Concepts and analysis for precision segmented reflector and feed support structures
NASA Technical Reports Server (NTRS)
Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.
1990-01-01
Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.
Large deployable antenna program. Phase 1: Technology assessment and mission architecture
NASA Technical Reports Server (NTRS)
Rogers, Craig A.; Stutzman, Warren L.
1991-01-01
The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.
A robustness test of the braided device foreshortening algorithm
NASA Astrophysics Data System (ADS)
Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio
2017-11-01
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.
NASA Astrophysics Data System (ADS)
Thompson, S. J.; Doel, A. P.; Whalley, M.; Edeson, R.; Edeson, R.; Tosh, I.; Poyntz-Wright, O.; Atad-Ettedgui, E.; Montgomery, D.; Nawasra, J.
2017-11-01
Large aperture telescope technology (LATT) is a design study for a differential lidar (DIAL) system; the main investigation being into suitable methods, technologies and materials for a 4-metre diameter active mirror that can be stowed to fit into a typical launch vehicle (e.g. ROKOT launcher with 2.1-metre diameter cargo) and can self-deploy - in terms of both leaving the space vehicle and that the mirrors unfold and self-align to the correct optical form within the tolerances specified. The primary mirror requirements are: main wavelength of 935.5 nm, RMS corrected wavefront error of λ/6, optical surface roughness better than 5 nm, areal density of less than 16 kg/m2 and 1-2 mirror shape corrections per orbit. The primary mirror consists of 7 segments - a central hexagonal mirror and 6 square mirror petals which unfold to form the 4-meter diameter aperture. The focus of the UK LATT consortium for this European Space Agency (ESA) funded project is on using lightweighted aluminium or carbon-fibre-composite materials for the mirror substrate in preference to more traditional materials such as glass and ceramics; these materials have a high strength and stiffness to weight ratio, significantly reducing risk of damage due to launch forces and subsequent deployment in orbit. We present an overview of the design, which includes suitable actuators for wavefront correction, petal deployment mechanisms and lightweight mirror technologies. Preliminary testing results from manufactured lightweight mirror samples will also be summarised.
Building multidevice pipeline constructs of favorable metal coverage: a practical guide.
Shapiro, M; Raz, E; Becske, T; Nelson, P K
2014-08-01
The advent of low-porosity endoluminal devices, also known as flow diverters, exemplified by the Pipeline in the United States, produced the greatest paradigm shift in cerebral aneurysm treatment since the introduction of detachable coils. Despite robust evidence of efficacy and safety, key questions regarding the manner of their use remain unanswered. Recent studies demonstrated that the Pipeline device geometry can dramatically affect its metal coverage, emphasizing the negative effects of oversizing the device relative to its target vessels. This follow-up investigation focuses on the geometry and coverage of multidevice constructs. A number of Pipeline devices were deployed in tubes of known diameters and photographed, and the resultant coverage was determined by image segmentation. Multidevice segmentation images were created to study the effects of telescoped devices and provide an estimate of coverages resulting from device overlap. Double overlap yields a range of metal coverage, rather than a single value, determined by the diameters of both devices, the size of the recipient artery, and the degree to which strands of the overlapped devices are coregistered with each other. The potential variation in coverage is greatest during overlap of identical-diameter devices, for example, ranging from 24% to 41% for two 3.75-mm devices deployed in a 3.5-mm vessel. Overlapping devices of progressively different diameters produce correspondingly more uniform ranges of coverage, though reducing the maximum achievable value, for example, yielding a 33%-34% range for 3.75- and 4.75-mm devices deployed in the same 3.5-mm vessel. Rational strategies for building multidevice constructs can achieve favorable geometric outcomes. © 2014 by American Journal of Neuroradiology.
A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.
2010-01-01
Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1989-01-01
The Wrap-Rib Antenna is a deployable lightweight shaped reflector. It consists of a central hub, parabolic ribs, and an rf reflector mesh. The wrap-rib reflector approximates the desired surface by means of pie-shaped segments of parabolic cylinders. The elements of the total system and the feasibility of the system are discussed.
Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony
2012-08-27
Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.
Precision segmented reflectors for space applications
NASA Technical Reports Server (NTRS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-01-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Precision segmented reflectors for space applications
NASA Astrophysics Data System (ADS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-08-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Gulkis, S.; Kulper, T. B. H.; Kiya, M.
1983-01-01
The history and background of the Large Deployable Reflector (LDR) are reviewed. The results of the June 1982 Asilomar (CA) workshop are incorporated into the LDR science objectives and telescope concept. The areas where the LDR may have the greatest scientific impact are in the study of star formation and planetary systems in the own and nearby galaxies and in cosmological studies of the structure and evolution of the early universe. The observational requirements for these and other scientific studies give rise to a set of telescope functional requirements. These, in turn, are satisfied by an LDR configuration which is a Cassegrain design with a 20 m diameter, actively controlled, segmented, primary reflector, diffraction limited at a wavelength of 30 to 50 microns. Technical challenges in the LDR development include construction of high tolerance mirror segments, surface figure measurement, figure control, vibration control, pointing, cryogenics, and coherent detectors. Project status and future plans for the LDR are discussed.
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.
A Flux-Pinning Mechanism for Segment Assembly and Alignment
NASA Technical Reports Server (NTRS)
Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip
2011-01-01
Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeffery; Hayden, Joseph; Khreishi, Manal; McLean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, theJWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Ohl, Raymond G.; Berrier, Joshua; Gum, Jeff; Hayden, Joseph; Khreishi, Manal; Mclean, Kyle; Redman, Kevin; Sullivan, Joseph; Wenzel, Greg;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element which contains four science instruments (SIs). Prior to integration with the spacecraft, the JWST optical assembly is put through rigorous launch condition environmental testing. This work reports on the metrology operations conducted to determine any changes in subassembly alignment, including primary mirror segments with respect to each other, the secondary mirror to its support structure, the tertiary mirror assembly to the backplane of the telescope and ultimately to the ISIM.
"Accordion" deformity of a tortuous external iliac artery after stent-graft placement.
Quinn, S F; Kim, J; Sheley, R C; Frankhouse, J H
2001-02-01
To identify a complication of endograft deployment in aneurysmal iliac arteries. A 71-year-old man was referred for endovascular treatment of a 60-mm-diameter right common iliac artery aneurysm; however, deployment of a homemade covered stent (Palmaz-Schatz and polytetrafluoroethylene) induced shortening of the tortuous external iliac artery, causing an "accordion" deformity. The anomaly proved difficult to treat with serial Wallstent deployment, because the convolution tightened and migrated caudally with each stent deployed, threatening outflow. Finally, after 3 Wallstents were implanted, the contour of the external iliac artery was straight, and flow was unimpeded. However, 3 weeks later, the external iliac artery had recoiled to its original redundant appearance, but flow remained satisfactory. The aneurysm remains excluded, with satisfactory distal flow after 24 months. Implanting endografts in redundant, tortuous arterial segments may prove problematic, since induced straightening by the device precipitates kinking in the redundant system. Although treatment may be required in some situations, the vessels may return to a noncompressed state by removing the delivery system and guidewire.
Wavefront Analysis of Adaptive Telescope
NASA Technical Reports Server (NTRS)
Hadaway, James B.; Hillman, Lloyd
1997-01-01
The motivation for this work came from a NASA Headquarters interest in investigating design concepts for a large space telescope employing active optics technology. Current and foreseeable launch vehicles will be limited to carrying around 4-5 meter diameter objects. Thus, if a large, filled-aperture telescope (6-20 meters in diameter) is to be placed in space, it will be required to have a deployable primary mirror. Such a mirror may be an inflatable membrane or a segmented mirror consisting of many smaller pieces. In any case, it is expected that the deployed primary will not be of sufficient quality to achieve diffraction-limited performance for its aperture size. Thus, an active optics system will be needed to correct for initial as well as environmentally-produced primary figure errors. Marshall Space Flight Center has developed considerable expertise in the area of active optics with the PAMELA test-bed. The combination of this experience along with the Marshall optical shop's work in mirror fabrication made MSFC the logical choice to lead NASA's effort to develop active optics technology for large, space-based, astronomical telescopes. Furthermore, UAH's support of MSFC in the areas of optical design, fabrication, and testing of space-based optical systems placed us in a key position to play a major role in the development of this future-generation telescope. A careful study of the active optics components had to be carried out in order to determine control segment size, segment quality, and segment controllability required to achieve diffraction-limited resolution with a given primary mirror. With this in mind, UAH undertook the following effort to provide NASA/MSFC with optical design and analysis support for the large telescope study. All of the work performed under this contract has already been reported, as a team member with MSFC, to NASA Headquarters in a series of presentations given between May and December of 1995. As specified on the delivery order, this report simply summarizes the material with the various UAH-written presentation packages attached as appendices.
JWST Primary Mirror Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Mirror Technology was identified as a (if not the) critical capability necessary to achieve the Level 1 science goals. A never before demonstrated space telescope capability was required: 6 to 8 meter class pri mary mirror, diffraction limited at 2 micrometers and operates at temperatures below 50K. Launch vehicle constraints placed significant architectural constraints: deployed/segmented primary mirror (4.5 meter fairing diameter) 20 kg/m2 areal density (PM 1000 kg mass) Such mirror technology had never been demonstrated - and did not exist
Sandri, Paolo; Mazzinghi, Piero; Da Deppo, Vania
2018-04-20
A wide-field, large-aperture, and lightweight Schmidt configuration has been studied for a space mission proposal named Extreme Universe Space Observatory free flyer (EUSO-FF). EUSO-FF will be devoted to the study of ultrahigh energy cosmic rays, i.e., with energy >5×10 19 eV, through the detection of UV fluorescence light emitted by air showers in the Earth's atmosphere. The proposed telescope has a field of view of about 50° and an entrance pupil diameter of 4.2 m. The mirror is deployable and segmented to fit the diameter of the launcher fairing; the corrector is a lightweight annular corona.
Analysis of Iliac Artery Geometric Properties in Fenestrated Aortic Stent Graft Rotation.
