past. As of 24 hours before the impact, the current best estimates predict that the spacecraft will strike a ridge slightly to the northeast of Shakespeare. View this image to see more details of the predicted impact site and time. Instrument: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Latitude Range: 49°-59° N Longitude Range: 204°-217° E Topography: Exaggerated by a factor of 5.5. Colors: Coded by topography. The tallest regions are colored red and are roughly 3 kilometers (1.9 miles) higher than low-lying areas such as the floors of impact craters, colored blue. Scale: The large crater on the left side of the image is Janacek, with a diameter of 48 kilometers (30 miles) http://photojournal.jpl.nasa.gov/catalog/PIA19444</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53B2124C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53B2124C"><span>Morphologic Analysis of Lunar Craters in the Simple-to-Complex Transition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chandnani, M.; Herrick, R. R.; Kramer, G. Y.</p> <p>2015-12-01</p> <p>The diameter range of 15 km to 20 km on the Moon is within the transition from simple to complex impact craters. We examined 207 well preserved craters in this diameter range distributed across the moon using high resolution Lunar Reconnaissance Orbiter Camera Wide Angle Camera Mosaic (WAC) and Narrow Angle Camera (NAC) data. A map of the distribution of the 207 craters on the Moon using the global LROC WAC mosaic has been attahced with the abstract. By examining craters of similar diameter, impact energy is nearly constant, so differences in shape and morphology must be due to either target (e.g., porosity, density, coherence, layering) or impactor (e.g., velocity, density) properties. On the basis of the crater morphology, topographic profiles and depth-diameter ratio, the craters were classified into simple, craters with slumped walls, craters with both slumping and terracing, those containing a central uplift only, those with a central uplift and slumping, and the craters with a central uplift accompanied by both slumping and terracing, as shown in the image. It was observed that simple craters and craters with slumped walls occur predominately on the lunar highlands. The majority of the craters with terraced walls and all classes of central uplifts were observed predominately on the mare. In short, in this size range craters in the highlands were generally simple craters with occasionally some slumped material in the center, and the more developed features (terracing, central peak) were associated with mare craters. This is somewhat counterintuitive, as we expect the highlands to be generally weaker and less consolidated than the mare. We hypothesize that the presence of rheologic layering in the mare may be the cause of the more complex features that we observe. Relatively weak layers in the mare could develop through regolith formation between individual flows, or perhaps by variations within or between the flows themselves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950007233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950007233"><span>Cratering and penetration experiments in teflon targets at velocities from 1 to 7 km/s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horz, Friedrich; Cintala, Mark; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Knight, Jeffrey</p> <p>1994-01-01</p> <p>Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility after the spacecraft spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments to reproduce such features and to understand the relationships between projectile size and the resulting crater or penetration hole diameter over a wide range of impact velocities. Such relationships are needed to derive the size and mass frequency distribution and flux of natural and man-made particles in low-earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres into pure Teflon targets at velocities ranging from 1 to 7 km/s. Target thickness varied over more than three orders of magnitude from finite halfspace targets to very thin films. Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration hole diameter can become larger than that of a standard crater. The crater diameter in infinite halfspace Teflon targets increases, at otherwise constant impact conditions, with encounter velocity by a factor of V (exp 0.44). In contrast, the penetration hole size in very thin foils is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations apply to all impacts in which the shock-pulse duration of the projectile is shorter than that assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033478"><span>Cratering Equations for Zinc Orthotitanate Coated Aluminum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon</p> <p>2009-01-01</p> <p>The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the multiple craters. Samples were obtained from the HST largest craters for examination by electron microscope equipped with x-ray spectrometers to determine impactor source (micrometeoroid or orbital debris). In an attempt to estimate the MMOD particle diameters that produced these craters, this paper will present equations for spall diameter, crater depth and crater diameter in Z93 coated aluminum. The equations will be based on hypervelocity impact tests of Z93 painted aluminum at the NASA White Sands Test Facility. Equations inputs for velocities beyond the testable regime are expected from hydrocode simulations of Z93 coated aluminum using CTH and ANSYS AUTODYN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSMGP31A..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSMGP31A..08C"><span>Chicxulub's Cretaceous-Tertiary Boundary Twin Crater. Was There a Double Impact in the Yucatan Peninsula?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Camargo, A. Z.; Juarez, J. S.</p> <p>2004-05-01</p> <p>In 1980, Alvarez and co-authors proposed that the K/T extinctions were caused by the effects of a celestial body falling on Earth. After a long search for the impact site, the 1981 work by Penfield and Camargo on a 170 km structure in the Yucatan Peninsula got the attention of the specialists, and it was later proved that it was the crater created by the impact of that celestial body. New data suggests the existence of a second impact crater close to Chicxulub, both being of the same age and created by two fragments of the same celestial boby. A new magnetic map plotted as a color-coded shaded relief surface, reveals a feature not evident before: two interlaced ringed anomalies of about 100 and 50 km diameters, the larger one related to the magnetic signature of the Chicxulub Crater, and the second located at its E-SE edge. The 50 km anomaly, with morphology similar to Chicxulub's, is interpreted as also corresponding to an impact crater, centered at about 89 Deg. Long. W and 21 Deg. Lat. N, close to the city of Izamal. The anomaly size indicates that the diameter of the IZAMAL CRATER is about 85 km. The Chicxulub Crater, being buried under several hundred meters of Tertiary carbonate rocks, is not visible from the surface or from space; although some surface expression of its morphology has been reported. The best known is the ring of cenotes (sink holes) at the crater's rim, visible on satellite images and photographs. The JPL/NASA image PIA03379, is a color-coded shaded relief image of terrain elevation in which the topography was exagerated to highlight the Chicxulub Crater rim. On this image, a semi circular arc of dark spots is also visible immediately to the E-SE of the Chicxulub Crater rim. These spots are interpreted as large irregular karstic depressions, similar to the ones along the cenote ring of Chicxulub. On the evidence of the spatial relationship of the magnetic anomalies and the satellite image features, we tested how well the proposed Izamal Crater would fit the karstic depressions E-SE of the Chicxulub crater. We found that an 82 km diameter circle fits well the semi circle of dark spots, and interpret it as a portion of the rim of the IZAMAL impact crater. The interpreted relationships and origin of the Chicxulub and Izamal craters are: The Chicxulub crater was created after Izamal. They were created by two different impact bodies. The craters are of the same age. They were formed by two parts of the same celestial body, the MAYA BOLIDE. The diameter of the fragment impacted in Izamal is estimated to be about 4 km. This finding has implications on studies related to the K/T extinction event. Some scientists argue that the Chicxulub crater is somewhat small to account for the global K/T extinction all by itself. The double impact may account for the observed effects. Also, multiple impacts at sea may have put into the atmosphere much more sea water salts capable of dissociating into damaging chlorine compounds. Furthermore, the impact sequence may help explain the origin of the K/T boundary glasses from Haiti and better define the ballistic trajectories of the impacts ejecta and its effects on the extinctions. And the Maya Bolide orbit can be investigated to define its origin and characteristics as a comet or asteroid.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4842305N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4842305N"><span>Besieged by Trojans: Material Exchange between Tethys and its Coorbital Moons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nayak, Michael; Rhoden, Alyssa R.; Asphaug, Erik</p> <p>2016-10-01</p> <p>Two small Trojan moons are coorbital with the Saturnian moon Tethys: Calypso (20-km diameter) resides in the trailing L5 Lagrangian point of Tethys' orbit around Saturn, while Telesto (25-km diameter) occupies the leading L4 Lagrangian point. Due to their fixed location with respect to Tethys, consistent material transfer to Tethys occurs whenever there is a primary impact on either of the Trojan moons. Here we investigate this material exchange, and its implications for the cratering history of Tethys. Multiple craters in excess of 1-km in diameter are seen on both Trojan moons [1]. We model the evolution of ejecta escaping from the largest five and seven craters on Calypso and Telesto respectively. The Maxwell Z-model [2] is used, with an implicit gravity-regime cratering assumption, to approximate outbound ejecta velocity distributions. The smallest craters considered on Calypso and Telesto are 1.35 and 1.9 km in diameter respectively; these impacts would have generated a significant amount of sesquinary ejecta [3] in orbits coorbital to that of Tethys. We model the evolution of these sesquinary ejecta in the Saturnian gravity system across 100 years and track their impact locations [e.g. 4]. Our results show that a large fraction of sesquinary ejecta created by primary impacts to either Trojan is likely to impact Tethys; the coorbital nature of the source bodies results in a significant fraction of this ejecta being incident at low impact velocities and low (oblique) impact angles. We present results of ongoing work to convolve these results with observed crater populations and morphologies on Tethys. The persistence of sesquinary impactors inbound to Tethys suggests that such impacts are a relatively frequent process. Additional sources of impactor material, such as from material excavated by primary impacts to Tethys and later reaccreted, will also be discussed. [1] Thomas et al., 2013, Icarus [2] Melosh, 1989, Oxford Univ. Press [3] Zahnle et al., 2008, Icarus [4] Nayak and Asphaug, 2016, Nature Communications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace"><span>Environment modelling in near Earth space: Preliminary LDEF results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.</p> <p>1992-01-01</p> <p>Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720055808&hterms=microparticles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicroparticles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720055808&hterms=microparticles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmicroparticles"><span>Craters formed in mineral dust by hypervelocity microparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vedder, J. F.</p> <p>1972-01-01</p> <p>As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970023492','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970023492"><span>Impact Cratering Calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>1997-01-01</p> <p>Understanding the physical processes of impact cratering on planetary surfaces and atmospheres as well as collisions of finite-size self-gravitating objects is vitally important to planetary science. The observation has often been made that craters are the most ubiquitous landform on the solid planets and the satellites. The density of craters is used to date surfaces on planets and satellites. For large ringed basin craters (e.g. Chicxulub), the issue of identification of exactly what 'diameter' transient crater is associated with this structure is exemplified by the arguments of Sharpton et al. (1993) versus those of Hildebrand et al. (1995). The size of a transient crater, such as the K/T extinction crater at Yucatan, Mexico, which is thought to be the source of SO,-induced sulfuric acid aerosol that globally acidified surface waters as the result of massive vaporization of CASO, in the target rock, is addressed by our present project. The impact process excavates samples of planetary interiors. The degree to which this occurs (e.g. how deeply does excavation occur for a given crater diameter) has been of interest, both with regard to exposing mantle rocks in crater floors, as well as launching samples into space which become part of the terrestrial meteorite collection (e.g. lunar meteorites, SNC's from Mars). Only in the case of the Earth can we test calculations in the laboratory and field. Previous calculations predict, independent of diameter, that the depth of excavation, normalized by crater diameter, is d(sub ex)/D = 0.085 (O'Keefe and Ahrens, 1993). For Comet Shoemaker-Levy 9 (SL9) fragments impacting Jupiter, predicted excavation depths of different gas-rich layers in the atmosphere, were much larger. The trajectory and fate of highly shocked material from a large impact on the Earth, such as the K/T bolide is of interest. Melosh et al. (1990) proposed that the condensed material from the impact upon reentering the Earth's atmosphere induced. radiative heating, and producing global firestorms. The observed reentry splash of the SL-9 impact-induced plumes that reimpact Jupiter (Boslough et al., 1994) supported Melosh's K/T model. The fate of early primitive planetary atmospheres during the latter stages of planetary accretion, resulting from impactors in the 100 to 103 km diameter require modeling, e.g. Newman et al. (1997). Ahrens (1990; 1993) and Chen and Ahrens (1997) found that upon delivery of most of the impact energy to the solid planet, very large ground motions arise, which couple sufficient kinetic energy to the atmosphere to cause substantial atmospheric escape. The trade-off of this model with that of Cameron (1997) who suggests that atmospheric blow-off occurs as a result of the massive impact-induced heating of the atmosphere and Pepin (1997) who uses this heating event to model differential hydrodynamic loss of lighter atmospheric gases, requires further research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ysc..conf...27V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ysc..conf...27V"><span>Impact craters at falling of large asteroids in Ukraine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidmachenko, A. P.</p> <p>2016-05-01</p> <p>Catastrophes of different scale that are associated with the fall of celestial bodies to the Earth - occurred repeatedly in its history. But direct evidence of such catastrophes has been discovered recently. Thus, in the late 1970s studies of terrestrial rocks showed that in layers of the earth's crust that corresponded to the period of 65 million years before the present, marked by the mass extinction of some species of living creatures, and the beginning of the rapid development of others. It was then - a large body crashed to Earth in the Gulf of Mexico in Central America. The consequence of this is the Chicxulub crater with a diameter of ~170 km on Yucatan Peninsula. Modern Earth's surface retains many traces of collisions with large cosmic bodies. To indicate the craters with a diameter of more than 2 km using the name "astrobleme". Today, it found more than 230. The largest astroblems sizes exceeding 200 km. Ukraine also has some own astroblems. In Ukraine, been found nine large impact craters. Ukrainian crystalline shield, because of its stability for a long time (more than 1.5 billion years), has the highest density of large astroblems on the Earth's surface. The largest of the Ukrainian astroblems is Manevytska. It has a diameter of 45 km. There are also Ilyinetskyi (7 km), Boltysh (25 km), Obolon' (20 km), Ternivka (12-15 km), Bilylivskyi (6 km), Rotmystrivka (3 km) craters. Zelenohayska astrobleme founded near the village Zelenyi Gay in Kirovograd region and consists of two craters: larger with diameter 2.5-3.5 km and smaller - with diameter of 800 m. The presence of graphite, which was the basis for the research of the impact diamond in astroblems of this region. As a result, the diamonds have been found in rocks of Ilyinetskyi crater; later it have been found in rocks in the Bilylivska, Obolon' and other impact structures. The most detailed was studied the geological structure and the presence of diamonds in Bilylivska astrobleme</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050170016','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050170016"><span>Martian Central Pit Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hillman, E.; Barlow, N. G.</p> <p>2005-01-01</p> <p>Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6576626-calvin-impact-crater-its-associated-oil-production-cass-county-michigan','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6576626-calvin-impact-crater-its-associated-oil-production-cass-county-michigan"><span>The Calvin impact crater and its associated oil production, Cass County, Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Milstein, R.L.</p> <p>1996-01-01</p> <p>The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/425743-calvin-impact-crater-its-associated-oil-production-cass-county-michigan','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/425743-calvin-impact-crater-its-associated-oil-production-cass-county-michigan"><span>The Calvin impact crater and its associated oil production, Cass County, Michigan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Milstein, R.L.</p> <p>1996-12-31</p> <p>The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060038747&hterms=Saunders&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060038747&hterms=Saunders&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSaunders%252C%2BM"><span>(abstract) Radiophysical Properties of Venusian Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weitz, C. M.; Saunders, R. S.; Plaut, J. J.; Elachi, C.; Moore, H. J.</p> <p>1993-01-01</p> <p>An analysis of 222 large (greater than 20-km-diameter) impact craters on Venus using both cycle 1 and cycle 2 Magellan data is being conducted to determine the radiophysical properties (i.e., backscatter cross section, emissivity, reflectivity, rms slope) of the craters and to search for correlations with target region properties and subsequent geological history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010406','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010406"><span>Combined position and diameter measures for lunar craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Arthur, D.W.G.</p> <p>1977-01-01</p> <p>The note addresses the problem of simultaneously measuring positions and diameters of circular impact craters on wide-angle photographs of approximately spherical planets such as the Moon and Mercury. The method allows for situations in which the camera is not aligned on the planet's center. ?? 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ysc..conf...11V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ysc..conf...11V"><span>Two astroblems in Ukraine - witnesses of the last days of dinosaurs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vidmachenko, A. P.</p> <p>2017-05-01</p> <p>Moor then 65 million years ago an asteroid with a few kilometers in size with mass of 1 trillion tons created a crater Chicxulub with a diameter of 170 km on the Yucatán Peninsula in Mexico. Then the dinosaurs died out. The largest of Ukrainian astroblems is Manevichska, located in Volyn region. It has a diameter of 45 km and occurred about 65 million years ago too. In the central part of Ukraine on the border of Kirovograd and Cherkassy regions, there is Boltyshka astrobleme. The crater has diameter 25 km and depth of more than 1 km. Boltyshka crater also appeared more than 65 million years ago. These dating of the occurrence of astroblems indicates the close age of these two craters with formation of Chicxulub. If almost coinciding formation time of two or more impact structures, it is significantly increases the effect of impact on the environment and living beings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S"><span>Martian subsurface properties and crater formation processes inferred from fresh impact crater geometries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Sarah T.; Valiant, Gregory J.</p> <p>2006-10-01</p> <p>The geometry of simple impact craters reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from crater geometry measurements. Here, we present the results from geometrical measurements of fresh craters 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland craters. Simple lowland craters are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland craters of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland craters indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland craters collapse to final volumes of 45-70% of their transient cavity volumes, while highland craters preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard crater scaling relationships and Maxwell's Z model of crater excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through nonballistic emplacement processes and/or bulking. The observations require a modification of the scaling laws and are well fit using a scaling factor of ˜1.4 between the transient crater surface diameter to the final crater rim diameter and excavation flow originating from one projectile diameter depth with Z = 2.7. The refined excavation model provides the first observationally constrained set of initial parameters for study of the formation of fluidized ejecta blankets on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730059645&hterms=bedding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbedding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730059645&hterms=bedding&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dbedding"><span>Production of lunar fragmental material by meteoroid impact.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marcus, A. H.</p> <p>1973-01-01</p> <p>The rate of production of new fragmental lunar surface material is derived theoretically on the hypothesis that such material is excavated from a bedrock layer by meteoroid impacts. An overlaying regolith effectively shields the bedrock layer from small impacts, reducing the production rate of centimeter-sized and smaller blocks by a large factor. Logarithmic production rate curves for centimeter to motor-sized blocks are nonlinear for any regolith from centimeters to tens of meters in thickness, with small blocks relatively much less frequent for thicker (older) regoliths, suggesting the possibility of a statistical reverse bedding. Modest variations in the exponents of scaling laws for crater depth-diameter ratio and maximum block-diameter to crater diameter ratio are shown to have significant effects on the production rates. The production rate increases slowly with increasing size of the largest crater affecting the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820038846&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpopulation%2Bvariations','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820038846&hterms=population+variations&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpopulation%2Bvariations"><span>Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>De Hon, R. A.</p> <p>1980-01-01</p> <p>Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830035018&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dclay%2Bviscosity"><span>Experimental simulation of impact cratering on icy satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.</p> <p>1982-01-01</p> <p>Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P41D2852D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P41D2852D"><span>Depth of maturity in the Moon's regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Denevi, B. W.; Duck, A.; Klem, S.; Ravi, S.; Robinson, M. S.; Speyerer, E. J.</p> <p>2017-12-01</p> <p>The observed maturity of the lunar surface is a function of its exposure to the weathering agents of the space environment as well as the rates of regolith gardening and overturn. Regolith exposed on the surface weathers until it is buried below material delivered to the surface by impact events; weathering resumes when it is re-exposed to the surface environment by later impacts. This cycle repeats until a mature layer of some thickness develops. The gardening rate of the upper regolith has recently been shown to be substantially higher than previously thought, and new insights on the rates of space weathering and potential variation of these rates with solar wind flux have been gained from remote sensing as well as laboratory studies. Examining the depth to which the lunar regolith is mature across a variety of locations on the Moon can provide new insight into both gardening and space weathering. Here we use images from the Lunar Reconnaissance Orbiter Camera (LROC) with pixel scales less than approximately 50 cm to examine the morphology and reflectance of impact craters in the 2- to 100-m diameter size range. Apollo core samples show substantial variation, but suggest that the upper 50 cm to >1 m of regolith is mature at the sampled sites. These depths indicate that because craters excavate to a maximum depth of 10% of the transient crater diameter, craters with diameters less than 5-10 m will typically expose only mature material and this phenomenon should be observable in LROC images. Thus, we present the results of classifying craters by both morphology and reflectance to determine the size-frequency distribution of craters that expose immature material versus those that do not. These results are then compared to observations of reflectance values for the ejecta of craters that have formed during the LRO mission. These newly formed craters span a similar range of diameters, and there is no ambiguity about post-impact weathering because they are less than a decade old.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000110334&hterms=assessment+impact&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dthe%2Bassessment%2Bimpact','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000110334&hterms=assessment+impact&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dthe%2Bassessment%2Bimpact"><span>Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.</p> <p>1999-01-01</p> <p>Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910015684&hterms=space+debris&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dspace%2Bdebris','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910015684&hterms=space+debris&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dspace%2Bdebris"><span>Large craters on the meteoroid and space debris impact experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humes, Donald H.</p> <p>1991-01-01</p> <p>The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>The geomorphology of Rhea - Implications for geologic history and surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, J. M.; Horner, V. M.; Greeley, R.</p> <p>1985-01-01</p> <p>Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..287..187R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..287..187R"><span>Craters of the Pluto-Charon system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Tod R.; Weaver, Harold A.; Runyon, Kirby; McKinnon, William B.; Beyer, Ross A.; Porter, Simon; White, Oliver L.; Hofgartner, Jason D.; Zangari, Amanda M.; Moore, Jeffrey M.; Young, Leslie A.; Spencer, John R.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Grundy, William M.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Tyler, G. Len; Olkin, Catherine B.; Ennico, Kimberly S.; Stern, S. Alan; New Horizons Lorri, Mvic Instrument Teams</p> <p>2017-05-01</p> <p>NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average ± 10% uncertainty across all sizes measured (∼0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 ± 0.1 over diameters D ≈ 15-200 km, and Charon's has a slope of -3.0 ± 0.2 over diameters D ≈ 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170007522&hterms=ross&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3DWill%2Bross','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170007522&hterms=ross&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D10%26Ntt%3DWill%2Bross"><span>Craters of the Pluto-Charon System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Robbins, Stuart J.; Singer, Kelsi N.; Bray, Veronica J.; Schenk, Paul; Lauer, Todd R.; Weaver, Harold A.; Runyon, Kirby; Mckinnon, William B.; Beyer, Ross A.; Porter, Simon; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007522'); toggleEditAbsImage('author_20170007522_show'); toggleEditAbsImage('author_20170007522_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007522_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007522_hide"></p> <p>2016-01-01</p> <p>NASA's New Horizons flyby mission of the Pluto-Charon binary system and its four moons provided humanity with its first spacecraft-based look at a large Kuiper Belt Object beyond Triton. Excluding this system, multiple Kuiper Belt Objects (KBOs) have been observed for only 20 years from Earth, and the KBO size distribution is unconstrained except among the largest objects. Because small KBOs will remain beyond the capabilities of ground-based observatories for the foreseeable future, one of the best ways to constrain the small KBO population is to examine the craters they have made on the Pluto-Charon system. The first step to understanding the crater population is to map it. In this work, we describe the steps undertaken to produce a robust crater database of impact features on Pluto, Charon, and their two largest moons, Nix and Hydra. These include an examination of different types of images and image processing, and we present an analysis of variability among the crater mapping team, where crater diameters were found to average +/-10% uncertainty across all sizes measured (approx.0.5-300 km). We also present a few basic analyses of the crater databases, finding that Pluto's craters' differential size-frequency distribution across the encounter hemisphere has a power-law slope of approximately -3.1 +/- 0.1 over diameters D approx. = 15-200 km, and Charon's has a slope of -3.0 +/- 0.2 over diameters D approx. = 10-120 km; it is significantly shallower on both bodies at smaller diameters. We also better quantify evidence of resurfacing evidenced by Pluto's craters in contrast with Charon's. With this work, we are also releasing our database of potential and probable impact craters: 5287 on Pluto, 2287 on Charon, 35 on Nix, and 6 on Hydra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188271','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188271"><span>A revised surface age for the North Polar Layered Deposits of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.</p> <p>2016-01-01</p> <p>The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03785.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03785.html"><span>Cratered terrain in Terra Meridiani</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-05-23</p> <p>This region of Terra Meridiani, imaged by NASA Mars Odyssey, shows an old, heavily degraded channel that appears to terminate abruptly at the rim of a 10 km diameter crater, suggesting that the impact crater was created after the channel was formed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800039557&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddepression%2Bmexico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800039557&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddepression%2Bmexico"><span>Endogenic craters on basaltic lava flows - Size frequency distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Gault, D. E.</p> <p>1979-01-01</p> <p>Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27532050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27532050"><span>Shatter cones: (Mis)understood?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Osinski, Gordon R; Ferrière, Ludovic</p> <p>2016-08-01</p> <p>Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4975556','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4975556"><span>Shatter cones: (Mis)understood?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Osinski, Gordon R.; Ferrière, Ludovic</p> <p>2016-01-01</p> <p>Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship Dsc = 0.4 Da, where Dsc is the maximum spatial extent of in situ shatter cones, and Da is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15567856','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15567856"><span>Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richardson, James E; Melosh, H Jay; Greenberg, Richard</p> <p>2004-11-26</p> <p>High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Icar..203..310Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Icar..203..310Y"><span>An empirical model for transient crater growth in granular targets based on direct observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi</p> <p>2009-09-01</p> <p>The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950017422&hterms=lime&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950017422&hterms=lime&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dlime"><span>Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.</p> <p>1995-01-01</p> <p>Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995ldef.symp..521H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995ldef.symp..521H"><span>Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.</p> <p>1995-02-01</p> <p>Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940031652','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940031652"><span>Morphology of meteoroid and space debris craters on LDEF metal targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Love, S. G.; Brownlee, D. E.; King, N. L.; Hoerz, F.</p> <p>1994-01-01</p> <p>We measured the depths, average diameters, and circularity indices of over 600 micrometeoroid and space debris craters on various metal surfaces exposed to space on the Long Duration Exposure Facility (LDEF) satellite, as a test of some of the formalisms used to convert the diameters of craters on space-exposed surfaces into penetration depths for the purpose of calculating impactor sizes or masses. The topics covered include the following: targe materials orientation; crater measurements and sample populations; effects of oblique impacts; effects of projectile velocity; effects of crater size; effects of target hardness; effects of target density; and effects of projectile properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.5200D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.5200D"><span>Experimental impact crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.</p> <p>2012-04-01</p> <p>The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile failure planes ("terraces") in the outer, near-surface region of the crater. We suggest that these differences are due to a reduction in tensile strength in pore-space saturated sandstone. Linking morphological characteristics to impact conditions might provide a tool to help reconstruct impact conditions in small, more strength- than gravity-dominated impact craters in nature. Findings in small-scale experiments can aid the identification of particular structures in the field, such as spallation induced uplift of strata outside of the crater margins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.7702S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.7702S"><span>Comparison of Impact Crater Size-Frequency Distributions (SFD) on Saturnian Satellites with Other Solar-System Bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, N.; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.</p> <p>2009-04-01</p> <p>The examination of the geologic history of the saturnian satellites is a major goal of the Cassini imaging experiment (ISS) [5]. The study of the impact crater-SFD is necessary to derive ages of the saturnian satellite surface units. Furthermore it can be used for resolving the main impactor source and the impactor orbital characteristics for understanding the nature of the bombardment. While large and old areas are suited to measure the branch of large crater sizes, smaller craters can be found in a state of production only at relatively young areas on the saturnian satellites. The impact-crater SFD is derived only from such crater populations which are in production. Hence the measurement of the whole production function in one specific area is impossible. Therefore we have to measure it piece-wise in crater size range in a number of suitable areas. On Iapetus the production function has been measured in seven crater size range pieces, covering a crater size range from 0.15 km to 700 km. At the same crater size, these areas have somewhat different crater frequencies, since they are of different ages. The crater frequency differences of the respective pieces to each other have to be taken out, in order to obtain continuous curves. We have achieved that by normalizing the frequencies measured on the older surface units at the respective smallest crater sizes to the tail ends of the crater frequencies for the largest craters on the younger surface units. The resulting continuous curves give us a reliable production SFD over the whole accessible range. Doing so, we assumed that the production SFD has not changed over time in the parts of the SFD not directly accessible by measurement. Hence the resulting SFD curve is a consequence of a compilation of measurements taken in different areas. Intensive analyses of the crater diameter SFD of the lunar surface have revealed a characteristic W-shaped curve, when it is R-plotted. Crater counting on other planetary surfaces such as Mercury, Venus, Mars, Gaspra, Callisto, Ganymede and Mimas have revealed similarly shaped crater diameter SFDs e.g. [4]. While those SFD curves are equally shaped, the whole curves with their characteristic W-shapes appear to be shifted along the diameter axis. Most likely, this shift is primarily the result of different impact velocities. Other factors of scaling relationships between crater diameter and projectile diameter such as density and gravity on different target bodies are of secondary importance. The measurements of the crater diameter SFD on the saturnian satellites Tethys, Dione, Rhea, and Iapetus also show high similarities to the lunar W-shaped curve. The most complete and statistically valid data set was generated in the case of Iapetus. We have been able to measure crater sizes over four orders of magnitude. The most likely impactor source for the craters in the inner solar system is the asteroid belt orbiting the sun between Mars and Jupiter e.g. [3],[4]. The asteroid body diameter SFD has more recently been analyzed by [2] using the latest discoveries and the absolute geometric albedo of the asteroids. Those albedo values have been converted to asteroid-body diameters using the method of [1]. The body SFD of the asteroid belt in the range from its inner border out to the 5:2 resonance gap gives a very good match to the lunar SFD. The same W-shape characteristics is found at the jovian and saturnian satellite SFD curves as mentioned earlier. Based on these observations and similarities, it is reasonable to suspect asteroids as the major contribution for the outer solar system bombardment in the range of Saturn as well. References: [1]Fowler & Chillemi (1992) in "The IRAS minor planet survey" [2]Ivanov at al. (2002) in „Asteroids III"; The University of Arizona Press: 89-101 [3]Neukum (1983) Habilitation Thesis, "Meteoritenbombardement und Datierung planetarer Oberflächen"; Ludwig-Maximilians-University of Munich. [4]Neukum & Ivanov (1994) in "Hazards due to comets & Asteroids"; The University of Arizona Press: 359-416 [5]Porco et al. (2004) Space Science Reviews 115: 363-497</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930030854&hterms=sarkar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsarkar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930030854&hterms=sarkar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsarkar"><span>Impact craters and Venus resurfacing history</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, Roger J.; Raubertas, Richard F.; Arvidson, Raymond E.; Sarkar, Ila C.; Herrick, Robert R.; Izenberg, Noam; Grimm, Robert E.</p> <p>1992-01-01</p> <p>The history of resurfacing by tectonism and volcanism on Venus is reconstructed by means of an analysis of Venusian impact crater size-frequency distributions, locations, and preservation states. An atmospheric transit model for meteoroids demonstrates that for craters larger than about 30 km, the size-frequency distribution is close to the atmosphere-free case. An age of cessation of rapid resurfacing of about 500 Ma is obtained. It is inferred that a range of surface ages are recorded by the impact crater population; e.g., the Aphrodite zone is relatively young. An end-member model is developed to quantify resurfacing scenarios. It is argued that Venus has been resurfacing at an average rate of about 1 sq km/yr. Numerical simulations of resurfacing showed that there are two solution branches that satisfy the completely spatially random location restraint for Venusian craters: a is less than 0.0003 (4 deg diameter circle) and a is greater than 0.1 (74 deg diameter circle).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050172168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050172168"><span>Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.</p> <p>2005-01-01</p> <p>The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52.1351K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52.1351K"><span>The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kenkmann, Thomas; Sturm, Sebastian; Krüger, Tim; Salameh, Elias; Al-Raggad, Marwan; Konsul, Khalil</p> <p>2017-07-01</p> <p>The investigation of terrestrial impact structures is crucial to gain an in-depth understanding of impact cratering processes in the solar system. Here, we use the impact structure Jebel Waqf as Suwwan, Jordan, as a representative for crater formation into a layered sedimentary target with contrasting rheology. The complex crater is moderately eroded (300-420 m) with an apparent diameter of 6.1 km and an original rim fault diameter of 7 km. Based on extensive field work, IKONOS imagery, and geophysical surveying we present a novel geological map of the entire crater structure that provides the basis for structural analysis. Parametric scaling indicates that the structural uplift (250-350 m) and the depth of the ring syncline (<200 m) are anomalously low. The very shallow relief of the crater along with a NE vergence of the asymmetric central uplift and the enhanced deformations in the up-range and down-range sectors of the annular moat and crater rim suggest that the impact was most likely a very oblique one ( 20°). One of the major consequences of the presence of the rheologically anisotropic target was that extensive strata buckling occurred during impact cratering both on the decameter as well as on the hundred-meter scale. The crater rim is defined by a circumferential normal fault dipping mostly toward the crater. Footwall strata beneath the rim fault are bent-up in the down-range sector but appear unaffected in the up-range sector. The hanging wall displays various synthetic and antithetic rotations in the down-range sector but always shows antithetic block rotation in the up-range sector. At greater depth reverse faulting or folding is indicated at the rim indicating that the rim fault was already formed during the excavation stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..SHK.P6005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..SHK.P6005R"><span>Penetration scaling in atomistic simulations of hypervelocity impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ruestes, C. J.; Bringa, E. M.; Fioretti, F.; Higginbotham, A.; Taylor, E. A.; Graham, G.</p> <p>2011-06-01</p> <p>We present atomistic molecular dynamics simulations of the impact of copper nano particles at 5 km/s on copper films ranging in thickness from 0.5 to 4 times the projectile diameter. We access both penetration and cratering regimes with final cratering morphologies showing considerable similarity to experimental impacts on both micron and millimeter scales. Both craters and holes are formed from a molten region, with relatively low defect densities remaining after cooling and recrystallisation. Crater diameter and penetration limits are compared to analytical scaling models: in agreement with some models we find the onset of penetration occurs for 1.0 < f/d < 1.5, where f is the film thickness and d is the projectile diameter. However, our results for the hole size agree well with scaling laws based on macroscopic experiments providing enhanced strength of a nano-film that melts completely at the impact region is taken into account. Penetration in films with pre-existing nanocracks is qualitatively similar to penetration in perfect films, including the lack of back-spall. Simulations using ``peridynamics'' are also described and compared to the atomistic simulations. Work supported by PICT2007-PRH, PICT-2008 1325, and SeCTyP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960008824','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960008824"><span>Penetration experiments in aluminum 1100 targets using soda-lime glass projectiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horz, Friedrich; Cintala, Mark J.; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William E.; Haynes, Gerald; See, Thomas H.; Winkler, Jerry L.</p> <p>1995-01-01</p> <p>The cratering and penetration behavior of annealed aluminum 1100 targets, with thickness varied from several centimeters to ultra-thin foils less than 1 micrometer thick, were experimentally investigated using 3.2 mm diameter spherical soda-lime glass projectiles at velocities from 1 to 7 km/s. The objective was to establish quantitative, dimensional relationships between initial impact conditions (impact velocity, projectile diameter, and target thickness) and the diameter of the resulting crater or penetration hole. Such dimensional relationships and calibration experiments are needed to extract the diameters and fluxes of hypervelocity particles from space-exposed surfaces and to predict the performance of certain collisional shields. The cratering behavior of aluminum 1100 is fairly well predicted. However, crater depth is modestly deeper for our silicate impactors than the canonical value based on aluminum projectiles and aluminum 6061-T6 targets. The ballistic-limit thickness was also different. These differences attest to the great sensitivity of detailed crater geometry and penetration behavior on the physical properties of both the target and impactor. Each penetration experiment was equipped with a witness plate to monitor the nature of the debris plume emanating from the rear of the target. This plume consists of both projectile fragments and target debris. Both penetration hole and witness-plate spray patterns systematically evolve in response to projectile diameter/target thickness. The relative dimensions of the projectile and target totally dominate the experimental products documented in this report; impact velocity is an important contributor as well to the evolution of penetration holes, but is of subordinate significance for the witness-plate spray patterns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830040097&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals"><span>The Manicouagan impact structure - An analysis of its original dimensions and form</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grieve, R. A. F.; Head, J. W., III</p> <p>1983-01-01</p> <p>A reanalysis of the preerosional geology of the Canadian impact crater, Manicouagan, is presented. Although most of the current features of the annular moat are primarily a result of erosional processes, the original dimensions of the cavity have been determined to include a transient cavity 60 km in diam. The final floor of the crater was studied and found to be an impact melt-covered inner plateau 55 km in diam. Comparisons with similar crater bottoms on the moon are used to estimate a final crater rim diameter of 85-95 km. The inner plateau and relatively smooth deposits on the crater floor are noted to be most similar to the lunar crater Copernicus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000963','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000963"><span>Geomechanical models of impact cratering: Puchezh-Katunki structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivanov, B. A.</p> <p>1992-01-01</p> <p>Impact cratering is a complex natural phenomenon that involves various physical and mechanical processes. Simulating these processes may be improved using the data obtained during the deep drilling at the central mound of the Puchezh-Katunki impact structure. A research deep drillhole (named Vorotilovskaya) has been drilled in the Puchezh-Katunki impact structure (European Russia, 57 deg 06 min N, 43 deg 35 min E). The age of the structure is estimated at about 180 to 200 m.y. The initial rim crater diameter is estimated at about 40 km. The central uplift is composed of large blocks of crystalline basement rocks. Preliminary study of the core shows that crystalline rocks are shock metamorphosed by shock pressure from 45 GPa near the surface to 15-20 GPa at a depth of about 5 km. The drill core allows the possibility of investigating many previously poorly studied cratering processes in the central part of the impact structure. As a first step one can use the estimates of energy for the homogeneous rock target. The diameter of the crater rim may be estimated as 40 km. The models elaborated earlier show that such a crater may be formed after collapse of a transient cavity with a radius of 10 km. The most probable range of impact velocities from 11.2 to 30 km/s may be inferred for the asteroidal impactor. For the density of a projectile of 2 g/cu cm the energy of the impact is estimated as 1E28 to 3E28 erg. In the case of vertical impact, the diameter of an asteroidal projectile is from 1.5 to 3 km for the velocity range from 11 to 30 km/s. For the most probable impact angle of 45 deg, the estimated diameter of an asteroid is slightly larger: from 2 to 4 km. Numerical simulation of the transient crater collapse has been done using several models of rock rheology during collapse. Results show that the column at the final position beneath the central mound is about 5 km in length. This value is close to the shock-pressure decay observed along the drill core. Further improvement of the model needs to take into account the blocky structure of target rocks revealed by drilling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11539331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11539331"><span>Surface expression of the Chicxulub crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pope, K O; Ocampo, A C; Kinsland, G L; Smith, R</p> <p>1996-06-01</p> <p>Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015P%26SS..111...83B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015P%26SS..111...83B"><span>Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.</p> <p>2015-06-01</p> <p>Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These results indicate that the lobate debris apron populations formed (or their surfaces became stable) in the Early to Middle Amazonian Epochs, and were subsequently subjected to complex degradation by erosion and sublimation and/or melting of contained ice, culminating in episodes of deposition of ice-rich mantles in the Late Amazonian Epoch.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump"><span>Terrace width variations in complex Mercurian craters and the transient strength of cratered Mercurian and lunar crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leith, Andrew C.; Mckinnon, William B.</p> <p>1991-01-01</p> <p>The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..519T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..519T"><span>Scaling law deduced from impact-cratering experiments on basalt targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takagi, Y.; Hasegawa, S.; Suzuki, A.</p> <p>2014-07-01</p> <p>Since impact-cratering phenomena on planetary bodies were the key process which modified the surface topography and formed regolith layers, many experiments on non-cohesive materials (sand, glass beads) were performed. On the other hand, experiments on natural rocks were limited. Especially, experiments on basalt targets are rare, although basalt is the most common rocky material on planetary surfaces. The reason may be the difficulties of obtaining basalt samples suitable for cratering experiments. Recently, we obtained homogenous and crackless large basalt blocks. We performed systematic cratering experiments using the basalt targets. Experimental Procedure: Impact experiments were performed using a double stage light-gas (hydrogen) gun on the JAXA Sagamihara campus. Spherical projectiles of nylon, aluminum, stainless steel, and tungsten carbide were launched at velocities between 2400 and 6100 m/sec. The projectiles were 1.0 to 7.1 mm in diameter and 0.004 to 0.22 g in mass. The incidence angle was fixed at 90 degrees. The targets were rectangular blocks of Ukrainian basalt. The impact plane was a square with 20-cm sides. The thickness was 9 cm. Samples were cut out from a columnar block so that the impact plane might become perpendicular to the axis of the columnar joint. The mass was about 10.5 kg. The density was 2920 ± 10 kg/m^3 . Twenty eight shots were performed. Three-dimensional shapes of craters were measured by an X-Y stage with a laser displacement sensor (Keyence LK-H150). The interval between the measurement points was 200 micrometer. The volume, depth, and aperture area of the crater were calculated from the 3-D data using analytical software. Since the shapes of the formed craters are markedly asymmetrical, the diameter of the circle whose area is equal to the aperture area was taken as the crater diameter. Results: The diameter, depth, and the volume of the formed craters are normalized by the π parameters. Experimental conditions are also expressed by the π parameters. The figure shows the relation of the normalized volume and the π_3 parameter. A clear dependency on the projectile density is shown in the figure. Multiple regression analyses yield the relation π_V ∝ π_3^{-1.04 ± 0.14} π_4^{0.45 ± 0.18} . Other results and comparisons with those of previous studies are presented in the paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001344','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001344"><span>The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001344'); toggleEditAbsImage('author_20150001344_show'); toggleEditAbsImage('author_20150001344_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001344_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001344_hide"></p> <p>2014-01-01</p> <p>We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta's ancient crust preserved on Vestalia Terra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930043867&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930043867&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbarlow"><span>The Martian impact cratering record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.</p> <p>1992-01-01</p> <p>A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000081066&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMolas','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000081066&hterms=Molas&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DMolas"><span>Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.</p> <p>2000-01-01</p> <p>Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PApGe.168.1187G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PApGe.168.1187G"><span>Calculations of Asteroid Impacts into Deep and Shallow Water</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gisler, Galen; Weaver, Robert; Gittings, Michael</p> <p>2011-06-01</p> <p>Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent. There is some indication that near-field effects are more severe if the impact occurs in shallow water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..256...78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..256...78K"><span>Dione's resurfacing history as determined from a global impact crater database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Schenk, Paul</p> <p>2015-08-01</p> <p>Saturn's moon Dione has an interesting and unique resurfacing history recorded by the impact craters on its surface. In order to further resolve this history, we compile a crater database that is nearly global for diameters (D) equal to and larger than 4 km using standard techniques and Cassini Imaging Science Subsystem images. From this database, spatial crater density maps for different diameter ranges are generated. These maps, along with the observed surface morphology, have been used to define seven terrain units for Dione, including refinement of the smooth and "wispy" (or faulted) units from Voyager observations. Analysis of the terrains' crater size-frequency distributions (SFDs) indicates that: (1) removal of D ≈ 4-50 km craters in the "wispy" terrain was most likely by the formation of D ≳ 50 km craters, not faulting, and likely occurred over a couple billion of years; (2) resurfacing of the smooth plains was most likely by cryovolcanism at ∼2 Ga; (3) most of Dione's largest craters (D ⩾ 100 km), including Evander (D = 350 km), may have formed quite recently (<2 Ga), but are still relaxed, indicating Dione has been thermally active for at least half its history; and (4) the variation in crater SFDs at D ≈ 4-15 km is plausibly due to different levels of minor resurfacing (mostly subsequent large impacts) within each terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194928','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194928"><span>Seismic expression of the Chesapeake Bay impact crater: Structural and morphologic refinements based on new seismic data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie; Hutchinson, Deborah R.; Colman, Steve M.; Lee, Myung W.; Dressler, B.O.; Sharpton, V.L.</p> <p>1999-01-01</p> <p>This work refines previous interpretations of the structure and morphology of the Chesapeake Bay impact crater on the basis of more than 1,200 km of multichannel and single-channel seismic reflection profiles collected in the bay and on the adjacent continental shelf. The outer rim, formed in sedimentary rocks, is irregularly circular, with an average diameter of ~85 km. A 20–25-km-wide annular trough separates the outer rim from an ovate, crystalline peak ring of ~200 m of maximum relief. The inner basin is 35–40 km in diameter, and at least 1.26 km deep. A crystalline(?) central peak, approximately 1 km high, is faintly imaged on three profiles, and also is indicated by a small positive Bouguer gravity anomaly. These features classify the crater as a complex peak-ring/central peak crater. Chesapeake Bay Crater is most comparable to the Ries and Popigai Craters on Earth; to protobasins on Mars, Mercury, and the Moon; and to type D craters on Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830003739&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830003739&hterms=mercury+planet&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmercury%2Bplanet"><span>The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leake, M. A.</p> <p>1982-01-01</p> <p>The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.6505T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.6505T"><span>Potential for Hydrothermal Deposits in Large Martian Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thorsos, I. E.; Newsom, H. E.; Davies, A.</p> <p>2000-12-01</p> <p>Investigation of environments on Mars favorable for pre-biotic chemistry or primitive life is a goal of current strategy. Deposits left by hydrothermal systems on Mars are high priority targets. Impact craters larger than 50 km in diameter should have breached local aquifers and provided sufficient heat to power hydrothermal systems. The amount of heat in craters depends on the size of the melt sheet and uplifted basement forming the central peak. The volume of melt is estimated using scaling relationships (Cintala & Grieve, 1998). The central uplift originates below the transient crater cavity and has a stratigraphic uplift of 1/10 the final crater diameter (Melosh & Ivanov, 1999). The central uplift's temperature with depth profile is estimated using a cylindrical "plug" model and adding the enthalpy profile at the time of maximum impactor penetration (O'Keefe & Ahrens, 1994) to the ambient thermal gradient. The heat from the two sources is estimated over a range of crater diameters. The next phase of this work is to model the longevity and extent of the hydrothermal systems. Cintala, H. J. & R. A. F. Grieve, Meteor. and Plan. Sci. 33, 889-912, 1998. Melosh, H. J. & B. A. Ivanov, Annual Rev. Earth Planet. Sci., 385-415, 1999. O'Keefe, J. D. & T. J. Ahrens, Geol. Soc. Amer. Spec. Paper 293, 103-109, 1994.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Icar..203...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Icar..203...77S"><span>Machine cataloging of impact craters on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.</p> <p>2009-09-01</p> <p>This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050166963','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050166963"><span>Martian Impact Craters as Revealed by MGS and Odyssey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>2005-01-01</p> <p>A variety of ejecta and interior morphologies were revealed for martian impact craters by Viking imagery. Numerous studies have classified these ejecta and interior morphologies and looked at how these morphologies correlate with crater diameter, latitude, terrain, and elevation [1, 2, 3, 4]. Many of these features, particularly the layered (fluidized) ejecta morphologies and central pits, have been proposed to result when the crater formed in target material containing high concentrations of volatiles. The Catalog of Large Martian Impact Craters was originally derived from the Viking 1:2,000,000 photomosaics and contains information on 42,283 impact craters 5-km diameter distributed across the entire martian surface. The information in this Catalog has been used to study the distributions of craters displaying specific ejecta and interior morphologies in an attempt to understand the environmental conditions which give rise to these features and to estimate the areal and vertical extents of subsurface volatile reservoirs [4, 5]. The Catalog is currently undergoing revision utilizing Mars Global Surveyor (MGS) and Mars Odyssey data [6]. The higher resolution multispectral imagery is resulting in numerous revisions to the original classifications and the addition of new elemental, thermophysical, and topographic data is allowing new insights into the environmental conditions under which these features form. A few of the new results from analysis of data in the revised Catalog are discussed below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAr62W1..199Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAr62W1..199Y"><span>Automatic Detection and Recognition of Craters Based on the Spectral Features of Lunar Rocks and Minerals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.</p> <p>2017-07-01</p> <p>Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20728.