Performance of a 16.6 Meter Diameter Modified Ringsail Parachute in a Simulated Martian Environment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Henning, Allen B.; Coltrane, Lucille C.
1968-01-01
Inflation, drag, and stability characteristics of a 54.5 -foot nominal-diameter (16.6-meter) modified ringsail parachute deployed in the wake of a 15-foot-diameter (4.6-meter) spacecraft traveling at a Mach number of 1.6 and a dynamic pressure equal to 11.6 psf (555 N/m(exp 2)) were obtained from the third balloon-launched flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated rapidly to a full condition, partially collapsed, and reinflated to a stable configuration. After reinflation, an average drag coefficient near 0.6 based on nominal surface area was obtained. During descent, an aerodynamic trim angle was observed in a plane near several torn sails. Amplitude of the trim was approximately 15 degrees and oscillation about trim was less than 11 degrees.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Murrow, Harold N.; Preisser, John S.
1967-01-01
A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.
NASA Technical Reports Server (NTRS)
Preisser, John S.; Eckstrom, Clinton V.; Murrow, Harold N.
1967-01-01
A 31.2-foot (9.51 meter) nominal diameter (reference area 764 ft(exp 2) (71.0 m(exp 2)) ringsail parachute modified to provide 15-percent geometric porosity was flight tested while attached to a 201-pound mass (91.2 kilogram) instrumented payload as part of the rocket launch portion of the NASA Planetary Entry Parachute Program (PEPP). The parachute deployment was initiated by the firing of a mortar at a Mach number of 1.39 and a dynamic pressure of 11.0 lb/ft(exp 2) (527 newtons/m(exp 2)) at an altitude of 122,500 feet (37.3 kilometers). The parachute deployed to suspension-line stretch (snatch force) in 0.35 second, and 0.12 second later the drag force increase associated with parachute inflation began. The parachute inflated in 0.24 second to the full-open condition for a total elapsed opening time of 0.71 second. The maximum opening load of 3970 pounds (17,700 newtons) came at the time the parachute was just fully opened. During the deceleration period, the parachute exhibited an average drag coefficient of 0.52 and oscillations of the parachute canopy were less than 5 degrees. During the steady-state terminal descent portion of the test period, the average effective drag coefficient (based on vertical descent velocity) was 0.52.
Performance of 26 Meter Diameter Ringsail Parachute in a Simulated Martian Environment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Bendura, Richard J.; Cotrane, Lucille C.
1967-01-01
Inflation, drag, and stability characteristics of an 85.3-foot (26-meter) nominal diameter ringsail parachute deployed at a Mach number of 1.15 and at an altitude of 132,600 feet (40.42 kilometers) were obtained from the first flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated to the reefed condition. However, the canopy was unstable and produced low drag in the reefed condition. Upon disreefing and opening to full inflation, a slight instability in the canopy mouth was observed initially. After a short time, the fluctuations diminished and a stable configuration was attained. Results indicate a loss in drag during the fluctuation period prior to stable inflation. During descent, stability characteristics of the system were such that the average pitch-yaw angle from the local vertical was less than 10 degrees. Rolling motion between the payload and parachute canopy quickly damped to small amplitude.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1970-01-01
A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Witkowski, Allen
2015-01-01
During the first Supersonic Flight Dynamics Test (SFDT-1) for NASA's Low Density Supersonic Decelerator (LDSD) Program, the Parachute Decelerator System (PDS) was successfully tested. The main parachute in the PDS was a 30.5-meter supersonic Disksail parachute. The term Disksail is derived from the canopy's constructional geometry, as it combined the aspects of a ringsail and a flat circular round (disk) canopy. The crown area of the canopy contained the disk feature, as a large flat circular disk that extended from the canopy's vent down to the upper gap. From this upper gap to the skirt-band the canopy was constructed with characteristics of sails seen in a ringsail. There was a second lower gap present in this sail region. The canopy maintained a nearly 10x forebody diameter trailing distance with 1.7 Do suspension line lengths. During the test, the parachute was deployed at the targeted Mach and dynamic pressure. Although the supersonic Disksail parachute experienced an anomaly during the inflation process, the system was tested successfully in the environment it was designed to operate within. The nature of the failure seen originated in the disk portion of the canopy. High-speed and high-resolution imagery of the anomaly was captured and has been used to aid in the forensics of the failure cause. In addition to the imagery, an inertial measurement unit (IMU) recorded test vehicle dynamics and loadcells captured the bridle termination forces. In reviewing the imagery and load data a number of hypothesizes have been generated in an attempt to explain the cause of the anomaly.
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Snyder, Miranda L.
2017-01-01
Models are presented for the aerodynamic coefficients of Supersonic Ringsail and Disk-Gap-Band parachutes as functions of total porosity, Lambda(sub t), Mach number, M, and total angle of attack, Alpha(sub t) (when necessary). The source aerodynamic coefficients data used for creating these models were obtained from a wind tunnel test of subscale parachutes. In this wind tunnel test, subscale parachutes of both parachute types were fabricated from two different fabrics with very different permeabilities. By varying the fabric permeability, while maintaining the parachute geometry constant, it was possible to vary Alpha(sub t). The fabric permeability test data necessary for the calculation of Alpha(sub t) were obtained from samples of the same fabrics used to fabricate the subscale parachutes. Although the models for the aerodynamic coefficients are simple polynomial functions of Alpha(sub t) and M, they are capable of producing good reproductions of the source data. The (Alpha(sub t), M) domains over which these models are applicable are clearly defined. The models are applicable to flight operations on Mars.
Fluid{Structure Interaction Modeling of Modified-Porosity Parachutes and Parachute Clusters
NASA Astrophysics Data System (ADS)
Boben, Joseph J.
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the ow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The ow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models. We also present the FSI computations we carried out for a single, subscale modified-porosity parachute.
NASA Astrophysics Data System (ADS)
Takizawa, Kenji; Tezduyar, Tayfun E.; Boben, Joseph; Kostov, Nikolay; Boswell, Cody; Buscher, Austin
2013-12-01
To increase aerodynamic performance, the geometric porosity of a ringsail spacecraft parachute canopy is sometimes increased, beyond the "rings" and "sails" with hundreds of "ring gaps" and "sail slits." This creates extra computational challenges for fluid-structure interaction (FSI) modeling of clusters of such parachutes, beyond those created by the lightness of the canopy structure, geometric complexities of hundreds of gaps and slits, and the contact between the parachutes of the cluster. In FSI computation of parachutes with such "modified geometric porosity," the flow through the "windows" created by the removal of the panels and the wider gaps created by the removal of the sails cannot be accurately modeled with the Homogenized Modeling of Geometric Porosity (HMGP), which was introduced to deal with the hundreds of gaps and slits. The flow needs to be actually resolved. All these computational challenges need to be addressed simultaneously in FSI modeling of clusters of spacecraft parachutes with modified geometric porosity. The core numerical technology is the Stabilized Space-Time FSI (SSTFSI) technique, and the contact between the parachutes is handled with the Surface-Edge-Node Contact Tracking (SENCT) technique. In the computations reported here, in addition to the SSTFSI and SENCT techniques and HMGP, we use the special techniques we have developed for removing the numerical spinning component of the parachute motion and for restoring the mesh integrity without a remesh. We present results for 2- and 3-parachute clusters with two different payload models.
Wind Tunnel Test of Subscale Ringsail and Disk-Gap-Band Parachutes
NASA Technical Reports Server (NTRS)
Zumwalt, Carlie H.; Cruz, Juan R.; Keller, Donald F.; O'Farrell, Clara
2016-01-01
A subsonic wind tunnel test was conducted to determine the drag and static aerodynamic coefficients, as well as to capture the dynamic motions of a new Supersonic Ringsail parachute developed by the Low Density Supersonic Decelerator Project. To provide a comparison against current Mars parachute technology, the Mars Science Laboratory's Disk-Gap-Band parachute was also included in the test. To account for the effect of fabric permeability, two fabrics ("low" and "standard" permeability) were used to fabricate each parachute canopy type, creating four combinations of canopy type and fabric material. A wide range of test conditions were covered during the test, spanning Mach numbers from 0.09 to 0.5, and static pressures from 103 to 2116 pounds per square inch (psf) (nominal values). The fabric permeability is shown to have a first-order effect on the aerodynamic coefficients and dynamic motions of the parachutes. For example, for a given parachute type and test condition, models fabricated from "low" permeability fabric always have a larger drag coefficient than models fabricated from "standard" permeability material. This paper describes the test setup and conditions, how the results were analyzed, and presents and discusses a sample of the results. The data collected during this test is being used to create and improve parachute aerodynamic databases for use in flight dynamics simulations for missions to Mars.
Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration
NASA Technical Reports Server (NTRS)
Tanner, Christopher L.; Clark, Ian G.; Gallon, John C.; Rivellini, Tommaso P.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients.
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria
2013-01-01
The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.
Aerodynamic Stability and Performance of Next-Generation Parachutes for Mars Descent
NASA Technical Reports Server (NTRS)
Gonyea, Keir C.; Tanner, Christopher L.; Clark, Ian G.; Kushner, Laura K.; Schairer, Edward T.; Braun, Robert D.
2013-01-01
The Low Density Supersonic Decelerator Project is developing a next-generation supersonic parachute for use on future Mars missions. In order to determine the new parachute configuration, a wind tunnel test was conducted at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at the NASA Ames Research Center. The goal of the wind tunnel test was to quantitatively determine the aerodynamic stability and performance of various canopy configurations in order to help select the design to be flown on the Supersonic Flight Dynamics tests. Parachute configurations included the diskgap- band, ringsail, and ringsail-variant designs referred to as a disksail and starsail. During the wind tunnel test, digital cameras captured synchronized image streams of the parachute from three directions. Stereo hotogrammetric processing was performed on the image data to track the position of the vent of the canopy throughout each run. The position data were processed to determine the geometric angular history of the parachute, which were then used to calculate the total angle of attack and its derivatives at each instant in time. Static and dynamic moment coefficients were extracted from these data using a parameter estimation method involving the one-dimensional equation of motion for a rotation of parachute. The coefficients were calculated over all of the available canopy states to reconstruct moment coefficient curves as a function of total angle of attack. From the stability curves, useful metrics such as the trim total angle of attack and pitch stiffness at the trim angle could be determined. These stability metrics were assessed in the context of the parachute's drag load and geometric porosity. While there was generally an inverse relationship between the drag load and the stability of the canopy, the data showed that it was possible to obtain similar stability properties as the disk-gap-band with slightly higher drag loads by appropriately tailoring the geometric porosity distribution.
Preliminary Subsystem Designs for the Assured Crew Return Vehicle (ACRV), volumes 1-3
NASA Technical Reports Server (NTRS)
1990-01-01
A long term manned facility in space must include provisions for the safety of the crew. The resolution of this need was the design of an Assured Crew Return Vehicle (ACRV). The main focus is on the braking and landing system of the ACRV. This subsystem of the ACRV was divided into three phases. The Phase 1 analysis showed that the use of a tether to aid in the reentry of the ACRV was infeasible due to cost and efficiency. Therefore, a standard rocket would be used for reentry. It was also found that the continental United States was an achievable landing site for the ACRV. The Phase 2 analysis determined the L/D of the vehicle to be 1.8, thus requiring the use of a lifting body for reentry. It was also determined that shuttle tiles would be used for the thermal protection system. In addition, a parachute sequence for further deceleration was included, namely a ringslot drogue chute, a pilot chute, and finally a ringsail main parachute. This sequence was found to be capable of slowing the vehicle to a descent velocity of 9 to 10 m/s, which is the required velocity for aerial recovery. The Phase 3 analysis proved that a Sikorsky CH-53E helicopter is capable of retrieving the ACRV at 5.5 km altitude with minimal g-forces induced on the ACRV and minimal induced moments on the helicopter upon hookup. The helicopter would be modified such that it could stabilize the ACRV close to the bottom of helicopter and carry it to the nearest designated trauma center.
Photographic Volume Estimation of CPAS Main Parachutes
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
Capsule Parachute Assembly System (CPAS) flight tests regularly stage a helicopter to observe inflation of 116 ft D o ringsail Main parachutes. These side views can be used to generate 3-D models of inflating canopies to estimate enclosed volume. Assuming a surface of revolution is inadequate because reefed canopies in a cluster are elongated due to mutual aerodynamic interference. A method was developed to combine the side views with upward looking HD video to account for non-circular cross sections. Approximating the cross sections as elliptical greatly improves accuracy. But since that correction requires manually tracing projected outlines, the actual irregular shapes can be used to generate high fidelity models. Compensation is also made for apparent tilt angle. Validation was accomplished by comparing perimeter and projected area with known line lengths and/or high quality photogrammetry.
Reefing Line Tension in CPAS Main Parachute Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2013-01-01
Reefing lines are an essential feature to manage inflation loads. During each Engineering Development Unit (EDU) test of the Capsule Parachute Assembly System (CPAS), a chase aircraft is staged to be level with the cluster of Main ringsail parachutes during the initial inflation and reefed stages. This allows for capturing high-quality still photographs of the reefed skirt, suspension line, and canopy geometry. The over-inflation angles are synchronized with measured loads data in order to compute the tension force in the reefing line. The traditional reefing tension equation assumes radial symmetry, but cluster effects cause the reefed skirt of each parachute to elongate to a more elliptical shape. This effect was considered in evaluating multiple parachutes to estimate the semi-major and semi-minor axes. Three flight tests are assessed, including one with a skipped first stage, which had peak reefing line tension over three times higher than the nominal parachute disreef sequence.
Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance
NASA Technical Reports Server (NTRS)
Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.
1991-01-01
A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.
NASA Technical Reports Server (NTRS)
Foughner, J. T., Jr.; Alexander, W. C.
1974-01-01
Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.
NASA Astrophysics Data System (ADS)
Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.
2017-05-01
In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.
Isolating Added Mass Load Components of CPAS Main Clusters
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2017-01-01
The current simulation for the Capsule Parachute Assembly System (CPAS) lacks fidelity in representing added mass for the 116 ft Do ringsail Main parachute. The availability of 3-D models of inflating Main canopies allowed for better estimation the enclosed air volume as a function of time. This was combined with trajectory state information to estimate the components making up measured axial loads. A proof-of-concept for an alternate simulation algorithm was developed based on enclosed volume as the primary independent variable rather than drag area growth. Databases of volume growth and parachute drag area vs. volume were developed for several flight tests. Other state information was read directly from test data, rather than numerically propagated. The resulting simulated peak loads were close in timing and magnitude to the measured loads data. However, results are very sensitive to data curve fitting and may not be suitable for Monte Carlo simulations. It was assumed that apparent mass was either negligible or a small fraction of enclosed mass, with little difference in results.
Individual tree-diameter growth model for the Northeastern United States
Richard M. Teck; Donald E. Hilt
1991-01-01
Describes a distance-independent individual-tree diameter growth model for the Northeastern United States. Diameter growth is predicted in two steps using a two parameter, sigmoidal growth function modified by a one parameter exponential decay function with species-specific coefficients. Coefficients are presented for 28 species groups. The model accounts for...
Veronica C. Lessard
2001-01-01
The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are calibrated for species groups and formulated as the product of an average diameter growth component and a modifier component. The regional models...
Vertical boring mill capacity is increased
NASA Technical Reports Server (NTRS)
Young, R. J.
1968-01-01
Commercially available vertical boring mill with a nominal capacity to 27 feet in diameter of workpiece has been modified in-shop to handle work up to 36 feet in diameter. Capacity was increased by adding extension saddles to the mill support columns on each side.
Modeling the liquid filling in capillary well microplates for analyte preconcentration.
Yu, Yang; Wang, Xuewei; Ng, Tuck Wah
2012-06-15
An attractive advantage of the capillary well microplate approach is the ability to conduct evaporative analyte preconcentration. We advance the use of hydrophobic materials for the wells which apart from reducing material loss through wetting also affords self entry into the well when the droplet size reduces below a critical value. Using Surface Evolver simulation without gravity, we find the critical diameters D(c) fitting very well with theoretical results. When simulating the critical diameters D(c)(G) with gravity included, the gravitational effect could only be ignored when the liquid volumes were small (difference of 5.7% with 5 μL of liquid), but not when the liquid volumes were large (differences of more than 22% with 50 μL of liquid). From this, we developed a modifying equation from a series of simulation results made to describe the gravitational effect. This modifying equation fitted the simulation results well in our simulation range (100°≤θ≤135° and 1 μL≤V≤200 μL). In simulating the condition of multiple wells underneath each droplet, we found that having more holes did not alter the critical diameters significantly. Consequently, the modifying relation should also generally express the critical diameter for multiple wells under a droplet. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Supersonic Flight Dynamics Test 2: Trajectory, Atmosphere, and Aerodynamics Reconstruction
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; O'Farrell, Clara; Ginn, Jason M.; Van Norman, John W.
2016-01-01
The Supersonic Flight Dynamics Test is a full-scale flight test of aerodynamic decelerator technologies developed by the Low Density Supersonic Decelerator technology demonstration project. The purpose of the project is to develop and mature aerodynamic decelerator technologies for landing large-mass payloads on the surface of Mars. The technologies include a Supersonic Inflatable Aerodynamic Decelerator and supersonic parachutes. The first Supersonic Flight Dynamics Test occurred on June 28th, 2014 at the Pacific Missile Range Facility. The purpose of this test was to validate the test architecture for future tests. The flight was a success and, in addition, was able to acquire data on the aerodynamic performance of the supersonic inflatable decelerator. The Supersonic Disksail parachute developed a tear during deployment. The second flight test occurred on June 8th, 2015, and incorporated a Supersonic Ringsail parachute which was redesigned based on data from the first flight. Again, the inflatable decelerator functioned as predicted but the parachute was damaged during deployment. This paper describes the instrumentation, analysis techniques, and acquired flight test data utilized to reconstruct the vehicle trajectory, main motor thrust, atmosphere, and aerodynamics.
A generalized forest growth projection system applied to the Lake States region.
USDA FS
1979-01-01
A collection of 12 papers describing the need, design, calibration database, potential diameter growth function, crown ratio, modifier, and mortality functions, as well as a diameter growth allocation rule, management algorithms, computer program, tests, and Lake State climate during calibration.
Simulations of the modified gap experiment
NASA Astrophysics Data System (ADS)
Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas
2017-01-01
Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.
Smith, Simeon L.; Titze, Ingo R.
2016-01-01
Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001
Investigating the use of small-diameter softwood as guardrail posts (dynamic test results)
Jason A. Hascall; John D. Reid; Ronald K. Faller; Dean L. Sicking; David E. Kretschmann
2007-01-01
A modified version of the Midwest Guardrail System (MGS), utilizing small-diameter round wood posts, was developed, tested, and evaluated. Three systems were developed using different species of timber, Douglas Fir, Ponderosa Pine, and Southern Yellow Pine. A combination of Barrier VII computer simulation modeling and several series of cantilever bogie tests, conducted...
Orthopedic stretcher with average-sized person can pass through 18-inch opening
NASA Technical Reports Server (NTRS)
Lothschuetz, F. X.
1966-01-01
Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.
Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent
Hedstrand, David M.; Tomalia, Donald A.
1995-01-01
A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.
Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent
Hedstrand, D.M.; Tomalia, D.A.
1995-02-28
A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.
JT8D-100 turbofan engine, phase 1. [noise reduction
NASA Technical Reports Server (NTRS)
1974-01-01
The JT8D turbofan engine, widely used in short and medium range transport aircraft, contributes substantially to airport community noise. The jet noise is predominant in the JT8D engine and may be reduced in a modified engine, without loss of thrust, by increasing the airflow to reduce jet velocity. A configuration study evaluated the effects of fan airflow, fan pressure ratio, and bypass ratio on noise, thrust, and fuel comsumption. The cycle selected for the modified engine was based upon an increased diameter, single-stage fan and two additional core engine compressor stages, which replace the existing two-stage fan. Modifications were also made to the low pressure turbine to provide the increased torque required by the larger diameter fan. The resultant JT8D-100 engine models have the following characteristics at take-off thrust, compared to the current JT8D engine: Airflow and bypass ratio are increased, and fan pressure ratio and engine speed are reduced. The resultant engine is also longer, larger in diameter, and heavier than the JT8D base model, but these latter changes are compensated by the increased thrust and decreased fuel comsumption of the modified engine, thus providing the capability for maintaining the performance of the current JT8D-powered aircraft.
Peptide-Mediated Platelet Capture at Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2016-11-30
Ordered spherical cap gold cavity arrays with 5.4, 1.6, and 0.98 μm diameter apertures were explored as capture surfaces for human blood platelets to investigate the impact of surface geometry and chemical modification on platelet capture efficiency and their potential as platforms for surface enhanced Raman spectroscopy of single platelets. The substrates were chemically modified with single-constituent self-assembled monolayers (SAM) or mixed SAMs comprised of thiol-functionalized arginine-glycine-aspartic acid (RGD, a platelet integrin target) with or without 1-octanethiol (adhesion inhibitor). As expected, platelet adhesion was promoted and inhibited at RGD and alkanethiol modified surfaces, respectively. Platelet adhesion was reversible, and binding efficiency at the peptide modified substrates correlated inversely with pore diameter. Captured platelets underwent morphological change on capture, the extent of which depended on the topology of the underlying substrate. Regioselective capture of the platelets enabled study for the first time of the surface enhanced Raman spectroscopy of single blood platelets, yielding high quality Raman spectroscopy of individual platelets at 1.6 μm diameter pore arrays. Given the medical importance of blood platelets across a range of diseases from cancer to psychiatric illness, such approaches to platelet capture may provide a useful route to Raman spectroscopy for platelet related diagnostics.
Hyaluronic acid enhancement of expanded polytetrafluoroethylene for small diameter vascular grafts
NASA Astrophysics Data System (ADS)
Lewis, Nicole R.
Cardiovascular disease is the leading cause of mortality and morbidity in the United States and other developed countries. In the United States alone, 8 million people are diagnosed with peripheral arterial disease per year and over 250,000 patients have coronary bypass surgery each year. Autologous blood vessels are the standard graft used in small diameter (<6mm) arterial bypass procedures. Synthetic small diameter grafts have had limited success. While polyethylene (Dacron) and expanded polytetrafluoroethylene (ePTFE) are the most commonly used small diameter synthetic vascular graft materials, there are significant limitations that make these materials unfavorable for use in the low blood flow conditions of the small diameter arteries. Specifically, Dacron and ePTFE grafts display failure due to early thrombosis or late intimal hyperplasia. With the shortage of tissue donors and the limited supply of autologous blood vessels available, there is a need for a small diameter synthetic vascular graft alternative. The aim of this research is to create and characterize ePTFE grafts prepared with hyaluronic acid (HA), evaluate thrombogenic potential of ePTFE-HA grafts, and evaluate graft mechanical properties and coating durability. The results in this work indicate the successful production of ePTFE-HA materials using a solvent infiltration technique. Surface interactions with blood show increased platelet adhesion on HA-modified surfaces, though evidence may suggest less platelet activation and erythrocyte lysis. Significant changes in mechanical properties of HA-modified ePTFE materials were observed. Further investigation into solvent selection, uniformity of HA, endothelialization, and dynamic flow testing would be beneficial in the evaluation of these materials for use in small diameter vascular graft bypass procedures.
The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Brender, Scott; Mark, Hans; Aguilera, Frank
1996-01-01
The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.
Thermal models applicable for visual and infrared studies of orbital debris
NASA Technical Reports Server (NTRS)
Lebofsky, Larry A.; Vilas, Faith
1990-01-01
Over the past decade, thermal models have been developed for the determination of asteroid diameters and albedos. As a first step to understanding the size/frequency distribution of the debris population in earth orbit, these thermal models have been modified to determine the sizes of orbiting debris. When possible, the model results have been compared to spherical satellites of known diameter.
Pereira, Maira Alves; Mosqueira, Vanessa Carla Furtado; Vilela, José Mário Carneiro; Andrade, Margareth Spangler; Ramaldes, Gilson Andrade; Cardoso, Valbert Nascimento
2008-01-01
The present work describes the preparation, characterization and labelling of conventional and surface-modified nanocapsules (NC) with 99m Tc-HMPAO. The size, size distribution and homogeneity were determined by photon correlation spectroscopy (PCS) and zeta potential by laser doppler anemometry. The morphology and the structural organization were evaluated by atomic force microscopy (AFM). The stability and release profile of the NC were determined in vitro in plasma. The results showed that the use of methylene blue induces significant increase in the encapsulation efficiency of 99m Tc-HMPAO, from 24.4 to 49.8% in PLA NC and 22.37 to 52.93% in the case of PLA-PEG NC (P<0.05) by improving the complex stabilization. The average diameter of NC calculated by PCS varied from 216 to 323 nm, while the average diameter determined by AFM varied from 238 to 426 nm. The AFM analysis of diameter/height ratios suggested a greater homogeneity of the surface-modified PLA-PEG nanocapsules compared to PLA NC concerning their flattening properties. The in vitro release of the 99m Tc-HMPAO in plasma medium was faster for the conventional PLA NC than for the surface-modified NC. For the latter, 60% of the radioactivity remained associated with NC, even after 12h of incubation. The results suggest that the surface-modified 99m Tc-HMPAO-PLA-PEG NC was more stable against label leakage in the presence of proteins and could present better performance as radiotracer in vivo.
Wavelength dependence of the apparent diameter of retinal blood vessels
NASA Astrophysics Data System (ADS)
Park, Robert; Twietmeyer, Karen; Chipman, Russell; Beaudry, Neil; Salyer, David
2005-04-01
Imaging of retinal blood vessels may assist in the diagnosis and monitoring of diseases such as glaucoma, diabetic retinopathy, and hypertension. However, close examination reveals that the contrast and apparent diameter of vessels are dependent on the wavelength of the illuminating light. In this study multispectral images of large arteries and veins within enucleated swine eyes are obtained with a modified fundus camera by use of intravitreal illumination. The diameters of selected vessels are measured as a function of wavelength by cross-sectional analysis. A fixed scale with spectrally independent dimension is placed above the retina to isolate the chromatic effects of the imaging system and eye. Significant apparent differences between arterial and venous diameters are found, with larger diameters observed at shorter wavelengths. These differences are due primarily to spectral absorption in the cylindrical blood column.
NASA Technical Reports Server (NTRS)
Hough, R. L.; Richmond, R. D.
1971-01-01
Research was conducted to develop large diameter carbon monofilament, containing 25 to 35 mole % element boron, in the 2.0 to 10.0 mil diameter range using the chemical vapor deposition process. The objective of the program was to gain an understanding of the critical process variables and their effect on fiber properties. Synthesis equipment was modified to allow these variables to be studied. Improved control of synthesis variables permitted reduction in scatter of properties of the monofilaments. Monofilaments have been synthesized in the 3.0 to nearly 6.0 mil diameter range having measured values up to 552,000 psi for ultimate tensile strength and up to 30 million psi for elastic modulus.
Eun Woo Shin; Roger M. Rowell
2005-01-01
Juniper (Juniperus monosperma), a small-diameter underutilized material, has been studied as a lignocellulosic bio-sorbent for removing heavy metals from water. In this study, juniper wood was modified by sulfonation to enhance sorption capacity for cadmium in water. The origin of the enhancement was investigated by observing the sorption behaviors and the change in...
Modeling the effect of competition on tree diameter growth as applied in STEMS.
Margaret R. Holdaway
1984-01-01
The modifier function used in STEMS (Stand and Tree Evaluation and Modeling System) mathematically represents the effect that the surrounding forest community has on the growth of an individual tree. This paper 1) develops the most recent modifier function, 2) discusses its form, 3) reports the results of the analysis with biological considerations and 4) evaluates the...
The Morphology of Craters on Mercury: Results from MESSENGER Flybys
NASA Technical Reports Server (NTRS)
Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.
2012-01-01
Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.
Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions
NASA Technical Reports Server (NTRS)
Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.
2013-01-01
The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
NASA Astrophysics Data System (ADS)
Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru
2016-09-01
A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.
Amanda H. Lang; Shawn A. Baker; W. Dale Greene; Glen E. Murphy
2010-01-01
We compared value recovery of a modified treelength (MTL) logging system that measures product diameter and length using a Waratah 626 harvester head to that of a treelength (TL) system that estimates dimensions. A field test compared the actual value cut to the maximum potential value suggested by the log bucking optimization program Assessment of Value by Individual...
Cong, Hailin; Yu, Bing; Tian, Chao; Zhang, Shuai; Yuan, Hua
2017-11-01
Monodisperse silica particles with average diameters of 1.9-2.9 μm were synthesized by a modified Stöber method, in which tetraethyl orthosilicate was continuously supplied to the reaction mixture containing KCl electrolyte, water, ethanol, and ammonia. The obtained silica particles were modified by self-assembly with positively charged photosensitive diazoresin on the surface. After treatment with ultraviolet light, the ionic bonding between silica and diazoresin was converted into covalent bonding through a unique photochemistry reaction of diazoresin. Depending on the chemical structure of diazoresin and mobile phase composition, the diazoresin-modified silica stationary phase showed different separation mechanisms, including reversed phase and hydrophilic interactions. Therefore, a variety of baseline separation of benzene analogues and organic acids was achieved by using the diazoresin-modified silica particles as packing materials in ultra high performance liquid chromatography. According to the π-π interactional difference between carbon rings of fullerenes and benzene rings of diazoresin, C 60 and C 70 were also well separated by ultra-high performance liquid chromatography. Because it has a small size, the ∼2.5 μm monodisperse diazoresin-modified silica stationary phase shows ultra-high efficiency compared with the commercial C 18 -silica high-performance liquid chromatography stationary phase with average diameters of ∼5 μm. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Preston Probe Calibrations at High Reynolds Number
NASA Technical Reports Server (NTRS)
Smits, Alexander J.
1998-01-01
The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.
Joint Collaborative Technology Experiment (JCTE)
2010-12-01
Rm = Earth meridian radius Rn = Earth normal radius Compute: α = ψ + β Lat ldg = Lat ant – (r * cos ( α )) / Rm Lon ldg = Lon ant – (r...Watt selectable Comm-Payload Hardware mounted to 24-in x 7-in x 0.25-in (Length x Width x Thick) Aluminum (AL) plate Designed for dual carriage...was installed into a 24-in long by 7.5-in inner diameter fiberglass tube. This integration included modifying two 7.5-in diameter aluminum endplates
Projectile penetration into ballistic gelatin.
Swain, M V; Kieser, D C; Shah, S; Kieser, J A
2014-01-01
Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.
Ding, Yongbo; Kan, Jianquan
2017-12-01
Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.
Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yang, Zhaohui; Zhang, Xiaoyan
2016-01-01
Carbon nanotube (CNT) nanoporous membranes based on pre-aligned CNTs have superior nano-transportation properties in biological science. Herein, we report a smart temperature- and temperature-magnetic-responsive CNT nanoporous membrane (CNM) by grafting thermal-sensitive poly(N-isopropylacrylamide) (PNIPAM) and Fe3O4 nanoparticles (Fe3O4-NPs) on the open ends of pre-aligned CNTs with a diameter around 15 nm via surface-initiated atom transfer radical polymerization (SI-ATRP) method. The inner cavity of the modified CNTs in the membrane is designed to be the only path for ion and protein transportation, and its effective diameter with a variation from ~5.7 nm to ~12.4 nm can be reversible tuned by temperature and magnetic field. The PNIPAM modified CNM (PNIPAM-CNM) and PNIPAM magnetic nanoparticles modified CNM (PNIPAM-MAG-CNM) exhibit excellent temperature- or temperature-magnetic-responsive gating property to separate proteins of different sizes. The PNIPAM-CNMs and PNIPAM-MAG-CNMs have potential applications in making artificial cells, biosensors, bioseparation and purification filters. PMID:27535103
The modified swirl sedimentation tanks for water purification.
Ochowiak, Marek; Matuszak, Magdalena; Włodarczak, Sylwia; Ancukiewicz, Małgorzata; Krupińska, Andżelika
2017-03-15
This paper discusses design, evaluation, and application for the use of swirl/vortex technologies as liquid purification system. A study was performed using modified swirl sedimentation tanks. The vortex separators (OW, OWK, OWR and OWKR) have been studied under laboratory conditions at liquid flow rate from 2.8⋅10 -5 to 5.1⋅10 -4 [m 3 /s]. The pressure drop and the efficiency of purification of liquid stream were analyzed. The suspended particles of different diameters were successfully removed from liquid with the application of swirl chambers of proposed constructions. It was found that damming of liquid in the tank increases alongside liquid stream at the inlet and depends on the tank construction. The efficiency of the sedimentation tanks increases alongside the diameters of solid particles and decrease in the liquid flow rate. The best construction proved to be the OWR sedimentation tank due to smallest liquid damming, even at high flow rates, and the highest efficiency of the purification liquid stream for solid particles of the smallest diameter. The proposed solution is an alternative to the classical constructions of sedimentation tanks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Failure behavior of glass ionomer cement under Hertzian indentation.
Wang, Yan; Darvell, B W
2008-09-01
To investigate the load-bearing capacity and failure mode of various types of glass ionomer cement (GIC) under Hertzian indentation, exploring the relationship between the failure behavior and formulation, and examining claims of filler-reinforcement of GIC. Discs 2mm thick, 10mm diameter, 8-18 replicates, were fabricated for two filler-reinforced GICs, four unmodified and unreinforced GICs, and four resin-modified GICs, with a dental silver amalgam and a filled-resin restorative material for comparison. Testing was at 23 degrees C, wet, after 7d storage at 37 degrees C in artificial saliva at pH 6, using a 20mm diameter hard steel ball and filled-nylon substrate (E: 10GPa). First failure was detected acoustically; mode was determined visually. At least 1/3 of specimens in each case were examined under scanning electronic microscope for corroboration. Reinforced and unmodified-unreinforced GICs were indistinguishable by failure load (one-way analysis of variance, P=0.425, overall 260+/-70N) and mode. Failure loads for resin-modified GICs were 360-1150N, amalgam approximately 680N, and filled resin approximately 1200N. Resin-modified GICs tended to be tougher (incomplete fracture), all others gave complete fracture (radial cracking). The stronger materials (two resin-modified GICs and filled resin) showed some cone cracking. While resin-modified GICs showed various extents of increase of failure load over that of the plain GICs, consistent with the hybrid chemistry, filler-reinforcement was not evident for the two claimed products, consistent with structural and theoretical expectations.
Effect of the Ionosphere on Space and Terrestrial Systems
1978-01-01
adequately shielded and filtered, Voyager spacecraft was modified to include arc that the grounding of all conductive elements discharge sources...dependence. Reasons for such a a set of the associated "cutoff orbits ". We choice include the following: A realistic see from Fig. 8 that the included angle...which had been modified to produce an approxima- chronous- orbit spacecraft [De Forest, 1972; tely uniform flood beam up to 10cm in diameter
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
Scalloped margin domes: What are the processes responsible and how do they operate?
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Michaels, G.; Saunders, S.
1993-01-01
Studies of scalloped margin domes (SMD) indicate the scallops are the result of slope failure. SMD's have similar but smaller average diameters (26.5 km) to unmodified domes (29.8 km), and the majority plot at altitudes ranging from 0.5-4.7 km, relative to the mean planetary diameter. A range of morphological types exist from those least modified to those that show heavy modification. Of the 200 SMD's examined, 33 have clearly discernible debris aprons. Examination and comparison of debris aprons with mass movement features on the Moon, Mars, and in sub-aerial and submarine environments on Earth using H/L against area (km(sup 2)), suggests there are three main types of failure; debris avalanche, slumps, and debris flow. The five examples representing the morphological range within the SMD's, show the different modified forms and the different types of slope failures that have occurred.
NASA Astrophysics Data System (ADS)
Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.
2017-04-01
Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.
Lee, Yi-Chen; Lu, Shui-Chin; Hsieh, Yu-Lin
2018-02-13
Patients with diabetes mellitus (DM) or those experiencing the neurotoxic effects of chemotherapeutic agents may develop sensation disorders due to degeneration and injury of small-diameter sensory neurons, referred to as small fiber neuropathy. Present animal models of small fiber neuropathy affect both large- and small-diameter sensory fibers and thus create a neuropathology too complex to properly assess the effects of injured small-diameter sensory fibers. Therefore, it is necessary to develop an experimental model of pure small fiber neuropathy to adequately examine these issues. This protocol describes an experimental model of small fiber neuropathy specifically affecting small-diameter sensory nerves with resiniferatoxin (RTX), an ultrapotent agonist of transient receptor potential vanilloid type 1 (TRPV1), through a single dose of intraperitoneal injection, referred to as RTX neuropathy. This RTX neuropathy showed pathological manifestations and behavioral abnormalities that mimic the clinical characteristics of patients with small fiber neuropathy, including intraepidermal nerve fiber (IENF) degeneration, specifically injury in small-diameter neurons, and induction of thermal hypoalgesia and mechanical allodynia. This protocol tested three doses of RTX (200, 50, and 10 µg/kg, respectively) and concluded that a critical dose of RTX (50 µg/kg) is required for the development of typical small fiber neuropathy manifestations, and prepared a modified immunostaining procedure to investigate IENF degeneration and neuronal soma injury. The modified procedure is fast, systematic, and economic. Behavioral evaluation of neuropathic pain is critical to reveal the function of small-diameter sensory nerves. The evaluation of mechanical thresholds in experimental rodents is particularly challenging and this protocol describes a customized metal mesh that is suitable for this type of assessment in rodents. In summary, RTX neuropathy is a new and easily established experimental model to evaluate the molecular significance and intervention underlying neuropathic pain for the development of therapeutic agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satyanarayana, N.; Basu, Shibaji; Rajawat, R.K., E-mail: satya_3026@yahoo.com
2014-07-01
This paper highlights the development of Rod Pinch (RP) diode for flash X-ray generation as intense radiographic source at BARC, Vizag. The typical RP diode employed used a small diameter (1-2 mm) anode rod extended through a cathode circular aperture (5-6 mm inner diameter). The diode chamber is maintained at 10{sup -5} Torr vacuum by a rotary backed diffusion pump. Experiments performed on a modified Kali 1000 Pulsed Power System (300 kV, 30 kA, 100 ns) were aimed at optimizing the source by maximizing the figure of merit (dose @ 1m in rad/spot diameter{sup 2} in mm{sup 2}) with minimizingmore » of the diode impedance. The typical electron beam parameters used in the experiments are 240-270 kV, 20-25 kA, 100 ns, with a few hundreds of kA/cm{sup 2} current density. The optimization resulted in a configuration with tungsten anode rod having dimensions of a 1.6 mm diameter, tapering extension length 5-25 mm beyond the graphite cathode aperture (Cathode disk ID = 5 mm, thickness = 3mm) to produce a radiation dose of 150-200 milli rad at 1 m distance having an estimated spot-size of 1-2 mm. The radiation emitted from a rod-pinch diode is measured using Thermoluminescence dosimeters (TLDs) at an angular interval of 15° on either side of the rod in horizontal and vertical plane. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teja, A.S.; King, R.K.; Sun, T.F.
1999-01-01
Two methods are presented for the correlation and prediction of the viscosities and thermal conductivities of refrigerants R11, R12, R22, R32, R124, R125, R134a, R141b, and R152 and their mixtures. The first (termed RHS1) is a modified rough-hard-sphere method based on the smooth hard-sphere correlations of Assael et al. The method requires two or three parameters for characterizing each refrigerant but is able to correlate transport properties over wide ranges of pressure and temperature. The second method (RHS2) is also a modified rough-hard-sphere method, but based on an effective hard-sphere diameter for Lennard-Jones (LJ) fluids. The LJ parameters and themore » effective hard-sphere diameter required in this method are determined from a knowledge of the density-temperature behavior of the fluid at saturation. Comparisons with the rough-hard-sphere method of Assael and co-workers (RHS3) are shown. They also show that the RHS2 method can be used to correlate as well as predict the transport properties of refrigerants.« less
Modified cermet fuel electrodes for solid oxide electrochemical cells
Ruka, Roswell J.; Spengler, Charles J.
1991-01-01
An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.
Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation
NASA Astrophysics Data System (ADS)
Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo
2009-03-01
We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.
MreB Orientation Correlates with Cell Diameter in Escherichia coli.
Ouzounov, Nikolay; Nguyen, Jeffrey P; Bratton, Benjamin P; Jacobowitz, David; Gitai, Zemer; Shaevitz, Joshua W
2016-09-06
Bacteria have remarkably robust cell shape control mechanisms. For example, cell diameter only varies by a few percent across a given population. The bacterial actin homolog, MreB, is necessary for establishment and maintenance of rod shape although the detailed properties of MreB that are important for shape control remained unknown. In this study, we perturb MreB in two ways: by treating cells with the polymerization-inhibiting drug A22 and by creating point mutants in mreB. These perturbations modify the steady-state diameter of cells over a wide range, from 790 ± 30 nm to 1700 ± 20 nm. To determine which properties of MreB are important for diameter control, we correlated structural characteristics of fluorescently tagged MreB polymers with cell diameter by simultaneously analyzing three-dimensional images of MreB and cell shape. Our results indicate that the helical pitch angle of MreB inversely correlates with the cell diameter of Escherichia coli. Other correlations between MreB and cell diameter are not found to be significant. These results demonstrate that the physical properties of MreB filaments are important for shape control and support a model in which MreB organizes the cell wall growth machinery to produce a chiral cell wall structure and dictate cell diameter. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bacterial adherence to anodized titanium alloy
NASA Astrophysics Data System (ADS)
Pérez-Jorge Peremarch, C.; Pérez Tanoira, R.; Arenas, M. A.; Matykina, E.; Conde, A.; De Damborenea, J. J.; Gómez Barrena, E.; Esteban, J.
2010-11-01
The aim of this study was to evaluate Staphylococcus sp adhesion to modified surfaces of anodized titanium alloy (Ti-6Al-4V). Surface modification involved generation of fluoride-containing titanium oxide nanotube films. Specimens of Ti-6Al-4V alloy 6-4 ELI-grade 23- meets the requirements of ASTM F136 2002A (AMS 2631B class A1) were anodized in a mixture of sulphuric/hydrofluoric acid at 20 V for 5 and 60 min to form a 100 nm-thick porous film of 20 nm pore diameter and 230 nm-thick nanotube films of 100 nm in diameter. The amount of fluorine in the oxide films was of 6% and of 4%, respectively. Collection strains and six clinical strains each of Staphylococcus aureus and Staphylococcus epidermidis were studied. The adherence study was performed using a previously published protocol by Kinnari et al. The experiments were performed in triplicates. As a result, lower adherence was detected for collection strains in modified materials than in unmodified controls. Differences between clinical strains were detected for both species (p<0.0001, Kruskal-Wallis test), although global data showed similar results to that of collection strains (p<0.0001, Kruskal-Wallis test). Adherence of bacteria to modified surfaces was decreased for both species. The results also reflect a difference in the adherence between S. aureus and S. epidermidis to the modified material. As a conclusion, not only we were able to confirm the decrease of adherence in the modified surface, but also the need to test multiple clinical strains to obtain more realistic microbiological results due to intraspecies differences.
Tidal Energy: The benthic effects of an operational tidal stream turbine.
O'Carroll, J P J; Kennedy, R M; Creech, A; Savidge, G
2017-08-01
The effect of modified flow on epifaunal boulder reef communities adjacent to the SeaGen, the world's first grid-compliant tidal stream turbine, were assessed. The wake of the SeaGen was modelled and the outputs were used in conjunction with positional and substrate descriptor variables, to relate variation in epifaunal community structure to the modified physical environment. An Artificial Neural Network (ANN) and Generalised Linear Model (GLM) were used to make predictions on the distribution of Ecological Status (ES) of epifaunal communities in relation to the turbulent wake of the SeaGen. ES was assigned using the High Energy Hard Substrate (HEHS) index. ES was largely High throughout the survey area and it was not possible to make predictions on the spatial distribution of ES using an ANN or GLM. Spatial pattern in epifaunal community structure was detected when the study area was partitioned into three treatment areas: area D1; within one rotor diameter (16 m) of the centre of SeaGen, area D2; between one and three rotor diameters, and area D3; outside of three rotor diameters. Area D1 was found to be significantly more variable than D2 and D3 in terms of epifaunal community structure, bare rock distributions and ES. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chiral permselectivity in surface-modified nanoporous opal films.
Cichelli, Julie; Zharov, Ilya
2006-06-28
Nanoporous 7 mum thin opal films comprising 35 layers of 200 nm diameter SiO2 spheres were assembled on Pt electrodes and modified with chiral selector moieties on the silica surface. Diffusion of chiral redox species through the opals was studied by cyclic voltammetry. The chiral opal films demonstrate high selectivity for transport of one enantiomer over the other. This chiral permselectivity is attributed to the surface-facilitated transport utilizing noncovalent interactions between the chiral permeant molecules and surface-bound chiral selectors.
NASA Technical Reports Server (NTRS)
Pearson, A.
1975-01-01
The objective of this program was to establish feasibility of a process to produce low cost aluminum oxide fibers having sufficient strength, flexibility, and thermal stability for multiple re-use at temperatures to 1480 C in advanced RSI type heat shields for reentry vehicles. Using bench-scale processing apparatus, the Alcoa 'Saphiber' process was successfully modified to produce nominally 8 microns diameter polycrystalline alpha-alumina fiber. Thermal stability was demonstrated in vacuum reheating tests to 1371 C and in atmospheric reheating to 1483 C. Individual fiber properties of strength, modulus, and flexibility were not determined because of friability and short length of the fiber. Rigidized tile produced from fiber of nominally 8, 20 and 40 micron diameter had thermal conductivities significantly higher than those of RSI SiO2 or mullite at relatively low temperature but became comparable above about 1000 C. Tile densities were high due to short fiber length, especially in the coarser diameter fiber. No significant effect of fiber diameter on thermal properties could be determined form the data. Mechanical properties of tiles deteriorated as fiber diameter increased.
SPAR 6 experiment report containerless processing of glass experiment 74-42
NASA Technical Reports Server (NTRS)
Happe, R. A.
1980-01-01
Pertinent portions of the ground based research are described, including experiments leading to the selection of the flight sample composition: a silica modified gallia-calcia glass. Included are details of the preparation of an approximately .25 in diameter flight sample.
78 FR 30391 - Notice of Applications for Modification of Special Permits
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... diameter of 1-\\1/ 2\\ inches maximum for 4131 seamless steel tubing cylinder. 10704-M Air Liquide America 49... with CGA Pamphlet C-23. 12122-M ARC Automotive, Inc., 49 CFR 173.301(h), To modify the and special...
Elahi, M Fazley; Guan, Guoping; Wang, Lu; Zhao, Xinzhe; Wang, Fujun; King, Martin W
2015-03-03
There is an urgent need to develop a biologically active implantable small-diameter vascular prosthesis with long-term patency. Silk-fibroin-based small-diameter vascular prosthesis is a promising candidate having higher patency rate; however, the surface modification is indeed required to improve its further hemocompatibility. In this study, silk fibroin fabric was modified by a two-stage process. First, the surface of silk fibroin fabric was coated using a layer-by-layer polyelectrolyte deposition technique by stepwise dipping the silk fibroin fabric into a solution of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(acrylic acid) (PAA) solution. The dipping procedure was repeated to obtain the PAH/PAA multilayers deposited on the silk fibroin fabrics. Second, the polyelectrolyte-deposited silk fibroin fabrics were treated in EDC/NHS-activated low-molecular-weight heparin (LMWH) solution at 4 °C for 24 h, resulting in immobilization of LMWH on the silk fibroin fabrics surface. Scanning electron microscopy, atomic force microscopy, and energy-dispersive X-ray data revealed the accomplishment of LMWH immobilization on the polyelectrolyte-deposited silk fibroin fabric surface. The higher the number of PAH/PAA coating layers on the silk fibroin fabric, the more surface hydrophilicity could be obtained, resulting in a higher fetal bovine serum protein and platelets adhesion resistance properties when tested in vitro. In addition, compared with untreated sample, the surface-modified silk fibroin fabrics showed negligible loss of bursting strength and thus reveal the acceptability of polyelectrolytes deposition and heparin immobilization approach for silk-fibroin-based small-diameter vascular prostheses modification.
Preparation of modified semi-coke by microwave heating and adsorption kinetics of methylene blue.