Doyle, Matthew G; Crawford, Sean A; Osman, Elrasheed; Eisenberg, Naomi; Tse, Leonard W; Amon, Cristina H; Forbes, Thomas L
2018-04-01
A complication of fenestrated endovascular aneurysm repair is the potential for stent graft rotation during deployment causing fenestration misalignment and branch artery occlusion. The objective of this study is to demonstrate that this rotation is caused by a buildup of rotational energy as the device is delivered through the iliac arteries and to quantify iliac artery geometric properties associated with device rotation. A retrospective clinical study was undertaken in which iliac artery geometric properties were assessed from preoperative imaging for 42 cases divided into 2 groups: 27 in the nonrotation group and 15 in the rotation group. Preoperative computed tomography scans were segmented, and the iliac artery centerlines were determined. Iliac artery tortuosity, curvature, torsion, and diameter were calculated from the centerline and the segmented vessel geometry. The total iliac artery net torsion was found to be higher in the rotation group compared to the nonrotation group (23.5 ± 14.7 vs 14.6 ± 12.8 mm -1 ; P = .05). No statistically significant differences were found for the mean values of tortuosity, curvature, torsion, or diameter between the 2 groups. Stent graft rotation occurred in 36% of the cases considered in this study. Cases with high iliac artery total net torsion were found to be more likely to have stent graft rotation upon deployment. This retrospective study provides a framework for prospectively studying the influence of iliac artery geometric properties on fenestrated stent graft rotation.
Connected motorcycle crash warning interfaces.
DOT National Transportation Integrated Search
2016-01-15
Crash warning systems have been deployed in the high-end vehicle market segment for some time and are trickling down to additional motor vehicle industry segments each year. The motorcycle segment, however, has no deployed crash warning system to dat...
Unlu, Murat; Orguc, Sebnem; Serter, Selim; Pekindil, Gokhan; Pabuscu, Yuksel
2007-01-01
To investigate the anatomic and hemodynamic properties of testicular venous drainage and its effects on varicocele formation and reflux using color Doppler ultrasound (US) with emphasis on renal vein entrapment syndrome. Upper abdominal and scrotal US examinations of 35 varicocele patients and 35 healthy male subjects were performed in the supine position during rest, during a Valsalva maneuver and in the erect position. The aortomesenteric angle and distance (AMA and AMD, respectively), peak mean velocities (PVs) and diameters of different segments of renal veins, testicular vein diameters and duration of flow inversion were measured. In the varicocele group, the lateral segment of the left renal vein (LRV) had a larger diameter and slower PV, and the medial segment of the LRV had a smaller diameter and faster PV. The diameter of the dominant draining vein correlated with the PV of the medial and lateral segments of the LRV, whereas there was no correlation between the diameter of the dominant draining vein and the diameters of the right renal vein (RRV) and the lateral segment of the LRV or the PV of the RRV. The duration of flow inversion correlated with the diameter and PV of the medial segment of the LRV. No correlation between the diameters and PVs of the RRV and the lateral segment of the LRV was detected. The decreases in the AMA, AMD, diameter of the medial segment of the LRV and PV of the lateral segment of the LRV, and the increases in the PV of the medial segment of the LRV and the diameter of the lateral segment of the LRV in varicocele patients in all positions suggest the entrapment or impingement of the left renal vein between the aorta and the superior mesenteric artery. This has been defined as the "nutcracker phenomenon", which is known to affect varicocele formation.
A technology program for the development of the large deployable reflector for space based astronomy
NASA Technical Reports Server (NTRS)
Kiya, M. K.; Gilbreath, W. P.; Swanson, P. N.
1982-01-01
Technologies for the development of the Large Deployable Reflector (LDR), a NASA project for the 1990's, for infrared and submillimeter astronomy are presented. The proposed LDR is a 10-30 diameter spaceborne observatory operating in the spectral region from 30 microns to one millimeter, where ground observations are nearly impossible. Scientific rationales for such a system include the study of ancient signals from galaxies at the edge of the universe, the study of star formation, and the observation of fluctuations in the cosmic background radiation. System requirements include the ability to observe faint objects at large distances and to map molecular clouds and H II regions. From these requirements, mass, photon noise, and tolerance budgets are developed. A strawman concept is established, and some alternate concepts are considered, but research is still necessary in the areas of segment, optical control, and instrument technologies.
Deployment simulation of a deployable reflector for earth science application
NASA Astrophysics Data System (ADS)
Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei
2015-10-01
A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.
AAFE large deployable antenna development program: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.
Accommodating Thickness in Origami-Based Deployable Arrays
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.
2013-01-01
The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).
Endovascular abdominal aortic stenosis treatment with the OptiMed self-expandable nitinol stent.
Ghazi, Payam; Haji-Zeinali, Ali-Mohammad; Shafiee, Nahid; Qureshi, Shakeel A
2009-10-01
To evaluate the safety and feasibility of self-expandable stents (OptiMed) for treatment of abdominal aortic stenosis in the situations in which the aortic stenosis locates near the origin of celiac, superior mesenteric, renal and inferior mesenteric arteries. Five consecutive patients scheduled for endovascular treatment of abdominal aortic stenosis by self-expandable nitinol stent (Sinus-Aorta/OptiMed) implantation. The diameter of the stent was chosen as 10-30% more than that of the normal portion of the aorta above the stenosis. Long stents of 60 mm or longer were chosen. After stent deployment, balloon postdilation was performed with a balloon in patients with residual gradient > 5 mm Hg. All patients were successfully treated with the OptiMed stents. The balloon predilation was performed in one patient due to severe stenosis. The mean diameter and length of the stents deployed were 20.4 +/- 2.9 (range, 16-24 mm) and 64 +/- 8.9 (range, 60-80 mm), respectively. The balloon postdilation was performed in all cases. The mean diameter of the balloons was 13.6 +/- 1.5 (range, 12-15 mm). The mean diameter of stenosis increased from 4.8 +/- 1.9 to 14.4 +/- 1.8 mm after stent placement. The mean peak systolic gradient decreased from 46.8 +/- 31.5 mm Hg to 0.8 +/- 1.8 mm Hg. During follow-up (22.8 +/- 14.3 months), none of the patients had restenosis within the stent, occlusion of any branches of the aorta, or other related complications. In our small series, we observed that abdominal aortic stenosis can be successfully and effectively treated with OptiMed stents in the situations in which the stenotic segment is located next to the origins of the main visceral branches of abdominal aorta.
Aortoiliac morphologic correlations in aneurysms undergoing endovascular repair.
Ouriel, Kenneth; Tanquilut, Eugene; Greenberg, Roy K; Walker, Esteban
2003-08-01
The feasibility of endovascular aneurysm repair depends on morphologic characteristics of the aortoiliac segment. Knowledge of such characteristics is relevant to safe deployment of a particular device in a single patient and to development of new devices for use in patients with a broader spectrum of anatomic variations. We evaluated findings on computed tomography scans for 277 patients being considered for endovascular aneurysm repair. Aortic neck length and angulation estimates were generated with three-dimensional trigonometry. Specific centerline points were recorded, corresponding to the aorta at the celiac axis, lowest renal artery, cranial aspect of the aneurysm sac, aortic terminus, right hypogastric artery origin, and left hypogastric origin. Aortic neck thrombus and calcium content were recorded, and neck conicity was calculated in degrees. Statistical analysis was performed with the Spearman rank correlation. Data are expressed as median and interquartile range. Median diameter of the aneurysms was 52 mm (interquartile range, 48-59 mm) in minor axis and 56 mm (interquartile range, 51-64 mm) in major axis, and median length was 88 mm (interquartile range, 74-103 mm). Median proximal aortic neck diameter was 26 mm (interquartile range, 22-29 mm), and median neck length was 30 mm (interquartile range, 18-45 mm). The common iliac arteries were similar in diameter (right artery, 16 mm [interquartile range, 13-20 mm]; left artery, 15 mm [interquartile range, 11-18 mm]) and length (right, 59 mm [interquartile range, 50-69 mm]; left, 60 mm [interquartile range, 49-70 mm]). Median angulation of the infrarenal aortic neck was 40 degrees (interquartile range, 29-51 degrees), and median angulation of the suprarenal segment was 45 degrees (interquartile range, 36-57 degrees). By gender, sac diameter, proximal neck diameter, and iliac artery diameter were significantly larger in men. Significant linear associations were identified between sac diameter and sac length, neck angulation, and iliac artery diameter. As the length of the aneurysm sac increased the proximal aortic neck length decreased. Conversely, as the sac length decreased sac eccentricity increased. Mural thrombus content within the neck increased with increasing neck diameter. There is considerable variability in aortoiliac morphologic parameters. Significant associations were found between various morphologic variables, links that are presumably related to a shared pathogenesis for aberration in aortoiliac diameter, length, and angulation. Ultimately this information can be used to develop new endovascular devices with broader applicability and improved long-term results.
NASA's James Webb Space Telescope Primary Mirror Fully Assembled
2016-02-04
The 18th and final primary mirror segment is installed on what will be the biggest and most powerful space telescope ever launched. The final mirror installation Wednesday at NASA’s Goddard Space Flight Center in Greenbelt, Maryland marks an important milestone in the assembly of the agency’s James Webb Space Telescope. “Scientists and engineers have been working tirelessly to install these incredible, nearly perfect mirrors that will focus light from previously hidden realms of planetary atmospheres, star forming regions and the very beginnings of the Universe,” said John Grunsfeld, associate administrator for NASA’s Science Mission Directorate in Washington. “With the mirrors finally complete, we are one step closer to the audacious observations that will unravel the mysteries of the Universe.” Using a robotic arm reminiscent of a claw machine, the team meticulously installed all of Webb's primary mirror segments onto the telescope structure. Each of the hexagonal-shaped mirror segments measures just over 4.2 feet (1.3 meters) across -- about the size of a coffee table -- and weighs approximately 88 pounds (40 kilograms). Once in space and fully deployed, the 18 primary mirror segments will work together as one large 21.3-foot diameter (6.5-meter) mirror. Credit: NASA/Goddard/Chris Gunn Credits: NASA/Chris Gunn
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Gates, Richard M.
1988-01-01
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.
Technology development for cryogenic deployable telescope structures and mechanisms
NASA Astrophysics Data System (ADS)
Atkinson, Charles B.; Gilman, Larry; Reynolds, Paul
2003-12-01
At 6-7 meters in diameter, the James Webb Space Telescope (JWST) will require structures that remain stable to levels that are on the order of 10 nanometers under dynamic and thermal loading while operating at cryogenic temperatures. Moreover, the JWST will be the first telescope in space that is deployed, resulting in an aperture that is not only segmented, but has hinge-lines and the associated joining systems or latches in it. In order to understand the behavior and reduce the risk associated with very large, deployed structures and the stability of the associated structure and latches, we developed and tested the largest cryogenic structure ever built and then characterized its stability. This paper presents a description of the design of the Development Optical Telescope Assembly (DOTA), the testing performed, and the results of the testing performed on it. We discuss the material selection and characterization processes, give a description of the test configurations, describe the metrology equipment and the validation process for it, provide the test results, and summarize the conclusions drawn from the results. The testing and associated results include characterization of the thermal stability of the large-scale structure, characterization of the micro-dynamic stability of the latching system, and measurements of the deployment capability of the mechanisms. We also describe how the DOTA design relates to the JWST design and how the test results relate to the JWST requirements.