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20728.html"><span>Beautiful Blocks of Bedrock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-06-01</p> <p>This image captured by NASA Mars Reconnaissance Orbiter spacecraft targets a 3-kilometer diameter crater that occurs within the ejecta blanket of the much older Bakhuysen Crater, a 150-kilometer diameter impact crater in Noachis Terra. Impact craters are interesting because they provide a mechanism to uplift and expose underlying bedrock, allowing for the study of the subsurface and the geologic past. An enhanced color image shows the wall of the crater, which exposes layering as well as blocks of rock. There is a distinctive large block in the upper left of the crater wall, generally referred to as a "mega-block." It is an angular, light-toned, highly fragmented block, about 100 meters across. Several smaller light-toned blocks are also in the crater wall, possibly of the same rock type as the "mega-block." Ejecta blocks are thrown outward during the initial excavation of a crater, or are deposited as part of the ground-hugging flows of which the majority of the ejecta blanket is comprised. Through images like these, we are able to study the deeper subsurface of Mars that is not otherwise exposed. http://photojournal.jpl.nasa.gov/catalog/PIA20728</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21769.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21769.html"><span>Escape from Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-07-10</p> <p>This image from NASA's Mars Reconnaissance Orbiter shows one of millions of small (10s of meters in diameter) craters and their ejecta material that dot the Elysium Planitia region of Mars. The small craters were likely formed when high-speed blocks of rock were thrown out by a much larger impact (about 10-kilometers in diameter) and fell back to the ground. Some of these blocks may actually escape Mars, which is how we get samples in the form of meteorites that fall to Earth. Other ejected blocks have insufficient velocity, or the wrong trajectory, to escape the Red Planet. As such, when one of these high-speed blocks impacts the surface, it makes what is called a "secondary" crater. These secondaries can form dense "chains" or "rays," which are radial to the crater that formed them. https://photojournal.jpl.nasa.gov/catalog/PIA21769</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017405','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017405"><span>Small craters on the meteoroid and space debris impact experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humes, Donald H.</p> <p>1995-01-01</p> <p>Examination of 9.34 m(exp 2) of thick aluminum plates from the Long Duration Exposure Facility (LDEF) using a 25X microscope revealed 4341 craters that were 0.1 mm in diameter or larger. The largest was 3 mm in diameter. Most were roughly hemispherical with lips that were raised above the original plate surface. The crater diameter measured was the diameter at the top of the raised lips. There was a large variation in the number density of craters around the three-axis gravity-gradient stabilized spacecraft. A model of the near-Earth meteoroid environment is presented which uses a meteoroid size distribution based on the crater size distribution on the space end of the LDEF. An argument is made that nearly all the craters on the space end must have been caused by meteoroids and that very few could have been caused by man-made orbital debris. However, no chemical analysis of impactor residue that will distinguish between meteoroids and man-made debris is yet available. A small area (0.0447 m(exp 2)) of one of the plates on the space end was scanned with a 200X microscope revealing 155 craters between 10 micron and 100 micron in diameter and 3 craters smaller than 10 micron. This data was used to extend the size distribution of meteoroids down to approximately 1 micron. New penetration equations developed by Alan Watts were used to relate crater dimensions to meteoroid size. The equations suggest that meteoroids must have a density near 2.5 g/cm(exp 3) to produce craters of the shape found on the LDEF. The near-Earth meteoroid model suggests that about 80 to 85 percent of the 100 micron to 1 mm diameter craters on the twelve peripheral rows of the LDEF were caused by meteoroids, leaving 15 to 20 percent to be caused by man-made orbital debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70178874','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70178874"><span>Cratering on Ceres: Implications for its crust and evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hiesinger, H.; Marchi, S.; Schmedemann, N.; Schenk, P.; Pasckert, J. H.; Neesemann, A.; O'Brien, D. P.; Kneissl, T.; Ermakov, A.; Fu, R.R.; Bland, M. T.; Nathues, A.; Platz, T.; Williams, D.A.; Jaumann, R.; Castillo-Rogez, J. C.; Ruesch, O.; Schmidt, B.; Park, R.S.; Preusker, F.; Buczkowski, D.L.; Russell, C.T.; Raymond, C.A.</p> <p>2016-01-01</p> <p>Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s66-44887.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s66-44887.html"><span>GEMINI S-10 - EXPERIMENTS - MICROMETEORITE PACKAGE - MSC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1966-08-01</p> <p>S66-44887 (1 Aug. 1966) --- Single panel from micrometeorite package showing classic hypervelocity impact by micrometeorite particle. Crater is similar to that produced artificially on Earth and by particle impacts on the lunar surface. Particles travel very fast in space and are typically small in size. This impact crater is less than one millimeter in diameter. Photo credit: NASA</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23H..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23H..01M"><span>The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.</p> <p>2017-12-01</p> <p>The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle deformation state described by the process of "acoustic" fluidization initiated by strong elastic vibrations accompanying the opening and collapse of the crater. The shattered core, cut by both melt rock and clastic dikes, is consistent with the block model of acoustic fluidization supporting its application to crater collapse both on the Earth and on other planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss017e020538.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss017e020538.html"><span>Earth Observations taken by the Expedition 17 Crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2008-10-21</p> <p>ISS017-E-020538 (21 Oct. 2008) --- Arkenu Craters 1 and 2 in Libya are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Geologists often study features on Earth, such as impact craters, to gain insight into processes that occur on other planets. On Earth, more than 150 impact craters have been identified on the continents, but only a few of these are classified as double impact craters. One such example, the Arkenu Craters in northern Africa, is shown in this image. Arkenu 1 and 2 are double impact structures located in eastern Libya (22.04 degrees north latitude and 23.45 degrees east longitude) in the Sahara desert, with diameters of approximately 6.8 kilometers and 10.3 kilometers, respectively. The craters are unusual in that they both exhibit concentric annular ridge structures (gray circles in the image indicate the position of the outermost visible ridges). In many terrestrial complex craters these features are highly eroded and no longer visible. While the circular structure of these features had been noted, the impact origin hypothesis was strengthened in December 2003 when a field team observed shatter cones -- conical-shaped features in rocks created by the high shock pressures generated during impact. Large outcrops of impact breccias -- a jumble of rock fragments generated at the impact site that are now cemented together into an identifiable rock layer -- were also observed by the field team. Two impactors, each approximately 500 meters in diameter, are thought to have created the craters. According to scientists, the age of the impact event has been dated as occurring less than 140 million years ago. While the presence of shatter cones and impact breccias is generally considered to be strong evidence for meteor impact, some scientists now question the interpretation of these features observed at the Arkenu structures and suggest that they were caused by erosive and volcanic processes. At present, both craters are being crossed by linear dunes extending northeast-southwest -- the superposition of the dunes across the annular ridges indicates that they are much younger than the craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009RMxAC..35...19B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009RMxAC..35...19B"><span>Analytical Model for Mars Crater-Size Frequency Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bruckman, W.; Ruiz, A.; Ramos, E.</p> <p>2009-05-01</p> <p>We present a theoretical and analytical curve that reproduces essential features of the frequency distributions vs. diameter of the 42,000 impact craters contained in Barlow's Mars Catalog. The model is derived using reasonable simple assumptions that allow us to relate the present craters population with the craters population at each particular epoch. The model takes into consideration the reduction of the number of craters as a function of time caused by their erosion and obliteration, and this provides a simple and natural explanation for the presence of different slopes in the empirical log-log plot of number of craters (N) vs. diameter (D). A mean life for martians craters as a function of diameter is deduced, and it is shown that this result is consistent with the corresponding determination of craters mean life based on Earth data. Arguments are given to suggest that this consistency follows from the fact that a crater mean life is proportional to its volumen. It also follows that in the absence of erosions and obliterations, when craters are preserved, we would have N ∝ 1/D^{4.3}, which is a striking conclusion, since the exponent 4.3 is larger than previously thought. Such an exponent implies a similar slope in the extrapolated impactors size-frequency distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005181','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005181"><span>Impact craters on Venus: An overview from Magellan observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaber, G. G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, J.</p> <p>1992-01-01</p> <p>Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300..145N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300..145N"><span>Sesquinary reimpacts dominate surface characteristics on Phobos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nayak, Michael</p> <p>2018-01-01</p> <p>We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ˜1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from "problematic" craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347±0.021)D0.537±0.017 and dr = (0.323±0.017)D0.538±0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730013046&hterms=vehicle+identification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvehicle%2Bidentification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730013046&hterms=vehicle+identification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dvehicle%2Bidentification"><span>Artificial lunar impact craters: Four new identifications, part I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitaker, E. A.</p> <p>1972-01-01</p> <p>The Apollo 16 panoramic camera photographed the impact locations of the Ranger 7 and 9 spacecraft and the S-4B stage of the Apollo 14 Saturn launch vehicle. Identification of the Ranger craters was very simple because each photographed its target point before impact. Identification of the S-4B impact crater proved to be a simple matter because the impact location, as derived from earth-based tracking, displayed a prominent and unique system of mixed light and dark rays. By using the criterion of a dark ray pattern, a reexamination of the Apollo 14 500 mm Hasselblad sequence taken of the Apollo 13 S-4B impact area was made. This examination quickly led to the discovery of the ray system and the impact crater. The study of artificial lunar impact craters, ejecta blankets, and ray systems provides the long-needed link between the various experimental terrestrial impact and explosion craters, and the naturally occurring impact craters on the moon. This elementary study shows that lunar impact crater diameters are closely predictable from a knowledge of the energies involved, at least in the size range considered, and suggests that parameters, such as velocity, may have a profound effect on crater morphology and ejecta blanket albedo.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030111111&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030111111&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES"><span>Numerical Simulations of Silverpit Crater Collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collins, G. S.; Turtle, E. P.; Melosh, H. J.</p> <p>2003-01-01</p> <p>The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoSyR..52....1I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoSyR..52....1I"><span>Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, B. A.</p> <p>2018-01-01</p> <p>The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170006598&hterms=extinction&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dextinction','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170006598&hterms=extinction&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dextinction"><span>Correlation of the Largest Craters, Stratigraphic Impact Signatures, and Extinction Events Over the Past 250 Myr</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rampino, Michael R.; Caldeira, Ken</p> <p>2017-01-01</p> <p>The six largest known impact craters of the last 250 Myr (greater than or equal to 70 km in diameter), which are capable of causing significant environmental damage, coincide with four times of recognized extinction events at 36 (with 2 craters), 66, and 145 Myr ago, and possibly with two provisional extinction events at 168 and 215 Myr ago. These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta. Chance occurrences of impacts and extinctions can be rejected at confidence levels of 99.96 percent (for 4 impact/extinctions) to 99.99 percent (for 6 impact/extinctions). These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009M%26PS...44...43O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009M%26PS...44...43O"><span>Layered ejecta craters and the early water/ice aquifer on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oberbeck, V. R.</p> <p>2009-03-01</p> <p>A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107 km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20340.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20340.html"><span>A Young, Fresh Crater in Hellespontus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-01-14</p> <p>This image from NASA Mars Reconnaissance Orbiter spacecraft is of a morphologically fresh and simple impact crater in the Hellespontus region. At 1.3 kilometers in diameter, this unnamed crater is only slightly larger than Arizona's Barringer (aka Meteor) Crater, by about 200 meters. Note the simple bowl shape and the raised crater rim. Rock and soil excavated out of the crater by the impacting meteor -- called ejecta -- forms the ejecta deposit. It is continuous for about one crater radius away from the rim and is likely composed of about 90 percent ejecta and 10 percent in-place material that was re-worked by both the impact and the subsequently sliding ejecta. The discontinuous ejecta deposit extends from about one crater radius outward. Here, high velocity ejecta that was launched from close to the impact point -- and got the biggest kick -- flew a long way, landed, rolled, slid, and scoured the ground, forming long tendrils of ejecta and v-shaped ridges. http://photojournal.jpl.nasa.gov/catalog/PIA20340</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020047558&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAge%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020047558&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAge%2Bearth"><span>The Age of the Surface of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zahnle, K. J.; McKinnon, William B.; Young, Richard E. (Technical Monitor)</p> <p>1997-01-01</p> <p>Impact craters on Venus appear to be uniformly and randomly scattered over a once, but no longer, geologically active planet. To first approximation, the planet shows a single surface of a single age. Here we use Monte Carlo cratering simulations to estimate the age of the surface of Venus. The simulations are based on the present populations of Earth-approaching asteroids, Jupiter-family, Halley-family, and long period comets; they use standard Schmidt-Housen crater scalings in the gravity regime; and they describe interaction with the atmosphere using a semi-analytic 'pancake' model that is calibrated to detailed numerical simulations of impactors striking Venus. The lunar and terrestrial cratering records are also simulated. Both of these records suffer from poor statistics. The Moon has few young large craters and fewer still whose ages are known, and the record is biased because small craters tend to look old and large craters tend to look young. The craters of the Earth provide the only reliable ages, but these craters are few, eroded, of uncertain diameter, and statistically incomplete. Together the three cratering records can be inverted to constrain the flux of impacting bodies, crater diameters given impact parameters, and the calibration of atmospheric interactions. The surface age of Venus that results is relatively young. Alternatively, we can use our best estimates for these three input parameters to derive a best estimate for the age of the surface of Venus. Our tentative conclusions are that comets are unimportant, that the lunar and terrestrial crater records are both subject to strong biases, that there is no strong evidence for an increasing cratering flux in recent years, and that that the nominal age of the surface of Venus is about 600 Ma, although the uncertainty is about a factor of two. The chief difference between our estimate and earlier, somewhat younger estimates is that we find that the venusian atmosphere is less permeable to impacting bodies than supposed by earlier studies. An older surface increases the likelihood that Venus is dead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MmSAI..87...19V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MmSAI..87...19V"><span>Morphometric analysis of a fresh simple crater on the Moon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vivaldi, V.; Ninfo, A.; Massironi, M.; Martellato, E.; Cremonese, G.</p> <p></p> <p>In this research we are proposing an innovative method to determine and quantify the morphology of a simple fresh impact crater. Linné is a well preserved impact crater of 2.2 km in diameter, located at 27.7oN 11.8oE, near the western edge of Mare Serenitatis on the Moon. The crater was photographed by the Lunar Orbiter and the Apollo space missions. Its particular morphology may place Linné as the most striking example of small fresh simple crater. Morphometric analysis, conducted on recent high resolution DTM from LROC (NASA), quantitatively confirmed the pristine morphology of the crater, revealing a clear inner layering which highlight a sequence of lava emplacement events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFM.P12B0499T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFM.P12B0499T"><span>A Lower Limit on the Thickness of Europa's Ice Shell from Numerical Simulations of Impact Cratering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turtle, E. P.; Ivanov, B. A.</p> <p>2001-12-01</p> <p>If Europa has an ice-covered, liquid water ocean, the thickness of the ice shell can be tested by analyzing the impact crater morphologies revealed by Galileo images. Several of Europa's 28 primary impact structures have morphologies typical of complex impact craters on other planetary bodies: terraced rims, flat floors, and central peaks [1]. To constrain the minimum ice thickness necessary to reproduce the observed complex crater morphologies, we have performed numerical simulations, using the modified SALE-2D code [2], of the formation of impact craters in ice layers with thicknesses ranging from 5 to 11 km overlying liquid water. The target ice has ice strength properties from published laboratory data [3] with a gradual decrease towards the base of the ice as the temperature approaches the melting point. The projectile parameters were chosen to produce a 10 km diameter crater in thick ice. We find that ice layers less than 7 km thick are not sufficient to prevent an outburst of liquid water during collapse of the transient cavity. At thicknesses of 8 and 9 km we observe a boundary regime: crater collapse produces a flat or upward-domed floor, however the water under the crater center does not reach the surface. In ice greater than 10 km thick a normal transient cavity forms. These results indicate that the ice thickness, at the times and locations of complex crater formation, must have been comparable to the diameters of the transient craters, the largest of which was between 11.9 and 18.5 km [1]. Implementation of additional mechanisms such as acoustic fluidization and creep may affect the shape of the final crater produced in our simulations: acoustic fluidization can produce central peak and peak-ring craters [4], and creep may result in a flattened crater. We are currently investigating the influence of these processes on the final crater morphology. References: [1] Moore et al., Icarus 151, 2001. [2] Ivanov et al., GSA Spec. Pap., in press. [3] Beeman et al., JGR 93, 1988. [4] Melosh and Ivanov, Ann. Rev. Earth Plan. Sci. 27, 1999.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA03841.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA03841.html"><span>Ismenia Fossae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-07-03</p> <p>This image from NASA Mars Odyssey shows a region of Mars northern hemisphere called Ismenia Fossae. Most of the landforms are the degraded remains of impact crater rim and ejecta from an unnamed crater 75 km diameter just north of this scene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013P%26SS...86...33M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013P%26SS...86...33M"><span>Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martellato, E.; Foing, B. H.; Benkhoff, J.</p> <p>2013-09-01</p> <p>Skylights are openings on subsurface voids as lava tubes and caves. Recently deep hole structures, possibly skylights, were discovered on lunar photo images by the JAXA SELenological and ENgineering Explorer (SELENE)-Kaguya mission, and successively confirmed by the NASA Lunar Reconnaissance Orbiter (LRO) mission. Vertical hole structures and possibly underlying subsurface voids have high potential as resources for scientific study, and future unmanned and manned activities on the Moon. One mechanism proposed for their formation is impact cratering. The collapse of craters is due to the back spallation phenomena on the rear surface of the lava tube roofs. Previous analysis in this topic was based on small-scales laboratory experiments. These have pointed out that (i) the target thickness-to-crater diameter ratio is 0.7, and (ii) the projectile diameter-to-target thickness ratio is 0.16, at the ballistic limit once extrapolated to planetary conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01399&hterms=many+miles+away+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmany%2Bmiles%2Baway%2Bmoon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01399&hterms=many+miles+away+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmany%2Bmiles%2Baway%2Bmoon"><span>Saturn's moon Tethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1981-01-01</p> <p>Voyager 2 obtained this view of Saturn's moon Tethys on Aug.25 from a distance of 540,000 kilometers (335,000 miles). It shows the numerous impact craters and fault valleys of a very ancient surface. Tethys itself is 1,090 km. (675 mi.) in diameter, and the great chasm seen at the top of this image extends 1,700 km. (1,050 mi.), halfway across the satellite. The largest impact crater visible here is 90 km. (55 mi.) in diameter. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo"><span>Venus - Impact Crater 'Jeanne</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016195&hterms=gravity+anomaly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Banomaly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016195&hterms=gravity+anomaly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgravity%2Banomaly"><span>Modelling the gravity and magnetic field anomalies of the Chicxulub crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.</p> <p>1993-01-01</p> <p>The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037266','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037266"><span>Geology of the Selk crater region on Titan from Cassini VIMS observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Barnes, J.W.; Jaumann, R.; Le Mouélic, Stéphane; Sotin, Christophe; Stephan, K.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.</p> <p>2010-01-01</p> <p>Observations of Titan obtained by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) have revealed Selk crater, a geologically young, bright-rimmed, impact crater located ???800. km north-northwest of the Huygens landing site. The crater rim-crest diameter is ???90. km; its floor diameter is ???60. km. A central pit/peak, 20-30. km in diameter, is seen; the ratio of the size of this feature to the crater diameter is consistent with similarly sized craters on Ganymede and Callisto, all of which are dome craters. The VIMS data, unfortunately, are not of sufficient resolution to detect such a dome. The inner rim of Selk crater is fluted, probably by eolian erosion, while the outer flank and presumed ejecta blanket appear dissected by drainages (particularly to the east), likely the result of fluvial erosion. Terracing is observed on the northern and western walls of Selk crater within a 10-15. km wide terrace zone identified in VIMS data; the terrace zone is bright in SAR data, consistent with it being a rough surface. The terrace zone is slightly wider than those observed on Ganymede and Callisto and may reflect differences in thermal structure and/or composition of the lithosphere. The polygonal appearance of the crater likely results from two preexisting planes of weakness (oriented at azimuths of 21?? and 122?? east of north). A unit of generally bright terrain that exhibits similar infrared-color variation and contrast to Selk crater extends east-southeast from the crater several hundred kilometers. We informally refer to this terrain as the Selk "bench." Both Selk and the bench are surrounded by the infrared-dark Belet dune field. Hypotheses for the genesis of the optically bright terrain of the bench include: wind shadowing in the lee of Selk crater preventing the encroachment of dunes, impact-induced cryovolcanism, flow of a fluidized-ejecta blanket (similar to the bright crater outflows observed on Venus), and erosion of a streamlined upland formed in the lee of Selk crater by fluid flow. Vestigial circular outlines in this feature just east of Selk's ejecta blanket suggest that this might be a remnant of an ancient, cratered crust. Evidently the southern margin of the feature has sufficient relief to prevent the encroachment of dunes from the Belet dune field. We conclude that this feature either represents a relatively high-viscosity, fluidized-ejecta flow (a class intermediate to ejecta blankets and long venusian-style ejecta flows) or a streamlined upland remnant that formed downstream from the crater by erosive fluid flow from the west-northwest. ?? 2010 Elsevier Inc.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015292&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015292&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, T. J.; Pieri, D. C.</p> <p>1985-01-01</p> <p>Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00479.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00479.html"><span>Venus - Complex Crater Dickinson in NE Atalanta Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-26</p> <p>This Magellan image is centered at 74.6 degrees north latitude and 177.3 east longitude, in the northeastern Atalanta Region of Venus. The image is approximately 185 kilometers (115 miles) wide at the base and shows Dickinson, an impact crater 69 kilometers (43 miles) in diameter. The crater is complex, characterized by a partial central ring and a floor flooded by radar-dark and radar-bright materials. Hummocky, rough-textured ejecta extend all around the crater, except to the west. The lack of ejecta to the west may indicate that the impactor that produced the crater was an oblique impact from the west. Extensive radar-bright flows that emanate from the crater's eastern walls may represent large volumes of impact melt, or they may be the result of volcanic material released from the subsurface during the cratering event. http://photojournal.jpl.nasa.gov/catalog/PIA00479</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..104S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..104S"><span>Ceres and the terrestrial planets impact cratering record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strom, R. G.; Marchi, S.; Malhotra, R.</p> <p>2018-03-01</p> <p>Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12328.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12328.html"><span>Crater with Exposed Layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-17</p> <p>On Earth, geologists can dig holes and pull up core samples to find out what lies beneath the surface. On Mars, geologists cannot dig holes very easily themselves, but a process has been occurring for billions of years that has been digging holes for them: impact cratering. Impact craters form when an asteroid, meteoroid, or comet crashes into a planet's surface, causing an explosion. The energy of the explosion, and the resulting size of the impact crater, depends on the size and density of the impactor, as well as the properties of the surface it hits. In general, the larger and denser the impactor, the larger the crater it will form. The impact crater in this image is a little less than 3 kilometers in diameter. The impact revealed layers when it excavated the Martian surface. Layers can form in a variety of different ways. Multiple lava flows in one area can form stacked sequences, as can deposits from rivers or lakes. Understanding the geology around impact craters and searching for mineralogical data within their layers can help scientists on Earth better understand what the walls of impact craters on Mars expose. http://photojournal.jpl.nasa.gov/catalog/PIA12328</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..3523206K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..3523206K"><span>Ring-mold craters in lineated valley fill and lobate debris aprons on Mars: Evidence for subsurface glacial ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kress, Ailish M.; Head, James W.</p> <p>2008-12-01</p> <p>Ring-mold craters (RMCs), concentric crater forms shaped like a truncated torus and named for their similarity to the cooking implement, are abundant in lobate debris aprons (LDA) and lineated valley fill (LVF) in the northern mid-latitudes on Mars, but are not seen in surrounding terrain. LDA and LVF have been interpreted to form by flow of debris, but uncertainty remains concerning the mechanism of flow, with hypotheses ranging from pore-ice-assisted creep of talus to debris-covered glaciers. RMCs average less than a few hundred meters in diameter and occur in association with normal bowl-shaped impact craters whose average diameters are commonly less than RMCs. On the basis of their morphologic similarities to laboratory impact craters formed in ice and the physics of impact cratering into layered material, we interpret the unusual morphology of RMCs to be the result of impact into a relatively pure ice substrate below a thin regolith, with strength-contrast properties, spallation, viscous flow and sublimation being factors in the development of the ring-mold shape. Associated smaller bowl-shaped craters are interpreted to have formed within a layer of regolith-like sublimation till overlying the ice substrate. Estimates of crater depths of excavation between populations of bowl-shaped and ring-mold craters suggest that the debris layer is relatively thin. These results support the hypothesis that LDA and LVF formed as debris-covered glaciers and predict that many hundreds of meters of ice remain today in LDA and LVF deposits, beneath a veneer of sublimation till. RMCs can be used in other parts of Mars to predict and assess the presence of ancient ice-related deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002bss..confP...1R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002bss..confP...1R"><span>A search for Potential Impact Sites in Southern Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rocca, M. C. L.</p> <p></p> <p>The Southern part of Argentina is composed of five Provinces; Tierra del Fuego, Santa Cruz, Chubut, Rio Negro and Neuquen. A search for potential impact sites was performed by the author through the examination of 76 color LANDSAT satellite images ( 1:250,000 - resolution = 250 meters ) at the Instituto Geografico Militar ( IGM ) of Buenos Aires city. When a potential candidate was found a more detailed study of the site was done. If available the radar X-SAR satellite images of the Deutsche Forschungsanstalt fur Luft-und Raumfahrt, (DLR), Berlin, Germany , were also examined. The final step was to perform a review of the available published geologic information of each site at the Servicio Geologico y Minero Argentino ( SEGEMAR ), ( =Geological Survey of Argentina ), in Buenos Aires. The resulting catalogue contains information about sites where possible simple crater or complex impact structures could be present. Each case demands future detailed and `in situ' research by an impact cratering specialist. --Tierra del Fuego: TF1 ) Ushuaia 5569-II, No 218. Cerro Taarsh, Estancia San Justo. Possible complex structure. Semi-circular area of concentric low ridges. Estimated diameter : 12 km. Probably very eroded. --Santa Cruz: SC1 ) Gobernador Gregores 4969-I, No 127. Estancia La Aragonesa Possible eroded complex structure. Circular area of low ridges, estimated diameter: 10 km.. Bull's eye like morphology. SC2 ) Gobernador Gregores 4969-I, No 127. Gran Altiplanicie Central. Possible simple crater in basalts. Diameter: 1 km.. SC3 ) Tres Lagos 4972-IV, No 106. Meseta del Bagual Chico. Possible perfectly circular simple crater in basalts. Diameter: 1.0 km.. SC4 )Paso Rio Bote 5172-II, No 20. Rio Pelque, Ruta Provincial No 5. A circular bowl-shaped structure is present on fluvial deposits of pleistocenic age. Diameter: 3.5 km.. SC5 ) Caleta Olivia 4769-II, No 28. North of Cerro Doce Grande. Possible complex structure of concentric circular rings of ridges. SC6 ) Caleta Olivia 4769-II, No 28. NW shore of Laguna Sirven. Possible simple crater of 2.5 km. Most probably, the circular crater is a basaltic caldera of upper Miocene's age. SC7 ) Destacamento La Maria 4769-II, No 188. Estancia Los Mellizos, Ruta Provincial No 39. Possible eroded and covered complex structure. In this site there is a semi-circular feature of ridges and low hills. Diameter: 15 km. Topographic map shows the same pattern. The DLR's X-SAR images show a clear semi-circular feature of ridges and hills in this site. SC8 ) Hipolito Irigoyen 4772-IV, No 116. Meseta del Lago Buenos Aires. Possible perfectly circular simple crater of 1 Km. Neuquen: N1 ) Picun Leufu 3969-III No 14. Meseta de la Barda Negra. Nice perfectly circular possible simple crater in black Miocene's ( 14-10 Ma ) basaltic plateau. Diameter: 1.5 km.. Possible raised rim. Fresh aspect. No visible lava flows .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007MSAIS..11..124M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007MSAIS..11..124M"><span>Analysis of impact craters on Mercury's surface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martellato, E.; Cremonese, G.; Marzari, F.; Massironi, M.; Capria, M. T.</p> <p></p> <p>The formation of a crater is a complex process, which can be analyzed with numerical simulations and/or observational methods. This work reports a preliminary analysis of some craters on Mercury, based on the Mariner 10 images. The physical and dynamical properties of the projectile may not derive from the knowledge of the crater alone, since the size of an impact crater depends on many parameters. We have calculated the diameter of the projectile using the scaling law of Schmidt and Housen (\\citep{SandM87}). It is performed for different projectile compositions and impact velocities, assuming an anorthositic composition of the surface. The melt volume production at the initial phases of the crater formation is also calculated by the experimental law proposed by O'Keefe and Ahrens (\\citep{OA82}), giving the ratio between melt and projectile mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e025350.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e025350.html"><span>Earth Observations taken by Expedition 38 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-01-02</p> <p>ISS038-E-025350 (2 Jan. 2014) --- One of the Expedition 38 crew members aboard the Earth-orbiting International Space Station recorded this image which features the Manicouagan Crater and reservoir located primarily in Manicouagan Regional County Municipality in the Cote-Nord region of Quebec, Canada. Scientists believe the crater was caused by the impact of a 5 kilometer (3 mile) diameter asteroid about 215.5 million years ago (Triassic Period). The crater is a multiple-ring structure about 100 kilometers (60 miles) across, with its 70 kilometer (40 mile) diameter inner ring as its most prominent feature; it contains a 70 kilometer (40 mile) diameter annular lake, the Manicouagan Reservoir, surrounding an inner island plateau, Rene-Levasseur Island. Because it is so unique and easily recognizable from the sky and space, the crater has been the subject of hundreds of images from astronauts for 45-plus years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190499','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190499"><span>Viscous relaxation of Ganymede's impact craters: Constraints on heat flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-01-01</p> <p>Measurement of crater depths in Ganymede’s dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite’s history. For craters with diameter ≥ 10 km, heat fluxes of 40–50 mW m-2−2"> can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived “heat pulses” with magnitudes of ∼100 mW m-2−2"> and timescales of 10–100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2−2"> are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede’s middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede’s tectonic deformation and its crater relaxation. Future observations should permit more robust determination of the relative timing of the heating event that caused viscous relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..296..275B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..296..275B"><span>Viscous relaxation of Ganymede's impact craters: Constraints on heat flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, Michael T.; Singer, Kelsi N.; McKinnon, William B.; Schenk, Paul M.</p> <p>2017-11-01</p> <p>Measurement of crater depths in Ganymede's dark terrain have revealed substantial numbers of unusually shallow craters indicative of viscous relaxation [see companion paper: Singer, K.N., Schenk, P. M., Bland, M.T., McKinnon, W.B., (2017). Relaxed impact craters on Ganymede: Regional variations and high heat flow. Icarus, submitted]. These viscously relaxed craters provide insight into the thermal history of the dark terrain: the rate of relaxation depends on the size of the crater and the thermal structure of the lithosphere. Here we use finite element simulations of crater relaxation to constrain the heat flux within the dark terrain when relaxation occurred. We show that the degree of viscous relaxation observed cannot be achieved through radiogenic heating alone, even if all of the relaxed craters are ancient and experienced the high radiogenic fluxes present early in the satellite's history. For craters with diameter ≥ 10 km, heat fluxes of 40-50 mW m-2 can reproduce the observed crater depths, but only if the fluxes are sustained for ∼1 Gyr. These craters can also be explained by shorter-lived "heat pulses" with magnitudes of ∼100 mW m-2 and timescales of 10-100 Myr. At small crater diameters (4 km) the observed shallow depths are difficult to achieve even when heat fluxes as high as 150 mW m-2 are sustained for 1 Gyr. The extreme thermal conditions required to viscously relax small craters may indicate that mechanisms other than viscous relaxation, such as topographic degradation, are also in play at small crater diameters. The timing of the relaxation event(s) is poorly constrained due to the sparsity of adequate topographic information, though it likely occurred in Ganymede's middle history (neither recently, nor shortly after satellite formation). The consistency between the timing and magnitude of the heat fluxes derived here and those inferred from other tectonic features suggests that a single event caused both Ganymede's tectonic deformation and its crater relaxation. Future observations should permit more robust determination of the relative timing of the heating event that caused viscous relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998P%26SS...46..323G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998P%26SS...46..323G"><span>The group of Macha craters in western Yakutia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, E. P.; Gurova, E. P.</p> <p>1998-02-01</p> <p>The group of Macha impact craters in western Yakutia is represented by five crateriform structures from 60 to 300 m in diameter. The craters were formed in sandy strata of the Quaternary period and in underlying sedimentary rocks of Late Proterozoic ages. Shock metamorphic effects including planar features in quartz were established in the rocks from the craters. The age of the craters is 7315 ± 80 yr. The nature of the projectiles is not totally clear, although they might be iron meteoritic.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048874&hterms=joseph+campbell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoseph%2Bcampbell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048874&hterms=joseph+campbell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoseph%2Bcampbell"><span>Impact craters on Venus - Initial analysis from Magellan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, Roger J.; Arvidson, Raymond E.; Boyce, Joseph M.; Campbell, Donald B.; Guest, John E.</p> <p>1991-01-01</p> <p>The general features of impact craters are described emphasizing two aspects: the effect of the atmosphere on crater and ejecta morphology and the implications of the distribution and appearance of the craters for the volcanic and tectonic resurfacing history of Venus. Magellan radar images reveal 135 craters about 15 km in diameter containing central peaks, multiple central peaks, and peak rings. Craters smaller than 15 km exhibit multiple floors or appear in clusters. Surface flows of material initially entrained in the atmosphere are characterized. Zones of low radar albedo originated from deformation of the surface by the shock or pressure wave associated with the incoming meteoroid surround many craters. A spectrum of surface ages on Venus ranging from 0 to 800 million years indicates that Venus must be a geologically active planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027368&hterms=attention+size&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bsize','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027368&hterms=attention+size&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bsize"><span>Size-velocity distribution of large ejecta fragments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vickery, A. M.</p> <p>1986-01-01</p> <p>The characteristics of three primary extraterrestrial craters and the associated craters were examined to generate a size-velocity distribution for large ejecta fragments. The lunar craters Copernicus and Aristillus and the Martian crater Dv on Olympus Mons were used. Attention was focused on the radial distances between the primary and secondary crater centers and the diameters of the secondaries. The primary craters selected are all relatively young, which avoided contamination of the data from secondaries from other primaries. Attempts were made to account for the speed of the hypervelocity impacts and the elemental compositions of the impactors. An apparent velocity cutoff of about 1 km/sec was observed for the secondaries, which implies that no meteoroid impacts can accelerate ejecta to escape velocities from the moon or Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..288...69H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..288...69H"><span>Spatial distribution of impact craters on Deimos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirata, Naoyuki</p> <p>2017-05-01</p> <p>Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910016752&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910016752&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow"><span>Martian impact crater ejecta morphologies and their potential as indicators of subsurface volatile distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1991-01-01</p> <p>Many martian impact craters ejecta morphologies suggestive of fluidization during ejecta emplacement. Impact into subsurface volatile reserviors (i.e., water, ice, CO2, etc.) is the mechanism favored by many scientists, although acceptance of this mechanism is not unanimous. In recent years, a number of studies were undertaken to better understand possible relationships between ejecta morphology and latitude, longitude, crater diameter, and terrain. These results suggest that subsurface volatiles do influence the formation of specific ejecta morphologies and may provide clues to the vertical and horizontal distribution of volatiles in more localized regions of Mars. The location of these volatile reservoirs will be important to humans exploring and settling Mars in the future. Qualitative descriptions of ejecta morphology and quantitative analyses of ejecta sinuosity and ejecta lobe areal extent from the basis of the studies. Ejecta morphology studies indicate that morphology is correlated with crater diameter and latitude, and, using depth-diameter relationships, these correlations strongly suggest that changes in morphology are related to transition among subsurface layers with varying amounts of volatiles. Ejecta sinuosity studies reveal correlations between degree of sinuosity (lobateness) and crater morphology, diameter, latitude, and terrain. Lobateness, together with variations in areal extent of the lobate ejecta blanket with morphology and latitude, probably depends most directly on the ejecta emplacement process. The physical parameters measured here can be compared with those predicted by existing ejecta emplacement models. Some of these parameters are best reproduced by models requiring incorporation of volatiles within the ejecta. However, inconsistencies between other parameters and the models indicate that more detailed modeling is necessary before the location of volatile reservoirs can be confidently predicted based on ejecta morphology studies alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000956','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000956"><span>Melt production in large-scale impact events: Implications and observations at terrestrial craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grieve, Richard A. F.; Cintala, Mark J.</p> <p>1992-01-01</p> <p>The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810041820&hterms=evolution+rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Devolution%2Brock','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810041820&hterms=evolution+rock&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Devolution%2Brock"><span>Infrared and radar signatures of lunar craters - Implications about crater evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, T. W.; Cutts, J. A.; Shorthill, R. W.; Zisk, S. H.</p> <p>1980-01-01</p> <p>Geological models accounting for the strongly crater size-dependent IR and radar signatures of lunar crater floors are examined. The simplest model involves the formation and subsequent 'gardening' of an impact melt layer on the crater floor, but while adequate in accounting for the gradual fading of IR temperatures and echo strengths in craters larger than 30 km in diameter, it is inadequate for smaller ones. It is concluded that quantitative models of the evolution of rock populations in regoliths and of the interaction of microwaves with regoliths are needed in order to understand crater evolutionary processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180811','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180811"><span>Impact Craters on Titan? Cassini RADAR View</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles</p> <p>2005-01-01</p> <p>Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065784&hterms=migration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmigration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065784&hterms=migration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmigration"><span>Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.</p> <p>2004-01-01</p> <p>Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032716"><span>Degradation of Victoria crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Wilson, S.A.; Cohen, B. A.; Golombek, M.P.; Geissler, P.E.; Sullivan, R.J.; Kirk, R.L.; Parker, T.J.</p> <p>2008-01-01</p> <p>The ???750 m diameter and ???75 m deep Victoria crater in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ???5 m raised rim consisting of 1-2 m of uplifted rocks overlain by ???3 m of ejecta at the rim crest. The rim is 120-220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500-750 m across indicates that the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by ???150 m and infilled by ???50 m of sediments. Eolian processes are responsible for most crater modification, but lesser mass wasting or gully activity contributions cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for ???50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is ???20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when ???1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped <10-20 cm of darker, regional basaltic sands. Greater relief along the rim enabled meters of erosion. Comparison between Victoria and regional craters leads to definition of a crater degradation sequence dominated by eolian erosion and infilling over time. Copyright 2008 by the American Geophysical Union.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050176420','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050176420"><span>Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, P. C.; Robinson, M. S.</p> <p>2005-01-01</p> <p>Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730007914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730007914"><span>An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Puthoff, R. L.</p> <p>1972-01-01</p> <p>A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030067009&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030067009&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES"><span>Numerical Simulations of Silverpit Crater Collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.</p> <p>2003-01-01</p> <p>The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the crater and compressional features on the East side. The crater also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015P%26SS..117...45I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015P%26SS..117...45I"><span>Landing site selection for Luna-Glob mission in crater Boguslawsky</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, M. A.; Hiesinger, H.; Abdrakhimov, A. M.; Basilevsky, A. T.; Head, J. W.; Pasckert, J.-H.; Bauch, K.; van der Bogert, C. H.; Gläser, P.; Kohanov, A.</p> <p>2015-11-01</p> <p>Boguslawsky crater (72.9°S, 43.3°E, ~100 km in diameter) is a primary target for the Luna-Glob mission. The crater has a morphologically smooth (at the resolution of WAC images), flat, and horizontal floor, which is about 55-60 km in diameter. Two ellipses were selected as specific candidate landing areas on the floor: the western ellipse is centered at 72.9°S, 41.3°E and the eastern ellipse is centered at 73.9°S, 43.9°E. Both ellipses represent areas from which Earth is visible during the entire year of 2016 and lack permanently shadowed areas. Boguslawsky crater is located on or near the rim of the South Pole-Aitken basin, which provides the unique possibility to sample some of the most ancient rocks on the Moon that probably pre-date the SPA impact event. The low depth/diameter ratio of Boguslawsky suggests that the crater has been partly filled after its formation. Although volcanic flooding of the crater cannot be ruled out, the more likely process of filling of Boguslawsky is the emplacement of ejecta from nearby and remote large craters/basins. Three morphologically distinctive units are the most abundant within the selected landing ellipses: rolling plains (rpc), flat plains (fp), and ejecta from crater Boguslawsky-D (ejf), which occurs on the eastern wall of Boguslawsky. The possible contribution of materials from unknown sources makes the flat and rolling plains less desirable targets for landing. In contrast, ejecta from Boguslawsky-D represents local materials re-distributed by the Boguslawsky-D impact from the wall onto the floor of Boguslawsky. Thus, this unit, which constitutes about 50% of the eastern landing ellipse, represents a target of clearer provenance and a higher scientific priority.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000951','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000951"><span>The Zhamanshin impact feature: A new class of complex crater?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Schnetzler, C. C.</p> <p>1992-01-01</p> <p>The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014824','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014824"><span>Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.</p> <p>1987-01-01</p> <p>Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly 40 km at ???30 s and began to decay at velocities of 500 m/s to develop large-tsunami conditions. After ???30 s, strong gravitational rebound drove both craters toward broad flat-floored shapes. At 120 s, transient crater diameters were ???80 km (continental) and ???105 km (oceanic) and transient depths were ???27 km; crater floors consisting of melted and fragmented hot rock were rebounding rapidly upward. By 60 s, the continental crater had ejected ???2 ?? 1014 t, about twice the mass ejected from the oceanic crater. By 120 s, ???70,000 km3 (continental) and ???90,000 km3 (oceanic) target material were excavated (no mantle) and massive ejecta blankets were formed around the craters. We estimate that in excess of ???70% of the ejecta would finally lie within ???3 crater diameters of the impact, and the remaining ejecta (???1013 t), including the vaporized asteroid, would be ejected into the atmosphere to altitudes as high as the ionosphere. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to contribute substantial material to the atmosphere. ?? 1987.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820048255&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dclay%2Bviscosity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820048255&hterms=clay+viscosity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dclay%2Bviscosity"><span>Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fink, J. H.; Greeley, R.; Gault, D. E.</p> <p>1982-01-01</p> <p>Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P51B2582K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P51B2582K"><span>The Effects of Terrain Properties on Determining Crater Model Ages of Lunar Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, M. R.; Marchi, S.</p> <p>2017-12-01</p> <p>Analyzing crater size-frequency distributions (SFDs) and using them to determine model ages of surfaces is an important technique for understanding the Moon's geologic history and evolution. Small craters with diameters (D) < 1 km are frequently used, especially given the very high resolution imaging now available from Lunar Reconnaissance Orbiter Narrow and Wide Angle Cameras (LROC-NAC/WAC) and the Selene Terrain Camera. However, for these diameters, final crater sizes and shapes are affected by the properties of the terrains on which they are formed [1], which alters crater SFD shapes [2]. We use the Model Production Function (MPF; [2]), which includes terrain properties in computing crater production functions, to explore how incorporating terrain properties affects the estimation of crater model ages. First, crater SFDs are compiled utilizing LROC-WAC/NAC images to measure craters with diameters from 10 m up to 20 km (size of largest crater measured depends on the terrain). A nested technique is used to obtain this wide diameter range: D ≥ 0.5 km craters are measured in the largest area, D = 0.09-0.5 km craters are measured in a smaller area within the largest area, and D = 0.01-0.1 km craters are measured in the smallest area located in both of the larger areas. Then, we quantitatively fit the crater SFD with distinct MPFs that use broadly different terrain properties. Terrain properties are varied through coarsely altering the parameters in the crater scaling law [1] that represent material type (consolidated, unconsolidated, porous), material tensile strength, and material density (for further details see [2]). We also discuss the effect of changing terrain properties with depth (i.e., layering). Finally, fits are used to compute the D = 1 km crater model ages for the terrains. We discuss the new constraints on how terrain properties affect crater model ages from our analyses of a variety of lunar terrains from highlands to mare and impact melt to continuous ejecta deposits. References: [1] Holsapple, K. A & Housen, K. R., Icarus 187, 345-356, 2007. [2] Marchi, S., et al., AJ 137, 4936-4948, 2009.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920004446','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920004446"><span>LDEF post-retrieval evaluation of exobiology interests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bunch, T. E.; Radicatldibrozolo, F.; Fitzgerald, Ray</p> <p>1991-01-01</p> <p>Cursory examination of the Long Duration Exposure Facility (LDEF) shows the existence of thousands of impact craters of which less than 1/3 exceed 0.3 mm in diameter; the largest crater is 5.5 mm. Few craters show oblique impact morphology and, surprisingly, only a low number of craters have recognizable impact debris. Study of this debris could be of interest to exobiology in terms of C content and carbonaceous materials. All craters greater that 0.3 mm have been imaged and recorded into a data base by the preliminary examination team. Various portions of the LDEF surfaces are contaminated by outgassed materials from experimenters trays, in addition to the LDEF autocontamination and impact with orbital debris not of extraterrestrial origin. Because interplanetary dust particles (IDP's) nominally impacted the LDEF at velocities greater than 3 km/s, the potential for intact survival of carbonaceous compounds is mostly unknown for hypervelocity impacts. Calculations show that for solid phthalic acid (a test impactor), molecular dissociation would not necessarily occur below 3 km/s, if all of the impact energy was directed at breaking molecular bonds, which is not the case. Hypervelocity impact experiments (LDEF analogs) were performed using the Ames Vertical Gun Facility. Grains of phthalic acid and the Murchison meteorite (grain diameter = 0.2 for both) were fired into an Al plate at 2.1 and 4.1 km/s respectively. The results of the study are presented, and it is concluded that meaningful biogenic elemental and compound information can be obtained from IDP impacts on the LDEF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001715"><span>Impact cratering calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.; Okeefe, J. D.; Smither, C.; Takata, T.</p> <p>1991-01-01</p> <p>In the course of carrying out finite difference calculations, it was discovered that for large craters, a previously unrecognized type of crater (diameter) growth occurred which was called lip wave propagation. This type of growth is illustrated for an impact of a 1000 km (2a) silicate bolide at 12 km/sec (U) onto a silicate half-space at earth gravity (1 g). The von Misses crustal strength is 2.4 kbar. The motion at the crater lip associated with this wave type phenomena is up, outward, and then down, similar to the particle motion of a surface wave. It is shown that the crater diameter has grown d/a of approximately 25 to d/a of approximately 4 via lip propagation from Ut/a = 5.56 to 17.0 during the time when rebound occurs. A new code is being used to study partitioning of energy and momentum and cratering efficiency with self gravity for finite-sized objects rather than the previously discussed planetary half-space problems. These are important and fundamental subjects which can be addressed with smoothed particle hydrodynamic (SPH) codes. The SPH method was used to model various problems in astrophysics and planetary physics. The initial work demonstrates that the energy budget for normal and oblique impacts are distinctly different than earlier calculations for silicate projectile impact on a silicate half space. Motivated by the first striking radar images of Venus obtained by Magellan, the effect of the atmosphere on impact cratering was studied. In order the further quantify the processes of meteor break-up and trajectory scattering upon break-up, the reentry physics of meteors striking Venus' atmosphere versus that of the Earth were studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646831"><span>Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Neumann, Gregory A.; Zuber, Maria T.; Wieczorek, Mark A.; Head, James W.; Baker, David M. H.; Solomon, Sean C.; Smith, David E.; Lemoine, Frank G.; Mazarico, Erwan; Sabaka, Terence J.; Goossens, Sander J.; Melosh, H. Jay; Phillips, Roger J.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Sori, Michael M.; Soderblom, Jason M.; Miljković, Katarina; Andrews-Hanna, Jeffrey C.; Nimmo, Francis; Kiefer, Walter S.</p> <p>2015-01-01</p> <p>Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population. PMID:26601317</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26601317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26601317"><span>Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neumann, Gregory A; Zuber, Maria T; Wieczorek, Mark A; Head, James W; Baker, David M H; Solomon, Sean C; Smith, David E; Lemoine, Frank G; Mazarico, Erwan; Sabaka, Terence J; Goossens, Sander J; Melosh, H Jay; Phillips, Roger J; Asmar, Sami W; Konopliv, Alexander S; Williams, James G; Sori, Michael M; Soderblom, Jason M; Miljković, Katarina; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Kiefer, Walter S</p> <p>2015-10-01</p> <p>Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001Icar..149...37H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001Icar..149...37H"><span>Martian Cratering 7: The Role of Impact Gardening</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, William K.; Anguita, Jorge; de la Casa, Miguel A.; Berman, Daniel C.; Ryan, Eileen V.</p> <p>2001-01-01</p> <p>Viking-era researchers concluded that impact craters of diameter D<50 m were absent on Mars, and thus impact gardening was considered negligible in establishing decameter-scale surface properties. This paper documents martian crater populations down to diameter D˜11 m and probably less on Mars, requiring a certain degree of impact gardening. Applying lunar data, we calculate cumulative gardening depth as a function of total cratering. Stratigraphic units exposed since Noachian times would have experienced tens to hundreds of meters of gardening. Early Amazonian/late Hesperian sites, such as the first three landing sites, experienced cumulative gardening on the order of 3-14 m, a conclusion that may conflict with some landing site interpretations. Martian surfaces with less than a percent or so of lunar mare crater densities have negligible impact gardening because of a probable cutoff of hypervelocity impact cratering below D˜1 m, due to Mars' atmosphere. Unlike lunar regolith, martian regolith has been affected, and fines removed, by many processes. Deflation may have been a factor in leaving widespread boulder fields and associated dune fields, observed by the first three landers. Ancient regolith provided a porous medium for water storage, subsurface transport, and massive permafrost formation. Older regolith was probably cemented by evaporites and permafrost, may contain interbedded sediments and lavas, and may have been brecciated by later impacts. Growing evidence suggests recent water mobility, and the existence of duricrust at Viking and Pathfinder sites demonstrates the cementing process. These results affect lander/rover searches for intact ancient deposits. The upper tens of meters of exposed Noachian units cannot survive today in a pristine state. Intact Noachian deposits might best be found in cliffside strata, or in recently exhumed regions. The hematite-rich areas found in Terra Meridiani by the Mars Global Surveyor are probably examples of the latter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00472.