Wang, Xin; Peng, Jin-Hui; Duan, Xin-Hui; Srinivasakannan, Chandrasekar
2013-01-01
Preparation of modified semi-coke has been achieved, using phosphoric acid as the modifying agent, by microwave heating from virgin semi-coke. Process optimization using a Central Composite Design (CCD) design of Response Surface Methodology (RSM) technique for the preparation of modifies semi-coke is presented in this paper. The optimum conditions for producing modified semi-coke were: concentration of phosphoric acid 2.04, heating time 20 minutes and temperature 587 degrees C, with the optimum iodine of 862 mg/g and yield of 47.48%. The textural characteristics of modified semi-coke were analyzed using scanning electron microscopy (SEM) and nitrogen adsorption isotherm. The BET surface area of modified semi-coke was estimated to be 989.60 m2/g, with the pore volume of 0.74 cm3/g and a pore diameter of 3.009 nm, with micro-pore volume contributing to 62.44%. The Methylene Blue monolayer adsorption capacity was found to be mg/g at K. The adsorption capacity of the modified semi-coke highlights its suitability for liquid phase adsorption application with a potential usage in waste water treatment.
Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles.
Smith, Candice A; Simpson, Carrie A; Kim, Ganghyeok; Carter, Carly J; Feldheim, Daniel L
2013-05-28
The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.
Recovery of gold as a type of porous fiber by using biosorption followed by incineration.
Park, Seong-In; Kwak, In Seob; Bae, Min A; Mao, Juan; Won, Sung Wook; Han, Do Hyeong; Chung, Yong Sik; Yun, Yeoung-Sang
2012-01-01
This study introduces a new process for the recovery of gold in porous fiber form by the incineration of Au-loaded biosorbent fiber from gold-cyanide solutions. For the recovery of gold from such aqueous solutions, polyethylenimine (PEI)-modified bacterial biosorbent fiber (PBBF) and PEI-modified chitosan fiber (PCSF) were developed and used. The maximum uptakes of Au(I) ions were estimated as 421.1 and 251.7 mg/g at pH 5.5 for PBBF and PCSF, respectively. Au-loaded biosorbents were freeze-dried and then incinerated to oxidize their organic constituents while simultaneously obtaining reduced gold. As a result, porous metallic gold fibers were obtained with 60 μm of diameter. Scanning electron microscopic (SEM) analysis and mercury porosimetry revealed the fibers to have 60 μm of diameter and to be highly porous and hollow. The proposed process therefore offers the potential for the efficient recovery of metallic porous gold fibers using combined biosorption and incineration. Copyright © 2011 Elsevier Ltd. All rights reserved.
Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
2, 4, 6-Trithiol-1, 3, 5-Triazine-Modified Gold Nanoparticles and Its Potential as Formalin Detector
NASA Astrophysics Data System (ADS)
Yulizar, Y.; Ariyanta, H. A.; Rakhmania, L.; Hafizah, M. A. E.
2018-04-01
Stabilized gold nanoparticles (AuNP) have been successfully prepared by a modification of ligand 2, 4, 6-trithiol-1, 3, 5-triazine (TT). TT has three thiol groups and nitrogen atoms on the aromatic ring that can interact and stabilize AuNP. TT modified AuNP (AuNP/TT) was characterized using UV-Vis spectrophotometer, particle size analyzer (PSA) and transmission electron microscopy (TEM). The characterization showed that AuNP/TT stable at a maximum wavelength (λmaks) of 537 nm with the particle diameter of 9.41 nm. The increased acidity (pH) causes the protonated thiol groups of TT marked with a visual change of colloidal AuNP/TT from purple to blue, causing AuNP and TT bonds weakened. In this study, the AuNP/TT was reacted with formalin. This interaction shows that AuNP/TT has a potential as an efficient detector of formalin, marked by changes in the diameter of the particle, colloidal color, and maximum wavelength shift.
Liu, Bo-Wen; Hu, Ming-Lie; Fang, Xiao-Hui; Li, Yan-Feng; Chai, Lu; Wang, Ching-Yue; Tong, Weijun; Luo, Jie; Voronin, Aleksandr A; Zheltikov, Aleksei M
2008-09-15
Fiber dispersion and nonlinearity management strategy based on a modification of a photonic-crystal fiber (PCF) core with an air hole is shown to facilitate optimization of PCF components for a stable soliton frequency shift and subpetahertz sideband generation through four-wave mixing. Spectral recoil of an optical soliton by a red-shifted dispersive wave, generated through a soliton instability induced by high-order fiber dispersion, is shown to stabilize the soliton self-frequency shift in a highly nonlinear PCF with an air-hole-modified core relative to pump power variations. A fiber with a 2.3-microm-diameter core modified with a 0.9-microm-diameter air hole is used to demonstrate a robust soliton self-frequency shift of unamplified 50-fs Ti: sapphire laser pulses to a central wavelength of about 960 nm, which remains insensitive to variations in the pump pulse energy within the range from 60 to at least 100 pJ. In this regime of frequency shifting, intense high- and low-frequency branches of dispersive wave radiation are simultaneously observed in the spectrum of PCF output. An air-hole-modified-core PCF with appropriate dispersion and nonlinearity parameters is shown to provide efficient four-wave mixing, giving rise to Stokes and anti-Stokes sidebands whose frequency shift relative to the pump wavelength falls within the subpetahertz range, thus offering an attractive source for nonlinear Raman microspectroscopy.
Zanatta, Rayssa Ferreira; Barreto, Bruno de Castro Ferreira; Xavier, Tathy Aparecida; Versluis, Antheunis; Soares, Carlos José
2015-02-01
This study evaluated the influence of punch and base orifice diameters on push-out test results by means of finite element analysis (FEA). FEA was performed using 3D models of the push-out test with 3 base orifice diameters (2.5, 3.0, and 3.5 mm) and 3 punch diameters (0.5, 1.0, and 1.5 mm) using MARC/MENTAT (MSC.Software). The image of a cervical slice from a root restored with a fiberglass post was used to construct the models. The mechanical properties of dentin, post, and resin cement were obtained from the literature. Bases and punches were constructed as rigid bodies. A 10-N force was applied by the punch in the center of the post in a nonlinear contact analysis. Modified von Mises stress, maximum principal stress, as well as shear and normal stress components were calculated. Both punch and base orifice sizes influenced the stress distribution of the push-out test. Bases with larger diameters and punches with smaller diameters caused higher stress in dentin and at the dentin/cement interface. FEA showed that the diameter of the orifice base had a more significant influence on the stress distribution than did the punch diameter. For this reason, both factors should be taken into account during push-out experimental tests.
NASA Technical Reports Server (NTRS)
Vukobratovich, D.; Hillman, D.
1983-01-01
The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.
Mercredi, Morgan; Vincent, Trevor J; Bidinosti, Christopher P; Martin, Melanie
2017-02-01
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue. Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together. The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested. The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
Investigating the effect of suspensions nanostructure on the thermophysical properties of nanofluids
NASA Astrophysics Data System (ADS)
Tesfai, Waka; Singh, Pawan K.; Masharqa, Salim J. S.; Souier, Tewfik; Chiesa, Matteo; Shatilla, Youssef
2012-12-01
The effect of fractal dimensions and Feret diameter of aggregated nanoparticle on predicting the thermophysical properties of nanofluids is demonstrated. The fractal dimensions and Feret diameter distributions of particle agglomerates are quantified from scanning electron and probe microscope imaging of yttria nanofluids. The results are compared with the fractal dimensions calculated by fitting the rheological properties of yttria nanofluids against the modified Krieger-Dougherty model. Nanofluids of less than 1 vol. % particle loading are found to have fractal dimensions of below 1.8, which is typical for diffusion controlled cluster formation. By contrast, an increase in the particle loading increases the fractal dimension to 2.0-2.2. The fractal dimensions obtained from both methods are employed to predict the thermal conductivity of the nanofluids using the modified Maxwell-Garnet (M-G) model. The prediction from rheology is found inadequate and might lead up to 8% error in thermal conductivity for an improper choice of aspect ratio. Nevertheless, the prediction of the modified M-G model from the imaging is found to agree well with the experimentally observed effective thermal conductivity of the nanofluids. In addition, this study opens a new window on the study of aggregate kinetics, which is critical in tuning the properties of multiphase systems.
NASA Astrophysics Data System (ADS)
Zhu, Zichen; Wang, Yongzhi; Bian, Shuhua; Hu, Zejian; Liu, Jianqiang; Liu, Lejun
2017-11-01
We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations (SSC) measured from July 25th to July 26th, 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m2, and from 0.05 to 0.14 N/m 2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.
Minami, Keiichiro; Miyata, Kazunori; Otani, Atsushi; Tokunaga, Tadatoshi; Tokuda, Shouta; Amano, Shiro
2018-05-01
To determine steep increase of corneal irregularity induced by advancement of pterygium. A total of 456 eyes from 456 consecutive patients with primary pterygia were examined for corneal topography and advancement of pterygium with respect to the corneal diameter. Corneal irregularity induced by the pterygium advancement was evaluated by Fourier harmonic analyses of the topographic data that were modified for a series of analysis diameters from 1 mm to 6 mm. Incidences of steep increases in the asymmetry or higher-order irregularity components (inflection points) were determined by using segmented regression analysis for each analysis diameter. The pterygium advancement ranged from 2% to 57%, with a mean of 22.0%. Both components showed steep increases from the inflection points. The inflection points in the higher-order irregularity component altered with the analysis diameter (14.0%-30.6%), while there was no alternation in the asymmetry components (35.5%-36.8%). For the former component, the values at the inflection points were obtained in a range of 0.16 to 0.25 D. The Fourier harmonic analyses for a series of analysis diameters revealed that the higher-order irregularity component increased with the pterygium advancement. The analysis results confirmed the precedence of corneal irregularity due to pterygium advancement.
Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.
Subedi, Nirmal; Sharma, Mahadev
2013-02-01
To predict the long-term effects of climate change - global warming and changes in precipitation - on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed-effects approach. Our results showed that the variables long-term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041-2070) diameter growth rate may differ from current (1971-2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate-growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions. © 2012 Blackwell Publishing Ltd.
Note: Making tens of centimeter long uniform microfluidic channels using commercial glass pipette
NASA Astrophysics Data System (ADS)
Ou, Neil; Lee, Huang-Ming; Wu, Jong-Ching
2018-03-01
Producing microchannels with diameters between 10 and 20 μm and with lengths in the tens of centimeters is reported. The method can be modified to obtain diameters as narrow as 350 nm. Length-to-diameter aspect ratios that surpass 104 can be produced for a fraction of current production costs. The controllable channel is produced by applying a flame to the narrow end of a commercial pipette that is made from a soda-lime silicate. In combination with a pulling mechanism, applying heat to the composite material lengthens the pipette in a highly uniform way. Given that the materials and methods in this research are cost-effective when compared to femtosecond laser micromachining on 2D silicon-based surfaces, further research into producing microchannels from soda-lime silicates may revolutionize access to 3D controllable microchannels.
Surveying colloid sedimentation by coplanar waveguides
NASA Astrophysics Data System (ADS)
Duţu, C. A.; Vlad, A.; Roda-Neve, C.; Avram, I.; Sandu, G.; Raskin, J.-P.; Melinte, S.
2016-06-01
By using coplanar waveguides, direct access to the dielectric properties of aqueous solutions of polystyrene beads with different diameters from 330 nm to 10 μm is provided. The relative variation of the transmission parameter with respect to water is monitored, ranging from ˜ {3}% obtained for a 9.5% solution with 330 nm diameter beads to ˜22% for 10 μm diameter particles at the same concentration. To highlight its applicability in biosensing, the technique was further employed to survey the clustering between biotin and streptavidin-coated beads. The transmission parameter displays a ˜50% increase for mixtures containing nine volumes of biotin and one volume of streptavidin-modified beads (4.5 ng μl-1 of streptavidin) and reaches ˜400% higher values when equal volumes of biotin and streptavidin-coated beads (22.5 ng μl-1 of streptavidin) were mixed.
NASA Astrophysics Data System (ADS)
Wang, H. S.; Honda, Hiroshi
A theoretical study has been made on the effects of tube diameter and tubeside fin geometry on the heat transfer performance of air-cooled condensers. Extensive numerical calculations of overall heat transfer from refrigerant R410A flowing inside a horizontal microfin tube to ambient air were conducted for a typical operating condition of the air-cooled condenser. The tubeside heat transfer coefficient was calculated by applying a modified stratified flow model developed by Wang et al.8). The numerical results show that the effects of tube diameter, fin height, fin number and helix angle of groove are significant, whereas those of the width of flat portion at the fin tip, the radius of round corner at the fin tip and the fin half tip angle are small.
NASA Technical Reports Server (NTRS)
Deissler, Robert G
1955-01-01
The expression for eddy diffusivity from a previous analysis was modified in order to account for the effect of kinematic viscosity on the turbulence in the region close to a wall. By using the modified expression, good agreement was obtained between predicted and experimental results for heat and mass transfer at Prandtl and Schmidt numbers between 0.5 and 3000. The effects of length-to-diameter ratio and of variable viscosity were also investigated for a wide range of Prandtl numbers.
Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy
NASA Astrophysics Data System (ADS)
Chen, Hongbo; Zheng, Yi; Tian, Ge; Tian, Yan; Zeng, Xiaowei; Liu, Gan; Liu, Kexin; Li, Lei; Li, Zhen; Mei, Lin; Huang, Laiqiang
2011-12-01
Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.
Double-Plate Penetration Equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
2000-01-01
This report compares seven double-plate penetration predictor equations for accuracy and effectiveness of a shield design. Three of the seven are the Johnson Space Center original, modified, and new Cour-Palais equations. The other four are the Nysmith, Lundeberg-Stern-Bristow, Burch, and Wilkinson equations. These equations, except the Wilkinson equation, were derived from test results, with the velocities ranging up to 8 km/sec. Spreadsheet software calculated the projectile diameters for various velocities for the different equations. The results were plotted on projectile diameter versus velocity graphs for the expected orbital debris impact velocities ranging from 2 to 15 km/sec. The new Cour-Palais double-plate penetration equation was compared to the modified Cour-Palais single-plate penetration equation. Then the predictions from each of the seven double-plate penetration equations were compared to each other for a chosen shield design. Finally, these results from the equations were compared with test results performed at the NASA Marshall Space Flight Center. Because the different equations predict a wide range of projectile diameters at any given velocity, it is very difficult to choose the "right" prediction equation for shield configurations other than those exactly used in the equations' development. Although developed for various materials, the penetration equations alone cannot be relied upon to accurately predict the effectiveness of a shield without using hypervelocity impact tests to verify the design.
NASA Astrophysics Data System (ADS)
Lu, H. R.; Su, L. C.; Ruan, H. D.
2016-08-01
This study attempts to find out and optimize the removal efficiency of heavy metals in a water purification unit using a low-cost waste material and modified mineral waste materials (MMWM) accompanied with activated carbon (AC) derived from waste materials. The factors of the inner diameter of the purification unit (2.6-5cm), the height of the packing materials (5-20cm), the size of AC (200-20mesh), the size of MMWM (1-0.045mm), and the ratio between AC and MMWM in the packing materials (1:0 - 0:1) were examined based on a L18 (5) 3 orthogonal array design. In order to achieve an optimally maximum removal efficiency, the factors of the inner diameter of the purification unit (2.6-7.5cm), the height of the packing materials (10-30cm), and the ratio between AC and MMWM in the packing materials (1:4-4:1) were examined based on a L16 (4) 3 orthogonal array design. A height of 25cm, inner diameter of 5cm, ratio between AC and MMWM of 3:2 with size of 60-40mesh and 0.075-0.045mm, respectively, were the best conditions determined by the ICP-OES analysis to perform the adsorption of heavy metals in this study.
NASA Astrophysics Data System (ADS)
Liu, Yu; Qin, Shengwei; Hao, Qingguo; Chen, Nailu; Zuo, Xunwei; Rong, Yonghua
2017-03-01
The study of internal stress in quenched AISI 4140 medium carbon steel is of importance in engineering. In this work, the finite element simulation (FES) was employed to predict the distribution of internal stress in quenched AISI 4140 cylinders with two sizes of diameter based on exponent-modified (Ex-Modified) normalized function. The results indicate that the FES based on Ex-Modified normalized function proposed is better consistent with X-ray diffraction measurements of the stress distribution than FES based on normalized function proposed by Abrassart, Desalos and Leblond, respectively, which is attributed that Ex-Modified normalized function better describes transformation plasticity. Effect of temperature distribution on the phase formation, the origin of residual stress distribution and effect of transformation plasticity function on the residual stress distribution were further discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, T.
Many studies have been devoted to investigate how the maximum stress occurring in the bolted joint could be reduced. Patterson and Kenny suggest that a modified nut with a straight bevel at the bearing surface is effective. However, they only dealt with M30, and estimations on the nut geometry had not been necessarily sufficient. In this study, an extensive finite element approach for solving general multi-body contact problem is proposed by incorporating a regularization method into stiffness matrices with singularity involved; thus, numerical analyses are executed to accurately determine the optimal shape of the modified nut for various design factors.more » A modified nut with a curved bevel is also treated, and it is concluded that the modified nuts are significantly effective for bolts with larger nominal diameter and fine pitch, and are practically useful compared to pitch modification and tapered thread methods.« less
Diameter-Controlled and Surface-Modified Sb2Se3 Nanowires and Their Photodetector Performance
NASA Astrophysics Data System (ADS)
Choi, Donghyeuk; Jang, Yamujin; Lee, Jeehee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook
2014-10-01
Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK-1), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = Ilight/Idark) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.
Diameter-controlled and surface-modified Sb₂Se₃ nanowires and their photodetector performance.
Choi, Donghyeuk; Jang, Yamujin; Lee, JeeHee; Jeong, Gyoung Hwa; Whang, Dongmok; Hwang, Sung Woo; Cho, Kyung-Sang; Kim, Sang-Wook
2014-10-22
Due to its direct and narrow band gap, high chemical stability, and high Seebeck coefficient (1800 μVK(-1)), antimony selenide (Sb2Se3) has many potential applications, such as in photovoltaic devices, thermoelectric devices, and solar cells. However, research on the Sb2Se3 materials has been limited by its low electrical conductivity in bulk state. To overcome this challenge, we suggest two kinds of nano-structured materials, namely, the diameter-controlled Sb2Se3 nanowires and Ag2Se-decorated Sb2Se3 nanowires. The photocurrent response of diameter-controlled Sb2Se3, which depends on electrical conductivity of the material, increases non-linearly with the diameter of the nanowire. The photosensitivity factor (K = I(light)/I(dark)) of the intrinsic Sb2Se3 nanowire with diameter of 80-100 nm is highly improved (K = 75). Additionally, the measurement was conducted using a single nanowire under low source-drain voltage. The dark- and photocurrent of the Ag2Se-decorated Sb2Se3 nanowire further increased, as compared to that of the intrinsic Sb2Se3 nanowire, to approximately 50 and 7 times, respectively.
[Experimental study of recovery force of surface-modified TiNi memory alloy rod].
Wang, Aiyuan; Peng, Jiang; Zhang, Xian; Xu, Wenjin; Wang, Xing; Sun, Minxue; Lu, Shibi
2006-08-01
The recovery force of Ti-Nb coated and uncoated TiNi shape memory alloy rods was investigated. The rods were 6.0 mm, 6.5 mm and 7.0 mm in diameter respectively. The mean transition temperature was 33.0 degrees C. The rods were stored at -18 degrees C and pre-bent with a three-point bending fixture, the span was 20. 0 centimeters and the deflections were 5.0 mm, 10.0 mm, 15.0 mm and 20.0 mm, respectively. The rods were then heated in a constant temperature saline solution chamber. The experimental temperature was 37.0 C and 50.0 C respectively. The recovery force was measured in a constant displacement mode on biomaterial test machine. The results showed that the recovery force of the memory alloy rod increased with increasing recovery temperature, rod diameter and deformation of both Ti-Nb coated and uncoated surface. The recovery force of Ti-Nb coated rods of 6.0 and 6.5 millimeter in diameter was lower than the uncoated rods in the same diameter. However, the recovery force of 7.0-mm-diameter rods showed no significant difference between coated and uncoated surface.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less
Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru
2017-01-01
Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.
Modified duval procedure for small-duct chronic pancreatitis without head dominance.
Oida, Takatsugu; Aramaki, Osamu; Kano, Hisao; Mimatsu, Kenji; Kawasaki, Atsushi; Kuboi, Youichi; Fukino, Nobutada; Kida, Kazutoshi; Amano, Sadao
2011-01-01
In the case of small-duct chronic pancreatitis, surgery for pain relief is broadly divided into resection and drainage procedures. These procedures should be selected according to the location of dominant lesion, diameter of the pancreatic duct and extent of the disease. The appropriate procedure for the treatment of small-duct chronic pancreatitis, especially small-duct chronic pancreatitis without head dominance, remains controversial. We developed the modified Duval procedure for the treatment of small-duct chronic pancreatitis without head dominance and determined the efficacy of this procedure. We retrospectively studied 14 patients who underwent surgical drainage with or without pancreatic resection for chronic pancreatitis with small pancreatic duct (<7mm) without head dominance. These patients were divided into 2 groups; the modified Puestow procedure group and the modified Duval procedure group. No complications occurred in the modified Duval group. In the modified Puestow procedure group, complete and partial pain relief were observed in 62.5%, and 37.5% of patients respectively. In contrast, complete pain relief was observed in all the patients in the modified Duval procedure group. Our modified Duval procedure is useful and should be considered the appropriate surgical technique for the treatment of small-duct chronic pancreatitis without head dominance.
Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods
NASA Astrophysics Data System (ADS)
Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason
2008-12-01
The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.
High Altitude Supersonic Decelerator Test Vehicle
NASA Technical Reports Server (NTRS)
Cook, Brant T.; Blando, Guillermo; Kennett, Andrew; Von Der Heydt, Max; Wolff, John Luke; Yerdon, Mark
2013-01-01
The Low Density Supersonic Decelerator (LDSD) project is tasked by NASA's Office of the Chief Technologist (OCT) to advance the state of the art in Mars entry and descent technology in order to allow for larger payloads to be delivered to Mars at higher altitudes with better accuracy. The project will develop a 33.5 m Do Supersonic Ringsail (SSRS) parachute, 6m attached torus, robotic class Supersonic Inflatable Aerodynamic Decelerator (SIAD-R), and an 8 m attached isotensoid, exploration class Supersonic Inflatable Aerodynamic Decelerator (SIAD-E). The SSRS and SIAD-R should be brought to TRL-6, while the SIAD-E should be brought to TRL-5. As part of the qualification and development program, LDSD must perform a Mach-scaled Supersonic Flight Dynamics Test (SFDT) in order to demonstrate successful free flight dynamic deployments at Mars equivalent altitude, of all three technologies. In order to perform these tests, LDSD must design and build a test vehicle to deliver all technologies to approximately 180,000 ft and Mach 4, deploy a SIAD, free fly to approximately Mach 2, deploy the SSRS, record high-speed and high-resolution imagery of both deployments, as well as record data from an instrumentation suite capable of characterizing the technology induced vehicle dynamics. The vehicle must also be recoverable after splashdown into the ocean under a nominal flight, while guaranteeing forensic data protection in an off nominal catastrophic failure of a test article that could result in a terminal velocity, tumbling water impact.
Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
Bauer, Sebastian; Park, Jung; von der Mark, Klaus; Schmuki, Patrik
2008-09-01
Self-organized layers of vertically orientated TiO(2) nanotubes providing defined diameters ranging from 15 up to 100nm were grown on titanium by anodic oxidation. These TiO(2) nanotube layers show super-hydrophilic behavior. After coating TiO(2) nanotube layers with a self-assembled monolayer (octadecylphosphonic acid) they showed a diameter-dependent wetting behavior ranging from hydrophobic (108+/-2 degrees ) up to super-hydrophobic (167+/-2 degrees ). Cell adhesion, spreading and growth of mesenchymal stem cells on the unmodified and modified nanotube layers were investigated and compared. We show that cell adhesion and proliferation are strongly affected in the super-hydrophobic range. Adsorption of extracellular matrix proteins as fibronectin, type I collagen and laminin, as well as bovine serum albumin, on the coated and uncoated surfaces showed a strong influence on wetting behavior and dependence on tube diameter.
Development and performance evaluation of high speed cryogenic turboexpanders at BARC, India
NASA Astrophysics Data System (ADS)
Chakravarty, A.; Menon, R. S.; Goyal, M.; Ahmed, N.; Jadhav, M.; Rane, T.; Nair, S. R.; Kumar, J.; Kumar, N.; Bharti, S. K.; Jain, A.; Joemon, V.
2017-12-01
Turboexpanders are a key focus area for Bhabha Atomic Research Centre (BARC), Mumbai, India in the program for development of helium refrigerators and liquefiers for intra departmental requirements. To start with, a turbine impeller with major diameter 16 mm and design speed of 264,000 RPM, suited for use in the 1st stage of a modified Claude cycle/reverse Brayton cycle based standard helium liquefier/refrigerator, is developed. Later on, a second series of turboexpander with the same major diameter (16 mm) and design speed of 260,000 RPM is developed with “splitter” blades at the major diameter end. Yet another turboexpander series, size 16.5 mm and design speed 168,000 RPM, is also developed suited for use in the 2nd stage of a standard helium liquefier/refrigerator. The present article describes these turboexpander development efforts at BARC, including results obtained during field trials with the BARC helium refrigerator and liquefier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvador Palau, A.; Eder, S. D., E-mail: sabrina.eder@uib.no; Kaltenbacher, T.
Time-of-flight (TOF) is a standard experimental technique for determining, among others, the speed ratio S (velocity spread) of a molecular beam. The speed ratio is a measure for the monochromaticity of the beam and an accurate determination of S is crucial for various applications, for example, for characterising chromatic aberrations in focussing experiments related to helium microscopy or for precise measurements of surface phonons and surface structures in molecular beam scattering experiments. For both of these applications, it is desirable to have as high a speed ratio as possible. Molecular beam TOF measurements are typically performed by chopping the beammore » using a rotating chopper with one or more slit openings. The TOF spectra are evaluated using a standard deconvolution method. However, for higher speed ratios, this method is very sensitive to errors related to the determination of the slit width and the beam diameter. The exact sensitivity depends on the beam diameter, the number of slits, the chopper radius, and the chopper rotation frequency. We present a modified method suitable for the evaluation of TOF measurements of high speed ratio beams. The modified method is based on a systematic variation of the chopper convolution parameters so that a set of independent measurements that can be fitted with an appropriate function are obtained. We show that with this modified method, it is possible to reduce the error by typically one order of magnitude compared to the standard method.« less
Mehdi, B Layla; Rutkowska, Iwona A; Kulesza, Pawel J; Cox, James A
2013-06-01
Modification of electrodes with nm-scale organically modified silica films with pores diameters controlled at 10- and 50-nm is described. An oxidation catalyst, mixed-valence ruthenium oxide with cyano crosslinks or gold nanoparticles protected by dirhodium-substituted phosophomolybdate (AuNP-Rh 2 PMo 11 ), was immobilized in the pores. These systems comprise size-exclusion films at which the biological compounds, phosphatidylcholine and cardiolipin, were electrocatalytically oxidized without interference from surface-active concomitants such as bovine serum albumin. 10-nm pores were obtained by adding generation-4 poly(amidoamine) dendrimer, G4-PAMAM, to a (CH 3 ) 3 SiOCH 3 sol. 50-nm pores were obtained by modifying a glassy carbon electrode (GC) with a sub-monolayer film of aminopropyltriethoxylsilane, attaching 50-nm diameter poly(styrene sulfonate), PSS, spheres to the protonated amine, transferring this electrode to a (CH 3 ) 3 SiOCH 3 sol, and electrochemically generating hydronium at uncoated GC sites, which catalyzed ormosil growth around the PSS. Voltammetry of Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ demonstrated the absence of residual charge after removal of the templating agents. With the 50-nm system, the pore structure was sufficiently defined to use layer-by-layer electrostatic assembly of AuNP-Rh 2 PMo 11 therein. Flow injection amperometry of phosphatidylcholine and cardiolipin demonstrated analytical utility of these electrodes.
Pupil Dilation and Object Permanence in Infants
ERIC Educational Resources Information Center
Sirois, Sylvain; Jackson, Iain R.
2012-01-01
This paper examines the relative merits of looking time and pupil diameter measures in the study of early cognitive abilities of infants. Ten-month-old infants took part in a modified version of the classic drawbridge experiment used to study object permanence (Baillargeon, Spelke, & Wasserman, 1985). The study involved a factorial design where…
Multiple-Feed Design For DSN/SETI Antenna
NASA Technical Reports Server (NTRS)
Slobin, S. D.; Bathker, D. A.
1988-01-01
Frequency bands changed with little interruption of operation. Modification of feedhorn mounting on existing 34-m-diameter antenna in Deep Space Network (DSN) enables antenna to be shared by Search for Extra-Terrestrial Intelligence (SET) program with minimal interruption of DSN spacecraft tracking. Modified antenna useful in terrestrial communication systems requiring frequent changes of operating frequencies.
NASA Astrophysics Data System (ADS)
Fei, Xuening; Zhu, Huifang; Zhou, Jianguo; Yu, Lu
2014-03-01
A dual functional nanoparticle was designed and synthesized by encapsulating magnetic core inside silica particles and subsequently a thiazole orange (TO) dye derivative was modified on the surface of the nanoparticles. The obtained particles were characterized by Fourier transform infrared spectroscope, Uv-Vis spectrophotometer, fluorescence spectrophotometer, transmission electron microscope, dynamic light scattering, etc. The size of preliminary magnetic particles is ca. 7 nm, but after coating a silica layer and dye, the size of particles is increased to ca. 60 nm. The hydrodynamic diameter, water dispersibility, and zeta potential were also determined. The hydrodynamic diameter of particles with silica and dye is 65.2 and 70.5 nm, respectively, with positive zeta potential (25.1, 38.5 mV). Furthermore magnetic properties of the particles were measured and the experimental results suggested that it could meet the requirement of application as magnetic resonance imaging agent. Finally to verify the availability of the particles as fluorescent labeling, protein labeling experiment was performed using bovine serum albumin (BSA) protein and the results showed that the dual functional particle has higher affinity with BSA than TO molecule itself.
Light-triggered self-assembly of triarylamine-based nanospheres
NASA Astrophysics Data System (ADS)
Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas
2012-10-01
Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h
Surface tensions of solutions containing dicarboxylic acid mixtures
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Hildemann, Lynn M.
2014-06-01
Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.
Estimation of the lower flammability limit of organic compounds as a function of temperature.
Rowley, J R; Rowley, R L; Wilding, W V
2011-02-15
A new method of estimating the lower flammability limit (LFL) of general organic compounds is presented. The LFL is predicted at 298 K for gases and the lower temperature limit for solids and liquids from structural contributions and the ideal gas heat of formation of the fuel. The average absolute deviation from more than 500 experimental data points is 10.7%. In a previous study, the widely used modified Burgess-Wheeler law was shown to underestimate the effect of temperature on the lower flammability limit when determined in a large-diameter vessel. An improved version of the modified Burgess-Wheeler law is presented that represents the temperature dependence of LFL data determined in large-diameter vessels more accurately. When the LFL is estimated at increased temperatures using a combination of this model and the proposed structural-contribution method, an average absolute deviation of 3.3% is returned when compared with 65 data points for 17 organic compounds determined in an ASHRAE-style apparatus. Copyright © 2010 Elsevier B.V. All rights reserved.
Laboratory Study of Homogeneous and Isotropic Turbulence at High Reynolds Number
NASA Astrophysics Data System (ADS)
Pecenak, Zachary; Dou, Zhongwang; Yang, Fan; Cao, Lujie; Liang, Zach; Meng, Hui
2013-11-01
To study particle dynamics modified by isotropic turbulence at high Reynolds numbers and provide experimental data for DNS validation, we have developed a soccer-ball-shaped truncated icosahedron turbulence chamber with 20 adjoining hexagon surfaces, 12 pentagon surfaces and twenty symettrically displaced fans, which form an enclosed chamber of 1m diameter. We use Particle Image Velocimetry (PIV) technique to characterize the base turbulent flow, using different PIV set ups to capture various characteristic scales of turbulence. Results show that the stationary isotropic turbulence field is a spherical domain with diameter of 40 mm with quasi-zero mean velocities. The maximum rms velocity is ~1.5 m/s, corresponding to a Taylor microscale Re of 450. We extract from the PIV velocity field the whole set of turbulent flow parameters including: turbulent kinetic energy, turbulent intensity, kinetic energy dissipation rate, large eddy length and time scales, the Kolmogorov length, time and velocity scales, Taylor microscale and Re, which are critical to the study of inter-particle statistics modified by turbulence. This research is funded by an NSF grant CBET-0967407.
Hydrangea-like magneto-fluorescent nanoparticles through thiol-inducing assembly
NASA Astrophysics Data System (ADS)
Chen, Shun; Zhang, Junjun; Song, Shaokun; Xiong, Chuanxi; Dong, Lijie
2017-01-01
Magneto-fluorescent nanoparticles (NPs), recognized as an emerging class of materials, have drawn much attention because of their potential applications. Due to surface functionalization and thiol-metal bonds, a simple method has been put forward for fabricating hydrangea-like magneto-fluorescent Fe3O4-SH@QD NPs, through assembling thiol-modified Fe3O4 NPs with sub-size multi-layer core/shell CdSe/CdS/ZnS QDs. After a refined but controllable silane hydrolysis process, thiol-modified Fe3O4 was fabricated, resulting in Fe3O4-SH@QD NPs with QDs, while preventing the quenching of the QDs. As a result, the core Fe3O4 NPs were 18 nm in diameter, while the scattered CdSe/CdS/ZnS QDs were 7 nm in diameter. The resultant magneto-fluorescent Fe3O4-SH@QD NPs exhibit efficient fluorescence, superparamagnetism at room temperature, and rapid response to the external field, which make them ideal candidates for difunctional probes in MRI and bio-labels, targeting and photodynamic therapy, and cell tracking and separation.
Preparation and characterization of a novel silicon-modified nanobubble
Li, Maotong; Zhou, Meijun; Li, Fei; Huang, Xiuxian; Pan, Min; Xue, Li
2017-01-01
Nanobubbles (NBs) opened a new field of ultrasound imaging. There is still no practical method to control the diameter of bubbles. In this study, we developed a new method to control the size by incorporating of silicon hybrid lipids into the bubble membrane. The range of particle size of resulting NBs is between 523.02 ± 46.45 to 857.18 ± 82.90, smaller than the conventional microbubbles. The size of resulting NBs increased with the decrease in amount of silicon hybrid lipids, indicating the diameter of NBs can be regulated through modulating the ratio of silicon hybrid lipids in the bubble shell. Typical harmonic signals could be detected. The in vitro and in vivo ultrasound imaging experiments demonstrated these silicon-modified NBs had significantly improved ultrasound contrast enhancement abilities. Cytotoxicity assays revealed that these NBs had no obvious cytotoxicity to the 293 cell line at the tested bubble concentration. Our results showed that the novel NBs could use as nanoscale ultrasound contrast agents, providing the foundation for NBs in future applications including contrast-enhanced imaging and drug/gene delivery. PMID:28557995
Rizzo, Stanislao; Fantoni, Gualtiero; de Santis, Giovanni; Lue, Jaw-Chyng Lormen; Ciampi, Jonathan; Palla, Michele; Genovesi Ebert, Federica; Savastano, Alfonso; De Maria, Carmelo; Vozzi, Giovanni; Brant Fernandes, Rodrigo A; Faraldi, Francesco; Criscenti, Giuseppe
2017-09-01
Thorough this experimental study, the physic features of a modified 23-gauge vitrectomy probe were evaluated in vitro. A modified vitrectomy probe to increase vitreous outflow rate with a small-diameter probe, that also minimized tractional forces on the retina, was created and tested. The "new" probe was created by drilling an opening into the inner duct of a traditional 23-gauge probe with electrochemical or electrodischarge micromachining. Both vitreous outflow and tractional forces on the retina were examined using experimental models of vitreous surgery. The additional opening allowed the modified probe to have a cutting rate of 5,000 cuts per minute, while sustaining an outflow approximately 45% higher than in conventional 23-gauge probes. The modified probe performed two cutting actions per cycle, not one, as in standard probes. Because tractional force is influenced by cutting rate, retinal forces were 2.2 times lower than those observed with traditional cutters. The modified probe could be useful in vitreoretinal surgery. It allows for faster vitreous removal while minimizing tractional forces on the retina. Moreover, any available probe can be modified by creating a hole in the inner duct.
On the Redshift Distribution and Physical Properties of ACT-Selected DSFGs
NASA Technical Reports Server (NTRS)
Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dunner, R.; Farrah, D.; Frayer, D. T.;
2016-01-01
We present multi-wavelength detections of nine candidate gravitationally-lensed dusty starforming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the ACT equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of 4.1 (+ 1.1, -10) (68 percent confidence interval), as expected for 218 GHz selection and an apparent total infrared luminosity of log 10(uL(sub IR)/solar luminosity) = 13.86(+0.33, -0.30), which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is square root of mu d = 4.2 (+ 1.7, -1.0) kpc, further evidence of strong lensing of multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of opticaly thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = (4.2+, -1.9) of dust around the peak in the modified blackbody spectrum (lambda obs is less than 500 micrometers), a result that is robust to model choice.
Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E
2014-01-01
Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.
On the redshift distribution and physical properties of ACT-selected DSFGs
NASA Astrophysics Data System (ADS)
Su, T.; Marriage, T. A.; Asboth, V.; Baker, A. J.; Bond, J. R.; Crichton, D.; Devlin, M. J.; Dünner, R.; Farrah, D.; Frayer, D. T.; Gralla, M. B.; Hall, K.; Halpern, M.; Harris, A. I.; Hilton, M.; Hincks, A. D.; Hughes, J. P.; Niemack, M. D.; Page, L. A.; Partridge, B.; Rivera, J.; Scott, D.; Sievers, J. L.; Thornton, R. J.; Viero, M. P.; Wang, L.; Wollack, E. J.; Zemcov, M.
2017-01-01
We present multi-wavelength detections of nine candidate gravitationally lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. By fitting their spectral energy distributions (SEDs) with a modified blackbody model with power-law temperature distribution, we find the sample has a median redshift of z=4.1^{+1.1}_{-1.0} (68 per cent confidence interval), as expected for 218 GHz selection, and an apparent total infrared luminosity of log _{10}(μ L_IR/L_{odot }) = 13.86^{+0.33}_{-0.30}, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is sqrt{μ }d= 4.2^{+1.7}_{-1.0} kpc, further evidence of strong lensing or multiplicity, since the typical diameter of DSFGs is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modelling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2^{+3.7}_{-1.9}) to dust around the peak in the modified blackbody spectrum (λobs ≤ 500 μm), a result that is robust to model choice.
Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho
2013-01-01
Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering. PMID:24381937
Al-khwarizmi: a new-found basin on the lunar far side.
El-Baz, F
1973-06-15
Apollo 16 and Apollo 17 photographs of the far side of the moon reveal a double-ringed basin 500 kilometers in diameter centered at 1 degrees N, 112 degrees E. The structure is very old and subdued; it is probably Pre-Nectarian in age and appears to have been filled and modified by younger events. The heights of the basin's rings are based on laser altimeter data from Apollo missions 15 through 17; these data suggest a third outer ring, approximately 1000 kilometers in diameter. Laser measurements also indicate that the filled basin separates the relatively low terrain on the eastern limb of the moon from the higher, more rugged highlands to the east.
Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen
1992-01-01
Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.
Midwest Guardrail System with round timber posts
Ronald K. Faller; John D. Reid; David E. Kretschmann; Jason A. Hascall; Dean L. Sicking
2009-01-01
A modified Midwest Guardrail System (MGS) was developed by using small-diameter round wood posts. The barrier system was configured with three timber species: Douglas fir (DF), ponderosa pine (PP), and southern yellow pine (SYP). Barrier VII computer simulation, combined with cantilever post testing in a rigid sleeve and soil, was used to determine the required post...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-31
... reservoir; (2) a proposed eight-foot-high, twenty-two-foot-wide dam; (3) a twenty-inch diameter, 630-foot... water or water power from a government dam; or (4) if applicable, has involved or would involve any... capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l. Locations...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... dam; (3) a proposed 350-foot-long, 18-to-24-inch-diameter above-ground steel penstock, routed along a... government dam; or (4) if applicable, has involved or would involve any construction subsequent to 1935 that... significantly modified the project's pre-1935 design or operation. l. Locations of the Application: Copies of...
A numerical simulation on the flow of watershed filtration reactors using lignocellulosic materials
N. Hur; B. Choi; J.S. Han; E.W. Shin; S. Min; R.M. Rowell
2003-01-01
Pinyon juniper, a small-diameter and underutilized (SDU) lignocellulosic material, was harvested in New Mexico, identified as Juniperus monosperma at the USDA Forest Products Laboratory, chipped, fiberized and chemically modified to remove pollutants from wastewater. This juniper species was selected as a raw material through screening test for removal of pollutants...
Characterization of the interface between cellulosic fibers and a thermoplastic matrix
Feipeng P. Liu; Michael P. Wolcott; Douglas J. Gardner; Timothy G. Rials
1994-01-01
The applicability of the microbond test to evaluate the interfacial properties between cellulosic fibers and thermoplastics was studied. Acetylation and beat treatment were applied to modify the surface of cellulosic fibers (rayon, cotton, and wood). The apparent diameters and surface free energies of the fibers were estimated by dynamic contact angle (DCA) analysis....
Apparatus For Eddy-Current Inspection Of Bolts
NASA Technical Reports Server (NTRS)
Amos, Jay M.
1994-01-01
Eddy-current apparatus for inspection of bolts, studs, and other threaded fasteners detects flaws in threads, shanks, and head fillets. With help of apparatus, technician quickly inspects fasteners of various dimensions. Accommodates fasteners with diameters from 0.190 in. to 1 in. and with lengths up to 5 in. Basic design modified to accommodate fasteners of other sizes.
Geometric analysis of the V-Y advancement flap and its clinical applications.
Andrades, Patricio R; Calderon, Wilfredo; Leniz, Patricio; Bartel, German; Danilla, Stefan; Benitez, Susana
2005-05-01
Geometry is fundamental in the comprehension of local flap design. The purpose of this study was to discuss the differences between the V-Y advancement flap and other local flaps, understand its geometry, and analyze its clinical applications. The analysis was based on qualitative measurements of an injury, taking into consideration the following dimensions: largest diameter, shortest diameter, and depth. Standardization of the flap design consisted of directing its advancement over the shortest diameter and making the V base match the size of the largest diameter. The flap was analyzed in two planes: the horizontal plane includes the V-Y design and the vertical plane includes the flap pedicle. The height of the flap can be obtained by simple trigonometry, taking into consideration the largest diameter and alpha angle in the horizontal plane. In the vertical plane, where the pedicle and pivot plane are positioned, for known shortest diameter and depth, the final depth of the pivot plane can be calculated using Pythagoras' principles. This analysis was applied to 25 patients with adequate skin coverage at follow-up. A correction factor was added to reduce the overdeepening of the vertical plane calculations. The final concepts for clinical application in the classic deep pedicle V-Y flap design are to calculate the length of the V by modifying the alpha angle and to move the pivot plane deeper to accomplish optimal flap movement. Using these principles, tension-free closure of the Y and appropriate advancement of the flap are obtained.
Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A
2008-05-06
The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.
Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB
NASA Astrophysics Data System (ADS)
Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa
2017-02-01
The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.
Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes
Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei
2013-01-01
In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484
Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays
NASA Astrophysics Data System (ADS)
Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.
2013-03-01
Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.
Femoral tunnel enlargement after anatomic ACL reconstruction: a biological problem?
Silva, Alcindo; Sampaio, Ricardo; Pinto, Elisabete
2010-09-01
Tunnel enlargement after anterior cruciate ligament (ACL) reconstruction may compromise revision surgery. The cause of this tunnel enlargement is not yet fully understood, but it is thought to be multifactorial, with biomechanical and biological factors playing a role. Tunnel enlargement has been described particularly in patients who underwent ACL reconstruction with hamstring tendons with extracortical fixation devices. The purpose of our study was to evaluate prospectively with magnetic resonance imaging (MRI) the changes in femoral tunnel diameter following arthroscopic anatomic ACL reconstruction with hamstring tendons. At 3-month post-op, all tunnels had enlarged compared to the diameter of the drill and most tunnels enlarged more in the midsection than at the aperture. In the posterolateral tunnels, the entrance increased 16% in diameter and the middle of the tunnel increased 30% in diameter. In the anteromedial femoral tunnels, the tunnels enlarged 14% at the aperture and 35% in the midsection. All femoral tunnels enlarged and most of them enlarged in a fusiform manner. The biological factors explain better our findings than the mechanical theory, although mechanical factors may play a role and the cortical bone at the entrance of the tunnel may modify the way tunnels respond to mechanical stress.
Atomic diffusion in laser surface modified AISI H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-07-01
This paper presents a laser surface modification process of AISI H13 steel using 0.09 and 0.4 mm of laser spot sizes with an aim to increase surface hardness and investigate elements diffusion in laser modified surface. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, pulse repetition frequency (PRF), and overlap percentage. The hardness properties were tested at 981 mN force. Metallographic study and energy dispersive X-ray spectroscopy (EDXS) were performed to observe presence of elements and their distribution in the sample surface. Maximum hardness achieved in the modified surface was 1017 HV0.1. Change of elements composition in the modified layer region was detected in the laser modified samples. Diffusion possibly occurred for C, Cr, Cu, Ni, and S elements. The potential found for increase in surface hardness represents an important method to sustain tooling life. The EDXS findings signify understanding of processing parameters effect on the modified surface composition.
Biodegradable microfabricated plug-filters for glaucoma drainage devices.
Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak
2012-06-01
We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.
Nobre, T; Nunes, L; Bignell, D E
2009-02-01
Subterranean termites (Reticulitermes grassei) were surveyed over successive seasons in a managed eucalyptus plantation in southeastern Portugal for 26 months. Termite activity in seven diameter categories of lying dead wood was investigated by a modified line intersection method (LIS). Each item sampled was inspected and assessed for termite attack and for general (i.e. fungal) decay status using standard protocols. Line intersection is quantitative to the extent that it can link foraging and decay parameters to woody biovolume. It was found that termites selected items with larger diameter, the observed trend showing an exponential character with greater termite attack as diameter increased. Attack by termites was positively associated with prior decay by fungi. A clear positive relationship was shown between rainfall and total woody biovolume containing live termites, underlining the importance of moisture for termite activity. Subterranean termites appeared to be important wood decomposers in the woodland studied, with an average of 30% of lying dead wood branches showing signs of termite attack.
Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation
NASA Astrophysics Data System (ADS)
Sang, Wong Yean; Ching, Oh Pei
2017-10-01
Mobil Composition of Matter-41 (MCM-41) is recognized as a potential filler to enhance permeability of mixed matrix membrane (MMM). However, the required loading for available micron-sized MCM-41 was considerably high in order to achieve desired separation performance. In this work, reduced-size MCM-41 was synthesized to minimize filler loading, improve surface modification and enhance polymer-filler compatibility during membrane fabrication. The effect of reaction condition, stirring rate and type of post-synthesis washing solution used on particle diameter of resultant MCM-41 were investigated. It was found that MCM-41 produced at room temperature condition yield particles with smaller diameter, higher specific surface area and enhanced mesopore structure. Increase of stirring rate up to 500 rpm during synthesis also reduced the particle diameter. In addition, replacing water with methanol as the post-synthesis washing solution to remove bromide ions from the precipitate was able to further reduce the particle size by inhibiting polycondensation reaction.
Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.
Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan
2014-03-07
Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.
Magneto-plasmonic Au-Coated Co nanoparticles synthesized via hot-injection method
NASA Astrophysics Data System (ADS)
Souza, João B., Jr.; Varanda, Laudemir C.
2018-02-01
A synthetic procedure is described for the obtaining of superparamagnetic Co nanoparticles (NPs) via hot-injection method in the presence of sodium borohydride. The Co NPs obtained have an average diameter of 5.3 nm and saturation magnetization of 115 emu g-1. A modified Langevin equation is fitted to the magnetization curves using a log-normal distribution for the particle diameter and an effective field to account for dipolar interactions. The calculated magnetic diameter of the Co NPs is 0.6 nm smaller than TEM-derived values, implying a magnetic dead layer of 0.3 nm. The magnetic core is coated with Au to prevent oxidation, resulting in water-stable magneto-plasmonic Co/Au core/shell NPs with saturation of 71.6 emu g-1. The coating adds a localized surface plasmon resonance property with absorbance in the so-called ‘therapeutic window’ (690-900 nm), suitable for biomedical applications. It is suggested that these multifunctional NPs are distinguished as a potential platform for applied and fundamental research.