Deployable and retractable telescoping tubular structure development
NASA Astrophysics Data System (ADS)
Thomson, M. W.
1993-02-01
The paper describes the design and the structural performance of a new type of deployable and retractable telescoping mast, which can be used for flight systems that require a deployable beam with superaccurate positioning characteristics or for short to medium highly loaded structural applications. The mast employs a Bi-STEM (a two-piece Storable Tubular Extendible Member) boom as an actuator and stabilizer, which alleviates the need for the deployed telescoping mast segments to overlap. Due to this feature and because the segments can be fully overlapped when stowed, the mast enables an unusually lightweight and compact launch configuration.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
Concepts for the Next Generation Space Telescope
NASA Astrophysics Data System (ADS)
Margulis, M.; Tenerelli, D.
1996-12-01
In collaboration with NASA GSFC, we have examined a wide range of potential concepts for a large, passively cooled space telescope. Our design goals were to achieve a theoretical imaging sensitivity in the near-IR of 1 nJy and an angular resolution at 1 micron of 0.06 arcsec. Concepts examined included a telescope/spacecraft system with a 6-m diameter monolithic primary mirror, a variety of telescope/spacecraft systems with deployable primary mirror segments to achieve an 8-m diameter aperture, and a 12-element sparse aperture phased array telescope. Trade studies indicate that all three concept categories can achieve the required sensitivity and resolution, but that considerable technology development is required to bring any of the concepts to fruition. One attractive option is the system with the 6-m diameter monolithic primary. This option achieves high sensitivity without telescope deployments and includes a stiff structure for robust attitude and figure control. This system capitalizes on coming advances in launch vehicle and shroud technology, which should enable launch of large, monolithic payloads into orbit positions where background noise due to zodiacal dust is low. Our large space telescope study was performed by a consortium of organizations and individuals including: Domenick Tenerelli et al. (Lockheed Martin Corp.), Roger Angel et al. (U. Ariz.), Tom Casey et al. (Eastman Kodak Co.), Jim Gunn (Princeton), Shel Kulick (Composite Optics, Inc.), Jim Westphal (CIT), Johnny Batache et al. (Harris Corp.), Costas Cassapakis et al. (L'Garde, Inc.), Dave Sandler et al. (ThermoTrex Corp.), David Miller et al. (MIT), Ephrahim Garcia et al. (Garman Systems Inc.), Mark Enright (New Focus Inc.), Chris Burrows (STScI), Roc Cutri (IPAC), and Art Bradley (Allied Signal Aerospace).
Alignment and testing of critical interface fixtures for the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
McLean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph; Ohl, Raymond; Osgood, Dean; Parker, James; Redman, Kevin; Roberts, Vicki; Stephens, Matthew; Sutton, Adam; Wenzel, Greg; Young, Jerrod
2017-08-01
NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus, the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cup/cone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
Alignment and Testing of Critical Interface Fixtures for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mclean, Kyle; Bagdanove, Paul; Berrier, Joshua; Cofie, Emmanuel; Glassman, Tiffany; Hadjimichael, Theodore; Johnson, Eric; Levi, Joshua; Lo, Amy; McMann, Joseph;
2017-01-01
NASAs James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory architecture includes the Primary Mirror Backplane Support Structure (PMBSS) and Integrated Science Instrument Module (ISIM) Electronics Compartment (IEC) which is designed to integrate to the spacecraft bus via six cupcone interfaces. Prior to integration to the spacecraft bus the JWST observatory must undergo environmental testing, handling, and transportation. Multiple fixtures were developed to support these tasks including the vibration fixture and handling and integration fixture (HIF). This work reports on the development of the nominal alignment of the six interfaces and metrology operations performed for the JWST observatory to safely integrate them for successful environmental testing.
James Webb Space Telescope Project (JWST) Overview
NASA Technical Reports Server (NTRS)
Dutta, Mitra
2008-01-01
This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.
JWST Mirror Technology Development Results
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Mirror technology is a critical enabling capability for the James Webb Space Telescope (JWST). JWST requires a Primary Mirror Segment Assembly (PMSA) that can survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance. At the inception of JWST in 1996, such a capability did not exist. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured and demonstrated mirror technology for JWST. Directly traceable prototypes or flight hardware has been built, tested and operated in a relevant environment. This paper summarizes that technology development effort.
A stowing and deployment strategy for large membrane space systems on the example of Gossamer-1
NASA Astrophysics Data System (ADS)
Seefeldt, Patric
2017-09-01
Deployment systems for innovative space applications such as solar sails require a technique for a controlled and autonomous deployment in space. The deployment process has a strong impact on the mechanism and structural design and sizing. On the example of the design implemented in the Gossamer-1 project of the German Aerospace Center (DLR), such a stowing and deployment process is analyzed. It is based on a combination of zig-zag folding and coiling of triangular sail segments spanned between crossed booms. The deployment geometry and forces introduced by the mechanism considered are explored in order to reveal how the loads are transferred through the membranes to structural components such as the booms. The folding geometry and force progressions are described by function compositions of an inverse trigonometric function with the considered trigonometric function itself. If these functions are evaluated over several periods of the trigonometric function, a non-smooth oscillating curve occurs. Depending on the trigonometric function, these are often vividly described as zig-zag or sawtooth functions. The developed functions are applied to the Gossamer-1 design. The deployment geometry reveals a tendency that the loads are transferred along the catheti of the sail segments and therefore mainly along the boom axes. The load introduced by the spool deployment mechanism is described. By combining the deployment geometry with that load, a prediction of the deployment load progression is achieved. The mathematical description of the stowing and deployment geometry, as well as the forces inflicted by the mechanism provides an understanding of how exactly the membrane deploys and through which edges the deployment forces are transferred. The mathematical analysis also gives an impression of sensitive parameters that could be influenced by manufacturing tolerances or unsymmetrical deployment of the sail segments. While the mathematical model was applied on the design of the Gossamer-1 hardware, it allows an analysis of other geometries. This is of particular interest as Gossamer-1 investigated deployment technology on a relatively small scale of 5m × 5m , while the currently considered solar sail missions require sails that are about one order of magnitude bigger.
Expandable tubulars for use in geologic structures
Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael
2014-08-12
An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.
Automated separation of merged Langerhans islets
NASA Astrophysics Data System (ADS)
Švihlík, Jan; Kybic, Jan; Habart, David
2016-03-01
This paper deals with separation of merged Langerhans islets in segmentations in order to evaluate correct histogram of islet diameters. A distribution of islet diameters is useful for determining the feasibility of islet transplantation in diabetes. First, the merged islets at training segmentations are manually separated by medical experts. Based on the single islets, the merged islets are identified and the SVM classifier is trained on both classes (merged/single islets). The testing segmentations were over-segmented using watershed transform and the most probable back merging of islets were found using trained SVM classifier. Finally, the optimized segmentation is compared with ground truth segmentation (correctly separated islets).
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish
NASA Astrophysics Data System (ADS)
Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Osgood, Christopher J.; Xu, Xiao-Hong Nancy
2013-11-01
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 +/- 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c << 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03210h
Farooq, Zerwa; Behzadi, Ashkan Heshmatzadeh; Blumenfeld, Jon D; Zhao, Yize; Prince, Martin R
To compare MRI segmentation methods for measuring liver cyst volumes in autosomal dominant polycystic kidney disease (ADPKD). Liver cyst volumes in 42 ADPKD patients were measured using region growing, thresholding and cyst diameter techniques. Manual segmentation was the reference standard. Root mean square deviation was 113, 155, and 500 for cyst diameter, thresholding and region growing respectively. Thresholding error for cyst volumes below 500ml was 550% vs 17% for cyst volumes above 500ml (p<0.001). For measuring volume of a small number of cysts, cyst diameter and manual segmentation methods are recommended. For severe disease with numerous, large hepatic cysts, thresholding is an acceptable alternative. Copyright © 2017 Elsevier Inc. All rights reserved.
A closer look at self-pay segmentation.
Franklin, David; Ingramn, Coy; Levin, Steve
2010-09-01
Successful scoring approaches for self-pay accounts have three common characteristics: Thoughtful selection of a scoring model and segmentation approach. Deployment of workflows (either segmented or account prioritization) consistent with a hospital's capabilities and the likelihood of collection. Ongoing performance monitoring.
TALC: a new deployable concept for a 20m far-infrared space telescope
NASA Astrophysics Data System (ADS)
Durand, Gilles; Sauvage, Marc; Bonnet, Aymeric; Rodriguez, Louis; Ronayette, Samuel; Chanial, Pierre; Scola, Loris; Révéret, Vincent; Aussel, Hervé; Carty, Michael; Durand, Matthis; Durand, Lancelot; Tremblin, Pascal; Pantin, Eric; Berthe, Michel; Martignac, Jérôme; Motte, Frédérique; Talvard, Michel; Minier, Vincent; Bultel, Pascal
2014-08-01
TALC, Thin Aperture Light Collector is a 20 m space observatory project exploring some unconventional optical solutions (between the single dish and the interferometer) allowing the resolving power of a classical 27 m telescope. With TALC, the principle is to remove the central part of the prime mirror dish, cut the remaining ring into 24 sectors and store them on top of one-another. The aim of this far infrared telescope is to explore the 600 μm to 100 μm region. With this approach we have shown that we can store a ring-telescope of outer diameter 20m and ring thickness of 3m inside the fairing of Ariane 5 or Ariane 6. The general structure is the one of a bicycle wheel, whereas the inner sides of the segments are in compression to each other and play the rule of a rim. The segments are linked to each other using a pantograph scissor system that let the segments extend from a pile of dishes to a parabolic ring keeping high stiffness at all time during the deployment. The inner corners of the segments are linked to a central axis using spokes as in a bicycle wheel. The secondary mirror and the instrument box are built as a solid unit fixed at the extremity of the main axis. The tensegrity analysis of this structure shows a very high stiffness to mass ratio, resulting into 3 Hz Eigen frequency. The segments will consist of two composite skins and honeycomb CFRP structure build by replica process. Solid segments will be compared to deformable segments using the controlled shear of the rear surface. The adjustment of the length of the spikes and the relative position of the side of neighbor segments let control the phasing of the entire primary mirror. The telescope is cooled by natural radiation. It is protected from sun radiation by a large inflatable solar screen, loosely linked to the telescope. The orientation is performed by inertia-wheels. This telescope carries a wide field bolometer camera using cryocooler at 0.3K as one of the main instruments. This telescope may be launched with an Ariane 6 rocket up to 800 km altitude, and use a plasma stage to reach the Lagrange 2 point within 18 month. The plasma propulsion stage is a serial unit also used in commercial telecommunication satellites. When the plasma launch is completed, the solar panels will be used to provide the power for communication, orientation and power the cryo-coolers for the instruments. The guide-line for development of this telescope is to use similar techniques and serial subsystems developed for the satellite industry. This is the only way to design and manufacture a large telescope at a reasonable cost.
Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach
NASA Astrophysics Data System (ADS)
Shaker Salem, Mohamed; Tejo, Felipe; Zierold, Robert; Sergelius, Philip; Montero Moreno, Josep M.; Goerlitz, Detlef; Nielsch, Kornelius; Escrig, Juan
2018-02-01
Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.
NASA Technical Reports Server (NTRS)
Mayhue, Robert J.; Eckstrom, Clinton V.
1969-01-01
A ram-air-inflated, towed ballute decelerator having a maximum frontal diameter of 18 feet (5.49 meters) was deployed during free flight at a Mach number of 3.15 and a dynamic pressure of 38.5 lb/ft(exp 2) (1843.4 newtons/m(exp 2)). Deployment and extraction of the test ballute were normal but inflation stopped about 1 second after mortar firing and produced an average plateau drag force of 1500 pounds (6.7 kN) for about 1 second. Approximately 30 percent of expected total frontal area was obtained.
Okada, Munemasa; Nakashima, Yoshiteru; Nomura, Takafumi; Miura, Toshiro; Nao, Tomoko; Yoshimura, Masayuki; Sano, Yuichi; Matsunaga, Naofumi
2015-03-01
Sublingual nitroglycerin capsules or spray is routinely used to treat anginal attacks and to maximally dilate the epicardial coronary arteries during coronary angiography. These dilated coronary vessels have an advantage, but increased heart rates were disadvantageous for coronary computed tomography angiography (CTA). The influence of applying nitroglycerin was analyzed regarding the coronary diameter, coronary luminal attenuation, evaluable number of coronary segments, heart rate (HR), HR variability, the optimal reconstruction phase, and image scoring of CTA in the same patients using a 64-slice dual-source CT. Fifty-two patients with atypical chest pain underwent coronary CTA before and after the administration of sublingual nitroglycerin without heart rate control. The coronary diameter and luminal attenuation were measured on short-axial images in each coronary segment. The coronary vasodilation ratios (VRs) were calculated from the coronary diameters at the same location before and after the use of nitroglycerin. The local institutional review board approved this study and written informed consent was obtained from all the patients. No significant differences were noted in the HR variability or optimal reconstruction phase, despite an increase in HR after the use of nitroglycerin. Nitroglycerin significantly enlarged the coronary artery diameter, and VRs of each coronary segment ranged from 7.54% to 22.26%. As compared with baseline coronary diameter, VRs of minor segments (16.91%) were significantly larger than those of major segments (11.35%), and the magnitude of VR correlated with the baseline coronary diameter (r=-0.48, p<0.001). Coronary luminal attenuation significantly increased due to additional administration of contrast material after the use of nitroglycerin (p<0.01), but no significant difference was noted in the image quality after the use of nitroglycerin. Sublingual nitroglycerin significantly enlarged the coronary diameters, especially in peripheral small coronary arteries, and increased the evaluable number of coronary segments on coronary CTA. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Design and end-to-end modelling of a deployable telescope
NASA Astrophysics Data System (ADS)
Dolkens, Dennis; Kuiper, Hans
2017-09-01
Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using a closed-loop system based on measurements of the image sharpness as well as measurements obtained with edge sensors placed between the mirror segments. In addition, a phase diversity system will be used to recover residual wavefront aberrations. To aid the design of the deployable telescope, an end-to-end performance model was developed. The model is built around a dedicated ray-trace program written in Matlab. This program was built from the ground up for the purpose of modelling segmented telescope systems and allows for surface data computed with Finite Element Models (FEM) to be imported in the model. The program also contains modules which can simulate the closed-loop calibration of the telescope and it can use simulated images as an input for phase diversity and image processing algorithms. For a given thermo-mechanical state, the end-to-end model can predict the image quality that will be obtained after the calibration has been completed and the image has been processed. As such, the model is a powerful systems engineering tool, which can be used to optimize the in-orbit performance of a segmented, deployable telescope.
Feasibility of a 30-meter space based laser transmitter
NASA Technical Reports Server (NTRS)
Berggren, R. R.; Lenertz, G. E.
1975-01-01
A study was made of the application of large expandable mirror structures in future space missions to establish the feasibility and define the potential of high power laser systems for such applications as propulsion and power transmission. Application of these concepts requires a 30-meter diameter, diffraction limited mirror for transmission of the laser energy. Three concepts for the transmitter are presented. These concepts include consideration of continuous as well as segmented mirror surfaces and the major stow-deployment categories of inflatable, variable geometry and assembled-in-space structures. The mirror surface for each concept would be actively monitored and controlled to maintain diffraction limited performance at 10.6 microns during operation. The proposed mirror configurations are based on existing aerospace state-of-the-art technology. The assembled-in-space concept appears to be the most feasible, at this time.
Spoked wheels to deploy large surfaces in space-weight estimates for solar arrays
NASA Technical Reports Server (NTRS)
Crawford, R. F.; Hedgepeth, J. M.; Preiswerk, P. R.
1975-01-01
Extensible booms were used to deploy and support solar cell arrays of varying areas. Solar cell array systems were built with one or two booms to deploy and tension a blanket with attached cells and bussing. A segmented and hinged rim supported by spokes joined to a common hub is described. This structure can be compactly packaged and deployed.
Collophore may help direct springtail jump
USDA-ARS?s Scientific Manuscript database
The collophore of specimens of Entomobrya multifasciata (Tullberg 1871) is composed of four segments. The third segment telescopes in and out of the second and the fourth is an eversible vesicle that is entirely enclosed in the third when not deployed. The four segments are each likely serial homolo...
NASA Astrophysics Data System (ADS)
Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas
2006-03-01
The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.
Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Alff, W. H.
1980-01-01
The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.
NASA Technical Reports Server (NTRS)
Drury, Michael; Becker, Neil; Bos, Brent; Davila, Pamela; Frey, Bradley; Hylan, Jason; Marsh, James; McGuffey, Douglas; Novak, Maria; Ohl, Raymond;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1x2.2x1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are integrated and aligned to the structure under ambient, clean room conditions. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature. We present an overview of the ISIM integration within the context of Observatory-level construction. We describe the integration and verification plan for the ISIM element, including an overview of our incremental verification approach, ambient mechanical integration and test plans and optical alignment and cryogenic test plans. We describe key ground support equipment and facilities.
Method for fabricating boron carbide articles
Ardary, Zane L.; Reynolds, Carl D.
1980-01-01
The present invention is directed to the fabrication of boron carbide articles having length-to-diameter or width ratios greater than 2 to 1. The process of the present invention is practiced by the steps comprising hot pressing boron carbide powder into article segments or portions in which the segments have a length-to-diameter or width ratio less than 1.5, aligning a plurality of the initially hot-pressed segments in a hot-pressing die with the end surfaces of the segments placed in intimate contact with one another, and then hot pressing the aligned segments into an article of the desired configuration. The resulting article exhibits essentially uniform density throughout the structure with the bonds between the segments being equivalent in hardness, strength, and density to the remainder of the article.
Rios Velazquez, Emmanuel; Aerts, Hugo J W L; Gu, Yuhua; Goldgof, Dmitry B; De Ruysscher, Dirk; Dekker, Andre; Korn, René; Gillies, Robert J; Lambin, Philippe
2012-11-01
To assess the clinical relevance of a semiautomatic CT-based ensemble segmentation method, by comparing it to pathology and to CT/PET manual delineations by five independent radiation oncologists in non-small cell lung cancer (NSCLC). For 20 NSCLC patients (stages Ib-IIIb) the primary tumor was delineated manually on CT/PET scans by five independent radiation oncologists and segmented using a CT based semi-automatic tool. Tumor volume and overlap fractions between manual and semiautomatic-segmented volumes were compared. All measurements were correlated with the maximal diameter on macroscopic examination of the surgical specimen. Imaging data are available on www.cancerdata.org. High overlap fractions were observed between the semi-automatically segmented volumes and the intersection (92.5±9.0, mean±SD) and union (94.2±6.8) of the manual delineations. No statistically significant differences in tumor volume were observed between the semiautomatic segmentation (71.4±83.2 cm(3), mean±SD) and manual delineations (81.9±94.1 cm(3); p=0.57). The maximal tumor diameter of the semiautomatic-segmented tumor correlated strongly with the macroscopic diameter of the primary tumor (r=0.96). Semiautomatic segmentation of the primary tumor on CT demonstrated high agreement with CT/PET manual delineations and strongly correlated with the macroscopic diameter considered as the "gold standard". This method may be used routinely in clinical practice and could be employed as a starting point for treatment planning, target definition in multi-center clinical trials or for high throughput data mining research. This method is particularly suitable for peripherally located tumors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
JWST Lightweight Mirror TRL-6 Results
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2007-01-01
Mirror technology for a Primary Mirror Segment Assembly (PMSA) is a system of components: reflective coating; polished optical surface; mirror substrate; actuators, mechanisms and flexures; and reaction structure. The functional purpose of a PMSA is to survive launch, deploy and align itself to form a 25 square meter collecting area 6.5 meter diameter primary mirror with a 131 nm rms wavefront error at temperatures less than 50K and provide stable optical performance for the anticipated thermal environment. At the inception of JWST in 1996, such a capability was at a Technology Readiness Level (TRL) of 3. A highly successful technology development program was initiated including the Sub-scale Beryllium Mirror Demonstrator (SBMD) and Advanced Mirror System Demonstrator (AMSD) projects. These projects along with flight program activities have matured mirror technology for JWST to TRL-6. A directly traceable prototype (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.