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00472.html"><span>Venus - Impact Crater Jeanne</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-20</p> <p>This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21915.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21915.html"><span>Kokopelli Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This image obtained by NASA's Dawn spacecraft shows a field of small craters next to Kokopelli Crater, seen at bottom right in this image, on dwarf planet Ceres. The small craters overlay a smooth, wavy material that represents ejecta from nearby Dantu Crater. The small craters were formed by blocks ejected in the Dantu impact event, and likely from the Kokopelli impact as well. Kokopelli is named after the fertility deity who presides over agriculture in the tradition of the Pueblo people from the southwestern United States. The crater measures 21 miles (34 kilometers) in diameter. Dawn took this image during its first extended mission on August 11, 2016, from its low-altitude mapping orbit, at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 20 degrees north latitude, 123 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21915</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013673','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013673"><span>Martian impact craters: Continuing analysis of lobate ejecta sinuosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1990-01-01</p> <p>The lobate ejecta morphology surrounding most fresh Martian impact craters can be quantitatively analyzed to determine variations in ejecta sinuosity with diameter, latitude, longitude, and terrain. The results of such studies provide another clue to the question of how these morphologies formed: are they the results of vaporization of subsurface volatiles or caused by ejecta entrainment in atmospheric gases. Kargel provided a simple expression to determine the degree of non-circularity of an ejecta blanket. This measure of sinuosity, called 'lobateness', is given by the ratio of the ejecta perimeter to the perimeter of a circle with the same area as that of the ejecta. The Kargel study of 538 rampart craters in selected areas of Mars led to the suggestion that lobateness increased with increasing diameter, decreased at higher latitude, and showed no dependence on elevation or geologic unit. Major problems with the Kargel analysis are the limited size and distribution of the data set and the lack of discrimination among the different types of lobate ejecta morphologies. Bridges and Barlow undertook a new lobateness study of 1582 single lobe (SL) and 251 double lobe (DL) craters. The results are summarized. These results agree with the finding of Kargel that lobateness increases with increasing diameter, but found no indication of a latitude dependence for SL craters. The Bridges and Barlow study has now been extended to multiple lobe (ML) craters. Three hundred and eighty ML craters located across the entire Martian surface were studied. ML craters provide more complications to lobateness studies than do SL and DL craters - in particular, the ejecta lobes surrounding the crater are often incomplete. Since the lobateness formula compares the perimeter of the ejecta lobe to that of a circle, the analysis was restricted only to complete lobes. The lobes are defined sequentially starting with the outermost lobe and moving inward.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012230','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012230"><span>Small impact craters in the lunar regolith - Their morphologies, relative ages, and rates of formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, H.J.; Boyce, J.M.; Hahn, D.A.</p> <p>1980-01-01</p> <p>Apparently, there are two types of size-frequency distributions of small lunar craters (???1-100 m across): (1) crater production distributions for which the cumulative frequency of craters is an inverse function of diameter to power near 2.8, and (2) steady-state distributions for which the cumulative frequency of craters is inversely proportional to the square of their diameters. According to theory, cumulative frequencies of craters in each morphologic category within the steady-state should also be an inverse function of the square of their diameters. Some data on frequency distribution of craters by morphologic types are approximately consistent with theory, whereas other data are inconsistent with theory. A flux of crater producing objects can be inferred from size-frequency distributions of small craters on the flanks and ejecta of craters of known age. Crater frequency distributions and data on the craters Tycho, North Ray, Cone, and South Ray, when compared with the flux of objects measured by the Apollo Passive Seismometer, suggest that the flux of objects has been relatively constant over the last 100 m.y. (within 1/3 to 3 times of the flux estimated for Tycho). Steady-state frequency distributions for craters in several morphologic categories formed the basis for estimating the relative ages of craters and surfaces in a system used during the Apollo landing site mapping program of the U.S. Geological Survey. The relative ages in this system are converted to model absolute ages that have a rather broad range of values. The range of values of the absolute ages are between about 1/3 to 3 times the assigned model absolute age. ?? 1980 D. Reidel Publishing Co.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4851312J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4851312J"><span>Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.</p> <p>2016-10-01</p> <p>Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability of body and surface wave phases created by different sizes and types of impacts all over Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013641&hterms=coulomb+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoulomb%2Blaw','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013641&hterms=coulomb+law&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dcoulomb%2Blaw"><span>The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.</p> <p>2012-01-01</p> <p>Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRE..122.2685S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRE..122.2685S"><span>Impact Crater Morphology and the Structure of Europa's Ice Shell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silber, Elizabeth A.; Johnson, Brandon C.</p> <p>2017-12-01</p> <p>We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..246..165B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..246..165B"><span>Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierhaus, Edward B.; Dones, Luke</p> <p>2015-01-01</p> <p>We examine the flux of bodies striking Pluto and Charon, and the nature of the crater populations that will form as a result of these impacts. Assuming impact speeds of 2 km/s and an impact angle of 45 ° , a 1 km impactor will form a 4.2 km diameter transient crater on Pluto, and a ∼5.0 km crater on Charon, as compared with 8-13 km for several mid-sized saturnian satellites and 8-10 km for the icy Galilean satellites. We predict that secondary craters will be present in the crater size-frequency distribution (SFD) for Pluto and Charon at sizes less than a few km, at spatial densities comparable to the range seen on the mid-sized saturnian satellites and distinctly less than seen on the icy Galilean satellites. Pluto should have more secondary craters formed per primary impact than Charon, so if neither crater population on these bodies is in saturation, Charon's crater SFD should be the "cleanest" reflection of the primary, impacting SFD. Ejecta from Pluto and Charon escape more efficiently from the combined system, relative to ejecta from a satellite in orbit around a giant planet, due to the absence of a large central body. We estimate that Kuiper Belt Objects (KBOs) with diameters larger than 1 km should strike Pluto and Charon on (nominal) timescales of 2.2 and 10 million years, respectively. These estimates are uncertain because the numbers of small KBOs are poorly constrained. Our estimated rates are smaller than earlier predictions of impact rates, primarily because we assume a KBO size distribution that is shallower overall than previous studies did. The impact rate, combined with the observed crater SFD, will enable estimates of relative and absolute age of different geologic units, should different geologic units exist. We explore two scenarios in regards to the crater population: (1) a shallow (differential power-law index of p ∼ 2 , i.e. for dN / dD ∝D-p), based on the crater SFD observed on young terrains of Galilean and saturnian satellites; and (2) a slightly steeper SFD (p ∼ 3), based on extrapolations of larger (∼100 km) KBOs from ground-based surveys. If the observed primary crater SFD, at diameters less than a few tens of km, is consistent with a differential power-law index p ∼ 2 , that will confirm that KBOs are deficient in small bodies relative to extrapolations from known ∼100 km KBOs, consistent with expectations derived from examination of crater populations in young terrains on the Galilean and saturnian satellites. If the crater SFD has p ⩾ 3 over all observed sizes, then that power-law index applies across the KBO population over at least two orders of magnitude (1 km to100 km objects), and there must be some process that erodes the small KBOs when they migrate to the Jupiter-Saturn region of the Solar System. Whatever SFD is observed, the primary crater population on Pluto and Charon will provide the strongest constraint on the SFD of small KBOs, which will be beyond the observational reach of ground- and space-based telescopes for years to come. This, in turn, will provide a fundamental constraint for further understanding of the evolution of this distant and compelling population of bodies beyond Neptune.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IAUGA..2256419M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IAUGA..2256419M"><span>Experimental study on impact-induced seismic wave propagating through quartz sand simulating asteroid regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao</p> <p>2015-08-01</p> <p>Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance and R is the crater radius, irrespective of the impact velocities: gmax = 160(x/R)-2.98.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970022114','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970022114"><span>New Constraints on the Slate Islands Impact Structure, Ontario, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpton, Virgil L.; Dressler, Burkhard O.; Herrick, Robert R.; Schnieders, Bernie; Scott, John</p> <p>1996-01-01</p> <p>The Slate Islands in northern Lake Superior represent the eroded remains of a complex impact crater, originally approximately 32 km in diameter. New field studies there reveal allogenic crater fill deposits along the eastern and northern portions of the islands indicating that this 500-800 Ma impact structure is not as heavily eroded as previously thought. Near the crater center, on the western side or Patterson Island, massive blocks of target rocks, enclosed within a matrix of fine-grained polymict breccia, record the extensive deformation associated with the central uplift. Shatter cones are a common structural feature on the islands and range from less than 3 cm to over 10 m in length. Although shatter cones are powerful tools for recognizing and analyzing eroded impact craters, their origin remains poorly constrained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036979','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036979"><span>Discovery of columnar jointing on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.</p> <p>2009-01-01</p> <p>We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia-Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://geology.geoscienceworld.org/content/37/2/171','USGSPUBS'); return false;" href="http://geology.geoscienceworld.org/content/37/2/171"><span>The discovery of columnar jointing on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; ,</p> <p>2009-01-01</p> <p>We report on the discovery of columnar jointing in Marte Valles, Mars. These columnar lavas were discovered in the wall of a pristine, 16-km-diameter impact crater and exhibit the features of terrestrial columnar basalts. There are discontinuous outcrops along the entire crater wall, suggesting that the columnar rocks covered a surface area of at least 200 km2, assuming that the rocks obliterated by the impact event were similarly jointed. We also see columns in the walls of other fresh craters in the nearby volcanic plains of Elysium Planitia–Amazonis Planitia, which include Marte Vallis, and in a well-preserved crater in northeast Hellas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1297B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1297B"><span>Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.</p> <p>2018-02-01</p> <p>Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020209','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020209"><span>Impact cratering through geologic time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shoemaker, E.M.; Shoemaker, C.S.</p> <p>1998-01-01</p> <p>New data on lunar craters and recent discoveries about craters on Earth permit a reassessment of the bombardment history of Earth over the last 3.2 billion years. The combined lunar and terrestrial crater records suggest that the long-term average rate of production of craters larger than 20 km in diameter has increased, perhaps by as much as 60%, in the last 100 to 200 million years. Production of craters larger than 70 km in diameter may have increased, in the same time interval, by a factor of five or more over the average for the preceding three billion years. A large increase in the flux of long-period comets appears to be the most likely explanation for such a long-term increase in the cratering rate. Two large craters, in particular, appear to be associated with a comet shower that occurred about 35.5 million years ago. The infall of cosmic dust, as traced by 3He in deep sea sediments, and the ages of large craters, impact glass horizons, and other stratigraphic markers of large impacts seem to be approximately correlated with the estimated times of passage of the Sun through the galactic plane, at least for the last 65 million years. Those are predicted times for an increased near-Earth flux of comets from the Oort Cloud induced by the combined effects of galactic tidal perturbations and encounters of the Sun with passing stars. Long-term changes in the average comet flux may be related to changes in the amplitude of the z-motion of the Sun perpendicular to the galactic plane or to stripping of the outer Oort cloud by encounters with large passing stars, followed by restoration from the inner Oort cloud reservoir.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..148...12K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..148...12K"><span>Characteristics of small young lunar impact craters focusing on current production and degradation on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kereszturi, Akos; Steinmann, Vilmos</p> <p>2017-11-01</p> <p>Analysing the size-frequency distribution of very small lunar craters (sized below 100 m including ones below 10 m) using LROC images, spatial density and related age estimations were calculated for mare and terra terrains. Altogether 1.55 km2 area was surveyed composed of 0.1-0.2 km2 units, counting 2784 craters. The maximal areal density was present at the 4-8 m diameter range at every analysed terrain suggesting the bombardment is areally relatively homogeneous. Analysing the similarities and differences between various areas, the mare terrains look about two times older than the terra terrains using <100 m diameter craters. The calculated ages ranged between 13 and 20 Ma for mare, 4-6 Ma for terra terrains. Substantial fluctuation (min: 936 craters/km2, max: 2495 craters/km2) was observed without obvious source of nearby secondaries or fresh ejecta blanket produced fresh crater. Randomness analysis and visual inspection also suggested no secondary craters or ejecta blanket from fresh impact could contribute substantially in the observed heterogeneity of the areal distribution of small craters - thus distant secondaries or even other, poorly known resurfacing processes should be considered in the future. The difference between the terra/mare ages might come only partly from the easier identification of small craters on smooth mare terrains, as the differences were observed for larger (30-60 m diameter) craters too. Difference in the target hardness could more contribute in this effect. It was possible to separate two groups of small craters based on their appearance: a rimmed thus less eroded, and a rimless thus more eroded one. As the separate usage of different morphology groups of craters for age estimation at the same area is not justifiable, this was used only for comparison. The SFD curves of these two groups showed characteristic differences: the steepness of the fresh craters' SFD curves are similar to each other and were larger than the isochrones. The eroded craters' SFD curves also resemble to each other, which are less steep than the isochrones. These observations confirm the expectation that as the time passes by, rims are erased and depressions became shallower, presenting such observations for the first time in this small crater size range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015008"><span>N(50) Crater Retention Ages for an Expanded Inventory of Lunar Basins: Evidence for an Early Heavy Bombardment and a Late Heavy Bombardment?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frey, Herbert; Burgess, Emily</p> <p>2012-01-01</p> <p>LOLA topography and LOLA-derived crustal thickness data provide evidence for a population of impact basins on the Moon that is likely a factor 2 larger than the classical lists based on photogeology. Frey (2012) determined N(50) crater retention ages (CRAs) for 83 candidate basins > 300 km in diameter by counting LOLA-identified craters superimposed over the whole area of the basins. For some basins identified in topography or model crustal thickness it is not possible to unambiguously identify the crater rim as is traditionally done. Also, Quasi-Circular Depressions (QCDs) > 50 km in diameter are recognizable in the mare-filled centers of many basins. Even though these are not apparent in image data, they likely represent buried impact craters superimposed on the basin floor prior to mare infilling and so should be counted in determining the age of the basin. Including these as well as the entire area of the basins improves the statistics, though the error bars are still large when using only craters > 50 km in diameter. The distribution of N(50) CRAs had two distinct peaks which did not depend on whether the basins were named (based on photogeology) or recognized first in topography or crustal thickness data. It also did not depend on basin diameters (both larger and smaller basins made up both peaks) and both peaks persisted even when weaker candidates were excluded. Burgess (2012, unpublished data) redid the counts for 85 basins but improved on the earlier effort by adjusting the counting area where basins overlap. The two peak distribution of N(50) ages was confirmed, with a younger peak at N(50) 40-50 and an older peak at N(50) 80-90 (craters > 50 km diameter per million square km). We suggest this could represent two distinct populations of impactors on the Moon: one producing an Early Heavy Bombardment (EHB) that predates Nectaris and the second responsible for the more widely recognized Late Heavy Bombardment (LHB).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840006745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840006745"><span>Impact and explosion crater ejecta, fragment size, and velocity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okeefe, J. D.; Ahrens, T. J.</p> <p>1983-01-01</p> <p>A model was developed for the mass distribution of fragments that are ejected at a given velocity for impact and explosion craters. The model is semi-empirical in nature and is derived from (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter and an assumption on the functional form for the distribution of fragements ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity are nearly monodisperse, e.g., 20% of the mass of the ejecta at a given velocity contain fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. Using this model, the largest fragment that can be ejected from asteroids, the moon, Mars, and Earth is calculated as a function of crater diameter. In addition, the internal energy of ejecta versus ejecta velocity is found. The internal energy of fragments having velocities exceeding the escape velocity of the moon will exceed the energy required for incipient melting for solid silicates and thus, constrains the maximum ejected solid fragment size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DPS....33.3609D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DPS....33.3609D"><span>Impact-Induced Liquid-Water Environments on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daubar, I. J.; Kring, D. A.</p> <p>2001-11-01</p> <p>The origin and evolution of life on Earth were likely associated with hydrothermal systems (e.g., Corliss et al. 1980, Baross and Hoffman 1985, Holm and Andersson 1995, Shock 1996). Although research has been concentrated on volcanic hydrothermal systems on Earth (e.g., Norton 1984, Farmer 2000) and on Mars (e.g., Allen et al. 1982, Gulick and Baker 1989, Farmer 1996), we suggest that large impacts can, and did, drive similar systems. Impacts are a significant source of thermal energy: melt rock produced in impacts, and hot rock uplifted from depth both provide sources of heat to drive hydrothermal systems. On Mars, these heat sources could provide enough energy to melt an underlying layer of permafrost and perhaps even initiate long-lived crater lakes (Newsom et al. 1996, Cabrol et al. 1999). In terms of the production of heat and the habitable volume incorporated in hydrothermal systems, impacts might have been at least as important as volcanic systems early in planetary development. The oldest (Noachian) surfaces on Mars support this hypothesis: they show very little evidence of volcanism (Carr 1996) and are instead dominated by impact cratering processes. Kring and Cohen (2001, submitted) estimate that more than 6400 craters with diameters greater than 20 km were produced on Mars 3.9 Ga. We present estimates of the lifetimes of hydrothermal systems in Martian craters with sizes ranging from 20 km to 200 km in diameter. Lifetimes calculated assuming convective cooling are 105 years for 100-km craters and several 106 years for 180-km craters (Daubar and Kring 2001, cf. Thorsos et al. 2001). These results may be influenced by an insulating breccia layer, shock heating, and convection of water; these factors are currently being evaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P44B..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P44B..04G"><span>Evolution of Lunar Crater Ejecta Through Time: Influence of Crater Size on the Record of Dynamic Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghent, R. R.; Tai Udovicic, C.; Mazrouei, S.; Bottke, W. F., Jr.</p> <p>2017-12-01</p> <p>The bombardment history of the Moon holds the key to understanding important aspects of the evolution of the Solar System at 1AU. It informs our thinking about the rates and chronology of events on other planetary bodies and the evolution of the asteroid belt. In previous work, we established a quantitative relationship between the ages of lunar craters and the rockiness of their ejecta. That result was based on the idea that crater-forming impacts eject rocks from beneath the regolith, instantaneously emplacing a deposit with characteristic initial physical properties, such as rock abundance. The ejecta rocks are then gradually removed and / or covered by a combination of mechanical breakdown via micrometeorite bombardment, emplacement of regolith fines due to nearby impacts, and possibly rupture due to thermal stresses. We found that ejecta rocks, as detected by the Lunar Reconnaissance Orbiter Diviner thermal radiometer disappear on a timescale of 1 Gyr, eventually becoming undetectable by the Diviner instrument against the ambient background rock abundance of the regolith.The "index" craters we used to establish the rock abundance—age relationship are all larger than 15 km (our smallest index crater is Byrgius A, at 18.7 km), and therefore above the transition diameter between simple and complex craters (15-20 km). Here, we extend our analysis to include craters smaller than the transition diameter. It is not obvious a priori that the initial ejecta properties of simple and complex craters should be identical, and therefore, that the same metrics of crater age can be applied to both populations. We explore this issue using LRO Diviner rock abundance and a high-resolution optical maturity dataset derived from Kaguya multiband imager VIS/NIR data to identify young craters to 5 km diameter. We examine the statistical properties of this population relative to that of the NEO population, and interpret the results in the context of our recently documented evidence for changes in the flux of impactors that create larger craters. Finally, we detail implications of our result for understanding the dynamic history of the lunar surface and the evolution of the asteroid belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065760&hterms=diamond+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddiamond%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065760&hterms=diamond+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Ddiamond%2Bstructure"><span>Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.</p> <p>2004-01-01</p> <p>The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002839','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002839"><span>Opportunity In Situ Geologic Context of Aqueous Alteration Along Offsets in the Rim of Endeavour Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crumpler, L. S.; Arvidson, R. E.; Farrand, W. H.; Golombek, M. P.; Grant, J. A.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T. J.</p> <p>2015-01-01</p> <p>Mars Exploration Rover Opportunity traversed 7.9 km and 27 degrees of arc along the rim of the 22 km-diameter Noachian "Endeavour" impact crater since its arrival 1200 sols ago. Areas of aqueous and low-grade thermal alteration, and changes in structure, attitude, and macroscopic texture of outcrops are notable across several discontinuities between segments of the crater rim. The discontinuities and other post-impact joints and fractures coincide with sites of apparent deep fluid circulation processes responsible for thermal and chemical alteration of local outcrops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060024707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060024707"><span>Bombardment History of the Moon: What We Think We Know and What We Don't Know</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald</p> <p>2006-01-01</p> <p>The absolute impace history of the moon and inner solar system can in principle be derived from the statistics of radiometric ages of shock-heated planetary samples (lunar or meteoritic), from the formation ages of specific impact craters on the moon or Earth; and from agedating samples representing geologic surface units on the moon (or Mars) for which crater densities have been determined. This impact history, however, is still poorly defined. The heavily cratered surface of the moon is a testimony to the importance of impact events in the evolution of terrestrial planets and satellites. Lunar impacts range in scale from an early intense flux of large objects that defined the surface geology of the moon, down to recent, smaller impacts that continually generate and rework the lunar regolith. Densities of larger craters on lunar surface units of dated age define a projectile flux over time that serves as the basis for estimating surface ages on other solid bodies, particularly Mars. The lunar cratering history may address aspects of Earth s evolution, such as the possible role of early intense impacts on the atmosphere and early life and possible periodicity in large impact events in the more recent past. But, much about the lunar impact history remains unknown.. On Earth approximately 172 impact craters up to 300 km in diameter and up to 2 Gyr in age are recognized. Although these data suggest greater relative numbers of younger craters, possibly suggesting a recent increase in projectile flux, both the diameters and especially the ages of most terrestrial crates are so poorly known that the differential terrestrial impact flux over time is uncertain. For the moon, densities of craters on some mare surfaces and crater ejecta deposits, for which we have measured or estimated formation ages, suggest an approximately constant lunar impact rate of larger projectiles over the past 3.5 Gyr. However, the data are cumulative in nature and limited. Questions exist as to how accurately dated samples correlate with surfaces having measured crater densities. Studies of ages of many tiny impact-melt beads from Apollos 12 and 14 soils show a decrease in the number of beads with age from 4 Gyr ago to 0.4 Gyr ago, followed by a significant increase in beads with age <0.4 Gyr (2). These authors concluded that the projectile flux had decreased over time, followed by a significant flux increase more recently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4640402G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4640402G"><span>Impact and Cratering History of the Pluto System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.</p> <p>2014-11-01</p> <p>The observational opportunity of the New Horizons spacecraft fly-through of the Pluto system in July 2015 requires a current understanding of the Kuiper belt dynamical sub-populations to accurately interpret the cratering history of the surfaces of Pluto and its satellites. We use an Opik-style collision probability code to compute impact rates and impact velocity distributions onto Pluto and its binary companion Charon from the Canada-France Ecliptic Plane Survey (CFEPS) model of classical and resonant Kuiper belt populations (Petit et al., 2011; Gladman et al., 2012) and the scattering model of Kaib et al. (2011) calibrated to Shankman et al. (2013). Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with diameter d>100 km) connects to smaller objects, we compute cratering rates using three simple impactor size distribution extrapolations (a single power-law, a power-law with a knee, and a power-law with a divot) as well as the "curvy" impactor size distributions from Minton et al. (2012) and Schlichting et al. (2013). Current size distribution uncertainties cause absolute ages computed for Pluto surfaces to be entirely dependent on the extrapolation to small sizes and thus uncertain to a factor of approximately 6. We illustrate the relative importance of each Kuiper belt sub-population to Pluto's cratering rate, both now and integrated into the past, and provide crater retention ages for several cases. We find there is only a small chance a crater with diameter D>200 km has been created on Pluto in the past 4 Gyr. The 2015 New Horizons fly-through coupled with telescope surveys that cover objects with diameters d=10-100 km should eventually drop current crater retention age uncertainties on Pluto to <30%. In addition, we compute the "disruption timescale" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..289..157S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..289..157S"><span>Detection and characterization of buried lunar craters with GRAIL data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.</p> <p>2017-06-01</p> <p>We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016309&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016309&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing"><span>The missing impact craters on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Speidel, D. H.</p> <p>1993-01-01</p> <p>The size-frequency pattern of the 842 impact craters on Venus measured to date can be well described (across four standard deviation units) as a single log normal distribution with a mean crater diameter of 14.5 km. This result was predicted in 1991 on examination of the initial Magellan analysis. If this observed distribution is close to the real distribution, the 'missing' 90 percent of the small craters and the 'anomalous' lack of surface splotches may thus be neither missing nor anomalous. I think that the missing craters and missing splotches can be satisfactorily explained by accepting that the observed distribution approximates the real one, that it is not craters that are missing but the impactors. What you see is what you got. The implication that Venus crossing impactors would have the same type of log normal distribution is consistent with recently described distribution for terrestrial craters and Earth crossing asteroids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.303..357B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.303..357B"><span>Application of X-ray computed microtomography to soil craters formed by raindrop splash</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beczek, Michał; Ryżak, Magdalena; Lamorski, Krzysztof; Sochan, Agata; Mazur, Rafał; Bieganowski, Andrzej</p> <p>2018-02-01</p> <p>The creation of craters on the soil surface is part of splash erosion. Due to the small size of these craters, they are difficult to study. The main aim of this paper was to test X-ray computed microtomography to investigate craters formed by raindrop impacts. Measurements were made on soil samples moistened to three different levels corresponding with soil water potentials of 0.1, 3.16 and 16 kPa. Using images obtained by X-ray microtomography, geometric parameters of the craters were recorded and analysed. X-ray computed microtomography proved to be a useful and efficient tool for the investigation of craters formed on the soil surface after the impact of water drops. The parameters of the craters changed with the energy of the water drops and were dependent on the initial moisture content of the soil. Crater depth is more dependent on the increased energy of the water drop than crater diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23C2741W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23C2741W"><span>Using THEMIS thermal infrared observations of rays from Corinto crater to study secondary crater formation on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, J. P.</p> <p>2017-12-01</p> <p>Corinto crater (16.95°N, 141.72°E), a 13.8 km diameter crater in Elysium Planitia, displays dramatic rays in Mars Odyssey's Thermal Emission Imaging System (THEMIS) nighttime infrared imagery where high concentrations of secondary craters have altered the thermophysical properties of the martian surface. The THEMIS observations provide a record of secondary crater formation in the region and ray segments are identified up to 2000 km ( 145 crater radii) distance [1][2]. Secondary craters are likely to have the largest influence on model surfaces ages between 0.1 to a few Myr as there is the potential for one or two sizeable craters to project secondary craters onto those surfaces and thus alter the crater size-frequency distribution (CSFD) with an instantaneous spike in crater production [3]. Corinto crater is estimated to be less than a few Ma [4] placing the formation of its secondaries within this formative time period. Secondary craters superposed on relatively young impact craters that predate Corinto provide observations of the secondary crater populations. Crater counts at 520 and 660 km distance from Corinto (38 and 48 crater radii respectively), were conducted. Higher crater densities were observed within ray segments, however secondary craters still influenced the CSFD where ray segments were not apparent, resulting in steepening in the CSFD. Randomness analysis confirms an increase in clustering as diameters decrease suggesting an increasing fraction of secondary craters at smaller diameters, both within the ray and outside. The counts demonstrate that even at nearly 50 crater radii, Corinto secondaries still influence the observed CSFD, even outside of any obvious rays. Crater populations used to derive model ages on many geologically young regions on Mars, such as glacial and periglacial landforms related to obliquity excursions that occur on 106 - 107 yr cycles, should be used cautiously and analyzed for any evidence, either morphologic or statistical, for secondary cratering that may potentially influence the derived age. [1] Williams et al. (2017) MAPS, in press. [2] Bloom et al. (2014) Mars 8th, #1289. [3] Hartmann and Daubar (2017), MAPS, 52, 493- 510. [4] Hundal et al. (2017), LPSC, #1726.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..309...61S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..309...61S"><span>Investigation of the depth and diameter relationship of subkilometer-diameter lunar craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Shujuan; Yue, Zongyu; Di, Kaichang</p> <p>2018-07-01</p> <p>The depth and diameter relationship is one of the most important characteristics of craters; however, previous studies have focused mostly on large-diameter craters because of the limitations of image resolution. Recently, very high resolution images have been obtained that make it possible to expand this field of study to craters with diameters of < 1 km. Using images with resolution of up to 0.5 m, acquired by the Lunar Reconnaissance Orbiter, we investigated the depth and diameter relationship of fresh craters with subkilometer diameters. We selected craters from lunar maria and highlands, and we made precise measurements of their diameters and depths. The results show that the d/D ratio of small craters in the lunar maria and highlands, which varies from ∼0.2 to ∼0.1, is generally shallower than that of larger craters. We propose that the reason for the difference is because of the low strength of the lunar surface material. The fitted power law parameters of lunar mare and highland craters were found to be different, and that might be explained by terrain-related differences.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000978','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000978"><span>What can we learn about impact mechanics from large craters on Venus?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckinnon, William B.; Alexopoulos, J. S.</p> <p>1992-01-01</p> <p>More than 50 unequivocal peak-ring craters and multiringed impact basins have been identified on Venus from Earth-based Arecibo, Venera 15/16, and Magellan radar images. These ringed craters are relatively pristine, and so serve as an important new dataset that will further understanding of the structural and rheological properties of the venusian surface and of impact mechanics in general. They are also the most direct analogues for craters formed on the Earth in Phanerozoic time. Finite-element simulations of basin collapse and ring formation were undertaken in collaboration with V. J. Hillgren (University of Arizona). These calculations used an axisymmetric version of the viscoelastic finite element code TECTON, modeled structures on the scale of Klenova or Meitner, and demonstrated two major points. First, viscous flow and ring formation are possible on the timescale of crater collapse for the sizes of multiringed basins seen on Venus and heat flows appropriate to the plant. Second, an elastic lithosphere overlying a Newtonian viscous asthenosphere results mainly in uplift beneath the crater. Inward asthenospheric flow mainly occurs at deeper levels. Lithospheric response is dominantly vertical and flexural. Tensional stress maxima occur and ring formation by normal faulting is predicted in some cases, but these predicted rings occur too far out to explain observed ring spacings on Venus (or on the Moon). Overall, these estimates and models suggest that multiringed basin formation is indeed possible at the scales observed on Venus. Furthermore, due to the strong inverse dependence of solid-state viscosity on stress, the absence of Cordilleran-style ring faulting in craters smaller than Meitner or Klenova makes sense. The apparent increase in viscosity of shock-fluidized rock with crater diameter, greater interior temperatures accessed by larger, deeper craters, and decreased non-Newtonian viscosity associated with larger craters may conspire to make the transition with diameter from peak-ring crater to Orientale-type multiringed basin rather abrupt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..111.2S08G"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70011077','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70011077"><span>Martian planetwide crater distributions: Implications for geologic history and surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Soderblom, L.A.; Condit, C.D.; West, R.A.; Herman, B.M.; Kreidler, T.J.</p> <p>1974-01-01</p> <p>Population-density maps of craters in three size ranges (0.6 to 1.2 km, 4 to 10 km, and >20 km in diameter) were compiled for most of Mars from Mariner 9 imagery. These data provide: historical records of the eolian processes (0.6 to 1.2 km craters); stratigraphic, relative, and absolute timescales (4 to 10 km craters); and a history of the early postaccretional evolution of the uplands (> 20 km craters). Based on the distribution of large craters (>20 km diameters), Mars is divisible into two general classes of terrain, densely cratered and very lightly cratered-a division remarkably like the uplands-maria dichotomy of the moon. It is probable that this bimodal character in the density distribution of large craters arose from an abrupt transition in the impact flux rate from an early intense period associated with the tailing off of accretion to an extended quiescent epoch, not from a void in geological activity during much of Mars' history. Radio-isotope studies of Apollo lunar samples show that this transition occurred on the moon in a short time. The intermediate-sized craters (4 to 10 km diameter) and the small-sized craters (0.6 to 1.2 km diameter) appear to be genetically related. The smaller ones are apparently secondary impact craters generated by the former. Most of the craters in the larger of these two size classes appear fresh and uneroded, although many are partly buried by dust mantles. Poleward of the 40?? parallels the small fresh craters are notably absent owing to these mantles. The density of small craters is highest in an irregular band centered at 20??S. This band coincides closely with (1) the zone of permanent low-albedo markings; (2) the "wind equator" (the latitude of zero net north or south transport at the surface); and (3) a band that includes a majority of the small dendritic channels. Situated in the southermost part of the equatorial unmantled terrain which extends from about 40??N to 40??S, this band is apparently devoid of even a thin mantle. Because this belt is also coincident with the latitutde of maximum solar insolation (periapsis occurs near summer solstice), we suggest that this band arises from the asymmetrical global wind patterns at the surface and that the band probably follows the latitude of maximum heating which migrates north and south from 25??N to 25??S within the unmantled terrain on a 50,000 year timescale. The population of intermediate-sized craters (4-10 km diameter) appears unaffected by the eolian mantles, at least within the ??45?? latitudes. Hence the local density of these craters is probably a valid indicator of the relative age of surfaces generated during the period since the uplands were intensely bombarded and eroded. It now appears that the impact fluxes at Mars and the moon have been roughly the same over the last 4 b.y. because the oldest postaccretional, mare-like surfaces on Mars and the moon display about the same crater density. If so, the nearness of Mars to the asteroid belt has not generated a flux 10 to 25 times greater than the lunar flux. Whereas the lunar maria show a variation of about a factor of three in crater density from the oldest to the youngest major units, analogous surfaces on Mars show a variation between 30 and 50. This implies that periods of active eolian erosion, tectonic evolution, volcanic eruption, and possibly fluvial modification have been scattered throughout Martian history since the formation and degradation of the martian uplands and not confined to small, ancient or recent, epochs. These processes are surely active on the planet today. ?? 1974.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830040099&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplastic%2Bimpacts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830040099&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dplastic%2Bimpacts"><span>Acoustic fluidization and the scale dependence of impact crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melosh, H. J.; Gaffney, E. S.</p> <p>1983-01-01</p> <p>A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510959P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510959P"><span>Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas</p> <p>2013-04-01</p> <p>Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity exponentially reduces crater volumes and cratering efficiency relative to non-porous rocks, and also yields less steep ejecta angles. Microstructural analysis of the subsurface shows a zone of pervasive grain crushing and pore space reduction. This is in good agreement with new mesoscale numerical models, which are able to quantify localized shock pressure behavior in the target's pore space. Planar shock recovery experiments confirm these local pressure excursions, based on microanalysis of shock metamorphic features in quartz. Saturation of porous target rocks with water counteracts many of the effects of porosity. Post-impact analysis of projectile remnants shows that during mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co. We plan to continue evaluating the experimental results in combination with numerical models. These models help to quantify and evaluate cratering processes, while experimental data serve as benchmarks to validate the improved numerical models, thus helping to "bridge the gap" between experiments and nature. The results confirm and expand current crater scaling laws, and make an application to craters on planetary surfaces possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065762&hterms=cryptography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcryptography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065762&hterms=cryptography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcryptography"><span>Flynn Creek Impact Structure: New Insights from Breccias, Melt Features, Shatter Cones, and Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Evenick, J. C.; Lee, P.; Deane, B.</p> <p>2004-01-01</p> <p>The Flynn Creek impact structure is located in Tennessee, USA (36 deg.17 min.N, 85 deg.40 min.W). The structure was first mapped as a crypto-volcanic by Wilson and Born in 1936 [1]. Although they did not properly identify the stratigraphy within the crater or the causal mechanism, they did correctly define the horizontal extent of the crater. More detailed surface and subsurface research by Roddy (1979) accurately described the crater as being an impact structure with a diameter of 3.8 km. It formed around 360 Ma, which corresponds to the interval between the deposition of the Nashville Group and the Chattanooga Shale. Although there is limited rock outcrop in the area, there are exposed surface faults, folds, and large outcrops of impact breccia within the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19673.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19673.html"><span>Spectral Signals Indicating Impact Glass on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-06-08</p> <p>Deposits of impact glass have been preserved in Martian craters, including Alga Crater, shown here. Detection of the impact glass by researchers at Brown University, Providence, Rhode Island, is based on data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter. In color coding based on analysis of CRISM spectra, green indicates the presence of glass. (Blues are pyroxene; reds are olivine.) Impact glass forms in the heat of a violent impact that excavates a crater. Impact glass found on Earth can preserve evidence about ancient life. A deposit of impact glass on Mars could be a good place to look for signs of past life on that planet. This view shows Alga Crater's central peak, which is about 3 miles (5 kilometers) wide within the 12-mile (19-kilometer) diameter of this southern-hemisphere crater. The information from CRISM is shown over a terrain model and image, based on observations by the High Resolution Imaging Science Experiment (HiRISE) camera. The vertical dimension is exaggerated by a factor of two. http://photojournal.jpl.nasa.gov/catalog/PIA19673</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSM.P41A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSM.P41A..03H"><span>The Vichada Impact Crater in Northwestern South America and its Potential for Economic Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, O.; von Frese, R. R.</p> <p>2008-05-01</p> <p>A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4o30`N, -69o15`W) in the Vichada Department, Colombia, South America. The inferred large impact crater is nearly one third the size of the Chicxulub crater. It must have formed recently, in the last 30 m.a. because it controls the partially eroded and jungle-covered path of the Vichada River. No antipodal relationship has been detected. Thick sedimentary cover, erosional processes and dense vegetation greatly limit direct geological testing of the inferred impact basin. However, EGM-96 gravity data together with ground gravity and magnetic profiles support the interpretation of the impact crater structure. The impact extensively thinned and disrupted the Precambrian cratonic crust and may be associated with mineral and hydrocarbon deposits. A combined EM and magnetic airborne program is being developed to resolve additional crustal properties of the inferred Vichada impact basin Keywords: Impact crater, economic deposits, free-air gravity anomalies</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.P34C..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.P34C..02P"><span>Methods of Estimating Initial Crater Depths on Icy Satellites using Stereo Topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Persaud, D. M.; Phillips, C. B.</p> <p>2014-12-01</p> <p>Stereo topography, combined with models of viscous relaxation of impact craters, allows for the study of the rheology and thermal history of icy satellites. An important step in calculating relaxation of craters is determining the initial depths of craters before viscous relaxation. Two methods for estimating initial crater depths on the icy satellites of Saturn have been previously discussed. White and Schenk (2013) present the craters of Iapetus as relatively unrelaxed in modeling the relaxation of craters of Rhea. Phillips et al. (2013) assume that Herschel crater on Saturn's satellite Mimas is unrelaxed in relaxation calculations and models of Rhea and Dione. In the second method, the depth of Herschel crater is scaled based on the different crater diameters and the difference in surface gravity on the large moons to predict the initial crater depths for Rhea and Dione. In the first method, since Iapetus is of similar size to Dione and Rhea, no gravity scaling is necessary; craters of similar size on Iapetus were chosen and their depths measured to determine the appropriate initial crater depths for Rhea. We test these methods by first extracting topographic profiles of impact craters on Iapetus from digital elevation models (DEMs) constructed from stereo images from the Cassini ISS instrument. We determined depths from these profiles and used them to calculate initial crater depths and relaxation percentages for Rhea and Dione craters using the methods described above. We first assumed that craters on Iapetus were relaxed, and compared the results to previously calculated relaxation percentages for Rhea and Dione relative to Herschel crater (with appropriate scaling for gravity and crater diameter). We then tested the assumption that craters on Iapetus were unrelaxed and used our new measurements of crater depth to determine relaxation percentages for Dione and Rhea. We will present results and conclusions from both methods and discuss their efficacy for determining initial crater depth. References: Phillips, C.B., et al. (2013). Lunar Planet Sci. XLIV, abstract 2766. White, O.L., and P.L. Schenk. Icarus 23, 699-709, 2013. This work was supported by the NASA Outer Planets Research Program grant NNX10AQ09G and by the NSF REU Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21244.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21244.html"><span>Dawn XMO2 Image 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-13</p> <p>This view from NASA's Dawn spacecraft shows part of the southwestern rim of Yalode Crater on Ceres. Yalode is one of the largest impact basins on Ceres, with a diameter of 160 miles (260 kilometers). The scene shows hummocky terrain where an impact formed a 14-mile (22-kilometer) wide crater with a central peak, seen at left. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. Dawn took this image on Oct. 22, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21244</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160002655','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160002655"><span>The Microstructure of Lunar Micrometeorite Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.</p> <p>2016-01-01</p> <p>The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-1990-A90-3006.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-1990-A90-3006.html"><span>ARC-1990-A90-3006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-08-24</p> <p>This image of the Venusian crater Golubkina, a 34-km (20.4 mi.) diameter impact crater located at about 60.5 degrees north latitude, 287.2 degrees east longitude, contains Magellan data mosaicked with a Soviet Venera 15/16 radar image of the sames feature. The Magellan part of the image (right) reveals details of the geology of the crater such as the central peak, the inner terraced walls, and the extremely smooth floor of the crater. The smoothness of the floor may be due to ponding of volcanic lava flows in the crater floor. The rough, blocky morphology of the crater ejecta and the sharp terraced crater wall suggest that this feature is relatively young.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996GeoRL..23.1565U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996GeoRL..23.1565U"><span>UNAM Scientific Drilling Program of Chicxulub Impact Structure-Evidence for a 300 kilometer crater diameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrutia-Fucugauchi, J.; Marin, L.; Trejo-Garcia, A.</p> <p></p> <p>As part of the UNAM drilling program at the Chicxulub structure, two 700 m deep continuously cored boreholes were completed between April and July, 1995. The Peto UNAM-6 and Tekax UNAM-7 drilling sites are ˜150 km and 125 km, respectively, SSE of Chicxulub Puerto, near the crater's center. Core samples from both sites show a sequence of post-crater carbonates on top of a thick impact breccia pile covering the disturbed Mesozoic platform rocks. At UNAM-7, two impact breccia units were encountered: (1) an upper breccia, mean magnetic susceptibility is high (˜55 × 10-6 SI units), indicating a large component of silicate basement has been incorporated into this breccia, and (2) an evaporite-rich, low susceptibility impact breccia similar in character to the evaporite-rich breccias observed at the PEMEX drill sites further out. The upper breccia was encountered at ˜226 m below the surface and is ˜125 m thick; the lower breccia is immediately subjacent and is >240 m thick. This two-breccia sequence is typical of the suevite-Bunte breccia sequence found within other well preserved impact craters. The suevitic upper unit is not present at UNAM-6. Instead, a >240 m thick evaporite-rich breccia unit, similar to the lower breccia at UNAM-7, was encountered at a depth of ˜280 m. The absence of an upper breccia equivalent at UNAM-6 suggests some portion of the breccia sequence has been removed by erosion. This is consistent with interpretations that place the high-standing crater rim at 130-150 km from the center. Consequently, the stratigraphic observations and magnetic susceptibiity records on the upper and lower breccias (depth and thickness) support a ˜300 km diameter crater model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720040039&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhistory%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720040039&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhistory%2Btheory"><span>Martian cratering. II - Asteroid impact history.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartmann, W. K.</p> <p>1971-01-01</p> <p>This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000980','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000980"><span>A history of the Lonar crater, India: An overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nayak, V. K.</p> <p>1992-01-01</p> <p>The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030018897&hterms=geology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgeology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030018897&hterms=geology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgeology"><span>Geology of Lofn Crater, Callisto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.</p> <p>2001-01-01</p> <p>Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31E..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31E..06C"><span>Impact Cratering Processes as Understood Through Martian and Terrestrial Analog Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Caudill, C. M.; Osinski, G. R.; Tornabene, L. L.</p> <p>2016-12-01</p> <p>Impact ejecta deposits allow an understanding of subsurface lithologies, volatile content, and other compositional and physical properties of a planetary crust, yet development and emplacement of these deposits on terrestrial bodies throughout the solar system is still widely debated. Relating relatively well-preserved Martian ejecta to terrestrial impact deposits is an area of active research. In this study, we report on the mapping and geologic interpretation of 150-km diameter Bakhuysen Crater, Mars, which is likely large enough to have produced a significant volume of melt, and has uniquely preserved ejecta deposits. Our mapping supports the current formation hypothesis for Martian crater-related pitted material, where pits are likened to collapsed degassing features identified at the Ries and Haughton terrestrial impact structures. As hot impact melt-bearing ejecta deposits are emplaced over volatile-saturated material during crater formation, a rapid degassing of the underlying layer results in lapilli-like fluid and gas flow pipes which may eventually lead to collapse features on the surface. At the Haughton impact structure, degassing pipes are related to crater fracture and fault systems; this is analogous to structure and collapse pits mapped in Bakhuysen Crater. Based on stratigraphic superposition, surface and flow texture, and morphological and thermophysical mapping of Bakhuysen, we interpret the top-most ejecta unit to be likely melt-bearing and analogous to terrestrial impact deposits (e.g., Ries suevites). Furthermore, we suggest that Chicxulub is an apt terrestrial comparison based on its final diameter and the evidence of a ballistically-emplaced and volatile-entrained initial ejecta. This is significant as Bakhuysen ejecta deposits may provide insight into larger impact structures where limited exposures make studies difficult. This supports previous work which suggests that given similarities in volatile content and subsurface stratigraphy, mechanisms of multi-unit ejecta emplacement extend to impact cratering processes on comparable rocky bodies. The widespread pitted material, ejecta rampart and lobe formations, and distal debris flows associated with Bakhuysen impactite emplacement further indicates a volatile-rich Martian crust during its formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss034e052297.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss034e052297.html"><span>Earth Observations taken by Expedition 34 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-02-21</p> <p>ISS034-E-056100 (21 Feb. 2013) --- One of the most recognizable natural features on Earth, when viewing from space, is the Manicouagan Crater, one of the oldest known impact craters on Earth. Photographed by one of the Expedition 34 crew members onboard the International Space Station, the crater is located primarily in Manicouagan Regional County Municipality in the Côte-Nord region of Québec, Canada, about 300 kilometers (190 miles) north of the city of Baie-Comeau. Manicouagan is one of the oldest large astroblemes still visible on the surface. The crater is a multiple-ring structure about 100 kilometers (60 miles) across, with its 70 kilometer (40 mile) diameter inner ring its most prominent feature; it contains a 70 kilometer (40 mile) diameter annular lake, the Manicouagan Reservoir, surrounding an inner island plateau.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002910','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002910"><span>Degradation of Endeavour Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.</p> <p>2015-01-01</p> <p>The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870004954&hterms=particle+box&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparticle%2Bbox','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870004954&hterms=particle+box&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dparticle%2Bbox"><span>A preliminary report on the study of the impact sites and particles of the solar maximum satellite thermal blanket</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zook, H. A.</p> <p>1985-01-01</p> <p>A preliminary study of the work on examination of the impact pits in, or penetrations through, the thermal blankets of the Solar Maximum Satellite is presented. The three largest pieces of the thermal blanket were optically scanned with a total surface area of about one half square meter. Over 1500 impact sites of all sizes, including 432 impacts larger than 40 microns in diameter, have been documented. Craters larger in diameter than about 100 microns found on the 75 micron thick Kapton first sheet of the main electronics box blanket are actually holes and constitute perforations through the blanket. A summary of the impact pit population that were found is given. The chemical study of these craters is only in the initial stages, with only about 250 chemical spectra of particles observed in or around impact pits or in the debris pattern being recorded.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920009568','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920009568"><span>Planetary cratering mechanics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okeefe, John D.; Ahrens, Thomas J.</p> <p>1992-01-01</p> <p>To obtain a quantitative understanding of the cratering process over a broad range of conditions, we have numerically computed the evolution of impact induced flow fields and calculated the time histories of the major measures of crater geometry (e.g., depth diameter, lip height ...) for variations in planetary gravity (0 to 10 exp 9 cm/sq seconds), material strength (0 to 140 kbar), thermodynamic properties, and impactor radius (0.05 to 5000 km). These results were fit into the framework of the scaling relations of Holsapple and Schmidt (1987). We describe the impact process in terms of four regimes: (1) penetration; (2) inertial; (3) terminal; and (4) relaxation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P42A..03R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P42A..03R"><span>LROC Advances in Lunar Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, M. S.