Ablative performance of uncoated silicone-modified and shuttle baseline reinforced carbon composites
NASA Technical Reports Server (NTRS)
Dicus, D. L.; Hopko, R. N.; Brown, R. D.
1976-01-01
The relative ablative performance of uncoated silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline RCC substrates was investigated. The test specimens were 13 plies (5.3 to 5.8 millimeters) thick and had a 25-millimeter-diameter test face. Prior to arc tunnel testing, all specimens were subjected to a heat treatment simulating the RCC coating process. During arc tunnel testing, the specimens were exposed to cold wall heating rates of 178 to 529 kilowatts/sq m and stagnation pressures ranging from 0.015 to 0.046 atmosphere at Mach 4.6 in air, with and without preheating in nitrogen. The results show that the ablative performance of uncoated silicone-modified RCC substrates is significantly superior to that of uncoated shuttle baseline RCC substrates over the range of heating conditions used. These results indicate that the silicone-modified RCC substrate would yield a substantially greater safety margin in the event of complete coating loss on the shuttle orbiter.
Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.
Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali
2017-11-01
The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adherence of oral streptococci to nanostructured titanium surfaces.
Narendrakumar, Krunal; Kulkarni, Mukta; Addison, Owen; Mazare, Anca; Junkar, Ita; Schmuki, Patrik; Sammons, Rachel; Iglič, Aleš
2015-12-01
Peri-implantitis and peri-mucositis pose a severe threat to the success of dental implants. Current research focuses on the development of surfaces that inhibit biofilm formation while not inferring with tissue integration. This study compared the adherence of two oral bacterial species, Streptococcus sanguinis and Streptococcus mutans to nanostructured titanium surfaces. The samples included TiO2 nanotubes formed by anodization of titanium foil of 100, 50 and 15nm diameter (NT15, NT50, NT100), a nanoporous (15nm pore diameter) surface and compact TiO2 control. Adherent surviving bacteria were enumerated after 1h in an artificial saliva medium containing bovine mucin. Lowest numbers of adherent bacteria of both species were recovered from the original titanium foil and nanoporous surface and highest numbers from the Ti100 nanotubes. Numbers of attached S. sanguinis increased in the order (NT15
Ligand-modified metal clusters for gas separation and purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron
2017-02-21
Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
... dam; (3) a proposed 18-inch-diameter, 535-foot-long PVC penstock; (4) an existing 22-foot-long, 22... water or water power from a government dam; or (4) if applicable, has involved or would involve any... capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l. Locations...
Potential for a small, tracked vehicle in small tree management activities
Jeff Halbrook; Harry Lee
2002-01-01
Small diameter timber offers unique challenges for resource managers. Soil disturbance, residual stand damage, and high equipment capital are often associated with using large logging equipment to extract this timber. In an ongoing project at the University of Idaho, an All Season Vehicle (ASV) RC 30 has been modified for use as a low impact skidding device. Several...
Tracheobronchial Polyflex stents for the management of benign refractory hypopharyngeal strictures.
Silva, Rui Almeida; Mesquita, Nuno; Nunes, Pedro Pimentel; Cardoso, Elisabete; Pinto, Ricardo Marcos; Dias, Luís Moreira
2012-02-14
To describe a modified technique for placement of a tracheobronchial self-expanding plastic stent (SEPS) in patients with benign refractory hypopharyngeal strictures in order to improve dysphagia and allow stricture remodeling. A case series of four consecutive patients with complex hypopharyngeal strictures after combined therapy for laryngeal cancer, previously submitted to multiple sessions of dilation without lasting improvement, is presented. All patients underwent placement of a small diameter and unflared tracheobronchial SEPS. Main outcome measurements were improvement of dysphagia and avoiding of repeated dilation. The modified introducer system allowed an easy and technically successful deployment of the tracheobronchial Polyflex stent through the stricture. All four patients developed complications related to stent placement. Two patients had stent migration (one proximal and one distal), two patients developed phanryngocutaneous fistulas and all patients with stents in situ for more than 8 wk had hyperplastic tissue growth at the upper end of the stent. Stricture recurrence was observed at 4 wk follow-up after stent removal in all patients. Although technically feasible, placement of a tracheobronchial SEPS is associated with a high risk of complications. Small diameter stents must be kept in place for longer than 3 mo to allow adequate time for stricture remodeling.
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1994-01-01
The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampden Kuhns; Eladio M. Knipping; Jeffrey M. Vukovich,
2005-05-01
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study investigated the sources of haze at Big Bend National Park in southwest Texas. The modeling domain includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) {lt}10 {mu}m in aerodynamic diameter, and PM {lt}2.5 {mu}m in aerodynamic diameter. The SMOKE modeling system wasmore » used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. 65 refs., 4 figs., 9 tabs.« less
Polarization-induced local pore-wall functionalization for biosensing: from micropore to nanopore.
Liu, Jie; Pham, Pascale; Haguet, Vincent; Sauter-Starace, Fabien; Leroy, Loïc; Roget, André; Descamps, Emeline; Bouchet, Aurélie; Buhot, Arnaud; Mailley, Pascal; Livache, Thierry
2012-04-03
The use of biological-probe-modified solid-state pores in biosensing is currently hindered by difficulties in pore-wall functionalization. The surface to be functionalized is small and difficult to target and is usually chemically similar to the bulk membrane. Herein, we demonstrate the contactless electrofunctionalization (CLEF) approach and its mechanism. This technique enables the one-step local functionalization of the single pore wall fabricated in a silica-covered silicon membrane. CLEF is induced by polarization of the pore membrane in an electric field and requires a sandwich-like composition and a conducting or semiconducting core for the pore membrane. The defects in the silica layer of the micropore wall enable the creation of an electric pathway through the silica layer, which allows electrochemical reactions to take place locally on the pore wall. The pore diameter is not a limiting factor for local wall modification using CLEF. Nanopores with a diameter of 200 nm fabricated in a silicon membrane and covered with native silica layer have been successfully functionalized with this method, and localized pore-wall modification was obtained. Furthermore, through proof-of-concept experiments using ODN-modified nanopores, we show that functionalized nanopores are suitable for translocation-based biosensing.
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro
2018-02-05
Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Fabrication of multifilamentary Nb/sub 3/(Al,Ge) wires through a modified jelly roll process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachikawa, K.; Kamisada, Y.; Suzuki, E.
Recently, development of Nb/sub 3/Al multifilamentary wires has gained much interests since high-field performance superior to that of Nb/sub 3/Sn can be expected in these wires. In this study, Nb/Al-Ge alloy composites were fabricated into multifilamentary wires through a modified jelly roll (MJR) process. A Nb mesh sheet produced at the Teledyne Wah Chang Co. was used as Nb component. An Al-Ge alloy prepared by a conventional casting process was forged and rolled into a sheet of 0.2 mm in thickness. The Nb/Al-Ge composite was prepared by wrapping the Nb mesh sheet together with the Al-Ge alloy sheet around amore » Nb core into a jelly roll form. The MJR composite was encased in a Cu-Ni alloy tube of which outer diameter was 43 mm. The resulting composite was hydrostatically pressed and extruded into a rod of 18 mm in diameter. A Nb barrier was then inserted between the MJR and the Cu-Ni jacket. The composite rod was swaged and drawn into a wire without any intermediate annealing. The wire was able to be drawn down to a very small diameter of 0.1 mm. The cross-sectional configuration of the MJR composite was not much disturbed by the fabrication. Superconducting transition temperature Tc of the wire, after different heat treatment including a rapid quenching from high temperatures by a continuous electron beam irradiation, was studied, and an onset Tc of 19.3K has been achieved.« less
NASA Astrophysics Data System (ADS)
Zhao, Yixin; Xue, Shanbin; Han, Songbai; Chen, Zhongwei; Liu, Shimin; Elsworth, Derek; He, Linfeng; Cai, Jianchao; Liu, Yuntao; Chen, Dongfeng
2017-07-01
Capillary imbibition in variably saturated porous media is important in defining displacement processes and transport in the vadose zone and in low-permeability barriers and reservoirs. Nonintrusive imaging in real time offers the potential to examine critical impacts of heterogeneity and surface properties on imbibition dynamics. Neutron radiography is applied as a powerful imaging tool to observe temporal changes in the spatial distribution of water in porous materials. We analyze water imbibition in both homogeneous and heterogeneous low-permeability sandstones. Dynamic observations of the advance of the imbibition front with time are compared with characterizations of microstructure (via high-resolution X-ray computed tomography (CT)), pore size distribution (Mercury Intrusion Porosimetry), and permeability of the contrasting samples. We use an automated method to detect the progress of wetting front with time and link this to square-root-of-time progress. These data are used to estimate the effect of microstructure on water sorptivity from a modified Lucas-Washburn equation. Moreover, a model is established to calculate the maximum capillary diameter by modifying the Hagen-Poiseuille and Young-Laplace equations based on fractal theory. Comparing the calculated maximum capillary diameter with the maximum pore diameter (from high-resolution CT) shows congruence between the two independent methods for the homogeneous silty sandstone but less effectively for the heterogeneous sandstone. Finally, we use these data to link observed response with the physical characteristics of the contrasting media—homogeneous versus heterogeneous—and to demonstrate the sensitivity of sorptivity expressly to tortuosity rather than porosity in low-permeability sandstones.
On the calculation of turbulent heat transport downstream from an abrupt pipe expansion
NASA Technical Reports Server (NTRS)
Chieng, C. C.; Launder, B. E.
1980-01-01
A numerical study of flow and heat transfer in the separated flow region produced by an abrupt pipe explosion is reported, with emphasis on the region in the immediate vicinity of the wall where turbulent transport gives way to molecular conduction and diffusion. The analysis is based on a modified TEACH-2E program with the standard k-epsilon model of turbulence. Predictions of the experimental data of Zemanick and Dougall (1970) for a diameter ratio of 0.54 show generally encouraging agreement with experiment. At a diameter ratio of 0.43 different trends are discernable between measurement and calculation, though this appears to be due to effects unconnected with the wall region studied here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quantock,A.; Boote, C.; Young, R.
In the cornea of the eye light transmission is facilitated by the regular arrangement and uniform diameter of collagen fibrils that constitute the bulk of the extracellular corneal matrix. Matrix architecture, in turn, is believed to be governed by interactions between collagen fibrils and proteoglycan molecules modified with sulfated glycosaminoglycan side chains. Here, we outline the contribution made by small-angle X-ray scattering studies of the cornea in understanding the role of sulfated glycosaminoglycans in the control of collagen architecture in cornea, and present new depth-profiled microbeam data from swollen human eye-bank corneas that indicate no significant change in collagen fibrilmore » diameter throughout the tissue, but a lower collagen interfibrillar spacing in the anterior-most stromal regions compared with the ultrastructure of the deeper cornea.« less
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
Theoretical and experimental power from large horizontal-axis wind turbines
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Janetzke, D. C.
1982-01-01
A method for calculating the output power from large horizontal-axis wind turbines is presented. Modifications to the airfoil characteristics and the momentum portion of classical blade element-momentum theory are given that improve correlation with measured data. Improvement is particularly evident at low tip-speed ratios where aerodynamic stall can occur as the blade experiences high angles of attack. Output power calculated using the modified theory is compared with measured data for several large wind turbines. These wind turbines range in size from the DOE/NASA 100 kW Mod-0 (38 m rotor diameter) to the 2000 kW Mod-1 (61 m rotor diameter). The calculated results are in good agreement with measured data from these machines.
Removing the tree-ring width biological trend using expected basal area increment
Franco Biondi; Fares Qeadan
2008-01-01
One of the main elements of dendrochronological standardization is the removal of the biological trend, i.e., the progressive decline of ring width along a cross-sectional radius that is mostly caused by the corresponding increase in stem diameter over time. A very common option for removing this biological trend is to fit a modified negative exponential curve to the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, E.; Limon, P. J.; Yamada, R.
Fermilab is developing 11 T superconducting dipole magnets for future accelerators based on Nb/sub 3/Sn conductors. Multifilamentary Nb/sub 3/Sn strands 1 mm in diameter produced with the modified jelly roll and powder-in-tube technologies were purchased from OST and SMI respectively. They are herein fully characterized by I/sub c/, n-value, residual resistivity ratio, and magnetization. Results of heat treatment optimization studies are also presented for the OST strand.
The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity.
Wang, Qiongyu; Tu, Fangfang; Liu, Yunfei; Zhang, Yujin; Li, Helei; Kang, Zhao; Yin, Yin; Wang, Jiannan
2017-06-01
Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material. Hir-modified films showed good cytocompatibility, and supported adhesion and proliferation of fibroblasts (L929), human umbilical vascular endothelial cells (HUVECs) and human aortic smooth muscle cells (HASMCs). Proliferation of HAVSMCs was inhibited by increasing Hir concentration. Activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT) of Hir-modified silk fibroin tubular scaffolds (SFTSs) were all increased markedly compared with fresh rabbit blood, ethanol-treated SFTS and unmodified SFTS, demonstrating the improved antithrombogenicity of SFTSs following modification with Hir. Copyright © 2017 Elsevier B.V. All rights reserved.
Process for derivatizing carbon nanotubes with diazonium species and compositions thereof
NASA Technical Reports Server (NTRS)
Bahr, Jeffrey L. (Inventor); Tour, James M. (Inventor); Yang, Jiping (Inventor)
2011-01-01
Methods for the chemical modification of carbon nanotubes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications, and sensor devices. The methods of derivatization include electrochemical induced reactions, thermally induced reactions, and photochemically induced reactions. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes.
NASA Astrophysics Data System (ADS)
Nagai, Keiji; Yang, H.; Norimatsu, T.; Azechi, H.; Belkada, F.; Fujimoto, Y.; Fujimura, T.; Fujioka, K.; Fujioka, S.; Homma, H.; Ito, F.; Iwamoto, A.; Jitsuno, T.; Kaneyasu, Y.; Nakai, M.; Nemoto, N.; Saika, H.; Shimoyama, T.; Suzuki, Y.; Yamanaka, K.; Mima, K.
2009-09-01
The development of target fabrication for the Fast Ignition Realization EXperiment (FIREX) Project is described in this paper. For the first stage of the FIREX Project (FIREX-I), the previously designed target has been modified by using a bromine-doped ablator and coating the inner gold cone with a low-density material. A high-quality bromine-doped capsule without vacuoles was fabricated from bromine-doped deuterated polystyrene. The gold surface was coated with a low-density material by electrochemical plating. For the cryogenic fuel target, a brand new type of aerogel material, phloroglucinol/formaldehyde (PF), was investigated and encapsulated to meet the specifications of 500 µm diameter and 20 µm thickness, with 30 nm nanopores. Polystyrene-based low-density materials were investigated and the relationship between the crosslinker content and the nanopore structure was observed.
Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.
Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko
2010-12-15
TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.
Polyacrylonitrile Nanofiber-Based Quartz Crystal Microbalance for Sensitive Detection of Safrole
Julian, Trisna; Hidayat, Shidiq Nur; Suyono, Eko Agus
2018-01-01
Safrole is the main precursor for producing the amphetamine-type stimulant (ATS) drug, N-methyl-3,4-methylenedioxyamphetamine (MDMA), also known as ecstasy. We devise a polyacrylonitrile (PAN) nanofiber-based quartz crystal microbalance (QCM) for detecting safrole. The PAN nanofibers were fabricated by direct electrospinning to modify the QCM chips. The PAN nanofiber on the QCM chips has a diameter of 240 ± 10 nm. The sensing of safrole by QCM modified with PAN nanofiber shows good reversibility and an apparent sensitivity of 4.6 Hz·L/mg. The proposed method is simple, inexpensive, and convenient for detecting safrole, and can be an alternative to conventional instrumental analytical methods for general volatile compounds. PMID:29642565
Aggregation and fusion of modified low density lipoprotein.
Pentikäinen, M O; Lehtonen, E M; Kovanen, P T
1996-12-01
In atherogenesis, low density lipoprotein (LDL, diameter 22 nm) accumulates in the extracellular space of the arterial intima in the form of aggregates of lipid droplets (droplet diameter up to 400 nm). Here we studied the effects of various established in vitro LDL modifications on LDL aggregation and fusion. LDL was subjected to vortexing, oxidation by copper ions, proteolysis by alpha-chymotrypsin, lipolysis by sphingomyelinase, and nonenzymatic glycosylation, and was induced to form adducts with malondialdehyde or complexes with anti-apoB-100 antibodies. To assess the amount of enlarged LDL-derived structures formed (due to aggregation or fusion), we measured the turbidity of solutions containing modified LDL, and quantified the proportion of modified LDL that 1) sedimented at low-speed centrifugation (14,000 g), 2) floated at an increased rate at high-speed centrifugation (rate zonal flotation at 285,000 gmax), 3) were excluded in size-exclusion column chromatography (exclusion limit 40 MDa), or 4) failed to enter into 0.5%. Fast Lane agarose gel during electrophoresis. To detect whether particle fusion had contributed to the formation of the enlarged LDL-derived structures, particle morphology was examined using negative staining and thin-section transmission electron microscopy. We found that 1) aggregation was induced by the formation of LDL-antibody complexes, malondialdehyde treatment, and glycosylation of LDL; 2) fusion of LDL was induced by proteolysis of LDL by alpha-chymotrypsin; and 3) aggregation and fusion of LDL were induced by vortexing, oxidation by copper ions, and lipolysis by sphingomyclinase of LDL. The various modifications of LDL differed in their ability to induce aggregation and fusion.
Performance of Hot Mix Asphalt Mixture Incorporating Kenaf Fibre
NASA Astrophysics Data System (ADS)
Hainin, M. R.; Idham, M. K.; Yaro, N. S. A.; Hussein, S. O. A. E.; Warid, M. N. M.; Mohamed, A.; Naqibah, S. N.; Ramadhansyah, P. J.
2018-04-01
Kenaf fibre has been recognised to increase the strength of concrete, but its application in asphalt concrete is still unanswered. This research investigated the performance of Hot Mix Asphalt (HMA) incorporated with different percentages of kenaf fibre (0.1 %, 0.2% and 0.3% by weight of dry aggregate) in term of resilient modulus, rutting performance using Asphalt Pavement analyser (APA) and moisture damage using the Modified Lottman test (AASHTO-T283). The fibre was interweaved to a diameter of about 5-10 mm and length of 30 mm which is three times the nominal maximum aggregate size used in the mix. Asphaltic mixtures of asphalt concrete (AC) 10 were prepared and compacted using Marshall compactor which were subsequently tested to evaluate the resilient modulus and moisture susceptibility. Twelve cylindrical specimens (150mm diameter) from AC10, two control samples with two modified ones for each percentage of kenaf fibres compacted using Gyratory compactor were used for rutting test using APA. The laboratory results reveal that the addition of kenaf fibres slightly reduce the resilient modulus of the mixes and that asphaltic mix with 0.3% kenaf fibre can mitigate both rutting and moisture damage which makes the pavement more sustain to the loads applied even in the presence of water. 0.3% kenaf fibre content is considered to be the optimal content which had the least rut depth and the highest TSR of 81.07%. Based on grid analysis, addition of 0.3% kenaf fibre in asphaltic concrete was recommended in modifying the samples.
Modification and investigation of silica particles as a foam stabilizer
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhou, Hua-lei; Song, Ying-xiao; Chang, Zhi-dong; Li, Wen-jun
2017-02-01
As a solid foam stabilizer, spherical silica particles with diameters ranging from 150 to 190 nm were prepared via an improved Stöber method and were subsequently modified using three different silane coupling agents to attain the optimum surface hydrophobicity of the particles. Fourier transform infrared (FTIR) spectra and the measured contact angles were used to characterize the surface properties of the prepared particles. The foam stability was investigated by the foam drainage half-life and the expansion viscoelastic modulus of the liquid film. The results demonstrate that all of the modified silica nanoparticles effectively improve the foam stability. The surface hydrophobicity of the modified particles is found to be a key factor influencing the foam stability. The optimum contact angle of the particles lies in the approximate range from 50° to 55°. The modifier molecular structure used can also influence the stabilizing foam property of the solid particles. The foam system stabilized by (CH3)2SiCl2-modified silica particles exhibits the highest stability; its drainage half-life at maximum increases by 27% compared to that of the blank foam system and is substantially greater than those of the foam systems stabilized by KH570- and KH550-modified particles.
Internal erosion rates of a 10-kW xenon ion thruster
NASA Technical Reports Server (NTRS)
Rawlin, Vincent K.
1988-01-01
A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.
Campanelli, Leonardo C; Oliveira, Nilson T C; da Silva, Paulo Sergio C P; Bolfarini, Claudemiro; Palmieri, Annalisa; Cura, Francesca; Carinci, Francesco; Motheo, Artur J
2018-03-04
The objective of this work was a systemic evaluation of the anodizing treatment in a β-type Ti-15Mo alloy to grow a TiO 2 nanostructured layer for osseointegration improvement. The technical viability of the surface modification was assessed based on the resistance to mechanical fatigue, electrochemical corrosion, and biological response. By using an organic solution of NH 4 F in ethylene glycol, a well-organized array of 90 nm diameter nanotubes was obtained with a potential of 40 V for 6 h, while undefined nanotubes of 25 nm diameter were formed with a potential of 20 V for 1 h. Nevertheless, the production of the 90 nm diameter nanotubes was followed by micrometer pits that significantly reduced the fatigue performance. The undefined nanotubes of 25 nm diameter, besides the greater cell viability and improved osteoblastic cell differentiation in comparison to the as-polished surface, were not deleterious to the fatigue and corrosion properties. This result strengthens the necessity of an overall evaluation of the anodizing treatment, particularly the fatigue resistance, before suggesting it for the design of implants. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.
Accommodating Thickness in Origami-Based Deployable Arrays
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.
2013-01-01
The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).
Mouney, Meredith C; Townsend, Wendy M; Moore, George E
2012-12-01
To determine whether differences exist in the calculated intraocular lens (IOL) strengths of a population of adult horses and to assess the association between calculated IOL strength and horse height, body weight, and age, and between calculated IOL strength and corneal diameter. 28 clinically normal adult horses (56 eyes). Axial globe lengths and anterior chamber depths were measured ultrasonographically. Corneal curvatures were determined with a modified photokeratometer and brightness-mode ultrasonographic images. Data were used in the Binkhorst equation to calculate the predicted IOL strength for each eye. The calculated IOL strengths were compared with a repeated-measures ANOVA. Corneal curvature values (photokeratometer vs brightness-mode ultrasonographic images) were compared with a paired t test. Coefficients of determination were used to measure associations. Calculated IOL strengths (range, 15.4 to 30.1 diopters) differed significantly among horses. There was a significant difference in the corneal curvatures as determined via the 2 methods. Weak associations were found between calculated IOL strength and horse height and between calculated IOL strength and vertical corneal diameter. Calculated IOL strength differed significantly among horses. Because only weak associations were detected between calculated IOL strength and horse height and vertical corneal diameter, these factors would not serve as reliable indicators for selection of the IOL strength for a specific horse.
Modified Hodge test: A simple and effective test for detection of carbapenemase production.
Amjad, A; Mirza, Ia; Abbasi, Sa; Farwa, U; Malik, N; Zia, F
2011-12-01
Resistance among bacterial isolates is the leading cause of increased mortality and morbidity worldwide. Carbapenems once thought to be effective are becoming ineffective mostly due to the emergence of carbapenemase. This study was designed to determine in vitro efficacy of Modified Hodge test for detection of carbapenemase production in Gram negative rods. The study was done in the Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi Pakistan from January 2010 to December 2010. A total of 200 Gram negative rods from different clinical samples were taken. Those isolates which showed intermediate or susceptible zones i.e 16mm-21mm on disc diffusion were included in the study. These isolates were then subjected to Modified Hodge test. Out of 200 isolates, 138 (69%) were positive for carbapenemase production by Modified Hodge test. Out of 138 MHT positive organisms, the frequency of E. coli was 38%, followed by Pseudomonas aeruginosa (30%), Klebsiella pneumoniae (17%), Acinetobacter baumannii (12%), Citrobacter diversus (2%) and Enterobacter agglomerans (1.4%). Modified Hodge test is a simple test which can be performed in the routine lab for detection of carbapenemases in isolates showing intermediate or sensitive zone diameter on disc diffusion.
NASA Astrophysics Data System (ADS)
Patdhanagul, Nopbhasinthu; Chanpaka, Saiphon; Intharaksa, Orapan; Sirival, Rujikarn; Thanomsith, Kannikar; Wongkwanklom, Sarayuth
2018-04-01
The carbaryl adsorption-desorption isotherms of zeolite NaY and hexadecyl trimethyl ammonium bromide (HTAB) modified zeolite NaY were investigated. Zeolite NaY was synthesized and modified by HTAB in the concentration range 0.1 - 10.0 mM. The adsorption isotherms indicated that zeolite modified with HTAB could significantly enhance the carbaryl adsorption capacity. Zeolite NaY modified with 5.0 mM HTAB gave great carbaryl adsorption because of hydrophilic surface. The 5.0 mM HTAB could adsorb up to 145.75 ppm g-1 of carbaryl which was equivalent to a 36.7% increase. The Surface area characterization showed the remaining of pore volume and pore size diameter and external surface area whereas the BET surface area and micropore surface area of modified zeolite slightly decreased. The XRD results indicate that modification of zeolite NaY with HTAB does not change the crystallinity of the starting zeolite. The elemental analysis indicated that the Si/Al ratio of synthesized zeolite NaY was close to 2.43. Desorption of carbaryl was tested by organic solvents such as methanol, ethanol, tetrahydrofuran, hexane and Deionized water. The results demonstrated that the percentage desorption of methanol is the highest. Carbaryl was quantitatively desorbed with percentage desorption of 82-100 %. It indicated sorption mechanism of carbaryl on the modified sorbent which was principally driven by hydrophobic forces.
Hydraulic and mechanical behavior of landfill clay liner containing SSA in contact with leachate.
Zhang, Qian; Lu, Haijun; Liu, Junzhu; Wang, Weiwei; Zhang, Xiong
2018-05-01
Sewage sludge ash (SSA) produced by municipal sludge can be used as a modified additive for clay liner, and improves the working performance of landfill clay liner in contact with leachate. Under the action of landfill leachate, the permeability, shear strength, phase composition, and pore structure of the modified clay are investigated through the flexible wall permeability test, triaxial shear test, thermal gravimetric and differential thermal analysis, and low-temperature nitrogen adsorption test, respectively. The hydraulic conductivity of the modified clay containing 0-5% SSA is in the range of 3.94 × 10 -8 -1.16 × 10 -7 cm/s, and the pollutant concentration of the sample without SSA was higher than others. The shear strength of the modified clay is more than that of the traditional clay liner, the cohesion rate of modified clay increases from 32.5 to 199.91 kPa, and the internal friction angle decreases from 32.5° to 15.6°. Furthermore, the weight loss rates of the samples are 15.69%, 17.92%, 18.06%, and 20.68%, respectively, when the SSA content increases from 0% to 5%. The total pore volume and average pore diameter of the modified clay decrease with the increase in the SSA content, respectively. However, the specific area of the modified clay increases with the increase in the SSA content.
Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru
2014-01-22
It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.
Grande, Nicola M; Plotino, Gianluca; Ioppolo, Pietro; Bedini, Rossella; Pameijer, Cornelis H; Somma, Francesco
2009-05-01
To evaluate whether custom modification resulting in an anatomically shaped post and whether the span/diameter ratio (L/D) would affect the mechanical properties of fiber-reinforced composite posts. Preformed glass-fiber posts (Group 1) and modified glass-fiber posts (Group 2) and glass-fiber rods (Groups 3 and 4) (n=20) were loaded to failure in a three-point bending test to determine the maximum load (N), flexural strength (MPa) and flexural modulus (GPa). The span distance tested for Group 3 was 10.0mm, while for Group 4 was 22.0mm. Data were subjected to different statistical analysis with significance levels of P<0.05. The maximum load recorded for Groups 1 and 2 was 72.5+/-5.9N and 73.4+/-6.4N respectively, while for Groups 3 and 4 was 215.3+/-7N and 156.6+/-3.6N respectively. The flexural strength for Groups 1 and 2 was 914.6+/-53.1MPa and 1069.2+/-115.6MPa, while for Groups 3 and 4 was 685.4+/-22.2MPa and 899.6+/-46.1MPa. The flexural modulus recorded for Groups 1 and 2 was 32.6+/-3.2GPa and 33.4+/-2.2GPa respectively, while for Groups 3 and 4 was 13.7+/-0.3GPa and 34.4+/-0.3GPa respectively. The flexural properties of an anatomically custom modified fiber post were not affected by the modification procedure and the span-diameter ratio is an important parameter for the interpretation of flexural strength and flexural modulus values.
Lattice Boltzmann Simulation of Blood Flow in Blood Vessels with the Rolling Massage
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Xu, Shi-Xiong; Qian, Yue-Hong; Fang, Hai-Ping
2005-12-01
The rolling massage manipulation is a classic Chinese massage, which is expected to improve the circulation by pushing, pulling and kneading of the muscle. A model for the rolling massage manipulation is proposed and the lattice Boltzmann method is applied to study the blood flow in the blood vessels. The simulation results show that the blood flux is considerably modified by the rolling massage and the explicit value depends on the rolling frequency, the rolling depth, and the diameter of the vessel. The smaller the diameter of the blood vessel, the larger the enhancement of the blood flux by the rolling massage. The model, together with the simulation results, is expected to be helpful to understand the mechanism and further development of rolling massage techniques.
Paramecium swimming in capillary tube
NASA Astrophysics Data System (ADS)
Jana, Saikat; Um, Soong Ho; Jung, Sunghwan
2012-04-01
Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.
Aspects relating to stability of modified passive stratum on TiO2 nanostructure
NASA Astrophysics Data System (ADS)
Ionita, Daniela; Mazare, Anca; Portan, Diana; Demetrescu, Ioana
2011-04-01
Two kinds of nanotube structures differing from the point of view of their dimensions were obtained using anodizing in two different fluoride electrolytes and these structures were investigated regarding stability. The nanotubes have diameters of around 100 and 65 nm, respectively, and the testing solutions were simulated body fluids (SBF) and NaCl 0.9%. As stability experiments, cyclic voltammetry was performed and ions release was measured. The quantity of released cations in time as a kinetic aspect of passive stratum behavior was followed with an inductively coupled plasma mass spectrometer (ICP-MS) and apatite forming in SBF was found with infrared spectra. This study led to a comparison between the modification and the behavior of passive stratum on nanotubes as a function of their diameters.
Synthesis of nano grade hollow silica sphere via a soft template method.
Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu
2008-06-01
The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.
Aperture averaging in strong oceanic turbulence
NASA Astrophysics Data System (ADS)
Gökçe, Muhsin Caner; Baykal, Yahya
2018-04-01
Receiver aperture averaging technique is employed in underwater wireless optical communication (UWOC) systems to mitigate the effects of oceanic turbulence, thus to improve the system performance. The irradiance flux variance is a measure of the intensity fluctuations on a lens of the receiver aperture. Using the modified Rytov theory which uses the small-scale and large-scale spatial filters, and our previously presented expression that shows the atmospheric structure constant in terms of oceanic turbulence parameters, we evaluate the irradiance flux variance and the aperture averaging factor of a spherical wave in strong oceanic turbulence. Irradiance flux variance variations are examined versus the oceanic turbulence parameters and the receiver aperture diameter are examined in strong oceanic turbulence. Also, the effect of the receiver aperture diameter on the aperture averaging factor is presented in strong oceanic turbulence.
Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.
Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan
2016-11-01
The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Navarrette, Chelsea R; Sisson, Joseph H; Nance, Elizabeth; Allen-Gipson, Diane; Hanes, Justin; Wyatt, Todd A
2012-06-01
The lung's ability to trap and clear foreign particles via the mucociliary elevator is an important mechanism for protecting the lung against respirable irritants and microorganisms. Although cigarette smoke (CS) exposure and particulate inhalation are known to alter mucociliary clearance, little is known about how CS and nanoparticles (NPs) modify cilia beating at the cytoskeletal infrastructure, or axonemal, level. We used a cell-free model to introduce cigarette smoke extract (CSE) and NPs with variant size and surface chemistry to isolated axonemes and measured changes in ciliary motility. We hypothesized that CSE would alter cilia beating and that alterations in ciliary beat frequency (CBF) due to particulate matter would be size- and surface chemistry-dependent. Demembranated axonemes were isolated from ciliated bovine tracheas and exposed to adenosine triphosphate (ATP) to initiate motility. CBF was measured in response to 5% CSE, CSE filtrate, and carboxyl-modified (COOH), sulphate (SO(4))-modified (sulfonated), or PEG-coated polystyrene (PS) latex NPs ranging in size from 40 nm to 500 nm. CSE concentrations as low as 5% resulted in rapid, significant stimulation of CBF (p<0.05 vs. baseline control). Filtering CSE through a 0.2-μm filter attenuated this effect. Introduction of sulphate-modified PS beads ~300 nm in diameter resulted in a similar increase in CBF above baseline ATP levels. Uncharged, PEG-coated beads had no effect on CBF regardless of size. Similarly, COOH-coated particles less than 200 nm in diameter did not alter ciliary motility. However, COOH-coated PS particles larger than 300 nm increased CBF significantly and increased the number of motile points. These data show that NPs, including those found in CSE, mechanically stimulate axonemes in a size- and surface chemistry-dependent manner. Alterations in ciliary motility due to physicochemical properties of NPs may be important for inhalational lung injury and efficient drug delivery of respirable particles.
Safari, Sina; Hosseini Ghavam, Fereshteh; Amini, Parviz; Yaghmaei, Kaveh
2018-02-01
The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly ( P =.006). The difference in retention between the cemented and recemented copings was not statistically significant ( P =.40). Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement.
Modesti, Marina; Pasqualitto, Giacomo; Appolloni, Rossella; Pecorella, Irene; Sourdille, Philippe
2011-10-01
To evaluate capsular bag size and accommodative movement before and after cataract surgery using ultrasound biomicroscopy (UBM) and anterior segment optical coherence tomography (AS-OCT). Ophthalmology Unit, Fabia Mater Clinic, Rome, Italy. Cohort study. Eyes having cataract surgery and monofocal intraocular lens (IOL) implantation were studied using UBM. The following parameters were measured preoperatively and 1, 2, and 12 months postoperatively: anterior chamber depth (ACD) (also by AS-OCT), capsular bag thickness, capsular bag diameter, ciliary ring diameter, sulcus-to-sulcus (STS) diameter, ciliary process-capsular bag distance, ciliary apex-capsular bag plane, and IOL tilting. The preoperative and postoperative capsular bag volumes were calculated at 12 months. The results were compared with the changes during accommodation. The study comprised 24 eyes. With the exception of the ciliary apex-capsular bag plane, which appeared to be unmodified postoperatively, all measured parameters showed significant variation after IOL implantation. Only the ACD did not change significantly during accommodation. After cataract surgery, the capsular bag stretched horizontally and with reduced vertical diameter as a result of adaptation to the implanted IOL. The capsular bag-IOL complex filled all available space, compressing the zonular fibers and almost abolishing the space between the ciliary apex and the capsular bag. There was anterior chamber deepening and a decrease in the ciliary ring diameter and STS diameter. In the absence of zonular fiber tension, the shape of the ciliary processes may be modified. No author has a financial or proprietary interest in any material or method mentioned. Additional disclosures are found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Optimal fractal tree-like microchannel networks with slip for laminar-flow-modified Murray's law.
Jing, Dalei; Song, Shiyu; Pan, Yunlu; Wang, Xiaoming
2018-01-01
The fractal tree-like branched network is an effective channel design structure to reduce the hydraulic resistance as compared with the conventional parallel channel network. In order for a laminar flow to achieve minimum hydraulic resistance, it is believed that the optimal fractal tree-like channel network obeys the well-accepted Murray's law of β m = N -1/3 (β m is the optimal diameter ratio between the daughter channel and the parent channel and N is the branching number at every level), which is obtained under the assumption of no-slip conditions at the channel wall-liquid interface. However, at the microscale, the no-slip condition is not always reasonable; the slip condition should indeed be considered at some solid-liquid interfaces for the optimal design of the fractal tree-like channel network. The present work reinvestigates Murray's law for laminar flow in a fractal tree-like microchannel network considering slip condition. It is found that the slip increases the complexity of the optimal design of the fractal tree-like microchannel network to achieve the minimum hydraulic resistance. The optimal diameter ratio to achieve minimum hydraulic resistance is not only dependent on the branching number, as stated by Murray's law, but also dependent on the slip length, the level number, the length ratio between the daughter channel and the parent channel, and the diameter of the channel. The optimal diameter ratio decreases with the increasing slip length, the increasing level number and the increasing length ratio between the daughter channel and the parent channel, and decreases with decreasing channel diameter. These complicated relations were found to become relaxed and simplified to Murray's law when the ratio between the slip length and the diameter of the channel is small enough.
Safari, Sina; Amini, Parviz; Yaghmaei, Kaveh
2018-01-01
PURPOSE The aim of this study was to evaluate the effects of abutment diameter, cement type, and re-cementation on the retention of implant-supported CAD/CAM metal copings over short abutments. MATERIALS AND METHODS Sixty abutments with two different diameters, the height of which was reduced to 3 mm, were vertically mounted in acrylic resin blocks with matching implant analogues. The specimens were divided into 2 diameter groups: 4.5 mm and 5.5 mm (n=30). For each abutment a CAD/CAM metal coping was manufactured, with an occlusal loop. Each group was sub-divided into 3 sub-groups (n=10). In each subgroup, a different cement type was used: resin-modified glass-ionomer, resin cement and zinc-oxide-eugenol. After incubation and thermocycling, the removal force was measured using a universal testing machine at a cross-head speed of 0.5 mm/min. In zinc-oxide-eugenol group, after removal of the coping, the cement remnants were completely cleaned and the copings were re-cemented with resin cement and re-tested. Two-way ANOVA, post hoc Tukey tests, and paired t-test were used to analyze data (α=.05). RESULTS The highest pulling force was registered in the resin cement group (414.8 N), followed by the re-cementation group (380.5 N). Increasing the diameter improved the retention significantly (P=.006). The difference in retention between the cemented and recemented copings was not statistically significant (P=.40). CONCLUSION Resin cement provided retention almost twice as strong as that of the RMGI. Increasing the abutment diameter improved retention significantly. Re-cementation with resin cement did not exhibit any difference from the initial cementation with resin cement. PMID:29503708
Volløyhaug, I; Mørkved, S; Salvesen, Ø; Salvesen, K Å
2016-06-01
To study the correlation between palpation, perineometry and transperineal ultrasound for assessment of pelvic floor muscle contraction and to define a contraction scale for ultrasound measurements. This was a cross-sectional study of 608 women examined with palpation of pelvic floor muscle contraction, using the Modified Oxford Scale, and measurement of the vaginal squeeze pressure with a vaginal balloon connected to a fiber-optic microtip transducer (perineometry). Transperineal ultrasound was used for measurements of levator hiatal area and anteroposterior (AP) diameter in the plane of minimal hiatal dimensions, at rest and on contraction. The pelvic floor muscle contraction was expressed as the percentage difference between values at rest and on contraction. Spearman's rank was used to test for correlation between the different methods of assessment. Significant correlations were found between all assessment methods (P < 0.001). Palpation correlated with perineometry (rs = 0.74) and with proportional change in hiatal area (rs = 0.67) and AP diameter (rs = 0.69) on ultrasound. Perineometry correlated with proportional change in hiatal area (rs = 0.60) and AP diameter (rs = 0.66) on ultrasound. We defined a contraction scale based on the proportional change in AP diameter. In this population, a change in AP diameter of < 7% corresponded to absence of contractions, 7-18% corresponded to weak contractions, 18-35% corresponded to normal contractions and > 35% corresponded to strong contractions. We found moderate to strong correlation between ultrasound measurements, palpation and perineometry for assessing pelvic floor muscle contraction. The proportional change in levator hiatal AP diameter was the ultrasound measurement with strongest correlation to palpation and perineometry and formed the basis for the contraction scale for ultrasound measurements. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D
2010-03-01
Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.
Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko
2010-06-15
In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.
Nanomaterials Commercialization Center
2013-02-01
turbine manufacturer). ln the wind energy area , customers clearly stated that the major short-tenn technical need for toughening is in the area of...interactions: • The wind energy composites market for turbine blades is an extremely high growth, high potential opportunity. Potential value ofnano...Wire Takeup System (MTS), with a winding pitch modified to meet the needs of the small diameter wire (- 100J.1m) produced in this reel-to-reelline
Ambiguities in the definition of quasilocal mass
NASA Technical Reports Server (NTRS)
Woodhouse, N. M. J.
1987-01-01
For a small surface in a vacuum spacetime, some components of the kinematic twistor are nonzero at the fifth order in the diameter of the surface even though, according to Penrose's (1986) modified construction, the leading term in the quasi-local mass m(p) is sixth order (or higher). This implies that the leading term in m(p) cannot be defined independently of higher-order terms in the twistor norm.
Lytic resistance of fibrin containing red blood cells
Wohner, Nikolett; Sótonyi, Péter; Machovich, Raymund; Szabó, László; Tenekedjiev, Kiril; Silva, Marta M.C.G.; Longstaff, Colin; Kolev, Krasimir
2012-01-01
Objective Arterial thrombi contain variable amounts of red blood cell (RBC), which interact with fibrinogen through an eptifibatide-sensitive receptor and modify the structure of fibrin. Here we evaluate the modulator role of RBCs in the lytic susceptibility of fibrin. Methods and Results If fibrin is formed at increasing RBC counts, scanning electron microscopy evidenced a decrease in fiber diameter from 150 nm to 96 nm at 40 %(v/v) RBC, an effect susceptible to eptifibatide inhibition (restoring 140 nm diameter). RBC prolonged the lysis time in a homogeneous-phase fibrinolytic assay with tissue plasminogen activator (tPA) by up to 22.7±1.6 %, but not in the presence of eptifibatide. Confocal laser microscopy using green fluorescent protein (GFP)-labeled tPA and orange fluorescent fibrin showed that 20-40 %(v/v) RBC significantly slowed down the dissolution of the clots. tPA-GFP did not accumulate on the surface of fibrin containing RBC at any cell count above 10 %. The presence of RBC in the clot suppressed the tPA-induced plasminogen activation resulting in a 45 % less plasmin generated after 30 min activation at 40 %(v/v) RBC. Conclusion RBCs confer lytic resistance to fibrin resulting from modified fibrin structure and impaired plasminogen activation through a mechanism that involves eptifibatide-sensitive fibrinogen-RBC interactions. PMID:21737785
Zhao, Yu; Wang, Fang; Zhao, Jianing
2015-10-20
Size-resolved deposition rates and Brownian coagulation of particles between 20 and 900 nm (mobility diameter) were estimated in a well-mixed environmental chamber from a gasoline vehicle exhaust with a total peak particle concentration of 10(5)-10(6) particles/cm(3) at 12.24-25.22 °C. A deposition theory with modified friction velocity and coagulation model was also employed to predict particle concentration decay. Initially during particle decay, approximately 85% or more of the particles had diameters of <100 nm. Particle deposition rates with standard deviations were highly dependent on particle size ranges, and varied from 0.012 ± 0.003 to 0.48 ± 0.02 h(-1). In the experiment, the friction velocity obtained was in the range 1.5-2.5 cm/s. The most explainable fractal dimension and Hamaker constant in coagulation model were 2.5-3 and 20 kT, respectively, and the contribution from coagulation dominated the total particle decay during the first 1 h of decay. It is considered that the modified friction velocity and best fitted fractal dimension and Hamaker constants could be further used to analyze gasoline vehicle exhaust particle dynamics and assess human exposure to vehicle particle pollutants in urban areas, tunnels, and underground parking lots.
Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae
2018-09-01
We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Horai, K.-I.
1981-01-01
A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.
Passive bloodstains: from an impact energy to a final dried pattern
NASA Astrophysics Data System (ADS)
Smith, Fiona; Brutin, David
2016-11-01
Tracking down the origin of a blood droplet present on a crime scene has become of major importance in bloodstain pattern analysis. Passive bloodstains are not yet well understood. Accordingly the purpose of this research is to provide new tools to forensic investigators in the analysis of bloodstains arising from blood droplets dripping naturally. The study aims to understand the link between the final dried pattern of a passive bloodstain and its impact energy. Currently no such tool exists, and no correlation has yet been proven. This research was therefore focusing on a new parameter, the thicker outer rim observed on the dried final pattern. To do so, we created several passive bloodstains with different impact energies. A correlation was highlighted between the inner diameter, the maximum spreading diameter, the initial diameter of a blood droplet and its impact energy. This correlation shows how the drying mechanism of a blood droplet is influenced by its impact energy as it alters the red blood cells dispersion inside the droplet. The biological deposit and the final dried pattern are subsequently modified. ANR funded project: D-Blood Project.
Optofluidic tuning of multimode interference fiber filters
NASA Astrophysics Data System (ADS)
Antonio-Lopez, J. E.; May-Arrioja, D. A.; LiKamWa, P.
2009-05-01
We report on the optofluidic tuning of MMI-based bandpass filters. It is well known that MMI devices exhibit their highest sensitivity when their diameter (D) is modified, since they have a D2 wavelength dependence. In order to increase the MMF diameter we use a special fiber, called No-Core fiber, which is basically a MMF with a diameter of 125 μm with air as the cover. Therefore, when this No-Core fiber is immersed in liquids with different refractive indexes, as a result of the Goes-Hänchen shift the effective width (fundamental mode width) of the No-Core fiber is increased, and thus the peak wavelength is tuned. A tunability of almost 40 nm in going from air (n=1.333) to ethylene glycol (n=1.434) was easily obtained, with a minimum change in peak transmission, contrast, and bandwidth. Moreover, since replacing the entire liquid can be difficult, the device was placed vertically and the liquid was covering the No-Core fiber in small steps. This provided similar amount of tuning as before, but a more controllable tuning mechanism.
Automated fibre optic instrumentation for the William Herschel Telescope
NASA Astrophysics Data System (ADS)
Parry, Ian R.; Lewis, Ian J.
1990-07-01
The design and operation of the automated optical-fiber positioning system used for spectroscopic observations at the Cassegrain focus of the 4.2-m William Herschel Telescope (WHT) at Observatorio del Roque de los Muchachos are described. The system is a modified version of the Autofib positioner for the AAT and employs 64 spectroscopic fibers and 8 guide fiber bundles arranged to form a 17-arcmin-diameter field. The fibers are 1-m-long polyimide-coated high-OH silica, with core diameter 260 microns and outer diameter 315 microns, and a 1.2-mm side-length microprism is cemented to the end of each fiber or (7-fiber) guide bundle. The fibers are positioned one at a time by a pick-and-place robot assembly, and a viewing head permitting simultaneous observation of the back-illuminated fiber and the object it is trying to acquire is provided. This prototype Cassegrain-focus system is being studied to aid in the development of a more accurate fiber positioner for use at the prime focus of the WHT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preece, D.S.; Knudsen, S.D.
The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in themore » capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.« less
A method of calibrating wind velocity sensors with a modified gas flow calibrator
NASA Technical Reports Server (NTRS)
Stump, H. P.
1978-01-01
A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.
Modified floating-zone growth of organic single crystals
NASA Astrophysics Data System (ADS)
Kou, S.; Chen, C. P.
1994-04-01
For organic materials floating-zone crystal growth is superior to other melt growth processes in two significant respects: (1) the absence of crucible-induced mechanical damage and (2) minimum heating-induced chemical degradation. Due to the rather low surface tension of organic melts, however, floating-zone crystal growth under normal gravity has not been possible so far but microgravity is ideal for such a purpose. With the help of a modified floating-zone technique, organic single crystals of small cross-sections were test grown first under normal gravity. These small crystals were round and rectangular single crystals of benzil and salol, up to about 7 cm long and 6 mm in diameter or 9 mm × 3 mm in cross-section.
NASA Technical Reports Server (NTRS)
Stickle, George W
1933-01-01
Force measurements giving total thrust and torque, and propeller slip stream surveys giving differential thrust and torque were simultaneously made on each of six full-scale propellers in the 20-foot propeller-research tunnel of the National Advisory Committee for Aeronautics. They were adjustable-pitch metal propellers 9.5 feet in diameter; three had modified Clark Y blade sections and three had modified RAF-6 blade sections. This report gives the differential thrust and torque and the variation caused by changing the propeller tip speed and the pitch setting. The total thrust and torque obtained from integration of the thrust and torque distribution curves are compared with those obtained by direct force measurements.