Biomechanics of an Expandable Lumbar Interbody Fusion Cage Deployed Through Transforaminal Approach
Mica, Michael Conti; Voronov, Leonard I.; Carandang, Gerard; Havey, Robert M.; Wojewnik, Bartosz
2017-01-01
Introduction A novel expandable lumbar interbody fusion cage has been developed which allows for a broad endplate footprint similar to an anterior lumbar interbody fusion (ALIF); however, it is deployed from a minimally invasive transforaminal unilateral approach. The perceived benefit is a stable circumferential fusion from a single approach that maintains the anterior tension band of the anterior longitudinal ligament. The purpose of this biomechanics laboratory study was to evaluate the biomechanical stability of an expandable lumbar interbody cage inserted using a transforaminal approach and deployed in situ compared to a traditional lumbar interbody cage inserted using an anterior approach (control device). Methods Twelve cadaveric spine specimens (L1-L5) were tested intact and after implantation of both the control and experimental devices in two (L2-L3 and L3-L4) segments of each specimen; the assignments of the control and experimental devices to these segments were alternated. Effect of supplemental pedicle screw-rod stabilization was also assessed. Moments were applied to the specimens in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). The effect of physiologic preload on construct stability was evaluated in FE. Segmental motions were measured using an optoelectronic motion measurement system. Results The deployable expendable TLIF cage and control devices significantly reduced FE motion with and without compressive preload when compared to the intact condition (p<0.05). Segmental motions in LB and AR were also significantly reduced with both devices (p<0.05). Under no preload, the deployable expendable TLIF cage construct resulted in significantly smaller FE motion compared to the control cage construct (p<0.01). Under all other testing modes (FE under 400N preload, LB, and AR) the postoperative motions of the two constructs did not differ statistically (p>0.05). Adding bilateral pedicle screws resulted in further reduction of ROM for all loading modes compared to intact condition, with no statistical difference between the two constructs (p>0.05). Conclusions The ability of the deployable expendable interbody cage in reducing segmental motions was equivalent to the control cage when used as a stand-alone construct and also when supplemented with bilateral pedicle screw-rod instrumentation. The larger footprint of the fully deployed TLIF cage combined with preservation of the anterior soft-tissue tension band may provide a better biomechanical fusion environment by combining the advantages of the traditional ALIF and TLIF approaches. PMID:29372129
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper talks to workers in the Space Station Processing Facility. She and other crew members are at KSC for hardware familiarization. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
Berger, Tim; Kreibich, Maximilian; Morlock, Julia; Kondov, Stoyan; Scheumann, Johannes; Kari, Fabian A; Rylski, Bartosz; Siepe, Matthias; Beyersdorf, Friedhelm; Czerny, Martin
2018-02-19
To evaluate early and mid-term clinical outcomes and to assess the potential of the frozen elephant trunk technique to induce remodelling of downstream aortic segments in acute and chronic thoracic aortic dissections. Over a 4-year period, 65 patients (48 men, aged 61 ± 12 years) underwent total aortic arch replacement using the frozen elephant trunk technique for acute (n = 31) and chronic (n = 34) thoracic aortic dissections at our institution. We assessed diameter changes at 3 levels: the L1 segment at the stent graft level; the L2 segment at the thoraco-abdominal transition level and the L3 segment at the coeliac trunk level. True-lumen (TL) and false-lumen (FL) diameter changes were assessed at each level. Fifty-six percent of patients had already undergone previous aortic or cardiac surgery. In-hospital mortality was 6%. Symptomatic spinal cord injury was not observed in this series. During a mean follow-up of 12 ± 12 months, late death was observed in 6% of patients. Aortic reinterventions in downstream aortic segments were performed in 28% at a mean of 394 ± 385 days. TL expansion and FL shrinkage were measured in all segments and were observed at each level. This effect was the most pronounced at the level of the stent graft in patients with chronic aortic dissection, TL diameter increased from 15 ± 17 mm before surgery to 28 ± 2 mm (P = 0.001) after 2 years, and the FL diameter decreased from 40 ± 11 mm before surgery to 32 ± 17 mm (P = 0.026). The frozen elephant trunk technique is associated with an excellent clinical outcome in a complex cohort of patients, and also effectively induces remodelling in downstream aortic segments in acute and chronic thoracic aortic dissections. The need for secondary interventions in downstream segments, which mainly depends on the extent of the underlying disease process, remains substantial. Further studies are required to assess the long-term outcome of this approach.
Wu, Qian; Pagès, Loïc; Wu, Jie
2016-01-01
Background and Aims Root diameter, especially apical diameter, plays an important role in root development and function. The variation in diameter between roots, and along roots, affects root structure and thus the root system’s overall foraging performance. However, the effect of diameter variation on root elongation, branching and topological connections has not been examined systematically in a population of high-order roots, nor along the roots, especially for mature plants grown in the field. Methods A method combining both excavation and analysis was applied to extract and quantify root architectural traits of adult, field-grown maize plants. The relationships between root diameter and other root architectural characteristics are analysed for two maize cultivars. Key Results The basal diameter of the lateral roots (orders 1–3) was highly variable. Basal diameter was partly determined by the diameter of the bearing segment. Basal diameter defined a potential root length, but the lengths of most roots fell far short of this. This was explained partly by differences in the pattern of diameter change along roots. Diameter tended to decrease along most roots, with the steepness of the gradient of decrease depending on basal diameter. The longest roots were those that maintained (or sometimes increased) their diameters during elongation. The branching density (cm–1) of laterals was also determined by the diameter of the bearing segment. However, the location of this bearing segment along the mother root was also involved – intermediate positions were associated with higher densities of laterals. Conclusions The method used here allows us to obtain very detailed records of the geometry and topology of a complex root system. Basal diameter and the pattern of diameter change along a root were associated with its final length. These relationships are especially useful in simulations of root elongation and branching in source–sink models. PMID:26744490
Celik, Onur; Eskiizmir, Gorkem; Pabuscu, Yuksel; Ulkumen, Burak; Toker, Gokce Tanyeri
The exact etiology of Bell's palsy still remains obscure. The only authenticated finding is inflammation and edema of the facial nerve leading to entrapment inside the facial canal. To identify if there is any relationship between the grade of Bell's palsy and diameter of the facial canal, and also to study any possible anatomic predisposition of facial canal for Bell's palsy including parts which have not been studied before. Medical records and temporal computed tomography scans of 34 patients with Bell's palsy were utilized in this retrospective clinical study. Diameters of both facial canals (affected and unaffected) of each patient were measured at labyrinthine segment, geniculate ganglion, tympanic segment, second genu, mastoid segment and stylomastoid foramen. The House-Brackmann (HB) scale of each patient at presentation and 3 months after the treatment was evaluated from their medical records. The paired samples t-test and Wilcoxon signed-rank test were used for comparison of width between the affected side and unaffected side. The Wilcoxon signed-rank test was also used for evaluation of relationship between the diameter of facial canal and the grade of the Bell's palsy. Significant differences were established at a level of p=0.05 (IBM SPSS Statistics for Windows, Version 21.0.; Armonk, NY, IBM Corp). Thirty-four patients - 16 females, 18 males; mean age±Standard Deviation, 40.3±21.3 - with Bell's palsy were included in the study. According to the HB facial nerve grading system; 8 patients were grade V, 6 were grade IV, 11 were grade III, 8 were grade II and 1 patient was grade I. The mean width at the labyrinthine segment of the facial canal in the affected temporal bone was significantly smaller than the equivalent in the unaffected temporal bone (p=0.00). There was no significant difference between the affected and unaffected temporal bones at the geniculate ganglion (p=0.87), tympanic segment (p=0.66), second genu (p=0.62), mastoid segment (p=0.67) and stylomastoid foramen (p=0.16). We did not find any relationship between the HB grade and the facial canal diameter at the level of labyrinthine segment (p=0.41), tympanic segment (p=0.12), mastoid segment (p=0.14), geniculate ganglion (p=0.13) and stylomastoid foramen (p=0.44), while we found significant relationship at the level of second genu (p=0.02). We found the diameter of labyrinthine segment of facial canal as an anatomic risk factor for Bell's palsy. We also found significant relationship between the HB grade and FC diameter at the level of second genu. Future studies (MRI-CT combined or 3D modeling) are needed to promote this possible relevance especially at second genu. Thus, in the future it may be possible to selectively decompress particular segments in high grade BP patients. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Fernandez-Roldan, Jose Angel; Perez Del Real, Rafael; Bran, Cristina; Vazquez, Manuel; Chubykalo-Fesenko, Oksana
2018-03-29
Diameter-modulated nanowires offer an important paradigm to design the magnetization response of 3D magnetic nanostructures by engineering the domain wall pinning. With the aim to understand its nature and to control the process, we analyze the magnetization response in FeCo periodically modulated polycrystalline nanowires varying the minor segment diameter. Our modelling indicates a very complex behavior with a strong dependence on the disorder distribution and an important role of topologically non-trivial magnetization structures. We demonstrate that modulated nanowires with a small diameter difference are characterized by an increased coercive field in comparison to the straight ones, which is explained by a formation of topologically protected walls formed by two 3D skyrmions with opposite chiralities. For a large diameter difference we report the occurrence of a novel pinning type called here the "corkscrew": the magnetization of the large diameter segment forms a skyrmion tube with a core position in a helical modulation along the nanowire. This structure is pinned at the constriction and in order to penetrate the narrow segments the vortex/skyrmion core size should be reduced.
Impact assisted segmented cutterhead
Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.
1992-01-01
An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.
Multi-Modal Glioblastoma Segmentation: Man versus Machine
Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland
2014-01-01
Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720
Stent-induced coronary artery stenosis characterized by multimodal nonlinear optical microscopy
NASA Astrophysics Data System (ADS)
Wang, Han-Wei; Simianu, Vlad; Locker, Mattew J.; Cheng, Ji-Xin; Sturek, Michael
2011-02-01
We demonstrate for the first time the applicability of multimodal nonlinear optical (NLO) microscopy to the interrogation of stented coronary arteries under different diet and stent deployment conditions. Bare metal stents and Taxus drug-eluting stents (DES) were placed in coronary arteries of Ossabaw pigs of control and atherogenic diet groups. Multimodal NLO imaging was performed to inspect changes in arterial structures and compositions after stenting. Sum frequency generation, one of the multimodalities, was used for the quantitative analysis of collagen content in the peristent and in-stent artery segments of both pig groups. Atherogenic diet increased lipid and collagen in peristent segments. In-stent segments showed decreased collagen expression in neointima compared to media. Deployment of DES in atheromatous arteries inhibited collagen expression in the arterial media.
Applications of tuned mass dampers to improve performance of large space mirrors
NASA Astrophysics Data System (ADS)
Yingling, Adam J.; Agrawal, Brij N.