</p> <p>2012-12-01</p> <p>Since entering orbit in 2009 the Lunar Reconnaissance Orbiter Camera (LROC) has acquired over 700,000 Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images of the Moon. This new image collection is fueling research into the origin and evolution of the Moon. NAC images revealed a volcanic complex 35 x 25 km (60N, 100E), between Compton and Belkovich craters (CB). The CB terrain sports volcanic domes and irregular depressed areas (caldera-like collapses). The volcanic complex corresponds to an area of high-silica content (Diviner) and high Th (Lunar Prospector). A low density of impact craters on the CB complex indicates a relatively young age. The LROC team mapped over 150 volcanic domes and 90 volcanic cones in the Marius Hills (MH), many of which were not previously identified. Morphology and compositional estimates (Diviner) indicate that MH domes are silica poor, and are products of low-effusion mare lavas. Impact melt deposits are observed with Copernican impact craters (>10 km) on exterior ejecta, the rim, inner wall, and crater floors. Preserved impact melt flow deposits are observed around small craters (25 km diam.), and estimated melt volumes exceed predictions. At these diameters the amount of melt predicted is small, and melt that is produced is expected to be ejected from the crater. However, we observe well-defined impact melt deposits on the floor of highland craters down to 200 m diameter. A globally distributed population of previously undetected contractional structures were discovered. Their crisp appearance and associated impact crater populations show that they are young landforms (<1 Ga). NAC images also revealed small extensional troughs. Crosscutting relations with small-diameter craters and depths as shallow as 1 m indicate ages <50 Ma. These features place bounds on the amount of global radial contraction and the level of compressional stress in the crust. WAC temporal coverage of the poles allowed quantification of highly illuminated regions, including one site that remains lit for 94% of a year (longest eclipse period of 43 hours). Targeted NAC images provide higher resolution characterization of key sites with permanent shadow and extended illumination. Repeat WAC coverage provides an unparalleled photometric dataset allowing spatially resolved solutions (currently 1 degree) to Hapke's photometric equation - data invaluable for photometric normalization and interpreting physical properties of the regolith. The WAC color also provides the means to solve for titanium, and distinguish subtle age differences within Copernican aged materials. The longevity of the LRO mission allows follow up NAC and WAC observations of previously known and newly discovered targets over a range of illumination and viewing geometries. Of particular merit is the acquisition of NAC stereo pairs and oblique sequences. With the extended SMD phase, the LROC team is working towards imaging the whole Moon with pixel scales of 50 to 200 cm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060135&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Bgeological','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060135&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Bgeological"><span>Impact cratering phenomenon for the Ries multiring structure based on constraints of geological, geophysical, and petrological studies and the nature of the impacting body</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chao, E. C. T.; Minkin, J. A.</p> <p>1977-01-01</p> <p>In the present paper, an attempt is made to delineate, on the basis of field and laboratory data, the phenomenon of formation of the Ries multiring basin - the best preserved very large terrestrial impact structure. The model proposed conforms to constraints imposed by geological, geophysical, and petrological studies and by the nature of the postulated impacting body. It is also based on the impact features of a stony meteorite measuring 3 km in diameter at an impact velocity of 15 km/sec. The schematic reconstruction shows that critical to the production of a shallow crater is shallow impact penetration (shallow depth of burst). This and the nonballistic ejection of excavated material appear to be genetically related, i.e., if extensive nonballistic transport is recognized, then the associated crater must be a shallow structure and vice versa. This also means the shallow configuration of a crater may not have anything to do with postcratering readjustment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012497','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012497"><span>Large Meteoroid Impact on the Moon on 17 March 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moser, Danielle E.; Suggs, Robert M.; Suggs, Ronnie J.</p> <p>2014-01-01</p> <p>Since early 2006, NASA's Marshall Space Flight Center has observed over 300 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of an 8-year routine observing campaign was observed in two 0.35 m telescopes outfitted with Watec 902H2 Ultimate monochrome CCD cameras recording interleaved 30 fps video. Standard CCD photometric techniques, described in [1], were applied to the video after saturation correction, yielding a peak R magnitude of 3.0 +/- 0.4 in a 1/30 second video exposure. This corresponds to a luminous energy of 7.1 × 10(exp 6) J. Geographic Information System (GIS) tools were used to georeference the lunar impact imagery and yielded a crater location at 20.60 +/- 0.17deg N, 23.92 +/- 0.30deg W. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact by comparing post-impact images from 28 July 2013 to pre-impact images on 12 Feb 2012. The images show fresh, bright ejecta around an 18 m diameter circular crater, with a 15 m inner diameter measured from the level of pre-existing terrain, at 20.7135deg N, 24.3302deg W. An asymmetrical ray pattern with both high and low reflectance ejecta zones extends 1-2 km beyond the crater, and a series of mostly low reflectance splotches can be seen within 30 km of the crater - likely due to secondary impacts [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of 5 fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Assuming a velocity-dependent luminous efficiency (ratio of luminous energy to kinetic energy) from [5] and an impact velocity of 25.6 km/s derived from fireball measurements, the impactor kinetic energy was 5.4 × 10(exp 9) J and the impactor mass was 16 kg. Assuming an impact angle of 56deg from horizontal (based on fireball orbit measurements), a regolith density of 1500 kg/m(exp 3), and impactor density between 1800 and 3000 kg/m(exp 3), the impact crater diameter was estimated to be 8-18 m at the pre-impact surface and 10-23 m rim-to-rim using the Holsapple [6] and Gault [7] models, a result consistent with the observed crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011P%26SS...59..111S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011P%26SS...59..111S"><span>MA130301GT catalogue of Martian impact craters and advanced evaluation of crater detection algorithms using diverse topography and image datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Lončarić, Sven; Pina, Pedro; Bandeira, Lourenço; Saraiva, José</p> <p>2011-01-01</p> <p>Recently, all the craters from the major currently available manually assembled catalogues have been merged into the catalogue with 57 633 known Martian impact craters (MA57633GT). In addition, the work on crater detection algorithm (CDA), developed to search for still uncatalogued impact craters using 1/128° MOLA data, resulted in MA115225GT. In parallel with this work another CDA has been developed which resulted in the Stepinski catalogue containing 75 919 craters (MA75919T). The new MA130301GT catalogue presented in this paper is the result of: (1) overall merger of MA115225GT and MA75919T; (2) 2042 additional craters found using Shen-Castan based CDA from the previous work and 1/128° MOLA data; and (3) 3129 additional craters found using CDA for optical images from the previous work and selected regions of 1/256° MDIM, 1/256° THEMIS-DIR, and 1/256° MOC datasets. All craters from MA130301GT are manually aligned with all used datasets. For all the craters that originate from the used catalogues (Barlow, Rodionova, Boyce, Kuzmin, Stepinski) we integrated all the attributes available in these catalogues. With such an approach MA130301GT provides everything that was included in these catalogues, plus: (1) the correlation between various morphological descriptors from used catalogues; (2) the correlation between manually assigned attributes and automated depth/diameter measurements from MA75919T and our CDA; (3) surface dating which has been improved in resolution globally; (4) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc.; and (5) positional accuracy of features in the used datasets according to the defined coordinate system referred to as MDIM 2.1, which incorporates 1232 globally distributed ground control points, while our catalogue contains 130 301 cross-references between each of the used datasets. Global completeness of MA130301GT is up to ˜ D≥2 km (it contains 85 783 such craters, while the smallest D is 0.924 km). This is a considerable improvement in comparison with the completeness of the Rodionova (˜10 km), Barlow (˜5 km) and Stepinski (˜3 km) catalogues. An accompanying result to the new catalogue is a contribution to the evaluation of CDAs - the following methods have been developed: (1) a new context-aware method for the advanced automated registration of craters with GT catalogues; (2) a new method for manual registration of newly found craters into GT catalogues; and (3) additional new accompanying methods for objective evaluation of CDAs using different datasets including optical images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27459197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27459197"><span>The missing large impact craters on Ceres.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marchi, S; Ermakov, A I; Raymond, C A; Fu, R R; O'Brien, D P; Bland, M T; Ammannito, E; De Sanctis, M C; Bowling, T; Schenk, P; Scully, J E C; Buczkowski, D L; Williams, D A; Hiesinger, H; Russell, C T</p> <p>2016-07-26</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10-15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6-7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100-150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70175237','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70175237"><span>The missing large impact craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Marchi, S.; Ermakov, A.; Raymond, C.A.; Fu, R.R.; O'Brien, D.P.; Bland, Michael T.; Ammannito, E.; De Sanctis, M.C.; Bowling, Tim; Schenk, P.; Scully, J.E.C.; Buczkowski, D.L.; Williams, D.A.; Hiesinger, H.; Russell, C.T.</p> <p>2016-01-01</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres’ surface appears devoid of impact craters >~280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..145...71L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..145...71L"><span>Shape of boulders ejected from small lunar impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yuan; Basilevsky, A. T.; Xie, Minggang; Ip, Wing-Huen</p> <p>2017-10-01</p> <p>The shape of ejecta boulders from 7 lunar impact craters <1 km in diameter of known absolute age was measured to explore whether it correlates with the crater age and the boulder size. The boulders were mapped and then measured by rectangular fitting and the shape was represented by the axial ratio or aspect ratio (A) of the rectangle. The main conclusions from the analysis of our measurement results are: 1) the percentages of the number of boulders of studied craters decrease with the increase of the axial ratio. Most (∼90%) of the boulders have the axial ratio in the range of 1-2; no boulder with axial ratio larger than 4 was found. 2) the axial ratios of mare ejecta boulders decrease with their exposure time, whereas that for highland ones show unchanged trend. This difference may be probably due to target properties. 3) The shape of ejecta boulders are influenced by mechanical strength of bedrocks and space erosion. 4) surface peak stresses caused by thermal fatigue maybe play a significant erosion role in the shape of boulders of various diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43D2913D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43D2913D"><span>Crater Morphology of Engineered and Natural Impactors into Planetary Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danner, M.; Winglee, R.; Koch, J.</p> <p>2017-12-01</p> <p>Crater morphology of engineered impactors, such as those proposed for the Europa Kinetic Ice Penetrator (EKIP) mission, varies drastically from that of natural impactors (i.e. Asteroids, meteoroids). Previous work of natural impact craters in ice have been conducted with the intent to bound the thickness of Europa's ice crust; this work focuses on the depth, size, and compressional effects caused by various impactor designs, and the possible effects to the Europan surface. The present work details results from nine projectiles that were dropped on the Taku Glacier, AK at an altitude of 775 meters above surface; three rocks to simulate natural impactors, and six iterations of engineered steel and aluminum penetrator projectiles. Density measurements were taken at various locations within the craters, as well as through a cross section of the crater. Due to altitude restrictions, projectiles remained below terminal velocity. The natural/rock impact craters displayed typical cratering characteristics such as shallow, half meter scale depth, and orthogonal compressional forcing. The engineered projectiles produced impact craters with depths averaging two meters, with crater widths matching the impactor diameters. Compressional waves from the engineered impactors propagated downwards, parallel to direction of impact. Engineered impactors create significantly less lateral fracturing than natural impactors. Due to the EKIP landing mechanism, sampling of pristine ice closer to the lander is possible than previously thought with classical impact theory. Future work is planned to penetrate older, multiyear ice with higher velocity impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..296G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..296G"><span>A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gou, Sheng; Yue, Zongyu; Di, Kaichang; Liu, Zhaoqin</p> <p>2018-03-01</p> <p>The orbital data products of Ceres, including global LAMO image mosaic and global HAMO DTM with a resolution of 35 m/pixel and 135 m/pixel respectively, are utilized in this research to create a global catalogue of impact craters with diameter ≥ 1 km, and their morphometric parameters are calculated. Statistics shows: (1) There are 29,219 craters in the catalogue, and the craters have a various morphologies, e.g., polygonal crater, floor fractured crater, complex crater with central peak, etc.; (2) The identifiable smallest crater size is extended to 1 km and the crater numbers have been updated when compared with the crater catalogue (D ≥ 20 km) released by the Dawn Science Team; (3) The d/D ratios for fresh simple craters, obviously degraded simple crater and polygonal simple crater are 0.11 ± 0.04, 0.05 ± 0.04 and 0.14 ± 0.02 respectively. (4) The d/D ratios for non-polygonal complex crater and polygonal complex crater are 0.08 ± 0.04 and 0.09 ± 0.03. The global crater catalogue created in this work can be further applied to many other scientific researches, such as comparing d/D with other bodies, inferring subsurface properties, determining surface age, and estimating average erosion rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014M%26PS...49.2175F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014M%26PS...49.2175F"><span>Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole</p> <p>2014-12-01</p> <p>Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030612','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030612"><span>Crater gradation in Gusev crater and Meridiani Planum, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.</p> <p>2006-01-01</p> <p>The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting"><span>Lunar and Venusian radar bright rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, T. W.; Saunders, R. S.; Weissman, D. E.</p> <p>1986-01-01</p> <p>Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00474&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DButterfly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00474&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DButterfly"><span>Venus - Impact Crater in Eastern Navka Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00462.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00462.html"><span>Venus - Multiple-Floored, Irregular Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-09-26</p> <p>NASA' sMagellan imaged this multiple-floored, irregular impact crater at latitude 16.4 degrees north, longitude 352.1 degrees east, during orbits 481 and 482 on 27 September 1990. This crater, about 9.2 kilometers in maximum diameter, was formed on what appears to be a slightly fractured, radar-dark (smooth) plain. The abundant, low viscosity flows associated with this cratering event have, however, filled local, fault-controlled troughs (called graben). These shallow graben are well portrayed on this Magellan image but would be unrecognizable but for their coincidental infilling by the radar-bright crater flows. This fortuitous enhancement by the crater flows of fault structures that are below the resolution of the Magellan synthetic aperture radar is providing the Magellan Science Team with valuable geologic information. The flow deposits from the craters are thought to consist primarily of shock melted rock and fragmented debris resulting from the nearly simultaneous impacts of two projectile fragments into the hot (800 degrees Fahrenheit) surface rocks of Venus. The presence of the various floors of this irregular crater is interpreted to be the result of crushing, fragmentation, and eventual aerodynamic dispersion of a single entry projectile during passage through the dense Venusian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671B&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671B&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671B</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2669&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2669&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2669</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2668&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2668&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2668</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., suit up before fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671A&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671A&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. A worker at Astrotech Space Operations in Titusville, Fla., begins fueling the Deep Impact spacecraft. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25340551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25340551"><span>First known terrestrial impact of a binary asteroid from a main belt breakup event.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay</p> <p>2014-10-23</p> <p>Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably 'rubble pile' asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997DPS....29.1403W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997DPS....29.1403W"><span>Ganymede Impact Crater Morphology as Revealed by Galileo</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weitz, C. M.; Head, J. W.; Pappalardo, R.; Chapman, C.; Greeley, R.; Helfenstein, P.; Neukum, G.; Galileo SSI Team</p> <p>1997-07-01</p> <p>We have used the Galileo G1, G2, G7, and G8 images to study the morpholo- gy and degradation of impact craters on Ganymede. Results from the G1 and G2 data showed three types of degradation states: pristine, partially degraded, and heavily degraded. With the more recent G7 and G8 images, there are now several other distinct crater morphologies that we have identified. Enki Catena is about 120 km in length and consists of 13 attached impact craters. The six craters in the chain that impacted onto the bright terrain have visible bright ejecta while those that impacted onto the dark terrain have barely visible ejecta. Kittu crater is about 15 km in diameter and it has a bright central peak surrounded by a bright floor and hummocky wall material. The crater rim in the north is linear in appearance at the location that corresponds to the boundary between the groove terrain and the adjacent dark terrain, indicating structural control by the underlying topography. The dark rays that are easily seen in the Voyager images are barely visible in the Galileo image. Neith crater has a central fractured dome surrounded by a jagged central ring, smoother outer ejecta facies, and less prominent outer rings. Achelous crater and its neighbor, which were imaged at low sun angle to show topography, have smooth floors and subdued pedestal ejecta. Nicholson Regio has tectonically disrupted craters on the groove and fractured terrains while the surrounding smoother dark terrain has numerous degrad- ed craters that may indicate burial by resurfacing or by regolith development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1231V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1231V"><span>3d morphometric analysis of lunar impact craters: a tool for degradation estimates and interpretation of maria stratigraphy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vivaldi, Valerio; Massironi, Matteo; Ninfo, Andrea; Cremonese, Gabriele</p> <p>2015-04-01</p> <p>In this study we have applied 3D morphometric analysis of impact craters on the Moon by means of high resolution DTMs derived from LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera) (0.5 to 1.5 m/pixel). The objective is twofold: i) evaluating crater degradation and ii) exploring the potential of this approach for Maria stratigraphic interpretation. In relation to the first objective we have considered several craters with different diameters representative of the four classes of degradation being C1 the freshest and C4 the most degraded ones (Arthur et al., 1963; Wilhelms, 1987). DTMs of these craters were elaborated according to a multiscalar approach (Wood, 1996) by testing different ranges of kernel sizes (e.g. 15-35-50-75-100), in order to retrieve morphometric variables such as slope, curvatures and openness. In particular, curvatures were calculated along different planes (e.g. profile curvature and plan curvature) and used to characterize the different sectors of a crater (rim crest, floor, internal slope and related boundaries) enabling us to evaluate its degradation. The gradient of the internal slope of different craters representative of the four classes shows a decrease of the slope mean value from C1 to C4 in relation to crater age and diameter. Indeed degradation is influenced by gravitational processes (landslides, dry flows), as well as space weathering that induces both smoothing effects on the morphologies and infilling processes within the crater, with the main results of lowering and enlarging the rim crest, and shallowing the crater depth. As far as the stratigraphic application is concerned, morphometric analysis was applied to recognize morphologic features within some simple craters, in order to understand the stratigraphic relationships among different lava layers within Mare Serenitatis. A clear-cut rheological boundary at a depth of 200 m within the small fresh Linnè crater (diameter: 2.22 km), firstly hypothesized through numerical investigation (Martellato et al.), has been well identified as a bland morphological step on the inner crater scarp by using slope and curvature maps derived from a NAC DTM. In addition to this main morphological feature, other minor layers have been detected allowing to consider impact crater as stratigraphic logs to perform an interpretative subsurface map of a selected sector of Mare Serenitatis. References ARTHUR, D.W.G., AGNIERAY, A.P., HORVATH, R.A., WOOD, C.A. , CHAPMAN, C.R., 1963. The system of lunar craters. Quadrant I. Comm. Lunar Planet. Lab. 2, #30. MARTELLATO E., ROBINSON M.S., CREMONESE G. & LUCCHETTI A., 2013. Numerical modeling of Linné crater. EPSC Abstracts Vol. 8, EPSC2013-649. WILHELMS, D., 1987. The Geologic History of the Moon. US Geological Survey Professional Paper 1348. WOOD, J., 1996. The geomorphological characterization of digital elevation models. PhD Thesis, University of Leicester, UK.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-ARC-1990-A90-3003.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-ARC-1990-A90-3003.html"><span>ARC-1990-A90-3003</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-08-24</p> <p>This Magellan image mosaic shows the impact crater Golubkina, first identified in Soviet Venera 15/16 data. The crater is names after Anna Golubkina (1864-1927), a Soviet sculptor. The crater is about 34 km (20.4 mi.) across, similar to the size of the West Clearwater impact structure in Canada. The crater Golubkina is located at about 60.5 degrees north latitude, 286.7 degrees est longitude. Magellan data reveal that Golubkina has many characteristics typical of craters formed by a mereorite impact including terraced inner walls, a central peak, and radar-bright rough ejecta surrounding the crater. The extreme darkness of the crater floor indicates a smooth surface, perhaps formed by the ponding of lava flows in the crater floor as seen in may lunar impact craters. The radar-bright ejecta surrounding the crater indicates a relatively fresh or young crater. Craters with centeral peaks in the Soviet data range in size from about 10-60 km (6-36 mi.) across. The largest crater identifed in the Soviet Venera data is 140 km (84 mi) in diameter. This Magellan image strip in approx. 100 km (62 mi.) long. The image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, CA and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet). The see-saw margins result from the offset of individual radar frames obtained along the orbit. The spacecraft moved from the north (top) to the south, looking to the left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6593K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6593K"><span>Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas</p> <p>2014-05-01</p> <p>Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the Martian crater, the calculated structural uplift has a value of 215.83 m [9]. For Euler and Bessel crater calculated values for the structural uplift are 310.76 m and 262.8 m, respectively [10]. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances ~1 km beyond the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [2] Poelchau M.H. et al. (2009) JGR, 114, E01006. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [5] Sturm, S. et al. (2014) LPSC 45, #1801. [6] Krüger T. et al. (2014) LPSC 45, #1834. [7] Hiesinger H. et al. (2002) GRL, 29. [8] Enns A.C. (2013) LPSC XLIV, #2751. [9] Steward S. T. and Valiant G. J. (2006) Meteoritics & Planet. Sci., 41, 1509-1537. [10] Pike R. J. (1974) EPSL, 23, 265-274. [11]Turtle, E. et al. (2005) GSA-SP. 384, 1.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01968&hterms=many+miles+away+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmany%2Bmiles%2Baway%2Bmoon','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01968&hterms=many+miles+away+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmany%2Bmiles%2Baway%2Bmoon"><span>Saturn's moon Mimas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1980-01-01</p> <p>The cratered surface Saturn's moon Mimas is seen in this image taken by Voyager 1 on Nov. 12, 1980 from a range of 425,000 kilometers (264,000 miles). Impact craters made by the infall of cosmic debris are shown; the largest is more than 100 kilometers (62 miles) in diameter and displays a prominent central peak. The smaller craters are abundant and indicate an ancient age for Mima's surface. The Voyager Project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.P51B1424B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.P51B1424B"><span>The Location and most Viable Magnetic Mineral of the Magnetic Layer of Mars Crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boutin, D.; Arkani-Hamed, J.</p> <p>2010-12-01</p> <p>The discovery of strong magnetic anomalies of remanant origin over the southern hemisphere of Mars [1] has provided the challenge to estimate the thickness of the magnetic crust and identify magnetic minerals capable of producing the anomalies. The power spectral analysis of the magnetic anomalies suggests a magnetic crust of 46 km thickness [2]. Estimates of depth to Curie temperature of viable magnetic mineral at about 4 Ga imply that the potentially magnetic layer must have been in the upper 70 km of the crust [3], and that the lower ~10 km must have been effectively demagnetized since by viscous decay [4]. The rock magnetic measurements show appreciable demagnetization at hydrostatic pressures up to 1.2 GPa [5], consistent with the above estimate of the magnetic layer thickness. The distinct lack of magnetic signature of many giant impact basins indicates that the impacts have demagnetized the crust. Detailed study of the magnetic anomalies surrounding Hellas, Isidis, and Argyre suggests that the area inside ~80% of the basin radius is almost completely demagnetized [6], as is confirmed by recent investigations [7,8]. First we use the evidence from these giant basins and show that Pierazzo et al. [1997] shock pressure distribution model with maximum decay exponent is most viable for Martian crust among the 6 models proposed. Using this model, we then determine the demagnetization of the crust by impacts that can create 10-500 km diameter craters. The surface of Mars is saturated by craters of diameters <100 km, which have completely demagnetized the upper ~10 km of Mars. The impacts that create 200-500 km diameter craters are capable of demagnetizing the entire crust beneath the craters. Second, we model topography, gravity, and magnetic data over all craters of diameters 300-600 km located in the southern hemisphere of Mars. The topography and gravity data suggest that majority of the craters are isostatically compensated and have distinct mantle plugs directly beneath, suggesting that impacts have effectively disturbed the crust. Many of the craters have well-defined magnetic signatures. Modeling a magnetic anomaly under the assumption that a) the mantle plug beneath a crater is non magnetic, b) the anomaly is due to impact demagnetization of the crust, and c) the impact heating has elevated the temperature and further enhanced viscous decay of magnetization in the lower part of the crust, provides a means to identify magnetite as the most viable magnetic carrier in the Martian crust. [1] Acuña, M.H. et al., Science 284, 790-793, 1999. [2] Voorhies, C.V. JGR, 821, 113, E04004, 2008. [3] Arkani-Hamed, J., JGR,110, 585, E08005, 2005. [4] Shahnas, H. and J. Arkani-Hamed, JGR, 112, E02009, 2007. [5] Bezaeva, N.S. et al., PEPI, 197, 7-20, 2010. [6] Mohit, P.S. and J. Arkani-Hamed, Icarus 168, 305-317, 2004. [7] Lillis, R.J.,et al., LPSC, XL, Abs. No. 1444, 2009. [8] Louzada, K.L., et al., EPSL, submitted, 2010. [9] Pierazzo, E. et al., Icarus 127, 408-423, 1997.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196295','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196295"><span>Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.</p> <p>2018-01-01</p> <p>Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.306..128X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.306..128X"><span>Hailar crater - A possible impact structure in Inner Mongolia, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun</p> <p>2018-04-01</p> <p>Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030068028','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030068028"><span>Russian-US Partnership to Study the 23-km-diameter El'gygtgyn Impact Crater, Northeast Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpton, Virgil L.; Minyuk, Pavel S.; Brigham-Grette, Julie; Glushkova, Olga; Layer, Paul; Raikevich, Mikhail; Stone, David; Smirnov, Valdimir</p> <p>2002-01-01</p> <p>El'gygytgyn crater, located within Eastern Siberia, is a Pliocene-aged (3.6 Ma), well-preserved impact crater with a rim diameter of roughly 23 km. The target rocks are a coherent assemblage of crystalline rocks ranging from andesite to basalt. At the time of impact the region was forested and the Arctic Ocean was nearly ice-free. A 15-km lake fills the center of the feature and water depths are approximately 175 m. Evidence of shock metamorphism, -- including coesite, fused mineral glasses, and planar deformation features in quartz -- has been reported. This feature is one of the youngest and best preserved complex craters on Earth. Because of its remote Arctic setting, however, El gygytgyn crater remains poorly investigated. The objectives of this three-year project are to establish and maintain a research partnership between scientists from Russia and the United States interested in the El gygytgyn crater. The principal institutions in the U.S. will be the Geophysical Institute, University of Alaska Fairbanks and the University of Massachusetts Amherst. The principal institution in Russia will be the North East Interdisciplinary Scientific Research Institute (NEISRI), which is the Far-East Branch of the Russian Academy of Science. Three science tasks are identified for the exchange program: (1) Evaluate impactite samples collected during previous field excursions for evidence of and level of shock deformation. (2) Build a high-resolution digital elevation model for the crater and its surroundings using interferometric synthetic aperture radar techniques on JERS-1, ERS-1, ERS-2, and/or RadarSat range-doppler data. (3) Gather all existing surface data available from Russian and U.S. institutions (DEM, remote sensing image data, field-based lithological and sample maps, and existing geophysical data) and assemble into a Geographic Information Systems database.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770038698&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770038698&hterms=relationship+form&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Drelationship%2Bform"><span>Landform degradation on Mercury, the moon, and Mars - Evidence from crater depth/diameter relationships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malin, M. C.; Dzurisin, D.</p> <p>1977-01-01</p> <p>Craters on Mercury, the moon, and Mars were classified into two groups, namely, fresh and degraded craters, on the basis of qualitative visual degradation as revealed by degree of rim crispness, terraced interior walls, slumping from crater walls, etc., and the depth/diameter relationship of craters was studied. Lunar and Mercurian crater populations indicate the existence of terrain-correlated degradational phenomena. The depth/diameter relations for Mercury and the moon display remarkably similar forms, suggesting similar degrees of landform degradation. Depth/diameter curves display a break in slope, dividing two distinct crater populations. Mars craters show few of the trends of those of Mercury and the moon. The depth/diameter curve has no definite break in slope, though there is considerable depth variation. The role of nonballistic degradation in connection with the early formation of large expanses of intercrater plains is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028103','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028103"><span>Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Horton, J. Wright; Ormo, J.; Powars, D.S.; Gohn, G.S.</p> <p>2006-01-01</p> <p>The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21753.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21753.html"><span>Juling and Kupalo Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-08-17</p> <p>This region on Ceres, located in the vicinity of Toharu Crater, presents two small craters: Juling at top (12 miles, 20 kilometers in diameter) and Kupalo at bottom (16 miles, 26 kilometers in diameter). Both craters are relatively young, as indicated by their sharp rims. These features are located at about the same latitude (about 38 degrees south) as Tawals Crater and show similar crater shapes and rugged terrain. These features may reflect the presence of ice below the surface. Subtle bright features can be distinguished in places. These likely were excavated by small impacts and landslides along the slopes of the crater rims. This suggests that a different type of material, likely rich in salts, is present in the shallow subsurface. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia, and Kupalo gets its name from the Russian god of vegetation and of the harvest. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21753</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......306L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......306L"><span>Evaluation de l'effet structurel de l'impact d'un micrometeorite ou d'un debris orbital sur le bras Canadien 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lanouette, Anne-Marie</p> <p></p> <p>Space structures are more and more likely to be impacted at hypervelocities, velocities greater than 3km/s, as the number of orbital debris has rapidly grown in the last two decades. These debris are mostly composed of pieces jettisoned from a launcher or a satellite during the deployment of a structure, dead spacecrafts and fragmentation debris. Collision between two debris, generating many smaller new debris, are more likely to happen. Large space debris (diameter over 10cm) are tracked by different space organizations and their position at all time is known. It is however impossible to track the smaller debris while several studies have already demonstrated that they can also cause significant damage to structures. It is now more and more common to add a kind of protection against collisions to the space structures, but the great majority of space structures currently in orbit, as the Canadarm2, are not protected against hypervelocity impacts. Damage caused by such impacts to different space materials such as aluminum, sandwich panels and laminates has already been characterized during different studies since the end of the 1980s while no study, dedicated to the experimental evaluation of the mechanical properties of a space structure after an impact, relevant to the case of the Canadarm2, has been published. It is only possible to find, in the literature, studies determining the residual mechanical properties after an impact at much lower velocities; the energy of impact is generally three orders of magnitude smaller. The Canadarm2, or Space Station Remote Manipulator System (SSRMS), is installed on the International Space Station (ISS) since 2001. It had an initial 10-year lifespan, but it is still very useful today for maintenance operations and to capture and release incoming space capsules. Understanding the effects of an orbital debris impact on the Canadarm2 structure is now primordial in order to adequately redefine the load levels that can be applied on the arm as a function of the observable damage on the thermal blankets. The main objectives of this study are: first, to obtain a correlation between the visible damage on the booms and the corresponding internal damage of the structure, second to study the cracks caused by the impact growth under different cyclic loads, and finally to provide considerations on the load levels to be applied on the robotic arm as a function of the observable damage. To achieve these objectives, samples representative of the Canadarm2 structure, four cylindrical samples of carbon fibers IM7/PEEK with an external diameter of 35cm and a thickness of 2.7mm, were obtained and covered by pieces of thermal blankets also representative of the Canadarm2. These four samples were impacted at the University of New Brunswick hypervelocity facility, HIT Dynamics. Two samples were impacted by projectiles 5.556mm in diameter and the two remaining samples were impacted with 7.938mm in diameter projectiles. All projectiles were aluminum spheres travelling at ˜7km/s. The samples underwent ultrasonic scanning thereafter to obtain images of their internal damage. In the case of the 5.556mm diameter projectiles, the damage left on the front side was an entry crater 6.2cm in diameter on the thermal blanket and a crater 14.8mm in diameter on the composite wall accompanied by no visual damage on the opposite side of the cylinder. In the case of the 7.938mm diameter projectiles, the damage left on the front side was an entry crater 9.2cm in diameter on the thermal blanket and a crater 17.0mm in diameter on the composite wall accompanied by visible damage on the opposite side in a zone 25.5cm in diameter. The suggestions given for the utilization of the Canadarm2 after an impact are thus the followings. If a crater ≤ 14mm on the composite wall is visible on one side accompanied by no damage on the opposite side of the structure, then the flight and emergency load levels can be maintained. However, if a crater ≤ 17.0mm on the composite wall is visible on one side accompanied by damage in a zone ≤ 25.5cm on the opposite side of the cylinder, only the flight load level can still be used for any position of the damaged zones. If the emergency level must be used, then the damaged zones must absolutely be positioned close to the bending neutral plan, otherwise the applied loads will aggravate the damage caused by the orbital debris impact. (Abstract shortened by ProQuest.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010651','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010651"><span>Nickel-iron spherules from aouelloul glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.</p> <p>1966-01-01</p> <p>Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997GeoRL..24.3105G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997GeoRL..24.3105G"><span>The small-comet hypothesis: An upper limit to the current impact rate on the moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grier, Jennifer A.; McEwen, Alfred S.</p> <p></p> <p>Frank et al. [1986b] and Frank and Sigwarth [1993] hypothesized the intense bombardment of the terrestrial atmosphere by small comets. Their model requires that the Moon is impacted by small comets (107-108 g) at a rate of almost one per minute. We calculate that an object of this mass, even with an exceedingly low density and relatively low velocity, will nevertheless produce a crater at least 50 m in diameter. These craters will excavate immature lunar soil and produce a very bright spot with a diameter of at least 150 m. If low-density comets exist that might not create deep craters [O'Keefe and Ahrens, 1982], they will nevertheless disturb the regolith sufficiently to create detectable bright spots. If the small-comet hypothesis is correct then the near-global lunar imaging returned by Clementine in 1994 should reveal ∼107 bright spots in locations where craters are not present in images acquired in the 1960's and early 1970's. We find no new bright spots in a carefully-studied area of 5.2×104 km², so an upper limit to the current cratering rate by small comets is 33/yr, ∼104 below that expected if the small-comet hypothesis were valid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41F1978A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41F1978A"><span>Birth of the International Lunar Impact Astronomical Detection (ILIAD) network : first detections in Morocco</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ait Moulay Larbi, E.; Bouley, S.; Dassou, A.; Benkhaldoun, Z.; Baratoux, D.; Lazrek, M.</p> <p>2013-12-01</p> <p>We present the research environment of our network. We highlight some results of the analysis of the first Lunar Meteorides impacts detected in Morocco. We present an exemple of ground-based instrumentation to carry out a successful search for lunar flashes phenomena. We also discuss the interest to monotoring these phenomena by focusing on the interest of determining the positions of the craters on the moon. The precise determination of impact flashes is very advantageous, especially in the near future there will be several new craters identified by LROC or other robotic spacecraft cameras. The two flashes reported in this study are optimally situated on central region of the lunar disk, which reduce the mismatch between the barycenter of radiation and the actual position of the impact. Smaller-scale lunar features are easily identified after superposition of a large number of images in order to increase the signal to noise ratio and produce an optimal image of the non-illuminated fraction of the moon. The sub-pixel shift of each image relative to the first frame (base frame) was determined by fitting the correlation peak obtained in the Fourier space to a 2- dimensional gaussian following Schaum and McHugh [1996]; Baratoux et al. [2001]. To increase further the positioning, the signal of the flash is is fitted to a 2-dimensional gaussian for each frame (previously shifted to the base image) where the flash is present. The barycenter of the flash is given as the rounded to the nearest integer of the average centers of the 2-dimensional gaussian functions. Two impact flashes are detected from AGM observatory in Marrakech, respectively on the February 6, 2013, at 06:29:56.7 UT and April 14, 2013, 20:00:45.4 UT. The characteristics of each flash are given in the table below. the diameter of the crater formed on the lunar surface can be estimated using Gault's formula for craters of less than 100 m in diameter, the results show that the meteoroids are likely producing craters of about 2.5 m and 4.4 m in diameter for Flash 1 and 2, respectively.Characteristics of lunar impact flashes</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017414','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017414"><span>Debris and meteoroid proportions deduced from impact crater residue analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Berthoud, Lucinda; Mandeville, Jean-Claude; Durin, Christian; Borg, Janet</p> <p>1995-01-01</p> <p>This study is a further investigation of space-exposed samples recovered from the LDEF satellite and the Franco-Russian 'Aragatz' dust collection experiment on the Mir Space Station. Impact craters with diameters ranging from 1 to 900 micron were found on the retrieved samples. Elemental analysis of residues found in the impact craters was carried out using Energy Dispersive X-ray spectrometry (EDX). The analyses show evidence of micrometeoroid and orbital debris origins for the impacts. The proportions of these two components vary according to particle size and experimental position with respect to the leading edge of the spacecraft. On the LDEF leading edge 17 percent of the impacts were apparently caused by micrometeoroids and 11 percent by debris; on the LDEF trailing edge 23 percent of the impacts are apparently caused by micrometeoroids and 4 percent consist of debris particles - mostly larger than 3 micron in diameter - in elliptical orbits around the Earth. For Mir, the analyses indicate that micrometeoroids form 23 percent of impacts and debris 9 percent. However, we note that 60-70 percent of the craters are unidentifiable, so the definitive proportions of natural v. man-made particles are yet to be determined. Experiments carried out using a light gas gun to accelerate glass spheres and fragments demonstrate the influence of particle shape on crater morphology. The experiments also show that it is more difficult to analyze the residues produced by an irregular fragment than those produced by a spherical projectile. If the particle is travelling above a certain velocity, it vaporizes upon impact and no residues are left. Simulation experiments carried out with an electrostatic accelerator indicate that this limit is about 14 km/s for Fe particles impacting Al targets. This chemical analysis cut-off may bias interpretations of the relative populations of meteoroid and orbital debris. Oblique impacts and multiple foil detectors provide a higher likelihood of detection of residues as the velocities involved are lower.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..300...72H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..300...72H"><span>Impacts into porous asteroids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.</p> <p>2018-01-01</p> <p>Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..266...44S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..266...44S"><span>Geomorphology of Lowell crater region on the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, N.; Varatharajan, I.</p> <p>2016-03-01</p> <p>Surface topography, surface morphology and crater chronology studies have been carried out for the Lowell crater region (occupying ∼198 × 198 km2 in the northwestern quadrant of the Orientale basin) using Kaguya TC-DTM, LRO-WAC data, and Chandrayaan-1 M3-750 nm image, to characterize and date Lowell impact event and to identify and assess the geological importance of the Lowell crater and effect of pre-existing geological conditions on the present day appearance of Lowell crater. The Lowell crater has been found to be polygonal in shape with an average diameter of 69.03 km. Its average rim height and depth from pre-existing surface are 1.02 km and 2.82 km respectively. A prominent central peak with average height of 1.77 km above the crater floor is present, which could have exposed undifferentiated mantle rocks. The peak exhibits a pronounced ;V; shaped slumped zone on the eastern side and a distinct ;V; shaped depression in the adjacent region on the crater floor. Several other peculiarities noticed and mapped here include W-E asymmetry in the degree of slumping of the walls and height of the topographic rim, N-S asymmetry in the proximal ejecta distribution with most of the material lying in the northern direction, concentration of exterior melt pools in the northeastern direction only, presence of several cross cutting pre-existing lineaments on the crater walls, presence of a superposed rayed crater on the eastern wall, and a geologically interesting resurfaced unit, which could be an outcome of recent volcanic activity in the region. It has been inferred that the Lowell crater formed due to impact of a ∼5.7 km diameter bolide in the Montes Rook region. The impact occurred at an angle of ∼30-45° from the S-SW direction. The age of the Lowell crater has been estimated as 374 ± 28 Ma, therefore it is a Younger Copernican crater consistent with the possibility expressed by McEwen et al. (McEwen, A.S., et al. [1993]. J. Geophys. Res. 98(E9), 17207-17231). Pre-existing topography and morphology has played a key role in shaping up the present day Lowell crater.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70147358','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70147358"><span>Atypical pit craters on Mars: new insights from THEMIS, CTX and HiRISE observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cushing, Glen; Okubo, Chris H.; Titus, Timothy N.</p> <p>2015-01-01</p> <p>More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth-to-diameter (d/D) ratios that are usually greater than 0.3 (which is an upper-range value for impacts and bowl-shaped pit craters), and can exceed values of 1.8. Observations by the Mars Odyssey THermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night, and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially-drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) to refine previous work where seven APCs were described from lower-resolution THEMIS visible-wavelength (VIS) observations. Here, we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.286a2042L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.286a2042L"><span>Hypervelocity impacts into graphite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Latunde-Dada, S.; Cheesman, C.; Day, D.; Harrison, W.; Price, S.</p> <p>2011-03-01</p> <p>Studies have been conducted into the characterisation of the behaviour of commercial graphite (brittle) when subjected to hypervelocity impacts by a range of projectiles. The experiments were conducted with a two-stage gas gun capable of launching projectiles of differing density and strength to speeds of about 6kms-1 at right angles into target plates. The damage caused is quantified by measurements of the crater depth and diameters. From the experimental data collected, scaling laws were derived which correlate the crater dimensions to the velocity and the density of the projectile. It was found that for moderate projectile densities the crater dimensions obey the '2/3 power law' which applies to ductile materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..239..186B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..239..186B"><span>Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin</p> <p>2014-09-01</p> <p>Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920019775&hterms=graduation+rates&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgraduation%2Brates','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920019775&hterms=graduation+rates&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dgraduation%2Brates"><span>Styles of crater gradation in Southern Ismenius Lacus, Mars: Clues from Meteor Crater, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Schultz, P. H.</p> <p>1992-01-01</p> <p>Impact craters on the Earth and Mars provide a unique opportunity to quantify the gradational evolution of instantaneously created landforms in a variety of geologic settings. Unlike most landforms, the initial morphology associated with impact craters on both planets is uncomplicated by competition between construction and degradation during formation. Furthermore, pristine morphologies are both well-constrained and similar to a first order. The present study compares styles of graduation at Meteor Crater with those around selected craters (greater than 1-2 km in diameter) in southern Ismenius Lacus. Emphasis is placed on features visible in images near LANDSAT TM resolution (30-50 m/pixel) which is available for both areas. In contrast to Mars, vegetation on the Earth can modify gradation, but appears to influence overall rates and styles by 2X-3X rather than orders of magnitude. Further studies of additional craters in differing settings will refine the effects of this and other factors (e.g., substrate). Finally, by analogy with results from other terrestrial gradational surfaces this study should help provide constraints on climate over crater histories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48...87M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48...87M"><span>Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian</p> <p>2013-01-01</p> <p>Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..258..267G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..258..267G"><span>Impact and cratering rates onto Pluto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.</p> <p>2015-09-01</p> <p>The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to present uncertainties in the impactor size distribution between d = 1- 100km , computing absolute ages for the surface of Pluto is entirely dependent on the extrapolation to small sizes and thus fraught with uncertainty. We show, however, what the ages would be for several cases and illustrate the relative importance of each Kuiper belt sub-population to the cratering rate, both now and integrated into the past. In addition, we compute the largest "fresh" crater expected to have formed in 1 Gyr on the surface of Pluto and in 3 Gyr on Charon (to 95% confidence) and use the "wavy" size distribution models to predict whether these largest "fresh" craters will provide surfaces for which portions of the crater production function can be measured should most of the target's surface appear saturated. The fly-through results coupled with telescopic surveys that bridge current uncertainties in the d = 10- 100km regime should eventually result in the population estimate uncertainties for the Kuiper belt sub-populations, and thus the impact fluxes onto Pluto and Charon, dipping to < 30 % . We also compute "disruption timescales" (to a factor of three accuracy) for Pluto's smaller satellites: Styx, Nix, Kerberos, and Hydra. We find that none of the four satellites have likely undergone a catastrophic disruption and reassembly event in the past ≈ 4Gyr . In addition, we find that for a knee size distribution with αfaint ⩽ 0.4 (down to sub-km diameters), satellites of all sizes are able to survive catastrophic disruption over the past 4 Gyr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180002985','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180002985"><span>Impacts into Coarse-Grained Spheres at Moderate Impact Velocities: Implications for Cratering on Asteroids and Planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barnouin, Olivier S.; Daly, R. Terik; Cintala, Mark J.; Crawford, David A.</p> <p>2018-01-01</p> <p>The surfaces of many planets and asteroids contain coarsely fragmental material generated by impacts or other geologic processes. The presence of such pre-existing structures may affect subsequent impacts, particularly when the width of the shock is comparable to or smaller than the size of pre-existing structures. Reasonable theoretical predictions and low speed (<300m/s) impact experiments suggest that in such targets the cratering process should be highly dissipative, which would reduce cratering efficiencies and cause a rapid decay in ejection velocity as a function of distance from the impact point. In this study, we assess whether these results apply at higher impact speeds between 0.5 and 2.5 km s-1. This study shows little change in cratering efficiency when 3.18 mm diameter glass beads are launched into targets composed of these same beads. These impacts are very efficient, and ejection velocity decays slowly as function of distance from the impact point. This slow decay in ejection velocity probably indicates a correspondingly slow decay of the shock stresses. However, these experiments reveal that initial interactions between projectile and target strongly influence the cratering process and lead to asymmetries in crater shape and ejection angles, as well as significant variations in ejection velocity at a given launch position. Such effects of asymmetric coupling could be further enhanced by heterogeneity in the initial distribution of grains in the target and by mechanical collisions between grains. These experiments help to explain why so few craters are seen on the rubble-pile asteroid Itokawa: impacts into its coarsely fragmental surface by projectiles comparable to or smaller than the size of these fragments likely yield craters that are not easily recognizable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..284...70A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..284...70A"><span>Fates of satellite ejecta in the Saturn system, II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alvarellos, José Luis; Dobrovolskis, Anthony R.; Zahnle, Kevin J.; Hamill, Patrick; Dones, Luke; Robbins, Stuart</p> <p>2017-03-01</p> <p>We assess the fates of ejecta from the large craters Aeneas on Dione and Ali Baba on Enceladus (161 and 39 km in diameter, respectively), as well as that from Herschel (130 km in diameter) on Mimas. The ejecta are treated either as 'spalls' launched from hard surfaces, or as 'rubble' launched from a weak rubble pile regolith. Once in orbit we consider the ejecta as massless test particles subject to the gravity of Saturn and its classical satellites. The great majority of escaped ejecta get swept up by the source moons. The best fit to the ejecta population decay is a stretched exponential with exponent near 1/2 (Dobrovolskis et al., Icarus 188, 481-505, 2007). We bracket the characteristic ejecta sizes corresponding to Grady-Kipp fragments and spalls. Based on this and computed impact velocities and incidence angles, the resulting sesquinary craters, if they exist, should have diameters on the order of a few meters to a few km. The observed longitude distribution of small craters on Mimas along with the findings of Bierhaus et al. that small moons should not have a secondary crater population (Icarus 218, 602-621, 2012) suggest that the most likely place to find sesquinary craters in the Saturn system is the antapex of Mimas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20133.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20133.html"><span>Dawn HAMO Image 70</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-12-04</p> <p>This view from NASA's Dawn spacecraft shows different types of terrain located side by side on Ceres: a smooth terrain at right with numerous small impact craters, and a less-cratered, hummocky terrain at left. A huge crater chain crosses the scene diagonally from upper left to lower right. The smooth terrain, which is in the western part of Yalode impact basin, is interrupted by a set of roughly parallel furrows and ridges at upper right. These linear features are perpendicular to another set of smaller, fainter linear markings, which appear just below them. An impact into the hummocky terrain formed a crater, seen at left, 14 miles (22 kilometers) in diameter with a central peak. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. The image was taken during in Dawn's High Altitude Mapping Orbit (HAMO) phase from an altitude of 911 miles (1,466 kilometers) on Oct. 6, 2015. Image resolution is 394 feet (120 meters) per pixel. The image is centered at 37 degrees south latitude, 279 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20133</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19203.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19203.html"><span>Smooth Slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-02-13</p> <p>The region with fewer impact craters in the bottom-right corner of this image is a small portion of the peak ring of an ancient basin over 200 km in diameter. The peak has fewer superposed impact craters, which could lead to the conclusion that it is younger than the surrounding basin floor. However, the lack of craters is instead due to the steeper slopes of the peak, where impact craters are not preserved as long. This image was acquired as part of the MDIS low-altitude imaging campaign. During MESSENGER's second extended mission, the spacecraft makes a progressively closer approach to Mercury's surface than at any previous point in the mission, enabling the acquisition of high-spatial-resolution data. For spacecraft altitudes below 350 kilometers, NAC images are acquired with pixel scales ranging from 20 meters to as little as 2 meters. http://photojournal.jpl.nasa.gov/catalog/PIA19203</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381370','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5381370"><span>First known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay</p> <p>2014-01-01</p> <p>Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably ‘rubble pile’ asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids. PMID:25340551</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004cosp...35.3427H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004cosp...35.3427H"><span>Laboratory experiments of crater formation on ice-rock mixture targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiraoka, K.; Arakawa, M.; Yoshikawa, K.; Nakamura, A. M.</p> <p></p> <p>Surfaces of ice-rock mixture are common among planetary bodies in outer solar system, such as the satellites of the giant planets, comet nuclei, and so on. In order to study the effect of the presence of volatiles in crater formation on these bodies, we performed impact experiments using a two-stage light-gas gun and a gas gun at Hokkaido University. The targets were ice-rock mixtures (diameter = 10 or 30cm, height = 5cm) with 0 wt.% to 50 wt.% rock. Projectiles were ice cylinders (diameter = 15mm, height = 10mm) or corn-shaped nylon ones and the impact velocities were varied from about 300m/s to 3500m/s. We will show an anti-correlation between the crater volume and the rock content, and will make a comparison with previous works (Lange and Ahrens 1982; Koschny and Grun 2001). Ejecta size and velocity measured on high-speed video images will be presented and will be discussed by a comparison with a spallation model (Melosh 1984).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840042873&hterms=violent+media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dviolent%2Bmedia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840042873&hterms=violent+media&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dviolent%2Bmedia"><span>Impact into the earth's ocean floor - Preliminary experiments, a planetary model, and possibilities for detection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckinnon, W. B.</p> <p>1982-01-01</p> <p>Impact processes and plate tectonics are invoked in an experimental study of craters larger than 100 km in diameter on the ocean floor. Although the results obtained from 22-caliber (383 m/sec) ammunition experiments using dense, saturated sand as a target medium cannot be directly scaled to large events, the phenomenology exhibited is that expected of actual craters on the ocean floor: steep, mixed ejecta plume, gravitational adjustment of the crater to form a shallow basin, and extensive reworking of the ejecta, rim, and floor materials by violent collapse of the transient water cavity. Excavation into the mantle is predicted, although asthenospheric influence on outer ring formation is not. The clearest geophysical signature of such a crater is not topography; detection should instead be based on gravity and geoid anomalies due to uplift of the Moho, magnetic anomalies, and seismic resolution of the Moho uplift and crater formation fault planes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012P%26SS...66...96T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012P%26SS...66...96T"><span>The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.