NASA Astrophysics Data System (ADS)
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-03-01
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h
Safe and efficient pH sensitive tumor targeting modified liposomes with minimal cytotoxicity.
Wang, Lilin; Geng, Di; Su, Haijia
2014-11-01
Incorporating the pH-sensitivity of octylamine grafted poly aspartic acid (PASP) with the biocompatibility of liposomes, a novel pH sensitive drug delivery system, octylamine-graft-PASP (PASP-g-C8) modified liposomes (OPLPs), was obtained. Since hydrophobic chains have been grafted into PASP backbones, the octylamine chain could act as the "anchor" to implant onto liposomes. The structure of PASP-g-C8, involving long-chain and hydrophobic anchors can significantly enhance the stability of the drug carrier. The shortcoming of single PASP chain modified liposomes (PLPs), that cannot sustain a slow and controlled release especially in a physiological pH solution (resembling normal tissues of pH 7.4) is thus overcome. Drug release experiments were carried out and the result showed that OPLPs sustained a slow and steady release in comparison with PLPs in the physiological pH 7.4 environment. However, OPLPs can provide a fast release in subacid environment (pH 5.0 of resembled tumor tissues). The results of diameter analysis and zeta potential demonstrated that OPLPs presented a larger diameter and higher electronegativity. Furthermore, in the "chain-anchor" structure of PASP-g-C8, the degree of substitution (DS) of the "anchor" is a remarkable factor to alter the pH-sensitivity of OPLPs. The in vitro tumor inhibition and cell toxicity studies revealed that tumor cells treated with OPLPs survived only 35.0% after 48 h whereas normal cells survived 100% in the same condition. The pH sensitive OPLPs are promising tumor targeting drug delivery with high tumor inhibition and insignificant cytotoxicity. Copyright © 2014. Published by Elsevier B.V.
Size-Controlled Dissolution of Organic-Coated Silver Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Rui; Levard, Clément; Marinakos, Stella M.
2012-04-02
The solubility of Ag NPs can affect their toxicity and persistence in the environment. We measured the solubility of organic-coated silver nanoparticles (Ag NPs) having particle diameters ranging from 5 to 80 nm that were synthesized using various methods, and with different organic polymer coatings including poly(vinylpyrrolidone) and gum arabic. The size and morphology of Ag NPs were characterized by transmission electron microscopy (TEM). X-ray absorption fine structure (XAFS) spectroscopy and synchrotron-based total X-ray scattering and pair distribution function (PDF) analysis were used to determine the local structure around Ag and evaluate changes in crystal lattice parameters and structure asmore » a function of NP size. Ag NP solubility dispersed in 1 mM NaHCO{sub 3} at pH 8 was found to be well correlated with particle size based on the distribution of measured TEM sizes as predicted by the modified Kelvin equation. Solubility of Ag NPs was not affected by the synthesis method and coating as much as by their size. Based on the modified Kelvin equation, the surface tension of Ag NPs was found to be {approx}1 J/m{sup 2}, which is expected for bulk fcc (face centered cubic) silver. Analysis of XAFS, X-ray scattering, and PDFs confirm that the lattice parameter, {alpha}, of the fcc crystal structure of Ag NPs did not change with particle size for Ag NPs as small as 6 nm, indicating the absence of lattice strain. These results are consistent with the finding that Ag NP solubility can be estimated based on TEM-derived particle size using the modified Kelvin equation for particles in the size range of 5-40 nm in diameter.« less
NASA Astrophysics Data System (ADS)
Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.
2015-01-01
A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.
Liu, Minmin; Hou, Li-an; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng
2013-01-01
In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption–desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption. PMID:24976787
Liu, Minmin; Hou, Li-An; Yu, Shuili; Xi, Beidou; Zhao, Ying; Xia, Xunfeng
2013-05-01
In this paper, the MCM-41 has been modified by impregnation with zeolite A to prepare a kind of new adsorbent. The adsorption of TC from aqueous solutions onto modified MCM-41 has been studied. It was discovered that the adsorption capability of zeolite A modified MCM-41 (A-MCM-41) increased dramatically after modification. The modified MCM-41 was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, Fourier Transform Infrared (FTIR) analysis, Transmission electron microscopy (TEM) images, and 29 Si and 27 Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectra. The modified MCM-41 structure was still retained after impregnated with zeolite A but the surface area and pore diameter decreased due to pore blockage. The adsorption of TC on modified MCM-41 was discussed regarding various parameters such as pH, initial TC concentration, and the reaction time. The pH effects on TC adsorption indicated that the adsorbents had better adsorption performances in acidic and neutral conditions. The adsorption isotherms were fitted well by the Langmuir model. The adsorption kinetics was well described by both pseudo-second order equation and the intra-particle diffusion model. The adsorption behavior in a fixed-bed column system followed Thomas model. The adsorption behavior of TC was the chemical adsorption with an ion exchange process and electrostatic adsorption.
Alcohol sensor based on u-bent hetero-structured fiber optic
NASA Astrophysics Data System (ADS)
Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo
2016-11-01
A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.
Mohammad Al Alfy, Ibrahim
2018-01-01
A set of three pads was constructed from primary materials (sand, gravel and cement) to calibrate the gamma-gamma density tool. A simple equation was devised to convert the qualitative cps values to quantitative g/cc values. The neutron-neutron porosity tool measures the qualitative cps porosity values. A direct equation was derived to calculate the porosity percentage from the cps porosity values. Cement-bond log illustrates the cement quantities, which surround well pipes. This log needs a difficult process due to the existence of various parameters, such as: drilling well diameter as well as internal diameter, thickness and type of well pipes. An equation was invented to calculate the cement percentage at standard conditions. This equation can be modified according to varying conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam
2015-12-01
Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.
Boyanova, Lyudmila; Ilieva, Juliana; Gergova, Galina; Mitov, Ivan
2016-01-01
We compared levofloxacin (1 μg/disk) disk diffusion method to E test against 212 Helicobacter pylori strains. Using diameter breakpoints for susceptibility (≥15 mm) and resistance (≤9 mm), very major error, major error rate, and categoric agreement were 0.0%, 0.6%, and 93.9%, respectively. The method may be useful in low-resource laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.
Heat Treatment Investigation of 4330 Vanadium-Modified Steel
1989-08-01
the desired properties, using the results from the tensile and subsized Charpy impact tests on the 1 2-inch-diameter stock our further investigations...for the subsized Charpy specimens is shown graphically in Appendix C as a function of tempering temperature. This data gave a good indication that the... Charpy energy for full-sized specimens (0.394-inch-square cross section) would be near our expected values. Due to the dimensions of the subsized
Note: Automated optical focusing on encapsulated devices for scanning light stimulation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitzer, L. A.; Benson, N., E-mail: niels.benson@uni-due.de; Schmechel, R.
Recently, a scanning light stimulation system with an automated, adaptive focus correction during the measurement was introduced. Here, its application on encapsulated devices is discussed. This includes the changes an encapsulating optical medium introduces to the focusing process as well as to the subsequent light stimulation measurement. Further, the focusing method is modified to compensate for the influence of refraction and to maintain a minimum beam diameter on the sample surface.
An empirical model for transient crater growth in granular targets based on direct observations
NASA Astrophysics Data System (ADS)
Yamamoto, Satoru; Barnouin-Jha, Olivier S.; Toriumi, Takashi; Sugita, Seiji; Matsui, Takafumi
2009-09-01
The present paper describes observations of crater growth up to the time of transient crater formation and presents a new empirical model for transient crater growth as a function of time. Polycarbonate projectiles were impacted vertically into soda-lime glass sphere targets using a single-stage light-gas gun. Using a new technique with a laser sheet illuminating the target [Barnouin-Jha, O.S., Yamamoto, S., Toriumi, T., Sugita, S., Matsui, T., 2007. Non-intrusive measurements of the crater growth. Icarus, 188, 506-521], we measured the temporal change in diameter of crater cavities (diameter growth). The rate of increase in diameter at early times follows a power law relation, but the data at later times (before the end of transient crater formation) deviates from the power law relation. In addition, the power law exponent at early times and the degree of deviation from a power law at later times depend on the target. In order to interpret these features, we proposed to modify Maxwell's Z-model under the assumption that the strength of the excavation flow field decreases exponentially with time. We also derived a diameter growth model as: d(t)∝[1-exp(-βt)]γ, where d(t) is the apparent diameter of the crater cavity at time t after impact, and β and γ are constants. We demonstrated that the diameter growth model could represent well the experimental data for various targets with different target material properties, such as porosity or angle of repose. We also investigated the diameter growth for a dry sand target, which has been used to formulate previous scaling relations. The obtained results showed that the dry sand target has larger degree of deviation from a power law, indicating that the target material properties of the dry sand target have a significant effect on diameter growth, especially at later times. This may suggest that the previously reported scaling relations should be reexamined in order to account for the late-stage behavior with the effect of target material properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Na; Chen Shuo; Wang Hongtao
2008-10-15
A tetracycline hydrochloride (TC) molecularly imprinted polymer (MIP) modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. Its surface was structured with surface voids and the nanotubes were open at top end with an average diameter of approximately 50 nm. The MIP-modified TiO{sub 2} nanotube array with anatase phase was identified by XRD and a distinguishable red shift in the absorption spectrum was observed. The MIP-modified electrode also exhibited a high adsorption capacity for TC due to its high surface area providing imprinted sites. Photocurrent was generated on the MIP-modified photoanode using the simulated solar spectrum andmore » increased with the increase of positive bias potential. Under simulated solar light irradiation, the MIP-modified TiO{sub 2} nanotube array electrode exhibited enhanced photoelectrocatalytic (PEC) activity with the apparent first-order rate constant being 1.2-fold of that with TiO{sub 2} nanotube array electrode. The effect of the thickness of the MIP layer on the PEC activity was also evaluated. - Graphical abstract: A tetracycline hydrochloride molecularly imprinted polymer modified TiO{sub 2} nanotube array electrode was prepared via surface molecular imprinting. It showed improved response to simulated solar light and higher adsorption capability for tetracycline hydrochloride, thereby exhibiting increased PEC activity under simulated solar light irradiation. The apparent first-order rate constant was 1.2-fold of that on TiO{sub 2} nanotube array electrode.« less
Sharma, Prabhakar; Poulsen, Tjalfe G
2010-07-01
Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.
Dendrimer-assisted patch-clamp sizing of nuclear pores
Bustamante, J.O.; Michelette, E.R.F.; Geibel, J.P.; Hanover, J.A.; McDonnell, T.J.; Dean, D.A.
2015-01-01
Macromolecular translocation (MMT) across the nuclear envelope (NE) occurs exclusively through the nuclear pore complex (NPC). Therefore, the diameter of the NPC aqueous/electrolytic channel (NPCC) is important for cellular structure and function. The NPCC diameter was previously determined to be ≅10 nm with electron microscopy (EM) using the translocation of colloidal gold particles. Here we present patch-clamp and fluorescence microscopy data from adult cardiomyocyte nuclei that demonstrate the use of patch-clamp for assessing NPCC diameter. Fluorescence microscopy with B-phycoerythrin (BPE, 240 kDa) conjugated to a nuclear localization signal (NLS) demonstrated that these nuclei were competent for NPC-mediated MMT (NPC-MMT). Furthermore, when exposed to an appropriate cell lysate, the nuclei expressed enhanced green fluorescence protein (EGFP) after 5–10 h of incubation with the plasmid for this protein (pEGFP, 3.1 MDa). Nucleus-attached patch-clamp showed that colloidal gold particles were not useful probes; they modified NPCC gating. As a result of this finding, we searched for an inert class of particles that could be used without irreversibly affecting NPCC gating and found that fluorescently labeled Star-burst dendrimers, a distinct class of polymers, were useful. Our patch-clamp and fluorescence microscopy data with calibrated dendrimers indicate that the cardiomyocyte NPCC diameter varies between 8 and 9 nm. These studies open a new direction in the investigation of live, continuous NPC dynamics under physiological conditions. PMID:10784359
Dianat, Iman; Rahimi, Soleyman; Nedaei, Moein; Asghari Jafarabadi, Mohammad; Oskouei, Ali E
2017-03-01
The effects of tool handle dimension (three modified designs of wrenches with 30-50 mm diameter cylindrical handles and traditional design with rectangular cross-sectional (5 mm × 25 mm) handle), workpiece orientation (vertical/horizontal) and workpiece size (small/large) as well as user's hand size on wrist ulnar/radial (U/R) torque strength, usability and discomfort, and also the relationship between these variables were evaluated in a maximum torque task using wrenches. The highest and lowest levels of maximal wrist U/R torque strength were recorded for the 30 mm diameter handle and traditional wrench design, respectively. The prototype handle with 30 mm diameter, together with 40 mm diameter handle, was also better than other designs as they received higher usability ratings and caused less discomfort. The mean wrist torque strength exerted on a vertically oriented workpiece (in the sagittal plane) was 23.8% higher than that exerted on a horizontally oriented one (in the transverse plane). The user's hand size had no effect on torque exertions. The wrist torque strength and usability were negatively correlated with hand and finger discomfort ratings. The results are also discussed in terms of their implications for hand tool and workstation configuration in torque tasks involving wrenches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Köse, A C; Demirbas, M
2004-02-01
To investigate the utility of a new 'modified-prone' position for treating pre-vesical stones with extracorporeal shock wave lithotripsy (ESWL), usually considered an acceptable and effective treatment for such stones, but for which many different body positions have been used in an attempt to increase its efficacy. The study included 268 consecutive patients with a solitary pre-vesical stone who underwent ESWL either prone (69) or in the modified-prone position (199) between May 1999 and August 2001. Only those with one stone between the ureteric orifice and 1 cm proximal to the vesico-ureteric junction were included. In each case the stone diameter, days to stone clearance, number of shock waves applied per treatment, and number of sessions required to become stone-free were recorded. If the treatment failed this was also noted. Success rates in the prone and modified-prone groups were compared and analysed to assess which of the variables influenced success with ESWL. After ESWL, 95.5% of the 268 patients were stone-free; the rates in the prone and modified-prone groups were 89.9% and 97.5%, respectively (P = 0.015). The probability of success with ESWL therapy for pre-vesical calculi in modified-prone position was about five times (odds ratio 4.56, 95% confidence interval 1.2-17.7) greater than that expected with when prone. The modified-prone position was an independent factor most significantly influencing success with ESWL in these patients. The modified-prone position for ESWL is a new and very effective way to treat patients with pre-vesical stones.
Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng
2016-05-18
A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.
Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng
2016-01-01
A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process. PMID:27188258
NASA Astrophysics Data System (ADS)
Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng
2016-05-01
A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.
NASA Astrophysics Data System (ADS)
Nui Pham, Xuan; Phuoc Nguyen, Tan; Nhung Pham, Tuyet; Thuy Nga Tran, Thi; Van Thi Tran, Thi
2016-12-01
In this work anti-cancer drug curcumin-loaded superparamagnetic iron oxide (Fe3O4) nanoparticles was modified by chitosan (CS). The magnetic iron oxide nanoparticles were synthesized by using reverse micro-emulsion (water-in-oil) method. The magnetic nanoparticles without loaded drug and drug-loaded magnetic nanoparticles were characterized by XRD, FTIR, TG-DTA, SEM, TEM, and VSM techniques. These nanoparticles have almost spherical shape and their diameter varies from 8 nm to 17 nm. Measurement of VSM at room temperature showed that iron oxide nanoparticles have superparamagnetic properties. In vitro drug loading and release behavior of curcumin drug-loaded CS-Fe3O4 nanoparticles were studied by using UV-spectrophotometer. In addition, the cytotoxicity of the modified nanoparticles has shown anticancer activity against A549 cell with IC50 value of 73.03 μg/ml. Therefore, the modified magnetic nanoparticles can be used as drug delivery carriers on target in the treatment of cancer cells.
NASA Technical Reports Server (NTRS)
Hunt, D.; Clinglan, J.; Salemann, V.; Omar, E.
1977-01-01
Ground static and wind tunnel test of a scale model modified T-39 airplane are reported. The configuration in the nose and replacement of the existing nacelles with tilting lift/cruise fans. The model was powered with three 14 cm diameter tip driven turbopowered simulators. Forces and moments were measured by an internal strain guage balance. Engine simulator thrust and mass flow were measured by calibrated pressure and temperature instrumentation mounted downstream of the fans. The low speed handling qualities and general aerodynamic characteristics of the modified T-39 were defined. Test variables include thrust level and thrust balance, forward speed, model pitch and sideslip angle at forward speeds, model pitch, roll, and ground height during static tests, lift/cruise fan tilt angle, flap and aileron deflection angle, and horizonal stabilizer angle. The effects of removing the landing gear, the lift/cruise fans, and the tail surfaces were also investigated.
Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.
Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua
2014-01-30
A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Garlicki, Miroslaw; Roguski, K; Puchniewicz, M; Ehrlich, Marek P
2006-08-01
We report in this study our results with composite aortic root replacement (CVR) using the classic or modified Cabrol coronary implantation technique. From October 2001 to March 2005, 25 patients underwent aortic root replacement. In all cases, the indication for surgery was a degenerative aneurysm with a diameter of more than 6 cm. Seven patients had undergone a previous aortic operation on the ascending aorta. Mean age was 53+/-13 years and 22 patients were male. Mean Euroscore was 5.2+/-2.4. Aortic insufficiency was present in all patients. Two patients had Marfan syndrome. The 30-day mortality was 0%. Two patients required profound hypothermic circulatory arrest. Mean aortic cross-clamp time was 91+/-24 minutes and the mean circulatory arrest time was 24+/-15 minutes. No patients developed a pseudoaneurysm after the operation. We conclude that composite aortic root replacement with the classic or modified Cabrol technique results in a low operative mortality. However, it should be only used when a "button" technique is not feasible.
Surface confined ionic liquid as a stationary phase for HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; Baker, Gary A; Baker, Sheila N
Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of themore » ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.« less
NASA Astrophysics Data System (ADS)
Bell, L.
2002-01-01
The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.
Monolayer Colloidal Crystals by Modified Air-Water Interface Self-Assembly Approach
Ye, Xin; Huang, Jin; Zeng, Yong; Sun, Lai-Xi; Geng, Feng; Liu, Hong-Jie; Wang, Feng-Rui; Jiang, Xiao-Dong; Wu, Wei-Dong; Zheng, Wan-Guo
2017-01-01
Hexagonally ordered arrays of polystyrene (PS) microspheres were prepared by a modified air-water self-assembly method. A detailed analysis of the air-water interface self-assembly process was conducted. Several parameters affect the quality of the monolayer colloidal crystals, i.e., the colloidal microsphere concentration on the latex, the surfactant concentration, the polystyrene microsphere diameter, the microsphere polydispersity, and the degree of sphericity of polystyrene microspheres. An abrupt change in surface tension was used to improve the quality of the monolayer colloidal crystal. Three typical microstructures, i.e., a cone, a pillar, and a binary structure were prepared by reactive-ion etching using a high-quality colloidal crystal mask. This study provides insight into the production of microsphere templates with flexible structures for large-area patterned materials. PMID:28946664
Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles.
Meade, Shawn O; Chen, Michelle Y; Sailor, Michael J; Miskelly, Gordon M
2009-04-01
A particle-based multiplexed DNA assay based on encoded porous SiO(2) photonic crystal disks is demonstrated. A "spectral barcode" is generated by electrochemical etch of a single-crystal silicon wafer using a programmed current-time waveform. A lithographic procedure is used to isolate cylindrical microparticles 25 microm in diameter and 10 microm thick, which are then oxidized, modified with a silane linker, and conjugated to various amino-functionalized oligonucleotide probes via cyanuric chloride. It is shown that the particles can be decoded based on their reflectivity spectra and that a multiple analyte assay can be performed in a single sample with a modified fluorescence microscope. The homogeneity of the reflectivity and fluorescence spectra, both within and across the microparticles, is also reported.
NASA Astrophysics Data System (ADS)
Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.
2014-07-01
Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01661k
Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2018-01-16
Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.
Joshi, Prerna; Okada, Toshihiko; Miyabayashi, Keiko; Miyake, Mikio
2018-05-15
Organically (octyl amine, OA) surface modified electrocatalyst (OA-Pt/CB) was studied for its oxygen reduction reaction (ORR) activity via dc methods and its charge and mass transfer properties were studied via electrochemical impedance spectroscopy (EIS). Comparison with a commercial catalyst (TEC10V30E) with similar Pt content was also carried out. In EIS, both the catalysts showed a single time-constant with an emerging high-frequency semicircle of very small diameter which was fitted using suitable equivalent circuits. The organically modified catalyst showed lower charge-transfer resistance and hence, low polarization resistance in high potential region as compared to the commercial catalyst. The dominance of kinetic processes was observed at 0.925-1.000 V, whereas domination of diffusion based processes was observed at lower potential region for the organic catalyst. No effect due to the presence of carbon was observed in the EIS spectra. Using the hydrodynamic method, higher current penetration depth was obtained for the organically modified catalyst at 1600 rpm. Exchange current density and Tafel slopes for both the electrocatalysts were calculated from the polarization resistance obtained from EIS which was in correlation with the results obtained from dc methods.
A Program of Research on Microfabrication Techniques for VLSI Magnetic Devices.
1981-10-01
micrometer bubble diameter materials so that we can evaluate them as device materials. A detailed report on the LPE growth of garnet films at CMU is included...Figure 2: Growth Rate versus Growth Temperature Growth Rate The growth rate of the LPE film is determined by the concentration of garnet in the melt, the...selectively modifying, and characterizing single Lcrystal epitaxial garnet hnd amorphous magnetic thin films are being investi- *_ gated with the
1988-01-01
diameter companion drain holes in the area below the intake structure. The second contract, DACW67-75-C-0042, was awarded to Goodfellow Brothers, Inc. in...tolerances for bolt anchors. Subhori- zontal companion drain holes were drilled adjacent to the rock bolt holes. Negligible ground water was encountered...excavation contract was then modified so that rock excavation would not go below elevation 799 feet. The contractor installed rock bolts and companion drain
1991 LLWAS Anemometer Test Program.
1992-09-01
the enhanced LLWAS system installed there detected a violent microburst and prevented the loss of a Continental flight on final approach . Because of... balance of the heat provided by eight radiant heaters located on a one-foot diameter around the metal cup and vane assembly. HYDRO-TECH MODEL WS-3, WD...first chamber test, the Qualimetrics sensor had been modified with the addition of a 40- or 50-watt heater to the rain hood of the sensor. This heat
Preparation and Application of Hollow Silica/magnetic Nanocomposite Particle
NASA Astrophysics Data System (ADS)
Wang, Cheng-Chien; Lin, Jing-Mo; Lin, Chun-Rong; Wang, Sheng-Chang
The hollow silica/cobalt ferrite (CoFe2O4) magnetic microsphere with amino-groups were successfully prepared via several steps, including preparing the chelating copolymer microparticles as template by soap-free emulsion polymerization, manufacturing the hollow cobalt ferrite magnetic microsphere by in-situ chemical co-precipitation following calcinations, and surface modifying of the hollow magnetic microsphere by 3-aminopropyltrime- thoxysilane via the sol-gel method. The average diameter of polymer microspheres was ca. 200 nm from transmission electron microscope (TEM) measurement. The structure of the hollow magnetic microsphere was characterized by using TEM and scanning electron microscope (SEM). The spinel-type lattice of CoFe2O4 shell layer was identified by using XRD measurement. The diameter of CoFe2O4 crystalline grains ranged from 54.1 nm to 8.5 nm which was estimated by Scherrer's equation. Additionally, the hollow silica/cobalt ferrite microsphere possesses superparamagnetic property after VSM measurement. The result of BET measurement reveals the hollow magnetic microsphere which has large surface areas (123.4m2/g). After glutaraldehyde modified, the maximum value of BSA immobilization capacity of the hollow magnetic microsphere was 33.8 mg/g at pH 5.0 buffer solution. For microwave absorption, when the hollow magnetic microsphere was compounded within epoxy resin, the maximum reflection loss of epoxy resins could reach -35dB at 5.4 GHz with 1.9 mm thickness.
Spatio-temporal droplet size statistics in developing spray of starchy solution
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang
2015-07-01
In the given research, the spray jet breakup of a modified starch solution was studied as a function of jet injection time and nozzle orifice diameter. The starch-urea-borax solution was prepared and tested with three axisymmetric full cone nozzles at service temperature of 80°C and the injection pressure of 5 bar. It is worth mentioning that no jet breakup was seen below these temperature and pressure values. The imaging studies on the time based spray evolution revealed monotonic increase in both; spray cone angle and tip penetration with an increase in injection time form 0-300 mm. Hereinafter, both parameters exhibited constants value over injection time. Phase Doppler Anemometry (PDA) measurements of the droplet size revealed significant decrease in the Sauter Mean Diameter (SMD) along the spray centerline. However, a steady decrease in SMD was seen towards the spray boundary. For fixed injection time of 300 ms, the overall SMD was decreased from 112 to 71 µm at 60 mm downstream, from 102 to 64 µm at 100 mm downstream and from 85 to 61 µm at 140 mm downstream with an increase in orifice diameter from 1.19 to 1.59 mm.
Design of dual-diameter nanoholes for efficient solar-light harvesting
2014-01-01
A dual-diameter nanohole (DNH) photovoltaic system is proposed, where a top (bottom) layer with large (small) nanoholes is used to improve the absorption for the short-wavelength (long-wavelength) solar incidence, leading to a broadband light absorption enhancement. Through three-dimensional finite-element simulation, the core device parameters, including the lattice constant, nanohole diameters, and nanohole depths, are engineered in order to realize the best light-matter coupling between nanostructured silicon and solar spectrum. The designed bare DNH system exhibits an outstanding absorption capability with a photocurrent density (under perfect internal quantum process) predicted to be 27.93 mA/cm2, which is 17.39%, 26.17%, and over 100% higher than the best single-nanohole (SNH) system, SNH system with an identical Si volume, and equivalent planar configuration, respectively. Considering the fabrication feasibility, a modified DNH system with an anti-reflection coating and back silver reflector is examined by simulating both optical absorption and carrier transport in a coupled way in frequency and three-dimensional spatial domains, achieving a light-conversion efficiency of 13.72%. PACS 85.60.-q; Optoelectronic device; 84.60.Jt; Photovoltaic conversion PMID:25258605
Cylindrical acoustic levitator/concentrator
Kaduchak, Gregory; Sinha, Dipen N.
2002-01-01
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
Rathbun, R.E.; Kennedy, Vance C.
1978-01-01
A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2012-02-01
The electro-optical properties of zigzag and armchair BNNTs in a uniform transverse electric field are investigated within tight binding approximation. It is found that the electric field modifies the band structure and splits band degeneracy where these effects reflect in the DOS and JDOS spectra. A decrease in the band gap, as a function of the electric field, is observed. This gap reduction increases with the diameter and it is independent of chirality. An analytic function to estimate the electric field needed for band gap closing is proposed which is in good agreement with DFT results. In additional, we show that the larger diameter tubes are more sensitive than small ones. Number and position of peaks in DOS and JDOS spectra for armchair and zigzag tubes with similar radius are dependent on electric field strength.
Automatic Fastening Large Structures: a New Approach
NASA Technical Reports Server (NTRS)
Lumley, D. F.
1985-01-01
The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system.
A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michnoff R.; Biscardi, C.; Cerniglia, P.
2012-04-15
A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scannermore » assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.« less
Rheology of wet granular materials under continuous shear: experiments and simulations
NASA Astrophysics Data System (ADS)
Badetti, Michel; Fall, Abdoulaye; Roux, Jean-Noël
2017-06-01
The behaviour of wet granular media in shear flow is characterized by the dependence of apparent friction μ* and solid fraction Φs on the reduced pressure P* and the inertia number I. Reduced pressure, P* = σ22a2/F0, compares the applied normal stress σ22 on grains of diameter a to the tensile strength of contact F0 (proportional to the surface tension D of the liquid and the beads diameter). A specifically modified rotational rheometer is used to characterize the response of model wet granular material to applied shear rate \\dot γ under controlled normal stress σ22. Discrete Element Method (DEM) simulations in 3D are carried out in parallel and numerical results are compared with experimental ones. Cohesive, inertia, saturation and viscous effects on macroscopic coefficient of friction μ* and solid fraction Φs are discussed.
System Performance Simulations of the RatCAP Awake Rat Brain Scanner
NASA Astrophysics Data System (ADS)
Shokouhi, S.; Vaska, P.; Schlyer, D. J.; Stoll, S. P.; Villanueva, A.; Kriplani, A.; Woody, C. L.
2005-10-01
The capability to create high quality images from data acquired by the Rat Conscious Animal PET tomograph (RatCAP) has been evaluated using modified versions of the PET Monte Carlo code Simulation System for Emission Tomography (SimSET). The proposed tomograph consists of lutetium oxyorthosilicate (LSO) crystals arranged in 12 4 /spl times/ 8 blocks. The effects of the RatCAPs small ring diameter (/spl sim/40 mm) and its block detector geometry on image quality for small animal studies have been investigated. Since the field of view will be almost as large as the ring diameter, radial elongation artifacts due to parallax error are expected to degrade the spatial resolution and thus the image quality at the edge of the field of view. In addition to Monte Carlo simulations, some preliminary results of experimentally acquired images in both two-dimensional (2-D) and 3-D modes are presented.
Fairhall, Sarah J; Dickson, Carol A; Scott, Leah; Pearce, Peter C
2006-04-01
A non-invasive model has been developed to estimate gaze direction and relative pupil diameter, in minimally restrained rhesus monkeys, to investigate the effects of low doses of ocularly administered cholinergic compounds on visual performance. Animals were trained to co-operate with a novel device, which enabled eye movements to be recorded using modified human eye-tracking equipment, and to perform a task which determined visual threshold contrast. Responses were made by gaze transfer under twilight conditions. 4% w/v pilocarpine nitrate was studied to demonstrate the suitability of the model. Pilocarpine induced marked miosis for >3 h which was accompanied by a decrement in task performance. The method obviates the need for invasive surgery and, as the position of point of gaze can be approximately defined, the approach may have utility in other areas of research involving non-human primates.
NASA Astrophysics Data System (ADS)
Tan, De-Xin; Wang, Yan-Li
2018-03-01
Sea anemone-like palladium (Pd)/polyaniline (PANI) nanocomposites were synthesized via visible-light-assisted swollen liquid crystals (SLCs) template method. The resulting samples were characterized by transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy dispersive spectrometer (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV–vis) absorption spectroscopy and Fourier transform infrared (FT-IR) spectroscopy, respectively. The electrocatalytic properties of Pd/PANI nanocomposites modified glass carbon electrode (GCE) for methane oxidation were investigated by cycle voltammetry (CV) and chronoamperometry. Those dispersed sea anemone-like Pd/PANI nanocomposites had an average diameter of 320 nm. The obtained Pd nanoparticles with an average diameter of about 45 nm were uniformly distributed in PANI matrix. Sea anemone-like Pd/PANI nanocomposites exhibited excellent electrocatalytic activity and stability for oxidation of methane (CH4).
NASA Astrophysics Data System (ADS)
Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán
2016-10-01
Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.
Wrinkling of graphene membranes supported by silica nanoparticles on substrates
NASA Astrophysics Data System (ADS)
Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team
2011-03-01
The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar L.; Klute, Glenn K.
1993-01-01
One of the concerns of Space Station designers was making sure that the suited crewmembers' gloved fingers are not trapped in the holes that may be present in the structures during EVA activities. A study was conducted on 11 subjects to determine the minimum and maximum possible hole sizes that would eliminate the possibility of finger entrapment. Subjects wore pressurized gloves and attempted to insert their fingers into holes of various sizes. Based on the experimental results, it is recommended that the smallest diameter should be less than 13.0 mm and the largest diameter should be greater than 35.0 mm in order to eliminate the possibility of finger entrapment while wearing gloves. It is also recommended that the current requirements specified by the MSIS-STD-3000 (Section 6.3.3.4) should be modified accordingly.
A helical scintillating fiber hodoscope
NASA Astrophysics Data System (ADS)
Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bissel, T.; Bollmann, R.; Busch, M.; Büßer, K.; Colberg, T.; Demirörs, L.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Eversheim, P. D.; Felden, O.; Gebel, R.; Glende, M.; Greiff, J.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Jahn, R.; Jeske, M.; Jonas, E.; Krause, H.; Lahr, U.; Langkau, R.; Lindemann, T.; Lindlein, J.; Maier, R.; Maschuw, R.; Mayer-Kuckuck, T.; Meinerzhagen, A.; Nähle, O.; Pfuff, M.; Prasuhn, D.; Rohdjeß, H.; Rosendaal, D.; von Rossen, P.; Sanz, B.; Schirm, N.; Schulz-Rojahn, M.; Schwarz, V.; Scobel, W.; Thomas, S.; Trelle, H. J.; Weise, E.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA Collaboration
1999-07-01
A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9°⩽ Θ⩽72° and 0°⩽ ϕ⩽360° in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes.
The effect of defocusing on spot diameter when ablate the silicon surface by femtosecond laser
NASA Astrophysics Data System (ADS)
Luo, Xinkai; Li, Wei; Wu, Tengfei; Wang, Yu; Zhu, Zhenyu
2018-02-01
Femtosecond laser has been demonstrated to be a prominent tool to manufacture micro scale structure. In the processing, the focusing lens is usually used as the concentrated tool to assemble the original beam to the tiny spot to provide enough energy for ablation. What is more, different focal length means the diverse scale of the focused spot. In common use, various sizes of the spot are required to adjust to the multifarious profiles and substituting the focus lens is the general method. There is no doubt that changing the lens is a fussy job and frequent replacing the lens may cause the lack of stability. In this paper, we report the defocus of the lens to modify the scale of the spot and it is proved to be an effective way to vary the diameter of the focused spot without changing the focus lens.
Developing high coercivity in large diameter cobalt nanowire arrays
NASA Astrophysics Data System (ADS)
Montazer, A. H.; Ramazani, A.; Almasi Kashi, M.; Zavašnik, J.
2016-11-01
Regardless of the synthetic method, developing high magnetic coercivity in ferromagnetic nanowires (NWs) with large diameters has been a challenge over the past two decades. Here, we report on the synthesis of highly coercive cobalt NW arrays with diameters of 65 and 80 nm, which are embedded in porous anodic alumina templates with high-aspect-ratio pores. Using a modified electrochemical deposition method enabled us to reach room temperature coercivity and remanent ratio up to 3000 Oe and 0.70, respectively, for highly crystalline as-synthesized hcp cobalt NW arrays with a length of 8 μm. The first-order reversal curve (FORC) analysis showed the presence of both soft and hard magnetic phases along the length of the resulting NWs. To develop higher coercive fields, the length of the NWs was then gradually reduced in order from bottom to top, thereby reaching NW sections governed by the hard phase. Consequently, this resulted in record high coercivities of 4200 and 3850 Oe at NW diameters of 65 and 80 nm, respectively. In this case, the FORC diagrams confirmed a significant reduction in interactions between the magnetic phases of the remaining sections of NWs. At this stage, x-ray diffraction (XRD) and dark-field transmission electron microscopy analyses indicated the formation of highly crystalline bamboo-like sections along the [0 0 2] direction during a progressive pulse-controlled electrochemical growth of NW arrays under optimized parameters. Our results both provide new insights into the growth process, crystalline characteristics and magnetic phases along the length of large diameter NW arrays and, furthermore, develop the performance of pure 3d transition magnetic NWs.
Beer, Andreas; Gahleitner, André; Holm, Anders; Birkfellner, Wolfgang; Homolka, Peter
2007-02-01
The aim of this study was to quantify the effect of adapted preparation on the insertion torque of self-tapping implants in cancellous bone. In adapted preparation, bone condensation - and thus, insertion torque - is controlled by changing the diameter of the drilling. After preparation of cancellous porcine vertebral bone with drills of 2.85, 3, 3.15 or 3.35 mm final diameters, Brånemark sytem Mk III implants (3.75 x 11.5 mm) were inserted in 141 sites. During implantation, the insertion torque was recorded. Prior to implant insertion, bone mineralization (bone mineral density (BMD)) was measured with dental quantative computed tomography. The BMD values measured at the implant position were correlated with insertion torque for varying bone condensation. Based on the average torque recorded during implant insertion into the pre-drilled canals with a diameter of 3 mm, torque increased by approximately 17% on reducing the diameter of the drill by 5% (to 2.85 mm). On increasing the diameter of the osteotomy to 3.15 mm (5%) or 3.35 mm (12%), torque values decreased by approximately 21% and 50%, respectively. The results demonstrate a correlation between primary stability (average insertion torque) and the diameter of the implant bed on using a screw-shaped implant. Thus, using an individualized bone mineralization-dependent drilling technique, optimized torque values could be achieved in all tested bone qualities with BMDs ranging from 330 to 500 mg/cm(3). The results indicate that using a bone-dependent drilling technique, higher torque values can also be achieved in poor bone using an individualized drilling resulting in higher bone condensation. As immediate function is dependent on primary stability (high insertion torque), this indicates that primary stability can be increased using a modified drilling technique in lesser mineralized bone.
NASA Astrophysics Data System (ADS)
Verma, Aditya; Kumar, Manoj; Patil, Anil Kumar
2018-04-01
The application of compact heat exchangers in any thermal system improves overall performance with a considerable reduction in size and weight. Inserts of different geometrical features have been used as turbulence promoting devices to increase the heat transfer rates. The present study deals with the experimental investigation of heat transfer and fluid flow characteristics of a tubular heat exchanger fitted with modified helical coiled inserts. Experiments have been carried out for a smooth tube without insert, tube fitted with helical coiled inserts, and modified helical coiled inserts. The helical coiled inserts are tested by varying the pitch ratio and wire diameter ratio from 0.5-1.5, and 0.063-0.125, respectively for the Reynolds number range of 1400 to 11,000. Experimental data have also been collected for the modified helical coiled inserts with gradually increasing pitch (GIP) and gradually decreasing pitch (GDP) configurations. The Nusselt number and friction factor values for helical coiled inserts are enhanced in the range of 1.42-2.62, 3.4-27.4, relative to smooth tube, respectively. The modified helical coiled insert showed enhancements in Nusselt number and friction factor values in the range of 1.49-3.14, 11.2-19.9, relative to smooth tube, respectively. The helical coiled and modified helical coiled inserts have thermo-hydraulic performance factor in the range of 0.59-1.29, 0.6-1.39, respectively. The empirical correlations of Nusselt number and friction factor for helical coiled inserts are proposed.
Feldblum, Paul J; Zulu, Robert; Linyama, David; Long, Sarah; Nonde, Thikazi Jere; Lai, Jaim Jou; Kashitala, Joshua; Veena, Valentine; Kasonde, Prisca
2016-06-01
To assess the safety, effectiveness, and acceptability of providing a reduced number of ShangRing sizes for adult voluntary medical male circumcision (VMMC) within routine service delivery in Lusaka, Zambia. We conducted a randomized controlled trial and enrolled 500 HIV-negative men aged 18-49 years at 3 clinics. Participants were randomized to 1 of 2 study arms (Standard Sizing arm vs Modified Sizing arm) in a 1:1 ratio. All 14 adult ShangRing sizes (40-26 mm inner diameter, each varying by 1 mm) were available in the Standard Sizing arm; the Modified Sizing arm used every other size (40, 38, 36, 34, 32, 30, 28 mm inner diameter). Each participant was scheduled for 2 follow-up visits: the removal visit (day 7 after placement) and the healing check visit (day 42 after placement), when they were evaluated for adverse events (AEs), pain, and healing. Four hundred and ninety-six men comprised the analysis population, with 255 in the Standard Sizing arm and 241 in the Modified Sizing arm. Three men experienced a moderate or severe AEs (0.6%), including 2 in the Standard Sizing arm (0.8%) and 1 in the Modified Sizing arm (0.4%). 73.2% of participants were completely healed at the scheduled day 42 healing check visit, with similar percentages across study arms. Virtually all (99.6%) men, regardless of study arm, stated that they were very satisfied or satisfied with the appearance of their circumcised penis, and 98.6% stated that they would recommend ShangRing circumcision to family/friends. The moderate/severe AE rate was low and similar in the 2 study arms, suggesting that provision of one-half the number of adult device sizes is sufficient for safe service delivery. Effectiveness, time to healing, and acceptability were similar in the study arms. The simplicity of the ShangRing technique, and its relative speed, could facilitate VMMC program goals. In addition, sufficiency of fewer device sizes would simplify logistics and inventory.
Kawamorita, Takushi; Shimizu, Kimiya; Shoji, Nobuyuki
2016-04-01
A modified implantable collamer lens (ICL) with a central hole with a diameter of 0.36 mm, referred to as a hole-ICL, was created to improve aqueous humour circulation. The aim of this study is to investigate the ideal hole size in a hole-ICL from the standpoint of the fluid dynamic characteristics of the aqueous humour using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V 12.2 (Mentor Graphics Corp.). In the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with a conventional ICL (Model ICM, Staar Surgical) and a hole-ICL were used. The hole-ICL was -9.0 dioptres (D) and 12.0 mm in length, with an optic zone of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μL/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was calculated, and trajectory analysis was performed. With an increase in the central hole size, the velocity of the aqueous humour increased, with the peak velocity occurring at a diameter of approximately 0.4 mm. Once the diameter had increased above 0.4 mm, the velocity then decreased. The velocity difference between the cases of a central hole size of 0.1 mm and 0.2 mm was significant. The desirable central hole size was 0.2 mm or larger in terms of flow dynamics. The current model, based on a central hole size of 0.36 mm, was close to ideal. The optimisation of the hole size should be performed based on results from a long-term clinical study so as to analyse the incidence rate of secondary cataract and optical performance.
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha; ...
2017-09-27
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coceancigh, Herman; Tran-Ba, Khanh-Hoa; Siepser, Natasha
Here in this study, the longitudinally controlled modification of the inner surfaces of poly(ethylene terephthalate) (PET) track-etched pores was explored using an electrochemically assisted Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) click reaction. Cylindrical or conical PET track-etched pores were first decorated with ethynyl groups via the amidation of surface -COOH groups, filled with a solution containing Cu(II) and azide-tagged fluorescent dye, and then sandwiched between comb-shaped and planar gold electrodes. Cu(I) was produced at the comb-shaped working electrode by the reduction of Cu(II); it diffused along the pores toward the other electrode and catalyzed CuAAC between an azide-tagged fluorescent dye and amore » pore-tethered ethynyl group. The modification efficiency of cylindrical pores (ca. 1 μm in diameter) was assessed from planar and cross-sectional fluorescence microscope images of modified membranes. Planar images showed that pore modification took place only above the teeth of the comb-shaped electrode with a higher reaction yield for longer Cu(II) reduction times. Cross-sectional images revealed micrometer-scale gradient modification along the pore axis, which reflected a Cu(I) concentration profile within the pores, as supported by finite-element computer simulations. The reported approach was applicable to the asymmetric modification of cylindrical pores with two different fluorescent dyes in the opposite directions and also for the selective visualization of the tip and base openings of conical pores (ca. 3.5 μm in base diameter and ca. 1 μm in tip diameter). Lastly, the method based on electrochemically assisted CuAAC provides a controlled means to fabricate asymmetrically modified nanoporous membranes and, in the future, will be applicable for chemical separations and the development of sequential catalytic reactors.« less
SLI Complex Curvature Friction Stir Weld Risk Reduction Program
NASA Technical Reports Server (NTRS)
Hartley, Paula J.; Schneider, Jules; Jones, Chip; Lawless, Kirby; Russell, Carolyn
2003-01-01
The Space Launch Initiative Program (SLI) in conjunction with the National Center for Advanced Manufacturing (NCAM) will demonstrate the ability to produce large-scale complex curvature hardware using the self-reacting friction stir welding process. This multi-phased risk reduction program includes friction stir welding process development and manufacture of a 22-ft diameter quarter dome using a conventional tooling approach; it culminates in a 27.5-ft diameter quarter dome demonstration performed on a 5-axis Universal Weld System. The design, fabrication, and installation of the Universal Weld System is made possible through a collaboration between the State of Louisiana, NASA, and the University of New Orleans. The Universal Weld System, manufactured by MTS Systems Corporation, will be installed at the Michoud Assembly Facility in New Orleans, Louisiana, and will be capable of manufacturing domes up to 30 ft in diameter. All welding will be accomplished using the Adaptable Adjustable Pin Tool (AdAPT) weld head and controller manufactured by MTS. Weld parameters will be developed for an aluminum alloy in gauges ranging from 0.320 to 0.400 in. thick. Weld quality will be verified through radiography, mechanical property testing at ambient and LN2 temperatures, and metallurgical analysis. The AdAPT weld head will then be mounted on a 22-ft diameter dome tool, which will be modified to include a welding track and drive system for moving the AdAPT weld head along the weld joint. This tool will then be used to manufacture a 22-ft diameter dome of an aluminum alloy, with 0.320-in. constant thickness joints, consisting of three individual gore panels. Finally, the 27.5-ft diameter quarter dome will be welded on the Universal Weld System. The quarter dome will consist of three individual gore panels with weld lands tapering from 0.320 to 0.360 in. in thickness. With the demonstration of these welds, the ability to manufacture large diameter domes using the friction stir weld process in conjunction with a universal weld system provides a low risk approach to the fabrication of aluminum tanks for future launch vehicle applications.
Performance of an adjustable, threaded inertance tube
NASA Astrophysics Data System (ADS)
Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.
2015-12-01
The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.
Relationship between the Foveal Avascular Zone and Foveal Pit Morphology
Dubis, Adam M.; Hansen, Benjamin R.; Cooper, Robert F.; Beringer, Joseph; Dubra, Alfredo; Carroll, Joseph
2012-01-01
Purpose. To assess the relationship between foveal pit morphology and size of the foveal avascular zone (FAZ). Methods. Forty-two subjects were recruited. Volumetric images of the macula were obtained using spectral domain optical coherence tomography. Images of the FAZ were obtained using either a modified fundus camera or an adaptive optics scanning light ophthalmoscope. Foveal pit metrics (depth, diameter, slope, volume, and area) were automatically extracted from retinal thickness data, whereas the FAZ was manually segmented by two observers to extract estimates of FAZ diameter and area. Results. Consistent with previous reports, the authors observed significant variation in foveal pit morphology. The average foveal pit volume was 0.081 mm3 (range, 0.022 to 0.190 mm3). The size of the FAZ was also highly variable between persons, with FAZ area ranging from 0.05 to 1.05 mm2 and FAZ diameter ranging from 0.20 to 1.08 mm. FAZ area was significantly correlated with foveal pit area, depth, and volume; deeper and broader foveal pits were associated with larger FAZs. Conclusions. Although these results are consistent with predictions from existing models of foveal development, more work is needed to confirm the developmental link between the size of the FAZ and the degree of foveal pit excavation. In addition, more work is needed to understand the relationship between these and other anatomic features of the human foveal region, including peak cone density, rod-free zone diameter, and Henle fiber layer. PMID:22323466
Epidemiology and contemporary management of abdominal aortic aneurysms.
Ullery, Brant W; Hallett, Richard L; Fleischmann, Dominik
2018-05-01
Abdominal aortic aneurysm (AAA) is most commonly defined as a maximal diameter of the abdominal aorta in excess of 3 cm in either anterior-posterior or transverse planes or, alternatively, as a focal dilation ≥ 1.5 times the diameter of the normal adjacent arterial segment. Risk factors for the development of AAA include age > 60, tobacco use, male gender, Caucasian race, and family history of AAA. Aneurysm growth and rupture risk appear to be associated with persistent tobacco use, female gender, and chronic pulmonary disease. The majority of AAAs are asymptomatic and detected incidentally on various imaging studies, including abdominal ultrasound, and computed tomographic angiography. Symptoms associated with AAA may include abdominal or back pain, thromboembolization, atheroembolization, aortic rupture, or development of an arteriovenous or aortoenteric fistula. The Screening Abdominal Aortic Aneurysms Efficiently (SAAAVE) Act provides coverage for a one-time screening abdominal ultrasound at age 65 for men who have smoked at least 100 cigarettes and women who have family history of AAA disease. Medical management is recommended for asymptomatic patients with AAAs < 5 cm in diameter and focuses on modifiable risk factors, including smoking cessation and blood pressure control. Primary indications for intervention in patients with AAA include development of symptoms, rupture, rapid aneurysm growth (> 5 mm/6 months), or presence of a fusiform aneurysm with maximum diameter of 5.5 cm or greater. Intervention for AAA includes conventional open surgical repair and endovascular aortic stent graft repair.