2014-01-01
In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.
Membrane Shell Reflector Segment Antenna
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Moore, James
2012-01-01
The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.
Energy-efficient rings mechanism for greening multisegment fiber-wireless access networks
NASA Astrophysics Data System (ADS)
Gong, Xiaoxue; Guo, Lei; Hou, Weigang; Zhang, Lincong
2013-07-01
Through integrating advantages of optical and wireless communications, the Fiber-Wireless (FiWi) has become a promising solution for the "last-mile" broadband access. In particular, greening FiWi has attained extensive attention, because the access network is a main energy contributor in the whole infrastructure. However, prior solutions of greening FiWi shut down or sleep unused/minimally used optical network units for a single segment, where we deploy only one optical linear terminal. We propose a green mechanism referred to as energy-efficient ring (EER) for multisegment FiWi access networks. We utilize an integer linear programming model and a generic algorithm to generate clusters, each having the shortest distance of fully connected segments of its own. Leveraging the backtracking method for each cluster, we then connect segments through fiber links, and the shortest distance fiber ring is constructed. Finally, we sleep low load segments and forward affected traffic to other active segments on the same fiber ring by our sleeping scheme. Experimental results show that our EER mechanism significantly reduces the energy consumption at the slightly additional cost of deploying fiber links.
Cable-catenary large antenna concept
NASA Technical Reports Server (NTRS)
Akle, W.
1985-01-01
Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl; von Tengg-Kobligk, Hendrik
2014-04-01
Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm(3)) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm(3)) (P<0.001). 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA.
Müller-Eschner, Matthias; Müller, Tobias; Biesdorf, Andreas; Wörz, Stefan; Rengier, Fabian; Böckler, Dittmar; Kauczor, Hans-Ulrich; Rohr, Karl
2014-01-01
Introduction Native-MR angiography (N-MRA) is considered an imaging alternative to contrast enhanced MR angiography (CE-MRA) for patients with renal insufficiency. Lower intraluminal contrast in N-MRA often leads to failure of the segmentation process in commercial algorithms. This study introduces an in-house 3D model-based segmentation approach used to compare both sequences by automatic 3D lumen segmentation, allowing for evaluation of differences of aortic lumen diameters as well as differences in length comparing both acquisition techniques at every possible location. Methods and materials Sixteen healthy volunteers underwent 1.5-T-MR Angiography (MRA). For each volunteer, two different MR sequences were performed, CE-MRA: gradient echo Turbo FLASH sequence and N-MRA: respiratory-and-cardiac-gated, T2-weighted 3D SSFP. Datasets were segmented using a 3D model-based ellipse-fitting approach with a single seed point placed manually above the celiac trunk. The segmented volumes were manually cropped from left subclavian artery to celiac trunk to avoid error due to side branches. Diameters, volumes and centerline length were computed for intraindividual comparison. For statistical analysis the Wilcoxon-Signed-Ranked-Test was used. Results Average centerline length obtained based on N-MRA was 239.0±23.4 mm compared to 238.6±23.5 mm for CE-MRA without significant difference (P=0.877). Average maximum diameter obtained based on N-MRA was 25.7±3.3 mm compared to 24.1±3.2 mm for CE-MRA (P<0.001). In agreement with the difference in diameters, volumes obtained based on N-MRA (100.1±35.4 cm3) were consistently and significantly larger compared to CE-MRA (89.2±30.0 cm3) (P<0.001). Conclusions 3D morphometry shows highly similar centerline lengths for N-MRA and CE-MRA, but systematically higher diameters and volumes for N-MRA. PMID:24834406
A deployable .015 inch diameter wire antenna
NASA Technical Reports Server (NTRS)
Dibiasi, L.
1979-01-01
This mechanism was developed to dispense a small diameter wire which serves as a receiving antenna for electric field measurements on an Earth orbiting satellite. The antenna is deployed radially from a spinning satellite. A brushless dc motor drives a storage spool to dispense the wire at a controlled rate. Centrifugal force, acting on a mass attached to the end of the wire, keeps the wire in the radial position. The mechanism design, testing, and performance characteristics are discussed. Finally, operational data of the mechanism while in orbit are presented.
Foreground-background segmentation and attention: a change blindness study.
Mazza, Veronica; Turatto, Massimo; Umiltà, Carlo
2005-01-01
One of the most debated questions in visual attention research is what factors affect the deployment of attention in the visual scene? Segmentation processes are influential factors, providing candidate objects for further attentional selection, and the relevant literature has concentrated on how figure-ground segmentation mechanisms influence visual attention. However, another crucial process, namely foreground-background segmentation, seems to have been neglected. By using a change blindness paradigm, we explored whether attention is preferentially allocated to the foreground elements or to the background ones. The results indicated that unless attention was voluntarily deployed to the background, large changes in the color of its elements remained unnoticed. In contrast, minor changes in the foreground elements were promptly reported. Differences in change blindness between the two regions of the display indicate that attention is, by default, biased toward the foreground elements. This also supports the phenomenal observations made by Gestaltists, who demonstrated the greater salience of the foreground than the background.
Ultralightweight Space Deployable Primary Reflector Demonstrator
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)
2002-01-01
A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.
Takx, Richard A P; Suchá, Dominika; Park, Jakob; Leiner, Tim; Hoffmann, Udo
2015-12-01
To systematically investigate the literature for the influence of sublingual nitroglycerin administration on coronary diameter, the number of evaluable segments, image quality, heart rate and blood pressure, and diagnostic accuracy of coronary computed tomography (CT) angiography. A systematic search was performed in PubMed, EMBASE and Web of Science. The studies were evaluated for the effect of sublingual nitroglycerin on coronary artery diameter, evaluable segments, objective and subjective image quality, systemic physiological effects and diagnostic accuracy. Due to the heterogeneous reporting of outcome measures, a narrative synthesis was applied. Of the 217 studies identified, nine met the inclusion criteria: seven reported on the effect of nitroglycerin on coronary artery diameter, six on evaluable segments, four on image quality, five on systemic physiological effects and two on diagnostic accuracy. Sublingual nitroglycerin administration resulted in an improved evaluation of more coronary segments, in particular, in smaller coronary branches, better image quality and improved diagnostic accuracy. Side effects were mild and were alleviated without medical intervention. Sublingual nitroglycerin improves the coronary diameter, the number of assessable segments, image quality and diagnostic accuracy of coronary CT angiography without major side effects or systemic physiological changes. • Sublingual nitroglycerin administration results in significant coronary artery dilatation. • Nitroglycerin increases the number of evaluable coronary branches. • Image quality is improved the most in smaller coronary branches. • Nitroglycerin increases the diagnostic accuracy of coronary CT angiography. • Most side effects are mild and do not require medical intervention.
Silver nanoparticles induce developmental stage-specific embryonic phenotypes in zebrafish.
Lee, Kerry J; Browning, Lauren M; Nallathamby, Prakash D; Osgood, Christopher J; Xu, Xiao-Hong Nancy
2013-12-07
Much is anticipated from the development and deployment of nanomaterials in biological organisms, but concerns remain regarding their biocompatibility and target specificity. Here we report our study of the transport, biocompatibility and toxicity of purified and stable silver nanoparticles (Ag NPs, 13.1 ± 2.5 nm in diameter) upon the specific developmental stages of zebrafish embryos using single NP plasmonic spectroscopy. We find that single Ag NPs passively diffuse into five different developmental stages of embryos (cleavage, early-gastrula, early-segmentation, late-segmentation, and hatching stages), showing stage-independent diffusion modes and diffusion coefficients. Notably, the Ag NPs induce distinctive stage and dose-dependent phenotypes and nanotoxicity, upon their acute exposure to the Ag NPs (0-0.7 nM) for only 2 h. The late-segmentation embryos are most sensitive to the NPs with the lowest critical concentration (CNP,c < 0.02 nM) and highest percentages of cardiac abnormalities, followed by early-segmentation embryos (CNP,c < 0.02 nM), suggesting that disruption of cell differentiation by the NPs causes the most toxic effects on embryonic development. The cleavage-stage embryos treated with the NPs develop into a wide variety of phenotypes (abnormal finfold, tail/spinal cord flexure, cardiac malformation/edema, yolk sac edema, and acephaly). These organ structures are not yet developed in cleavage-stage embryos, suggesting that the earliest determinative events to create these structures are ongoing, and disrupted by NPs, which leads to the downstream effects. In contrast, the hatching embryos are most resistant to the Ag NPs, and majority of embryos (94%) develop normally, and none of them develop abnormally. Interestingly, early-gastrula embryos are less sensitive to the NPs than cleavage and segmentation stage embryos, and do not develop abnormally. These important findings suggest that the Ag NPs are not simple poisons, and they can target specific pathways in development, and potentially enable target specific study and therapy for early embryonic development.
Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj
2012-01-01
The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.
Eustachian tube diameter: Is it associated with chronic otitis media development?
Paltura, Ceki; Can, Tuba Selçuk; Yilmaz, Behice Kaniye; Dinç, Mehmet Emre; Develioğlu, Ömer Necati; Külekçi, Mehmet
To evaluate the effect of ET diameter on Chronic Otitis Media (COM) pathogenesis. Retrospective. Patients with unilateral COM disease are included in the study. The connection between fibrocartilaginous and osseous segments of the Eustachian Tube (ET) on axial Computed Tomography (CT) images was defined and the diameter of this segment is measured. The measurements were carried out bilaterally and statistically compared. 154 (76 (49%) male, 78 (51%) female patients were diagnosed with unilateral COM and included in the study. The mean diameter of ET was 1947mm (Std. deviation±0.5247) for healthy ears and 1788mm (Std. deviation±0.5306) for diseased ears. The statistical analysis showed a significantly narrow ET diameter in diseased ear side (p<0.01). The dysfunction or anatomical anomalies of ET are correlated with COM. Measuring of the bony diameter of ET during routine Temporal CT examination is recommended for our colleagues. Copyright © 2017 Elsevier Inc. All rights reserved.