</p> <p>2012-06-01</p> <p>The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000991','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000991"><span>Paradigm lost: Venus crater depths and the role of gravity in crater modification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpton, Virgil L.</p> <p>1992-01-01</p> <p>Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..153..120B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..153..120B"><span>Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.</p> <p>2018-04-01</p> <p>The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters < 1 km in diameter is applicable to the larger craters. The work presents the rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52.1330R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52.1330R"><span>Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.</p> <p>2017-07-01</p> <p>Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012010"><span>Crater size estimates for large-body terrestrial impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, Robert M.; Housen, Kevin R.</p> <p>1988-01-01</p> <p>Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00474.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00474.html"><span>Venus - Impact Crater in Eastern Navka Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-20</p> <p>This Magellan image, which is 50 kilometers (31 miles) in width and 80 kilometers (50 miles) in length, is centered at 11.9 degrees latitude, 352 degrees longitude in the eastern Navka Region of Venus. The crater, which is approximately 8 kilometers (5 miles) in diameter, displays a butterfly symmetry pattern. The ejecta pattern most likely results from an oblique impact, where the impactor came from the south and ejected material to the north. http://photojournal.jpl.nasa.gov/catalog/PIA00474</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4963536"><span>The missing large impact craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Marchi, S.; Ermakov, A. I.; Raymond, C. A.; Fu, R. R.; O'Brien, D. P.; Bland, M. T.; Ammannito, E.; De Sanctis, M. C.; Bowling, T.; Schenk, P.; Scully, J. E. C.; Buczkowski, D. L.; Williams, D. A.; Hiesinger, H.; Russell, C. T.</p> <p>2016-01-01</p> <p>Asteroids provide fundamental clues to the formation and evolution of planetesimals. Collisional models based on the depletion of the primordial main belt of asteroids predict 10–15 craters >400 km should have formed on Ceres, the largest object between Mars and Jupiter, over the last 4.55 Gyr. Likewise, an extrapolation from the asteroid Vesta would require at least 6–7 such basins. However, Ceres' surface appears devoid of impact craters >∼280 km. Here, we show a significant depletion of cerean craters down to 100–150 km in diameter. The overall scarcity of recognizable large craters is incompatible with collisional models, even in the case of a late implantation of Ceres in the main belt, a possibility raised by the presence of ammoniated phyllosilicates. Our results indicate that a significant population of large craters has been obliterated, implying that long-wavelength topography viscously relaxed or that Ceres experienced protracted widespread resurfacing. PMID:27459197</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P31A1696S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P31A1696S"><span>A possible formation mechanism of rampart-like ejecta pattern in a laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.</p> <p>2011-12-01</p> <p>The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m/s. Eventually, we have succeeded to capture the formation of the rampart-like ridges with high-speed video camera. Our experiments clarify that the rampart-like ridges are formed by the thin, radial ejecta flow that originates around the crater rim, other than the sedimentation of ejecta decelerated by the ambient atmosphere. A wake of the projectile going through the atmosphere might be responsible for the crater rim collapsed, which results in initiating the radial ejecta flow. Additionally, it is found that erodible surface (i.e. a particle layer in this case) is essential to produce the rampart-like ridges.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH13A0099W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH13A0099W"><span>Detailed Modeling of the DART Spacecraft Impact into Didymoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weaver, R.; Gisler, G.</p> <p>2017-12-01</p> <p>In this presentation we will model the impact of the DART spacecraft into the target Didymoon. Most previous modeling of this impact has used full density aluminum spheres with a mass of 300 kg or more recently 500 kg. Many of the published scaling laws for crater size and diameter as well as ejecta modeling assume this type of impactor. The actual spacecraft for the DART impact is not solid and does not contain a solid dedicated kinetic impactor. The spacecraft is considered the impactor. Since the spacecraft is significantly larger ( 100 x 100 x 200 cm) in size than a full density aluminum sphere (radius 35 cm) the resulting impact dynamics will be quite different. Here we model both types of impact and compare the results of the simulation for crater size, crater depth and ejecta. This allows for a comparison of the momentum enhancement factor, beta. Suggestions for improvement of the spacecraft design will be given.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140004932','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140004932"><span>LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias</p> <p>2012-01-01</p> <p>For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the previous framework for evaluation of CDAs with datasets and ground-truth catalogue for the Moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910081N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910081N"><span>Polygonal Impact Craters on selected Minor Bodies: Rhea, Dione, Tethys, Ceres, and Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neidhart, Tanja; Leitner, Johannes; Firneis, Maria</p> <p>2017-04-01</p> <p>A polygonal impact crater (PIC) is a crater that does not have a full circular shape in plane view but consists of straight crater rim segments. PICs are common on all objects in our solar system that show a cratered surface. Previous studies showed that PICs make up about 10-25% of craters on Mercury, Venus, Mars, and the Moon [1, 2, 3, 4]. Although there have been several studies on PICs on the terrestrial planets, and the Moon there are only very few investigations on PICs on minor bodies, even though there exist surface maps of Rhea, Tethys, Dione, Ceres, and Vesta that have an appropriate resolution. The aim of this study is to get more information about the abundance and characteristics of PICs on these objects. We analysed all approved craters on Rhea, Dione, Tethys, Ceres, and Vesta using images provided by the IAU/NASA/USGS Planetary Database [5]. For the classification of PICs the definition by [2] was used which states that a crater is polygonal if it consists of at least two straight crater rim segments having a discernable angle. In total 417 impact craters were examined and 227 of them were classified as polygonal. On Rhea about 48% of the approved craters are PICs, on Dione 59%, on Tethys 34%, on Ceres 74%, and on Vesta 56%. The comparison with studies on PICs on terrestrial planets, and the Moon conducted by [1, 2, 3, 4] showed that the percentage of PICs found in this study is much higher. Most of the PICs have two or three straight rim segments and only few PICs are hexagonal or pentagonal. The mean angle between the straight rims yields 121° for Rhea, 124° for Dione, 123° for Tethys, 133° for Ceres, and 134° for Vesta. These angles are well in accordance to an average angle of 112° on Mercury [1]. Also the size distribution of PICs is in accordance to results by [4] who proved that PICs seem to favor small to middle size diameters. The largest diameters of non-polygonal craters on Vesta range from 0.6 km to 450 km while the diameters of PICs only range from 3.1 km to 53.2 km [5]. The study proves that a large number of polygonal impact craters on Rhea, Dione, Tethys, Ceres, and Vesta exist but it is still unclear why the fraction of PICs on these bodies is much higher than for terrestrial planets and the Moon. One possible solution could be the different composition of the surfaces of these bodies in comparison to the terrestrial planets but for definite answers to this question further understanding of the formation process of PICs, which is still unclear, is necessary. References: [1] Weihs G. T. et al. (2015) Planet. Space Sci., 111, 77-82. [2] Aittola M. et al. (2010) Icarus, 205, 356-363. [3] Öhman et al. (2008) Meteoritics & Planet. Sci., 43, 1605-1628. [4] Öhman et al. (2010) Geol. Soc. Spec. Pap., 465, 51-65. [5] IAU/NASA/USGS Planetary Database. (2016), http://planetarynames.wr.usgs.gov/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970030228&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970030228&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTNT"><span>The Cretaceous-Tertiary Impact Crater and the Cosmic Projectile that Produced it</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharpton, Virgil L.; Marin, Luis E.</p> <p>1997-01-01</p> <p>Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (less than or equal to 50 percent) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(exp 8) and 4 x 10(exp 9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(exp -9) y(exp -1). This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(exp -7) y(exp -1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link between the Chicxulub basin forming event and the K/T biological extinctions, the results of our analysis do not support models of impact as a common or singular causative agent of mass extinctions on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11543120','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11543120"><span>The Cretaceous-Tertiary impact crater and the cosmic projectile that produced it.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sharpton, V L; Marin, L E</p> <p>1997-05-30</p> <p>Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (< or = 50%) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(8) and 4 x 10(9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(-9) y-1. This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(-7) y-1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link between the Chicxulub basin forming event and the K/T biological extinctions, the results of our analysis do not support models of impact as a common or singular causative agent of mass extinctions on Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.P12B..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.P12B..04K"><span>An upper limit on Early Mars atmospheric pressure from small ancient craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.</p> <p>2012-12-01</p> <p>Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These craters are interbedded with river deposits, and so the atmospheric state they record corresponds to an era when Mars was substantially wetter than the present, probably >3.7 Ga. An important caveat is that our technique cannot exclude atmospheric collapse-reinflation cycles on timescales much shorter than the sedimentary basin-filling time, so it sets an upper limit on the density of a thick stable paleoatmosphere. We will discuss our results in relation to previous estimates of ancient atmospheric pressure, and place new constraints on models of Early Mars climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188637','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188637"><span>Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian</p> <p>2017-01-01</p> <p>The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840029732&hterms=deutsche+forschungsgemeinschaft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddeutsche%2Bforschungsgemeinschaft','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840029732&hterms=deutsche+forschungsgemeinschaft&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Ddeutsche%2Bforschungsgemeinschaft"><span>Bunte Breccia of the Ries - Continuous deposits of large impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horz, F.; Ostertag, R.; Rainey, D. A.</p> <p>1983-01-01</p> <p>The 26-km-diameter Ries impact crater in south Germany and the mechanism of ejection and emplacement associated with its formation about 15 Myr ago are discussed in detail, and the implications of the findings for models of crater formation on earth, moon, and planets are considered. Field observations and laboratory tests on 560-m core materials from nine locations are reported. The continuous deposits (Bunte Breccia) are found to be a chaotic mixture resulting from deposition at ambient temperatures in a highly turbulent environment, probably in the ballistic scenario proposed by Oberbeck et al. (1975), with an emplacement time of only about 5 min. Further impact parameters are estimated using the 'Z model' of Maxwell (1977): initial radius = 6.5 km, excavation depth = 1650 m, excavation volume = 136 cu km, and transient cavity volume = 230 cu km. The interpretation of lunar and planetary remote-sensing and in situ evidence from impact craters is reviewed in the light of the Ries findings. Numerous photographs, maps, diagrams, and tables illustrate the investigation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..310S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..310S"><span>Multiple Episodes of Recent Gully Activity Indicated by Gully Fan Stratigraphy in Eastern Promethei Terra, Mars.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schon, S.; Head, J.; Fassett, C.</p> <p>2008-09-01</p> <p>Introduction Gullies are considered among the youngest geomorphic features on Mars based upon their stratigraphic relationships, superposition on steep slopes and distinctive morphology in unconsolidated sediment. Multiple formation hypotheses have been proposed, which can be divided into three broad classes: entirely dry mechanisms (e.g., [1,2]), wet mechanisms invoking groundwater or ground ice (e.g., [3,4]) and wet mechanisms invoking surficial meltwater (e.g., [5,6,7,8]). It has been difficult to differentiate between these hypotheses based upon past observations and it remains possible that gullies are polygenetic landforms. This study presents stratigraphic relationships in the depositional fan of a crater wall gully system that suggest: (1) multiple episodes of alluvial fan-style deposition, (2) very recent depositional activity that is younger than a newly recognized rayed crater, and (3) surficial snowmelt as the most likely source of these multiple episodes of recent gully activity. Gully-Fan Stratigraphy In Eastern Promethei Terra an ~5 km-diameter crater is observed with a well-developed gully system (Fig. 1) and several smaller gullies in its northnortheast wall. The large gully system (composed of a small western gully and larger eastern gully) shows evidence for incision into the crater wall country rock and has multiple contributory sub-alcoves and channels. The depositional fan associated with this gully system is bounded on its western side by a small arcuate ridge swell that is not observed on the eastern side of the fan. This ridge is interpreted as a moraine-like structure that may have bounded a glacially-formed depression into which the fan is deposited [8]. Similar depressions with bounding ridges are commonly observed in this latitude band (~30-50°S) in association with deeply incised gully alcoves [9,10,11]. This gully fan is composed of multiple lobes with distinct lobe contacts, incised channels, and cut-andfill deposits - all features similar to those seen in terrestrial alluvial fans [12,13]. The western portion of the fan is contained within the depression, while the younger eastern portion overlies and obscures any potential evidence of the ridge structure. A very striking and unusual feature of this gully fan is the large number of superposed impact craters; due to their density and similar diameter, we interpret these to be secondary craters from a large nearby primary impact crater. The depositional lobes of the fan can be divided into two groups: 1) those that predate the secondary crater population and 2) younger lobes that are superposed on the secondary craters. Numerous secondary craters (~1-25 m-diameter) superpose the lowermost stratigraphic lobe (Fig. 1, A), while at least three younger lobes (Fig. 1, C1, D1, and D2) directly superpose the cratered lobe. The emplacement date of these secondaries provides a robust maximum age for the youngest lobes of this fan, and therefore the most recent fluvial activity of the gully. Most gullies either have no superposed impact craters [3,7] or are too small to date with any certainty using crater counts [14]. Therefore, locating and dating the parent impact crater of these secondaries is critical to constrain the chronology and origin of gully systems. Rayed-Crater Source of the Secondary Craters Regional reconnaissance for the origin of the secondary craters led to the discovery of a previously unidentified rayed crater complex (consisting of an ~18 km-diameter outer crater and an ~7 km-diameter inner crater) approximately 175 km southwest of the gully system. Distinctive rays are observed in THEMIS nighttime thermal inertia data, but are not observable as albedo contrasts in THEMIS visible data, consistent with other identifications of young rayed craters on Mars [15,16]. The rims of both craters are distinct and consistent with the morphology of very young impact craters on Mars. The inner crater has a greater depth to diameter ratio than the outer crater (0.121 compared to 0.073), consistent with young Martian craters [17]. Both the outer and inner craters have classically-defined gullies, preferentially developed on their pole-facing walls. Polygons are observed in gully alcoves of the outer crater, but not in alcoves of the inner crater, implying a difference in substrate or thermal cycling time [18]. The outer crater is floored by ejecta from the inner crater and mantling deposits. There is no evidence of an underlying concentric crater fill deposit or other altered fill unit typical of older Amazonian altered craters [19]. The inner crater is floored by unconsolidated sediment and contains a small collection of dunes. No evidence of pits, hummocky texture or other sublimation features are observed indicating that the crater interior is not a periglacial terrain. We interpret the inner crater as younger than the most recent episode of mantling deposition (~0.4Ma) [20] due to the exposed spur and talus slope development on the equator-facing wall, a slope and orientation that preferentially preserves smooth mantle texture in this latitude regime [21]. One superposed crater (~45 mdiameter) is observed in HiRISE coverage. Using the technique of Hartmann and Quantin-Nataf [22], who dated Gratteri crater by counting small craters superposed on the floor, the inner crater is on the order of 100Ka. Based upon these observations and the relative proximity of secondary craters to the outer crater rim (making it unlikely they originated from the outer crater), the 7 km-diameter inner crater is the likely source of the rays and secondary craters of interest on the gully fan lobe. Acknowledgments: Special thanks to the Mars Recognisance Orbiter and HiRISE teams as well as the Odyssey and THEMIS teams. This research was funded by NASA. Conclusions This study has identified a gully system fan in Eastern Promethei Terra with morphology requiring multiple periods of activity for its construction. At least one lobe of the fan has retained a dense secondary crater population, while at least two episodes of activity post-date emplacement of the secondary craters. Approximately 175 km to the southwest, the likely parent rayed crater was discovered using THEMIS thermal inertia data. This 7 km-diameter crater is located within a morphologically older 18 km-diameter crater. We interpret the source crater as younger than the most recent obliquity-controlled glacial period (~0.4Ma), which is consistent with crater age dating of the floor as well. The multiple episodes of alluvial fan activity mapped in this study imply that gullies are not catastrophic landforms that formed in single events. Rather, multiple episodes of fluvial activity in the gully system are required to deposit and rework the alluvial fan that is observed. The alluvial fan morphology [10, 11] and sedimentary channel structures make dry mass-wasting processes implausible for the formation of this gully system. The multiple episodes of activity required by the fan stratigraphy documented here cast serious doubt on catastrophic groundwater discharge scenarios that are unlikely to generate episodic releases. Small amounts of surficial meltwater derived from snow and ice accumulation is suggested by the insolation geometries of gully systems and most plausibly can account for multiple periods of recent (<0.4Ma) activity required by these observations. This chronology is consistent with other evidence [11] that places gully formation in the waning stages of the ice ages that produced the latiduedependent mantles. References [1] Treiman, A. (2003) JGR 108, doi: 10.1029/2002JE001900. [2] Shinbrot, T. et al. (2004) PNAS 101, doi: 10.1073/mnas.03082511 01. [3] Malin, M. and Edgett, K. (2000) Science 288, doi: 10.1126/ science.288.5475.2330. [4] Heldmann, J. et al. (2007) Icarus 188, doi: 10.1016/j.icarus.2006.12.010. [5] Costard, F. et al. (2001) Science 295, doi: 10.1126/science.1066698. [6] Christensen, P. (2003) Nature 422, doi: 10.1038/nature01436. [7] Dickson, J. et al. (2007) Icarus 188, doi: 10/1016/j.icarus.2006.11.020. [8] Head, J. et al. (2008) Workshop on Martian Gullies: Theories and Tests, LPI #1301. [9] Hartmann, W. et al. (2003) Icarus 162, doi: 10.1016/S00 19-1035(02)00065-9. [10] Berman, D. et al. (2005), Icarus 178, doi: 10.1016/j.icarus.2005.05.011. [11] Head, J. et al. (2008) PNAS, in revision: 16 April 2008. [12] Blissenbach, E. (1954) GSA Bulletin 65, 175-190. [13] Blair, T. and McPherson, J. (1994) JSR 64, (3A) 450-489. [14] Hartmann, W. (2005), Icarus 174, doi: 10.1016/j.icar us.2004.11.023. [15] McEwen, A. et al. (2005) Icarus 176 doi: 10.1016/j.icarus.2005.02.009. [16] Tornabene, L. et al. (2006) JGR 111, doi: 10.1029/2005JE002600. [17] Garvin, J. et al. (2003) 6th International Conference on Mars, Abstract 3277. [18] Levy, J. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1171. [19] Kreslavsky, M. and Head, J. (2006) Meteoritics & Plan. Sci. 41, 1633-1646. [20] Head, J. et al. (2003) Nature 426, 797-802. [21] Schon, S. et al. (2008) LPSC [CD-ROM], XXXIX, abstract 1873. [22] Hartmann, W. and Quantin-Nataf, C. (2008) LPSC [CD-ROM], XXXIX, abstract 1844.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006491','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006491"><span>The Formation and Erosion History of Mt. Sharp</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, Carlton C.; Dapremont, Angela M.</p> <p>2014-01-01</p> <p>The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's 5 km high central mound (Fig. 1). This study addresses the formation and erosion history of Mt. Sharp. Gale lies on the topographic dichotomy between the southern highlands and the northern plains - a drop of over 2 km [1,2]. Altitude differences between the north and south rim reflect this regional slope, as do altitude differences between the deep annulus north of Mt. Sharp and the southern crater floor. Orbiter and rover images demonstrate that most exposed areas on Mt. Sharp consist of thin, sub-parallel units interpreted as sedimentary layers [3]. Gale is typical of the 50 large martian craters that have been totally or partially filled with such layers [4,5]. In many craters these sediments have been deeply eroded. Central Peak and Peak Ring: The highest point on Mt. Sharp, near the crater's center, is interpreted as a central peak [6]. The peak has a massive lower portion and a thin, smooth capping deposit (Fig. 2). Gale's size is transitional between martian craters with single central peaks and craters with peak rings approximately half the crater's diameter [2,6]. The boundaries of Mt. Sharp, as well as an arc of hills to the southeast of the mountain, closely match a circle approximately 80 km in diameter (Fig. 3). This morphology suggests that the Gale impact may have formed both a central peak and a partial peak ring, which is covered by the sediments of Mt. Sharp in the north and possibly exposed in the arc of eroded hills in the southeast quadrant (Figs. 3,4).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940011849','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940011849"><span>Manson impact structure, Iowa: First geochemical results for drill core M-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe</p> <p>1993-01-01</p> <p>The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993LPI....24..811K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993LPI....24..811K"><span>Manson impact structure, Iowa: First geochemical results for drill core M-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe</p> <p>1993-03-01</p> <p>The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09078&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09078&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage"><span>View of 'Cape Verde' from 'Cape St. Mary' in Mid-Afternoon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. The exposures were taken during mid-afternoon lighting conditions. <p/> The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. <p/> The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09080&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09080&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage"><span>View of 'Cape Verde' from 'Cape St. Mary' in Late Morning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. The exposures were taken during late-morning lighting conditions. <p/> The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. <p/> The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003119','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003119"><span>Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.</p> <p>1989-01-01</p> <p>Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800039536&hterms=drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddrilling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800039536&hterms=drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddrilling"><span>Structural deformation at the Flynn Creek impact crater, Tennessee - A preliminary report on deep drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.</p> <p>1979-01-01</p> <p>The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0133&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0133&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0133</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. From the nearby Press Site at Cape Canaveral Air Force Station, Fla., photographers capture the exciting launch of the Deep Impact spacecraft at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0134&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0134&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0134</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0131&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0131&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0131</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0135&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0135&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0135</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Erupting from the flames and smoke beneath it, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0136&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0136&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0136</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Engulfed by flames and smoke, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0130&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0130&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0130</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. With a burst of flames, NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20158.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20158.html"><span>A Youthful Crater in the Cydonia Colles Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-11-27</p> <p>The central portion of this image from NASA's Mars Reconnaissance Orbiter is dominated by a sharp-rimmed crater that is roughly 5 kilometers in diameter. On its slopes, gullies show young (i.e., geologically recent) headward erosion, which is the lengthening of the gully in the upslope direction. This crater is also remarkable for another reason. This image is part of a stereo pair, and the anaglyph of these images shows that the bottom of the crater contains a small mound. This mound hints at a possible complex crater, with the mound being a central uplift. Complex craters as small as this one are uncommon and such examples may provide clues to the lithology of the rocks underground and possibly to the impact process itself. http://photojournal.jpl.nasa.gov/catalog/PIA20158</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA07196&hterms=first+impression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfirst%2Bimpression','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA07196&hterms=first+impression&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dfirst%2Bimpression"><span>Tikhonravov's Eyebrows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> 1 January 2004 This red wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows Tikhonravov Crater in central Arabia Terra. The crater is about 386 km (240 mi) in diameter and presents two impact craters at its center that have dark patches of sand in them, giving the impression of pupils in two eyes. North (above) each of these two craters lies a dark-toned patch of surface material, providing the impression of eyebrows. M. K. Tikhonravov was a leading Russian rocket engineer in the 20th Century. The crater named for him, despite its large size, is still partly buried, on its west side, beneath the heavily cratered terrain of Arabia Terra. The center of Tikhonravov is near 13.5oN, 324.2oW. Sunlight illuminates the scene from the upper left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2670&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2670&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2670</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2673&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2673&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2673</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2674&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2674&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2674</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., begin fueling operations of the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0128&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0128&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0128</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft stands out against an early dawn sky. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0124&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0124&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0124</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft is bathed in light waiting for tower rollback before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2671&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsecret"><span>KSC-04PD-2671</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Workers at Astrotech Space Operations in Titusville, Fla., get ready to begin fueling the Deep Impact spacecraft, seen wrapped in a protective cover in the background. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e254011.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e254011.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-04-21</p> <p>ISS030-E-254011 (21 April 2012) --- The Ouarkziz Impact Crater is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Ouarkziz Impact Crater is located in northwestern Algeria close to the border with Morocco. According to scientists, the crater was formed by a meteor impact less than 70 million years ago during the late Cretaceous Period of the Mesozoic Era or “Age of Dinosaurs”. Originally called Tindouf, the 3.5-kilometer in diameter impact crater (center) has been heavily eroded since its formation; however its circular morphology is highlighted by exposures of older sedimentary rock layers that form roughly northwest-to-southeast-trending ridgelines to the north and south. From the vantage point of a crew member onboard the space station, the impact crater is clearly visible with a magnifying camera lens. A geologist interpreting this image to build a working geological history of the region would conclude that the Ouarkziz impact crater is younger than the sedimentary rocks, as the rock layers had to be already present for the meteor to hit them. Likewise, a stream channel is visible cutting across the center of the impact structure (center), indicating that the channel formed after the impact had occurred. This Principal of Cross-Cutting Relationships, usually attributed to the famous 19th century geologist Charles Lyell, is a basic logic tool used by geologists to build relative sequence and history of events when investigating a region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27789836','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27789836"><span>Formation of the Orientale lunar multiring basin.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johnson, Brandon C; Blair, David M; Collins, Gareth S; Melosh, H Jay; Freed, Andrew M; Taylor, G Jeffrey; Head, James W; Wieczorek, Mark A; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Keane, James T; Miljković, Katarina; Soderblom, Jason M; Zuber, Maria T</p> <p>2016-10-28</p> <p>Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients. Copyright © 2016, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11543121','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11543121"><span>A unified theory of impact crises and mass extinctions: quantitative tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rampino, M R; Haggerty, B M; Pagano, T C</p> <p>1997-05-30</p> <p>Several quantitative tests of a general hypothesis linking impacts of large asteroids and comets with mass extinctions of life are possible based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing, large-scale environmental disasters, predict the impacts of objects > or = 5 km in diameter (> or = 10(7) Mt TNT equivalent) could be sufficient to explain the record of approximately 25 extinction pulses in the last 540 Myr, with the 5 recorded major mass extinctions related to impacts of the largest objects of > or = 10 km in diameter (> or = 10(8) Mt events). Smaller impacts (approximately 10(6) Mt), with significant regional environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities, and several well-dated large impact craters, also suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of approximately 100 km diameter, smaller impacts being capable of only relatively weak extinction pulses. Single impact craters less than approximately 60 km in diameter should not be associated with detectable global extinction pulses (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses seem to be associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high iridium, shocked minerals, microtektites), and/or large, dated impact craters. Other less well-studied crisis intervals show elevated iridium, but well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of approximately 30 Myr in mass extinctions and clusters of impacts is the pulselike modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement between paleontologic and astronomical data suggests an important underlying unification of the processes involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......257K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......257K"><span>Hydrocode modeling of oblique impacts into terrestrial planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendall, Jordan D.</p> <p></p> <p>The abundance of moderately siderophile elements ("iron-loving"; e.g., Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. I have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments sink through the magma ocean and settle deeper into the planet. My results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean. The largest known impact on the Moon formed the South Pole-Aitken (SP-A) basin and excavated material as deep as the mantle. Here I suggest that large impacts eject enough material to cover the farside of the Moon. During the impact process, ejecta leave the crater and travel well beyond the transient crater. Ejecta blankets depend on impactor size and angle. I use iSALE, an impact hydrocode, to determine the ejecta distribution, volume, and thickness. I calculate the trajectory of ejecta that leave the crater and return to the lunar surface. In these simulations, an ejecta blanket forms, with a thickness of kilometers, over the lunar farside. The ejecta blanket thicknesses are comparable to the difference between nearside and farside crustal thickness. Previous studies suggest other possible mechanisms for the lunar farside-nearside dichotomy. However, the impact that formed SP-A basin was large enough to eject material onto the farside. I also suggest a differentiated impactor's core would disperse downrange of the impact point underneath the basin. Doublet craters form within crater rays on terrestrial bodies. The near simultaneous impact of two projectiles results in overlapping craters. This process results in modified crater morphologies and ejecta morphologies. I modeled the impact of two identical projectiles and vary the angle, timing, and initial separation distance. In this work, I identified projectiles with a separation distance of four times their initial diameter will form distinct craters, but the ejecta from the uprange crater will overfill the downrange crater and result in a smaller crater depth. This result implies the direction of the impactor may be inferred from the crater depths. Also, I found impacts that form closer together result in elliptical or dumbbell craters depending upon the impact parameters. The ejecta curtains interact in each simulation and result in structures similar to the V-shaped ridges or "herringbone" patterns traversing clusters of secondary craters in observations. The ejecta that lands within the ridges comes from a depth that is 100 to 125 m for a 500 m impactor traveling at 1 km/s. This is less deep than the maximum excavation depth of 125 to 150 m, depending upon the impact angle. This work represents a first step towards a more comprehensive method for not only determining how doublet craters form and how aberrant craters form, such as Messier A on the Moon, but also determining how the regolith changes and the ejecta blanket forms for such impacts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050167756&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dlithology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050167756&hterms=lithology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dlithology"><span>Visible-Near Infrared Imaging Spectrometer Data of Explosion Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farr, T. G.</p> <p>2005-01-01</p> <p>In a continuing study to capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained new high resolution visible-near infrared images of several explosion craters at the Nevada Test Site. We used the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) to obtain images in 224 spectral bands from 0.4-2.5 microns [1]. The main craters that were imaged were Sedan, Scooter, Schooner, Buggy, and Danny Boy [2]. The 390 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of the detonation of a 104 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a "simple" crater [2]. Sedan was formed in alluvium of mixed lithology [3] and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also imaged by AVIRIS. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m, Fig. 1) craters were also important targets for AVIRIS as they were excavated in hard welded tuff and basaltic andesite, respectively [3, 4]. This variation in targets will allow the study of ejecta patterns, compositional modifications due to the explosions, and the role of craters as subsurface probes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21410.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21410.html"><span>Yalode Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-06-28</p> <p>Yalode crater is so large -- at 162 miles, 260 kilometers in diameter -- that a variety of vantage points is necessary to understand its geological context. This view of the northern portion of Yalode is one of many images NASA's Dawn spacecraft has taken of this crater. The large impact that formed the crater likely involved a lot of heat, which explains the relatively smooth crater floor punctuated by smaller craters. A couple of larger craters in Yalode have polygonal shapes. This type of crater shape is frequently found on Ceres and may be indicative of extensive underground fractures. The larger crater to the right of center in this image is called Lono (12 miles, 20 kilometers in diameter) and the one below it is called Besua (11 miles, 17 kilometers). Some of the small craters are accompanied by ejecta blankets that are more reflective than their surroundings. The strange Nar Sulcus fractures can be seen in the bottom left corner of the picture. Linear features seen throughout the image may have formed when material collapsed above empty spaces underground. These linear features include linear chains of craters called catenae. Dawn took this image on September 27, 2015, from 915 miles (1,470 kilometers) altitude. The center coordinates of this image are 32 degrees south latitude and 300 degrees east longitude. Yalode gets its name from a goddess worshipped by women at the harvest rites in the Dahomey culture of western Africa. Besua takes its name from the Egyptian grain god, and Lono from the Hawaiian god of agriculture. https://photojournal.jpl.nasa.gov/catalog/PIA21410</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001709','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001709"><span>Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.</p> <p>2017-01-01</p> <p>The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870063862&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870063862&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAge%2Bearth"><span>The age of the Venusian surface - Estimates using terrestrial crater data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaber, G. G.; Shoemaker, E. N.; Kozak, R. C.</p> <p>1987-01-01</p> <p>It is hypothesized that the age of the Venusian northern hemisphere surface studied thus far could be as great as the average age of the earth's crust (450 Myr). This possibility arises because of the uncertainty of the role of active and inactive cometary nuclei in the crateral history of the earth. If the observed Venusian surface were 1 Byr old, then there would be traces of the impacts of a half dozen or more large cometary nuclei which penetrated the atmosphere and formed craters over 100 km in diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890049119&hterms=kant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkant','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890049119&hterms=kant&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkant"><span>Geology and deposits of the lunar Nectaris basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spudis, P. D.; Hawke, B. R.; Lucey, P. G.</p> <p>1989-01-01</p> <p>The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPSC...19...51S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPSC...19...51S"><span>Geology and deposits of the lunar Nectaris basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spudis, P. D.; Hawke, B. R.; Lucey, P. G.</p> <p></p> <p>The geology and composition of Nectaris basin deposits have been investigated in order to provide information on the lunar basin-forming process and the regional geologic setting of the Apollo 16 landing site. Several outcrops of nearly pure anorthosite were noted in locations such as the walls of Kant crater, an inner ring of the basin, and the crater Bohnenberger F. The results suggest that the impact can be modeled as a proportional-growth crater, and that the Nectaris excavation cavity was about 470 km in diameter and as deep as 55 km.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.P53E2170K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.P53E2170K"><span>Preliminary Geological Map of the Ac-H-3 Dantu Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kneissl, T.; Schmedemann, N.; Neesemann, A.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Frigeri, A.; Ruesch, O.; Hiesinger, H.; Walter, S. H. G.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Platz, T.; Hoffmann, M.; Schäfer, M.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.; Kersten, E.; Naß, A.</p> <p>2015-12-01</p> <p>We are using Dawn spacecraft data to create a geologic map of the Ac-H-3 Dantu Quadrangle of dwarf planet Ceres. The quadrangle is located between 21-66˚N and 90-180˚E and includes the following dominant features: 1) the central and northern portion of the 124.6 km diameter impact crater Dantu; 2) crater chains and/or grooves oriented in an east-west direction; 3) a portion of the 84 km diameter impact crater Gaue, whose ejecta blanket covers the SW corner of the quadrangle. Dantu is a complex impact crater showing terraces, a central pit structure, concentric fractures, and smooth deposits on the crater floor. The materials interpreted to be ejecta deposits of Dantu show low crater frequencies and dominate the southern half of the quadrangle. These deposits appear to be relatively bright and correspond to parts of the #2 high albedo region observed by (1) with the HST indicating different composition and/or material properties than the surroundings. The east-west striking crater chains and grooves are mainly found in the southern half of the quadrangle. They seem to be connected to the crater chains found in Ac-H-4 Ezinu, the neighboring quadrangle to the east, and are potentially related to ballistic ejecta emplacement (see 2). Further work will be focused on Dantu crater and its complex interior and exterior. The current geologic map is based on Framing Camera (FC) image mosaics derived from Approach (~1.3 km/px) and Survey (~400 m/px) data as well as digital terrain models (DTMs) derived from stereo imagery. In the course of the mission, we will incorporate mosaics from the High Altitude Mapping Orbit (~140 m/px, Fall 2015) and Low Altitude Mapping Orbit (~35 m/px, Spring 2016) phases. We acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work is partly supported by the German Space Agency (DLR), grant 50 OW 1101. (1) Li, J-Y. et al. (2006), Icarus, 182, 143-160. (2) Scully, J.E.C. et al. (2015), this conference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..153..142S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..153..142S"><span>Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schulzeck, F.; Schröder, S. E.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Raymond, C. A.; Russell, C. T.</p> <p>2018-04-01</p> <p>Imaging by the Dawn-spacecraft reveals that fresh craters on Ceres below 40 km often exhibit numerous boulders. We investigate how the fast rotating, low-gravity regime on Ceres influences their deposition. We analyze size-frequency distributions of ejecta blocks of twelve boulder craters. Global and local landing sites of boulder crater ejecta and boulder velocities are determined by the analytical calculation of elliptic particle trajectories on a rotating body. The cumulative distributions of boulder diameters follow steep-sloped power-laws. We do not find a correlation between boulder size and the distance of a boulder to its primary crater. Due to Ceres' low gravitational acceleration and fast rotation, ejecta of analyzed boulder craters (8-31 km) can be deposited across the entire surface of the dwarf planet. The particle trajectories are strongly influenced by the Coriolis effect as well as the impact geometry. Fast ejecta of high-latitude craters accumulate close to the pole of the opposite hemisphere. Fast ejecta of low-latitude craters wraps around the equator. Rotational effects are also relevant for the low-velocity regime. Boulders are ejected at velocities up to 71 m/s.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21454.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21454.html"><span>A Dragonfly-Shaped Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-10</p> <p>The broader scene for this image is the fluidized ejecta from Bakhuysen Crater to the southwest, but there's something very interesting going on here on a much smaller scale. A small impact crater, about 25 meters in diameter, with a gouged-out trench extends to the south. The ejecta (rocky material ejected from the crater) mostly extends to the east and west of the crater. This "butterfly" ejecta is very common for craters formed at low impact angles. Taken together, these observations suggest that the crater-forming impactor came in at a low angle from the north, hit the ground and ejected material to the sides. The top of the impactor may have sheared off ("decapitating" the impactor) and continued downrange, forming the trench. We can't prove that's what happened, but this explanation is consistent with the observations. Regardless of how it formed, it's quite an interesting-looking "dragonfly" crater. The map is projected here at a scale of 50 centimeters (19.69 inches) per pixel. [The original image scale is 55.7 centimeters (21.92 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21454</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920018008&hterms=SIG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DSIG','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920018008&hterms=SIG&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DSIG"><span>Meteoroid and debris special investigation group; status of 3-D crater analysis from binocular imagery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sapp, Clyde A.; See, Thomas H.; Zolensky, Michael E.</p> <p>1992-01-01</p> <p>During the 3 month deintegration of the LDEF, the M&D SIG generated approximately 5000 digital color stereo image pairs of impact related features from all space exposed surfaces. Currently, these images are being processed at JSC to yield more accurate feature information. Work is currently underway to determine the minimum number of data points necessary to parametrically define impact crater morphologies in order to minimize the man-hour intensive task of tie point selection. Initial attempts at deriving accurate crater depth and diameter measurements from binocular imagery were based on the assumption that the crater geometries were best defined by paraboloid. We made no assumptions regarding the crater depth/diameter ratios but instead allowed each crater to define its own coefficients by performing a least-squares fit based on user-selected tiepoints. Initial test cases resulted in larger errors than desired, so it was decided to test our basic assumptions that the crater geometries could be parametrically defined as paraboloids. The method for testing this assumption was to carefully slice test craters (experimentally produced in an appropriate aluminum alloy) vertically through the center resulting in a readily visible cross-section of the crater geometry. Initially, five separate craters were cross-sectioned in this fashion. A digital image of each cross-section was then created, and the 2-D crater geometry was then hand-digitized to create a table of XY position for each crater. A 2nd order polynomial (parabolic) was fitted to the data using a least-squares approach. The differences between the fit equation and the actual data were fairly significant, and easily large enough to account for the errors found in the 3-D fits. The differences between the curve fit and the actual data were consistent between the caters. This consistency suggested that the differences were due to the fact that a parabola did not sufficiently define the generic crater geometry. Fourth and 6th order equations were then fitted to each crater cross-section, and significantly better estimates of the crater geometry were obtained with each fit. Work is presently underway to determine the best way to make use of this new parametric crater definition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050165131','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050165131"><span>The Effect of Projectile Density and Disruption on the Crater Excavation Flow-Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, Jennifer L. B.; Schultz, P. H.</p> <p>2005-01-01</p> <p>The ejection parameters of material excavated by a growing crater directly relate to the subsurface excavation flow-field. The ejection angles and speeds define the end of subsurface material streamlines at the target surface. Differences in the subsurface flow-fields can be inferred by comparing observed ejection parameters of various impacts obtained using three-dimensional particle image velocimetry (3D PIV). The work presented here investigates the observed ejection speeds and angles of material ejected during vertical (90 impact angle) experimental impacts for a range of different projectile types. The subsurface flow-fields produced during vertical impacts are simple when compared with that of oblique impacts, affected primarily by the depth of the energy and momentum deposition of the projectile. This depth is highly controlled by the projectile/target density ratio and the disruption of the projectile (brittle vs. ductile deformation). Previous studies indicated that cratering efficiency and the crater diameter/depth ratio were affected by projectile disruption, velocity, and the projectile/target density ratio. The effect of these projectile properties on the excavation flow-field are examined by comparing different projectile materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..299..475M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..299..475M"><span>Small lunar craters at the Apollo 16 and 17 landing sites - morphology and degradation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahanti, P.; Robinson, M. S.; Thompson, T. J.; Henriksen, M. R.</p> <p>2018-01-01</p> <p>New analysis and modeling approaches are applied to high-resolution images and topography of the Apollo 16 and 17 landing sites to investigate the morphology and estimate degradation of small lunar craters (SLCs; 35 to 250 m diameter). We find SLCs at the two sites are mostly degraded with an average depth-diameter ratio (d/D) < 0.1 , resulting in a landscape dominated by shallow, inverted cone-shaped craters. An improved standardized morphological classification and a novel set of quantitative shape indicators are defined and used to compare SLCs between the two sites. Our classification methodology allows morphological class populations to be designated with minimal (and measurable) ambiguity simplifying the study of SLC degradation at different target regions. SLC shape indicators are computationally obtained from topography, further facilitating a quantitative and repeatable comparison across study areas. Our results indicate that the interior slopes of SLCs evolve faster and through different processes relative to larger craters ( > 500 m). Assuming SLCs are formed with large initial depth-to-diameter ratio (d/D ≥ 0.2), our observation that even the fresher SLCs are relatively shallow imply that a faster mass wasting process post-formation stabilizes the crater walls and eventually slows down degradation. We also found that the Apollo 16 Cayley plains have a higher percentage of fresh craters than the Apollo 17 Taurus Littrow (TL) plains. A combination of a less-cohesive target material and/or seismic shaking resulting from moonquakes or the impact of Tycho crater secondaries was likely responsible for a higher degradation rate in the TL-plains compared to the Cayley plains. This study explores the relationship between the symmetry and probability densities of key morphological traits like d/D, mean wall slope and rate of degradation. We show that the shape of d/D probability density function of SLCs in a study area encodes their rate of degradation. Comparison of power-law fitting and probabilistic modeling of depth-diameter relations shows that probabilistic methods complement regression models and are necessary for robust prediction of SLC depths from diameter (and vice versa) for different geological targets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19443.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19443.html"><span>Details of MESSENGER Impact Location</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-29</p> <p>These graphics show the current best prediction of the location and time of NASA MESSENGER impact on Mercury surface. These current best estimates are: Date: 30 April 2015 Time: 3:26:02 pm EDT 19:26:02 UTC Latitude: 54.4° N Longitude: 210.1° E. Traveling at 3.91 kilometers per second (over 8,700 miles per hour), the MESSENGER spacecraft will collide with Mercury's surface, creating a crater estimated to be 16 meters (52 feet) in diameter. View this image to learn about the named features and geology of this region on Mercury. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Top Image Latitude Range: 49°-59° N Top Image Longitude Range: 204°-217° E Topography in Top Image: Exaggerated by a factor of 5.5. Colors in Top Image: Coded by topography. The tallest regions are colored red and are roughly 3 kilometers (1.9 miles) higher than low-lying areas such as the floors of impact craters, colored blue. Scale in Top Image: The large crater on the left side of the image is Janacek, with a diameter of 48 kilometers (30 miles) http://photojournal.jpl.nasa.gov/catalog/PIA19443</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........28V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........28V"><span>Expanded Craters on Mars: Implications for Shallow, Mid-latitude Excess Ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viola, Donna</p> <p></p> <p>Understanding the age and distribution of shallow ice on Mars is valuable for interpreting past and present climate conditions, and has implications on habitability and future in situ resource utilization. Many ice-related features, such as lobate debris aprons and concentric crater fill, have been studied using a range of remote sensing techniques. Here, I explore the distribution of expanded craters, a form of sublimation thermokarst where shallow, excess ice has been destabilized and sublimated following an impact event. This leads to the collapse of the overlying dry regolith to produce the appearance of diameter widening. The modern presence of these features suggests that excess ice has remained preserved in the terrain immediately surrounding the craters since the time of their formation in order to maintain the surface. High-resolution imagery is ideal for observing thermokarst features, and much of the work described here will utilize data from the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO). Expanded craters tend to be found in clusters that emanate radially from at least four primary craters in Arcadia Planitia, and are interpreted as secondary craters that formed nearly simultaneously with their primaries. Crater age dates of the primaries indicate that the expanded secondaries, as well as the ice layer into which they impacted, must be at least tens of millions of years old. Older double-layer ejecta craters in Arcadia Planitia commonly have expanded craters superposed on their ejecta - and they tend to be more expanded (with larger diameters) in the inner ejecta layer. This has implications on the formation mechanisms for craters with this unique ejecta morphology. Finally, I explore the distribution of expanded craters south of Arcadia Planitia and across the southern mid-latitudes, along with scalloped depressions (another form of sublimation thermokarst), in order to identify the modern excess ice boundary in this region and any longitudinal variations. This study identifies some potential low-latitude locations with patchy excess ice, possibly preserved during a past climate. Through these studies, I will infer regions that contain abundant ice today and consider the implications that this ice has on both the martian climate and future exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43C2118B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43C2118B"><span>Is Ceres' deep interior ice-rich? Constraints from crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.</p> <p>2016-12-01</p> <p>Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760027783&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplastic%2Bimpacts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760027783&hterms=plastic+impacts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dplastic%2Bimpacts"><span>Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.</p> <p>1975-01-01</p> <p>Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016352&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016352&hterms=originals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Doriginals"><span>Original size of the Vredefort structure, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Therriault, A. M.; Reid, A. M.; Reimold, W. U.</p> <p>1993-01-01</p> <p>The Vredefort structure is located approximately 120 km southwest of Johannesburg, South Africa, and is deeply eroded. Controversies remain on the origin of this structure with the most popular hypotheses being: (1) by impact cratering about 2.0 Ga; (2) as a cryptoexplosion structure about 2.0 Ga; and (3) by purely tectonic processes starting at about 3.0 Ga and ending with the Vredefort event at 2.0 Ga. In view of recent work in which the granophyre dikes are interpreted as the erosional remants of a more extensive impact melt sheet, injected downward into the underlying country rocks, the impact origin hypothesis for Vredefort is adopted. In order to estimate the original dimensions of the Vredefort impact structure, it is assumed that the structure was initially circular, that its predeformation center corresponds to the center of the granitic core, and that the pre-Vredefort geology of the area prior to approximately 2.0 Ga ago is as suggested by Fletcher and Reimold. The spatial relationship between shock metamorphic effects, the shock pressures they record, and the morphological features of the crater were established for a number of large terrestrial craters. The principles of crater formation at large complex impact structures comparable in size to Vredefort were also established, although many details remain unresolved. An important conclusion is that the transient crater, which is formed directly by excavation and displacement by the shock-induced cratering flow-field (i.e., the particle velocity flow field existing in the region of the transient crater but behind the initial outgoing shock front), is highly modified during the late stage processes. The original transient crater diameter lies well within the final rim of the crater, which is established by structural movements during late-stage cavity modification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016310&hterms=mechanics+rocks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmechanics%2Brocks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016310&hterms=mechanics+rocks&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmechanics%2Brocks"><span>Delimitation of terrestrial impact craters by way of pseudotachylytic rock distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spray, John G.</p> <p>1993-01-01</p> <p>The determination of the shape and size of terrestrial impact craters is problematic, yet is critical to understanding cratering mechanics and for scaling bolide mass, volume, and impact velocity with crater size and target response. The problem is particularly difficult in older geological terrains (e.g. Precambrian) which are more likely to have suffered post-impact deformation and hence distortion of the original structure and/or where weathering may have partly removed or obscured its original shape. Traditionally, a number of features are used to assist us in determining the shape and size of an impact structure. These include the following: (1) the occurrence of faults, especially those disposed concentrically relative to the crater--the outermost ring faults being interpreted as indicating a viable minimum diameter; and (2) the development of so-called breccias, some of which are also associated with faults (e.g. the Sudbury Breccia developed within the target rocks of the Sudbury Structure of Onta rio, Canada). 