2010-05-01
Type of Lubrication for a Tilting Pad Thrust Bearing ,” ASME Journal of Lubrication Technology, 96 Ser F (1), pp. 22-27. [9] Gregory, R.S., 1974...1986, “Measurements of Maximum Temperature in Tilting - Pad Thrust Bearings ,” Technical Preprints - Presented at the ASLE 41st Annual Meeting. (ASLE...Safar [7] provides a modified Reynolds number analysis on hydrostatic thrust bearing performance parameters including the effects of tilt . Finally, San
Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.
2002-01-01
A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.
Anderson, David F.
1984-01-01
A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.
Intermediate Bandgap Solar Cells From Nanostructured Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Marcie
2014-10-30
This project aimed to demonstrate increased electronic coupling in silicon nanostructures relative to bulk silicon for the purpose of making high efficiency intermediate bandgap solar cells using silicon. To this end, we formed nanowires with controlled crystallographic orientation, small diameter, <111> sidewall faceting, and passivated surfaces to modify the electronic band structure in silicon by breaking down the symmetry of the crystal lattice. We grew and tested these silicon nanowires with <110>-growth axes, which is an orientation that should produce the coupling enhancement.
Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.
2016-11-01
The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.
Egido, J M; Viñuelas, J
1997-01-01
We report a rapid method for the flow cytometric quantitation of phagocytosis in heparinized complete peripheral blood (HCPB), using commercially available phycoerythrin-conjugated latex particles of 1 micron diameter. The method is faster and shows greater reproducibility than Bjerknes' (1984) standard technique using propidium iodide-stained Candida albicans, conventionally applied to the leukocytic layer of peripheral blood but here modified for HCPB. We also report a modification of Bjerknes' Intracellular Killing Test to allow its application to HCPB.
Anderson, D.F.
1981-01-27
A conventional Kanne tritium monitor has been redesigned to reduce its sensitivity to such contaminants as tritiated water vapor and tritiated oil. The high voltage electrode has been replaced by a wire cylinder and the collector electrode has been reduced in diameter. The area sensitive to contamination has thereby been reduced by about a factor of forty while the overall apparatus sensitivity and operation has not been affected. The design allows for in situ decontamination of the chambers, if necessary.
Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles.
Kwan, J J; Graham, S; Myers, R; Carlisle, R; Stride, E; Coussios, C C
2015-08-01
The understanding of cavitation from nanoparticles has been hindered by the inability to control nanobubble size. We present a method to manufacture nanoparticles with a tunable single hemispherical depression (nanocups) of mean diameter 90, 260, or 650 nm entrapping a nanobubble. A modified Rayleigh-Plesset crevice model predicts the inertial cavitation threshold as a function of cavity size and frequency, and is verified experimentally. The ability to tune cavitation nanonuclei and predict their behavior will be useful for applications ranging from cancer therapy to ultrasonic cleaning.
USB flow characteristics related to noise generation
NASA Technical Reports Server (NTRS)
Brown, W. H.; Reddy, N. N.
1976-01-01
The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.
Demonstration of a Large-Scale Tank Assembly Via Circumferential Friction Stir Welds
NASA Technical Reports Server (NTRS)
Jones, Chip; Adams, Glynn; Colligan, Kevin; McCool, A. (Technical Monitor)
2000-01-01
Five (5) each 14-foot diameter circumferential FSWelds were conducted on the modified CWT, two (2) each pathfinder and three (3) each assembly welds Tapered circumferential welds were successfully demonstrated The use of a closeout anvil was successfully demonstrated during one of the pathfinder welds Considerable difficulty maintaining joint f it-up during the weld process Anvil deflections Hardware dimensional tolerances Inadequate clamping Variations in the heat sink characteristics of the circumferential anvil as compared to the test panel anvil
Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A
2014-08-07
We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.
An investigation of phase transformation and crystallinity in laser surface modified H13 steel
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2013-03-01
This paper presents a laser surface modification process of AISI H13 tool steel using 0.09, 0.2 and 0.4 mm size of laser spot with an aim to increase hardness properties. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). X-ray diffraction analysis (XRD) was conducted to measure crystallinity of the laser-modified surface. X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system with Cu K α ( λ=1.5405 Å) radiation. The diffraction patterns were recorded in the 2 θ range of 20 to 80°. The hardness properties were tested at 981 mN force. The laser-modified surface exhibited reduced crystallinity compared to the un-processed samples. The presence of martensitic phase was detected in the samples processed using 0.4 mm spot size. Though there was reduced crystallinity, a high hardness was measured in the laser-modified surface. Hardness was increased more than 2.5 times compared to the as-received samples. These findings reveal the phase source of the hardening mechanism and grain composition in the laser-modified surface.
Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Brabazon, D.; Naher, S.
2011-01-01
This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.
Dong, Liying; Jin, Yu; Song, Tao; Liang, Jinsong; Bai, Xin; Yu, Sumei; Teng, Chunying; Wang, Xin; Qu, Juanjuan; Huang, Xiaomei
2017-07-01
Auricularia auricula spent substrate (AASS) modified by didodecyldimethylammonium bromide(DDAB) was used as adsorbent to remove Cr(VI) from aqueous solution. Based on a single-factor experiment and response surface methodology, the optimal conditions were adsorbent dosage of 1.5 g/L, pH value of 4.0, initial Cr(VI) concentration of 19 mg/L, temperature of 25 °C, biosorption time of 120 min, rotational speed of 150 r/min, respectively, under which biosorption capacity could reach 12.16 mg/g compared with unmodified AASS (6.058 mg/g). DDAB modification could enlarge the specific surface area and porous diameter of the adsorbents, and supply hydrophilic and hydrophobic groups capable of adsorbing at the interfaces. In addition, DDAB increased ionic exchange and complex formation demonstrated by variations of elemental contents, shifts of carboxyl, amine groups, hydroxyl, alkyl chains, and phosphate groups as well as the crystal structure of the Cr-O compounds. Variations of peaks and energy in XPS analysis also testified the reduction of Cr(VI) to Cr(III).The biosorption behavior of modified AASS was in line with Langmuir and Freundlich isotherm equation. The final regeneration efficiency was 62.33% after three biosorption-desorption cycles. Apparently, DDBA is a eximious modifier and DDBA-modified AASS was very efficient for Cr(VI) removal.
NASA Astrophysics Data System (ADS)
Harriss, Kathryn H.; Burchell, Mark J.
2017-07-01
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.
Ramoun, A A; Emara, A M; Heleil, B A; Darweish, S A; Abou-Ghait, H A
2017-12-01
Fifty one cyclic Egyptian buffaloes were used to study the hormonal profile and follicular dynamics concurrent with CIDR and insulin modified Ovsync TAI programs and their impacts on the consequent fertility responses. The buffaloes were randomly assigned into 3 ovulation synchronization protocols: Ovsync-alone (n = 13, control) CIDR-sync (n = 20) and Insulin-sync (n = 18). Ovsync-alone protocol consisted of two im injections of 20 μg bueserlin (GnRHa) on Day 0 (GnRH 1) and on Day 9 (GnRH 2) with an im injection of 500 μg of cloprostenol sodium (PGF 2 α) on Day 7. The CIDR-sync protocol consisted of the same treatment protocol as in Ovsync in addition to intra-vaginal insertion of CIDR (contains 1.38 gm of progesterone) on Day 0 followed by removal on Day 7. The Insulin-sync protocol consisted of the same treatment protocol as in Ovsync plus 3 sc injections of insulin at a dose of 0.25 i.u/1 kg, on Days 7, 8, and 9. Buffaloes in all groups were inseminated 16 h after GnRH2 by the same inseminator using frozen semen in straws. Blood samples were collected on Days 0, 3, 5 for serum progesterone assay and on Day 9 to measure serum concentrations of estradiol, insulin and IGF-1. Transrectal ultrasonographic scanning of the ovaries was conducted on Days 7, 8 and 9 to record the diameter of the largest follicle. Pregnancy diagnosis was conducted on Day 30 post-TAI by trans-rectal ultrasonographic scanning of the uterus to calculate conception rate. The serum progesterone concentration showed an increase (p < 0.01) in pregnant compared with non-pregnant buffaloes in both Ovsync-alone and Insulin-sync groups, but not in CIDR-sync group (p > 0.05) on Days 3 and 5. The serum estradiol concentration on Day 9 showed an increase (p < 0.01) in pregnant compared with the non-pregnant buffaloes in all of the treated groups. In Insulin-sync and Ovsync-alone groups, the diameter of the largest follicle (LF) was larger (p < 0.01) in pregnant compared with non-pregnant buffaloes, but in CIDR-sync, the diameter of the (LF) was larger (p < 0.01) in non-pregnant compared with pregnant buffaloes. Also, the results showed that the greatest diameter of LF was observed in pregnant buffaloes in Insulin-sync compared with either pregnant or non-pregnant buffaloes in all groups. It is concluded that modified CIDR-sync and Insulin-sync could improve fertility response through modulating hormonal profile and follicular dynamics in buffaloes during low breeding season. Copyright © 2017 Elsevier Inc. All rights reserved.
Yamaguchi, Akira; Namekawa, Manato; Itoh, Tetsuji; Teramae, Norio
2012-01-01
The fluorescence dynamics of rhodamine B (RhB) immobilized on the pore surface of aminopropyl (AP)-modified mesoporous silica (diameter of the silica framework, 3.1 nm) was examined at temperatures between 293 and 193 K to study the microviscosity of supercooled water confined inside the pores. The mesoporous silica specimen with a dense AP layer (2.1 molecules nm(-2)) was prepared, and RhB isothiocyanate was covalently bound to part of the surface AP groups. The fluorescence lifetime of the surface RhB increased with decreasing temperature from 293 to 223 K, indicating that freezing of the confined water did not occur in this temperature range. The microviscosity of the supercooled confined water was evaluated from an analysis of the lifetime data based on a frequency-dependent friction model.
Investigation of nanoyarn preparation by modified electrospinning setup.
Levitt, Ariana S; Knittel, Chelsea E; Vallett, Richard; Koerner, Michael; Dion, Genevieve; Schauer, Caroline L
2017-05-15
Higher ordered structures of nanofibers, including nanofiber-based yarns and cables, have a variety of potential applications, including wearable health monitoring systems, artificial tendons, and medical sutures. In this study, twisted assemblies of polyacrylonitrile (PAN), polyvinylidene fluoride trifluoroethylene (PVDF-TrFE), and polycaprolactone (PCL) nanofibers were fabricated via a modified electrospinning setup, consisting of a rotating cone-shaped copper collector, two syringe pumps, and two high voltage power supplies. The fiber diameters and twist angles varied as a function of the rotary speed of the collector. Mechanical testing of the yarns revealed that PVDF-TrFe and PCL yarns have a higher strain-to-failure than PAN yarns, reaching 307% for PCL nanoyarns. For the first time, the porosity of nanofiber yarns was studied as a function of twist angle, showing that PAN nanoyarns are more porous than PCL yarns.
Venus small volcano classification and description
NASA Technical Reports Server (NTRS)
Aubele, J. C.
1993-01-01
The high resolution and global coverage of the Magellan radar image data set allows detailed study of the smallest volcanoes on the planet. A modified classification scheme for volcanoes less than 20 km in diameter is shown and described. It is based on observations of all members of the 556 significant clusters or fields of small volcanoes located and described by this author during data collection for the Magellan Volcanic and Magmatic Feature Catalog. This global study of approximately 10 exp 4 volcanoes provides new information for refining small volcano classification based on individual characteristics. Total number of these volcanoes was estimated to be 10 exp 5 to 10 exp 6 planetwide based on pre-Magellan analysis of Venera 15/16, and during preparation of the global catalog, small volcanoes were identified individually or in clusters in every C1-MIDR mosaic of the Magellan data set. Basal diameter (based on 1000 measured edifices) generally ranges from 2 to 12 km with a mode of 34 km, and follows an exponential distribution similar to the size frequency distribution of seamounts as measured from GLORIA sonar images. This is a typical distribution for most size-limited natural phenomena unlike impact craters which follow a power law distribution and continue to infinitely increase in number with decreasing size. Using an exponential distribution calculated from measured small volcanoes selected globally at random, we can calculate total number possible given a minimum size. The paucity of edifice diameters less than 2 km may be due to inability to identify very small volcanic edifices in this data set; however, summit pits are recognizable at smaller diameters, and 2 km may represent a significant minimum diameter related to style of volcanic eruption. Guest, et al, discussed four general types of small volcanic edifices on Venus: (1) small lava shields; (2) small volcanic cones; (3) small volcanic domes; and (4) scalloped margin domes ('ticks'). Steep-sided domes or 'pancake domes', larger than 20 km in diameter, were included with the small volcanic domes. For the purposes of this study, only volcanic edifices less than 20 km in diameter are discussed. This forms a convenient cutoff since most of the steep-sided domes ('pancake domes') and scalloped margin domes ('ticks') are 20 to 100 km in diameter, are much less numerous globally than are the smaller diameter volcanic edifices (2 to 3 orders of magnitude lower in total global number), and do not commonly occur in large clusters or fields of large numbers of edifices.
NASA Astrophysics Data System (ADS)
Chen, Cen; Yang, Wei; Wang, Dan-Tong; Chen, Chao-Long; Zhuang, Qing-Ye; Kong, Xiang-Dong
2014-12-01
To improve the anti-tumor activity of hydrophobic drug curcumin, we prepared curcumin-loaded PLGA nanoparticles (PLGA-Cur NPs) through a modified spontaneous emulsification solvent diffusion (modified-SESD) method. The influence of main preparation parameters was investigated, such as the volume ratio of binary organic solvents and the concentration of surfactant. Results indicated that the synthesized regular spherical PLGA NPs with the average diameter of 189.7 nm exhibited relatively higher yield (58.9%), drug loading (11.0% (w/w)) and encapsulation efficiency (33.5%), and also a controllable drug release profile. In order to evaluate the in vitro cytotoxicity of the prepared NPs, MTT assay was conducted, and results showed that the NPs could effectively inhibit HL60 and HepG2 cells with lower IC50 values compared with free curcumin. Furthermore, confocal microscopy together with flow cytometry analysis proved the enhanced apoptosis-inducing ability of PLGA-Cur NPs. Polymeric NP formulations are potential to be used for hydrophobic drug delivery systems in cancer therapy.
Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory.
Cheng, Xu; Wang, Xin; Cao, Zhipeng; Yao, Weijing; Wang, Jun; Tang, Rupei
2017-02-01
Soy protein isolate (SPI) was hydrolyzed by compound enzymes to give water soluble low molecular soy protein (SP). SP and folic acid (FA) modified SP was polymerized with N-3- acrylamidophenylboronic acid (APBA) monomer in aqueous solution to give SP nanoparticles (SP NPs) and FA modified nanoparticles (FA-SP NPs), respectively. These NPs display excellent stability in different conditions, and have a uniform spherical shape with a diameter around of 200nm. Doxorubicin (DOX) was then successfully loaded into SP and FA-SP NPs with a desirable loading content of 13.33% and 16.01%, respectively. The cellular uptake and cytotoxicity of DOX-loaded SP NPs and FA-SP NPs were investigated using the two-dimensional (2D) monolayer cell model and three-dimensional (3D) multicellular spheroids (MCs). In vivo, tumor accumulation and growth inhibitory were then examined using H22 tumor-bearing mice. All these results demonstrated that conjugation of FA can efficiently enhance SP-based NPs' tumor accumulation and antitumor effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia; Cox, James A
2015-07-01
Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH 3 ) 3 SiOCH 3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm -3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH 3 ) 3 SiOCH 3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN) 6 4- at scan rates above 5 mVs -1 yielded currents controlled primarily by linear diffusion. Below 5 mVs -1 , convection rather than the expected factor, radial diffusion, apparently limited the current.
Zhang, Yingying; Lv, Tingting; Zhang, Huijuan; Xie, Xiaodong; Li, Ziying; Chen, Haijun; Gao, Yu
2017-07-10
Folate (FA) and heptamethine cyanine (Cy7)-modified chitosan (CF7) was synthesized by click chemistry and its self-assembled nanoparticles (CF7Ns) were developed for tumor-specific imaging and photodynamic therapy. The characterization spectrum confirmed CF7 had a good FA and Cy7 conjugation efficacy. The diameter of CF7Ns measured by DLS was about 291.6 nm, and the morphology observed with AFM showed filamentous clusters of particles. The results of targeting ability of CF7Ns demonstrated enhanced targeting behaviors of CF7Ns compared with non-FA-modified nanoparticles C7Ns in FA receptor-positive HeLa cells. The cytotoxicity and cell apoptosis assay showed that CF7Ns under near-infrared light irradiation led to more apoptotic cell death in HeLa cells to improve the therapeutic efficacy. The mechanisms of the photodynamic effects of CF7Ns were demonstrated through measurement of intracellular reactive oxygen species and the apoptosis-related cytokines. These results suggested that CF7Ns are promising tumor targeting carriers for simultaneous fluorescence imaging and photodynamic therapy.
NASA Technical Reports Server (NTRS)
Roth, J. R.; Richardson, R. W.; Gerdin, G. A.
1973-01-01
Initial results were obtained from low power operation of the NASA Lewis Bumpy Torus experiment, in which a steady-state ion heating method based on the modified Penning discharge is applied in a bumpy torus confinement geometry. The magnet facility consists of 12 superconducting coils, each 19 cm i.d. and capable of 3.0 T, equally spaced in a toroidal array 1.52 m in major diameter. A 18 cm i.d. anode ring is located at each of the 12 midplanes and is maintained at high positive potentials by a dc power supply. Initial observations indicate electron temperatures from 10 to 150 eV, and ion kinetic temperatures from 200 eV to 1200 eV. Two modes of operation were observed, which depend on background pressure, and have different radial density profiles. Steady state neutron production was observed. The ion heating process in the bumpy torus appears to parallel closely the mechanism observed when the modified Penning discharge was operated in a simple magnetic mirror field.
NASA Astrophysics Data System (ADS)
Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.
2014-02-01
Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.
Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
Rehman, M; Shekunov, B Y; York, P; Colthorpe, P
2001-10-01
Solubilities of a model compound (nicotinic acid) in pure supercritical carbon dioxide (SC-CO(2)) and SC-CO(2) modified with methanol have been measured in the pressure range of 80-200 bar and between temperatures of 35 and 90 degrees C. On-line ultraviolet detection enabled a simple and relatively fast measurement of very low levels of solubility (10(-7) mol fraction) with good accuracy in pure and modified SC-CO(2). The solute solubility in both pure SC-CO(2) and SC-CO(2) modified with methanol increased with pressure at all investigated temperatures. A retrograde solubility behavior was observed in that, at pressures below 120 bar, a solubility decrease on temperature increase occurred. Solubility data were used to calculate supersaturation values and to define optimum operating conditions to obtain crystalline particles 1-5 microm in diameter using the solution-enhanced dispersion by supercritical fluids (SEDS) process, thereby demonstrating the feasibility of a one-step production process for particulate pharmaceuticals suitable for respiratory drug delivery. Copyright 2001 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 90:1570-1582, 2001
Toughening mechanism in elastometer-modified epoxy resins: Part 1
NASA Technical Reports Server (NTRS)
Yee, A. F.; Pearson, R. A.
1983-01-01
Several plaques of Epon 828, cured with piperidine, modified with hycar(r) CTBN 1300X8, Hycar(R) CTBN 1300X13, and Hycar(R) CTBN 1300x15, and in some cases modified with biphenol A (BPA), yielded properly toughened epoxies with rubber particle diameters ranging from 0.1 to 10 microns. Fracture toughness experiments indicate that toughness was more a function of rubber content than the rubber particle size. Tensile volumetric behavior of the near resin exhibits two regions: an initial region where the increase in volume strain was due to the Poisson's effect, and a second region where a slower rate of increase in volume strain was due to shear deformation. Tensile volumetric deformation of an elastomer-modified epoxy exhibits the same type of behavior to that of the neat resin at low rates ( 3.2x0.01 sec(-1)). But at very high strain rates, which correspond more closely to the strain rates at the crack tip, there exists an increase in volume strain beyond the Poisson's effect. TEM, SEM and OM studies indicate that the rubber particles had voided. When a thin section from the deformed region is viewed under crossed-polarized light, shear bands are seen connecting voided rubber particles. From this information cavitation and enhanced shear band formation is proposed as the toughening mechanism.
Mercury removal from coal combustion flue gas by modified fly ash.
Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei
2013-02-01
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.
Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na
2015-02-07
The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.
Song, Hui; Wei, Man; Zhang, Nan; Li, He; Tan, Xiaochuan; Zhang, Yujia; Zheng, Wensheng
2018-01-01
The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica , can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.
Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid
NASA Astrophysics Data System (ADS)
Lanh Le, Thi; Khieu Dinh, Quang; Hoa Tran, Thai; Nguyen, Hai Phong; Le Hien Hoang, Thi; Hien Nguyen, Quoc
2014-06-01
Gold nanoparticles (Au-NPs) have been successfully synthesized by utilizing water soluble chitosan as reducing and stabilizing agent. The colloidal Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The results showed that the colloidal Au-NPs had a plasmon absorption band with maximum wavelength in the range of 520-526 nm and the diameters were about 8-15 nm. In addition, a new Au-NPs-modified electrode was fabricated by self-assembling Au-NPs to the surface of the L-cysteine-modified glassy carbon electrode (Au-NPs/L-Cys/GCE). The Au-NPs-modified electrode showed an excellent character for electro-catalytic oxidization of uric acid (UA) in 0.1 mol L-1 phosphate buffer solution (pH 3.2). Using differential pulse anodic stripping voltammetry (DP-ASV), a high selectivity for determination of UA has been explored for the Au-NPs-modified electrode. DP-ASV peak currents of UA increased linearly with their concentration at the range of 2.0 × 10-6 to 4.0 × 10-5 mol L-1 with the detection limit of 2.7 × 10-6 mol L-1 for UA. The proposed method was applied for the detection of UA in human urine and serum samples with satisfactory results.
Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer
NASA Astrophysics Data System (ADS)
Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing
2013-02-01
Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.
Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer
2013-01-01
Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.
2010-10-01
In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.
Structure formation control of foam concrete
NASA Astrophysics Data System (ADS)
Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg
2017-01-01
The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.
Madzak, Adnan; Olesen, Søren Schou; Lykke Poulsen, Jakob; Bolvig Mark, Esben; Mohr Drewes, Asbjørn; Frøkjær, Jens Brøndum
2017-11-01
The aim of this study was to explore the association between morphological and functional secretin-stimulated MRI parameters with hospitalization, quality of life (QOL), and pain in patients with chronic pancreatitis (CP). This prospective cohort study included 82 patients with CP. Data were obtained from clinical information, QOL, and pain as assessed by questionnaires (The European Organization for Research and Treatment of Cancer Quality of Life Questionnaire and modified Brief Pain Inventory short form). Secretin-stimulated MRI morphological parameters included pancreatic gland volume, main pancreatic duct diameter, the modified Cambridge Classification of Duct Abnormality, apparent diffusion coefficient, fat signal fraction, and the pancreatic secretion volume as a functional parameter. The primary outcomes were time to first hospitalization related to the CP, as well as annual hospitalization frequency and duration. The secondary outcomes were pain severity, QOL, and pain interference scores. A main pancreatic duct diameter below 5 mm was associated with reduced time to first hospitalization (hazard ratio=2.06; 95% confidence interval: 1.02-4.17; P=0.043). Pancreatic secretion volume was correlated with QOL (r=0.31; P=0.0072) and pain interference score (r=-0.27; P=0.032), and fecal elastase was also correlated with QOL (r=0.28; P=0.017). However, functional and morphological findings were not related to pain intensity. Advanced pancreatic imaging techniques may be a highly sensitive tool for prognostication and monitoring of disease activity and its consequences.
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
Extradural and subarachnoid catheterization using the Seldinger technique.
Delhaas, E M
1996-01-01
The Seldinger technique was developed using a plastic introducer through which introduction and manipulations of a silicone spinal catheter, an extradural stimulation lead or a small diameter fibreoptic scope are possible without the risk of damage to the vulnerable devices. It is not intended as a replacement of the standard technique of introducing a spinal catheter through a Tuohy needle in general anaesthetic practice. Silicone spinal catheters and stimulation leads are used for long-term therapy in intractable chronic pain and spasticity. A fibreoptic scope is used for endoscopic examination of the subarachnoid or extradural space. Using a standard Tuohy needle the soft silicone extradural lead can be damaged easily by manipulations during insertion. For this reason the manufacturer modified the Tuohy needle for extradural silicone lead introduction. The disadvantages of this modified Tuohy needle are: first, difficulty in localization of the extradural space, second, the needle is unsuitable for a subarachnoid catheter or introduction of a fibreoptic scope. The Seldinger technique was performed 25 times in 18 patients, introducing a spinal silicone catheter (n = 14), an extradural silicone stimulation lead (n = 2) or a small diameter fibreoptic endoscope (n = 9). Paraesthesiae caused by neural irritation occurred in awake patients. This did not differ from the technique using a Tuohy needle only. Neural damage or trauma did not occur with the Seldinger technique. The incidence of post-spinal headache was the same for both techniques. No further complications were noted.
Multiple capillary biochemical analyzer
Dovichi, N.J.; Zhang, J.Z.
1995-08-08
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.
4 Metre diameter penstock construction for the Raymond Reservoir Hydro Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H.D.; Alexander, M.
1995-12-31
A four metre diameter 770 m long buried steel penstock was constructed for the 20 MW Raymond Reservoir Hydro Project in southern Alberta. The penstock delivers up to 56.7 m{sup 3}/sec of irrigation water at an effective head of 44 m to a 2.6 m diameter Kaplan turbine. The hydro facility was commissioned in the spring of 1994. The steel pipe was delivered to the site in 18 m long sections from a fabrication plant located 250 km away. Specialized equipment was engineered and constructed to externally coat and internally line the pipe sections on site. The pipe sections, weighingmore » from 27,000 to 30,000 kg, were rolled and moved on a specially built lathe during the external sandblasting and tape wrapping operation. The external tape wrapping is one element of the cathodic protection system for the steel pipe. Specialized equipment was modified to sandblast the interior to white metal and then mechanically apply three coats of internal epoxy lining. The internal lining improves the hydraulic characteristics of the pipe in addition to protecting the pipe from corrosion. This innovative approach to coating and lining the pipe resulted in an exceptionally high quality product at an affordable cost.« less
Hepatocyte spheroid arrays inside microwells connected with microchannels
Fukuda, Junji; Nakazawa, Kohji
2011-01-01
Spheroid culture is a preferable cell culture approach for some cell types, including hepatocytes, as this type of culture often allows maintenance of organ-specific functions. In this study, we describe a spheroid microarray chip (SM chip) that allows stable immobilization of hepatocyte spheroids in microwells and that can be used to evaluate drug metabolism with high efficiency. The SM chip consists of 300-μm-diameter cylindrical wells with chemically modified bottom faces that form a 100-μm-diameter cell adhesion region surrounded by a nonadhesion region. Primary hepatocytes seeded onto this chip spontaneously formed spheroids of uniform diameter on the cell adhesion region in each microwell and these could be used for cytochrome P-450 fluorescence assays. A row of microwells could also be connected to a microchannel for simultaneous detection of different cytochrome P-450 enzyme activities on a single chip. The miniaturized features of this SM chip reduce the numbers of cells and the amounts of reagents required for assays. The detection of four cytochrome P-450 enzyme activities was demonstrated following induction by 3-methylcholantlene, with a sensitivity significantly higher than that in conventional monolayer culture. This microfabricated chip could therefore serve as a novel culture platform for various cell-based assays, including those used in drug screening, basic biological studies, and tissue engineering applications. PMID:21799712
Deng, Feng; Zhang, Lei; Zhang, Yi; Song, Jin-lin; Fan, Yuboa
2007-07-01
To compare and analyze the stress distribution at the micro-implant-bone interface based on the different micro-implant-bone conditioned under orthodontic load, and to optimize the design of micro implant's neck. An adult skull with all tooth was scanned by spiral CT, and the data were imported into computer for three-dimensional reconstruction with software Mimics 9.0. The three dimensional finite element models of three micro-implant-bone interfaces(initial stability, full osseointegration and fibrous integration) were analyzed by finite element analysis software ABAQUS6.5. The primary stress distributions of different micro-implant-bone conditions were evaluated when 2N force was loaded. Then the diameter less than 1.5 mm of the micro implant's neck was added with 0.2 mm, to compare the stress distribution of the modified micro-implant-bone interface with traditional type. The stress mostly concentrated on the neck of micro implant and the full osseointegration interface in all models showed the lowest strain level. Compared with the traditional type, the increasing diameter neck of the micro implant obviously decreased the stress level in all the three conditions. The micro-implant-bone interface and the diameter of micro implant's neck both are the important influence factors to the stress distribution of micro implant.
Multiple capillary biochemical analyzer
Dovichi, Norman J.; Zhang, Jian Z.
1995-01-01
A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.
Optimizing heterosurface adsorbent synthesis for liquid chromatography
NASA Astrophysics Data System (ADS)
Bogoslovskii, S. Yu.; Serdan, A. A.
2016-03-01
The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.
Caillard, L; Sattayaporn, S; Lamic-Humblot, A-F; Casale, S; Campbell, P; Chabal, Y J; Pluchery, O
2015-02-13
Two types of highly ordered organic layers were prepared on silicon modified with an amine termination for binding gold nanoparticles (AuNPs). These two grafted organic monolayers (GOMs), consisting of alkyl chains with seven or 11 carbon atoms, were grafted on oxide-free Si(111) surfaces as tunnel barriers between the silicon electrode and the AuNPs. Three kinds of colloidal AuNPs were prepared by reducing HAuCl4 with three different reactants: citrate (Turkevich synthesis, diameter ∼16 nm), ascorbic acid (diameter ∼9 nm), or NaBH4 (Natan synthesis, diameter ∼7 nm). Scanning tunnel spectroscopy (STS) was performed in a UHV STM at 40 K, and Coulomb blockade behaviour was observed. The reproducibility of the Coulomb behavior was analysed as a function of several chemical and physical parameters: size, crystallinity of the AuNPs, influence of surrounding surfactant molecules, and quality of the GOM/Si interface (degree of oxidation after the full processing). Samples were characterized with scanning tunneling microscope, STS, atomic force microscope, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and high resolution transmission electronic microscope. We show that the reproducibility in observing Coulomb behavior can be as high as ∼80% with the Natan synthesis of AuNPs and GOMs with short alkyl chains.
2009-04-06
CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann
2009-04-06
CAPE CANAVERAL, Fla. – The sound suppression system is tested on the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Jim Grossmann
Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting
2015-04-14
The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.
Simulation of Flow Through Breach in Leading Edge at Mach 24
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Alter, Stephen J.
2004-01-01
A baseline solution for CFD Point 1 (Mach 24) in the STS-107 accident investigation was modified to include effects of holes through the leading edge into a vented cavity. The simulations were generated relatively quickly and early in the investigation by making simplifications to the leading edge cavity geometry. These simplifications in the breach simulations enabled: 1) A very quick grid generation procedure; 2) High fidelity corroboration of jet physics with internal surface impingements ensuing from a breach through the leading edge, fully coupled to the external shock layer flow at flight conditions. These simulations provided early evidence that the flow through a 2 inch diameter (or larger) breach enters the cavity with significant retention of external flow directionality. A normal jet directed into the cavity was not an appropriate model for these conditions at CFD Point 1 (Mach 24). The breach diameters were of the same order or larger than the local, external boundary-layer thickness. High impingement heating and pressures on the downstream lip of the breach were computed. It is likely that hole shape would evolve as a slot cut in the direction of the external streamlines. In the case of the 6 inch diameter breach the boundary layer is fully ingested.
Ha, Seung Min; Cho, Young Suk; Cho, Gyu Chong; Jo, Choong Hyun; Ryu, Ji Young
2015-07-01
The aim of this study was to ascertain if a modified carotid sinus massage (CSM) using ultrasonography is superior to the conventional CSM for vagal tone generation. This was a prospective, crossover, clinical trial including 30 subjects with sinus rhythm. Participants were paired, and they performed 2 types of CSM to each other. To perform the conventional technique, pressure was exerted at the point where the maximal impulse of the carotid pulse was palpated. In the modified technique, participants localized the point of maximal diameter just above the bifurcation of the common carotid artery using ultrasonography and applied pressure to that point. Mean differences between premaneuver and postmaneuver R-R intervals and heart rates were compared. The distance from the midline of the neck (x distance) to the angle of the mandible (y distance) was measured, and the mean distance between the 2 techniques was compared. The baseline mean premaneuver R-R interval and heart rate did not differ significantly between the 2 techniques. The postmaneuver R-R interval and heart rate as well as the mean R-R interval and heart rate differences were significantly greater in the modified CSM. The mean location determined using the modified CSM was located 0.8 cm lateral and 0.8 cm superior to the mean location of the conventional CSM. The modified CSM using ultrasonography might be more useful than the conventional CSM in reverting episodes of paroxysmal supraventricular tachycardia and may be a suitable alternative for treating the same in the emergency department. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Jung-Sun; Lee, Seul-Gee; Bong, Sung-Kyung; Park, Se-Il; Hong, Sung-Yu; Shin, Sanghoon; Shim, Chi Young; Hong, Geu-Ru; Choi, Donghoon; Jang, Yangsoo; Park, Jai-Wun
2016-10-15
LAA occlusion has a similar stroke prevention efficacy compared to anticoagulation treatment for non-valvular atrial fibrillation. The objective of this study was to assess the feasibility and safety of a modified Occlutech® left atrial appendage (LAA) closure device in a canine model. The device was implanted in 10 dogs (33±1kg) using fluoroscopy and transesophageal echocardiography (TEE) guidance. The modified Occlutech® LAA occlusion device was compared with the current version, the Watchman device, and the Amplazter cardiac plug (ACP). LAA occlusion and anchoring to the LAA were evaluated. All dogs were assessed using angiography, TEE, and a gross anatomy examination. The 10 LAA occlusion devices were to be implanted into 10 dogs (5 modified Occlutech devices, 3 current version of Occlutech devices, 1 Watchman, and 1 ACP). LAA implantation was not performed in one dog due to transeptal puncture failure. The three current version of Occlutech devices were embolized immediately after implantation, so three modified devices of the same size were implanted securely without embolization. The mean implant size was 20.1±2.0mm. The devices chosen were a mean of 23.3±10.6% larger than the measured landing zone diameters. Post-implant angiography and TEE revealed well-positioned devices without pericardial effusion or impingement on surrounding structures. The results of this acute animal study suggested that a modified Occlutech® LAA occlusion device was feasible and had greater anchoring performance in canines. Additional large clinical studies are needed to evaluate safety and efficacy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang
2013-09-01
A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.
Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D
2016-11-01
Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mallakpour, Shadpour; Abdolmaleki, Amir; Tabebordbar, Hashem
2018-03-01
This work explains the production, morphology, and features of novel nanocomposite (NC) established on poly(vinyl pyrrolidone) (PVP) as polymer background and modified alpha manganese dioxide (α-MnO 2 ) nanorod (NR) asan efficient filler. At first, one-dimensional α-MnO 2 nanorods (NRs) were produced by a hydrothermal technique and then they were amended with stearic acid (SA) by a solvothermal process. In following, the NCs were made by adding different volumes of α-MnO 2 -SA NR (1, 3 and 5wt%) in the PVP matrix through ultrasonic irradiation as a green, low-cost, fast, and useful technique. Structural and morphological descriptions confirm crystallinity of α-MnO 2 -SA NRs and showed that NRs have been separately dispersed in PVP matrix with rod-like morphology and diameter of about 40-60nm. The use of modifier and ultrasonic waves is accountable for good homogeneities of NRs. Thermogravimetric analysis revealed that thermal permanency of the obtained NCs has grown with increasing the α-MnO 2 -SA content. Also, the UV-vis absorption of NCs was enhanced with the incorporation of the modified α-MnO 2 NR in PVP matrix. The substantial perfections in NCs properties are associated to compatible intermolecular relations between the surface modifying groups of the α-MnO 2 -SA and PVP chain. Copyright © 2017 Elsevier B.V. All rights reserved.
Karkera, Reshma; Raj, A P Nirmal; Isaac, Lijo; Mustafa, Mohammed; Reddy, R Naveen; Thomas, Mathew
2016-12-01
This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substanceat all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO 4 , 50% for PMCR, 29% for PC, and 17% for RMGIC. The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion.
Aerobic granulation in a modified oxidation ditch with an adjustable volume intraclarifier.
Li, Jun; Cai, Ang; Wang, Miao; Ding, Libin; Ni, Yongjiong
2014-04-01
A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day. Bacterial community analysis revealed that most species from seed sludge were preserved in both MOD and granule SBR (G-SBR) except bacteria (Bacteroidetes) might be easily washed out during granulation. Some different bacterial communities were found in sludges from sequencing batch and continuous flow reactors. Presence of metal ions and inorganics in raw wastewater had positive effect on granule formation, but an adjustable volume intraclarifier for controlling selection pressure and deleting return sludge pump played a key role in aerobic sludge granulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Channel effect of the modified powdery mixture of ammonium nitrate and fuel oil
NASA Astrophysics Data System (ADS)
Wu, Chun-Ping; Liu, Lian-Sheng; Wang, Xu-Guang; Liu, Yong; Wang, Yin-Jun
2010-10-01
The modified powdery mixture of ammonium nitrate and fuel oil (MPANFO) is a new breed of industrial explosives developed years ago in China. As one of the important properties of an industrial explosive, the channel effect of MPANFO was reported in this paper. A series of experiments were conducted to determine the channel effect of MPANFO. The blasthole diameter range was estimated to avoid the channel effect of MPANFO. Three empirical formulae for predicting the detonation length of MPANFO were provided in terms of the channel effect. Experiments and theoretical analysis indicate that the channel effect of MPANFO is very serious. The reason why the channel effect of MPANFO is worse than that of other industrial explosives is explained at a theoretical level. In addition, some properties of MPANFO, such as sympathetic distance, detonation velocity and brisance, are determined.
Hu, Zunfang; Xu, Longqian; Wen, Xianghua
2013-01-01
Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LiP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4-phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LIP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle.
Additives affecting properties of β-Li2TiO3 pebbles in a modified indirect wet chemistry process
NASA Astrophysics Data System (ADS)
Yu, Cheng-Long; Liu, Wei; Yang, Long-Tao; Wang, Dao-Yi; Wu, Kang; Zhang, Zeng-Ping; Wang, Xiu-Feng; Yanagisawa, Kazumichi
2016-11-01
Lithium metatitanate (β-Li2TiO3) pebbles were fabricated via the modified indirect wet chemistry method. Effect of varied additives, as polyvinyl alcohol, glycerol, and agar on the properties evolution was investigated. The highest density is obtained by adding 2 wt% (weight percent) polyvinyl alcohol, 3 wt% glycerol, and 3 wt% agar, respectively. β-Li2TiO3 pebbles with relative sintered density of 92.4%T.D. (Theoretical Density), the ratio of the intensity of diffraction peak (002) to that of (-133) of about 2.93, about 1.58 mm in diameter, a better sphericity of 1.02, the particle size of 5-6 μm, and the well-developed surface layered structure are successfully fabricated with 3 wt% glycerol. Glycerol is beneficial to improving the properties by other fabrication method as well.
Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter
NASA Astrophysics Data System (ADS)
Zhang, Chunchen; Gao, Chengcheng; Chang, Ming-Wei; Ahmad, Zeeshan; Li, Jing-Song
2016-10-01
Electrospinning (ES) enables simple production of fibers for broad applications (e.g., biomedical engineering, energy storage, and electronics). However, resulting structures are predominantly random; displaying significant disordered fiber entanglement, which inevitably gives rise to structural variations and reproducibility on the micron scale. Surface and structural features on this scale are critical for biomaterials, tissue engineering, and pharmaceutical sciences. In this letter, a modified ES technique using a rotating multi-nozzle emitter is developed and utilized to fabricate continuous micron-scaled polycaprolactone (PCL) ropes, providing control on fiber intercalation (twist) and structural order. Micron-scaled ropes comprising 312 twists per millimeter are generated, and rope diameter and pitch length are regulated using polymer concentration and process parameters. Electric field simulations confirm vector and distribution mechanisms, which influence fiber orientation and deposition during the process. The modified fabrication system provides much needed control on reproducibility and fiber entanglement which is crucial for electrospun biomedical materials.
Foda, Abd Al-Rahman Mohammad
2013-05-01
Manual tissue microarray (TMA) construction had been introduced to avoid the high cost of automated and semiautomated techniques. The cheapest and simplest technique for constructing manual TMA was that of using mechanical pencil tips. This study was carried out to modify this method, aiming to raise its quality to reach that of expensive ones. Some modifications were introduced to Shebl's technique. Two conventional mechanical pencil tips of different diameters were used to construct the recipient blocks. A source of mild heat was used, and blocks were incubated at 38°C overnight. With our modifications, 3 high-density TMA blocks were constructed. We successfully performed immunostaining without substantial tissue loss. Our modifications increased the number of cores per block and improved the stability of the cores within the paraffin block. This new, modified technique is a good alternative for expensive machines in many laboratories.
Modified glycogen as construction material for functional biomimetic microfibers.
Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr
2016-11-05
We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging
Wang, Xuhua; Yao, Sheng; Ahn, Hyo-Yang; Zhang, Yuanwei; Bondar, Mykhailo V.; Torres, Joseph A.; Belfield, Kevin D.
2010-01-01
Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated. PMID:21258480
Modified Point Mass Trajectory Simulation for Base-Burn Projectiles
1992-03-01
Konrad Adenauer Ufer 2-6 1 DGAM 54 Koblenz ATTN: Mr. J.L. Perez Minguez GERMANY Poligono de Experiencias Paseo de Extremedura WTD 91 D. BW-031 28024...directly related to the average projectile base pressure, Pb, as follows: 1 Pb Cob YM2_ (1) 2 db2 where: db = base diameter of projectile in calibers M...and p v Ab is the free-stream mass flow through an area equal to the base of the projectile, Ab. Danberg (1990) has shown that ABP is linearly related
Human habitat positioning system for NASA's space flight environmental simulator
NASA Technical Reports Server (NTRS)
Caldwell, W. F.; Tucker, J.; Keas, P.
1998-01-01
Artificial gravity by centrifugation offers an effective countermeasure to the physiologic deconditioning of chronic exposure to microgravity; however, the system requirements of rotational velocity, radius of rotation, and resultant centrifugal acceleration require thorough investigation to ascertain the ideal human-use centrifuge configuration. NASA's Space Flight Environmental Simulator (SFES), a 16-meter (52-foot) diameter, animal-use centrifuge, was recently modified to accommodate human occupancy. This paper describes the SFES Human Habitat Positioning System, the mechanism that facilitates radius of rotation variability and alignment of the centrifuge occupants with the artificial gravity vector.
Chemical Dosimeter Tube With Coaxial Sensing Rod
NASA Technical Reports Server (NTRS)
Lueck, Dale E.
1993-01-01
Improved length-of-stain (LOS) chemical dosimeter indicates total dose of chemical vapor in air. Made with rods and tubes of various diameters to obtain various sensitivities and dynamic ranges. Sensitivity larger and dose range smaller when more room for diffusion in gap between tube and rod. Offers greater resistance to changing of color of exposed dye back to color of unexposed condition, greater sensitivity, and higher degree of repeatability. Developed to measure doses of gaseous HCI, dosimeter modified by use of other dyes to indicate doses of other chemical vapors.
Amylose-Based Cationic Star Polymers for siRNA Delivery.
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials.
Feltham, Humphrey L C; Dumas, Christophe; Mannini, Matteo; Otero, Edwige; Sainctavit, Philippe; Sessoli, Roberta; Meledandri, Carla J; Brooker, Sally
2017-02-21
In a proof-of-principle study, a soluble macrocyclic single-molecule magnet (SMM) containing a Cu II 3 Tb III magnetic core was covalently grafted onto small gold nanoparticles pre-functionalised with carboxylate-terminated tethers. A modified microemulsion method allowed production of the small and monodisperse nanoparticles (approximately 3.5 nm in diameter) for the chemisorption of a large amount of intact macrocyclic complexes in the hybrid system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benetatos, Nikolaos; Scalera, Irene; Isaac, John R; Mirza, Darius F; Muiesan, Paolo
2014-10-01
Hepatic venous outflow reconstruction is of critical significance in pediatric patients undergoing living donor liver transplantation. Accurate knowledge of the anatomical variations is important to obtain appropriate size segmental grafts. The diameter of the hepatic veins and the potential risk of complications at the level of the anastomosis require an adequate primary vascular reconstruction. We describe a venous outflow reconstruction technique, in a living related left lateral lobe graft, with unfavorable hepatic venous anatomy. © 2014 Steunstichting ESOT.
NASA Technical Reports Server (NTRS)
Wolfson, R. G.; Sibley, C. B.
1978-01-01
The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.
Surface measuring technique. [using a laser to scan the surface of a reflector
NASA Technical Reports Server (NTRS)
Spiers, R. B., Jr.
1980-01-01
Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.
NASA Astrophysics Data System (ADS)
Wright, Robyn; Thornberg, Steven M.
SEDIDAT is a series of compiled IBM-BASIC (version 2.0) programs that direct the collection, statistical calculation, and graphic presentation of particle settling velocity and equivalent spherical diameter for samples analyzed using the settling tube technique. The programs follow a menu-driven format that is understood easily by students and scientists with little previous computer experience. Settling velocity is measured directly (cm,sec) and also converted into Chi units. Equivalent spherical diameter (reported in Phi units) is calculated using a modified Gibbs equation for different particle densities. Input parameters, such as water temperature, settling distance, particle density, run time, and Phi;Chi interval are changed easily at operator discretion. Optional output to a dot-matrix printer includes a summary of moment and graphic statistical parameters, a tabulation of individual and cumulative weight percents, a listing of major distribution modes, and cumulative and histogram plots of a raw time, settling velocity. Chi and Phi data.
Carmo, Vildete A S; De Oliveira, Mônica C; Reis, Eduardo C O; Guimarães, Tânia M P D; Vilela, José M C; Andrade, Margareth S; Michalick, Marilene S M; Cardoso, Valbert N
2008-01-01
Complement activation is an important step in the acceleration of liposome clearance. The anaphylatoxins released following complement activation may motivate a wide variety of physiologic changes. We performed physicochemical characterization and in vitro studies of the interaction of complement system with both noncirculating and long-circulating pH-sensitive and nonpH-sensitive liposomes. The liposomes were characterized by diameter, zeta potential, and atomic force microscopy (AFM). The study of liposome interactions with complement system was conducted using hemolytic assay in rat serum. All liposomes presented a similar mean diameter (between 99.8 and 124.3 nm). The zeta potential was negative in all liposome preparations, except in liposomes modified with aminopoly (ethyleneglycol) 2000-distearoylphosphatidylethanolamine (aPEG(2000)-DSPE), which presented positive zeta potential. Atomic force microscopy images showed that non-long-circulating pH-sensitive liposomes are prone to vesicles aggregation. Non-pH-sensitive liposomes complement system activates, while pH-sensitive liposomes showed to be poor complement activators in rat serum.
Optimization of electrostatic dual-grid beam-deflection system
NASA Technical Reports Server (NTRS)
Hudson, W. R.; Lathem, W. C.; Power, J. L.; Banks, B. A.
1972-01-01
Tests were performed to minimize accelerator grid erosion of a 5-cm diameter Kaufman ion thruster due to direct beam impingement. Several different screen hole diameters, pillow-shape-square screen holes, and dished screen grids were tried. The optimization was accomplished by copper plating the accelerator grid before testing each grid configuration on a thruster for a 2-hour run. The thruster beam sputtered copper and molybdenum from the accelerator grid where the beam impinged. The observed erosion patterns and measured accelerator currents were used to determine how to modify the accelerator system. The lowest erosion was obtained for a 50-percent open area pillow-shape-square-aperture screen grid, dished 0.043 centimeter convex toward the accelerator grid, which was positioned with the center of the screen grid 0.084 centimeter from the accelerator grid. During this investigation the accelerator current was reduced from 120 to 55 microamperes and was also more uniformly distributed over the area of the accelerator grid.
Flow directing means for air-cooled transformers
Jallouk, Philip A.