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems
The overall objective of this demonstration project was to evaluate technologies that are designed for rapid deployment using portable equipment that can result in significant cost-savings to wastewater utilities. Smaller diameter pipes (i.e., less than 12-inch diameter) are gen...
de Moura, Eduardo G H; Orso, Ivan R B; Aurélio, Eduardo F; de Moura, Eduardo T H; de Moura, Diogo T H; Santo, Marco A
2016-01-01
Roux-en-Y gastric bypass is a commonly used technique of bariatric surgery. One of the most important complications is gastrojejunal anastomotic stricture. Endoscopic balloon dilation appears to be well tolerated and effective, but well-designed randomized, controlled trials have not yet been conducted. Identify factors associated with complications or failure of endoscopic balloon dilation of anastomotic stricture secondary to Roux-en-Y gastric bypass surgery. Gastrointestinal endoscopy service, university hospital, Brazil. The records of 64 patients with anastomotic stricture submitted to endoscopic dilation with hydrostatic balloon dilation were reviewed. Information was collected on gastric pouch length, anastomosis diameter before dilation, number of dilation sessions, balloon diameter at each session, anastomosis diameter after the last dilation session, presence of postsurgical complications, endoscopic complications, and outcome of dilation. Comparisons were made among postsurgical and endoscopic complications; number of dilations, balloon diameter; anastomosis diameter before dilation; and dilation outcome. Success of dilation treatment was 95%. Perforation was positively and significantly associated with the number of dilation sessions (P = .03). Highly significant associations were found between ischemic segment and perforation (P<.001) and between ischemic segment and bleeding (P = .047). Ischemic segment (P = .02) and fistula (P = .032) were also associated with dilation failure. Ischemic segment and fistula were found to be important risk factors for balloon dilation failure. The greater the number of dilation sessions, the greater the number of endoscopic complications. Copyright © 2016 American Society for Metabolic and Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-01-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Astrophysics Data System (ADS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-09-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallawi, A; Farrell, T; Diamond, K
2014-08-15
Automated atlas-based segmentation has recently been evaluated for use in planning prostate cancer radiotherapy. In the typical approach, the essential step is the selection of an atlas from a database that best matches the target image. This work proposes an atlas selection strategy and evaluates its impact on the final segmentation accuracy. Prostate length (PL), right femoral head diameter (RFHD), and left femoral head diameter (LFHD) were measured in CT images of 20 patients. Each subject was then taken as the target image to which all remaining 19 images were affinely registered. For each pair of registered images, the overlapmore » between prostate and femoral head contours was quantified using the Dice Similarity Coefficient (DSC). Finally, we designed an atlas selection strategy that computed the ratio of PL (prostate segmentation), RFHD (right femur segmentation), and LFHD (left femur segmentation) between the target subject and each subject in the atlas database. Five atlas subjects yielding ratios nearest to one were then selected for further analysis. RFHD and LFHD were excellent parameters for atlas selection, achieving a mean femoral head DSC of 0.82 ± 0.06. PL had a moderate ability to select the most similar prostate, with a mean DSC of 0.63 ± 0.18. The DSC obtained with the proposed selection method were slightly lower than the maximums established using brute force, but this does not include potential improvements expected with deformable registration. Atlas selection based on PL for prostate and femoral diameter for femoral heads provides reasonable segmentation accuracy.« less
NASA Technical Reports Server (NTRS)
1984-01-01
The Large Deployable Reflector (LDR), a proposed 20 m diameter telescope designed for infrared and submillimeter astronomical measurements from space, is discussed in terms of scientific purposes, capabilities, current status, and history of development. The LDR systems goals and functional/telescope requirements are enumerated.
Ultima Replicated Optics Research
NASA Technical Reports Server (NTRS)
Hadaway, James; Engelhaupt, Darell
1997-01-01
Designs are reviewed incorporating processes suitable for replication of precision spherical segments of very large (greater than 20 meter diameter) telescopes combining ultra-lightweight and high precision. These designs must be amenable to assembly and alignment after deployment . The methods considered lie outside the present scope of fabrication, deployment and alignment considered to date. Design guidelines for reducing the weight and low frequency resonance in low G environment were given by The Serius Group, Dr. Glenn Zeiders, and are considered baseline for this activity. The goal of a rigid design of 10 Kg/sq M is being persued for the Next Generation Space Telescope (NGST) and is not likely adequate for advanced efforts. Flexures have been considered for maintaining the figure of many lightweight structures by control loop processes. This adds to the complexity and weight to the extent that it becomes difficult to recover the benefits. Two fabrication guidelines lead to a stiffer and concurrently lighter structure. First the use of thin vertical wall triangular structural reinforcements to increase the resistance to bending is preferred over hexagonal or square similar sections. Secondly, the incorporation of a similar back sheet on a cellular structure markedly improves the geometric stiffness. Neither improves the short range stiffness. Also often overlooked is that selected material properties must include high microyield and low hysteresis in addition to high elastic modulus to weight (stiffness). The fabrication steps can easily exceed the strain requirement.
Household Energy Consumption Segmentation Using Hourly Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwac, J; Flora, J; Rajagopal, R
2014-01-01
The increasing US deployment of residential advanced metering infrastructure (AMI) has made hourly energy consumption data widely available. Using CA smart meter data, we investigate a household electricity segmentation methodology that uses an encoding system with a pre-processed load shape dictionary. Structured approaches using features derived from the encoded data drive five sample program and policy relevant energy lifestyle segmentation strategies. We also ensure that the methodologies developed scale to large data sets.
NASA Technical Reports Server (NTRS)
Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.
2013-01-01
We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.
Performance of a 16.6 Meter Diameter Modified Ringsail Parachute in a Simulated Martian Environment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Henning, Allen B.; Coltrane, Lucille C.
1968-01-01
Inflation, drag, and stability characteristics of a 54.5 -foot nominal-diameter (16.6-meter) modified ringsail parachute deployed in the wake of a 15-foot-diameter (4.6-meter) spacecraft traveling at a Mach number of 1.6 and a dynamic pressure equal to 11.6 psf (555 N/m(exp 2)) were obtained from the third balloon-launched flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated rapidly to a full condition, partially collapsed, and reinflated to a stable configuration. After reinflation, an average drag coefficient near 0.6 based on nominal surface area was obtained. During descent, an aerodynamic trim angle was observed in a plane near several torn sails. Amplitude of the trim was approximately 15 degrees and oscillation about trim was less than 11 degrees.
LANDSAT-D flight segment operations manual, volume 2
NASA Technical Reports Server (NTRS)
Varhola, J.
1981-01-01
Functions, performance capabilities, modes of operation, constraints, redundancy, commands, and telemetry are described for the thematic mapper; the global positioning system; the direct access S-band; the multispectral scanner; the payload correction; the thermal control subsystem; the solar array retention, deployment, and jettison assembly; and the boom antenna retention, deployment, and jettison assembly for LANDSAT 4.
Optical Design of Segmented Hexagon Array Solar Mirror
NASA Technical Reports Server (NTRS)
Huegele, Vince
2000-01-01
A segmented array of mirrors was designed for a solar concentrator test stand at MSFC for firing solar thermal propulsion engines. The 144 mirrors each have a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The mirror segments are aluminum hexagons that had the surface diamond turned and quartz coated. The array focuses sunlight reflected from a heliostat to a 4 inch diameter spot containing 10 kw of power at the 15-foot focal point. The derivation of the surface figure for the respective mirror elements is shown. The alignment process of the array is discussed and test results of the system's performance is given.
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)
NASA Technical Reports Server (NTRS)
Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl;
2016-01-01
The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.
Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images
NASA Astrophysics Data System (ADS)
Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis
2018-01-01
Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.
JWST Mirror Technology Development
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2010-01-01
Since the initial Design Studies leading to JWST, Mirror Technology was identified as a (if not the) critical capability necessary to enable the next generation of large aperture space telescopes required to achieve the science goals of imaging the earliest galaxies and proto-galaxies after the big bang. Specific telescope architectures were explored via three independent design concept studies conducted during the summer of 1996. Achieving the desired science objectives required a never before demonstrated space telescope capability, one with an 8 meter class primary mirror that is diffraction limited at 2 micrometers and operating in deep space at temperatures well below 70K. Beryllium was identified in the NASA "Yardstick" design as the preferred material because of its ability to provide stable optical performance in the anticipated thermal environment as well as its excellent specific stiffness. Because of launch vehicle constraints, two very significant architectural constraints were placed upon the telescope: segmentation and areal density. Each of these directly resulted in specific technology capability requirements. First, because the maximum launch vehicle payload fairing diameter is approximately 4.5 meters, the only way to launch an 8 meter class mirror is to segment it, fold it and deploy it on orbit - resulting in actuation and control requirements. Second, because of launch vehicle mass limits, the primary mirror allocation was only 1000 kg - resulting in a maximum areal density specification of 20 kilograms per square meter.
Uterine and fetal dynamics during early pregnancy in mares.
Griffin, P G; Ginther, O J
1991-02-01
Fetal activity and mobility and changes in diameter of the allantoic fluid compartment in the uterine horns were studied in mares between days 69 and 81 of pregnancy by use of transrectal ultrasonography (n = 12) and transcervical videoendoscopy (n = 8). The insertion tube of the videoendoscope was positioned within the allantoic sac to permit viewing of the fetus and entrance to each uterine horn. Each uterine horn was divided ultrasonographically into 3 segments of equal length, and the horns were designated on the basis of side of umbilical attachment (cord vs noncord horns). The diameter of the allantoic fluid compartment in the cornual segments increased (P less than 0.05) over the cranial (18.6 +/- 1.9 mm), middle (35.6 +/- 2.9 mm), and caudal (51.7 +/- 4.4 mm) segments, but differences between cord and noncord horns were not evident. Dynamic changes in diameter of the allantoic fluid compartment in cornual segments (ultrasonography) and at the entrance to each uterine horn (videoendoscopy) were detected (no significant difference between methods). During continuous videoendoscopic viewing (17 to 60 min/mare), extreme changes in allantoic fluid compartment diameter (76 to 100% of maximum to 0 to 25% of maximum or vice-versa) occurred an equivalent of 2.6 times/h/horn entrance; changes had an average duration of 3.4 minutes. A change from 100% (maximal diameter) to 0% (no visible lumen) or vice-versa occurred an equivalent of 1.3 times/h/horn entrance. Sometimes the uterine wall was so closely constricted++ around the fetal-amniotic unit that no intervening allantoic fluid was ultrasonographically detectable whereas at other times the uterus in the same location was widely dilated.(ABSTRACT TRUNCATED AT 250 WORDS)
Scattering and the Point Spread Function of the New Generation Space Telescope
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1996-01-01
Preliminary design work on the New Generation Space Telescope (NGST) is currently under way. This telescope is envisioned as a lightweight, deployable Cassegrain reflector with an aperture of 8 meters, and an effective focal length of 80 meters. It is to be folded into a small-diameter package for launch by an Atlas booster, and unfolded in orbit. The primary is to consist of an octagon with a hole at the center, and with eight segments arranged in a flower petal configuration about the octagon. The comers of the petal-shaped segments are to be trimmed so that the package will fit atop the Atlas booster. This mirror, along with its secondary will focus the light from a point source into an image which is spread from a point by diffraction effects, figure errors, and scattering of light from the surface. The distribution of light in the image of a point source is called a point spread function (PSF). The obstruction of the incident light by the secondary mirror and its support structure, the trimmed corners of the petals, and the grooves between the segments all cause the diffraction pattern characterizing an ideal point spread function to be changed, with the trimmed comers causing the rings of the Airy pattern to become broken up, and the linear grooves causing diffraction spikes running radially away from the central spot, or Airy disk. Any figure errors the mirror segments may have, or any errors in aligning the petals with the central octagon will also spread the light out from the ideal point spread function. A point spread function for a mirror the size of the NGST and having an incident wavelength of 900 nm is considered. Most of the light is confined in a circle with a diameter of 0.05 arc seconds. The ring pattern ranges in intensity from 10(exp -2) near the center to 10(exp -6) near the edge of the plotted field, and can be clearly discerned in a log plot of the intensity. The total fraction of the light scattered from this point spread function is called the total integrated scattering (TIS), and the fraction remaining is called the Strehl ratio. The angular distribution of the scattered light is called the angle resolved scattering (ARS), and it shows a strong spike centered on a scattering angle of zero, and a broad , less intense distribution at larger angles. It is this scattered light, and its effect on the point spread function which is the focus of this study.