'Breccia' is not a satisfactory term because a number of breccia-types exist at impact sites (e.g. fall-back breccias and in-situ brecciated target material). Of relevance to crater diameter determination is the recognition of discrete zones and fault- and shock-related pseudotachylyte. Pseudotachylyte is a rock type comprising a fine-grained, usually dark matrix containing clasts of minerals and/or rock derived from the country rock target material. It origin is normally attributed to high-speed slip (including vibration) along a slip surface (i.e. fault) or to the passage of a shock wave through the host material. The clasts can occur as angular fragments (i.e. like a breccia), but are more commonly developed as rounded to sub-rounded fragments. Significantly, the scale of these pseudotachylytes can range from sub-millimeter thick veinlets to dyke-like bodies up to 1 km or more thick. It is the latter, larger occurrence which has been referred to as 'breccia.' The smaller-sized occurrence is generally not recognized in the field, nor is it traditionally associated with its larger counterpart.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011921"><span>The cratering record in the inner solar system: Implications for earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1988-01-01</p> <p>Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass extinctions is 10 km in diameter. Thus impactors greater than or equal to the size postulated for K-T impactor are rare within the inner solar system since the end of heavy bombardment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003137"><span>Three ages of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, Charles A.; Coombs, Cassandra R.</p> <p>1989-01-01</p> <p>A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPICo.708...54W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPICo.708...54W"><span>Three ages of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Charles A.; Coombs, Cassandra R.</p> <p></p> <p>A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090014052&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090014052&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmass%2Bwasting"><span>Degradation of Victoria Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wilson, Sharon A.; Grant, John A.; Cohen, Barbara A.; Golombek, Mathew P.; Geissler, Paul E.; Sullivan, Robert J.; Kirk, Randolph L.; Parker, Timothy J.</p> <p>2008-01-01</p> <p>The $\\sim$750 m diameter and $\\sim$75 m deep Victoria crater in Meridiani Planum, Mars, presents evidence for significant degradation including a low, serrated, raised rim characterized by alternating alcoves and promontories, a surrounding low relief annulus, and a floor partially covered by dunes. The amount and processes of degradation responsible for the modified appearance of Victoria crater were evaluated using images obtained in situ by the Mars Exploration Rover Opportunity in concert with a digital elevation model created using orbital HiRISE images. Opportunity traversed along the north and northwest rim and annulus, but sufficiently characterized features visible in the DEM to enable detailed measurements of rim relief, ejecta thickness, and wall slopes around the entire degraded, primary impact structure. Victoria retains a 5 m raised rim consisting of 1-2 m of uplifted rocks overlain by 3 m of ejecta at the rim crest. The rim is $\\sim$120 to 220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine craters 500 to 750 m across indicate the original, pristine crater was close to 600 m in diameter. Hence, the crater has been erosionally widened by approximately 150 m and infilled by about 50 m of sediments. Eolian processes are responsible for modification at Victoria, but lesser contributions from mass wasting or other processes cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for $\\sim$50 m widening across a WNW-ESE diameter. The volume of material eroded from the crater walls and rim is $\\sim$20% less than the volume of sediments partially filling the crater, indicating eolian infilling from sources outside the crater over time. The annulus formed when $\\sim$1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped darker, regional basaltic sands.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JGRE..118..278I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JGRE..118..278I"><span>Distribution of Early, Middle, and Late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irwin, Rossman P.; Tanaka, Kenneth L.; Robbins, Stuart J.</p> <p>2013-02-01</p> <p>Most of the geomorphic changes on Mars occurred during the Noachian Period, when the rates of impact crater degradation and valley network incision were highest. Fluvial erosion around the Noachian/Hesperian transition is better constrained than the longer-term landscape evolution throughout the Noachian Period, when the highland intercrater geomorphic surfaces developed. We interpret highland resurfacing events and processes using a new global geologic map of Mars (at 1:20,000,000 scale), a crater data set that is complete down to 1 km in diameter, and Mars Orbiter Laser Altimeter topography. The Early Noachian highland (eNh) unit is nearly saturated with craters of 32-128 km diameter, the Middle Noachian highland (mNh) unit has a resurfacing age of ~4 Ga, and the Late Noachian highland unit (lNh) includes younger composite surfaces of basin fill and partially buried cratered terrain. These units have statistically distinct ages, and their distribution varies with elevation. The eNh unit is concentrated in the high-standing Hellas basin annulus and in highland terrain that was thinly mantled by basin ejecta near 180° longitude. The mNh unit includes most of Arabia Terra, the Argyre vicinity, highland plateau areas between eNh outcrops, and the Thaumasia range. The lNh unit mostly occurs within highland basins. Crater depth/diameter ratios do not vary strongly between the eNh and mNh units, although crater losses to Noachian resurfacing appear greater in lower lying areas. Noachian resurfacing was spatially non-uniform, long-lived, and gravity-driven, more consistent with arid-zone fluvial and aeolian erosion and volcanism than with air fall mantling or mass wasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035411','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035411"><span>Origin and emplacement of impactites in the Chesapeake Bay impact structure, Virginia, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Horton, J. Wright; Gohn, G.S.; Powars, D.S.; Edwards, L.E.</p> <p>2007-01-01</p> <p>The late Eocene Chesapeake Bay impact structure, located on the Atlantic margin of Virginia, may be Earth's best-preserved large impact structure formed in a shallow marine, siliciclastic, continental-shelf environment. It has the form of an inverted sombrero in which a central crater ???40 km in diameter is surrounded by a shallower brim, the annular trough, that extends the diameter to ???85 km. The annular trough is interpreted to have formed largely by the collapse and mobilization of weak sediments. Crystalline-clast suevite, found only in the central crater, contains clasts and blocks of shocked gneiss that likely were derived from the fragmentation of the central-uplift basement. The suevite and entrained megablocks are interpreted to have formed from impact-melt particles and crystalline-rock debris that never left the central crater, rather than as a fallback deposit. Impact-modified sediments in the annular trough include megablocks of Cretaceous nonmarine sediment disrupted by faults, fluidized sands, fractured clays, and mixed-sediment intercalations. These impact-modified sediments could have formed by a combination of processes, including ejection into and mixing of sediments in the water column, rarefaction-induced fragmentation and clastic injection, liquefaction and fluidization of sand in response to acoustic-wave vibrations, gravitational collapse, and inward lateral spreading. The Exmore beds, which blanket the entire crater and nearby areas, consist of a lower diamicton member overlain by an upper stratified member. They are interpreted as unstratified ocean-resurge deposits, having depositional cycles that may represent stages of inward resurge or outward anti-resurge flow, overlain by stratified fallout of suspended sediment from the water column. ?? 2008 The Geological Society of America. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11878353','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11878353"><span>Cratering rates on the Galilean satellites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zahnle, K; Dones, L; Levison, H F</p> <p>1998-12-01</p> <p>We exploit recent theoretical advances toward the origin and orbital evolution of comets and asteroids to obtain revised estimates for cratering rates in the jovian system. We find that most, probably more than 90%, of the craters on the Galilean satellites are caused by the impact of Jupiter-family comets (JFCs). These are comets with short periods, in generally low-inclination orbits, whose dynamics are dominated by Jupiter. Nearly isotropic comets (long period and Halley-type) contribute at the 1-10% level. Trojan asteroids might also be important at the 1-10% level; if they are important, they would be especially important for smaller craters. Main belt asteroids are currently unimportant, as each 20-km crater made on Ganymede implies the disruption of a 200-km diameter parental asteroid, a destruction rate far beyond the resources of today's asteroid belt. Twenty-kilometer diameter craters are made by kilometer-size impactors; such events occur on a Galilean satellite about once in a million years. The paucity of 20-km craters on Europa indicates that its surface is of order 10 Ma. Lightly cratered surfaces on Ganymede are nominally of order 0.5-1.0 Ga. The uncertainty in these estimates is about a factor of five. Callisto is old, probably more than 4 Ga. It is too heavily cratered to be accounted for by the current flux of JFCs. The lack of pronounced apex-antapex asymmetries on Ganymede may be compatible with crater equilibrium, but it is more easily understood as evidence for nonsynchronous rotation of an icy carapace. c 1998 Academic Press.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PP-0138&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PP-0138&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PP-0138</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Emerging through the smoke and steam, the Boeing Delta II rocket carrying NASAs Deep Impact spacecraft lifts off at 1:47 p.m. EST from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0137&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0137&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0137</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. After a perfect liftoff at 1:47 p.m. EST today from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket with Deep Impact spacecraft aboard soars through the clear blue sky. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0132&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0132&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0132</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Guests of NASA gather near the launch site at Cape Canaveral Air Force Station, Fla., to watch the Deep Impact spacecraft as it speeds through the air after a perfect launch at 1:47 p.m. EST. A NASA Discovery mission, Deep Impact is heading for space and a rendezvous 83 million miles from Earth with Comet Tempel 1. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2460&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2460&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2460</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Boeing Delta II rocket arrives at the top of the mobile service tower. The element will be mated to the Delta II, which will launch NASAs Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994Sci...266.1848S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994Sci...266.1848S"><span>Ancient Multiring Basins on the Moon Revealed by Clementine Laser Altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spudis, Paul D.; Reisse, Robert A.; Gillis, Jeffrey J.</p> <p>1994-12-01</p> <p>Analysis of laser altimetry data from Clementine has confirmed and extended our knowledge of nearly obliterated multiring basins on the moon. These basins were formed during the early bombardment phase of lunar history, have been filled to varying degrees by mare lavas and regional ejecta blankets, and have been degraded by the superposition of large impact craters. The Mendel-Rydberg Basin, a degraded three-ring feature over 600 kilometers in diameter on the lunar western limb, is about 6 kilometers deep from rim to floor, only slightly less deep than the nearby younger and much better preserved Orientale Basin (8 kilometers deep). The South Pole-Aitken Basin, the oldest discernible impact feature on the moon, is revealed as a basin 2500 kilometers in diameter with an average depth of more than 13 kilometers, rim crest to floor. This feature is the largest, deepest impact crater yet discovered in the solar system. Several additional depressions seen in the data may represent previously unmapped ancient impact basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23360995','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23360995"><span>The Tissint Martian meteorite as evidence for the largest impact excavation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baziotis, Ioannis P; Liu, Yang; DeCarli, Paul S; Melosh, H Jay; McSween, Harry Y; Bodnar, Robert J; Taylor, Lawrence A</p> <p>2013-01-01</p> <p>High-pressure minerals in meteorites provide clues for the impact processes that excavated, launched and delivered these samples to Earth. Most Martian meteorites are suggested to have been excavated from 3 to 7 km diameter impact craters. Here we show that the Tissint meteorite, a 2011 meteorite fall, contains virtually all the high-pressure phases (seven minerals and two mineral glasses) that have been reported in isolated occurrences in other Martian meteorites. Particularly, one ringwoodite (75 × 140 μm(2)) represents the largest grain observed in all Martian samples. Collectively, the ubiquitous high-pressure minerals of unusually large sizes in Tissint indicate that shock metamorphism was widely dispersed in this sample (~25 GPa and ~2,000 °C). Using the size and growth kinetics of the ringwoodite grains, we infer an initial impact crater with ~90 km diameter, with a factor of 2 uncertainty. These energetic conditions imply alteration of any possible low-T minerals in Tissint.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-03-30</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Investigate all of Chappy's ejecta, at full resolution: lroc.sese.asu.edu/posts/901 Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001563"><span>Ancient fluvial processes in the equatorial highlands of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Craddock, Robert A.; Maxwell, Ted A.</p> <p>1991-01-01</p> <p>Martian highland craters typically lack ejecta deposits, have no noticeable rim, and are flat floored. In addition, crater size frequency distribution curves show that highland craters have depleted populations less than 20 km in diameter. A variety of processes have been suggested to explain these observations including deposition of aeolian or volcanic materials up to the crater rim crests, thermal creep, terrain softening, and mass wasting. However, none of these processes adequately explains both the crater morphology and population distribution. In order to explain both the Martian highland crater morphology and population distribution, a fluvial process is proposed which is capable of removing the loose crater rim material. The resulting effect is to decrease the crater diameter, thereby causing the population curves to bendover. The eroded material is redistributed, burying or partially burying smaller diameter craters before complete erosion. This material may also be deposited into local topographic lows, creating the depositional basins observed. A fluvial process explains both sets of observations: crater morphology and crater population distribution curves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH11A1886M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH11A1886M"><span>The shapes of fragments in hypervelocity impact experiments ranging from cratering to catastrophic disruption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michikami, T.; Hagermann, A.; Kadokawa, T.; Yoshida, A.; Shimada, A.; Hasegawa, S.; Tsuchiyama, A.</p> <p>2015-12-01</p> <p>Laboratory impact experiments have found that the shapes of impact fragments as defined by axes a, b and c, these being the maximum dimensions of the fragment in three mutually orthogonal planes (a ≥ b ≥ c) are distributed around mean values of the axial ratios b/a ~0.7 and c/a ~0.5, i.e., corresponding to a : b: c in the simple proportion 2: √2: 1. The shape distributions of some boulders on asteroid Eros, the small- and fast-rotating asteroids (diameter < 200 m and rotation period < 1 h), and asteroids in young families, are similar to those of laboratory fragments in catastrophic disruption. However, the shapes of laboratory fragments were obtained from the experiments that resulted in catastrophic disruption, a process that is different from impact cratering. In order to systematically investigate the shapes of fragments in the range from impact cratering to catastrophic disruption, impact experiments for basalt targets 5 to 15 cm in size were performed. A total of 28 impact experiments were carried out by a spherical nylon projectile (diameter 7.14 mm) perpendicularly into the target surface at velocities of 1.6 to 7.0 km/s. More than 13,000 fragments with b ≥ 4 mm generated in the impact experiments were measured. In the experiments, the mean value of c/a in each impact decreases with decreasing impact energy per unit target mass. For instance, the mean value of c/a in an impact cratering event is nearly 0.2, which is less than that c/a in a catastrophic disruption (~0.5). To apply the experimental results to real collisions on asteroids, we investigated the shapes of 21 arbitrarily selected boulders (> 8 m) on asteroid Itokawa. The mean value of c/a of these boulders is 0.46, which is similar to the value for catastrophic disruption. This implies that the parent body of Itokawa could have experienced a catastrophic disruption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950028413&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950028413&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbarlow"><span>Sinuosity of Martian rampart ejecta deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.</p> <p>1994-01-01</p> <p>The sinuosities of 2213 Martian rampart ejecta craters are quantified through measurement of the ejecta flow front perimeter and ejecta area. This quantity, called lobateness, was computed for each complete lobe of the 1582 single lobe (SL), 251 double lobe (DL), and 380 multiple lobe (ML) craters included in this study. A lobateness value of 1 indicates a circular ejecta blanket, whereas more sinuous ejecta perimeters have lobateness values greater than 1. Although resolution does have an effect on the absolute values of lobateness, the general relationships between lobateness and morphology exist regardless of resolution. Evaluation of the lobateness values reveals that the outer lobes of DL and ML craters have higher median lobateness values (i.e., are more sinuous) than the inner lobes. The outermost lobe of ML craters displays higher lobateness values than the outer lobe of DL craters or the single lobe of SL craters. Previous reports of lobateness-diameter, lobateness-latitude, and lobateness-terrain relationships for rampart craters are not supported by this study. Many of the differences between the results of this study and the previous lobateness analyses can be attributed to the inclusion of resolution effects and the distinction between different ejecta morphologies in this study. The results of this study taken together with a previous analysis of the distribution and diameter dependence of different ejecta morphologies are most consistent with the theory that Martian lobate ejecta morphologies form from impact into subsurface volatiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12995.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12995.html"><span>Dust-Mantled Topography near Zephyria Tholus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-03-31</p> <p>This image captured by NASA Mars Reconnaissance Orbiter covers some high-standing topography just outside the rim of an impact crater about 30 kilometers 19 miles in diameter near a Martian hill named Zephyria Tholus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0113&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0113&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0113</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>JET PROPULSION LABORATORY, CALIF. At Ball Aerospace in Boulder, Colo., the infrared (IR) spectrometer for the Deep Impact flyby spacecraft is inspected in the instrument assembly area in the Fisher Assembly building clean room. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The spectrometer is part of the High Resolution Instrument in the spacecraft. This imager will be aimed at the ejected matter as the crater forms, and an infrared 'fingerprint' of the material from inside of the comet's nucleus will be taken. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..302..134D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..302..134D"><span>Testing models for the formation of the equatorial ridge on Iapetus via crater counting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.</p> <p>2018-03-01</p> <p>Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000025362&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhomogenization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000025362&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhomogenization"><span>Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshall, John R.</p> <p>1999-01-01</p> <p>Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self- limitations as grain-population density constrains the free-path motion of individual grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000025352&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhomogenization','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000025352&hterms=homogenization&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhomogenization"><span>Unique Aeolian Transport Mechanisms on Mars: Respective Roles of Percussive and Repercussive Grain Populations in the Sediment Load</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marshall, John R.</p> <p>1999-01-01</p> <p>Experiments show that when sand-size grains impact a sediment surface with energy levels commensurate for Mars, small craters are formed by the ejection of several hundred grains from the bed. The experiments were conducted with a modified crossbow in which a sand-impelling sabot replaced the bolt-firing mechanism. Individual grains of sand could be fired at loose sand targets to observe ballistic effects unhindered by aerodynamic mobilization of the bed. Impact trajectories simulated the saltation process on dune surfaces. Impact craters were not elongated despite glancing (15 deg.) bed impact; the craters were very close to being circular. High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 um-diameter grains into similar material. This behavior is explained by deposition of elastic energy in the bed by the "percussive" grain. Impact creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains to open packing and they consequently become forcefully ejected from the site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. A stress model based on repercussive bed dilatancy and interparticle adhesive forces (for smaller grains) predicts, to first order, the observed crater volumes for various impact conditions. On earth, only a few grains are mobilized by a percussive saltating grain; some grains are "knudged" along the ground, and some are partly expelled on short trajectories. These motions constitute reptation transport. On Mars, saltation and reptation become indistinct: secondary or "repercussive" trajectories have sufficient vertical impulse to create a dense saltation population of many tens or hundreds of grains for each single high-speed saltation percussion of the bed. Impact cascading will lead to near-surface distortion of the boundary layer, and choked flow formed by a dense "slurry" of sand, with the majority of grains mobilized by repercussive forces rather than by aerodynamic lift. This proceeds until a fully-matured transport layer imposes self-limitations as grain-population density constrains the free-path motion of individial grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920014066','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920014066"><span>Large craters on the meteoroid and space debris impact experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Humes, Donald H.</p> <p>1992-01-01</p> <p>Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDG39010B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDG39010B"><span>Investigating large-scale secondary circulations within impact crater topographies in a refractive index-matched facility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blois, Gianluca; Kim, Taehoon; Bristow, Nathan; Day, Mackenzie; Kocurek, Gary; Anderson, William; Christensen, Kenneth</p> <p>2017-11-01</p> <p>Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter >10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4641809W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4641809W"><span>Reassessing the Crater Distributions on Ganymede and Callisto: Results from Voyager and Galileo, and an Outlook to ESA's JUICE Mission to Jupiter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Roland; Schmedemann, Nico; Neukum, Gerhard; Werner, Stephanie C.; Ivanov, Boris A.; Stephan, Katrin; Jaumann, Ralf; Palumbo, Pasquale</p> <p>2014-11-01</p> <p>Crater distributions and origin of potential impactors on the Galilean satellites has been an issue of controversial debate. In this work, we review the current knowledge of the cratering record on Ganymede and Callisto and present strategies for further studies using images from ESA’s JUICE mission to Jupiter. Crater distributions in densely cratered units on these two satellites show a complex shape between 20 m and 200 km crater diameter, similar to lunar highland distributions implying impacts of members of a collisionally evolved projectile family. Also, the complex shape predominantly indicates production distributions. No evidence for apex-antapex asymmetries in crater frequency was found, therefore the majority of projectiles (a) preferentially impacted from planetocentric orbits, or (b) the satellites were rotating non-synchronously during a time of heavy bombardment. The currently available imaging data are insufficient to investigate in detail significant changes in the shape of crater distributions with time. Clusters of secondary craters are well mappable and excluded from crater counts, lack of sufficient image coverage at high resolution, however, in many cases impedes the identification of source craters. ESA’s future JUICE mission will study Ganymede as the first icy satellite in the outer Solar system from an orbit under stable viewing conditions. Measurements of crater distributions can be carried out based on global geologic mapping at highest spatial resolutions (10s of meters down to 3 m/pxl).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060009017&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddepression%2Bmexico','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060009017&hterms=depression+mexico&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddepression%2Bmexico"><span>Superficial Deposits at Gusev Crater Along Spirit Rover Traverses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grant, J. A.; Arvidson, R.; Bell, J. F., III; Cabrol, N. A.; Carr, M. H.; Christensen, P.; Crumpler, L.; DesMarsais, D.; Ehlmann, B. L.; Ming, Douglas W.</p> <p>2004-01-01</p> <p>The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes.Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth.Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows.The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770022098','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770022098"><span>Investigations of primary and secondary impact structures on the moon and laboratory experiments to study the ejecta of secondary particles. Ph.D. Thesis - Ruprecht Karl Univ.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koenig, B.</p> <p>1977-01-01</p> <p>Young lunar impact structures were investigated by using lunar orbiter, Apollo Metric and panorama photographs. Measurements on particularly homogeneous areas low in secondary craters made possible an expansion of primary crater distribution to small diameters. This is now sure for a range between 20m or = D or = 20km and this indicates that the size and velocity distribution of the impacting bodies in the last 3 billion years has been constant. A numerical approximation in the form of a 7th degree polynomial was obtained for the distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026735','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026735"><span>Surficial deposits at Gusev crater along Spirit Rover traverses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Arvidson, R.; Bell, J.F.; Cabrol, N.A.; Carr, M.H.; Christensen, P.; Crumpler, L.; Des Marais, D.J.; Ehlmann, B.L.; Farmer, J.; Golombek, M.; Grant, F.D.; Greeley, R.; Herkenhoff, K.; Li, R.; McSween, H.Y.; Ming, D. W.; Moersch, J.; Rice, J. W.; Ruff, S.; Richter, L.; Squyres, S.; Sullivan, R.; Weitz, C.</p> <p>2004-01-01</p> <p>The Mars Exploration Rover Spirit has traversed a fairly flat, rock-strewn terrain whose surface is shaped primarily by impact events, although some of the landscape has been altered by eolian processes. Impacts ejected basaltic rocks that probably were part of locally formed lava flows from at least 10 meters depth. Some rocks have been textured and/or partially buried by windblown sediments less than 2 millimeters in diameter that concentrate within shallow, partially filled, circular impact depressions referred to as hollows. The terrain traversed during the 90-sol (martian solar day) nominal mission shows no evidence for an ancient lake in Gusev crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6486S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6486S"><span>Preliminary Results from Initial Investigations of Ceres' Cratering Record from Dawn Imaging Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, Nico; Michael, Gregory; Ivanov, Boris A.; Kneissl, Thomas; Neesemann, Adrian; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.</p> <p>2015-04-01</p> <p>The highly successful Dawn mission [1] finished data collection at Vesta in 2012 and is now on its way to the dwarf planet Ceres. According to the current Ceres approach timeline of the Dawn mission, the ground resolution of the Dawn FC camera [2] will be about 10 times better than Hubble data [3] at the time of the presentation of this work. This may allow for identification of craters about 15 km in diameter. Initial mapping of sample areas may provide enough information of the cratering record in order to compare it with the theoretical Ceres crater production function we present at the 46th LPSC conference (March 16-20, 2015, The Woodlands, Texas) [4]. Our preliminary crater production function for Ceres is derived from the assumption of an icy crust just below a thin surface layer of dust [5], and a projectile population that is very similar to the one that impacted the Moon [6]. In order to scale the lunar cratering record to Ceres we use the Ivanov scaling laws [7], which allow for crater scaling based on parameters that can be derived from observations. The lunar-like approach gave reasonable good results for the crater production function on the asteroids Vesta, Ida, Lutetia and Gaspra [8]. Since the lunar surface is of basaltic composition, the correct scaling between the different materials is challenging. One crucial parameter is the transition diameter from simple to complex craters. Based on the simple to complex transition diameter on Iapetus, an icy satellite of Saturn, we expect this transition at about 12 km crater size at Ceres. This value may be slightly different due to the different temperatures at Ceres and Iapetus. If the simple to complex transition is observed at much larger diameters, the reason could be a substantial fraction of rock in the shallow subsurface of Ceres. In an ice-rich surface material high relaxation rates may also be expected that could change the shape of the crater production function. A thorough geological mapping takes much more time than is available and, thus, will not be available at the time of the presentation. First hi-res imaging data will also provide details about crater morphologies and the major geologic units that will be analyzed during later stages of the Dawn mission. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economic Affairs and Energy, grants 50OW1101 (NS, TK, AN) and 50QM1301 (GM). BAI is supported by Program 22 RAS. References: [1] Russell C.T. et al. (2012) Science, 336, 684-686; [2] Sierks H. et al. (2011) Space Science Reviews, 163, 263-327; [3] Li J.Y. et al. (2006) Icarus, 182, 143-160; [4] Schmedemann N. et al. (2015): 46.LPSC, The Woodlands, #1418; [5] McCord T.B. et al. (2012) Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. In: Russell, C.T, Raymond, C.A. (eds.) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, 63-76; [6] Neukum G. and Ivanov B. A. (1994) Crater size distribu-tions and impact probabilities on Earth from Lunar, terrestrial planet, and asteroid cratering data. In: Gehrels T. (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, 359-416. [7] Ivanov B.A. (2001) Space Science Reviews, 96, 87-104; [8] Schmedemann N. et al. (2014), 103, 104-130.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110774&hterms=topography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtopography','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110774&hterms=topography&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dtopography"><span>Examining Topography of Mars Impact Basins to Determine If Impact Basins Have Topographic Characteristics of a Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Livingston, A.; Lewis, K.; Simmons, J.; Chavez, D.; Gchachu, K.; Newsom, H. E.; Sutherland, V.; Gordon, H.; Hare, T. M.</p> <p>2003-01-01</p> <p>Determining the topography of suspect craters on Mars will help scientists better understand the land deformation that occurs from an asteroid or comet impact. This will provide a better understanding of how Mars has changed over time and the topography data could be used for planning future missions to Mars. We have begun a program at the Southwestern Indian Polytechnic Institute (SIPI), a Bureau of Indian Affairs junior college, to analyze large impact basins on Mars (>300 km diameter) utilizing Geographic Information System (GIS) technology. Collaborators at the University of New Mexico and the U.S. Geological Survey are providing technical support for this effort.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..865L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..865L"><span>Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.; Yue, Z.; Zhang, C.; Li, D.</p> <p>2018-04-01</p> <p>To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027122','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027122"><span>Marine-target craters on Mars? An assessment study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ormo, J.; Dohm, J.M.; Ferris, J.C.; Lepinette, A.; Fairen, A.G.</p> <p>2004-01-01</p> <p>Observations of impact craters on Earth show that a water column at the target strongly influences lithology and morphology of the resultant crater. The degree of influence varies with the target water depth and impactor diameter. Morphological features detectable in satellite imagery include a concentric shape with an inner crater inset within a shallower outer crater, which is cut by gullies excavated by the resurge of water. In this study, we show that if oceans, large seas, and lakes existed on Mars for periods of time, marine-target craters must have formed. We make an assessment of the minimum and maximum amounts of such craters based on published data on water depths, extent, and duration of putative oceans within "contacts 1 and 2," cratering rate during the different oceanic phases, and computer modeling of minimum impactor diameters required to form long-lasting craters in the seafloor of the oceans. We also discuss the influence of erosion and sedimentation on the preservation and exposure of the craters. For an ocean within the smaller "contact 2" with a duration of 100,000 yr and the low present crater formation rate, only ???1-2 detectable marine-target craters would have formed. In a maximum estimate with a duration of 0.8 Gyr, as many as 1400 craters may have formed. An ocean within the larger "contact 1-Meridiani," with a duration of 100,000 yr, would not have received any seafloor craters despite the higher crater formation rate estimated before 3.5 Gyr. On the other hand, with a maximum duration of 0.8 Gyr, about 160 seafloor craters may have formed. However, terrestrial examples show that most marine-target craters may be covered by thick sediments. Ground penetrating radar surveys planned for the ESA Mars Express and NASA 2005 missions may reveal buried craters, though it is uncertain if the resolution will allow the detection of diagnostic features of marine-target craters. The implications regarding the discovery of marine-target craters on Mars is not without significance, as such discoveries would help address the ongoing debate of whether large water bodies occupied the northern plains of Mars and would help constrain future paleoclimatic reconstructions. ?? Meteoritical Society, 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01683&hterms=Small+diameter+bomb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSmall%2Bdiameter%2Bbomb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01683&hterms=Small+diameter+bomb&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSmall%2Bdiameter%2Bbomb"><span>Small Impact Craters with Dark Ejecta Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1999-01-01</p> <p><p/> When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here. <p/>The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera. <p/>Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.P51B1199S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.P51B1199S"><span>Comparison of Topographic Profiles Across Venus' Coronae and Craters: Implications for Corona Origin Hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoddard, P. R.; Jurdy, D. M.</p> <p>2006-12-01</p> <p>Venus' surface hosts nearly 1000 unambiguous impact craters, ranging in diameter from 1.5 to 280 km. Although the majority of these are pristine, slightly less than 200 have been modified by either volcanic or tectonic activity or both. In addition, numerous researchers have identified hundreds of ring-like features of varying morphology, termed "coronae." These have typically been thought of as having a diapiric or volcanic origin. Recently, however, based on the circular to quasi-circular nature of coronae, an alternative origin - impact - has been proposed. We compare the profiles across agreed-upon craters to several coronae that have been suggested as impact sites. For each feature, 36 profiles (taken every ten degrees) are aligned and then averaged together. For Mead, Cleopatra, Meitner, and Isabella craters, the profiles display the typical rim and basin structure expected for craters, but for Klenova crater the average is more domal, with only a few of the individual profiles looking crater-like. Among the "contested" coronae, the average profiles for Eurynome, Maya, and C21 appear crater-like, albeit with more variation among the individual profiles than seen in the agreed-upon craters. Anquet has a rim-and-basin structure, but unlike typical craters, the basin is elevated above the surrounding plains. Acrea appears to be a small hill in a large depression, again with a high degree of variability among the profiles. Ninhursag is clearly domal, and cannot be taken as a crater. A summary of the variability of the profiles - where 100% correlation would indicate perfect circular symmetry - indicates that, with the exception of Klenova, those features universally agreed-upon as craters have the highest correlation percentages - all at or above 80%. The disputed features are not as circular, although C21 is close. Based on this analysis, we conclude that Klenova has been mischaracterized as an impact crater, and that C21 and some other features previously classified as coronae may indeed be of impact origin. More careful analyses will be necessary to assess the origin of similar features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001340','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001340"><span>Geologic Mapping of Ejecta Deposits in Oppia Quadrangle, Asteroid (4) Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garry, W. Brent; Williams, David A.; Yingst, R. Aileen; Mest, Scott C.; Buczkowski, Debra L.; Tosi, Federico; Schafer, Michael; LeCorre, Lucille; Reddy, Vishnu; Jaumann, Ralf; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001340'); toggleEditAbsImage('author_20150001340_show'); toggleEditAbsImage('author_20150001340_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001340_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001340_hide"></p> <p>2014-01-01</p> <p>Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033918','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033918"><span>Gravity investigations of the Chesapeake Bay impact structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Plescia, J.B.; Daniels, D.L.; Shah, A.K.</p> <p>2009-01-01</p> <p>The Chesapeake Bay impact structure is a complex impact crater, ??85 km in diameter, buried beneath postimpact sediments. Its main structural elements include a central uplift of crystalline bedrock, a surrounding inner crater filled with impact debris, and an annular faulted margin composed of block-faulted sediments. The gravity anomaly is consistent with that of a complex impact consisting of a central positive anomaly over the central uplift and an annular negative anomaly over the inner crater. An anomaly is not recognized as being associated with the faulted margin or the outer edge of the structure. Densities from the Eyreville drill core and modeling indicate a density contrast of ??0.3-0.6 g cm-3 between crystalline basement and the material that fills the inner crater (e.g., Exmore breccia and suevite). This density contrast is somewhat higher than for other impact structures, but it is a function of the manner in which the crater fill was deposited (as a marine resurge deposit). Modeling of the gravity data is consistent with a depth to basement of ??1600 m at the site of Eyreville drill hole and 800 m at the central uplift. Both depths are greater than the depth at which crystalline rocks were encountered in the cores, suggesting that the cored material is highly fractured para-allochthonous rock. ?? 2009 The Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031609','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031609"><span>Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al Foil Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070031609'); toggleEditAbsImage('author_20070031609_show'); toggleEditAbsImage('author_20070031609_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070031609_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070031609_hide"></p> <p>2007-01-01</p> <p>In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070010668','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070010668"><span>Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al foil Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070010668'); toggleEditAbsImage('author_20070010668_show'); toggleEditAbsImage('author_20070010668_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070010668_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070010668_hide"></p> <p>2007-01-01</p> <p>In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01723.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01723.html"><span>Space Radar Image of the Yucatan Impact Crater Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-01-27</p> <p>This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile) crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. http://photojournal.jpl.nasa.gov/catalog/PIA01723</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P53A2172B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P53A2172B"><span>Mapping Ejecta Thickness Around Small Lunar Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunner, A.; Robinson, M. S.</p> <p>2016-12-01</p> <p>Detailed knowledge of the distribution of ejecta around small ( 1 km) craters is still a key missing piece in our understanding of crater formation. McGetchin et al. [1] compiled data from lunar, terrestrial, and synthetic craters to generate a semi-empirical model of radial ejecta distribution. Despite the abundance of models, experiments, and previous field and remote sensing studies of this problem, images from the 0.5 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) [2] provides the first chance to quantify the extent and thickness of ejecta around kilometer scale lunar craters. Impacts excavate fresh (brighter) material from below the more weathered (darker) surface, forming a relatively bright ejecta blanket. Over time space weathering tends to lower the reflectance of the ejected fresh material [3] resulting in the fading of albedo signatures around craters. Relatively small impacts that excavate through the high reflectance immature ejecta of larger fresh craters provide the means of estimating ejecta thickness. These subsequent impacts may excavate material from within the high reflectance ejecta layer or from beneath that layer to the lower-reflectance mature pre-impact surface. The reflectance of the ejecta around a subsequent impact allows us to categorize it as either an upper or lower limit on the ejecta thickness at that location. The excavation depth of each crater found in the ejecta blanket is approximated by assuming a depth-to-diameter relationship relevant for lunar simple craters [4, e.g.]. Preliminary results [Figure] show that this technique is valuable for finding the radially averaged profile of the ejecta thickness and that the data are roughly consistent with the McGetchin equation. However, data from craters with asymmetric ejecta blankets are harder to interpret. [1] McGetchin et al. (1973) Earth Planet. Sci. Lett., 20, 226-236. [2] Robinson et al. (2010) Space Sci. Rev., 150, 1-4, 81-124. [3] Denevi et al. (2014) J. Geophys. Res. Planets, 119, 5, 976-997. [4] Wood and Anderson (1978), LPSC IX, 3669-3689.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000031491&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000031491&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTNT"><span>Impact Crises, Mass Extinctions, and Galactic Dynamics: A Unified Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rampino, M.R.</p> <p>1997-01-01</p> <p>A general hypothesis linking mass extinctions of life with impacts of large asteroids and comets is based on astronomical data, impact dynamics, and geological information. The waiting times of large-body impacts on the Earth, derived from the flux of Earth-crossing asteroids and comets, and the estimated size of impacts capable of causing large-scale environmental disasters predict that impacts of objects (sup 3)5 km in diameter ((sup 3)10(exp 7) Mt TNT equivalent) could be sufficient to explain the record of about 25 extinction pulses in the last 540 m.y., with the five recorded major mass extinctions related to the impacts of the largest objects of (sup 3)10 km in diameter ( (sup 3)10(exp 8) Mt events). Smaller impacts (about 10(exp 6)-10(exp 7) Mt), with significant regional and even global environmental effects, could be responsible for the lesser boundaries in the geologic record. Tests of the "kill curve" relationship for impact-induced extinctions based on new data on extinction intensities and several well-dated large impact craters suggest that major mass extinctions require large impacts, and that a step in the kill curve may exist at impacts that produce craters of -100 km diameter, with smaller impacts capable of only relatively weak extinction pulses. Single impact craters < about 60 km in diameter should not be associated with global extinction pulses detectable in the Sepkoski database (although they may explain stage and zone boundaries marked by lesser faunal turnover), but multiple impacts in that size range may produce significant stepped extinction pulses. Statistical tests of the last occurrences of species at mass-extinction boundaries are generally consistent with predictions for abrupt or stepped extinctions, and several boundaries are known to show "catastrophic" signatures of environmental disasters and biomass crash, impoverished postextinction fauna and flora dominated by stress-tolerant and opportunistic species, and gradual ecological recovery and radiation of new taxa. Isotopic and other geochemical signatures are also generally consistent with the expected after-effects of catastrophic impacts. Seven of the recognized extinction pulses are associated with concurrent (in some cases multiple) stratigraphic impact markers (e.g., layers with high Ir, shocked minerals, microtektites), and/or large, dated impact craters. Other less-well-studied crisis intervals show elevated Ir, still well below that of the K/T spike, which might be explained by low-Ir impactors, ejecta blowoff, or the sedimentary reworking and dilution of impact signatures. The best explanation for a possible periodic component of about 30 m.y. in mass extinctions and clusters of impacts is the modulation of the comet flux associated with the solar system's periodic passage through the plane of the Milky Way Galaxy. The quantitative agreement among paleontological, geological, and astronomical data suggests an important underlying unification of the processes involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017413','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017413"><span>Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoerz, Friedrich; See, Thomas H.; Bernhard, Ronald P.; Brownlee, Donald E.</p> <p>1995-01-01</p> <p>Approximately 1000 impact craters on the Chemistry of Meteoroid Experiment (CME) have been analyzed by means of Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA) to determine the compositional make-up of projectile residues. This report completes our systematic survey of gold and aluminum surfaces exposed at the trailing-edge (A03) and forward-facing (A11) LDEF sites, respectively. The major categories for the projectile residues were (1) natural, with diverse subgroups such as chondritic, monomineralic silicates, and sulfides, and (2) man made, that were classified into aluminum (metallic or oxide) and miscellaneous materials (such as stainless steel, paint flakes, etc). On CME gold collectors on LDEF's trailing edge approximately 11 percent of all craters greater than 100 micron in diameter were due to man-made debris, the majority (8.6 percent) caused by pure aluminum, approximately 31.4 percent were due to cosmic dust, while the remaining 58 percent were indeterminate via the analytical techniques utilized in this study. The aluminum surfaces located at the A11 forward-facing site did not permit analysis of aluminum impactors, but approximately 9.4 percent of all craters were demonstratably caused by miscellaneous debris materials and approximately 39.2 percent were the result of natural particles, leaving approximately 50 percent which were indeterminate. Model considerations and calculations are presented that focus on the crater-production rates for features greater than 100 micron in diameter, and on assigning the intermediate crater population to man-made or natural particles. An enhancement factor of 6 in the crater-production rate of natural impactors for the 'forward-facing' versus the 'trailing-edge' CME collectors was found to best explain all observations (i.e., total crater number(s), as well as their computational characteristics). Enhancement factors of 10 and 4 are either too high or too low. It is also suggested that approximately 45 percent of all craters greater than 100 micron in diameter are caused by man-made impactors on the A11 surfaces. This makes the production rate for craters greater than 100 micron in diameter, resulting from orbital debris, a factor of 40 higher on the forward-facing sides as opposed to the trailing-edge direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002911','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002911"><span>Noachian Impact Ejecta on Murray Ridge and Pre-impact Rocks on Wdowiak Ridge, Endeavour Crater, Mars: Opportunity Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002911'); toggleEditAbsImage('author_20150002911_show'); toggleEditAbsImage('author_20150002911_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002911_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002911_hide"></p> <p>2015-01-01</p> <p>Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0126&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0126&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0126</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., shadows paint the Boeing Delta II rocket carrying the Deep Impact spacecraft as the mobile service tower at left is rolled back before launch.Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0125&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0125&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0125</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II rocket carrying the Deep Impact spacecraft looms into the night sky as the mobile service tower at right is rolled back before launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0127&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0127&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsecret"><span>KSC-05PD-0127</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., the Boeing Delta II carrying the Deep Impact spacecraft rocket shines under spotlights in the early dawn hours as it waits for launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0129&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0129&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dsecret"><span>KSC-05PD-0129</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The sun rises behind Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., where the Boeing Delta II rocket carrying the Deep Impact spacecraft waits for launch. Gray clouds above the horizon belie the favorable weather forecast for the afternoon launch. Scheduled for liftoff at 1:47 p.m. EST today, Deep Impact will head for space and a rendezvous with Comet Tempel 1 when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface July 4, 2005, Deep Impacts flyby spacecraft will reveal the secrets of the comets interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DPS....32.5803G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DPS....32.5803G"><span>Constraining the Age of Martian Polar Strata by Crater Counts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grier, J. A.; Hartmann, W. K.; Berman, D. C.; Goldman, E. B.; Esquerdo, G. A.</p> <p>2000-10-01</p> <p>Mars Global Surveyor images are capable of giving good counts on craters down to about D 11 m. We studied 70 north polar images covering 2513 km2, mostly at latitudes 79-86 degrees, detecting a few probable impact craters and placing upper limits from non-detections in other frames. From these data we conclude that impact craters in the diameter range 11 m < D < 88 m indicate a survival lifetime of craters and crater-like topography in the north polar regions of < a few hundred Ka. The crater counts suggest a much flatter slope in the diameter distribution of the young polar laminae than found in the production function on young, low-latitude lava surfaces, confirming the rapid obliteration of smaller craters even in recent geologic time (Plaut et al. 1988). To obliterate small craters, if vertical relief on the order of 30 m is completely blanketed and removed in < 500,000 yrs, then an inferred upper limit on the sediment deposition rate is 6 x 10-5 meters/year or 60 μ /y. These results are consistent with models which call for enhanced dust deposition at the poles due to a process whereby dust particles act as condensation nuclei for winter ice and are preferentially dropped out of the polar atmosphere. Pollack et al. (1979) calculated polar deposition at 300 μ /y. Our age results are also consistent with Herkenhoff and Plaut (2000) who sought craters of D > 300 m on Viking images of the north cap and derived the same age, < 100,000 years. They used the same logic to infer a higher deposition limit of 1200 μ /y. The measured north polar deposition rates are one to three orders of magnitude above the 1 to 4 μ /y suggested at lower latitudes (Hartmann 1966, 1971; Matijevic et al. 1997). References: Hartmann 1966, Icarus 5:406; Hartmann 1971, Icarus 15: 410; Herkenhoff and Plaut 2000, Icarus 144: 243; Matijevic et al. 1997, Science 278:1765; Pollack et al. 1977, J. Geophys. Res. 84: 2929; Plaut et al. 1988 Icarus 75 :357.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss028e044433.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss028e044433.html"><span>Earth observation taken by the Expedition 28 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-09-08</p> <p>ISS028-E-044433 (8 Sept. 2011) --- Bigach Impact Crater in Kazakhstan is featured in this image photographed by an Expedition 28 crew member on the International Space Station. Some meteor impact craters, like Barringer Crater in Arizona, are easily recognizable on the landscape due to well-preserved form and features. Other impact structures, such as Bigach Impact Crater in northeastern Kazakhstan are harder to recognize due to their age, modification by subsequent geologic processes, or even human alteration of the landscape. According to scientists, at approximately 5 million years old, Bigach is a relatively young geologic feature; however active tectonic processes in the region have caused movement of parts of the structure along faults, leading to a somewhat angular appearance (center). The roughly circular rim of the eight kilometers in diameter structure is still discernable around the relatively flat interior in this photograph. In addition to modification by faulting and erosion, the interior of the impact structure has also been used for agricultural activities, as indicated by the presence of tan regular graded fields. Other rectangular agricultural fields are visible to the northeast and east. The closest settlement, Novopavlovka, is barely visible near the top of the image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167012"><span>Characterizing the Early Impact Bombardment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald D.</p> <p>2005-01-01</p> <p>The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005105','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005105"><span>Constraints on the thermal evolution of Venus inferred from Magellan data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arkani-Hamed, Jafar; Schaber, G. G.; Strom, R. G.</p> <p>1992-01-01</p> <p>The impact craters with diameters from 1.5 to 280 km compiled from Magellan observations indicate that the crater population on Venus has a completely spatially random distribution and the size/density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population with an age of 500 plus or minus 250 m.y. The similarity in size distribution from area to area indicates that the crater distribution is independent of crater size. Also, the forms of the modified craters are virtually identical to those of the pristine craters. These observations imply that Venus reset its cratering record by global resurfacing 500 m.y. ago, and resurfacing declined relatively fast. The fact that less than 40 percent of all craters have been modified and that the few volcanically embayed craters are located on localized tectonic regions indicate that only minor and localized volcanism and tectonism have occurred since the latest vigorous resurfacing event approximately 500 m.y. ago and the interior of Venus has been solid and possibly colder than Earth's. This is because the high-temperature lithosphere of Venus would facilitate upward ascending of mantle plumes and result in extensive volcanism if the venusian upper mantle were as hot as or hotter than Earth's. Therefore, the present surface morphology of Venus may provide useful constraints on the pattern of that vigorous convection, and possibly on the thermal state of the venusian mantle. We examine this possibility through numerical calculations of three-dimensional thermal convection models in a spherical shell with temperature- and pressure-dependent Newtonian viscosity, temperature-dependent thermal diffusivity, pressure-dependent thermal expansion coefficient, and time-dependent internal heat production rate solar magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..113S"><span>Crater Mound Formation by Wind Erosion on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steele, L. J.; Kite, E. S.; Michaels, T. I.</p> <p>2018-01-01</p> <p>Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039624"><span>Foraminiferal repopulation of the late Eocene Chesapeake Bay impact crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie</p> <p>2012-01-01</p> <p>The Chickahominy Formation is the initial postimpact deposit in the 85km-diameter Chesapeake Bay impact crater, which is centered under the town of Cape Charles, Virginia, USA. The formation comprises dominantly microfossil-rich, silty, marine clay, which accumulated during the final ~1.6myr of late Eocene time. At cored sites, the Chickahominy Formation is 16.8-93.7m thick, and fills a series of small troughs and subbasins, which subdivide the larger Chickahominy basin. Nine coreholes drilled through the Chickahominy Formation (five inside the crater, two near the crater margin, and two ~3km outside the crater) record the stratigraphic and paleoecologic succession of 301 indigenous species of benthic foraminifera, as well as associated planktonic foraminifera and bolboformids. Two hundred twenty of these benthic species are described herein, and illustrated with scanning electron photomicrographs. Absence of key planktonic foraminiferal and Bolboforma species in early Chickahominy sediments indicates that detrimental effects of the impact also disturbed the upper oceanic water column for at least 80-100kyr postimpact. After an average of ~73kyr of stressed, rapidly fluctuating paleoenvironments, which were destabilized by after-effects of the impact, most of the cored Chickahominy subbasins maintained stable, nutrient-rich, low-oxygen bottom waters and interstitial microhabitats for the remaining ~1.3myr of late Eocene time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3297/downloads/sim3297_pamphlet.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3297/downloads/sim3297_pamphlet.pdf"><span>Geologic map of Tooting crater, Amazonis Planitia region of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mouginis-Mark, Peter J.</p> <p>2015-01-01</p> <p>Tooting crater has a diameter of 27.2 km, and formed on virtually flat lava flows within Amazonis Planitia ~1,300 km west of the summit of Olympus Mons volcano, where there appear to have been no other major topographic features prior to the impact. The crater formed in an area ~185 x 135 km that is at an elevation between −3,870 m and −3,874 m relative to the Mars Orbiter Laser Altimeter (MOLA) Mars datum. This fortuitous situation (for example, a bland, horizontal target) allows the geometry of the crater and the thickness of the ejecta blanket to be accurately determined by subtracting the appropriate elevation of the surrounding landscape (−3,872 m) from the individual MOLA measurements across the crater. Thus, for the first time, it is possible to determine the radial decrease of ejecta thickness as a function of distance away from the rim crest. On the basis of the four discrete ejecta layers surrounding the crater cavity, Tooting crater is classified as a Multiple-Layered Ejecta (MLE) crater. By virtue of the asymmetric distribution of secondary craters and the greater thickness of ejecta to the northeast, Morris and others (2010) proposed that Tooting crater formed by an oblique impact from the southwest. The maximum range of blocks that produced identifiable secondary craters is ~500 km (~36.0 crater radii) from the northeast rim crest. In contrast, secondary craters are only identifiable ~215 km (15.8 radii) to the southeast and 225 km (16.5 radii) to the west.