1977-01-01
This invention relates to improvements in systems for force-cooling transformers of the kind in which an outer helical winding and an insulation barrier nested therein form an axially extending annular passage for cooling-fluid flow. In one form of the invention a tubular shroud is positioned about the helical winding to define an axially extending annular chamber for cooling-fluid flow. The chamber has a width in the range of from about 4 to 25 times that of the axially extending passage. Two baffles extend inward from the shroud to define with the helical winding two annular flow channels having hydraulic diameters smaller than that of the chamber. The inlet to the chamber is designed with a hydraulic diameter approximating that of the coolant-entrance end of the above-mentioned annular passage. As so modified, transformers of the kind described can be operated at significantly higher load levels without exceeding safe operating temperatures. In some instances the invention permits continuous operation at 200% of the nameplate rating.
2013-01-01
Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO. PMID:23941234
Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations
NASA Astrophysics Data System (ADS)
Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.
2018-05-01
Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.
Fire control method and analytical model for large liquid hydrocarbon pool fires
NASA Technical Reports Server (NTRS)
Fenton, D. L.
1986-01-01
The dominate parameter governing the behavior of a liquid hydrocarbon (JP-5) pool fire is wind speed. The most effective method of controlling wind speed in the vicinity of a large circular (10 m dia.) pool fire is a set of concentric screens located outside the perimeter. Because detailed behavior of the pool fire structure within one pool fire diameter is unknown, an analytical model supported by careful experiments is under development. As a first step toward this development, a regional pool fire model was constructed for the no-wind condition consisting of three zones -- liquid fuel, combustion, and plume -- where the predicted variables are mass burning rate and characteristic temperatures of the combustion and plume zones. This zone pool fire model can be modified to incorporate plume bending by wind, radiation absorption by soot particles, and a different ambient air flow entrainment rate. Results from the zone model are given for a pool diameter of 1.3 m and are found to reproduce values in the literature.
Tribology of alternative bearings.
Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen
2006-12-01
The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.
Small-scale dynamic confinement gap test
NASA Astrophysics Data System (ADS)
Cook, Malcolm
2011-06-01
Gap tests are routinely used to ascertain the shock sensitiveness of new explosive formulations. The tests are popular since that are easy and relatively cheap to perform. However, with modern insensitive formulations with big critical diameters, large test samples are required. This can make testing and screening of new formulations expensive since large quantities of test material are required. Thus a new test that uses significantly smaller sample quantities would be very beneficial. In this paper we describe a new small-scale test that has been designed using our CHARM ignition and growth routine in the DYNA2D hydrocode. The new test is a modified gap test and uses detonating nitromethane to provide dynamic confinement (instead of a thick metal case) whilst exposing the sample to a long duration shock wave. The long duration shock wave allows less reactive materials that are below their critical diameter, more time to react. We present details on the modelling of the test together with some preliminary experiments to demonstrate the potential of the new test method.
Modelling of peak temperature during friction stir processing of magnesium alloy AZ91
NASA Astrophysics Data System (ADS)
Vaira Vignesh, R.; Padmanaban, R.
2018-02-01
Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.
Spectroscopic investigation of the influence of calcium ion on the structures of casein micelles.
Wang, Peng-Jie; Wu, Jian-Ping; Zhang, Hao; Guo, Hui-Yuan; Liu, Hong-Na; Ren, Fa-Zheng
2014-01-01
The effects of calcium ion on the structural properties of casein micelles in the course of heat treatment were synthetically examined by non-structure-invasive spectrometry. The hydrophobicity, reflected by extrinsic fluorescence (ANS fluorescence), was positively correlated with the concentration of the calcium ion, within the range of 0 to 12 mmol x L(-1). Meanwhile, the turbidity and stability of casein micelles also increased with the growth of calcium concentrations. However, opposite results were observed for hydrodynamic diameter and polydispersity index. Compared with the calcium ion, the calcium-chelator (citrate) has an opposite effect on the structural characteristics of casein micelles. Within the calcium concentrations range of 0 to 12 mmol x L(-1), the hydrophobicity, stability and turbidity were negatively correlated with the concentration of the calcium ion, nevertheless, opposite results were observed for hydrodynamic diameter and polydispersity index. All the results indicate that the calcium ion could be used to modify the structures of casein micelles during heat heatment.
Modification of multi-ring basins - The Imbrium model
NASA Technical Reports Server (NTRS)
Whitford-Stark, J. L.
1981-01-01
It is shown that the gross variations in wall height around Imbrium result largely from intersection of the Imbrium basin with pre-existing basins and faulting: angle of impact and slumping played a lesser modifying role. The gross irregularities in plan of the northern part of Imbrium is hypothesized to result from the collapse of large crustal blocks into the Imbrium and Serenitatis cavities. Lithosphere thickness is believed to play an important role in the mechanisms of formation and modification of large craters and basins. The deduction of slow sub-lithospheric flow of material toward the cavity centers does not lend support to the tsunami model, requires a minor modification of the nested-crater model and provides a mechanism for the production of megaterraces. Spatial and temporal lithosphere variations satisfy constraints requiring the overlap of morphology/diameter characteristics, variable onset diameters between planets, variable ring spacings from planet to planet and provide a mechanism for producing local irregularities in ring structures.
Electromechanics in MoS2 and WS2: nanotubes vs. monolayers
Ghorbani-Asl, Mahdi; Zibouche, Nourdine; Wahiduzzaman, Mohammad; Oliveira, Augusto F.; Kuc, Agnieszka; Heine, Thomas
2013-01-01
The transition-metal dichalcogenides (TMD) MoS2 and WS2 show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain through mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that similar electromechanical properties as in monolayer and bulk TMDs are found for large diameter TMD single- (SWNT) and multi-walled nanotubes (MWNTs). The semiconductor-metal transition occurs at elongations of 16%. We show that Raman signals of the in-plane and out-of-plane lattice vibrations depend significantly and linearly on the strain, showing that Raman spectroscopy is an excellent tool to determine the strain of the individual nanotubes and hence monitor the progress of nanoelectromechanical experiments in situ. TMD MWNTs show twice the electric conductance compared to SWNTs, and each wall of the MWNTs contributes to the conductance proportional to its diameter. PMID:24129919
Su, Haijing; Zhou, Xiaoming; Xu, Xianchen; Hu, Gengkai
2014-04-01
A holey-structured metamaterial is proposed for near-field acoustic imaging beyond the diffraction limit. The structured lens consists of a rigid slab perforated with an array of cylindrical holes with periodically modulated diameters. Based on the effective medium approach, the structured lens is characterized by multilayered metamaterials with anisotropic dynamic mass, and an analytic model is proposed to evaluate the transmission properties of incident evanescent waves. The condition is derived for the resonant tunneling, by which evanescent waves can completely transmit through the structured lens without decaying. As an advantage of the proposed lens, the imaging frequency can be modified by the diameter modulation of internal holes without the change of the lens thickness in contrast to the lens due to the Fabry-Pérot resonant mechanism. In this experiment, the lens is assembled by aluminum plates drilled with cylindrical holes. The imaging experiment demonstrates that the designed lens can clearly distinguish two sources separated in the distance below the diffraction limit at the tunneling frequency.
DeOliveira, Edimar; Neri, Cláudio R; Ribeiro, Anderson O; Garcia, Vinícius S; Costa, Leonardo L; Moura, Aline O; Prado, Alexandre G S; Serra, Osvaldo A; Iamamoto, Yassuko
2008-07-01
A new mesoporous catalyst was prepared by the reaction between 3-aminopropyltrimethoxisylane and Cu(II)-hexadecafluorophthalocyanine, followed by co-condensation of tetraethylorthosilicate around a micelle formed by n-dodecylamine. The surfactant was removed from the pores by continuous extraction with ethanol, giving the Si-CuF16Pc catalyst. This catalyst was characterized by SEM, FTIR, TGA, 29Si NMR, N2 adsorption and X-ray diffraction. SEM images confirmed that the catalyst material is formed by nanoaggregates with a diameter of 100 nm. N2 adsorption isotherms showed that Si-CuF16Pc has a surface area of approximately 200 m2 g(-1) and a porous diameter of 7.7 nm, characterizing the mesoporosity of this product. This novel material shows an excellent photocatalytic activity, degrading almost 90% of 2,4-dichlorophenoxyacetic acid (2,4-D) up to 30 min, while only approximately 40% of photodegradation was obtained in its absence.
Interlayer shear behaviors of graphene-carbon nanotube network
NASA Astrophysics Data System (ADS)
Qin, Huasong; Liu, Yilun
2017-09-01
The interlayer shear resistance plays an important role in graphene related applications, and different mechanisms have been proposed to enhance its interlayer load capacity. In this work, we performed molecular dynamics (MD) simulations and theoretical analysis to study interlayer shear behaviors of three dimensional graphene-carbon (3D-GC) nanotube networks. The shear mechanical properties of carbon nanotubes (CNTs) crosslink with different diameters are obtained which is one order of magnitude larger than that of other types of crosslinks. Under shear loading, 3D-GC exhibits two failure modes, i.e., fracture of graphene sheet and failure of CNT crosslink, determined by the diameter of CNT crosslink, crosslink density, and length of 3D-GC. A modified tension-shear chain model is proposed to predict the shear mechanical properties and failure mode of 3D-GC, which agrees well with MD simulation results. The results presented in this work may provide useful insights for future development of high-performance 3D-GC materials.
Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.
Jin, Yi; Yendluri, Raghuvara; Chen, Bin; Wang, Jingbo; Lvov, Yuri
2016-03-15
Natural halloysite clay nanotubes with 15 nm inner and 75 nm outer diameters have been used as vehicles for sustained release of drugs in composite hollow microparticles "glued" with CaCO3. We used a layer-by layer assembly accomplished alginate binding with Ca(2+) followed by CO2 bubbling to prepare the composite microspheres of CaCO3 and polyelectrolytes (PE) modified halloysite nanotubes (HNTs-PE2/CaCO3) with the diameter of about 5-10 μm. These microparticles have empty spherical structure and abundant pore distributions with maxima at 2.5, 3.9, 6.0 and 13.3 nm, and higher surface area of 82.3 m(2) g(-1) as characterized by SEM and BET test. We loaded drugs in these micro-nano carriers of tight piles of halloysite nanotube with end clogged with CaCO3. The sustained release of Nifedipine drug from HNTs-PE2/CaCO3 composite microspheres was slower than for pristine halloysite nanotubes. Copyright © 2015 Elsevier Inc. All rights reserved.
Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect
NASA Technical Reports Server (NTRS)
Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)
2001-01-01
The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
Large-area PSPMT based gamma-ray imager with edge reclamation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, K-P; Nakae, L
2000-09-21
We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less
NASA Astrophysics Data System (ADS)
Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan
2012-03-01
A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.
Bronstein, Lyudmila M.; Shtykova, Eleonora V.; Malyutin, Andrey; Dyke, Jason C.; Gunn, Emily; Gao, Xinfeng; Stein, Barry; Konarev, Peter V.; Dragnea, Bogdan; Svergun, Dmitri I.
2010-01-01
Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG (EG) tails allows the NP hydrophilicity. The success of the NP coating was found to be independent of the degree of grafting which was varied between 20 and 80% of the –MacOD-units, but depended on the length of the grafted tail. The NP coating and hydrophilization did not occur when the modified copolymer contained 750 Da PEG tails independently of the grafting degree. To explain this phenomenon the micellization of the modified PMAcOD copolymers in water was analyzed by small angle x-ray scattering (SAXS). The PMAcOD molecules with the grafted 750 Da PEG tails form compact non-interacting disk-like micelles, whose stability apparently allows for no interactions with the NP hydrophobic shells. The PMAcOD containing the 5,000 Da PEG and EG tails form much larger aggregates capable of an efficient coating of the NPs. The coated NPs were characterized using transmission electron microscopy, dynamic light scattering, ζ-potential measurements, and thermal gravimetry analysis. The latter method demonstrated that the presence of long PEG tails in modified PMAcOD allows the attachment of fewer macromolecules (by a factor of ~20) compared to the case of non-modified or EG modified PMAcOD, emphasizing the importance of PEG tails in NP hydrophilization. The NPs coated with PMAcOD modified with 60% (towards all –MAcOD- units) of the 5,000 PEG tails bear a significant negative charge and display good stability in buffers. Such NPs can be useful as magnetic cores for virus-like particle formation. PMID:21221425
Use of 5-mm-diameter implants: Periotest values related to a clinical and radiographic evaluation.
Aparicio, C; Orozco, P
1998-12-01
A modified design of the original Brånemark implant consisting of a cp. Titanium 5.0-mm-diameter self-tapping implant threaded up to the marginal platform has been proposed for specific indications. From February 1992 to November 1995, a total of 185 machined screw implants (Nobel Biocare, Gothenburg, Sweden) were installed in 45 patients to withstand 58 prostheses. Of these, 91 were 3.75-mm diameter and 94 were 5.0-mm wide. Most of the implants were placed in type B and C bone quantity and type 2 and 3 bone quality. A retrospective evaluation with regard to indications, marginal bone remodelling, Periotest values (PTv) and survival rate is presented. PTv and radiographic measurements were made at abutment connection and repeated 3, 6 and 12 months later and thereafter every year. The follow-up ranged from 16 to 55 months (mean 32.9 months) post-loading. Three patients with 8 5.0-mm implants dropped-out of the study at different stages. Out of the wide implants, 1 was expelled during the healing period; 3 were found mobile at the abutment connection; 1 lost its osseointegration suddenly after 2 years of function; 4 belonging to 1 patient did not meet the success criteria due to continuous marginal bone loss. The cumulative success rate of 5.0-mm implants (CSR) after 1 year of function was 97.2% for upper jaws and 88.4% in mandibles, whereas the CSR in maxilla after 48 months was 97.2% and 83.4% in mandibles. The obtained PTv from 5.0-mm-wide fixtures in maxilla and mandibles were respectively 1.1 and 0.6 units lower than those obtained PTv for 3.75-mm-diameter implants in the same patients. The hypothesis that there are differences in the damping capacity of the bone surrounding a 5.0-mm-wide implant compared to the 3.75-mm-diameter implant is supported by the PTv results.
Di Marzo, Larissa; Cree, Patrick; Barbano, David M
2016-11-01
Our objective was to develop partial least square models using data from Fourier transform mid-infrared (MIR) spectra to predict the particle size distributions d(0.5) and d(0.9), surface volume mean diameter D[3,2], and volume moment mean diameter D[4,3] of milk fat globules and validate the models. The goal of the study was to produce a method built into the MIR milk analyzer that could be used to warn the instrument operator that the homogenizer is near failure and needs to be replaced to ensure quality of results. Five homogenizers with different homogenization efficiency were used to homogenize pasteurized modified unhomogenized milks and farm raw bulk milks. Homogenized milks were collected from the homogenizer outlet and then run through an MIR milk analyzer without an in-line homogenizer to collect a MIR spectrum. A separate portion of each homogenized milk was analyzed with a laser light-scattering particle size analyzer to obtain reference values. The study was replicated 3 times with 3 independent sets of modified milks and bulk tank farm milks. Validation of the models was done with a set of 34 milks that were not used in the model development. Partial least square regression models were developed and validated for predicting the following milk fat globule particle size distribution parameters from MIR spectra: d(0.5) and d(0.9), surface volume mean diameter D[3,2], and volume moment mean diameter D[4,3]. The basis for the ability to model particle size distribution of milk fat emulsions was hypothesized to be the result of the partial least square modeling detecting absorbance shifts in MIR spectra of milk fat due to the Christiansen effect. The independent sample validation of particle size prediction methods found more variation in d(0.9) and D[4,3] predictions than the d(0.5) and D[3,2] predictions relative to laser light-scattering reference values, and this may be due to variation in particle size among different pump strokes. The accuracy of the d(0.9) prediction for routine quality assurance, to determine if a homogenizer within an MIR milk analyzer was near the failure level [i.e., d(0.9) >1.7µm] and needed to be replaced, is fit-for-purpose. The daily average particle size performance [i.e., d(0.9)] of a homogenizer based on the mean for the day could be used for monitoring homogenizer performance. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra
2016-02-15
Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Richards, John R; Brozell, Todd T; Rea, Charles; Boraston, Geoff; Hayden, John
2009-11-01
The California Construction and Industrial Minerals Association and the National Stone, Sand, & Gravel Association have sponsored tests at three sand and gravel plants in California to compile crystalline silica emission factors for particulate matter (PM) of aerodynamic diameter of 4 microm or less (PM4) and ambient concentration data. This information is needed by industrial facilities to evaluate compliance with the Chronic Reference Exposure Level (REL) for ambient crystalline silica adopted in 2005 by the California Office of Environmental Health Hazard Assessment. The REL applies to PM4 respirable PM. Air Control Techniques, P.C. sampled for PM4 crystalline silica using a conventional sampler for PM of aerodynamic diameter of 2.5 microm or less (PM2.5), which met the requirements of 40 Code of Federal Regulations Part 50, Appendix L. The sample flow rate was adjusted to modify the 50% cut size to 4 microm instead of 2.5 microm. The filter was also changed to allow for crystalline silica analyses using National Institute for Occupational Safety and Health (NIOSH) Method 7500. The particle size-capture efficiency curve for the modified Appendix L instrument closely matched the performance curve of NIOSH Method 0600 for PM4 crystalline silica and provided a minimum detection limit well below the levels attainable with NIOSH Method 0600. The results of the tests indicate that PM4 crystalline silica emissions range from 0.000006 to 0.000110 lb/t for screening operations, tertiary crushers, and conveyor transfer points. The PM4 crystalline silica emission factors were proportional to the crystalline silica content of the material handled in the process equipment. Measured ambient concentrations ranged from 0 (below detectable limit) to 2.8 microg/m3. All values measured above 2 microg/m3 were at locations upwind of the facilities being tested. The ambient PM4 crystalline silica concentrations measured during this study were below the California REL of 3 microg/m3. The measured ambient concentrations in the PM4 size range are consistent with previously published ambient crystalline silica data applicable to the PM2.5 and PM of aerodynamic diameter of 10 microm or less (PM10) size ranges.
Mehbuba Hossain, Sultana; Chowdhury, Ezharul Hoque
2018-01-01
Biodegradable inorganic apatite-based particle complex is popular for its pH-sensitivity at the endosomal acidic environment to facilitate drug release following cellular uptake. Despite being a powerful anticancer drug, doxorubicin shows severe off-target effects and therefore would need a carrier for the highest effectiveness. We aimed to chemically modify carbonate apatite (CA) with Krebs cycle intermediates, such as citrate and succinate in order to control the growth of the resultant particles to more efficiently carry and transport the anticancer drug into the cancer cells. Citrate- or succinate-modified CA particles were synthesized with different concentrations of sodium citrate or sodium succinate, respectively, in the absence or presence of doxorubicin. The drug loading efficiency of the particles and their cellular uptake were observed by quantifying fluorescence intensity. The average diameter and surface charge of the particles were determined using Zetasizer. Cell viability was assessed by MTT assay. Citrate-modified carbonate apatite (CMCA) exhibited the highest (31.38%) binding affinity for doxorubicin and promoted rapid cellular uptake of the drug, leading to the half-maximal inhibitory concentration 1000 times less than that of the free drug in MCF-7 cells. Hence, CMCA nanoparticles with greater surface area enhance cytotoxicity in different breast cancer cells by enabling higher loading and more efficient cellular uptake of the drug. PMID:29534497
Elahi, M. Fazley; Guan, Guoping; Wang, Lu; King, Martin W.
2014-01-01
To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts. PMID:28788601
NASA Astrophysics Data System (ADS)
Milićević, Bojana; Đorđević, Vesna; Lončarević, Davor; Dostanić, Jasmina M.; Ahrenkiel, S. Phillip; Dramićanin, Miroslav D.; Sredojević, Dušan; Švrakić, Nenad M.; Nedeljković, Jovan M.
2017-11-01
Under normal conditions, titanium dioxide does not absorb visible light photons due to large band gap. Nevertheless, when titanium dioxide nanoparticles (TiO2 NPs) are surface-modified with thiosalicylic acid (TSA), their optical properties are altered owing to the formation of charge transfer complex that initiates absorption in the visible spectral range. Colloidal and sol-gel techniques were used to synthesize uniform TiO2 NPs of different sizes (average diameters in the range 4-15 nm), and effects of their subsequent modification by TSA molecules were compared with effect of modification of commercial Degussa TiO2 powder. Thorough microstructural characterization of TiO2 nanoparticulates was performed including transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, as well as nitrogen adsorption-desorption isotherms. Optical measurements revealed that all surface-modified TiO2 samples with TSA have similar spectral features independent of their morphological differences, and, more importantly, absorption onset of modified TiO2 samples was found to be red-shifted by 1.0 eV compared to the unmodified ones. The mode of binding between TSA and surface Ti atoms was analyzed by infrared spectroscopy. Finally, the quantum chemical calculations, based on density functional theory, were performed to support optical characterization of surface-modified TiO2 with TSA.
MRI contrast demonstration of antigen-specific targeting with an iron-based ferritin construct
NASA Astrophysics Data System (ADS)
Walsh, Edward G.; Mills, David R.; Lim, Sierin; Sana, Barindra; Brilliant, Kate E.; Park, William K. C.
2013-01-01
A genetically modified ferritin has been examined for its properties as a tumor-selective magnetic resonance imaging (MRI) contrast agent. The engineered ferritin described herein was derived from Archaeoglobus fulgidus (AfFtn-AA), which stores a significantly greater quantity of iron than wild-type ferritins. Relaxivity measurements were taken at 3 Tesla of ferritin particles uniformly distributed in an agarose gel to assess relaxivities r 1 and r 2. The r 1 and r 2 values of the uniformly distributed modified ferritin were significantly higher ( r 1 = 1,290 mM-1 s-1 and r 2 = 5,740 mM-1 s-1) than values observed for wild-type ferritin (e.g., horse spleen, r 1 = 0.674 mM-1 s-1, r 2 = 95.54 mM-1 s-1). The modified iron-enriched ferritin (14.5 nm diameter) was conjugated with a monoclonal antibody (10 nm length) against rat Necl-5, a cell surface glycoprotein overexpressed by many epithelial cancers. In vitro studies showed strong reactivity of the assembled nanoconjugate to transformed Necl-5 positive rat prostate epithelial cells. Furthermore, MRI demonstrated a significant T2 contrast with negligible T1 effect when bound to cells. These findings highlight the utility of the modified ferritin construct as a novel MRI contrast agent that can be manipulated to target antigen-specific tissues.
Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela
2017-08-01
Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5 UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.
Bifurcation induced by the aspect ratio in a turbulent von Kármán swirling flow
NASA Astrophysics Data System (ADS)
Liot, Olivier; Burguete, Javier
2017-01-01
We evaluate the effect of the aspect ratio, i.e., the distance between the propellers H divided by the diameter D , on the slow dynamics of a von Kármán swirling flow driven by two propellers in a closed cylinder. We use a cell with a fixed diameter D but where the distance between the propellers can be turned continuously and where the inertia from the propellers can also be changed using different gears. No change on the dynamics is observed when the momentum of inertia is modified. Some dramatic changes of the shear layer position are observed modifying the aspect ratio Γ =H /D . A bifurcation of the shear layer position appears. Whereas for low Γ the shear layer position has a smooth evolution when turning the asymmetry between the rotation frequency of the propellers, for high Γ the transition becomes abrupt and a symmetry breaking appears. Secondly we observe that the spontaneous reversals with large residence times already observed in this experiment for Γ =1 [de la Torre and Burguete, Phys. Rev. Lett. 99, 054101 (2007), 10.1103/PhysRevLett.99.054101] exist only in a narrow window of aspect ratio. We show using an experimental study of the mean flow structure and a numerical approach based on a Langevin equation with colored noise that the shear layer position seems to be decided by the mean flow structure, whereas the reversals are linked to the spatial distribution of the turbulent fluctuations in the cell.
Online monitoring of oil film using electrical capacitance tomography and level set method.
Xue, Q; Sun, B Y; Cui, Z Q; Ma, M; Wang, H X
2015-08-01
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for online monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
Online monitoring of oil film using electrical capacitance tomography and level set method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Q., E-mail: xueqian@tju.edu.cn; Ma, M.; Sun, B. Y.
2015-08-15
In the application of oil-air lubrication system, electrical capacitance tomography (ECT) provides a promising way for monitoring oil film in the pipelines by reconstructing cross sectional oil distributions in real time. While in the case of small diameter pipe and thin oil film, the thickness of the oil film is hard to be observed visually since the interface of oil and air is not obvious in the reconstructed images. And the existence of artifacts in the reconstructions has seriously influenced the effectiveness of image segmentation techniques such as level set method. Besides, level set method is also unavailable for onlinemore » monitoring due to its low computation speed. To address these problems, a modified level set method is developed: a distance regularized level set evolution formulation is extended to image two-phase flow online using an ECT system, a narrowband image filter is defined to eliminate the influence of artifacts, and considering the continuity of the oil distribution variation, the detected oil-air interface of a former image can be used as the initial contour for the detection of the subsequent frame; thus, the propagation from the initial contour to the boundary can be greatly accelerated, making it possible for real time tracking. To testify the feasibility of the proposed method, an oil-air lubrication facility with 4 mm inner diameter pipe is measured in normal operation using an 8-electrode ECT system. Both simulation and experiment results indicate that the modified level set method is capable of visualizing the oil-air interface accurately online.« less
Özden-Yenigün, Elif; Menceloğlu, Yusuf Z; Papila, Melih
2012-02-01
Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.
Dhaneshwar, Suneela; Dipmala, Patil; Abhay, Harsulkar; Prashant, Bhondave
2013-08-01
Diacerein and its active metabolite rhein are promising disease modifying agents for osteoarthritis (OA). Boswellic acid is an active ingredient of Gugglu; a herbal medicine commonly administered in osteoarthritis. Both of them possess excellent anti-inflammatory and anti-arthritic activities. It was thought interesting to conjugate rhein and boswellic acid into a mutual prodrug (DSRB) and evaluate its efficacy on collagenase-induced osteoarthritis in rats wherein the conjugate, rhein, boswellic acid and their physical mixture, were tested based on various parameters. Oral administration of 3.85 mg of rhein, 12.36 mg of boswellic acid and 15.73 mg of DSRB which would release equimolar amounts of rhein and boswellic acid, exhibited significant restoration in rat body weight as compared to the untreated arthritic control group. Increase in knee diameter (mm), due to edema was observed in group injected with collagenase, which reduced significantly with the treatment of conjugate. The hematological parameters (Hb, RBC, WBC and ESR) and biochemical parameters (CRP, SALP, SGOT and SGPT) in the osteoarthritic rats were significantly brought back to normal values on treatment with conjugate. It also showed better anti-ulcer activity than rhein. Further the histopathological studies revealed significant anti-arthritic activity of conjugate when compared with the arthritic control group. In conclusion, the conjugate at the specified dose level of 15.73 mg/kg, p. o. (BID) showed reduction in knee diameter and it could significantly normalize the hematological and biochemical abnormalities in collagenase-induced osteoarthritis in rats. Further the histopathological studies confirmed the additive anti-arthritic effect of DSRB as compared to plain rhein.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
NASA Astrophysics Data System (ADS)
Liu, Hongrui; Ji, Lucheng; Liu, Jun; Du, Qiang; Liu, Guang; Wang, Pei; Du, Meimei
2017-10-01
In order to improve the efficiency, ultra-high bypass ratio engine attracts more and more attention because of its huge advantage, which has larger diameter low pressure turbine (LPT). This trend will lead to aggressive (high diffusion) intermediate turbine duct (ITD) design. It is necessary to guide the flow leaving high pressure turbine (HPT) to LPT at a larger diameter without any severe loss generating separation or flow disturbances. In this paper, eight ITDs with upstream swirl vanes and downstream LPT nozzle are investigated with the aid of numerical method. These models are modified from a unique ITD prototype, which comes from a real engine. Key parameters like area ratio, inlet height, and non-dimensional length of the ITDs are kept unchanged, while the rising angle (radial offset) is the only changed parameter which ranges from 8 degrees to 45 degrees. In this paper, the effects of rising angle (RA) on ITD, as well as nearby turbines, will be analyzed in detail. According to the investigation results, RA could be as large as 40 degrees in such model of this paper to escape separation; When RA increases, local inlet flow field of LPT nozzle appears to be with apparent variation; while a positive result is that outlet flow field could be kept almost unchanged through modifying blade profile. On the other hand, it seems optimistic that the overall total pressure loss could be kept nearly equivalent among different RA cases. And a valuable conclusion is that outer wall curvature is more important for pressure loss, which advises a clear direction for optimizing ITD.
Processes Modifying Cratered Terrains on Pluto
NASA Technical Reports Server (NTRS)
Moore, J. M.
2015-01-01
The July encounter with Pluto by the New Horizons spacecraft permitted imaging of its cratered terrains with scales as high as approximately 100 m/pixel, and in stereo. In the initial download of images, acquired at 2.2 km/pixel, widely distributed impact craters up to 260 km diameter are seen in the near-encounter hemisphere. Many of the craters appear to be significantly degraded or infilled. Some craters appear partially destroyed, perhaps by erosion such as associated with the retreat of scarps. Bright ice-rich deposits highlight some crater rims and/or floors. While the cratered terrains identified in the initial downloaded images are generally seen on high-to-intermediate albedo surfaces, the dark equatorial terrain informally known as Cthulhu Regio is also densely cratered. We will explore the range of possible processes that might have operated (or still be operating) to modify the landscape from that of an ancient pristinely cratered state to the present terrains revealed in New Horizons images. The sequence, intensity, and type of processes that have modified ancient landscapes are, among other things, the record of climate and volatile evolution throughout much of the Pluto's existence. The deciphering of this record will be discussed. This work was supported by NASA's New Horizons project.
XIAO, CHENGGEN; CHEN, YUANHAN; LIANG, XINLING; XIE, ZHEN; ZHANG, MIN; LI, RUIZHAO; LI, ZHILIAN; FU, XIA; YU, XIYONG; SHI, WEI
2014-01-01
The ratio between plasma kynurenine (Kyn) and tryptophan (Trp) serves as a marker of indoleamine 2,3-dioxygenase, a critical immunomodulatory molecule. Simultaneous detection of the two markers may be performed using high-pressure liquid chromatography (HPLC). However, for uremic patients, the conventional detection method may be affected by a range of accumulated toxins. The current study aimed to establish a method for the simultaneous measurement of Kyn and Trp in patients following maintenance hemodialysis via HPLC-ultraviolet detection. The procedure involved the use of a SinoChrom ODS-BP C18 column (4.6×150 mm; inner diameter, 4.5 μm) and a mobile phase of 15 mmol/l sodium acetate acetic acid solution (containing 5% acetonitrile, pH 4.8). The modified method was verified using plasma samples from 10 healthy controls and 91 maintenance hemodialysis patients. The results demonstrated that the modified method was successful in simultaneously detecting the concentrations of Trp and Kyn in the healthy controls and maintenance hemodialysis patients. The method is simple, fast, accurate and suitable for clinical and research purposes in maintenance hemodialysis patients. PMID:24669249
Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres.
Zhang, Qian; Zheng, Zhong; Liu, Changxia; Liu, Chunqiao; Tan, Tianwei
2016-04-01
Superparamagnetic Fe3O4 sub-microspheres with diameters of approximately 200 nm were prepared via a solvothermal method, and then modified with epoxychloropropane. Lipase was immobilized on the modified sub-microspheres. The immobilized lipase was used in the production of biodiesel fatty acid methyl esters (FAMEs) from acidified waste cooking oil (AWCO). The effects of the reaction conditions on the biodiesel yield were investigated using a combination of response surface methodology and three-level/three-factor Box-Behnken design (BBD). The optimum synthetic conditions, which were identified using Ridge max analysis, were as follows: immobilized lipase:AWCO mass ratio 0.02:1, fatty acid:methanol molar ratio 1:1.10, hexane:AWCO ratio 1.33:1 (mL/g), and temperature 40 °C. A 97.11% yield was obtained under these conditions. The BBD and experimental data showed that the immobilized lipase could generate biodiesel over a wide temperature range, from 0 to 40 °C. Consistently high FAME yields, in excess of 80%, were obtained when the immobilized lipase was reused in six replicate trials at 10 and 20 °C. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes
NASA Astrophysics Data System (ADS)
Aqida, S. N.; Naher, S.; Brabazon, D.
2011-05-01
This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.
Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo
2011-11-01
The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering.
Fiber optic sensor based on reflectivity configurations to detect heart rate
NASA Astrophysics Data System (ADS)
Yunianto, M.; Marzuki, A.; Riyatun, R.; Lestari, D.
2016-11-01
Research of optical fiber-based heart rate detection sensor has been conducted using the reflection configurationon the thorax motion modified. Optical fiber used in this research was Plastic Optical Fiber (POF) with a diameter of 0.5. Optical fiber system is made with two pieces of fiber, the first fiber is to serve as a transmitter transmitting light from the source to the reflector membrane, the second fiber serves as a receiver. One of the endsfrom the two fibersis pressed and positioned perpendicular of reflector membrane which is placed on the surface of the chest. The sensor works on the principle of intensity changes captured by the receiver fiber when the reflector membrane gets the vibe from the heart. The light source used is in the form of Light Emitting Diode (LED) and Light Dependent Resistor (LDR) as a light sensor. Variations are performed on the reflector membrane diameter. The light intensity received by the detector increases along with the increasing width of the reflector membrane diameter. The results show that this sensor can detect the harmonic peak at a frequency of 1.5 Hz; 7.5 Hz; 10.5 Hz; and 22.5 Hz in a healthy human heart with an average value of Beat Per Minute (BPM) by 78 times, a prototype sensor that is made can work and function properly.
Gas permeation in a molecular crystal and space expansion.
Takasaki, Yuichi; Takamizawa, Satoshi
2014-05-14
A novel single-crystal membrane [Cu(II)2(4-F-bza)4(2-mpyz)]n (4-F-bza = 4-fluorobenzoate; 2-mpyz = 2-methylpyrazine) was synthesized and its identical permeability in any crystal direction in the correction for tortuosity proved that gas diffuses inside the channels without detour. H2 permeated by 1.18 × 10(-12) mol m m(-2) s(-1) Pa(-1) with a high selectivity (Fα: 23.5 for H2/CO and 48.0 for H2/CH4) through its 2D-channels having a minimum diameter of 2.6 Å, which is narrower than the Lennard-Jones diameter of H2 (2.827 Å), CO (3.690 Å), and CH4 (3.758 Å). The high rate of permeation was well explained by a modified Knudsen diffusion model based on the space expansion effect, which agrees with the observed permselectivity enhanced for smaller gases in considering the expansion of a channel resulting from the collision of gas molecules or atoms onto the channel wall. An analysis of single-crystal X-ray data showed the expansion order to be H2 > Ar > CH4, which was expected from the permeation analysis. The permselectivity of a porous solid depends on the elasticity of the pores as well as on the diameter of the vacant channel and the size of the target gas.
Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals.
Ranasinghesagara, Janaka C; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O; Venugopalan, Vasan
2017-04-17
We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction.
Effect of scattering on coherent anti-Stokes Raman scattering (CARS) signals
Ranasinghesagara, Janaka C.; De Vito, Giuseppe; Piazza, Vincenzo; Potma, Eric O.; Venugopalan, Vasan
2017-01-01
We develop a computational framework to examine the factors responsible for scattering-induced distortions of coherent anti-Stokes Raman scattering (CARS) signals in turbid samples. We apply the Huygens-Fresnel wave-based electric field superposition (HF-WEFS) method combined with the radiating dipole approximation to compute the effects of scattering-induced distortions of focal excitation fields on the far-field CARS signal. We analyze the effect of spherical scatterers, placed in the vicinity of the focal volume, on the CARS signal emitted by different objects (2μm diameter solid sphere, 2μm diameter myelin cylinder and 2μm diameter myelin tube). We find that distortions in the CARS signals arise not only from attenuation of the focal field but also from scattering-induced changes in the spatial phase that modifies the angular distribution of the CARS emission. Our simulations further show that CARS signal attenuation can be minimized by using a high numerical aperture condenser. Moreover, unlike the CARS intensity image, CARS images formed by taking the ratio of CARS signals obtained using x- and y-polarized input fields is relatively insensitive to the effects of spherical scatterers. Our computational framework provide a mechanistic approach to characterizing scattering-induced distortions in coherent imaging of turbid media and may inspire bottom-up approaches for adaptive optical methods for image correction. PMID:28437941
2009-04-06
CAPE CANAVERAL, Fla. – Water cascades over the side of the mobile launcher platform on Launch Pad 39B at NASA's Kennedy Space Center in Florida. The sound suppression system is being tested on the platform. Pad 39B will be the site of the first Ares vehicle launch, including the Ares I-X flight test that is targeted for summer 2009. The mobile launcher platform was handed over to the Constellation Program and modified for the Ares I-X flight test. It is being tested before being moved to the Vehicle Assembly Building for assembly of the Ares I-X rocket. A sound suppression water system is in¬stalled on the pads to protect against damage by acoustical energy and rocket exhaust reflected from the flame trench and mobile launcher plat¬form during a launch. The sound suppression system includes an elevated 290-foot-high water tank with a capacity of 300,000 gallons. The water releases just prior to the ignition of the rocket and flows through 7-foot-diameter pipes for about 20 seconds. A torrent of water will flow onto the mobile launcher platform from six large quench nozzles, or “rainbirds,” mounted on its surface. The rainbirds are 12 feet high. The two in the center are 42 inches in diameter; the other four have a 30-inch diameter. Photo credit: NASA/Dimitri Gerondidakis
Li, Mi; Lu, Shengfu; Wang, Gang; Feng, Lei; Fu, Bingbing; Zhong, Ning
2016-06-01
To explore working memory and the ability to process different emotional stimuli in patients with first-onset and untreated minor (mild or moderate) depression. Patients with first-onset and previously untreated minor depression, and healthy controls, were enrolled. Using a modified Sternberg working memory paradigm to investigate the combined effects of emotional stimuli with working memory, participants were exposed to experimental stimuli comprising pictures that represented positive, neutral and negative emotions. Working memory ability was measured using reaction time and accuracy, and emotion-processing ability was measured using pupil diameter. Out of 36 participants (18 patients with minor depression and 18 controls), there were no statistically significant between-group differences in response time and accuracy. Positive stimuli evoked changes in pupil diameter that were significantly smaller in patients with minor depression versus controls, but changes in pupil diameter evoked by negative stimuli were not significantly different between the two groups. Healthy subjects showed a stronger emotional response to positive emotional stimuli than patients with first onset and previously untreated minor depression, but there were no differences in response to negative emotions. There were no statistically significant between-group differences in terms of speed of cognitive response, but this may have been due to the relatively small samples sizes assessed. Studies with larger sample populations are required to further investigate these results. © The Author(s) 2016.
Mohanty, S P; Singh, K A; Kundangar, R; Shankar, V
2017-04-01
The purpose of this study was to compare the clinical and radiological outcomes of multiple small diameter drilling and core decompression with fibular strut grafting in the management of non-traumatic avascular necrosis (AVN) of the femoral head. Outcomes of patients with AVN treated by multiple small diameter drilling (group 1) were compared retrospectively with patients treated by core decompression and fibular grafting (group 2). Harris hip score (HHS) was used to assess the clinical status pre- and postoperatively. Modified Ficat and Arlet classification was used to assess the radiological stage pre- and postoperatively. Forty-six patients (68 hips) were included in this study. Group 1 consisted of 33 hips, and group 2 consisted of 35 hips. In stages I and IIB, there was no statistically significant difference in the final HHS between the two groups. However, in stages IIA and III, hips in group 2 had a better final HHS (P < 0.05). In terms of radiographic progression, there was no statistical difference between hips in stages I, IIA and stage IIB. However, in stage III, hips belonging to group 2 had better results (P < 0.05). Kaplan-Meier survivorship analysis showed better outcome in group 2 in stage III (P < 0.05). Hips with AVN in the precollapse stage can be salvaged by core decompression with or without fibular grafting. Multiple small diameter drilling is relatively simple and carries less morbidity and hence preferred in stages I and II. However, in stage III disease, core decompression with fibular strut grafting gives better results.
Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing.
Sze, Jasmine Y Y; Kumar, Shailabh; Ivanov, Aleksandar P; Oh, Sang-Hyun; Edel, Joshua B
2015-07-21
Nanopipettes are an attractive single-molecule tool for identification and characterisation of nucleic acids and proteins in solutions. They enable label-free analysis and reveal individual molecular properties, which are generally masked by ensemble averaging. Having control over the pore dimensions is vital to ensure that the dimensions of the molecules being probed match those of the pore for optimization of the signal to noise. Although nanopipettes are simple and easy to fabricate, challenges exist, especially when compared to more conventional solid-state analogues. For example, a sub-20 nm pore diameter can be difficult to fabricate and the batch-to-batch reproducibility is often poor. To improve on this limitation, atomic layer deposition (ALD) is used to deposit ultrathin layers of alumina (Al2O3) on the surface of the quartz nanopipettes enabling sub-nm tuning of the pore dimensions. Here, Al2O3 with a thickness of 8, 14 and 17 nm was deposited onto pipettes with a starting pore diameter of 75 ± 5 nm whilst a second batch had 5 and 8 nm Al2O3 deposited with a starting pore diameter of 25 ± 3 nm respectively. This highly conformal process coats both the inner and outer surfaces of pipettes and resulted in the fabrication of pore diameters as low as 7.5 nm. We show that Al2O3 modified pores do not interfere with the sensing ability of the nanopipettes and can be used for high signal-to-noise DNA detection. ALD provides a quick and efficient (batch processing) for fine-tuning nanopipettes for a broad range of applications including the detection of small biomolecules like RNA, aptamers and DNA-protein interactions at the single molecule level.
Load deflection characteristics and force level of nickel titanium initial archwires.
Lombardo, Luca; Marafioti, Matteo; Stefanoni, Filippo; Mollica, Francesco; Siciliani, Giuseppe
2012-05-01
To investigate and compare the characteristics of commonly used types of traditional and heat-activated initial archwire by plotting their load/deflection graphs and quantifying three suitable parameters describing the discharge plateau phase. Forty-eight archwires (22 nickel titanium [NiTi] and 26 heat-activated) of cross-sectional diameter ranging from 0.010 to 0.016 inch were obtained from seven different manufacturers. A modified three-point wire-bending test was performed on three analogous samples of each type of archwire at a constant temperature (37.0°C). For each resulting load/deflection curve, the plateau section was isolated, along with the mean value of the average plateau force, the plateau length, and the plateau slope for each type of wire obtained. Statistically significant differences were found between almost all wires for the three parameters considered. Statistically significant differences were also found between traditional and heat-activated archwires, the latter of which generated longer plateaus and lighter average forces. The increase in average force seen with increasing diameter tended to be rather stable, although some differences were noted between traditional and heat-activated wires. Although great variation was seen in the plateau behavior, heat-activated versions appear to generate lighter forces over greater deflection plateaus. On average, the increase in plateau force was roughly 50% when the diameter was increased by 0.002 inch (from 0.012 to 0.014 and from 0.014 to 0.016 inch) and about 150% when the diameter was increased by 0.004 inch (from 0.012 to 0.016), with differences between traditional and heat-activated wires noted in this case.
NASA Astrophysics Data System (ADS)
Sosa, C. S.; Thompson, S. J.; Chichester, D. L.; Clarke, S. D.; Di Fulvio, A.; Pozzi, S. A.
2018-08-01
An increase in light-collection efficiency (LCE) improves the energy resolution of scintillator-based detection systems. An improvement in energy resolution can benefit detector performance, for example by lowering the measurement threshold and achieving greater accuracy in light-output calibration. This work shows that LCE can be increased by modifying the scintillator shape to reduce optical-photon reflections, thereby decreasing transmission and absorption likelihood at the reflector boundary. The energy resolution of four organic scintillators (EJ200) were compared: two cones and two right-circular cylinders, all with equal base diameter and height (50 mm). The sides of each shape had two surface conditions: one was polished and the other was ground. Each scintillator was coupled to the center of four photomultiplier tube (PMT) configurations of different diameters. The photocathode response of all PMTs was assessed as a function of position using a small cube (5 mm height) of EJ200. The worst configuration, a highly polished conical scintillator mated to a PMT of equal base diameter, produced a smeared energy spectrum. The cause of spectrum smearing is explored in detail. Results demonstrate that a ground cone had the greatest improvement in energy resolution over a ground cylinder by approximately 16.2% at 478 keVee, when using the largest diameter (127 mm) PMT. This result is attributed to the greater LCE of the cone, its ground surface, and the uniform photocathode response near center of the largest PMT. Optical-photon transport simulations in Geant4 of the cone and cylinder assuming a diffuse reflector and a uniform photocathode were compared to the best experimental configuration and agreed well. If a detector application requires excellent energy resolution above all other considerations, a ground cone on a large PMT is recommended over a cylinder.
NASA Astrophysics Data System (ADS)
Tonttila, J.; Romakkaniemi, S.; Kokkola, H.; Maalick, Z.; Korhonen, H.; Liqing, H.
2015-12-01
A new cloud-resolving model setup for studying aerosol-cloud interactions, with a special emphasis on partitioning and wet deposition of semi-volatile aerosol species, is presented. The model is based on modified versions of two well-established model components: the Large-Eddy Simulator (LES) UCLALES, and the sectional aerosol model SALSA, previously employed in the ECHAM climate model family. Implementation of the UCLALES-SALSA is described in detail. As the basis for this work, SALSA has been extended to include a sectional representation of the size distributions of cloud droplets and precipitation. Microphysical processes operating on clouds and precipitation have also been added. Given our main motivation, the cloud droplet size bins are defined according to the dry particle diameter. The droplet wet diameter is solved dynamically through condensation equations, but represents an average droplet diameter inside each size bin. This approach allows for accurate tracking of the aerosol properties inside clouds, but minimizes the computational cost. Since the actual cloud droplet diameter is not fully resolved inside the size bins, processes such as precipitation formation rely on parameterizations. For realistic growth of drizzle drops to rain, which is critical for the aerosol wet deposition, the precipitation size bins are defined according to the actual drop size. With these additions, the implementation of the SALSA model replaces most of the microphysical and thermodynamical components within the LES. The cloud properties and aerosol-cloud interactions simulated by the model are analysed and evaluated against detailed cloud microphysical boxmodel results and in-situ aerosol-cloud interaction observations from the Puijo measurement station in Kuopio, Finland. The ability of the model to reproduce the impacts of wet deposition on the aerosol population is demonstrated.
Tailoring automatic exposure control toward constant detectability in digital mammography.
Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W
2015-07-01
The automatic exposure control (AEC) modes of most full field digital mammography (FFDM) systems are set up to hold pixel value (PV) constant as breast thickness changes. This paper proposes an alternative AEC mode, set up to maintain some minimum detectability level, with the ultimate goal of improving object detectability at larger breast thicknesses. The default "opdose" AEC mode of a Siemens MAMMOMAT Inspiration FFDM system was assessed using poly(methyl methacrylate) (PMMA) of thickness 20, 30, 40, 50, 60, and 70 mm to find the tube voltage and anode/filter combination programmed for each thickness; these beam quality settings were used for the modified AEC mode. Detectability index (d'), in terms of a non-prewhitened model observer with eye filter, was then calculated as a function of tube current-time product (mAs) for each thickness. A modified AEC could then be designed in which detectability never fell below some minimum setting for any thickness in the operating range. In this study, the value was chosen such that the system met the achievable threshold gold thickness (Tt) in the European guidelines for the 0.1 mm diameter disc (i.e., Tt ≤ 1.10 μm gold). The default and modified AEC modes were compared in terms of contrast-detail performance (Tt), calculated detectability (d'), signal-difference-to-noise ratio (SDNR), and mean glandular dose (MGD). The influence of a structured background on object detectability for both AEC modes was examined using a CIRS BR3D phantom. Computer-based CDMAM reading was used for the homogeneous case, while the images with the BR3D background were scored by human observers. The default opdose AEC mode maintained PV constant as PMMA thickness increased, leading to a reduction in SDNR for the homogeneous background 39% and d' 37% in going from 20 to 70 mm; introduction of the structured BR3D plate changed these figures to 22% (SDNR) and 6% (d'), respectively. Threshold gold thickness (0.1 mm diameter disc) for the default AEC mode in the homogeneous background increased by 62% in going from 20 to 70 mm PMMA thickness; in the structured background, the increase was 39%. Implementation of the modified mode entailed an increase in mAs at PMMA thicknesses >40 mm; the modified AEC held threshold gold thickness constant above 40 mm PMMA with a maximum deviation of 5% in the homogeneous background and 3% in structured background. SDNR was also held constant with a maximum deviation of 4% and 2% for the homogeneous and the structured background, respectively. These results were obtained with an increase of MGD between 15% and 73% going from 40 to 70 mm PMMA thickness. This work has proposed and implemented a modified AEC mode, tailored toward constant detectability at larger breast thickness, i.e., above 40 mm PMMA equivalent. The desired improvement in object detectability could be obtained while maintaining MGD within the European guidelines achievable dose limit. (A study designed to verify the performance of the modified mode using more clinically realistic data is currently underway.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvagnini, Elena, E-mail: elena.salvagnini@uzleuven.be; Bosmans, Hilde; Struelens, Lara
Purpose: The automatic exposure control (AEC) modes of most full field digital mammography (FFDM) systems are set up to hold pixel value (PV) constant as breast thickness changes. This paper proposes an alternative AEC mode, set up to maintain some minimum detectability level, with the ultimate goal of improving object detectability at larger breast thicknesses. Methods: The default “OPDOSE” AEC mode of a Siemens MAMMOMAT Inspiration FFDM system was assessed using poly(methyl methacrylate) (PMMA) of thickness 20, 30, 40, 50, 60, and 70 mm to find the tube voltage and anode/filter combination programmed for each thickness; these beam quality settingsmore » were used for the modified AEC mode. Detectability index (d′), in terms of a non-prewhitened model observer with eye filter, was then calculated as a function of tube current-time product (mAs) for each thickness. A modified AEC could then be designed in which detectability never fell below some minimum setting for any thickness in the operating range. In this study, the value was chosen such that the system met the achievable threshold gold thickness (T{sub t}) in the European guidelines for the 0.1 mm diameter disc (i.e., T{sub t} ≤ 1.10 μm gold). The default and modified AEC modes were compared in terms of contrast-detail performance (T{sub t}), calculated detectability (d′), signal-difference-to-noise ratio (SDNR), and mean glandular dose (MGD). The influence of a structured background on object detectability for both AEC modes was examined using a CIRS BR3D phantom. Computer-based CDMAM reading was used for the homogeneous case, while the images with the BR3D background were scored by human observers. Results: The default OPDOSE AEC mode maintained PV constant as PMMA thickness increased, leading to a reduction in SDNR for the homogeneous background 39% and d′ 37% in going from 20 to 70 mm; introduction of the structured BR3D plate changed these figures to 22% (SDNR) and 6% (d′), respectively. Threshold gold thickness (0.1 mm diameter disc) for the default AEC mode in the homogeneous background increased by 62% in going from 20 to 70 mm PMMA thickness; in the structured background, the increase was 39%. Implementation of the modified mode entailed an increase in mAs at PMMA thicknesses >40 mm; the modified AEC held threshold gold thickness constant above 40 mm PMMA with a maximum deviation of 5% in the homogeneous background and 3% in structured background. SDNR was also held constant with a maximum deviation of 4% and 2% for the homogeneous and the structured background, respectively. These results were obtained with an increase of MGD between 15% and 73% going from 40 to 70 mm PMMA thickness. Conclusions: This work has proposed and implemented a modified AEC mode, tailored toward constant detectability at larger breast thickness, i.e., above 40 mm PMMA equivalent. The desired improvement in object detectability could be obtained while maintaining MGD within the European guidelines achievable dose limit. (A study designed to verify the performance of the modified mode using more clinically realistic data is currently underway.)« less
Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents
NASA Astrophysics Data System (ADS)
Nordmeyer, Daniel; Stumpf, Patrick; Gröger, Dominic; Hofmann, Andreas; Enders, Sven; Riese, Sebastian B.; Dernedde, Jens; Taupitz, Matthias; Rauch, Ursula; Haag, Rainer; Rühl, Eckart; Graf, Christina
2014-07-01
Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI.Monodisperse small iron oxide nanoparticles functionalized with dendritic polyglycerol (dPG) or dendritic polyglycerol sulfate (dPGS) are prepared. They are highly stable in aqueous solutions as well as physiological media. In particular, oleic acid capped iron oxide particles (core diameter = 11 +/- 1 nm) were modified by a ligand exchange process in a one pot synthesis with dPG and dPGS bearing phosphonate as anchor groups. Dynamic light scattering measurements performed in water and different biological media demonstrate that the hydrodynamic diameter of the particles is only slightly increased by the ligand exchange process resulting in a final diameter of less than 30 nm and that the particles are stable in these media. It is also revealed by magnetic resonance studies that their magnetic relaxivity is reduced by the surface modification but it is still sufficient for high contrast magnetic resonance imaging (MRI). Additionally, incubation of dPGS functionalized iron oxide nanoparticles with human umbilical vein endothelial cells showed a 50% survival at 85 nM (concentration of nanoparticles). Surface plasmon resonance (SPR) studies demonstrate that the dPGS functionalized iron oxide nanoparticles inhibit L-selectin ligand binding whereas the particles containing only dPG do not show this effect. Experiments in a flow chamber with human myelogenous leukemia cells confirmed L-selectin inhibition of the dPGS functionalized iron oxide nanoparticles and with that the L-selectin mediated leukocyte adhesion. These results indicate that dPGS functionalized iron oxide nanoparticles are a promising contrast agent for inflamed tissue probed by MRI. Electronic supplementary information (ESI) available: A detailed description of the synthesis of the ligands as well as the preparation and functionalization of the iron oxide nanoparticles including their physico-chemical characterization are presented. Further, details of the cell experiments and the SPR experiments are given. Two representative movies are provided showing leukocyte rolling on the ligand coated surface of the flow chamber. See DOI: 10.1039/c3nr04793h
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
Amylose-Based Cationic Star Polymers for siRNA Delivery
Nishimura, Tomoki; Umezaki, Kaori; Mukai, Sada-atsu; Sawada, Shin-ichi; Akiyoshi, Kazunari
2015-01-01
A new siRNA delivery system using a cationic glyco-star polymer is described. Spermine-modified 8-arm amylose star polymer (with a degree of polymerization of approximately 60 per arm) was synthesized by chemoenzymatic methods. The cationic star polymer effectively bound to siRNA and formed spherical complexes with an average hydrodynamic diameter of 230 nm. The cationic 8-arm star polymer complexes showed superior cellular uptake characteristics and higher gene silencing effects than a cationic 1-arm polymer. These results suggest that amylose-based star polymers are a promising nanoplatform for glycobiomaterials. PMID:26539548
Process Research and Development of Antibodies as Countermeasures for C. botulinum
2009-02-01
1. Diagram of plasmid pS25. Plasmid contains the light ( LC ) and heavy chains (HC) of S25 antibody against BoNT serotype A, along with dhfr as a...column, an MEP-hypercel column (100mm · 4.6mm di- ameter), or an EDTPA modified zirconia column (Zir- chrom ) (50mm · 4.6mm diameter). Prior to loading...Human IgG (2lg), (3) Human IgG (0.4lg), (4) CHO-S-SFM II media, (5) CHO-DG44 S25 supernatant, (6) rProtein A pooled peak fraction (ultrafiltered load), (7
Recommendations and calculations concerning physical characteristics of the EEVT apparatus
NASA Technical Reports Server (NTRS)
1985-01-01
Several issues arose during the course of preparing for the flight of EEVT on STS-3. Documents concerning the issues are presented in the following order: (1) the possibility of mixing latex spheres with kidney cells as standard electrokinetic markers; (2) tube breakage and the potential for the development of leaks and bubbles; (3) effects of the shape of the sample gate on the electric field and the outward migration of cells; (4) suggestions for reducing electroosmosis by decreasing the diameter of the sample; and (5) predictions of the effects of modified sample dimensions on electroosmotic band spreading.
NASA Technical Reports Server (NTRS)
Wang, F. F. Y.
1974-01-01
The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included.
Bifunctional redox tagging of carbon nanoparticles
NASA Astrophysics Data System (ADS)
Poon, Jeffrey; Batchelor-McAuley, Christopher; Tschulik, Kristina; Palgrave, Robert G.; Compton, Richard G.
2015-01-01
Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.
Automated high-speed Mueller matrix scatterometer.
Delplancke, F
1997-08-01
A new scatterometer-polarimeter is described. It measures the angular distribution of intensity and of the complete Mueller matrix of light scattered by rough surfaces and particle suspensions. The measurement time is 1 s/scattering angle in the present configuration but can be reduced to a few milliseconds with modified electronics. The instrument uses polarization modulation and a Fourier analysis of four detected signals to obtain the 16 Mueller matrix elements. This method is particularly well suited to online, real time, industrial process control involving rough surfaces and large particle suspensions (an arithmetic roughness or particle diameter of >1 microm). Some results are given.
Efficiency of nonstandard and high contact ratio involute spur gears
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1984-01-01
A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.
A 9700-hour durability test of a five centimeter diameter ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. C.
1973-01-01
A modified Hughes SIT-5 thruster was life-tested at the Lewis Research Center. The final 2700 hours of the test are described with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were nearly constant throughout the test except for neutralizer heater power requirements and accelerator drain current. A post-shutdown inspection revealed sputter erosion of ion chamber components and component flaking of sputtered metal. Several flakes caused beamlet divergence and anomalous grid erosion, causing the test to be terminated. All sputter erosion sources were identified.
Efficiency of nonstandard and high contact ratio involute spur gears
NASA Technical Reports Server (NTRS)
Anderson, N. E.; Loewenthal, S. H.
1986-01-01
A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.
Astro-E2 Magnesium Diboride High Current Leads
NASA Technical Reports Server (NTRS)
Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.
2003-01-01
The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.
Testing of an actively damped boring bar featuring structurally integrated PZT stack actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redmond, J.; Barney, P.
This paper summarizes the results of cutting tests performed using an actively damped boring bar to minimize chatter in metal cutting. A commercially available 2 inch diameter boring bar was modified to incorporate PZT stack actuators for controlling tool bending vibrations encountered during metal removal. The extensional motion of the actuators induce bending moments in the host structure through a two-point preloaded mounting scheme. Cutting tests performed at various speeds and depths of cuts on a hardened steel workpiece illustrate the bar`s effectiveness toward eliminating chatter vibrations and improving workpiece surface finish.
Optical free piston cell with constant diameter for use under high pressure
NASA Astrophysics Data System (ADS)
Ishihara, Koji; Takagi, Masahiro
1994-02-01
An optical free piston cell (a modified le Noble and Schlott type optical cell) is described for use in spectrophotometric study under high pressure. The cell consists of a disk, a cylinder, and a free piston, which are made of quartz and are mounted within a stainless-steel holder. A small amount of sample solution (˜0.6 cm3), which only contacts with quartz, is required for measurements. The path length is fixed (1.2 cm) at ambient pressure, but is self-adjusting at elevated pressure so that no compressibility corrections are necessary.
Input-decomposition balance of heterotrophic processes in a warm-temperate mixed forest in Japan
NASA Astrophysics Data System (ADS)
Jomura, M.; Kominami, Y.; Ataka, M.; Makita, N.; Dannoura, M.; Miyama, T.; Tamai, K.; Goto, Y.; Sakurai, S.
2010-12-01
Carbon accumulation in forest ecosystem has been evaluated using three approaches. One is net ecosystem exchange (NEE) estimated by tower flux measurement. The second is net ecosystem production (NEP) estimated by biometric measurements. NEP can be expressed as the difference between net primary production and heterotrophic respiration. NEP can also be expressed as the annual increment in the plant biomass (ΔW) plus soil (ΔS) carbon pools defined as follows; NEP = ΔW+ΔS The third approach needs to evaluate annual carbon increment in soil compartment. Soil carbon accumulation rate could not be measured directly in a short term because of the small amount of annual accumulation. Soil carbon accumulation rate can be estimated by a model calculation. Rothamsted carbon model is a soil organic carbon turnover model and a useful tool to estimate the rate of soil carbon accumulation. However, the model has not sufficiently included variations in decomposition processes of organic matters in forest ecosystems. Organic matter in forest ecosystems have a different turnover rate that creates temporal variations in input-decomposition balance and also have a large variation in spatial distribution. Thus, in order to estimate the rate of soil carbon accumulation, temporal and spatial variation in input-decomposition balance of heterotrophic processes should be incorporated in the model. In this study, we estimated input-decomposition balance and the rate of soil carbon accumulation using the modified Roth-C model. We measured respiration rate of many types of organic matters, such as leaf litter, fine root litter, twigs and coarse woody debris using a chamber method. We can illustrate the relation of respiration rate to diameter of organic matters. Leaf and fine root litters have no diameter, so assumed to be zero in diameter. Organic matters in small size, such as leaf and fine root litter, have high decomposition respiration. It could be caused by the difference in structure of organic matter. Because coarse woody debris has shape of cylinder, microbes decompose from the surface of it. Thus, respiration rate of coarse woody debris is lower than that of leaf and fine root litter. Based on this result, we modified Roth-C model and estimate soil carbon accumulation rate in recent years. Based on the results from a soil survey, the forest soil stored 30tC ha-1 in O and A horizon. We can evaluate the modified model using this result. NEP can be expressed as the annual increment in the plant biomass plus soil carbon pools. So if we can estimate NEP using this approach, then we can evaluate NEP estimated by micrometeorological and ecological approaches and reduce uncertainty of NEP estimation.
Park, Su-Jin; Kim, Nam Kyun; Kim, Jung Ok; Yoo, Byung Won; Sul, Jun Hee
2010-01-01
Background and Objectives The rigid coupling between the delivery wire and the right atrial disk has been occasionally encountered during transcatheter closure of atrial septal defect (ASD). Therefore the device frequently makes a perpendicular angle, and the leading edge of left atrial disk slips through the defect and prolapses into right atrium (RA) before it is properly placed in the septum. The purpose of this study is to investigate relating factors to the need of technical modification in transcatheter closure of large ASD and to evaluate relevant morphologic characteristics of atrial septal rim in this situation. Subjects and Methods From July, 2003 to May, 2007, 312 patients underwent transcatheter occlusion of ASD with Amplatzer Septal Occluder® (ASO, AGA medical corporation, Golden Valley, MN, USA) at Yonsei Cardiovascular Center and among them 109 patients had large ASD (≥25 mm) and these patients were enrolled in our study. Patients were divided into two groups according to the deploying methods of the device (Group I: standard method, Group II: modified methods). Assessments of the defects and its surrounding rims were made by echocardiography. Results There were no differences between 2 groups in age, body weight and height except for balloon-stretched diameter (stop-flow technique) and device size. Group II patients with modified methods showed larger balloon-stretched diameter and device size than group I patients with standard method. The mean length of anterosuperior (AS) rim in group II was significantly shorter than group I (p<0.05). As the size of the device used in procedure increased, there was a trend towards increase in the need of modified methods. Conclusion This study shows that AS rim deficiency and the size of ASD may be the relating factors to the need of technical modification in transcatheter closure of ASD. Therefore, when the initial try with standard method is not successful in large ASD with deficient AS rim, we suggest that changing strategy of implantation may save time and efforts and possibly reduce the risk of complications associated with prolonged procedure. PMID:20421960
NASA Technical Reports Server (NTRS)
Ryan, Shannon; Hedman, Troy; Christiansen, Eric L.
2009-01-01
The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration.
Friction behavior of Mg-Al-CO3 layered double hydroxide prepared by magnesite
NASA Astrophysics Data System (ADS)
Wang, Xiaobo; Bai, Zhimin; Zhao, Dong; Zhao, Fuyan
2013-07-01
In this paper, Mg-Al-CO3 LDH was prepared by magnesite under chemical precipitation and hydrothermal methods. In order to improve the dispersion of LDH in base oil, the as-prepared sample was modified with sodium laurate. The obtained material (GMAC-LDH) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry and thermo gravimetric analyzer (DSC-TGA) and scanning electron microscope (SEM). The results show that the modified LDH has platelet morphology with a near hexagon shape. In addition, the tribological properties of GMAC-LDH were evaluated by four-ball friction tester and gear tester. As a lubricant, GMAC-LDH possesses an excellent property on reducing friction and wear of friction pair. The results of friction tests indicated that the friction coefficient, diameter of wear scar and power consumption of the oil with GMAC-LDH was reduced by 11.0%, 8.5% and 2.1% as compared with that of base oil.
Preparation and Characterization of Modified Soda Lignin with Polyethylene Glycol
Zhang, Fangda; Lin, Jian; Zhao, Guangjie
2016-01-01
Soda lignin does not have thermal flowing characteristics and it is impossible for it to be further thermally molded. To achieve the fusibility of soda lignin for fiber preparation by melt-spinning, an effective method for soda lignin modification was conducted by cooking it with polyethylene glycol (PEG) 400 at various ratios. The higher the ratio of PEG that was used, the more PEG molecular chains were grafted at the alpha carbon of the soda lignin through ether bonds, resulting in lower thermal transition temperatures and more excellent fusibility. The modified soda lignin with a weight ratio of lignin to PEG of 1:4 exhibited a relative thermal stability of molten viscosity at selected temperatures. Thereafter, the resultant fusible soda lignin was successfully melt-spun into filaments with an average diameter of 33 ± 5 μm, which is smaller than that of some industrial lignins. Accordingly, it is possible to utilize soda lignin to produce fibrous carbonaceous materials. PMID:28773943
Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method.
Patel, Roshni S; Cho, Daniel Y; Tian, Cheng; Chang, Amy; Estrellas, Kenneth M; Lavin, Danya; Furtado, Stacia; Mathiowitz, Edith
2012-01-01
We report on the development of a modified solvent removal method for the encapsulation of hydrophilic drugs within poly(lactic-co-glycolic acid) (PLGA). Using a water/oil/oil double emulsion, hydrophilic doxycycline was encapsulated within PLGA spheres with particle diameters ranging from approximately 600 nm to 19 µm. Encapsulation efficiencies of up to 74% were achieved for theoretical loadings from 1% to 10% (w/w), with biphasic release over 85 days with nearly complete release at the end of this time course. About 1% salt was added to the formulations to examine its effects on doxycycline release; salt modulated release only by increasing the magnitude of initial release without altering kinetics. Fourier transform infrared spectroscopy indicated no characteristic differences between doxycycline-loaded and control spheres. Differential scanning calorimetry and X-ray diffraction suggest that there may be a molecular dispersion of the doxycycline within the spheres and the doxycycline may be in an amorphous state, which could explain the slow, prolonged release of the drug.
NASA Astrophysics Data System (ADS)
Mersal, Gaber A. M.; Mostafa, Nasser Y.; Omar, Abd-Elkader H.
2017-08-01
Hydrogen titanate nanotubes (HTNT) were prepared via acid washing of hydrothermally synthesized sodium titantate nanotube. HTNTs with diameters in the range 7-9 nm and length of several hundred nanometers were annealed at different temperatures and used to modify carbon paste electrode (CPE). Cyclic and square wave voltammetric techniques were used to investigate the behavior of nicotine at HTNT modified carbon paste electrode (HTNTCPE). The nicotine-oxidation reaction over HTNTCPE was irreversible and adsorption process is the rate determining step. HTNTs annealed at 500 °C showed the best response to nicotine. The nicotine concentration was determined at the ideal conditions by square wave voltammetry (SWV). The calibration was linear from 0.1 to 500.0 µmol l-1 with a correlation coefficient of 0.995. The detection limits were found to be 0.005 µmol l-1. The present HTNTCPE was used to the determination of nicotine in two cigarette brands and it showed outstanding performance with respect to detection limit and sensitivity.
Using ion flows parallel and perpendicular to gravity to modify dust acoustic waves
NASA Astrophysics Data System (ADS)
Thomas, E.; Fisher, R.
2008-11-01
Recent studies of dust acoustic waves have shown that the dust kinetic temperature can play an important role in determining the resulting dispersion relation [M. Rosenberg, et al., Phys. Plasmas, 15, 073701 (2008)]. In these studies, it is believed that ion flows play a dominant role in determining both the kinetic temperature of the charged microparticles as well as providing the source of energy for triggering the waves. In this presentation, results will be presented on the effects of ion flow on spatial structure and velocity distribution of dust acoustic waves. Here, the waves will be formed in dusty plasmas consisting of 3 ± 1 micron diameter silica microspheres. Two separate electrodes will be used to modify the ion flow in the plasma -- one parallel to the direction of gravity and one perpendicular to the direction of gravity. Particle image velocimetry (PIV) techniques will be used to observe the particles and to measure their velocity distributions.
Novel Brassinosteroid-Modified Polyethylene Glycol Micelles for Controlled Release of Agrochemicals.
Pérez Quiñones, Javier; Brüggemann, Oliver; Kjems, Jørgen; Shahavi, Mohammad Hassan; Peniche Covas, Carlos
2018-02-21
Two synthetic analogues of brassinosteroids (DI31 and S7) exhibit good plant growth enhancer activity. However, their hydrophobicity and quick metabolism in plants have limited their application and benefits in agriculture. Our objective was to prepare novel brassinosteroid-modified polyethylene glycol (PEG) micelles to achieve controlled release with extended stability while retaining agrochemical activity. Spectroscopic studies confirmed quantitative disubstitution of studied PEGs with the brassinosteroids, while elemental analysis assessed purity of the synthesized conjugates. Conjugates were also characterized by X-ray diffraction and thermal analysis. Dynamic and static light scattering showed stable and homogeneous approximately spherical micelles with average hydrodynamic diameters of 22-120 nm and almost neutral ζ potential. Spherical 30-140 nm micelles were observed by electron microscopy. Sustained in vitro releases at pH 5.5 were extended up to 96 h. Prepared PEG micelles showed good agrochemical activity in the radish seed bioassay and no cytotoxicity to the human microvascular endothelial cell line in the MTS test.
A rain splash transport equation assimilating field and laboratory measurements
Dunne, T.; Malmon, D.V.; Mudd, S.M.
2010-01-01
Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.
The effect of intra-uterine devices on the reproductive physiology and behaviour of pony mares.
Argo, C M; Turnbull, E B
2010-10-01
Spherical (35 mm diameter) glass intra-uterine devices (IUDs) are commonly understood to modify sexual behaviour in performance mares. The effect of IUDs on the endocrinology (luteinising hormone, oestradiol, progesterone, testosterone), ovarian and uterine function, sexual and social behaviours associated with the ovarian cycle were evaluated during the natural breeding season in nine, nuliparous pony mares (4.6±0.5 years old, 230±12 kg bodyweight). Age and weight-matched groups were allocated to sham-treatment (n=5) or IUD-implantation (n=4) groups. Fifty complete ovarian cycles were evaluated, with 26 ovarian cycles monitored for the nine mares prior to treatment and a further 12 cycles were evaluated for mares in each of the groups post-treatment. Detailed characterisation of cyclic reproductive changes in the pony may be of value for controlled breeding programmes. The presence of an IUD was well-tolerated, but failed to modify any recorded aspect of reproductive physiology or behaviour. Crown Copyright © 2009. Published by Elsevier Ltd. All rights reserved.
Modified carbon nanotubes: from nanomedicine to nanotoxicology
NASA Astrophysics Data System (ADS)
Bottini, Massimo; Bottini, Nunzio
2012-09-01
Nanomedicine is the science of fabricating smart devices able to diagnose and treat diseases more efficiently than conventional medicine while minimizing costs, complexity and adverse effects. Carbon nanotubes (CNTs) are receiving considerable attention for biomedical applications due to their extraordinary properties. In particular, their chemical nature and high aspect ratio (ratio between the length and the diameter) make them ideal carriers to achieve delivery of high doses of therapeutic and imaging cargo to a specific site of interest. A major obstacle to the use of pristine (unmodified) CNTs in biological systems is their complete aqueous insolubility and low biocompatibility and toxicity profiles. To endow CNTs with solubility in a biological milieu, several non-covalent and covalent modification methods have been explored. Suitably modified CNTs have shown increased solubility under physiological conditions, improved biocompatibility profiles and lack of toxicity after injection in living animals. Additionally, after being loaded with cargo (small molecules, proteins, peptides or nucleic acids) they have been successfully evaluated as pharmaceutical, therapeutic and diagnostic tools.
NASA Astrophysics Data System (ADS)
Koner, S.; Adak, A.
2012-09-01
The fixed bed column study was conducted for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used herbicide from synthetically prepared wastewater using surfactant modified silica gel waste (SMSGW) as an adsorbing media. The adsorbing media was prepared by treating silica gel waste (SGW) with cationic surfactant. The removal was due to adsolubilization of 2,4-D molecules within the admicelles formed on the surface of SGW. The column having 2.5 cm diameter, with different bed heights such as 20, 30 and 40 cm were used in the study. The different column design parameters like depth of exchange zone, time required for exchange zone to move its own height, adsorption rate constant, adsorption capacity constant were calculated using BDST model. The SMSGW was found to be a very efficient media for the removal of 2,4-D from wastewater. Column design parameters were modeled for different field conditions to predict the duration of column run for practical application.
Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan
2015-12-01
In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.
The Application of Ultrasonic Inspection to Crimped Electrical Connections
NASA Technical Reports Server (NTRS)
Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.
2010-01-01
The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The development of a prototype instrument, based on a modified, commercially available, crimp tool, is demonstrated for applying this technique when wire crimps are installed. The crimp tool has three separate crimping locations that accommodate the three different ferrule diameters. The crimp tool in this study is capable of crimping wire diameters ranging from 12 to 26 American Wire Gauge (AWG). A transducer design is presented that allows for interrogation of each of the three crimp locations on the crimp tool without reconfiguring the device. An analysis methodology, based on transmitted ultrasonic energy and timing of the first received pulse is shown to correlate to both crimp location in the tool and the AWG of the crimp/ferrule combination. The detectability of a number of the crimp failure pathologies, such as missing strands, partially inserted wires and incomplete crimp compression, is discussed. A wave propagation model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process.
Crossflow between subchannels in a 5 x 5 rod-bundle geometry
NASA Astrophysics Data System (ADS)
Lee, Jungjin; Park, Hyungmin
2017-11-01
In the present study, we experimentally investigate the single-phase (water as a working fluid) flow in a vertical 5 x 5 rod-bundle geometry using a particle image velociemtry, especially focusing on the crossflow phenomena between subchannels. This crossflow phenomena is very important in determining the performance and safety of nuclear power plant. To measure the flow behind the rod, it is made of FEP (Fluorinated Ethylene Propylene) to achieve the index matching. The ratio of pitch between rods and rod diameter is 1.4, and the considered Reynolds number based on a hydraulic diameter of a channel and an axial bulk velocity is 10000. Also, the typical grid spacer is installed periodically along the streamwise direction. Depending on the location of subchannel (e.g., distance to the side wall or grid spacer), the flow (turbulence) statistics show large variations that will be discussed in detail. Furthermore, we will suggest a modified crossflow model that can explain the varying crossflow phenomena more clearly. Supported by NRF Grant (NRF-2016M2B2A9A02945068) of the Korean government.
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1994-01-01
There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.
Acceleration induced water removal from ear canals.
NASA Astrophysics Data System (ADS)
Kang, Hosung; Averett, Katelee; Jung, Sunghwan
2017-11-01
Children and adults commonly experience having water trapped in the ear canals after swimming. To remove the water, individuals will shake their head sideways. Since a child's ear canal has a smaller diameter, it requires more acceleration of the head to remove the trapped water. In this study, we theoretically and experimentally investigated the acceleration required to break the surface meniscus of the water in artificial ear canals and hydrophobic-coated glass tubes. In experiments, ear canal models were 3D-printed from a CT-scanned human head. Also, glass tubes were coated with silane to match the hydrophobicity in ear canals. Then, using a linear stage, we measured the acceleration values required to forcefully eject the water from the artificial ear canals and glass tubes. A theoretical model was developed to predict the critical acceleration at a given tube diameter and water volume by using a modified Rayleigh-Taylor instability. Furthermore, this research can shed light on the potential of long-term brain injury and damage by shaking the head to push the water out of the ear canal. This research was supported by National Science Foundation Grant CBET-1604424.
Lu, Jennifer Q; Yi, Sung Soo
2006-04-25
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.
1994-01-01
The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.
Novel cylindrical illuminator tip for ultraviolet light delivery
NASA Astrophysics Data System (ADS)
Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.
1993-06-01
The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.
Turbulent transport models for scramjet flowfields
NASA Technical Reports Server (NTRS)
Sindir, M. M.; Harsha, P. T.
1984-01-01
Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.; Veeder, Glenn J.; Fowler, John W.; Chillemi, Joseph R.
1992-01-01
This report documents the program and data used to identify known asteroids observed by the Infrared Astronomical Satellite (IRAS) and to compute albedos and diameters from their IRAS fluxes. It also presents listings of the results obtained. These results supplant those in the IRAS Asteroid and Comet Survey, 1986. The present version used new and improved asteroid orbital elements for 4679 numbered asteroids and 2632 additional asteroids for which at least two-opposition elements were available as of mid-1991. It employed asteroid absolute magnitudes on the International Astronomical Union system adopted in 1991. In addition, the code was modified to increase the reliability of associating asteroids with IRAS sources and rectify several shortcomings in the final data products released in 1986. Association reliability was improved by decreasing the position difference between an IRAS source and a predicted asteroid position required for an association. The shortcomings addressed included the problem of flux overestimation for low SNR sources and the systematic difference in albedos and diameters among the three wavelength bands (12, 25, and 60 micrometers). Several minor bugs in the original code were also corrected.
Esqué-de los Ojos, Daniel; Pellicer, Eva; Sort, Jordi
2016-01-01
In general, the influence of pore size is not considered when determining the Young’s modulus of nanoporous materials. Here, we demonstrate that the pore size needs to be taken into account to properly assess the mechanical properties of these materials. Molecular dynamics simulations of spherical indentation experiments on single crystalline nanoporous Cu have been undertaken in systems with: (i) a constant degree of porosity and variable pore diameter; and (ii) a constant pore diameter and variable porosity degree. The classical Gibson and Ashby expression relating Young’s modulus with the relative density of the nanoporous metal is modified to include the influence of the pore size. The simulations reveal that, for a fixed porosity degree, the mechanical behavior of materials with smaller pores differs more significantly from the behavior of the bulk, fully dense counterpart. This effect is ascribed to the increase of the overall surface area as the pore size is reduced, together with the reduced coordination number of the atoms located at the pores edges. PMID:28773476
Elevated Temperature Deformation of Fe-39.8Al and Fe-15.6Mn-39.4Al
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
2004-01-01
The elevated temperature compressive properties of binary Fe-39.8 at % Al and Fe-15.6Mn-39.4Al have been measured between 1000 and 1300 K at strain rates between 10(exp 7) and 10(exp 3)/ s. Although the Mn addition to iron aluminide did not change the basic deformation characteristics, the Mn-modified alloy was slightly weaker. In the regime where deformation of FeAl occurs by a high stress exponent mechanism (n = 6), strength increases as the grain size decreases at least for diameters between approx. 200 and approx. 10 microns. Due to the limitation in the grain size-flow stress-temperature-strain rate database, the influence of further reductions of the grain size on strength is uncertain. Based on the appearance of subgrains in deformed iron aluminide, the comparison of grain diameters to expected subgrain sizes, and the grain size exponent and stress exponent calculated from deformation experiments, it is believed that grain size strengthening is the result of an artificial limitation on subgrain size as proposed by Sherby, Klundt and Miller.
Optical Design of the LSST Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olivier, S S; Seppala, L; Gilmore, K
2008-07-16
The Large Synoptic Survey Telescope (LSST) uses a novel, three-mirror, modified Paul-Baker design, with an 8.4-meter primary mirror, a 3.4-m secondary, and a 5.0-m tertiary feeding a camera system that includes a set of broad-band filters and refractive corrector lenses to produce a flat focal plane with a field of view of 9.6 square degrees. Optical design of the camera lenses and filters is integrated with optical design of telescope mirrors to optimize performance, resulting in excellent image quality over the entire field from ultra-violet to near infra-red wavelengths. The LSST camera optics design consists of three refractive lenses withmore » clear aperture diameters of 1.55 m, 1.10 m and 0.69 m and six interchangeable, broad-band, filters with clear aperture diameters of 0.75 m. We describe the methodology for fabricating, coating, mounting and testing these lenses and filters, and we present the results of detailed tolerance analyses, demonstrating that the camera optics will perform to the specifications required to meet their performance goals.« less
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2012-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.
Liu, Yuan; Yuan, Baohong; Vignola, Joseph
2013-01-01
To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476
Copper nanocoils synthesized through solvothermal method
Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang
2015-01-01
Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10–35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices. PMID:26607386
Dusty Star-forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Su, Ting
2017-02-01
Star-forming galaxies, which convert large amounts of gas into stars at moderate or excessive rates, are a critical population for our understanding of galaxy evolution throughout the cosmic time. A small portion of the star-forming galaxies are defined as starburst galaxies because they have much greater star formation rates (a few hundred to a few thousand of solar masses per year), which are associate with high infrared luminosity. My thesis focuses on starburst galaxies in the intermediate/high redshift universe. In this study, I present various modeling methods of the infrared spectral energy distribution (SED) of starburst galaxies, including modified black-body models and empirical templates based on nearby galaxies. Then, I fit these models to two samples of sources to study galaxy properties and provide a comparison among different SED models. I present galaxy properties derived by the best-fit model -- a modified blackbody model with power-law temperature distribution. The first sample is nine candidate gravitationally-lensed dusty star-forming galaxies (DSFGs) selected at 218 GHz (1.4 mm) from the Atacama Cosmology Telescope (ACT) equatorial survey, with multi-wavelength detections. Among the brightest ACT sources, these represent the subset of the total ACT sample lying in Herschel SPIRE fields, and all nine of the 218 GHz detections were found to have bright Herschel counterparts. We find the sample has a higher redshift distribution (z=4.1+1.1-1.0) than "classical" starburst galaxies, as expected for 218 GHz selection, and an apparent total infrared luminosity of log10(uL_IR/L_sun) = 13.86+0.33-0.30, which suggests that they are either strongly lensed sources or unresolved collections of unlensed DSFGs. The effective apparent diameter of the sample is ud = 4.2+1.7-1.0 kpc, further evidence of strong lensing or multiplicity, since the typical diameter of dusty star-forming galaxies is 1.0-2.5 kpc. We emphasize that the effective apparent diameter derives from SED modeling without the assumption of optically thin dust (as opposed to image morphology). We find that the sources have substantial optical depth (tau = 4.2 +3.7-1.9) around the peak in the modified blackbody spectrum (lambda_obs <= 500 micron), which supports the choice of the optical thick model. The other sample is 30 starburst galaxies with spectroscopically confirmed redshift selected by sub-millimeter surveys in the redshifts range of z 4-6.5. We find that the power-law temperature of optically thick gray-body model is the best fitting method for high-z starburst galaxies. The optically thin model fitting would underestimate the dust temperature and overestimate the dust mass, while nearby starburst templates would overestimate the dust mass by an order of magnitude. For this very high redshift sample, we find a median dust mass of M_d = 2.7e8 Msun and a median infrared luminosity of L_IR = 1.1e13 Lsun which corresponds to a star formation rate of 1180 Msun/yr. The median cold dust component temperature is Tc = 41.7 K, while the median emission region diameter is d=2.4 kpc. We also present the gas mass M_G 2.6e10 Msun and dust-to-gas ratio Zd = 9.1e-3, which are consistent with the local analogues. Additionally, the FIR/radio correlation of the sample is q_IR=2.58, which is consistent with the local galaxies but slightly higher than the intermediate-z starburst galaxies.
Influence of ester-modified lipids on bilayer structure.
Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B
2013-11-19
Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.
A New modified anthropometric haller index obtained without radiological exposure.
Sonaglioni, Andrea; Baravelli, Massimo; Vincenti, Antonio; Trevisan, Roberta; Zompatori, Maurizio; Nicolosi, Gian Luigi; Lombardo, Michele; Anzà, Claudio
2018-05-15
To validate a new modified method for measuring the anthropometric Haller index (HI), obtained without radiological exposure. This new method was based on the use of a rigid ruler and of a 2.5 MHz ultrasound transducer for the assessment of latero-lateral and antero-posterior chest diameters, respectively. We enrolled 100 consecutive patients (mean age 67.9 ± 14.5 years, 55% males), who underwent a two-plane CXR, for any clinical indication, over a four-month period. In all patients, the same radiologist calculated the conventional radiological HI (mean value 1.93 ± 0.35) and the same cardiologist used the above described new technique to measure the modified HI (mean value 1.99 ± 0.26). The Bland-Altman analysis showed tight limits of agreement (+ 0.37; - 0.51) between the two measurement methods, with a mild systematic overestimation of the new method as compared to the standard radiological HI. The Pearson's correlation analysis highlighted a strong correlation between the two methods (r = 0.81, p < 0.0001), while the Student's t test demonstrated a not statistically difference between the means (p = 0.12). The modified HI might allow a quick description of the chest conformation without radiological exposure and a more immediate comprehension of its possible influence on the cardiac kinetics and function, as assessed by echocardiography or other imaging modalities.
Production of red mold rice using a modified Nagata type koji maker.
Chiu, Chiu-Hsia; Ni, Kuang-Huei; Guu, Yuan-Kuang; Pan, Tzu-Ming
2006-11-01
In this research, a commercial koji maker with a rotary perforated bed of 5-m diameter was modified for red mold rice production. Monascus purpureus BCRC 31499 was selected for its high production capacities of monacolin K and red pigment. The selected strain was first cultivated in a 120-l submerged type fermentor at 34 degrees C and 2 vvm aeration rate with 60 rpm agitation for 5 days using 20% liquefied rice porridge as carbon source. The high concentration red mold rice broth (>3.5 g/ml) was harvested for inocula and well mixed with cooked rice to an initial concentration of 2% v/w. The inoculated cooked rice then was directed into the modified koji maker, in which temperature and humidity profiles were kept at varied levels at different stages, respectively. Air was circulated to remove fermentation heat while the perforated bed rotated slowly for providing mild agitation. Lag phase of the Monascus sp. in the modified koji maker was determined to be 16 h by the time the koji temperature raised rapidly. Water was added into the koji bed by a water curtain at the 36th hour to keep the moisture content of the rice koji at 50% or above. At the final stage, temperature was adjusted to 34 degrees C to direct red pigment production. After 7 days, 1,200-kg high quality red mold rice was harvested per batch. Labor costs, space, and fermentation time were reduced tremendously compared with those made by traditional methods.
Amoroso-Silva, Pablo; De Moraes, Ivaldo Gomes; Marceliano-Alves, Marilia; Bramante, Clovis Monteiro; Zapata, Ronald Ordinola; Hungaro Duarte, Marco Antonio
2018-01-01
This study aimed to describe the morphological and morphometric aspects of fused mandibular second molars with radicular shallow grooves using micro-computed tomography (CT). Eighty-eight mandibular second molars with fused roots were scanned in a micro-CT scanner at a voxel size of 19.6 μm. After reconstruction, only molars without C-shaped roots and presenting shallow radicular grooves were selected. 30 molars were chosen for further analysis. Canal cross-sections were classified according to Fan's modified classification (C1, C2, C3, and C4) and morphometric parameters at the apical region, examination of accessory foramina and tridimensional configuration were evaluated. Three-dimensional reconstructions indicated a higher prevalence of merging type ( n = 22). According to Fan's modified classification, the C4 configuration was predominant in the 3 apical mm. Roundness median values revealed a more round-shaped canals at 3 mm (0.72) than at 2 (0.63) and 1 (0.61) mm from the apex. High values of major and minor diameters were observed in the canals of these evaluated sections. In addition, few accessory apical foramina were observed at 1 and 2 mm from the apex. The average distance between last accessory foramina and the anatomic apex was 1.17 mm. A less complex internal anatomy is found when a mandibular second molar presents fused roots with shallow radicular grooves. The merging type canal was frequently observed. Moreover, the C4 configuration was predominant at a point 3 mm from the apex and presented rounded canals, large apical diameters, and few accessory foramina. The cervical and middle thirds presented C3 and C1 canal configurations most frequently. A minor morphological complexity is found when fused mandibular second molars present shallow radicular grooves.
Beta-Tin Grain Formation in Aluminum-Modified Lead-Free Solder Alloys
NASA Astrophysics Data System (ADS)
Reeve, Kathlene N.; Handwerker, Carol A.
2018-01-01
The limited number of independent β-Sn grain orientations that typically form during solidification of Sn-based solders and the resulting large β-Sn grain size have major effects on overall solder performance and reliability. This study analyzes whether additions of Al to Sn-Cu and Sn-Cu-Ag alloys can be used to change the grain size, morphology, and twinning structures of atomized (as-solidified) and re-melted (reflowed) β-Sn dendrites as determined using scanning electron microscopy and electron backscatter diffraction for as-solidified and reflow cycled (20-250°C, 1-5 cycles) Sn-Cu-Al and Sn-Ag-Cu-Al drip atomized spheres (260 μm diameter). The resulting microstructures were compared to as-solidified and reflow cycled Sn-Ag-Cu spheres (450 μm diameter) as well as as-solidified Sn-Ag-Cu, Sn-Cu, and Sn-Ag microstructures from the literature. Previous literature observations reporting reductions in undercooling and β-Sn grain size with Al micro-alloying additions could not be correlated to the presence of the Cu9Al4 phase or Al solute. The as-solidified spheres displayed no change in β-Sn dendrite structure or grain size when compared to non-Al-modified alloys, and the reflow cycled spheres produced high undercoolings (22-64°C), indicating a lack of potent nucleation sites. The current findings highlighted the role of Ag in the formation of the interlaced twinning structure and demonstrated that with deliberate compositional choices, formation of the alloy's β-Sn grain structure (cyclical twinning versus interlaced twinning) could be influenced, in both the as-solidified and reflow cycled states, though still not producing the fine-grain sizes and multiple orientations desired for improved thermomechanical properties.
NASA Astrophysics Data System (ADS)
Haroosh, Hazim J.; Dong, Yu; Chaudhary, Deeptangshu S.; Ingram, Gordon D.; Yusa, Shin-ichi
2013-02-01
Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly( ɛ-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.
Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang
2013-12-18
Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.
Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,
2010-01-01
Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.
Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.
2010-01-01
Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omar, M.S., E-mail: dr_m_s_omar@yahoo.com
2012-11-15
Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to thatmore » of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.« less
PS-b-PMMA/PLA blends for nanoporous templates with hierarchical and tunable pore size
NASA Astrophysics Data System (ADS)
Nguyen, Thi-Hoa; Vayer, Marylène; Sinturel, Christophe
2018-01-01
Blends of poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) and poly(lactide) (PLA) were deposited in the form of thin films on the surface of modified silicon wafers and exposed to tetrahydrofuran (THF) vapor annealing. It was shown that in specific experimental conditions, a core-shell morphology consisting in cylinders with a PMMA shell and a PLA core, within a continuous matrix of PS, was formed. In this case, PLA naturally segregated in the core of the PMMA cylinders, minimizing the PS/PLA interaction, which constitutes the most incompatible pair (the interaction strength between the various components was confirmed in thin films of the corresponding polymer blends). Compared to other block copolymer/homopolymer blends described in the literature, this system exhibits unexpected high increase of the characteristic lengths of the system (center-to-center distance and diameter). This was attributed to a partial solubilization of the PLA in the PMMA corona (the two polymers are highly compatible), inducing an enhanced level of PS and PLA stretching caused by the strong repulsion between these two polymers. The selective extraction of the PLA yielded to porous domains with small dimensions (6 ± 2.5 nm), reaching the performances that are currently attained in highly incompatible block polymers with low molecular weight. Further PMMA removal revealed a second porosity level, with higher pores diameter and center-to-center distance compared to the neat PS-b-PMMA system. This work highlights how PS-b-PMMA, that currently represents one of the industrial standards nanoporous template precursors, can be modified in an easy and costless approach using PLA homopolymer addition.
Chen, Qi; Lin, Jianhan; Gan, Chengqi; Wang, Yuhe; Wang, Dan; Xiong, Yonghua; Lai, Weihua; Li, Yuntao; Wang, Maohua
2015-12-15
In this study, we described a novel impedance biosensor combining immunomagnetic separation with urease catalysis for sensitive detection of foodborne bacteria using Listeria monocytogenes as model and an immobilization-free microelectrode as detector. The monoclonal antibodies (MAbs) were immobilized on the surface of the magnetic nanoparticles (MNPs) with the diameter of 180 nm by biotin-streptavidin system for specifically and efficiently separating Listeria cells from sample background. The polyclonal antibodies (PAbs) and the urease were modified onto the surface of the gold nanoparticles (AuNPs) with the diameter of 20 nm and the modified AuNPs were used to react with Listera to form the MNP-MAb-Listeria-PAb-AuNP-urease sandwich complexes. The urease in the complexes could catalyze the hydrolysis of the urea into ammonium carbonate and this led to an increase in the ionic strength of the media, which could be detected by the microelectrode. The magnetic separation efficiencies for L. monocytogenes at the concentrations ranging from 3.0×10(1) to 3.0×10(4) CFU/mL were over 95% for the pure cultures and over 85% for the spiked lettuce samples. The lower detection limit of this biosensor for L. monocytogenes was found to be 300 CFU/mL in both the pure cultures and the spiked lettuce samples. The microelectrode was demonstrated to be reusable for over 50 times with thorough cleaning by deionized water. This biosensor showed its potential to provide a simple, low-cost and sensitive method for rapid screening of foodborne pathogens and could be extended for detection of other biological or chemical targets. Copyright © 2015 Elsevier B.V. All rights reserved.
Busch, Albert; Chernogubova, Ekaterina; Jin, Hong; Meurer, Felix; Eckstein, Hans-Henning; Kim, Mia; Maegdefessel, Lars
2018-04-24
Abdominal aortic aneurysm (AAA) is an individual and socioeconomic burden in today's ageing society. Treatment relies on surgical exclusion of the dilated aorta by open or endovascular repair. For research purposes, animal models are necessary and the elastase induced aneurysm model closely mimics end stage human aneurysm disease. To improve the translational value of this model, four modifications to the classic elastase perfusion procedure (PPE) in relation to human aneurysm morphology were conducted. In ten week old male C57BL/6J wild type mice the PPE procedure was modified in four ways using two different techniques. Flow alteration was simulated by partial ligation of the common iliac artery or the distal aorta. Additionally, careful exploration of the abdominal aortic branches allowed PPE induction at the suprarenal and iliac level. Molecular biology, ultrasound, and immunohistochemistry were used to evaluate these pilot results. Two aortic outflow obstructions simulating distal aortic or iliac stenosis significantly increase murine AAA diameter (p = .046), and affect local vascular wall remodelling. Suprarenal aortic dissection allows a juxtarenal aneurysm to be induced, similar to the angiotensin II induced aneurysm model. A separate investigation for canonical activation of transforming growth factor β in the two embryonically distinct juxtarenal and infrarenal segments showed no distinct difference. Creating an aortoiliac bifurcated aneurysm completes the mimicry of human aneurysm morphology. The alteration of the classic PPE aneurysm by outflow modulation and further elastase perfusion to the juxtarenal and aortoiliac segment modifies morphology and diameter, and thus increases the translational value in future research. Copyright © 2018 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
Origin and emplacement of impactites in the Chesapeake Bay impact structure, Virginia, USA
Horton, J. Wright; Gohn, G.S.; Powars, D.S.; Edwards, L.E.
2007-01-01
The late Eocene Chesapeake Bay impact structure, located on the Atlantic margin of Virginia, may be Earth's best-preserved large impact structure formed in a shallow marine, siliciclastic, continental-shelf environment. It has the form of an inverted sombrero in which a central crater ???40 km in diameter is surrounded by a shallower brim, the annular trough, that extends the diameter to ???85 km. The annular trough is interpreted to have formed largely by the collapse and mobilization of weak sediments. Crystalline-clast suevite, found only in the central crater, contains clasts and blocks of shocked gneiss that likely were derived from the fragmentation of the central-uplift basement. The suevite and entrained megablocks are interpreted to have formed from impact-melt particles and crystalline-rock debris that never left the central crater, rather than as a fallback deposit. Impact-modified sediments in the annular trough include megablocks of Cretaceous nonmarine sediment disrupted by faults, fluidized sands, fractured clays, and mixed-sediment intercalations. These impact-modified sediments could have formed by a combination of processes, including ejection into and mixing of sediments in the water column, rarefaction-induced fragmentation and clastic injection, liquefaction and fluidization of sand in response to acoustic-wave vibrations, gravitational collapse, and inward lateral spreading. The Exmore beds, which blanket the entire crater and nearby areas, consist of a lower diamicton member overlain by an upper stratified member. They are interpreted as unstratified ocean-resurge deposits, having depositional cycles that may represent stages of inward resurge or outward anti-resurge flow, overlain by stratified fallout of suspended sediment from the water column. ?? 2008 The Geological Society of America. All rights reserved.