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P43B1435D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P43B1435D"><span>“FRIED EGG”: AN OCEANIC IMPACT CRATER IN THE MID-ATLANTIC?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dias, F. C.; Lourenco, N.; Lobo, A.; Santos de Campos, A.; Pinto de Abreu, M.</p> <p>2009-12-01</p> <p>Analysis of a multibeam echosounder hydrographic survey performed in the Southern Azores Platform under the scope of the Portuguese Continental Shelf Project has revealed a large scale bathymetric structure nicknamed “Fried Egg” due to its well defined morphology. Laying at about 2km depth, this structure consists of a roughly circular 6km wide depression 110m below the surrounding ocean bottom, with a circular dome shaped central uplift 3km in diameter and with a base to top height of 300m. The associated backscatter signal presents a distinctive ring-like signature corresponding to the lower flank section of the dome, suggesting the outcrop of hard rock material. The remaining backscatter signal seems to correspond to widespread sediments. No lava flows are apparent either within the structure or on its surroundings. All these properties are compatible with the record of terrestrial impact craters, thus making of “Fried Egg” a potential oceanic impact crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70168949','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70168949"><span>Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.</p> <p>2015-01-01</p> <p>Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0114&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0114&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0114</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>the Fischer Assembly building at Ball Aerospace in Boulder, Colo. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70186309','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70186309"><span>Impact crater outflows on Venus: Morphology and emplacement mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chadwick, D. John; Schaber, Gerald G.</p> <p>1993-01-01</p> <p>Many of the 932 impact craters discovered by the Magellan spacecraft at Venus are associated with lobate flows that originate at or near the crater rim. They extend for several to several hundred kilometers from the crater, and they commonly have a strong radar backscatter. A morphologic study of all identifiable crater outflows on Venus has revealed that many individual flows each consist of two areas, defined by distinct morphologic features. These two areas appear to represent two stages of deposition for each flow. The part of the flow that is generally deposited closest to the crater tends to be on the downrange side of the crater, flows in the downrange direction, and it is interpreted to be a late-stage ejecta. In many cases, this proximal part of the flow is too thin to completely bury the large blocks in subjacent ejecta deposits. Dendritic channels, present in many proximal flows, appear to have drained liquid from the proximal part in the downhill direction, and they debouch to feed the outer part of the flows. This distal part flows downhill, fills small grabens, and is ponded by ridges, behavior that mimics that of volcanic lava flows. The meandering and dendritic channels and the relation of the distal flows to topography strongly suggest that the distal portion is the result of coalescence and slow drainage of impact melt from the proximal portion. Impact melt forms a lining to the transient crater and mixes turbulently with solid clasts, and part of this mixture may be ejected to form the proximal part of the flow during the excavation stage of crater development. A statistical study of the Venusian craters has revealed that, in general, large craters produced by impacts with relatively low incidence angles to the surface are more likely to produce flows than small craters produced by higher-angle impacts. The greater flow production and downrange focusing of the proximal flows with decreasing incidence angle indicate a strong control of the flows by the impactor flight direction, and a high downrange velocity imparted to the proximal flow material in lower angle impacts. On the Moon, small flows interpreted to be composed of impact melt are observed atop the ejecta of large, fresh craters; on Earth, melt-rich suevite deposits form the uppermost layer of ejecta of some fresh craters. These features, albeit much smaller, may be analogous to the flows on Venus. Numerical models have predicted that larger volumes of impact melt would be produced on Venus than on the cooler terrestrial bodies due to high atmospheric and target temperatures, perhaps 3 times the volume produced on the Moon for a given crater diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..308..209W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..308..209W"><span>Modeling concentric crater fill in Utopia Planitia, Mars, with an ice flow line model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weitz, N.; Zanetti, M.; Osinski, G. R.; Fastook, J. L.</p> <p>2018-07-01</p> <p>Impact craters in the mid-latitudes of Mars are commonly filled to variable degrees with some combination of ice, dust, and rocky debris. Concentric surface features visible in these craters have been linked to debris transportation and glacial and periglacial processes. Concentric crater fill (CCF) observed today are interpreted to be the remains of repeated periods of accumulation and sublimation during the last tens to hundreds of million years. Previous work suggests that during phases of high obliquity, ice accumulates in crater interiors and begins to flow down steep crater slopes, slowly filling the crater. During times of low obliquity ice is protected from sublimation through a surface debris layer consisting of dust and rocky material. Here, we use an ice flow line model to understand the development of concentric crater fill. In a regional study of Utopia Planitia craters, we address questions about the influence of crater size on the CCF formation process, the time scales needed to fill an impact crater with ice, and explore commonly described flow features of CCF. We show that observed surface debris deposits as well as asymmetric flow features can be reproduced with the model. Using surface mass balance data from global climate models and a credible obliquity scenario, we find that craters less than 80 km in diameter can be entirely filled in less than 8 My, beginning as recently as 40 Ma ago. Uncertainties in input variables related to ice viscosity do not change the overall behavior of ice flow and the filling process. We model CCF for the Utopia Planitia region and find subtle trends for crater size versus fill level, crater size versus sublimation reduction by the surface debris layer, and crater floor elevation versus fill level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100017206','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100017206"><span>Topography of the Martian Impact Crater Tooting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, P. J.; Garbeil, H.; Boyce, J. M.</p> <p>2009-01-01</p> <p>Tooting crater is approx.29 km in diameter, is located at 23.4degN, 207.5degE, and is classified as a multi-layered ejecta crater [1]. Our mapping last year identified several challenges that can now be addressed with HiRISE and CTX images, but specifically the third dimension of units. To address the distribution of ponded sediments, lobate flows, and volatile-bearing units within the crater cavity, we have focused this year on creating digital elevation models (DEMs) for the crater and ejecta blanket from stereo CTX and HiRISE images. These DEMs have a spatial resolution of approx.50 m for CTX data, and 2 m for HiRISE data. Each DEM is referenced to all of the available individual MOLA data points within an image, which number approx.5,000 and 800 respectively for the two data types</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1893c0007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1893c0007S"><span>Craterlike structures on the laser cut surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shulyatyev, V. B.; Orishich, A. M.</p> <p>2017-10-01</p> <p>Analysis of the laser cut surface morphology remain topical. It is related with the fact that the surface roughness is the main index of the cut quality. The present paper deals with the experimental study of the relatively unstudied type of defects on the laser cut surface, dimples, or craters. According to the measurement results, amount of craters per unit of the laser cut surface area rises as the sheet thickness rises. The crater diameter rises together with the sheet thickness and distance from the upper sheet edge. The obtained data permit concluding that the defects like craters are observed predominantly in the case of thick sheets. The results agree with the hypothesis of crater formation as impact structures resulting from the melt drops getting on the cut channel walls upon separation from the cut front by the gas flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000010605&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTURTLES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000010605&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTURTLES"><span>Large Impact Features on Europa: Results of the Galileo Nominal Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Jeffrey M.; Asphaug, Erik; Sullivan, Robert J.; Klemaszewski, James E.; Bender, Kelly C.; Greeley, Ronald; Geissler, Paul E.; McEwen, Alfred S.; Turtle, Elizabeth P.; Phillips, Cynthia B.</p> <p>1998-01-01</p> <p>The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer approximately 10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply that approximately 10-15 km may have been the global average thickness of the rigid crust of Europa when these impacts occurred. The absence of detectable craters superposed on the interior deposits of Callanish suggests that it is geologically young (< 10(exp 8) years). Hence, it seems likely that our preliminary conclusions about the subsurface structure of Europa apply to the current day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020067','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020067"><span>Large Impact Features on Europa: Results of the Galileo Nominal Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Johnnie N.; Asphaug, E.; Sullivan, R.J.; Klemaszewski, J.E.; Bender, K.C.; Greeley, R.; Geissler, P.E.; McEwen, A.S.; Turtle, E.P.; Phillips, C.B.; Tufts, B.R.; Head, J. W.; Pappalardo, R.T.; Jones, K.B.; Chapman, C.R.; Belton, M.J.S.; Kirk, R.L.; Morrison, D.</p> <p>1998-01-01</p> <p>The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ~10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply that ~10-15 km may have been the global average thickness of the rigid crust of Europa when these impacts occurred. The absence of detectable craters superposed on the interior deposits of Callanish suggests that it is geologically young (<108years). Hence, it seems likely that our preliminary conclusions about the subsurface structure of Europa apply to the current day. ?? 1998 Academic Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..306..214S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..306..214S"><span>Relaxed impact craters on Ganymede: Regional variation and high heat flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.</p> <p>2018-05-01</p> <p>Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EM%26P..121...59A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EM%26P..121...59A"><span>Remote Sensing of Mars: Detection of Impact Craters on the Mars Global Surveyor DTM by Integrating Edge- and Region-Based Algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Athanassas, C. D.; Vaiopoulos, A.; Kolokoussis, P.; Argialas, D.</p> <p>2018-03-01</p> <p>This study integrates two different computer vision approaches, namely the circular Hough transform (CHT) and the determinant of Hessian (DoH), to detect automatically the largest number possible of craters of any size on the digital terrain model (DTM) generated by the Mars Global Surveyor mission. Specifically, application of the standard version of CHT to the DTM captured a great number of craters with diameter smaller than 50 km only, failing to capture larger craters. On the other hand, DoH was successful in detecting craters that were undetected by CHT, but its performance was deterred by the irregularity of the topographic surface encompassed: strongly undulated and inclined (trended) topographies hindered crater detection. When run on a de-trended DTM (and keeping the topology unaltered) DoH scored higher. Current results, although not optimal, encourage combined use of CHT and DoH for routine crater detection undertakings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196308','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196308"><span>Relaxed impact craters on Ganymede: Regional variation and high heat flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.</p> <p>2018-01-01</p> <p>Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (<10 km in diameter) relaxed craters indicating even higher heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8424B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8424B"><span>Geological Mapping of the Ac-H-9 Occator Quadrangle of Ceres from NASA Dawn Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, Debra; Williams, David; Scully, Jennifer; Mest, Scott; Crown, David; Aileen Yingst, R.; Schenk, Paul; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Platz, Thomas; Nathues, Andreas; Hoffmann, Martin; Schaefer, Michael; Marchi, Simone; De Sanctis, M. Cristina; Raymond, Carol; Russell, Chris</p> <p>2016-04-01</p> <p>As was done at Vesta [1], the Dawn Science Team is conducting a geological mapping cam-paign at Ceres during the nominal mission, including iterative mapping using data obtained dur-ing each orbital phase. We are using geological mapping as a method to identify the geologic processes that have modified the surface of dwarf planet Ceres. We here present the geology of the Ac-H-9 Occator quadrangle, located between 22°S-22°N and 216-288°E. The Ac-H-9 map area is completely within the topographically high region on Ceres named Erntedank Planum. It is one of two longitudinally distinct regions where ESA Herschel space telescope data suggested a release of water vapor [2]. The quadrangle includes several other notable features, including those discussed below. Occator is the 92 km diameter crater that hosts the "Bright Spot 5" that was identified in Hubble Space Telescope data [3], which is actually comprised of multiple bright spots on the crater floor. The floor of Occator is cut by linear fractures, while circumferential fractures are found in the ejecta and on the crater walls. The bright spots are noticeably associated with the floor fractures, although the brightest spot is associated with a central pit [4]. Multiple lobate flows are observed on the crater floor; these appear to be sourced from the center of the crater. The crater has a scalloped rim that is cut by regional linear structures, displaying a cross-section of one structure in the crater wall. Color data show that the Occator ejecta have multiple colors, generally related to changes in morphology. Azacca is a 50 km diameter crater that has a central peak and bright spots on its floor and within its ejecta. Like Occator, Azacca has both floor fractures and circumferential fractures in its ejecta and crater walls. Also like Occator, the Azacca ejecta is multi-colored with variable morphology. Linear structures - including grooves, pit crater chains, fractures and troughs - cross much of the eastern hemisphere of Ceres. Some of these structures appear to be radial to the large basins Urvara and Yalode, and most likely formed due to impact processes. However, a set of regional linear structures (RLS) do not have any obvious relationship to impact craters and may represent internally driven tectonics [5]. In the Ac-H-9 map area, many of the longer RLS are comprised of smaller structures that have linked together, suggestive of en echelon fracturing. Also, many of the RLS are crosscut by the linear features radial to Urvara and Yalode, indicating they are not fractures formed due to stresses released during those impact events. Kirnis is a 115 km diameter crater with a degraded rim deformed by one of RLS pit crater chains. A dome-like feature on the floor of Kirnis might represent uplifting of the Ceres surface. References: [1] Yingst et al. (2014) PSS, 103, 2-23. [2] Küppers, M., et al. (2014) Nature, 505, 525-527. [3] Li J.Y. et al. (2006) Icarus, 182, 143-160. [4]Schenk, P. et al. (2015) EPSC2015-527. [5] Buczkowski D.L. et al. (2015) GSA, abstract #261709.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23H..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23H..04K"><span>Exploring the Hydrothermal System in the Chicxulub Crater and Implications for the Early Evolution of Life on Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kring, D. A.; Schmieder, M.; Tikoo, S.; Riller, U. P.; Simpson, S. L.; Osinski, G.; Cockell, C. S.; Coolen, M.; Gulick, S. P. S.; Morgan, J. V.</p> <p>2017-12-01</p> <p>Impact cratering, particularly large basin-size craters with diameters >100 km, have the potential to generate vast subsurface hydrothermal systems. There were dozens of such impacts during the Hadean and early Archean, some of which vaporized seas for brief periods of time, during which the safest niches for early life may have been in those subsurface hydrothermal systems. The Chicxulub crater can serve as a proxy for those events. New IODP-ICDP core recovered by Expedition 364 reveals a high-temperature (>300 degree C) system that may have persisted for more than 100,000 years. Of order 105 to 106 km3 of crust was structurally deformed, melted, and vaporized within about 10 minutes of the impact. The crust had to endure immense strain rates of 104/s to 106/s, up to 12 orders of magnitude greater than those associated with igneous and metamorphic processes. The outcome is a porous, permeable region that is a perfect host for hydrothermal circulation across the entire diameter of the crater to depths up to 5 or 6 km. The target rocks at Chicxulub are composed of an 3 km-thick carbonate platform sequence over a crystalline basement composed of igneous granite, granodiorite, and a few other intrusive components, such as dolerite, and metamorphic assemblages composed, in part, of gneiss and mica schist. Post-impact hydrothermal alteration includes Ca-Na- and K-metasomatism, pervasive hydration to produce layered silicates, and lower-temperature vug-filling zeolites as the system cycled from high temperatures to low temperatures. While the extent of granitic crust on early Earth is still debated and, thus, the direct application of those mineral reactions to the Hadean and early Archean can be debated, the thermal evolution of the system should be applicable to diverse crustal compositions. It is important to point out that pre-impact thermal conditions of Hadean and early Archean crust can affect the size of an impact basin and, in turn, the proportion of that basin that may experience hydrothermal conditions. The Chicxulub crater - as sampled by Expedition 364 - will provide the baseline needed to assess the spatial and temporal extent of Hadean and early Archean hydrothermal systems and their potential as crucibles for pre-biotic chemistry and the early evolution of microbial life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001144','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001144"><span>Micrometeoroid Impacts and Optical Scatter in Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Heaney, James B.; Wang, Liqin L.; He, Charles C.</p> <p>2010-01-01</p> <p>This paper discusses the results of an attempt to use laboratory test data and empirically derived models to quantify the degree of surface damage and associated light scattering that might be expected from hypervelocity particle impacts in space environment. Published descriptions of the interplanetary dust environment were used as the sources of particle mass, size, and velocity estimates. Micrometeoroid sizes are predicted to be predominantly in the mass range 10(exp -5) g or less, with most having diameters near 1 micrometer, but some larger than I20 micrometers, with velocities near 20 kilometers per second. In a laboratory test, latex ( p = 1.1. grams per cubic centimeter) and iron (7.9 grams per cubic centimeter) particles with diameters ranging from 0.75 micrometers to 1.60 micrometers and with velocities ranging from 2.0 kilometers per second to 18.5 kilometers per second, were shot at a Be substrate mirror that had a dielectric coated gold reflecting surface. Scanning electron and atomic force microscopy were used to measure crater dimensions that were then associated with particle impact energies. These data were then fitted to empirical models derived from solar cell and other spacecraft surface components returned from orbit, as well as studies of impact craters studied on glassy materials returned from the lunar surface, to establish a link between particle energy and impact crater dimension. From these data, an estimate of total expected damaged area was computed and this result produced an estimate of expected surface scatter from the modeled environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P44B..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P44B..03J"><span>Geomorphological Analysis of Lunar Swirls: Insights from LROC-NAC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jozwiak, L. M.; Blewett, D. T.</p> <p>2017-12-01</p> <p>The enigmatic features known as lunar swirls are a set of high-reflectance, sinuous features observed in both mare and highland settings, and often associated with crustal magnetic anomalies. There are several hypotheses for the formation of swirls, including atypical space weathering resulting from solar wind stand-off, disruption of regolith structure and imposition of a magnetic field associated with recent cometary impacts, and levitation and magnetic sorting of fine-grained dust. Investigations utilizing data from Diviner and Mini-RF suggest that, at the scales sensed by the instruments, regolith in swirl regions is indistinguishable from regolith in non-swirl regions. We have used data from the LRO Camera-Narrow Angle Camera to study the structure of lunar swirls, and explore whether the high-reflectance material associated with lunar swirls represents a discrete deposit. We assessed the populations of impact craters with diameter greater than 1 km on the Reiner Gamma swirl and on a nearby region of lunar mare located on the same lava flow unit, and determined that the crater populations suggest that the presence of the swirl does not affect the background impact crater population. We also investigated whether small (D < 0.5 km) superposed impact craters showed evidence for excavation of material from beneath a hypothetical surficial swirl deposit. Investigating the swirls located at Reiner Gamma, Mare Ingenii, Mare Marginis, and the crater Gerasimovich and adjacent non-swirl regions, we observed high-reflectance ejecta deposits whose morphology and degradation are consistent with space weathering processes. We further observe the relative proportion of these high-reflectance excavations to be greater in the swirl regions, suggesting a qualitatively slower space weathering process in these regions. In all regions, we also observed the excavation of low-reflectance material distributed in the ejecta deposit of superposed craters with a wide range of diameters, and a wide range of distribution patterns. We also observe these dark materials in non-swirl regions, suggesting they are not unique to the swirl environment. Our investigations are consistent with the atypical space weathering hypothesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990028625&hterms=images+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dimages%2Bmars','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990028625&hterms=images+mars&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dimages%2Bmars"><span>Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.</p> <p>1998-01-01</p> <p>One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/pp/1348/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/pp/1348/report.pdf"><span>The geologic history of the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilhelms, Don E.; with sections by McCauley, John F.; Trask, Newell J.</p> <p>1987-01-01</p> <p>More than two decades of study have established the major features of lunar geologic style and history. The most numerous and significant landforms belong to a size-morphology series of simple craters, complex craters, and ringed basins that were formed by impacts. Each crater and basin is the source of primary ejecta and secondary craters that, collectively, cover the entire terra. The largest impacts thinned, weakened, and redistributed feldspathic terracrustal material averaging about 75 km in thickness. Relatively small volumes of basalt, generated by partial remelting of mantle material, were erupted through the thin subbasin and subcrater crust to form the maria that cover 16 percent of the lunar surface. Tectonism has modified the various stratigraphic deposits relatively little; most structures are confined to basins and large craters. This general geologic style, basically simple though complex in detail, has persisted longer than 4 aeons (1 aeon = 109 yr). Impacts began to leave a visible record about 4.2 aeons ago, after the crust and mantle had differentiated and the crust had solidified. At least 30 basins and 100 times that many craters larger than 30 km in diameter were formed before a massive impact created the Nectaris basin about 3.92 aeons ago. Impacts continued during the ensuing Nectarian Period at a lesser rate, whereas volcanism left more traces than during pre-Nectarian time. The latest basin-forming impacts created the giant and still-conspicuous Imbrium and Orientale basins during the Early Imbrian Epoch, between 3.85 and 3.80 aeons ago. The rate of crater-forming impacts continued to decline during the Imbrian Period. Beginning in the Late Imbrian Epoch, mare-basalt flows remained exposed because they were no longer obscured by many large impacts. The Eratosthenian Period (3.2-1.1 aeons ago) and the Copernican Period (1.1 aeons ago to present) were times of lesser volcanism and a still lower, probably constant impact rate. Copernican impacts created craters whose surfaces have remained brighter and topographically crisper than those of the more ancient lunar features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09082&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09082&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVantage"><span>View of 'Cape St. Mary' from 'Cape Verde'</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape St. Mary' from the from the vantage point of 'Cape Verde,' the next promontory counterclockwise around the crater's deeply scalloped rim. This view of Cape St. Mary combines several exposures taken by the rover's panoramic camera into an approximately true-color mosaic. <p/> The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. Near the base of the Cape St. Mary cliff are layers with a pattern called 'crossbedding,' intersecting with each other at angles, rather than parallel to each other. Large-scale crossbedding can result from material being deposited as wind-blown dunes. <p/> The images combined into this mosaic were taken during the 970th Martian day, or sol, of Opportunity's Mars-surface mission (Oct. 16, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09079&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09079&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DVantage"><span>View of 'Cape Verde' from 'Cape St. Mary' in Mid-Afternoon (False Color)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into an approximately false-color mosaic. The exposures were taken during mid-afternoon lighting conditions. <p/> The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. <p/> The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances subtle color differences among materials in the rocks and soils of the scene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA09086&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA09086&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVantage"><span>View of 'Cape Verde' from 'Cape St. Mary' in Late Morning (False Color)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> As part of its investigation of 'Victoria Crater,' NASA's Mars Exploration Rover Opportunity examined a promontory called 'Cape Verde' from the vantage point of 'Cape St. Mary,' the next promontory clockwise around the crater's deeply scalloped rim. This view of Cape Verde combines several exposures taken by the rover's panoramic camera into a false-color mosaic. The exposures were taken during late-morning lighting conditions. <p/> The upper portion of the crater wall contains a jumble of material tossed outward by the impact that excavated the crater. This vertical cross-section through the blanket of ejected material surrounding the crater was exposed by erosion that expanded the crater outward from its original diameter, according to scientists' interpretation of the observations. Below the jumbled material in the upper part of the wall are layers that survive relatively intact from before the crater-causing impact. <p/> The images combined into this mosaic were taken during the 1,006th Martian day, or sol, of Opportunity's Mars-surface mission (Nov. 22, 2006). The panoramic camera took them through the camera's 750-nanometer, 530-nanometer and 430-nanometer filters. The false color enhances subtle color differences among materials in the rocks and soils of the scene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080041005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080041005"><span>Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Irwin, R. P., III; Grant, J. A.</p> <p>2008-01-01</p> <p>Geologic mapping at 1:500K scale of Mars quads 15s027, 20s027, 25s027, and 25s032 (Fig. 1) is in progress to constrain the geologic and geomorphic history of southwestern Margaritifer Terra. This work builds on earlier maps at 1:5M [1] and 1:15M scales [2], recent to concurrent 1:500Kscale mapping of adjacent areas to the east [3-5], and studies of drainage basin evolution along the Uzboi-Ladon-M (ULM; the third valley in the sequence has no formal name) Valles basin overflow system and nearby watersheds [6-9]. Two of the six landing sites under consideration for the Mars Science Laboratory rover are in this map area, targeting finely layered, phyllosilicate-rich strata and alluvial fans in Holden crater [10-12] (26degS, 34degW, 150 km diameter) or deposits southeast of a likely delta in Eberswalde crater [13-16] (24degS, 33degW, 50 km in diameter). Diverse processes including larger and smaller impacts, a wide range in fluvial activity, and local to regional structural influences have all affected the surface morphology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013DPS....4541706W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013DPS....4541706W"><span>Geologic Evolution of Saturn's Icy Moon Tethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Roland; Stephan, K.; Schmedemann, N.; Roatsch, T.; Kersten, E.; Neukum, G.; Porco, C. C.</p> <p>2013-10-01</p> <p>Tethys, 1072 km in diameter, is a mid-sized icy moon of Saturn imaged for the first time in two Voyager flybys [1][2][3]. Since July 2004, its surface has been imaged by the Cassini ISS cameras at resolutions between 200 and 500 m/pxl. We present results from our ongoing work to define and map geologic units in camera images obtained preferentially during Cassini’s Equinox and Solstice mission phases. In the majority of Tethys’ surface area a densely cratered plains unit [1][2][3][this work] is abundant. The prominent graben system of Ithaca Chasma is mapped as fractured cratered plains. Impact crater and basin materials can be subdivided into three degradational classes. Odysseus is a fresh large impact basin younger than Ithaca Chasma according to crater counts [4]. Heavily degraded craters and basins occur in the densely cratered plains unit. A smooth, less densely cratered plains unit in the trailing hemisphere was previously identified by [2] but mapping of its boundaries is difficult due to varying viewing geometries of ISS images. To the south of Odysseus, we identified a cratered plains unit not seen in Voyager data, characterized by remnants of highly degraded large craters superimposed by younger fresher craters with a lower crater density compared to the densely cratered plains unit. Its distinct linear northern contact with the densely cratered plains suggests a tectonic origin. Sets of minor fractures can be distinguished in the densely cratered plains, and locally, features of mass wasting can be observed. References: [1] Smith B. A. et al. (1981), Science 212, 163-191. [2] Smith B. A. et al. (1982), Science 215, 504-537. [3] Moore J. M. and Ahern J. L. (1983), JGR 88 (suppl.), A577-A584. [4] Giese B. et al. (2007), GRL 34, doi:10.1029/2007GL031467.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..532S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..532S"><span>Method for evaluation of laboratory craters using crater detection algorithm for digital topography data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav</p> <p></p> <p>In our previous work the following has been done: (1) the crater detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory craters in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory craters, in order to compare different properties with simple Martian craters. In this work, we propose a formal method for evaluation of laboratory craters, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact craters. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory craters. Once embedment was done, the CDA can be used to find out whether this laboratory crater is similar enough to real craters, as to be recognized as a crater by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact craters, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory craters is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080041020','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080041020"><span>Geologic Mapping of the Martian Impact Crater Tooting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, Peter; Boyce, Joseph M.</p> <p>2008-01-01</p> <p>Tooting crater is approximately 29 km in diameters, is located at 23.4 deg N, 207.5 deg E and is classified as a multi-layered ejecta crater. Tooting crater is a very young crater, with an estimated age of 700,000 to 2M years. The crater formed on virtually flat lava flows within Amazonis Planitia where there appears to have been no major topographic features prior to the impact, so that we can measure ejecta thickness and cavity volume. In the past 12 months, the authors have: published their first detailed analysis of the geometry of the crater cavity and the distribution of the ejecta layers; refined the geologic map of the interior of Tooting crater through mapping of the cavity at a scale of 1:1100K; and continued the analysis of an increasing number of high resolution images obtained by the CTX and HiRISE instruments. Currently the authors seek to resolve several science issues that have been identified during this mapping, including: what is the origin of the lobate flows on the NW and SW rims of the crater?; how did the ejecta curtain break apart during the formation of the crater, and how uniform was the emplacement process for the ejecta layers; and, can we infer physical characteristics about the ejecta? Future study plans include the completion of a draft geologic map of Tooting crater and submission of it to the U.S. Geological survey for a preliminary review, publishing a second research paper on the detailed geology of the crater cavity and the distribution of the flows on the crater rim, and completing the map text for the 1:100K geologic map description of units at Tooting crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=planetary+AND+science&pg=5&id=EJ654582','ERIC'); return false;" href="https://eric.ed.gov/?q=planetary+AND+science&pg=5&id=EJ654582"><span>How To Make an Impact with Planetary Science. Part II.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Scott, Robert</p> <p>2002-01-01</p> <p>Explains how the moon provides information about the evolution of the solar system and offers scope for physics-based investigations. Uses statistical analysis of real scientific data with which students can predict the diameter and depth of impact craters then compare them with data gathered in institutions or laboratories. (Author/YDS)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.295...76N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.295...76N"><span>The preservation of the Agoudal impact crater, Morocco, under a landslide: Indication of a genetic link between shatter cones and meteorite fragments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nachit, Hassane; Abia, El Hassan; Bonadiman, Costanza; Di Martino, Mario; Vaccaro, Carmela</p> <p>2017-10-01</p> <p>Geological studies and tomographic profiles of a locality nearby the Agoudal village (Morocco) showed the presence of a single impact crater, 500-600 m diameter, largely hidden by a limestone block, 220 m long and 40 m deep. The site was interpreted as a landslide that followed the fall of a cosmic body. The Agoudal impact crater was not affected by intense erosion. The lack of an evident impact structure, as well as the sporadic distribution of impactites and their limited occurrence, can be explained by a complex geological framework and by recent tectonics. The latter is the result of the sliding of limestone block, which hides almost two-thirds of the crater's depression, and the oblique fall of the meteoroid on sloping ground. In addition, some impact breccia dikes sharply cut the host rock in the Agoudal impact structure. They do not show any genetic relationship with tectonics or hydrothermal activity, nor are they related to any karst or calcrete formations. Altogether, the overlapping of the meteorite strewn field (11 km long and 3 km wide) with the area of occurrence of shatter cones and impact breccias, together with the presence of meteorite fragments (shrapnel) ejected from the crater, the presence of shatter cones contaminated by products of iron meteorites and the presence of impact breccias that contain meteorite fragments of the same chemical composition of the Agoudal meteorite indicate that the fall of this meteorite can be responsible for the formation of the impact structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2413&hterms=cranes+lifting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcranes%2Blifting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2413&hterms=cranes+lifting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dcranes%2Blifting"><span>KSC-04PD-2413</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a crane begins lifting the third in a set of three Solid Rocket Boosters (SRBs). The SRBs will be hoisted up the mobile service tower and join three others already mated to the Boeing Delta II rocket that will launch the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing an impactor on a course to hit the comets sunlit side, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measure the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determine the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2664&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2664&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2664</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2662&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2662&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2662</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Launch Pad 17-B, Cape Canaveral Air Force Station, the Boeing Delta II second stage reaches the top of the mobile service tower. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2663&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2663&hterms=Top+secrets&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DTop%2Bsecrets"><span>KSC-04PD-2663</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. This view from inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air Force Station, shows the Boeing Delta II second stage as it reaches the top. The component will be reattached to the interstage adapter on the Delta II. The rocket is the launch vehicle for the Deep Impact spacecraft, scheduled for liftoff no earlier than Jan. 12. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001647','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001647"><span>Large impacts and climatic catastrophes on the early Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melosh, H. J.</p> <p>1991-01-01</p> <p>Radiometric data of cratered lunar surfaces suggest that the cratering rate on the ancient Moon was substantially larger than the present rate before about 3.2 Gyr. Since the cratering rate was higher than present on the Moon, it seems likely that is was similarly higher on the Earth. Recently the occurrence of beds of spherules up to 2m thick was reported in 3.2 to 3.5 Gyr old Archean rocks. These spherule beds closely resemble the 3 mm thick spherule beds associated with the K/T boundary (including elevated iridium abundances), widely believed to have been deposited in association of a 10 km diameter comet or asteroid.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160002387','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160002387"><span>Opportunity, Geologic and Structural Context of Aqueous Alteration in Noachian Outcrops, Marathon Valley and Rim and Endeavour Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crumpler, L. S.; Arvidson, R. E.; Mittlefehldt, D. W.; Jolliff, B. L.; Farrand, W. H.; Fox, V.; Golombek, M. P.</p> <p>2016-01-01</p> <p>In its 12th year of exploration and 1600 sols since arrival at the rim of the 22 km-diameter Noachian Endeavour impact crater, Mars Exploration Rover Opportunity traversed from the summit of the western rim segment "Cape Tribulation" to "Marathon Valley", a shallow trough dissecting the rim and the site of strong orbital detection of smectites. In situ analysis of the exposures within Marathon Valley is establishing some of the geologic and geochemical controls on the aqueous alteration responsible for smectite detection known to occur in crater rims throughout Noachian terrains of Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008epsc.conf..237K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008epsc.conf..237K"><span>Young populations of small craters on Mars: A case study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kreslavsky, M.</p> <p>2008-09-01</p> <p>Introduction The HiRISE camera imaged the Mars surface at scales that had never been studied before. Beside a host of other fascinating features, these images revealed small (diameter D down to 1 m) impact craters. In planetary geology, impact craters and properties of their populations have been used as valuable sources of information about surface history and geological processes. Small craters on Mars can potentially give essential information about young terrains on this planet, resurfacing rates at small scales and the most recent events in the geological history, first of all, the most recent climate changes. Very young crater populations are thought to be unaffected by distal secondary craters, because they are formed after the most recent secondary-forming event. However, extracting this information is not simple or straightforward. Here I illustrate these difficulties and ways of overcoming them using a population of small craters on ejecta of crater Zunil as an example. Population of small craters on Zunil ejecta Terrain I used HiRISE images PSP_001764_1880 and PSP_002397_1880. In these images I outlined an area (totally 52.8 km2) to NE, NW and SW of the crater limited by the toes of the outer walls of Zunil and the image boundaries. Terrain texture within the area is diverse; however, the area is entirely within the proximal ejecta lobes. The ejecta material was obviously emplaced as a result of the Zunil-forming impact and has a uniform age. The morphology of the surface indicates later resurfacing of steep slopes (over a small total area) and minor eolian modification of the terrain; some sub-areas might be modified by the post-impact hydrothermal activity. Crater population I registered diameters and positions of all impact craters in the area, a total of 1025 craters with D > 1.5 m. The largest of them has D = 20 m. Craters usually have no visible ejecta, which indicates some minor (perhaps, eolian) modification of the surface. Almost all craters have flat floors due to infill with loose material (only a few craters have pristine bowl-shaped floors). Thus, the most prominent process of crater modification is deposition of loose wind-transported material (sand and dust). However, the total number of recognisable craters with partly buried rims is small; it looks like the accumulation of sand and dust effectively fills depressions only, while the total accumulation is modest. This suggests that the number of obliterated craters is small, especially among larger craters. Clustering due to atmospheric break-up Some craters in the population form more or less tight clusters. These clusters are formed due to the break-up of projectiles in the atmosphere [1]. The morphology of overlapping craters is perfectly consistent with simultaneous impacts of fragments of the same projectile. The largest cluster contains 44 craters and reaches ~400 m in size, which is noticeably greater than predicted for the atmospheric break-up in [1] (~50 m) and observed for 20 impacts that have occurred during the last decade [2] (<100 m, [1]). The largest cluster(s) can be a superposition of two clusters formed by different projectiles, or the separation of the fragments can be greater due to periods of higher atmospheric pressure in the recent past. For the purposes of age estimates each cluster should be considered as a single impact event. I ran a "clustering" algorithm, which repeatedly searches for the tightest pair of craters and replaces it with an "effective" crater with diameter Deff = (D1 3+D2 3)1/3 located between the original craters. The process was stopped when the separation between craters in the tightest pair reached 40 m. This limit was consistently deduced from: (1) visual comparison of plots of frequency distributions of the nearest-neighbourdistance for the actual population and simulated purely random spatial scattering; (2) application of the "clustering" algorithm to purely random simulations and comparison of the frequency distributions of the nearest-neighbour-distance with the result for the actual population; (3) results of modelling of atmospheric break-up [1]. The "clustering" algorithm resulted in a population of 698 craters and "effective" craters representing clusters. For some clusters the 40 m separation limit is insufficient; for example, the largest cluster after applying the "clustering" algorithm is reduced to 3 "effective" craters and 1 single crater. On the other hand, comparison with the purely random simulations shows that several pairs in the population are merged erroneously (they have a small separation just by chance). The error in the total number of independent impact events, however, is well below 10%. For denser populations of small craters (for older terrains) the overlap of clusters produced by different projectiles would preclude identification of individual impact events; this would bring much greater uncertainty in the age considerations. The majority of the craters after the "clustering" procedure remain single. Among clusters identified by the "clustering" algorithm, pairs dominate. Only 23 formally identified clusters contain 5 or more craters. Among 19 craters with Deff > 10 m, 12 are "effective" craters representing pairs or multiple craters. This proportion is lower than observed for the latest impacts [1]; in the latter case craters smaller than 1.5 m are identifiable [1]; this explains the discrepancy. Spatial randomness To test spatial randomness I compared some statistics of the actual population and a set of simulated purely random populations, all having undergone the "clustering" algorithm. In particular, I used the standard deviation of the nearest neighbour distance and the interquartile amplitude of the adjacent area (see [3] for details). These tests do not reject spatial randomness of the actual population. Size-frequency distribution I applied the technique from [4] to find simultaneously the maximum-likelihood power-law fit for the cumulative size-frequency distribution (SFD) (after "clustering") and its low-diameter cut-off Dmin. This technique gave a rather good fit for Dmin = 4.85 - 4.95 m and power-law exponent α = 3.16 - 3.20. The latter values coincide perfectly with the typical slope of the Neukum production function (NPF) for Mars [5] for the smallest diameters D < 100 m (the NPF has been defined only for D > 10 m). Thus, my observations give grounds for power-law extrapolation of the NPF down to D = 5 m. For D < 5 m the observed SFD is progressively gentler, which can be caused by difficulty in identification of small craters in rough terrains and possible obliteration (burial) of small craters. Age constraints from the crater population The density of craters larger than D N(D) has been widely used to establish stratigraphic relationships between terrains and to estimate absolute ages. Such inferences assume that crater emplacement can be considered as a Poisson process with a known rate R(D) per unit area. The use of N(D), however, is not straightforward; many additional considerations are necessary for meaningful and reliable inferences. Crater obliteration. N(D) gives an estimate of the crater retention age. We can identify this age with the terrain age, if we have reasons to neglect obliteration of craters. A steep SFD is a good reason for such an assumption: the crater obliteration rate is higher for smaller craters, and if the obliteration is significant, one should expect the resulting SFD to be gentler than the production function. For the case of Zunil ejecta, the SFD suggests the use of N(D=5m). Morphological observations (see above) also suggest minor crater obliteration; nevertheless, some crater rims can be buried, and it is probable that N(D=5m) underestimates the terrain age. My subjective guess based on the morphology is that this bias is less than ~20-30%. Formal statistical error. The observed number of craters M(D) = A N(D) in an area A can be used to obtain a confidence interval for the average crater retention age T: 1(1- ; ) < ṡ ṡ < -1( ; +1) Γ - FΓ p M T A R F p M , where R is the cratering rate (assumed to be known), p is the confidence level, for example, 0.9 or 0.95 or 0.99, and -1(ṡ ; ṡ) FΓ is the inverse cumulative gamma distribution. For a large number of craters, practically, for M > 10, this confidence interval is well approximated by the traditionally used M error bars: M - Fn-1( p) M < T ṡ Aṡ R < M + Fn-1( p) M , where -1(ṡ) Fn is the inverse cumulative standard normal distribution. For the case of the Zunil ejecta, M = 175 (D > 5m), and the age "error bar" is ±12%, assuming p = 0.95. This formal statistical error is comparable or smaller than the possible bias due to crater obliteration. Cratering rate variations. The magnitude and time scales of cratering rate variations are unknown and produce the main uncertainty in stratigraphic inferences from crater populations. If compact meteorite swarms contribute significantly to the rate, significant temporal and spatial variations of the rate could occur. Thus, such inferences are "meaningful with caution". Absolute rate and age. R(D=5m) is unknown, but can be estimated in two ways. Extrapolation of the NPF with the power law (α = 3.2) gives R(5m) = 19 km-2Ma-1, which gives Zunil impact age TZ = 180 ka. Note that rescaling of the NPF from the Moon to Mars is accurate only within a factor of 2 [5], and the use of the NPF actually means a far extrapolation from the 100s Ma scale down to the ~100s ka scale. On the other hand, R(10 m) can be estimated from the new craters formed during the last decade [2] with a correction needed for spatial randomness [3]. Extrapolation of this rate with the power law (α = 3.2) gives R(5m) > 6 km-2Ma-1 with > ±30% formal statistical uncertainty, which gives TZ < 540 ka. Note that this constraint actually means a far extrapolation from the ~10 a scale down to the ~100s ka scale. Given all the uncertainties, the two extrapolations of R(5m) are wonderfully consistent. In addition, the inferred age is perfectly consistent with Zunil being the youngest (or, less probable, the 2nd youngest) crater with D > 10 km on the planet. References [1] Ivanov, B. et al. (2008) LPS XXXIX, #1221. [2] Malin, M. et al. (2006) Science, 314, 1573-1577. [3] Kreslavsky, M. (2007) 7th Mars Conf., #3325. [4] Clauset, A. (2007) arXiv:0706.1062v1. [5] Ivanov, B. (2001) Space Sci. Rev., 96, 87-104.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010M%26PS...45..373O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010M%26PS...45..373O"><span>Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, Mongolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ormö, Jens; Gomez-Ortiz, David; Komatsu, Goro; Bayaraa, Togookhuu; Tserendug, Shoovdor</p> <p>2010-03-01</p> <p>We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica-rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl-shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root-less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008CRGeo.340..801U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008CRGeo.340..801U"><span>Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Urrutia-Fucugauchi, Jaime; Chavez-Aguirre, Jose Maria; Pérez-Cruz, Ligia; De la Rosa, Jose Luis</p> <p>2008-12-01</p> <p>The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of ˜34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19442.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19442.html"><span>Tomorrow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-29</p> <p>This image from MESSENGER spacecraft covers a small area located about 115 km south of the center of Mansart crater. The smallest craters visible in the image are about the size of the 16-meter (52-feet) crater that will be made by the impact of the MESSENGER spacecraft. The impact will take place tomorrow, April 30, 2015. Just left of center is a crater that is about 80 meters in diameter. The bright area on its right wall may be an outcrop of hollows material. Date acquired: April 28, 2015 Image Mission Elapsed Time (MET): 72505530 Image ID: 8408666 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 69.8° N Center Longitude: 303.7° E Resolution: 2.0 meters/pixel Scale: The scene is about 1 km (0.6 miles) wide. This image has not been map projected. Incidence Angle: 79.0° Emission Angle: 11.0° Phase Angle: 90.0° http://photojournal.jpl.nasa.gov/catalog/PIA19442</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6659522-twelve-year-trail-clues-leads-impact-crater-from-boundary','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6659522-twelve-year-trail-clues-leads-impact-crater-from-boundary"><span>Twelve-year trail of clues leads to impact crater from the K-T boundary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Levi, B.G.</p> <p>1992-12-01</p> <p>In 1980, scientists at the University of California, Berkeley proposed that a massive comet or asteroid might have struck the earth about 65 million years ago, changing the earth's climate so drastically that dinosaurs and other creatures could no longer survive. This article describes the evidence for the elusive crater required to support this theory. The structure in question is 180 km in diameter and is submeged beneath the Yucatan peninsula and centered on the Mexican village of Chicxulub. Material drilled from this crater has been linked chemically and geologically to pellets found in Northeast Mexico and Haiti. The linkmore » between this ejecta material and the crater was confirmed by a report that the Chicxulub melt rock and pellets are coeval, all having ages consistent with 65 million years. This puts the possible impact at the K-T boundary -- the dividing line between the Cretaceous period of the dinosaurs and the Tertiary period of the mammals. 13 refs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012008"><span>Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.; Schuster, S. H.; Rosenblatt, M.; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.</p> <p>1988-01-01</p> <p>Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to add substantial solid and vaporized material to the atmosphere, but these conditions were not studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5011M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5011M"><span>Geological Mapping of the Ac-H-12 Toharu Quadrangle of Ceres from NASA Dawn Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mest, Scott; Williams, David; Crown, David; Yingst, Aileen; Buczkowski, Debra; Scully, Jennifer; Jaumann, Ralf; Roatsch, Thomas; Preusker, Frank; Nathues, Andres; Hoffmann, Martin; Schaefer, Michael; Raymond, Carol; Russell, Christopher</p> <p>2016-04-01</p> <p>The Dawn Science Team is conducting a geologic mapping campaign for Ceres similar to that done for Vesta [1,2], including production of a Survey- and High Altitude Mapping Orbit (HAMO)-based global map and a series of 15 Low Altitude Mapping Orbit (LAMO)-based quadrangle maps. In this abstract we discuss the surface geology and geologic evolution of the Ac-H-12 Toharu Quadrangle (21-66°S, 90-180°E). At the time of this writing LAMO images (35 m/pixel) are just becoming available. The current geologic map of Ac-H-12 was produced using ArcGIS software, and is based on HAMO images (140 m/pixel) and Survey (400 m/pixel) digital terrain models (for topographic information). Dawn Framing Camera (FC) color images were also used to provide context for map unit identification. The map (to be presented as a poster) will be updated from analyses of LAMO images. The Toharu Quadrangle is named after crater Toharu (86 km diameter; 48.3°S, 156°E), and is dominated by smooth terrain in the north, and more heavily cratered terrain in the south. The quad exhibits ~9 km of relief, with the highest elevations (~3.5-4.6 km) found among the western plateau and eastern crater rims, and the lowest elevation found on the floor of crater Chaminuka. Preliminary geologic mapping has defined three regional units (smooth material, smooth Kerwan floor material, and cratered terrain) that dominate the quadrangle, as well as a series of impact crater material units. Smooth materials form nearly flat-lying plains in the northwest part of the quad, and overlies hummocky materials in some areas. These smooth materials extend over a much broader area outside of the quad, and appear to contain some of the lowest crater densities on Ceres. Cratered terrain forms much of the map area and contains rugged surfaces formed largely by the structures and deposits of impact features. In addition to geologic units, a number of geologic features - including crater rims, furrows, scarps, troughs, and impact crater chains - have been mapped. The Toharu Quadrangle predominantly displays impact craters that exhibit a range of sizes - from the limits of resolution to part of the Kerwan basin (280 km diameter) - and preservation styles. The quad also contains a number large (>20 km across) depressions that are only observable in the topographic data. Smaller craters (<40 km) generally appear morphologically "fresh", and their rims are nearly circular and raised above the surrounding terrain. Larger craters, such as Toharu, appear more degraded, exhibiting irregularly shaped, sometimes scalloped, rim structures, and debris lobes on their floors. Numerous craters (> 20 km) contain central mounds; at current FC resolution, it is difficult to discern if these are primary structures (i.e., central peaks) or secondary features. Support of the Dawn Instrument, Operations, & Science Teams is acknowledged. This work is supported by grants from NASA, DLR and MPG. References: [1] Williams D.A. et al. (2014) Icarus, 244, 1-12. [2] Yingst R.A. et al. (2014) PSS, 103, 2-23.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170008146','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170008146"><span>Meteoroids Impact the Moon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moser, D. E.</p> <p>2017-01-01</p> <p>Most meteoroids are broken up by Earth's atmosphere before they reach the ground. The Moon, however, has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact they excavate a crater and generate a plume of debris. A flash of light at the moment of impact can also be seen. Meteoroids striking the Moon create an impact flash observable by telescopes here on Earth. NASA observers use telescopes at the Automated Lunar and Meteor Observatory (ALaMO) to routinely monitor the Moon for impact flashes each month when the lunar phase is right. Flashes recorded by two telescope simultaneously rule out false signals from cosmic rays and satellites. Over 400 impact flashes have been observed by NASA since 2005. This map shows the location of each flash. No observations are made near the poles or center line. On average, one impact is observed every two hours. The brightest and longest-lasting impact flash was observed in Mare Imbrium on March 17, 2013. The imaging satellite Lunar Reconnaissance Orbiter, in orbit around the Moon, discovered the fresh crater created by this impact. The crater is 60 across and was caused by a meteoroid 9 inches in diameter likely traveling at a speed of 57,000 mph!</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05760&hterms=home&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhome','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05760&hterms=home&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhome"><span>Flung Far from Home</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2 [figure removed for brevity, see original site] Figure 3 <p/>The rock dubbed 'Bounce' at Meridiani Planum, Mars, may have been thrown onto the plains during an impact that formed a 25-kilometer-diameter (15.5-mile) crater (arrow) located 50 kilometers (31 miles) southeast of the Mars Exploration Rover Opportunity's landing site (to the right of ellipse center). This infrared Mars Odyssey image taken by the thermal emission imaging system shows the pattern of ejecta, or material, thrown from the large crater. Rays of this rocky material can be seen radiating outward from the crater. The Opportunity landing site is close to one of these rays, as well as other rays of small impact craters seen in high-resolution Mars Odyssey camera images within 5 kilometers (3.1 miles) of the landing site. Bounce rock may be a smaller piece of material ejected onto the plains by this impact event.<p/> <p/>Figures 1, 2, and 3 above, infrared images increasing in zoom, taken by the thermal emission imaging system on the Mars Odyssey orbiter at night, show the pattern of ejecta, or material, thrown from the large crater. Large rocks on the surface stay warm at night and produce a bright signature. Rays of this rocky material can be seen radiating outward from the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0116&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0116&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0116</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Ball Aerospace in Boulder, Colo., the impactor on the Deep Impact spacecraft is tested. Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile (impactor) to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. The impactor will separate from the flyby spacecraft 24 hours before it impacts the surface of Tempel 1's nucleus. The impactor delivers 19 Gigajoules (that's 4.8 tons of TNT) of kinetic energy to excavate the crater. This kinetic energy is generated by the combination of the mass of the impactor and its velocity when it impacts. To accomplish this feat, the impactor uses a high-precision star tracker, the Impactor Target Sensor (ITS), and Auto-Navigation algorithms developed by Jet Propulsion Laboratory to guide it to the target. Deep Impact is a NASA Discovery mission. Launch of Deep Impact is scheduled for Jan. 12 from Launch Pad 17-B, Cape Canaveral Air Force Station, Fla.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-sts077-737-096.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-sts077-737-096.html"><span>Earth observations taken during the STS-77 mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-05-24</p> <p>STS077-737-096 (19-29 May 1996) --- The Palmer River emerging from the left corner of the photograph separates the Gardener Range to the right from the James Ranges on the left. To the bottom and off the photograph is the MacDonnell Ranges. The circular feature at bottom right is a highly eroded impact crater located on Missionary Plain. Gosses Bluff is a complex crater about 22 kilometers in diameter and is estimated to be about 142 million years old.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..284..284H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..284..284H"><span>The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopkins, R. T.; Tornabene, L. L.; Osinski, G. R.</p> <p>2017-03-01</p> <p>The majority of hydrated silicate occurrences on Mars are associated with impact craters (Ehlmann et al., 2011; Carter et al., 2013). Three formation mechanisms have been suggested to account for this correlation: (1) aqueous alteration occurred pre-impact, and was subsequently exposed via the impact (pre-impact; Bibring et al., 2006; Ehlmann et al., 2011), (2) heat generated from the impact facilitated the formation of a hydrothermal system, leading to alteration products (syn-impact; e.g. Marzo et al., 2010; Osinski et al., 2013), and/or (3) altered materials were deposited after crater formation, or formed within the crater well after the impact had taken place (post-impact). In this study, we analyze the central uplift of Elorza Crater, a ∼40 km diameter impact crater located ∼300 km north of Valles Marineris. To determine whether hydrated minerals found within the uplift were generated pre-, syn-, or post-impact, we used a data synthesis approach, utilizing High Resolution Imaging Science Experiment (HiRISE), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Context Camera (CTX), and Thermal Emission Imaging System (THEMIS) imagery. Opaline silica is observed in two locations on the southwestern side of the uplift and is interpreted to have been pre-existing or formed via hydrothermal alteration due to stratigraphic relationships with the overlying impact melt unit. Both Fe/Mg smectite and low-calcium pyroxene (LCP) are found throughout the uplift. Bedrock exposures on the northern wall of Coprates Chasma containing Fe/Mg smectite and LCP suggest an uplifted origin for these units. In all cases, although a pre-existing origin is probable, it is difficult to rule out the possibility of an impact-generated hydrothermal origin. Using the observed stratigraphy exposed in Coprates Chasma and bedrock exposures analyzed in nearby craters, we were able to constrain the pre-impact stratigraphy around Elorza. The near-subsurface consists of Hesperian-aged, discontinuous lava/ash deposits that may be interposed with opaline silica-bearing deposits, overlying Noachian basement consisting of smectite-bearing bedrock and LCP- bearing light-toned fractured bedrock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00466.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00466.html"><span>Venus - Large Impact Crater in the Eistla Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-09-26</p> <p>This image from NASA Magellan spacecraft shows the central Eistla Region of the equatorial highlands of Venus. It is centered at 15 degrees north latitude and 5 degrees east longitude. The image is 76.8 kilometers (48 miles) wide. The crater is slightly irregular in platform and approximately 6 kilometers (4 miles) in diameter. The walls appear terraced. Five or six lobes of radar-bright ejecta radiate up to 13.2 kilometers (8 miles) from the crater rim. These lobes are up to 3.5 kilometers (2 miles) in width and form a "starfish" pattern against the underlying radar-dark plains. The asymmetric pattern of the ejecta suggests the angle of impact was oblique. The alignment of two of the ejecta lobes along fractures in the underlying plains is apparently coincidental. http://photojournal.jpl.nasa.gov/catalog/PIA00466</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016328&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016328&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DATLA"><span>Parabolic features and the erosion rate on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strom, Robert G.</p> <p>1993-01-01</p> <p>The impact cratering record on Venus consists of 919 craters covering 98 percent of the surface. These craters are remarkably well preserved, and most show pristine structures including fresh ejecta blankets. Only 35 craters (3.8 percent) have had their ejecta blankets embayed by lava and most of these occur in the Atla-Beta Regio region; an area thought to be recently active. parabolic features are associated with 66 of the 919 craters. These craters range in size from 6 to 105 km diameter. The parabolic features are thought to be the result of the deposition of fine-grained ejecta by winds in the dense venusian atmosphere. The deposits cover about 9 percent of the surface and none appear to be embayed by younger volcanic materials. However, there appears to be a paucity of these deposits in the Atla-Beta Regio region, and this may be due to the more recent volcanism in this area of Venus. Since parabolic features are probably fine-grain, wind-deposited ejecta, then all impact craters on Venus probably had these deposits at some time in the past. The older deposits have probably been either eroded or buried by eolian processes. Therefore, the present population of these features is probably associated with the most recent impact craters on the planet. Furthermore, the size/frequency distribution of craters with parabolic features is virtually identical to that of the total crater population. This suggests that there has been little loss of small parabolic features compared to large ones, otherwise there should be a significant and systematic paucity of craters with parabolic features with decreasing size compared to the total crater population. Whatever is erasing the parabolic features apparently does so uniformly regardless of the areal extent of the deposit. The lifetime of parabolic features and the eolian erosion rate on Venus can be estimated from the average age of the surface and the present population of parabolic features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.P31A1702B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.P31A1702B"><span>Search for Impact Craters in the Volcanic and Volcano-Sedimentary Terrains of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bartali, R.; Fucugauchi, J. U.</p> <p>2011-12-01</p> <p>It has long been recognized that the numbers of impact craters documented in the terrestrial record are small compared to those of the Moon and other planets and satellites. Processes acting on the Earth surface including tectonics, volcanism and erosion contribute to erase, modify and cover evidence of crater-forming impacts that have occurred through Earth's history. Even evidence on large impact structures is limited to few examples, with only three complex multi-ring structures so far recognized. Chicxulub is a ~200 km diameter multi-ring crater formed by an impact in the southern Gulf of Mexico about 65.5 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub is the only impact structure documented in Mexico, Central and northern South America (http:www.unb.ca/passc/ImpactDatabase). Chicxulub, located in the Yucatan platform buried under a kilometer of carbonate rocks, was initially identified from its concentric semi-circular gravity and magnetic anomaly patterns. Yucatan peninsula has a low-relief topography and high contrasts in physical properties between carbonate rocks, impact lithologies and deformed target rocks. In contrast, most of the country has an abrupt topography with limited outcrops of Paleozoic and Precambrian terrains. The extensive igneous cover of the Sierra Madre Occidental, Trans-Mexican volcanic belt and Sierra Madre del Sur makes search for impact craters a difficult task. Early attempts were limited by the numerous volcanic craters and lack of high-resolution geophysical data. As part of a new country-wide search program, we have been conducting studies in northern Mexico using remote sensing and geophysical data to document circular and semi-circular crater-like features. The search has identified several structures, some well exposed and characterized by simple crater morphologies and topographic rims. These landforms have been mapped, estimating their dimensions, distribution and characterizing the surrounding terrains. Aeromagnetic anomaly data from low-altitude surveys have been used to characterize the structures, together with geological and topographic maps. For the promising sites, low altitude aerial images and on-site reconnaissance surveys and sampling are completed. Sites studied include isolated structures built on low relief terrains as well as multiple crater-like structures on volcanic terrains. Here we present initial results of the project in the Chihuahua region and discuss the methods, findings and difficulties in identification of impact structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910010694','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910010694"><span>Relative chronology of Martian volcanoes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Landheim, R.; Barlow, N. G.</p> <p>1991-01-01</p> <p>Impact cratering is one of the major geological processes that has affected the Martian surface throughout the planet's history. The frequency of craters within particular size ranges provides information about the formation ages and obliterative episodes of Martian geologic units. The Barlow chronology was extended by measuring small craters on the volcanoes and a number of standard terrain units. Inclusions of smaller craters in units previously analyzed by Barlow allowed for a more direct comparison between the size-frequency distribution data for volcanoes and established chronology. During this study, 11,486 craters were mapped and identified in the 1.5 to 8 km diameter range in selected regions of Mars. The results are summarized in this three page report and give a more precise estimate of the relative chronology of the Martian volcanoes. Also, the results of this study lend further support to the increasing evidence that volcanism has been a dominant geologic force throughout Martian history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21273.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21273.html"><span>Possible Layers on Floor of Suzhi Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-12-14</p> <p>This image shows the floor of Suzhi Crater, an approximately 25-kilometer diameter impact crater located northeast of Hellas Planitia. The crater floor is mostly covered by dark-toned deposits; however some patches of the underlying light-toned bedrock are now exposed, like in this Context Camera image. This enhanced-color infrared image shows a close up of the exposed bedrock on the floor of the crater. Here we can see the lighter-toned bedrock partially covered up by darker-toned bedrock and a few wind-blown bedforms. The lighter-toned bedrock appears to lie over yet another type of bedrock in our image, which appears to be yellowish and heavily fractured. What complex tale of Martian geologic and climate history might these rocks tell us if we were able to sample them in person? Perhaps, one day we'll know. The University of Arizona, Tucson, operates HiRISE, which was http://photojournal.jpl.nasa.gov/catalog/PIA21273</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770035578&hterms=age+grouping&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dage%2Bgrouping','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770035578&hterms=age+grouping&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dage%2Bgrouping"><span>Lunar crater arcs. [origins, distribution and age classification of Pre-Imbrian families</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jaffe, L. D.; Bulkley, E. O.</p> <p>1976-01-01</p> <p>An analysis has been made of the tendency of large lunar craters to lie along circles. A catalog of the craters at least 50 km in diameter was prepared first, noting position, diameter, rim sharpness and completion, nature of underlying surface, and geological age. The subset of those craters 50-400 km in diameter was then used as input to computer programs which identified each 'family' of four or more craters of selected geological age lying on a circular arc. For comparison, families were also identified for randomized crater models in which the crater spatial density was matched to that on the moon, either overall or separately for mare and highland areas. The observed frequency of lunar arcuate families was statistically highly significantly greater than for the randomized models, for craters classified as either late-pre-Imbrian (Nectarian), middle pre-Imbrian, or early pre-Imbrian, as well as for a number of larger age-classes. The lunar families tend to center in specific areas of the moon; these lie in highlands rather than maria and are different for families of Nectarian craters than for pre-Nectarian. The origin of the arcuate crater groupings is not understood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930020168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930020168"><span>Continued investigation of LDEF's structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>See, Thomas H.; Mack, Kimberly S.; Warren, Jack L.; Zolensky, Michael E.; Zook, Herbert A.</p> <p>1993-01-01</p> <p>This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P31D..04E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P31D..04E"><span>MRO Context Camera (CTX) Investigation Primary Mission Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edgett, K. S.; Malin, M. C.; Science; Operations Teams, M.</p> <p>2008-12-01</p> <p>The Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) acquires panchromatic images of Mars at ~6 m/pixel; the majority cover areas 30 km wide by 43 to 313 km long. As of 31 August 2008, 36% of Mars was imaged at 6 m/pixel and 10.8% was covered more than once. Areas imaged multiple times include stereopairs and locations covered repeatedly to monitor dust-raising events, seasonal frost patterns, or landforms and albedo features known or anticipated to change. CTX provides context for data acquired by other MRO science instruments, as well. Using our knowledge of imaging performance as a function of seasonal atmospheric, frost, and insolation conditions from the 4 Mars-year Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) investigation, we undertook several time-dependent campaigns to create 6 m/pixel mosaics of regions such as Hellas Planitia, the south polar residual cap (covered in spring and in summer), and the north polar region. In addition, we obtained 6 m/pixel mosaics of the Valles Marineris, Sinus Meridiani, Marte Valles, Athabasca Valles, portions of the northern plains, fretted terrain and chaotic terrain, large volcanoes, yardang-forming materials in Amazonis and Aeolis, the small volcanoes and platy flows south of Cerberus, and many other regions. We monitored thousands of mid-latitude gullies, and we used our MOC experience to target dust-raising events that repeat every year at the same locations. Retreat of cliffs formed in layers of CO2 ice in the south polar cap was observed for the 5th southern summer since 1999. Dozens of new impact craters and crater clusters were observed; all formed since 1999 and some formed during the MRO Primary Mission. We routinely re-targeted the new impact sites to see how they change and alert other MRO instrument teams so they could observe them. CTX images of the cratered highlands emphasize the view that the upper crust of Mars is layered with interbedded filled and buried valleys, fluvial channels, and impact craters ranging in diameter from meters to hundreds of kilometers. CTX observations reiterate a critical MOC result regarding small, sub-kilometer diameter craters: the substrates most resistant to erosion retain the most small craters (and the boulders produced by the impacts). CTX images provide many examples in which a younger, harder substrate (e.g., a lava flow) is more heavily cratered (with < 1 km diameter craters) than subjacent, older rock units. One example occurs in the form of lava flows located immediately west of Meridiani Planum; similar flows underlie the hematite-bearing, plains- forming rock in nearby Miyamoto Crater. Northern Meridiani also exhibits exhumed, low-order streams (of the scale of hillslope rills and creeks); these were filled, buried, lithified, and later returned to the surface by erosion-some of them in inverted form. Terrain immediately west of Juventae Chasma exhibits similar inverted streams and rills that were first documented by MOC and provide key evidence for rainfall and hillslope runoff. CTX data show that there are many hundreds of inverted fluvial channels, of a variety of sizes, all over the planet, especially in Arabia Terra, Solis Planum, and Thaumasia. We also used CTX to map a small, unnamed outflow channel system west of Bond Crater, and we have been documenting all of the small Martian volcanoes, typically < 30 km across, including those occurring in the Labyrinthus Noctis. CTX data are widely available, as they are archived with the NASA Planetary Data System on a rolling basis every 6 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1615716W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1615716W"><span>Large impacts and tectonism: the relative ages of the basin Odysseus and Ithaca Chasma on Saturn's icy moon Tethys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagner, Roland; Stephan, Katrin; Schmedemann, Nico; Roatsch, Thomas; Kersten, Elke; Neukum, Gerhard; Denk, Tilmann; Porco, Carolyn C.</p> <p>2014-05-01</p> <p>Large impact events forming craters of basin size (> 200 - 300 km in diameter) on planets, asteroids or planetary satellites can cause intense tectonic deformation on their surfaces, indicated by concentric and/or radial troughs or ridges [e.g., 1]. Recently, sets of parallel grooves on asteroid (4) Vesta have been discussed to be the result of impact-related deformation in connection with basin-forming events on Vesta's south polar area [2]. On Saturn's mid-sized icy satellites Tethys, 1072 km in diameter, major landforms are the 445 km large impact basin Odysseus and the huge graben system of Ithaca Chasma which were first imaged during the Voyager encounters in 1980 and 1981 [3][4]. Ithaca Chasma is a ~100 km wide terraced trough. It has been discussed that Ithaca Chasma could be the result of structural deformation caused by the impact event that created Odysseus [4][5]. Preliminary mapping and crater counts using Cassini ISS imaging data on Odysseus and Ithaca Chasma, however, infer that this has not been the case [6]. Cassini VIMS spectral data show that Ithaca Chasma has less ice compared to Odysseus which supports this finding that it is older than the basin [7]. Major problems to exactly define the stratigraphic position of Ithaca Chasma with respect to the basin Odysseus are (1) that only those craters are allowed to be used for crater counts which clearly superimpose the tectonic structures (e.g., the terraced scarps) across the chasm, and (2) further geologic processes that affected the chasm interior caused obliteration of craters which results in lower crater frequencies. Our preliminary crater counts [6] were carried out on lower-resolution Cassini imaging data. During Cassini's orbital tour since July 2004, the ISS cameras have provided almost complete global image coverage of Tethys at resolutions of 100 - 300 m/pxl. In this work we present results from our ongoing studies on Tethys' geology, based on these new imaging data, primarily focused on the topic of the relative age of Odysseus versus Ithaca Chasma. These stratigraphic findings are also put into context to Tethys' global geology which is characterised preferentially by old densely cratered plains showing little geologic diversity other than impact crater forms with various degrees of degradation [3][4][5][6]. References: [1] Spudis P. D. (1993), Cambridge Planet. Sci. Series Vol. 8, 263p, Cambridge, U.K. [2] Jaumann R. et al. (2012), Science 336, 687 - 690. [3] Smith B. A. et al. (1981), Science 212, 163-191. [4] Smith B. A. et al. (1982), Science 215, 504-537. [5] Moore J. M. and Ahern J. L. (1983), JGR 88 (suppl.), A577-A584. [6] Giese B. et al. (2007), GRL 34, doi:10.1029/2007GL031467. [7] Stephan K. et al. (2012), LPSC XLIII, abstr. No. 2119.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGP11A1023N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGP11A1023N"><span>Geomagnetic and morphological signature of small crateriform structures in the Alpine Foreland, Southeast Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neumair, A.; Ernstson, K.</p> <p>2011-12-01</p> <p>Lots of rimmed crateriform structures with diameters of the order of meters and ten meters in young fluvial and moraine sediments in Southeast Germany have raised increased interest in the last decade although they have been known since longtime. An anthropogenic origin (for smelting or lime kiln purposes, as prospecting pits, bomb craters, etc) can in most cases be excluded, and the ring walls are speaking against a formation as simple sink holes. Some earlier geomagnetic field and soil susceptibility measurements found anomalies without giving them further enhanced consideration. In a new geomagnetic campaign we exemplarily investigated a few of these craters by fluxgate gradiometer surveys and by magnetic susceptibility measurements of the crater soil and of rock samples digged from the crater underground that also supplied remnant magnetization data. Conspicuously, the craters although morphologically similar, can be subdivided into structures with a clear magnetic signature and ones free of mentionable anomalies. The magnetic signature is expressed by soil susceptibilities up to one order of magnititude higher for the depression and rim area compared to outside the structure, and by an irregular cluster of short-wavelength magnetic anomalies in extreme cases exceding several 1000 nT/m amplitude. Excavations do not show any anthropogenic influence but highly magnetized, frequently strongly fractured cobbles and boulders as the cause. Susceptibilities up to more than 6000 x 10-5 SI and remnant magnetizations of the order of 10 A/m (Koenigsberger ratio Q up to 3.5) were measured. So far enigmatic are very high susceptibilities and remnant magnetizations of limestone clasts. While in general carbonate clasts of the region have susceptibilities of the order of 0.00005 x 10-5 SI and negligible remanence, we measured up to more than 1500 x 10-5 SI and remnant magnetizations of up to 2 A/m (Q up to 3) for limestone samples from the craters. Detailed rock-magnetic studies are ongoing, and, for the moment, we point to new ideas focusing on a formation of at least part of the craters as meteorite craters originating from the recently proposed large Holocene so-called Chiemgau impact event. The magnetic signature as described may prove as a characteristic attribute of identifying respective craters, and thermal effects implying a thermal remnant magnetization are discussed. On the other hand, the highly magnetized carbonate rocks do not show any significant thermal overprint, and a strong shock magnetization debated for some magnetic anomalies in impact craters must seriously be considered. The "magnetic" craters irrespective of their diameters show when appropriately scaled more or less identical diametral cross sections while the craters without magnetic signature have a different profile. Hence, two different processes are suggested to have produced "magnetic" meteorite craters and a second group of craters that may have an endogenetic origin possibly by soil liquefaction sand explosions in the course of the postulated impact event.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52.2461G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52.2461G"><span>Kamenetsk—A new impact structure in the Ukrainian Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, Eugene; Nikolaenko, Nikolay; Shevchuk, Helena; Yamnichenko, Anatoly</p> <p>2017-12-01</p> <p>The Kamenetsk impact structure is a deeply eroded simple crater that formed in crystalline rocks of the Ukrainian Shield. This study presents structural, lithologic, and shock metamorphic evidence for an impact origin of the Kamenetsk structure, which was previously described as a paleovolcano. The Kamenetsk structure is an oval depression that is 1.0-1.2 km in diameter and 130 m deep. The structure is deeply eroded, and only the lower part of the sequence of lithic breccia has been preserved in the deepest part of the crater to recent time, while the predominant part of impact rocks and postimpact sediments was eroded. Manifestations of shock metamorphism of minerals, especially planar deformation features in quartz and feldspars, were determined by petrographic investigations of lithic breccia that allowed us to determine the impact origin of the Kamenetsk structure. The erosion of the crater and surrounding target to a minimal depth of 220 m preceded the deposition of the postimpact sediments. The time of the formation of the Kamenetsk structure is bracketed within a wide interval from 2.0 to 2.1 Ga, the age of the crystalline target rocks, to the Late Miocene age of the sediments overlaying the crater. The deep erosion of the structure suggests it is probably Paleozoic in age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880033068&hterms=keefe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dkeefe','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880033068&hterms=keefe&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D50%26Ntt%3Dkeefe"><span>The size distributions of fragments ejected at a given velocity from impact craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Keefe, John D.; Ahrens, Thomas J.</p> <p>1987-01-01</p> <p>The mass distribution of fragments that are ejected at a given velocity for impact craters is modeled to allow extrapolation of laboratory, field, and numerical results to large scale planetary events. The model is semi-empirical in nature and is derived from: (1) numerical calculations of cratering and the resultant mass versus ejection velocity, (2) observed ejecta blanket particle size distributions, (3) an empirical relationship between maximum ejecta fragment size and crater diameter, (4) measurements and theory of maximum ejecta size versus ejecta velocity, and (5) an assumption on the functional form for the distribution of fragments ejected at a given velocity. This model implies that for planetary impacts into competent rock, the distribution of fragments ejected at a given velocity is broad, e.g., 68 percent of the mass of the ejecta at a given velocity contains fragments having a mass less than 0.1 times a mass of the largest fragment moving at that velocity. The broad distribution suggests that in impact processes, additional comminution of ejecta occurs after the upward initial shock has passed in the process of the ejecta velocity vector rotating from an initially downward orientation. This additional comminution produces the broader size distribution in impact ejecta as compared to that obtained in simple brittle failure experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JASS...23..199C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JASS...23..199C"><span>Time/Frequency Analysis of Terrestrial Impack Crater Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Heon-Young</p> <p>2006-09-01</p> <p>The terrestrial impact cratering record recently has been examined in the time domain by Chang & Moon (2005). It was found that the ˜ 26 Myr periodicity in the impact cratering rate exists over the last ˜ 250 Myrs. Such a periodicity can be found regardless of the lower limit of the diameter up to D ˜ 35 km. It immediately called pros and cons. The aim of this paper is two-fold: (1) to test if reported periodicities can be obtained with an independent method, (2) to see, as attempted earlier, if the phase is modulated. To achieve these goals we employ the time/frequency analysis and for the first time apply this method to the terrestrial impact cratering records. We have confirmed that without exceptions noticeable peaks appear around ˜ 25 Myr, corresponding to a frequency of ˜ 0.04 (Myr)^{-1}. We also find periodicities in the data base including small impact craters, which are longer. Though the time/frequency analysis allows us to observe directly phase variations, we cannot find any indications of such changes. Instead, modes display slow variations of power in time. The time/frequency analysis shows a nonstationary behavior of the modes. The power can grow from just above the noise level and then decrease back to its initial level in a time of order of 10 Myrs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16689651','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16689651"><span>Impact craters as biospheric microenvironments, Lawn Hill Structure, Northern Australia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lindsay, John; Brasier, Martin</p> <p>2006-04-01</p> <p>Impact craters on Mars act as traps for eolian sediment and in the past may have provided suitable microenvironments that could have supported and preserved a stressed biosphere. If this is so, terrestrial impact structures such as the 18-km-diameter Lawn Hill Structure, in northern Australia, may prove useful as martian analogs. We sampled outcrop and drill core from the carbonate fill of the Lawn Hill Structure and recorded its gamma-log signature. Facies data along with whole rock geochemistry and stable isotope signatures show that the crater fill is an outlier of the Georgina Basin and was formed by impact at, or shortly before, approximately 509-506 million years ago. Subsequently, it was rapidly engulfed by the Middle Cambrian marine transgression, which filled it with shallow marine carbonates and evaporites. The crater formed a protected but restricted microenvironment in which sediments four times the thickness of the nearby basinal succession accumulated. Similar structures, common on the martian surface, may well have acted as biospheric refuges as the planet's water resources declined. Low-pH aqueous environments on Earth similar to those on Mars, while extreme, support diverse ecologies. The architecture of the eolian crater fill would have been defined by long-term ground water cycles resulting from intermittent precipitation in an extremely arid climate. Nutrient recycling, critical to a closed lacustrine sub-ice biosphere, could be provided by eolian transport onto the frozen water surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000965','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000965"><span>The Cretaceous-Tertiary (K/T) impact: One or more source craters?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koeberl, Christian</p> <p>1992-01-01</p> <p>The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992lmip.conf...41K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992lmip.conf...41K"><span>The Cretaceous-Tertiary (K/T) impact: One or more source craters?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koeberl, Christian</p> <p></p> <p>The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180813','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180813"><span>Numerical Modelling of the Deep Impact Mission Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wuennemann, K.; Collins, G. S.; Melosh, H. J.</p> <p>2005-01-01</p> <p>NASA s Deep Impact Mission (launched January 2005) will provide, for the first time ever, insights into the interior of a comet (Tempel 1) by shooting a approx.370 kg projectile onto the surface of a comets nucleus. Although it is usually assumed that comets consist of a very porous mixture of water ice and rock, little is known about the internal structure and in particular the constitutive material properties of a comet. It is therefore difficult to predict the dimensions of the excavated crater. Estimates of the crater size are based on laboratory experiments of impacts into various target compositions of different densities and porosities using appropriate scaling laws; they range between 10 s of meters up to 250 m in diameter [1]. The size of the crater depends mainly on the physical process(es) that govern formation: Smaller sizes are expected if (1) strength, rather than gravity, limits crater growth; and, perhaps even more crucially, if (2) internal energy losses by pore-space collapse reduce the coupling efficiency (compaction craters). To investigate the effect of pore space collapse and strength of the target we conducted a suite of numerical experiments and implemented a novel approach for modeling porosity and the compaction of pores in hydrocode calculations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Metic..30..578S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Metic..30..578S"><span>Impact Crater Identified on the Navajo Nation Near Chinle, Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.</p> <p>1995-09-01</p> <p>A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of the crater was scoured down to the Jeddito-Chinle contact across the center of the crater. Some of the Chinle was excavated by impact south of the center, as seen in the trench in the south wall. The original crater walls slope inward about 30 degrees on the east and west sides, about 20 degrees on the north, and about 45 degrees on the south. Beds are dragged up along the east, west, and south walls, but not along the north wall. The deformation is restricted to within about 0.5 m of the wall. From the asymmetry of shape and deformation in the walls, we believe that the impacting body struck at an oblique angle and was traveling from north to south. A small, magnetic, iron oxide fragment, about 1 mm across, was collected from material excavated from the south crater wall area. Analyses of this fragment by electron microprobe detected a significant nickel concentration of 5%. Two senior Navajo women (70-80 year age range) independently remember this crater as being much deeper during their childhood and both suggest that the impact was witnessed 3 to 4 generations ago. Interestingly, many persons in the Navajo community thought that this crater was of impact origin. Additional work is planned, including a broader aerial search for other possible impact sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19415.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19415.html"><span>Expansive Northern Volcanic Plains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-04-16</p> <p>Mercury northern region is dominated by expansive smooth plains, created by huge amounts of volcanic material flooding across Mercury surface in the past, as seen by NASA MESSENGER spacecraft. The volcanic lava flows buried craters, leaving only traces of their rims visible. Such craters are called ghost craters, and there are many visible in this image, including a large one near the center. Wrinkle ridges cross this scene and small troughs are visible regionally within ghost craters, formed as a result of the lava cooling. The northern plains are often described as smooth since their surface has fewer impact craters and thus has been less battered by such events. This indicates that these volcanic plains are younger than Mercury's rougher surfaces. Instrument: Mercury Dual Imaging System (MDIS) Center Latitude: 60.31° N Center Longitude: 36.87° E Scale: The large ghost crater at the center of the image is approximately 103 kilometers (64 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19415</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21908.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21908.html"><span>Axomama Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-10-06</p> <p>This image from NASA's Dawn spacecraft highlights Axomama Crater, the small crater shown to the right of center. It is 3 miles (5 kilometers) in diameter and located just inside the western rim of Dantu Crater. Axomama is one of the newly named craters on Ceres. Its sharp edges indicate recent emplacement by a small impact. This picture also shows details on the floor of Dantu, which comprises most of the image. The many fractures and the central pit (see also PIA20303) are reminiscent of Occator Crater and could point to a similar formation history, involving activity driven by the presence of liquid water in the subsurface. Axomama is named after the Incan goddess of potato, or "Potato-mother." NASA's Dawn spacecraft acquired this picture during its extended mission on July 24, 2016, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 24 degrees north latitude, 131 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21908</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P34C..01M"><span>Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mader, M. M.; Osinski, G. R.</p> <p>2013-12-01</p> <p>Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range in matrix content, melt-fragment concentration, and contact relationships with adjacent impactites. Initial findings suggest differing origins for impact melt-bearing breccias from a single impact event. Three examples are highlighted: 1) Impact melt-bearing breccias, on an inner terrace, formed in boundary zones where hot impact melt flowed over cooler, ballistically emplaced polymict impact breccias. 2) Locally, a dyke of impact melt-bearing breccia suggests that this unit originated as hot lithic flow that moved laterally along the ground and then intruded as a fracture fill into target rocks. 3) A m-scale lens of melt-bearing breccia within the middle of a thick, 80m impact melt rock unit situated on an inner terrace, suggests that this lens may have originated from the crater floor and been incorporated into the melt pond during emplacement (i.e. movement of the melt from the crater floor to terrace shelf). In summary, the Mistastin Lake impact structure displays a multiple layered ejecta sequence that is consistent with, and requires, a multi-stage ejecta emplacement model as proposed by [1]. References: [1] Osinski et al. (2011) EPSL (310:167-181. [2] Melosh (1989) Oxford Univ. 245 pp. [3] French B. M. (1998) LPI Contribution 954,120pp. [4] Mader et al. (2011) 42nd LPSC, No.1608. [5] Mader et al. (2013) 43rd LPSC, No. 2517.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065746&hterms=Rock+burst&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRock%2Bburst','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065746&hterms=Rock+burst&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DRock%2Bburst"><span>High Resolution Digital Elevation Models of Pristine Explosion Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farr, T. G.; Krabill, W.; Garvin, J. B.</p> <p>2004-01-01</p> <p>In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements, correlation of ejecta size and composition with radar and visible-thermal IR remote sensing signatures, and comparison of these results with similar measurements of Mars. The final DEMs, ancillary data sets, and derived data products will be made available to the community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0019&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DVantage','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0019&hterms=Vantage&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DVantage"><span>KSC-05PD-0019</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. From a vantage point above, a worker observes the Deep Impact spacecraft exposed after removal of the canister and protective cover. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2404&hterms=crash+2004&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcrash%2B2004','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2404&hterms=crash+2004&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dcrash%2B2004"><span>KSC-04PD-2404</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B, Cape Canaveral Air Force Station, Fla., a second Solid Rocket Booster (SRB) is raised off a transporter to be lifted up the mobile service tower. It will be attached to the Boeing Delta II launch vehicle for launch of the Deep Impact spacecraft. A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact project management is handled by the Jet Propulsion Laboratory in Pasadena, Calif. The spacecraft is scheduled to launch Dec. 30, 2004.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0075&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0075&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0075</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2699&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2699&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-04PD-2699</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., the Deep Impact spacecraft is mated to the Boeing Delta II third stage. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0079&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0079&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0079</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the partly enclosed Deep Impact spacecraft (background) waits while the second half of the fairing (foreground left) moves toward it. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0076&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0076&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0076</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved toward the Deep Impact spacecraft for installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0078&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0078&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0078</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2693&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-04PD-2693&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsecret"><span>KSC-04PD-2693</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Boeing technicians at Astrotech Space Operations in Titusville, Fla., prepare the third stage of a Delta II rocket for mating with the Deep Impact spacecraft. When the spacecraft and third stage are mated, they will be moved to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There they will be mated to the Delta II rocket and the fairing installed around them for protection during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0074&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0074&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0074</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0077&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0077&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dsecret"><span>KSC-05PD-0077</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., the first half of the fairing is moved into place around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0073&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0073&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0073</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft waits inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., for fairing installation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0080&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=KSC-05PD-0080&hterms=secret&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dsecret"><span>KSC-05PD-0080</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p>KENNEDY SPACE CENTER, FLA. Inside the mobile service tower on Launch Pad 17-B, Cape Canaveral Air force Station, Fla., workers attach the two halves of the fairing around the Deep Impact spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nosecone, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P44A..01V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P44A..01V"><span>Geomorphological Evidence for Excess Ice in the Southern Hemisphere of Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viola, D.; McEwen, A. S.</p> <p>2016-12-01</p> <p>Abundant water ice is present in the polar caps and in the subsurface at mid to high latitudes on Mars. Subsurface ice can either be confined to regolith pore spaces (pore-filling) or "excess ice" that exceeds the available pore space. The latitudinal bounds of modern excess ice in the northern hemisphere of Mars have been constrained by observations of recent ice-exposing impacts (Dundas et al., 2014, JGR: Planets): >25 have been found as of July 2016 at latitudes above 38°N. However, new impact craters are less commonly found in the southern hemisphere since impacts into relatively dust-free surfaces are difficult to discover; only 5 ice-exposing impacts have been found, all at >55°S. Therefore, we propose the use of other surface morphological features to define the present mid-latitude excess ice boundary in the southern hemisphere. We primarily focus on "expanded craters" that show evidence for thermokarstic diameter enlargement. These craters likely form when an impact exposes a subsurface excess ice layer that subsequently sublimates, leading to an apparent widening of the crater. It is important to note that expanded craters suggest that ice was present both at the time of impact and today, since the widespread loss of an excess ice layer would lead to the collapse of these features. Expanded craters have been mapped across a broad region of the northern plains, and their distribution is consistent with the latitudinal limits of new ice-exposing craters. We also observe expanded craters in and around Hellas Planitia, and will use images from the Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO) to conduct preliminary mapping of their broader distribution across the southern hemisphere. We will also identify additional features that suggest present or past ice: scallops, polygonal patterned ground, and pedestal craters. This data will be used to infer the latitudinal limit and longitudinal variations of modern excess ice in the southern hemisphere of Mars. This has implications on the history and preservation of water ice on Mars, and may be of interest for future human exploration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980231991','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980231991"><span>Effect of Target Thickness on Cratering and Penetration of Projectiles Impacting at Velocities to 13,000 Feet Per Second</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kinard, William H.; Lambert, C. H., Jr.; Schryer, David R.; Casey, Francis W., Jr.</p> <p>1958-01-01</p> <p>In order to determine the effects of target thickness on the penetration and cratering of a target resulting from impacts by high-velocity projectiles, a series of experimental tests have been run. The projectile-target material combinations investigated were aluminum projectiles impacting aluminum targets and steel projectiles impacting aluminum and copper targets. The velocity spectrum ranged from 4,000 ft/sec to 13,000 ft/sec. It has been found that the penetration is a function of target thickness provided that the penetration is greater than 20 percent of the target thickness. Targets of a thickness such that the penetration amounts to less than 20 percent of the thickness may be regarded as quasi-infinite. An empirical formula has been established relating the penetration to the target thickness and to the penetration of a projectile of the same mass, configuration, and velocity into a quasi- infinite target. In particular, it has been found that a projectile can completely penetrate a target whose thickness is approximately one and one-half times as great as the penetration of a similar projectile into a quasi-infinite target. The diameter of a crater has also been found to be a function of the target thickness provided that the target thickness is not greater than the projectile length in the case of cylindrical projectiles and not greater than two to three times the projectile diameter in the case of spherical projectiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=AS11-42-6237&hterms=NECTAR&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DNECTAR','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=AS11-42-6237&hterms=NECTAR&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DNECTAR"><span>Oblique view of crater Theophilus at northwest edge of Sea of Nectar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1969-01-01</p> <p>An Apollo 11 oblique view of the large crater Theophilus located at the northwest edge of the Sea of Nectar on the lunar nearside. Theophilus is about 60 statute miles in diameter. the smooth area is Mare Nectaris. The smaller crater Madler, about 14 statute miles in diameter, is located to the east of Theophilus. Visible in the background are the large crater Fracastorius and the smaller crater Beaumont. The coordinates of the center of this photograph are 29 degrees east longitude and 11 degrees south latitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150021036','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150021036"><span>Processes Modifying Cratered Terrains on Pluto</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, J. M.</p> <p>2015-01-01</p> <p>The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19450.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19450.html"><span>In Tribute</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-05-01</p> <p>In this perspective view, NASA MESSENGER spacecraft looked northwest over the Caloris Basin, a depression about 1500 km in diameter formed several billion years ago by the impact of a large projectile into the surface of Mercury. The mountain range at the edge of the basin can be seen as an arc in the background. In the foreground, we see a set of tectonic troughs, known as Pantheon Fossae, radiating from the center of the basin outward toward the edge of the basin interior. A 41-km-diameter impact crater, Apollodorus, is superposed just slightly off from the center of Pantheon Fossae. White and red are high topography, and greens and blues are low topography, with a total height differences of roughly 4 km. The MESSENGER spacecraft was launched in 2004 and ended it's orbital operations yesterday, April 30, 2015, by impacting Mercury's surface. Background image texture is provided by the Mercury Dual Imaging System (MDIS) instrument while color corresponds to surface elevation data obtained from the Mercury Laser Altimeter (MLA) experiment, with both draped over a digital elevation model derived from MLA altimetric data. Instrument: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Approximate Center Latitude: 33.7° N Approximate Center Longitude: 158.7° E Scale: Apollodorus crater is approximately 41 km (25 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19450</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014M%26PS...49.1851R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014M%26PS...49.1851R"><span>Ernst Julius Öpik's (1916) note on the theory of explosion cratering on the Moon's surface—The complex case of a long-overlooked benchmark paper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Racki, Grzegorz; Koeberl, Christian; Viik, Tõnu; Jagt-Yazykova, Elena A.; Jagt, John W. M.</p> <p>2014-10-01</p> <p>High-velocity impact as a common phenomenon in planetary evolution was ignored until well into the twentieth century, mostly because of inadequate understanding of cratering processes. An eight-page note, published in Russian by the young Ernst Julius Öpik, a great Estonian astronomer, was among the key selenological papers, but due to the language barrier, it was barely known and mostly incorrectly cited. This particular paper is here intended to serve as an explanatory supplement to an English translation of Öpik's article, but also to document an early stage in our understanding of cratering. First, we outline the historical-biographical background of this benchmark paper, and second, a comprehensive discussion of its merits is presented, from past and present perspectives alike. In his theoretical research, Öpik analyzed the explosive formation of craters numerically, albeit in a very simple way. For the first time, he approximated relationships among minimal meteorite size, impact energy, and crater diameter; this scaling focused solely on the gravitational energy of excavating the crater (a "useful" working approach). This initial physical model, with a rational mechanical basis, was developed in a series of papers up to 1961. Öpik should certainly be viewed as the founder of the numerical simulation approach in planetary sciences. In addition, the present note also briefly describes Nikolai A. Morozov as a remarkable man, a forgotten Russian scientist and, surprisingly, the true initiator of Öpik's explosive impact theory. In fact, already between 1909 and 1911, Morozov probably was the first to consider conclusively that explosion craters would be circular, bowl-shaped depressions even when formed under different impact angles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B"><span>Exploring Tectonic Activity on Vesta and Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.</p> <p>2017-12-01</p> <p>Images of Vesta and Ceres taken by the Dawn spacecraft revealed large-scale linear structural features on both asteroids. We evaluate their morphology to determine 1) what processes caused them to form and 2) what implications this has for the history of Vesta and Ceres as planetary bodies. The Divalia Fossae are wide troughs bounded by steep scarps that encircle Vesta roughly aligned with the equator. Fault plane analysis suggests that their formation was triggered by the impact event that formed the Rheasilvia basin. The Saturnalia Fossae extend from Divalia to the northern polar region; fault plane analysis ties their formation to the Veneneia basin impact event. Also, it has been suggested that the elongate hill Brumalia Tholus could have been formed as a magmatic intrusion utilizing the subsurface Albalonga fracture as a conduit to the surface, intruding into and deforming the rock above it. Kilometer-scale linear structures cross much of the eastern hemisphere of Ceres. Many structures appear to be radial to the large craters Urvara and Yalode, and likely formed due to impact processes. However, the Samhain Catenae do not have any obvious relationship to a crater and the lack of raised rims makes it unlikely that these are secondary impacts; they are also crosscut by linear features radial to Urvara and Yalode, indicating they are not fractures formed during those impact events. Instead, the morphology of these structures more closely resembles that of pit crater chains (buried normal faults), and show en echelon orientation and S-shaped linkages. Polygonal craters, which form where there is pervasive subsurface fracturing, are widespread on Ceres, and those polygonal craters proximal to the Samhain Catenae have straight crater rims aligned with the structures. Several craters on Ceres have fractured floors, similar to lunar floor-fractured craters (FFCs), which are theorized to form from floor uplift due to magmatic intrusion. Large (>50 km) Ceres FFCs can have both radial and concentric fractures at the crater center, and/or concentric fractures near the crater wall. Smaller craters have a v-shaped moat separating the wall scarp from the crater interior, but different interior morphologies. A depth vs. diameter analysis shows that the Ceres FFCs are unusually shallow, consistent with the magmatic intrusion models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.P43D1455K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.P43D1455K"><span>100 New Impact Crater Sites Found on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kennedy, M. R.; Malin, M. C.</p> <p>2009-12-01</p> <p>Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data set of 100 sites into 3 sets of observations: the original 19 MOC observations found in a survey of 15% of the planet, craters found only in CTX repeat coverage of 7% of Mars, and the remaining 69 craters found in a data set covering 40% of the planet. Using the mean interval between the latest observation preceding the impact and the first observation showing the impact for these groups of craters, we determine that the cratering rate is roughly 8 ± 6 x 10-7 craters/km2/yr for craters greater than ~1 m diameter. The cratering rate on Mars is sufficiently high to warrant consideration both for scientific studies and as a hazard to future exploration. Impacts are sufficiently frequent to act as seismic sources for studies of shallow crustal structure, if a seismic network is sufficiently dispersed and long-lived. Impacts large enough to provide information about deep interior structure are rare but probably occur on a decadal timescale. As recently noted in Science, new craters can be used to probe the distribution of subsurface ice and to provide samples from shallow depths that otherwise require meter-scale drilling systems. There is a finite probability that visitors to Mars for more than a month or two will hear or feel the effects of a nearby impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997NYASA.822..395W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997NYASA.822..395W"><span>On Kill Curves and Sampling Protocols: Studying the Relationships between Impact and Extinction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ward, Peter D.</p> <p>1997-05-01</p> <p>The pioneering efforts of Raup (1990) have suggested that a relationship exists between crater diameter and percentage of organisms killed as a result of meteor or comet impact with the Earth. The new data (coming from study of the Manson and Chicxulub craters) suggest that the nature of target rock may be a factor nearly as important as impacter size, and that other aspects of the target, including its latitude, the atmospheric and climate conditions characterizing the Earth, as well as the stage of biological evolution and community development at the time of impact are factors which all must be factored into any new kill curve. It may be that no single 'curve' is appropriate, but that a family of curves may be necessary to model the biological effects of large impacts. We propose that a new protocol be developed to better constrain and understand the relationship between impact and extinction. Rather than searching known mass extinction boundaries for evidence of impact (an exercise which up to now has demonstrated that only the Chicxulub crater can be unambiguously related to a mass extinction of planetary scale), we propose that four known craters be investigated to see if they are temporally correlated with extinction at any detectable level. We suggest that Kara, Popigai, Manson, and Manicouagan Craters be investigated in the following way. First, what is their age? The Manson lesson is that the first step in understanding the relationship between impact and extinction is through reliable age dating. Second, can distal components of the impact ejecta (spherules, shocked quartz, and mineral signatures) be located from sedimentary record? Third, once identified, do these signatures coincide with paleontological or geochemical markers of extinction in either the synoptic literature, or from actual outcrops (or deep sea cores).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA05990&hterms=color+light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcolor%2Blight','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA05990&hterms=color+light&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcolor%2Blight"><span>'Fram' in Color</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/> [figure removed for brevity, see original site] Click on the image for 'Fram' in Color (QTVR) <p/> This view in approximately true color reveals details in an impact crater informally named 'Fram' in the Meridian Planum region of Mars. The picture is a mosaic of frames taken by the panoramic camera on NASA's Mars Exploration Rover Opportunity during the rover's 88th martian day on Mars, on April 23, 2004. The crater spans about 8 meters (26 feet) in diameter. Opportunity paused beside it while traveling from the rover's landing site toward a larger crater farther east. This view combines images taken using three of the camera's filters for different wavelengths of light: 750 nanometers, 530 nanometers and 430 nanometers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....14417V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....14417V"><span>Geochemical and petrographic studies of melt-rich breccias from the Chicxulub crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vera-Sanchez, P.; Urrutia-Fucugauchi, J.; Morton-Bermea, O.; Soler-Arechalde, A.; Reyes-Salas, M.; Lozano-Santamaria, R.; Linares-Lopez, C.; Rebolledo-Vieyra, M.</p> <p>2003-04-01</p> <p>The proposal by Alvarez et al. (1980) for an extraterrestrial bolide impact marking the Cretaceous/Tertiary boundary was based on the anomalous Ir content in Italian and Danish K/T clay layers. The clay layer with a worldwide distribution and enriched in platinum group elements, shocked quartz and other impact-generated features has come to be interpreted as the global ejecta layer produced by a large impact that formed the Chicxulub crater. The ~200 km diameter crater is located in the carbonate platform of northwestern Yucatan peninsula, Mexico. The crater is covered by a thick sequence of Tertiary sediments, with no surface exposures. The National University of Mexico conducted a drilling program with continuous core recovery, in which three boreholes (UNAM wells 5, 6 and 7) sampled the impact breccia sequences. Deeper drilling inside the carter has been carried out as part of the ICDP program with drilling of the Yaxcopoil-1 borehole, which also cored a section of the impact breccias. The Yaxcopoil-1 borehole has been completed as part of the Chicxulub Scientific Drilling Project. In this work, we report on the geochemical and petrographic studies of selected samples from the impact breccia sequence recovered in the Yaxcopoil-1 borehole inside the Chicxulub crater. One of the major questions emerging after the interpretation of Chicxulub as the K/T boundary impact site and its link to the global ejecta layer has been the nature of the impacting body. Studies have addressed this question from distinct fields, including investigation of the ejecta deposits near and far from the crater, from the crater itself, from impact records on the Moon and other bodies, searching for surviving fragments in K/T boundary sections, etc. The search for material with a possible small component associated to the impactor could open unique research opportunities to further understand the impact event. The melt breccia samples examined exhibit different textures and chemical composition, suggesting a complex composition. Rare earth element plots for the various fragments are on the other hand similar. We report the initial results of the petrographic, microprobe, ICP-MS, X-ray fluorescence and X-ray diffraction studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70196532','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70196532"><span>Measuring impact crater depth throughout the solar system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Robbins, Stuart J.; Watters, Wesley A.; Chappelow, John E.; Bray, Veronica J.; Daubar, Ingrid J.; Craddock, Robert A.; Beyer, Ross A.; Landis, Margaret E.; Ostrach, Lillian; Tornabene, Livio L.; Riggs, Jamie D.; Weaver, Brian P.</p> <p>2018-01-01</p> <p>One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data‐gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19750050844&hterms=geologic+time+scale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeologic%2Btime%2Bscale','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19750050844&hterms=geologic+time+scale&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dgeologic%2Btime%2Bscale"><span>Processes of lunar crater degradation - Changes in style with geologic time</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Head, J. W.</p> <p>1975-01-01</p> <p>Relative age schemes of crater degradation are calibrated to radiometric dates obtained from lunar samples, changes in morphologic features are analyzed, and the style and rate of lunar surface degradation processes are modeled in relation to lunar geologic time. A comparison of radiometric age scales and the relative degradation of morphologic features for craters larger than about 5 km in diameter shows that crater degradation can be divided into two periods: Period I, prior to about 3.9 billion years ago and characterized by a high meteoritic influx rate and the formation of large multiringed basins, and Period II, from about 3.9 billion years ago to the present and characterized by a much lower influx rate and a lack of large multiringed basins. Diagnostic features for determining the relative ages of craters are described, and crater modification processes are considered, including primary impacts, lateral sedimentation, proximity weathering, landslides, and tectonism. It is suggested that the fundamental degradation of early Martian craters may be associated with erosional and depositional processes related to the intense bombardment characteristics of Period I.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>