Constraints on the thermal evolution of Venus inferred from Magellan data
NASA Technical Reports Server (NTRS)
Arkani-Hamed, Jafar; Schaber, G. G.; Strom, R. G.
1992-01-01
The impact craters with diameters from 1.5 to 280 km compiled from Magellan observations indicate that the crater population on Venus has a completely spatially random distribution and the size/density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population with an age of 500 plus or minus 250 m.y. The similarity in size distribution from area to area indicates that the crater distribution is independent of crater size. Also, the forms of the modified craters are virtually identical to those of the pristine craters. These observations imply that Venus reset its cratering record by global resurfacing 500 m.y. ago, and resurfacing declined relatively fast. The fact that less than 40 percent of all craters have been modified and that the few volcanically embayed craters are located on localized tectonic regions indicate that only minor and localized volcanism and tectonism have occurred since the latest vigorous resurfacing event approximately 500 m.y. ago and the interior of Venus has been solid and possibly colder than Earth's. This is because the high-temperature lithosphere of Venus would facilitate upward ascending of mantle plumes and result in extensive volcanism if the venusian upper mantle were as hot as or hotter than Earth's. Therefore, the present surface morphology of Venus may provide useful constraints on the pattern of that vigorous convection, and possibly on the thermal state of the venusian mantle. We examine this possibility through numerical calculations of three-dimensional thermal convection models in a spherical shell with temperature- and pressure-dependent Newtonian viscosity, temperature-dependent thermal diffusivity, pressure-dependent thermal expansion coefficient, and time-dependent internal heat production rate solar magnitude.
NASA Astrophysics Data System (ADS)
Tian, Lin; Xian, Xiaozhai; Cui, Xingkai; Tang, Hua; Yang, Xiaofei
2018-02-01
Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified g-C3N4 to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 μm. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications.
Bone healing at implants with a fluoride-modified surface: an experimental study in dogs.
Berglundh, T; Abrahamsson, I; Albouy, J-P; Lindhe, J
2007-04-01
The aim of the present experiment was to study early stages of osseointegration to implants with a fluoride-modified surface. Six mongrel dogs, about 1-year old, were used. All mandibular premolars and the first mandibular molars were extracted. Three months later, mucoperiosteal flaps were elevated in one side of the mandible and six sites were identified for implant placement. The control implants (MicroThread) had a TiOblast surface, while the test implants (OsseoSpeed) had a fluoride-modified TiOblast surface. Both types of implants had a similar geometry, a diameter of 3.5 mm and were 8 mm long. Following installation, cover screws were placed and the flaps were adjusted and sutured to cover all implants. Four weeks after the first implant surgery, the installation procedure was repeated in the opposite side of the mandible. Two weeks later, biopsies were obtained and prepared for histological analysis. The void that occurred between the cut bone wall of the recipient site and the macro-threads of the implant immediately following implant installation was used to study early bone formation. It was demonstrated that the amount of new bone that formed in the voids within the first 2 weeks of healing was larger at fluoride-modified implants (test) than at TiOblast (control) implants. It was further observed that the amount of bone-to-implant contact that had been established after 2 weeks in the macro-threaded portion of the implant was significantly larger at the test implants than at the controls. It is suggested that the fluoride-modified implant surface promotes osseointegration in the early phase of healing following implant installation.
Process for derivatizing carbon nanotubes with diazonium species
NASA Technical Reports Server (NTRS)
Tour, James M. (Inventor); Bahr, Jeffrey L. (Inventor); Yang, Jiping (Inventor)
2007-01-01
The invention incorporates new processes for the chemical modification of carbon nanotubes. Such processes involve the derivatization of multi- and single-wall carbon nanotubes, including small diameter (ca. 0.7 nm) single-wall carbon nanotubes, with diazonium species. The method allows the chemical attachment of a variety of organic compounds to the side and ends of carbon nanotubes. These chemically modified nanotubes have applications in polymer composite materials, molecular electronic applications and sensor devices. The methods of derivatization include electrochemical induced reactions thermally induced reactions (via in-situ generation of diazonium compounds or pre-formed diazonium compounds), and photochemically induced reactions. The derivatization causes significant changes in the spectroscopic properties of the nanotubes. The estimated degree of functionality is ca. 1 out of every 20 to 30 carbons in a nanotube bearing a functionality moiety. Such electrochemical reduction processes can be adapted to apply site-selective chemical functionalization of nanotubes. Moreover, when modified with suitable chemical groups, the derivatized nanotubes are chemically compatible with a polymer matrix, allowing transfer of the properties of the nanotubes (such as, mechanical strength or electrical conductivity) to the properties of the composite material as a whole. Furthermore, when modified with suitable chemical groups, the groups can be polymerized to form a polymer that includes carbon nanotubes ##STR00001##.
Aminopropyl-modified mesoporous molecular sieves as efficient adsorbents for removal of auxins
NASA Astrophysics Data System (ADS)
Moritz, Michał; Geszke-Moritz, Małgorzata
2015-03-01
In the present study, mesoporous siliceous materials grafted with 3-aminopropyltriethoxysilane (APTES) were examined as sorbents for removal of chosen plant growth factors (auxins) such as 1-naphthaleneacetic acid (NAA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). Four different types of mesoporous molecular sieves including SBA-15, PHTS, SBA-16 and MCF have been prepared via non-ionic surfactant-assisted soft templating method. Silica molecular sieves were thoroughly characterized by nitrogen adsorption-desorption analysis, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The maximum adsorption capacity (Qmax) for NAA, IAA and IBA was in the range from 51.0 to 140.8 mg/g and from 4.3 to 7.3 mg/g for aminopropyl-modified adsorbents and pure silicas, respectively. The best adsorption performance was observed for IAA entrapment using both APTES-functionalized SBA-15 and MCF matrices (Qmax of 140.8 and 137.0 mg/g, respectively) which can be ascribed to their larger pore volumes and pore diameters. Moreover, these silicas were characterized by the highest adsorption efficiency exceeding 90% at low pollutant concentration. The experimental points for adsorption of plant growth factors onto aminopropyl-modified mesoporous molecular sieves fitted well to the Langmuir equation.
Ocakoglu, Kasim; Joya, Khurram S; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T
2014-08-21
Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.
Trirattanapikul, W; Phoungchandang, S
2014-12-01
The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.
Li, Jinfeng; Ye, Fayin; Lei, Lin; Zhou, Yun; Zhao, Guohua
2018-05-02
The granules of sweet potato starch were size fractionated into three portions with significantly different median diameters ( D 50 ) of 6.67 (small-sized), 11.54 (medium-sized), and 16.96 μm (large-sized), respectively. Each portion was hydrophobized at the mass-based degrees of substitution (DS m ) of approximately 0.0095 (low), 0.0160 (medium), and 0.0230 (high). The Pickering emulsion-stabilizing capacities of modified granules were tested, and the resultant emulsions were characterized. The joint effects of granule size and DS m on emulsifying capacity (EC) were investigated by response surface methodology. For small-, medium-, and large-sized fractions, their highest emulsifying capacities are comparable but, respectively, encountered at high (0.0225), medium (0.0158), and low (0.0095) DS m levels. The emulsion droplet size increased with granule size, and the number of freely scattered granules in emulsions decreased with DS m . In addition, the term of surface density of the octenyl succinic group (SD -OSG ) was first proposed for modified starch granules, and it was proved better than DS m in interpreting the emulsifying capacities of starch granules with varying sizes. The present results implied that, as the particulate stabilizers, the optimal DS m of modified starch granules is size specific.
The effect of the serum corona on interactions between a single nano-object and a living cell
NASA Astrophysics Data System (ADS)
Dror, Yael; Sorkin, Raya; Brand, Guy; Boubriak, Olga; Urban, Jill; Klein, Jacob
2017-04-01
Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications.
Li, Huan; Yan, Kai; Shang, Yalei; Shrestha, Lochan; Liao, Rufang; Liu, Fang; Li, Penghui; Xu, Haibo; Xu, Zushun; Chu, Paul K
2015-03-01
Polymeric micelles functionalized with folate conjugated bovine serum albumin (FA-BSA) and loaded with superparamagnetic iron oxide nanoparticles (SPIONs) are investigated as a specific contrast agent for tumor targeting and magnetic resonance imaging (MRI) in vitro and in vivo. The SPIONs-loaded polymeric micelles are produced by self-assembly of amphiphilic poly(HFMA-co-MOTAC)-g-PEGMA copolymers and oleic acid modified Fe3O4 nanoparticles and functionalized with FA-BSA by electrostatic interaction. The FA-BSA modified magnetic micelles have a hydrodynamic diameter of 196.1 nm, saturation magnetization of 5.5 emu/g, and transverse relaxivity of 167.0 mM(-1) S(-1). In vitro MR imaging, Prussian blue staining, and intracellular iron determination studies demonstrate that the folate-functionalized magnetic micelles have larger cellular uptake against the folate-receptor positive hepatoma cells Bel-7402 than the unmodified magnetic micelles. In vivo MR imaging conducted on nude mice bearing the Bel-7402 xenografts after bolus intravenous administration reveals excellent tumor targeting and MR imaging capabilities, especially at 24h post-injection. These findings suggest the potential of FA-BSA modified magnetic micelles as targeting MRI probe in tumor detection. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
The effect of the serum corona on interactions between a single nano-object and a living cell
Dror, Yael; Sorkin, Raya; Brand, Guy; Boubriak, Olga; Urban, Jill; Klein, Jacob
2017-01-01
Nanoparticles (NPs) which enter physiological fluids are rapidly coated by proteins, forming a so-called corona which may strongly modify their interaction with tissues and cells relative to the bare NPs. In this work the interactions between a living cell and a nano-object, and in particular the effect on this of the adsorption of serum proteins, are directly examined by measuring the forces arising as an Atomic Force Microscope tip (diameter 20 nm) - simulating a nano-object - approaches and contacts a cell. We find that the presence of a serum protein corona on the tip strongly modifies the interaction as indicated by pronounced increase in the indentation, hysteresis and work of adhesion compared to a bare tip. Classically one expects an AFM tip interacting with a cell surface to be repelled due to cell elastic distortion, offset by tip-cell adhesion, and indeed such a model fits the bare-tip/cell interaction, in agreement with earlier work. However, the force plots obtained with serum-modified tips are very different, indicating that the cell is much more compliant to the approaching tip. The insights obtained in this work may promote better design of NPs for drug delivery and other nano-medical applications. PMID:28383528
Surface expression of the Chicxulub crater
Pope, K O; Ocampo, A C; Kinsland, G L; Smith, R
1996-06-01
Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.
Vortex Rings Generated by a Shrouded Hartmann-Sprenger Tube
NASA Technical Reports Server (NTRS)
DeLoof, Richard L. (Technical Monitor); Wilson, Jack
2005-01-01
The pulsed flow emitted from a shrouded Hartmann-Sprenger tube was sampled with high-frequency pressure transducers and with laser particle imaging velocimetry, and found to consist of a train of vortices. Thrust and mass flow were also monitored using a thrust plate and orifice, respectively. The tube and shroud lengths were altered to give four different operating frequencies. From the data, the radius, velocity, and circulation of the vortex rings was obtained. Each frequency corresponded to a different length to diameter ratio of the pulse of air leaving the driver shroud. Two of the frequencies had length to diameter ratios below the formation number, and two above. The formation number is the value of length to diameter ratio below which the pulse converts to a vortex ring only, and above which the pulse becomes a vortex ring plus a trailing jet. A modified version of the slug model of vortex ring formation was used to compare the observations with calculated values. Because the flow exit area is an annulus, vorticity is shed at both the inner and outer edge of the jet. This results in a reduced circulation compared with the value calculated from slug theory accounting only for the outer edge. If the value of circulation obtained from laser particle imaging velocimetry is used in the slug model calculation of vortex ring velocity, the agreement is quite good. The vortex ring radius, which does not depend on the circulation, agrees well with predictions from the slug model.
Counting Condensation Nuclei in the Antarctic Ozone Mission
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1994-01-01
The work done on this grant primarily concerns the measurement of aerosol in the stratosphere from NASA ER-2 aircraft in studies of stratospheric ozone depletion in the northern and southern hemispheres. The ER-2 Condensation Nucleus Counter (CNC) measures the number concentration of particles in the diameter range of approximately 0.01 to 1 micron. The Passive Cavity Aerosol Spectrometer measures size distributions in the 0.17 to 3 micron diameter range. This instrument was upgraded during this grant period to a Focused Cavity Aerosol Spectrometer (FCAS). This upgrade permitted the instrument to measure particles as small as 0.05 micron in diameter. The inlet for the PCAS and FCAS was modified and characterized under this grant so that the modifications to the aerosol due to anisokinetic sampling and heating upon sampling and in transport to the measurement location were accounted for in the data analysis. These measurements permitted observations of particle production in the southern hemisphere winter polar vortex and observation of the impact of denitrification on the number concentration of the aerosol in the denitrified air. In the northern polar vortex, the measurements provided a characterization of the sulfate aerosol. Following the eruption of Mount Pinatubo in 1991, the measurements permitted an accurate characterization of the sulfate aerosol enhancements resulting from the eruption. This led to studies of the impact of heterogeneous chemistry on the partitioning of the partitioning of the reactive nitrogen species and the partitioning of the chlorine reservoir.
Boundary Layer Measurements in a Supersonic Wind Tunnel Using Doppler Global Velocimetry
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.
2010-01-01
A modified Doppler Global Velocimeter (DGV) was developed to measure the velocity within the boundary layer above a flat plate in a supersonic flow. Classic laser velocimetry (LV) approaches could not be used since the model surface was composed of a glass-ceramic insulator in support of heat-transfer measurements. Since surface flare limited the use of external LV techniques and windows placed in the model would change the heat transfer characteristics of the flat plate, a novel approach was developed. The input laser beam was divided into nine equal power beams and each transmitted through optical fibers to a small cavity within the model. The beams were then directed through 1.6-mm diameter orifices to form a series of orthogonal beams emitted from the model and aligned with the tunnel centerline to approximate a laser light sheet. Scattered light from 0.1-micron diameter water condensation ice crystals was collected by four 5-mm diameter lenses and transmitted by their respective optical fiber bundles to terminate at the image plane of a standard two-camera DGV receiver. Flow measurements were made over a range from 0.5-mm above the surface to the freestream at Mach 3.51 in steady state and heat pulse injected flows. This technique provides a unique option for measuring boundary layers in supersonic flows where seeding the flow is problematic or where the experimental apparatus does not provide the optical access required by other techniques.
Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros
NASA Technical Reports Server (NTRS)
Thomas, P. C.; Robinson, M. S.
2005-01-01
Impact cratering acts in a variety of ways to create a surprising range of scenery on small satellites and asteroids. The visible crater population is a self-modifying characteristic of these airless objects, and determining the various ways younger craters can add or subtract from the population is an important aspect of small body "geology." Asteroid 433 Eros, the most closely studied of any small body, has two aspects of its crater population that have attracted attention: a fall-off of crater densities below approx.100 m diameter relative to an expected equilibrium population [1] and regions of substantially lower large crater densities [2, 3, 4]. In this work we examine the global variation of the density of craters on Eros larger than 0.177 km, a size range above that involved in small crater depletion hypotheses [1, 5]. We counted all craters on Eros to a size range somewhat below 0.177 km diameter (and different from data used in [3]). The primary metric for this study is the number of craters between 0.177 and 1.0 km within a set radius of each grid point on the 2deg x 2deg shape model of Eros. This number can be expressed as an R-value [6], provided that it is remembered that the large bin size makes individual R values slightly different from those obtained in the usual root-2 bins.
Matsukawa, Hidetoshi; Tanikawa, Rokuya; Kamiyama, Hiroyasu; Tsuboi, Toshiyuki; Noda, Kosumo; Ota, Nakao; Miyata, Shiro; Oda, Jumpei; Takeda, Rihee; Tokuda, Sadahisa; Kamada, Kyousuke
2016-08-01
OBJECT The revascularization technique, including bypass created using the external carotid artery (ECA), radial artery (RA), and M2 portion of middle cerebral artery (MCA), has remained indispensable for treatment of complex aneurysms. To date, it remains unknown whether diameters of the RA, superficial temporal artery (STA), and C2 portion of the internal carotid artery (ICA) and intraoperative MCA blood pressure have influences on the outcome and the symptomatic watershed infarction (WI). The aim of the present study was to evaluate the factors for the symptomatic WI and neurological worsening in patients treated by ECA-RA-M2 bypass for complex ICA aneurysm with therapeutic ICA occlusion. METHODS The authors measured the sizes of vessels (RA, C2, M2, and STA) and intraoperative MCA blood pressure (initial, after ICA occlusion, and after releasing the RA graft bypass) in 37 patients. Symptomatic WI was defined as presence of the following: postoperative new neurological deficits, WI on postoperative diffusion-weighted imaging, and ipsilateral cerebral blood flow reduction on SPECT. Neurological worsening was defined as the increase in 1 or more modified Rankin Scale scores. First, the authors performed receiver operating characteristic curve analysis for continuous variables and the binary end point of the symptomatic WI. The clinical, radiological, and physiological characteristics of patients with and without the symptomatic WI were compared using the log-rank test. Then, the authors compared the variables between patients with and without neurological worsening at discharge and at the 12-month follow-up examination or last hospital visit. RESULTS Symptomatic WI was observed in 2 (5.4%) patients. The mean MCA pressure after releasing the RA graft (< 55 mm Hg; p = 0.017), mean (MCA pressure after releasing the RA graft)/(initial MCA pressure) (< 0.70 mm Hg; p = 0.032), and mean cross-sectional area ratio ([RA/C2 diameter](2) < 0.40 mm [p < 0.0001] and [STA/C2 diameter](2) < 0.044 mm [p < 0.0001]) were related to the symptomatic WI. All preoperatively independent patients remained independent (modified Rankin Scale score < 3). After adjusting for age and sex, left operative side (p = 0.0090 and 0.038) and perforating artery ischemia (p = 0.0050 and 0.022) were related to neurological worsening at discharge (11 [29%] patients) and at the 12-month follow-up or last hospital visit (8 [22%] patients). CONCLUSIONS Results of the present study showed that the vessel diameter and intraoperative MCA pressure had impacts on the symptomatic WI and that operative side and perforating artery ischemia were related to neurological worsening in patients with complex ICA aneurysms treated by ECA-RA-M2 bypass.
Lu, Haiyang; Ni, Guoquan; Li, Ruxin; Xu, Zhizhan
2010-03-28
This work intends to get a better understanding of cluster formation in supersonic nozzles of different geometries. The throat diameters d are within 0.26 mm < or = d < or = 0.62 mm, the half-opening-angle alpha within 4.2 degrees < or = alpha < or = 11.3 degrees, and the length L of the conical section is 17.5 mm (eight nozzles) or 12 mm (two nozzles). Thus the so-called "equivalent sonic-nozzle diameter d(eq)" for these conical nozzle geometries, defined by d(eq)=0.74 d/tan alpha (for monatomic gases), is in the range of 1.59 mm < or = d(eq) < or = 5.21 mm. Source temperature for the clustering experiments was T(0)=298 K, and the backing pressure P(0) was between 0.5 and 30 bars. The (average) cluster sizes observed for these conical nozzles deviate from the predictions of the simple stream-tube-model. These deviations are accounted for by introducing the so-called "effective equivalent sonic-nozzle diameter d(eq)*," defined as the product of the equivalent sonic-nozzle diameter d(eq) and a new parameter delta, d(eq)*=deltad(eq). The parameter delta serves to modify the equivalent diameters d(eq) of the conical nozzles, which are applied in the idealized cases where the gas flows are suggested to be formed through free jet expansion. Then, delta represents the deviation of the performance in cluster formation of the practical conical nozzles from those predicted based on the idealized picture. The experimental results show that the values of delta can be described by an empirical formula, depending on the gas backing pressure P(0) and the parameter d(eq) of the conical nozzles. The degradation of the performance of the present conical nozzles was found with the increase in P(0) and the larger d(eq). It was revealed that delta is inversely proportional to a fractional power (approximately 0.5-0.6) of the molecular density n(mol) in the gas flows under the present experimental conditions. The boundary layers effects are considered to be mainly responsible for the restriction of the performance of the conical nozzles in cluster formation.
Measuring and controlling the transport of magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Stephens, Jason R.
Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and increases with pore diameter. We find that fluxes are faster in aqueous solutions than in hexane, which is attributed to the hydrophilic nature of the porous membranes and differences in wettability. The impact of an applied magnetic flux gradient, which induces magnetization and motion, on permeation is also examined. Surface chemistry plays an important role in determining flux through porous media such as in the environment. Diffusive flux of nanoparticles through alkylsilane modified porous alumina is measured as a model for understanding transport in porous media of differing surface chemistries. Experiments are performed as a function of particle size, pore diameter, attached hydrocarbon chain length and chain terminus, and solvent. Particle fluxes are monitored by the change in absorbance of the solution in the receiving side of a diffusion cell. In general, flux increases when the membranes are modified with alkylsilanes compared to untreated membranes, which is attributed to the hydrophobic nature of the porous membranes and differences in wettability. We find that flux decreases, in both hexane and aqueous solutions, when the hydrocarbon chain lining the interior pore wall increases in length. The rate and selectivity of transport across these membranes is related to the partition coefficient (Kp) and the diffusion coefficient (D) of the permeating species. By conducting experiments as a function of initial particle concentration, we find that KpD increases with increasing particle size, is greater in alkylsilane--modified pores, and larger in hexane solution than water. The impact of the alkylsilane terminus (--CH3, --Br, --NH2, --COOH) on permeation in water is also examined. In water, the highest KpD is observed when the membranes are modified with carboxylic acid terminated silanes and lowest with amine terminated silanes as a result of electrostatic effects during translocation. Finally, the manipulation of magnetic nanoparticles for the controlled formation of linked nanoparticle assemblies between microfluidic channels by the application of an external magnet is discussed. Two orthogonal channels were prepared using standard PDMS techniques with pressure-driven flow used to deliver the Fe3O4 and Au nanoparticle reactants. Nanoparticle assembly formation is based upon locally confined surface modification of Fe3O4 nanoparticles interacting with Au nanoparticles bridging the two particles together. For the magnetic particles, transfer between flow streams is greatly increased by placing a permanent magnet above and below the channel intersections. Multiple configurations of Fe3O 4 and Au nanoparticle assemblies are observed as a function of flow rate and interaction time of the individual nanoparticle components. We observe the formation of higher order assemblies by increasing the concentration of Fe3O4 nanoparticles introduced to the microfluidic device. This technique demonstrates the ability to form nanoparticle linked assemblies and could be easily linked to other analytical techniques developed in our lab to further isolate and separate a particular product. (Abstract shortened by UMI.)
Acid-base equilibria inside amine-functionalized mesoporous silica.
Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio
2011-04-15
Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society
Magnetic polymer nanospheres for anticancer drug targeting
NASA Astrophysics Data System (ADS)
Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.
2010-01-01
Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.
The virial coefficients of hard hypersphere binary mixtures
NASA Astrophysics Data System (ADS)
Enciso, E.; Almarza, N. G.; Gonzalez, M. A.; Bermejo, F. J.
The third, fourth and fifth virial coefficients of hard hypersphere binary mixtures with dimensionality d = 4, 5 have been calculated for size ratios R ≥0.1, R ı σ22 / σ11 , where σ ii is the diameter of component i . The composition independent partial virial coefficients have been evaluated by Monte Carlo integration of the corresponding Mayer modified star diagrams. The results are compared with the predictions of Santos, S., Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys ., 96 , 1 of the equation of state of a multicomponent mixture of hard hyperspheres, and the good agreement gives strong support to the validity of that recipe.
Kang, Eun-Seok; Takahashi, Masahide; Tokuda, Yomei; Yoko, Toshinobu
2006-06-06
Magnesium oxide hollow spheres without a template core were conveniently prepared by stabilized bubble formation in a hybrid solution containing a magnesium acetate precursor, thus avoiding the complicated preparation process using a template. The hollow sphere could be aligned along the radial striation by spin coating, and its diameter from a micrometer to submicrometer dimension could be easily modified by the solution composition. It was also possible to control the open or closed hollow sphere by changing the solvent. Thus, the produced magnesium oxide hollow sphere is envisioned to have applications in many areas such as medicine, analysis, optics, and so on.
A 9700-hour durability test of a five centimeter diameter ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. C.
1973-01-01
A modified Hughes SIT-5 thrustor has been life-tested at the Lewis Research Center. The final 2700 hours of the test are described with a charted history of thrustor operating parameters and off-normal events. Performance and operating characteristics were nearly constant throughout the test except for neutralizer heater power requirements and accelerator drain current. A post-shutdown inspection revealed sputter erosion of ion chamber components and component flaking of sputtered metal. Several flakes caused beamlet divergence and anomalous grid erosion, causing the test to be terminated. All sputter erosion sources have been identified and promising sputter resistant components are currently being evaluated.
The self-propulsion of a helix in granular matter
NASA Astrophysics Data System (ADS)
Valdes, Rogelio; Angeles, Veronica; de La Calleja, Elsa; Zenit, Roberto
2017-11-01
The effect of the shape of helicoidal on the displacement of magnetic robots in granular media is studied experimentally. We quantify the influences of three main parameters of the shape of the helicoidal swimmers: body diameter, step, and the angle. We compare the experimental measurements with an empirically modified resistive force theory prediction that accounts for the static friction coefficient of the particles of the granular material, leading to good agreement. Comparisons are also made with the granular resistive force theory proposed by Goldman and collaborators. We found an optimal helix angle to produce movement and determined a relationship between the swimmer size and speed.
Metal powder production by gas atomization
NASA Technical Reports Server (NTRS)
Ting, E. Y.; Grant, N. J.
1986-01-01
The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.
Bridgman growth of lead potassium niobate crystals
NASA Astrophysics Data System (ADS)
Fan, Shiji; Sun, Renying; Lin, Yafang; Wu, Jindi
1999-03-01
Lead potassium niobate Pb 2KNb 5O 15 (PKN) crystals with tetragonal tungsten bronze (TTB) structure have been grown by the modified Bridgman (BR) method. Nearly sealed Pt crucibles and small temperature gradients in the Bridgman furnace can limit volatilization of PbO and cracking of as-grown PKN crystals. Transparent PKN crystals of 1 inch diameter by ˜2 inch length with brownish color have been grown successfully at a crucible lowering rate <0.5 mm/h and a temperature gradient of 10-15°C/cm across the solid-liquid interface. Coupling between twins and growth directions of the crystal is also discussed.
Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles
NASA Astrophysics Data System (ADS)
Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing
2017-12-01
The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.
Use of Carbon Arc Lamps as Solar Simulation in Environmental Testing
NASA Technical Reports Server (NTRS)
Goggia, R. J.; Maclay, J. E.
1962-01-01
This report covers work done by the authors on the solar simulator for the six-foot diameter space simulator presently in use at JPL. The space simulator was made by modifying an existent vacuum chamber and uses carbon arc lamps for solar simulation. All Ranger vehicles flown to date have been tested in this facility. The report also contains a series of appendixes covering various aspects of space-simulation design and use. Some of these appendixes contain detailed analyses of space-simulator design criteria. Others cover the techniques used in studying carbon-arc lamps and in applying them as solar simulation.
Acrolein Microspheres Are Bonded To Large-Area Substrates
NASA Technical Reports Server (NTRS)
Rembaum, Alan; Yen, Richard C. K.
1988-01-01
Reactive cross-linked microspheres produced under influence of ionizing radiation in aqueous solutions of unsaturated aldehydes, such as acrolein, with sodium dodecyl sulfate. Diameters of spheres depend on concentrations of ingredients. If polystyrene, polymethylmethacrylate, or polypropylene object immersed in solution during irradiation, microspheres become attached to surface. Resulting modified surface has grainy coating with reactivity similar to free microspheres. Aldehyde-substituted-functional microspheres react under mild conditions with number of organic reagents and with most proteins. Microsphere-coated macrospheres or films used to immobilize high concentrations of proteins, enzymes, hormones, viruses, cells, and large number of organic compounds. Applications include separation techniques, clinical diagnostic tests, catalytic processes, and battery separators.
NASA Astrophysics Data System (ADS)
Nawrin, N.; Ahmed, K. M.; Rahman, M. M.
2016-12-01
Increasing salinity of natural drinking water sources has been reported as one of the many problems that affect low-income countries. Safe potable water sources in coastal Bangladesh have become contaminated by varying degrees of salinity due to saltwater intrusion, cyclone and storm surges and increased shrimp and crab farming along the coastal areas. This crisis is also exacerbated owing to climate change. The problem of salinity can have serious implications to public health. Here Managed Aquifer Recharge (MAR) has been ascertained as a better solution to overcome the fresh water shortage in the coastal belt of Bangladesh in terms of groundwater quality improvement and supply fresh water even during the dry period. 19 MAR systems have been built and tested in the area for providing community water supply by way of creating freshwater buffer zone in the brackish aquifers through artificial recharge of pond or rooftop rainwater. These existing ASTR schemes consist of sand filtration tank with 4 to 6 large diameter infiltration wells filled with sorted gravel. These larger diameter recharge wells make the construction and maintenance expensive and little difficult for the rural communities. Therefore, modification of design is required for enhancing infiltration rates with reduced costs. As the design of the existing MAR system have confronted some problems, the details of design, construction and performance have been studied from previous investigations and a new modified ASTR scheme has been demonstrated to amplify the infiltration rate along with monitoring scheme. Smaller 4 inch diameter empty recharge wells and PVC screen have been used in the newly developed design. Daily infiltration rate has been increased to 8 to 10 m3/d compared to 4 to 6 m3/d in the old design. Three layered sand filtration tank has been prepared by modification of an abandoned PSF. Time needed for lowering EC to acceptable limits has been found to be significantly lower than the pre-existing systems. Moreover the abstracted water quality is acceptable for drinking in terms of As, Fe and bacteria. In modified ASTR system both injection and monitoring wells are closed with airtight caps, so the stored water in the underground will be protected from cyclonic storm surges as well as remain safe and can be used immediately after disaster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William R.; Lee, John C.; baxter, Alan
Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less
Jung, Ui-Won; Choi, Jung-Yoo; Kim, Chang-Sung; Cho, Kyoo-Sung; Chai, Jung-Kiu; Kim, Chong-Kwan; Choi, Seong-Ho
2008-10-01
Anatomic and biomechanical limitations can jeopardize successful single implantation in the mandibular posterior area. To overcome the limitations, the design and the surface of the fixtures were modified. This study evaluated the cumulative survival rate (CSR) of mandibular molars replaced with a sand-blasted, large-grit, acid-etched (SLA) single implant or an anodized (ANO) single implant and examined associated factors, such as the surface treatment, position, and length and diameter of the implants. One hundred ninety-three single implants restored with an SLA implant and 112 single implants restored with an ANO implant in the mandibular molar area were selected from subjects who had visited the Department of Periodontology, Dental Hospital of Yonsei University, from March 2001 through June 2006. In the SLA group, 123 and 70 implants were placed in the first and second molar area, respectively. In the ANO group, 55 and 57 implants were placed in the first and second molar area, respectively. The 1- to 6-year CSR of the SLA and ANO groups was calculated using the life-table analysis. In addition, associated factors, such as the surface treatment, position, and length and diameter of the implants, were compared and analyzed using the chi(2) test (P <0.05). Two of 193 implants in the SLA group failed, giving a CSR of 98.96%; four of 112 ANO implants failed, giving a CSR of 96.43%. There were no significant differences with regard to the surface treatment, position, and length and diameter of the implants. Despite the anatomic and biomechanical limitation in the mandibular posterior area, mandibular posterior single implants showed a high CSR during the observation period. Mandibular posterior single implants can be an effective and reliable treatment modality that is not affected by the surface treatment, position, or length and diameter of the implant.
Urakawa, Manami; Ideta, Atsushi; Sawada, Tokihiko; Aoyagi, Yoshito
2004-08-01
Somatic cell nuclear transfer has a low success rate, due to a high incidence of fetal loss and increased perinatal morbidity/mortality. One factor that may affect the successful development of nuclear transfer embryos is the cell cycle stage of the donor cell. In order to establish a cell cycle synchronization method that can consistently produce cloned embryos and offspring, we examined the effects of different combinations of three cell treatments on the recovery rate of mitotic phase cells using bovine fetal fibroblasts. In the first experiment, we examined the recovery rate of mitotic phase cells by a combination of treatment with a metaphase arrestant (1 microM 2-methoxyestradiol), shaking the plate and selecting cells with a diameter of 20 microns. As a result, 99% of mitotic phase cells were recovered by repeating the combined treatment of metaphase arrestant and shaking, and collection of cells with a specific diameter. In the second experiment, nuclear transfer was carried out using early G1 phase cells by choosing pairs of bridged cells derived from mitotic phase cells recovered by the combined treatment of 1 microM 2-methoxyestradiol and shaking, and collection of cells with a diameter of 20 microns. The reconstructed embryos were transferred to recipient heifers to determine post-implantation development. Development of embryos reconstructed from early G1 phase cells from the >/=6 cells stage on Day 3 to the morula-blastocyst stage on Day 6 was 100%. Ten blastocysts constructed from two cell lines were transferred into 10 recipient heifers. Nine of the 10 recipients delivered single live calves. In conclusion, mitotic phase bovine fibroblast cells were easily recovered by the combined treatments of 1 microM 2-methoxyestradiol, shaking, and selecting cells of the appropriate diameter. Furthermore, nuclear transfer using cells in the early G1 phase as donor cells gave a high rate of offspring production.
Massillon-JL, Guerda; Cueva-Prócel, Diego; Díaz-Aguirre, Porfirio; Rodríguez-Ponce, Miguel; Herrera-Martínez, Flor
2013-01-01
This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in 60Co gamma-ray and 6 MV x-ray reference (10×10 cm2) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters. PMID:23671677
NASA Astrophysics Data System (ADS)
Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.
2012-08-01
In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation formation type.
Koinzer, Stefan; Hesse, Carola; Caliebe, Amke; Saeger, Mark; Baade, Alexander; Schlott, Kerstin; Brinkmann, Ralf; Roider, Johann
2013-09-01
The rabbit is the most common animal model to study retinal photocoagulation lesions. We present a classification of retinal lesions from rabbits, that is based on optical coherence tomographic (OCT) findings, temperature data, and OCT-follow-up data over 3 months. Four hundred eighty-six photocoagulation lesions (modified Zeiss Visulas® 532 nm CW laser, lesion diameter 133 µm, exposure duration 200 milliseconds or variable, power variable) were analyzed from six eyes of three chinchilla gray rabbits. During the irradiation of each lesion, we used an optoacoustics-based method to measure the retinal temperature profile. Two hours, 1 week, 1 month, and 3 months after the treatment, we obtained fundus color and OCT (Spectralis®) images of each lesion. We classified the lesions according to their OCT morphology and correlated the findings to ophthalmoscopic and OCT lesion diameters, and temperatures. Besides an undetectable lesion class 0, we discerned subthreshold lesions that were invisible on the fundus but detectable in OCT (classes 1 and 2), very mild lesions that were partly visible on the fundus (class 3), and 3 classes of suprathreshold lesions. OCT greatest linear diameters (GLDs) were larger than ophthalmoscopic lesion diameters, both increased for increasing classes, and GLDs decreased over 3 months within each class. Mean peak end temperatures for 200 milliseconds lesions ranged from 61°C in class 2 to 80°C in class 6. The seven step rabbit lesion classifier is distinct from a previously published human lesion classifier. Threshold lesions are generated at comparable temperatures in rabbits and humans, while more intense lesions are created at lower temperatures in rabbits. The OCT lesion classifier could replace routine histology in some studies, and the presented data may be used to estimate lesion end temperatures from OCT images. © 2013 Wiley Periodicals, Inc.
Can the Yarkovsky effect significantly influence the main-belt size distribution?
NASA Astrophysics Data System (ADS)
O'Brien, D. P.; Greenberg, R.
2001-11-01
It has been proposed that the size distribution of main-belt asteroids may be significantly modified by the Yarkovsky effect---a size-dependent radiation force which can sweep asteroids into resonances and out of the main belt. Bell [1] suggested that this effect could deplete the population of asteroids smaller than ~10 m by at least an order of magnitude, resulting in the lack of small craters observed on Eros. Others have hypothesized that the same effect could explain the steepness of the crater distribution on Gaspra [2]. We have explicitly included Yarkovsky removal in a numerical collisional evolution model. The algorithm uses recent calculations of the expected removal rates of different sized bodies from the main belt (David Vokrouhlicky, personal communication). We find that the rate of removal of bodies from the main belt by the Yarkovsky effect may be within an order of magnitude of the rate of collisional destruction for asteroids ~10 m in diameter, and negligible for larger or smaller asteroids. When Yarkovsky removal is incorporated into our numerical collisional evolution model, the numbers of bodies ~10 m in diameter is reduced by ~10-20%, and a wave propagates up the size distribution increasing the number of bodies ~300 m by ~10%. This `waviness' could conceivably be detected in the cratering records on asteroids. However, the uncertainties in crater counts on Ida, Gaspra, Malthide, and Eros are >10% for diameters >100 m (i. e. the craters made by impactors >10 m in diameter). Contrary to the earlier hypothesis, Yarkovsky removal of small asteroids cannot have substantially affected the overall slopes of the crater populations on these asteroids. Moreover, Yarkovsky removal cannot explain the lack of small (<10 m) craters on Eros, because the corresponding impactors (<1 m) are unaffected by the Yarkovsky effect. [1] Bell, J. F. (2001). LPSC XXXII abstract no. 1964. [2] Hartmann, W. K. and E. V. Ryan (1996). DPS 28, abstract no. 10.35.
Measurement of aeroacoustic noise generated on wind turbine blades modified by trailing edge brushes
NASA Astrophysics Data System (ADS)
Asheim, Michael J.
As wind technology becomes a larger portion of the energy production picture, the problematic interactions between the machines and society will continue to become more pronounced. Of these problems, wind turbine noise is one of the most important to the future of wind turbine development. This study looks at the effect trailing edge brushes mounted on the 2 bladed Controls Advance Research Turbine (CART 2), located at the National Wind Technology Center, have on the overall acoustic and aerodynamic performance of the blades. The use of trailing edge brushes reduced the aeroacoustic noise by 1.0 to 5.0 dB over the baseline blade, depending on wind speed. This acoustic performance comes at a cost to the aerodynamic performance of the blades. The aerodynamic performance indicators, such as turbine power and root bending moments show that increased drag due to the brushes is the main contributor to the reduction in power production. An economic analysis also investigated how to best use noise mitigation devices to optimize acoustic, power performance and loads of a 600 kW baseline turbine, such as the CART 2. The analysis shows that the use of up a noise mitigation device of 4 dB is best used by increasing the rotor diameter and the power rating of the machine, from a 43.3 m diameter, 600 kW machine to a 68.8 m diameter, 886.7 kW machine. This increase resulted in an annual energy production increase of 414% when using a Rayleigh wind distribution with at a mean annual wind speed of 8.5 m/s. This is a reduction of cost of energy from 0.0463 per kWh to 0.0422 kWh. This reduction in energy production costs helps to explain the continuing trend of turbine machine growth in both rotor diameter and power rating.
Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan
2014-01-01
This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis.
Gold nanoparticles on titanium and interaction with prototype protein.
Padmos, J Daniel; Duchesne, Paul; Dunbar, Michael; Zhang, Peng
2010-10-01
Modifying titanium (Ti) implant surfaces with functional proteins can strengthen the interface between prosthesis and bone. A prototype system was developed using gold nanoparticles (AuNPs) to immobilize proteins onto Ti. An electroless (galvanic displacement) deposition method was first used to form AuNPs of controlled size and coverage on commercial Ti foil (giving Ti-AuNPs). Parameters were then modified to create two groups of discs (n = 26) with different average AuNP diameters. Scanning electron microscopy and X-ray photoelectron spectroscopy were used to characterize the morphology and surface structure of Ti-AuNPs. To study the interaction of Ti-AuNPs with proteins, Ti discs (n = 8) modified with plain AuNPs and discs (n = 8) modified with thiol (HS--R--COOH)-functionalized AuNPs were treated with lysozyme solution. The amount and activity of the lysozyme on the discs were examined with Micro-BCA and enzymatic assays. Lysozyme was immobilized onto the discs, and the assays showed that the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls had average lysozyme adsorptions of 23 x 10(4), 2.3 x 10(4), and 5.7 x 10(4) microg/m2, respectively. The activity assays showed that 21.5, 18.4, and 12.5% of the adsorbed lysozyme was active on the discs with thiol-functionalized AuNPs, discs with bare AuNPs, and Ti controls, respectively. This technique holds promise for binding functional biomolecules to surgical implants, hence possibly creating implant surfaces that react to their local environment. Copyright 2010 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2010.
Capillary Rise: Validity of the Dynamic Contact Angle Models.
Wu, Pingkeng; Nikolov, Alex D; Wasan, Darsh T
2017-08-15
The classical Lucas-Washburn-Rideal (LWR) equation, using the equilibrium contact angle, predicts a faster capillary rise process than experiments in many cases. The major contributor to the faster prediction is believed to be the velocity dependent dynamic contact angle. In this work, we investigated the dynamic contact angle models for their ability to correct the dynamic contact angle effect in the capillary rise process. We conducted capillary rise experiments of various wetting liquids in borosilicate glass capillaries and compared the model predictions with our experimental data. The results show that the LWR equations modified by the molecular kinetic theory and hydrodynamic model provide good predictions on the capillary rise of all the testing liquids with fitting parameters, while the one modified by Joos' empirical equation works for specific liquids, such as silicone oils. The LWR equation modified by molecular self-layering model predicts well the capillary rise of carbon tetrachloride, octamethylcyclotetrasiloxane, and n-alkanes with the molecular diameter or measured solvation force data. The molecular self-layering model modified LWR equation also has good predictions on the capillary rise of silicone oils covering a wide range of bulk viscosities with the same key parameter W(0), which results from the molecular self-layering. The advantage of the molecular self-layering model over the other models reveals the importance of the layered molecularly thin wetting film ahead of the main meniscus in the energy dissipation associated with dynamic contact angle. The analysis of the capillary rise of silicone oils with a wide range of bulk viscosities provides new insights into the capillary dynamics of polymer melts.
NASA Astrophysics Data System (ADS)
Sulistianti, I.; Krisnandi, Y. K.; Moenandar, I.
2017-04-01
Mesoporous carbon was synthesized by soft template method using phloroglucinol and formaldehyde as a carbon source; and Pluronic F-127 as a mesoporous template. The synthesized mesoporous carbon and commercial activated carbon were modified with triethylenetetramine (TETA) to increase CO2 adsorption capacity. Based on FTIR characterization, the synthesized mesoporous carbon and the activated carbon without modification process has similarity pattern. After the modification, both of them showed absorption peaks in the area around 1580 to 1650 cm-1 which is known as N-H bending vibration and absorption peaks in the area around 3150 to 3380 cm-1 which is known as N-H stretching vibration. The XRD results showed two peaks at 2θ = 24.21° and 2θ = 43.85°, according to JCPDS index No. 75-1621 those peak are the typical peaks for hexagonal graphite carbon. In BET analysis, the synthesized mesoporous carbon and activated carbon modified TETA have surface area, pore volume and pore diameter lower than without modification process. In carbon dioxide adsorption testing, the synthesized mesoporous carbon showed better performance than the commercial activated carbon for CO2 adsorption both without modification and by modification. The synthesized mesoporous carbon obtained CO2 adsorption of 9.916 mmol/g and the activated carbon of 3.84 mmol/g for on 3.5 hours of adsorption. It is three times better than activated carbon for adsorption of carbon dioxide. The modified mesoporous carbon has the best performance for adsorption of gas CO2 if compared by unmodified.
Spicher, G; Borchers, U
1984-10-01
The series of tests described in a preceding publication (Spicher and Borchers, 1983) has been continued in a modified way. This time, the dependency of the microbiological test results of a formaldehyde gas sterilization procedure on length and inner diameter of the tubes serving as test pieces was examined. The tubes were 1 or 2 m in length with an inner diameter of 1 or 2 mm. The tests were performed with four different preparations of bioindicators. Spores of Bac. stearothermophilus served as test germs. The preparations differed in the type of suspension used for the preparation of the bioindicators: distilled water, diluted blood (10%), undiluted blood, 10% albumin solution. The spore suspensions had been dried on linen thread. During the test procedure, the bioindicators were located near the sealed end of the tube. After completion of the sterilization procedure, the bioindicators were examined for viable germs. In tubes of identical length, the frequency of indicators carrying viable germs was always higher in those of 1 mm than in those of 2 mm inner diameter. In tubes of identical inner diameter, the frequency of indicators carrying viable germs in those of 2 m length was always higher than in those of 1 m length. This regularity was independent of the type of bioindicators used. The bioindicators for the preparation of which a 10% albumin solution had been employed showed the highest resistance. A somewhat lower resistance was found for the bioindicators prepared with undiluted blood. The bioindicators for which the spores had been suspended in diluted blood proved to have the lowest resistance. If the spores had been suspended in distilled water, the resistance of the bioindicators was a little lower than that of those suspended in undiluted blood, but was higher than that of the dried spores with diluted blood. The test results confirm the effectiveness of the method proposed earlier, i.e. to deposit the bioindicators in special test pieces (e.g. tubes or sounds) for the microbiological testing of formaldehyde gas sterilization procedures. These test pieces must be at least as long and as narrow as the longest and narrowest cavity of the object to be sterilized (tubes, catheters). In order to standardize the microbiological testing of formaldehyde gas sterilization procedures and to guarantee a certain minimum efficiency, the bioindicator as well as the test piece and its size (length and inner diameter) should be standardized.(ABSTRACT TRUNCATED AT 400 WORDS)
Compressive deformation of a single microcapsule
NASA Astrophysics Data System (ADS)
Liu, K. K.; Williams, D. R.; Briscoe, B. J.
1996-12-01
This paper reports an experimental and theoretical study of the compressive behavior of single microcapsules; that is, liquid-filled cellular entities (approximately 65 μm in diameter) with a thin polymeric membrane wall. An experimental technique which allows the simultaneous measurement of both the compressive displacement and the reaction forces of individual microcapsules deformed between two parallel plates up to a dimensionless approach [(compressive displacement)/(initial particle diameter)] of 60% is described. The corresponding major geometric parameters of the deformed microcapsule, such as central lateral extension as well as the failure phenomena, are reported and recorded through a microscopic visualization system. The elastic modulus, the bursting strength of the membrane, and the pressure difference across the membrane are computed by using a theoretical analysis which is also presented in this paper. This theoretical model, which was developed by Feng and Yang [
Chang, G.; Ruehl, K.; Jones, C. A.; ...
2015-12-24
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less
Air flow quality analysis of modenas engine exhaust system
NASA Astrophysics Data System (ADS)
Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.
2017-09-01
The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.
Pediatric melanoma: incidence, treatment, and prognosis
Saiyed, Faiez K; Hamilton, Emma C; Austin, Mary T
2017-01-01
The purpose of this review is to outline recent advancements in diagnosis, treatment, and prevention of pediatric melanoma. Despite the recent decline in incidence, it continues to be the deadliest form of skin cancer in children and adolescents. Pediatric melanoma presents differently from adult melanoma; thus, the traditional asymmetry, border irregularity, color variegation, diameter >6 mm, and evolution (ABCDE) criteria have been modified to include features unique to pediatric melanoma (amelanotic, bleeding/bump, color uniformity, de novo/any diameter, evolution of mole). Surgical and medical management of pediatric melanoma continues to derive guidelines from adult melanoma treatment. However, more drug trials are being conducted to determine the specific impact of drug combinations on pediatric patients. Alongside medical and surgical treatment, prevention is a central component of battling the incidence, as ultraviolet (UV)-related mutations play a central role in the vast majority of pediatric melanoma cases. Aggressive prevention measures targeting sun safety and tanning bed usage have shown positive sun-safety behavior trends, as well as the potential to decrease melanomas that manifest later in life. As research into the field of pediatric melanoma continues to expand, a prevention paradigm needs to continue on a community-wide level. PMID:29388632
NASA Astrophysics Data System (ADS)
Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng
2018-04-01
Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.