The accelerated site technology deployment program presents the segmented gate system
DOE Office of Scientific and Technical Information (OSTI.GOV)
PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE
2000-02-24
The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less
A Novel Approach for a Low-Cost Deployable Antenna
NASA Technical Reports Server (NTRS)
Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill
2010-01-01
The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.
In-Space Deployable Reflectarray Antenna: Current and Future
NASA Technical Reports Server (NTRS)
Fang, Houfei; Knarr, Kevin; Quijano, Ubaldo; Huang, John; Thomson, Mark
2008-01-01
Technologies associated with a 10-m X/Ka-band dual-frequency reflectarray antenna have been developed for deep space communication applications. The first task is the development of a 3-m diameter X/Ka dual frequency reflectarray which serves as a stepping-stone to the 10-m aperture antenna. The second task is to develop a deployable frame.
Novel multimodality segmentation using level sets and Jensen-Rényi divergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva
2013-12-15
Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less
Novel multimodality segmentation using level sets and Jensen-Rényi divergence.
Markel, Daniel; Zaidi, Habib; El Naqa, Issam
2013-12-01
Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.
Hypatia: a 4m active space telescope concept and capabilities
NASA Astrophysics Data System (ADS)
Devaney, Nicholas; Goncharov, A.; Goy, M.; Reinlein, C.; Lange, N.
2017-09-01
While ambitious plans are being developed for giant, segmented telescopes in space, we feel that a large monolithic mirror telescope would have several advantages in the near term. In particular, the risk involved in deploying the optics will be significantly reduced, and the telescope can provide excellent image quality without the need for precise segment alignment and phasing.
Large aperture segmented optics for space-to-ground communications.
Lucy, R F
1968-08-01
A large aperture, moderate quality segmented optical array for use in noncoherent space-to-ground laser communications is determined as a function of resolution, diameter, focal length, and number of segments in the array. Secondary optics and construction tolerances are also discussed. Performance predictions show a typical receiver to be capable of megahertz communications at Mars distances during daylight operation.
Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Lake, Mark S.
1995-01-01
This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankovich, N.J.; Lambert, T.; Zrimec, T.
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. The authors have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (pseudo-MRA/pseudo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic.more » The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model`s lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.« less
Anatomic vascular phantom for the verification of MRA and XRA visualization and fusion
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Lambert, Timothy; Zrimec, Tatjana; Hiller, John B.
1995-05-01
A project is underway to develop automated methods of fusing cerebral magnetic resonance angiography (MRA) and x-ray angiography (XRA) for creating accurate visualizations used in planning treatment of vascular disease. We have developed a vascular phantom suitable for testing segmentation and fusion algorithms with either derived images (psuedo-MRA/psuedo-XRA) or actual MRA or XRA image sequences. The initial unilateral arterial phantom design, based on normal human anatomy, contains 48 tapering vascular segments with lumen diameters from 2.5 millimeter to 0.25 millimeter. The initial phantom used rapid prototyping technology (stereolithography) with a 0.9 millimeter vessel wall fabricated in an ultraviolet-cured plastic. The model fabrication resulted in a hollow vessel model comprising the internal carotid artery, the ophthalmic artery, and the proximal segments of the anterior, middle, and posterior cerebral arteries. The complete model was fabricated but the model's lumen could not be cleared for vessels with less than 1 millimeter diameter. Measurements of selected vascular outer diameters as judged against the CAD specification showed an accuracy of 0.14 mm and precision (standard deviation) of 0.15 mm. The plastic vascular model produced provides a fixed geometric framework for the evaluation of imaging protocols and the development of algorithms for both segmentation and fusion.
The Segmental Morphometric Properties of the Horse Cervical Spinal Cord: A Study of Cadaver
Bahar, Sadullah; Bolat, Durmus; Selcuk, Muhammet Lutfi
2013-01-01
Although the cervical spinal cord (CSC) of the horse has particular importance in diseases of CNS, there is very little information about its segmental morphometry. The objective of the present study was to determine the morphometric features of the CSC segments in the horse and possible relationships among the morphometric features. The segmented CSC from five mature animals was used. Length, weight, diameter, and volume measurements of the segments were performed macroscopically. Lengths and diameters of segments were measured histologically, and area and volume measurements were performed using stereological methods. The length, weight, and volume of the CSC were 61.6 ± 3.2 cm, 107.2 ± 10.4 g, and 95.5 ± 8.3 cm3, respectively. The length of the segments was increased from C 1 to C 3, while it decreased from C 3 to C 8. The gross section (GS), white matter (WM), grey matter (GM), dorsal horn (DH), and ventral horn (VH) had the largest cross-section areas at C 8. The highest volume was found for the total segment and WM at C 4, GM, DH, and VH at C 7, and the central canal (CC) at C 3. The data obtained not only contribute to the knowledge of the normal anatomy of the CSC but may also provide reference data for veterinary pathologists and clinicians. PMID:23476145
A deployable telescope for sub-meter resolutions from microsatellite platforms
NASA Astrophysics Data System (ADS)
Dolkens, D.; Kuiper, J. M.
2017-11-01
Sub-meter resolution imagery has become increasingly important for disaster response, defence and security applications. Earth Observation (EO) at these resolutions has long been the realm of large and heavy telescopes, which results in high image costs, limited availability and long revisit times. Using synthetic aperture technology, instruments can now be developed that can reach these resolutions using a substantially smaller launch volume and mass. To obtain a competitive MicroSatellite telescope design, a concept study was performed to develop a deployable instrument that can reach a ground resolution of 25 cm from an orbital altitude of 500 km. Two classes of instruments were analysed: the Fizeau synthetic aperture, a telescope that uses a segmented primary mirror, and a Michelson synthetic aperture, an instrument concept that combines the light of a distributed array of afocal telescopes into a final image. In a trade-off the Fizeau synthetic aperture was selected as the most promising concept for obtaining high resolution imagery from a Low Earth Orbit. The optical design of the Fizeau synthetic aperture is based on a full-field Korsch telescope that has been optimized for compactness and an excellent wavefront quality. It uses three aperture segments in a tri-arm configuration that can be folded alongside the instrument during launch. The secondary mirror is mounted on a deployable boom, further decreasing the launch volume. To maintain a high image quality while operating in the harsh and dynamic space environment, one of the most challenging obstacles that must be addressed is the very tight tolerance on the positioning of the three primary mirror segments and the secondary mirror. Following a sensitivity analysis, systems engineering budgets have been defined. The instrument concept features a robust thermo-mechanical design, aimed at reducing the mechanical uncertainties to a minimum. Silicon Carbide mirror segments, the use of Invar for the deployable arms and a main housing with active thermal control, will guarantee a high thermal stability during operations. Since a robust mechanical design alone is insufficient to ensure a diffraction limited performance, an inorbit calibration system was developed. Post launch, a combination of interferometric measurements and capacitive sensors will be used to characterise the system. Actuators beneath the primary mirror segments will then correct the position of the mirror segments to meet the required operating accuracies. During operations, a passive system will be used. This system relies on a phase diversity algorithm to retrieve residual wavefront aberrations and deconvolve the image data. Using this approach, a good end-to-end imaging performance can be achieved.
Stress Analysis of Bolted, Segmented Cylindrical Shells Exhibiting Flange Mating-Surface Waviness
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2009-01-01
Bolted, segmented cylindrical shells are a common structural component in many engineering systems especially for aerospace launch vehicles. Segmented shells are often needed due to limitations of manufacturing capabilities or transportation issues related to very long, large-diameter cylindrical shells. These cylindrical shells typically have a flange or ring welded to opposite ends so that shell segments can be mated together and bolted to form a larger structural system. As the diameter of these shells increases, maintaining strict fabrication tolerances for the flanges to be flat and parallel on a welded structure is an extreme challenge. Local fit-up stresses develop in the structure due to flange mating-surface mismatch (flange waviness). These local stresses need to be considered when predicting a critical initial flaw size. Flange waviness is one contributor to the fit-up stress state. The present paper describes the modeling and analysis effort to simulate fit-up stresses due to flange waviness in a typical bolted, segmented cylindrical shell. Results from parametric studies are presented for various flange mating-surface waviness distributions and amplitudes.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.
Above-ground Antineutrino Detection for Nuclear Reactor Monitoring
Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...
2014-08-01
Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis
Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less
Hypothermia Severely Effects Performance of Nitinol-Based Endovascular Grafts In Vitro
Robich, Michael P.; Hagberg, Robert; Schermerhorn, Marc L.; Pomposelli, Frank B.; Nilson, Michael C.; Gendron, Michelle L.; Sellke, Frank W.; Rodriguez, Roberto
2012-01-01
Background Nitinol is an alloy that serves as the base for numerous medical devices, including the GORE TAG Thoracic Endoprosthesis (W.L. Gore & Associates, Flagstaff, AZ) thoracic aortic graft device. Given the increasing use of therapeutic hypothermia used during the placement these devices and in post– cardiac arrest situations, we sought to understand the impact of hypothermia on this device. Methods Five 34-mm TAG devices were deployed in a temperature-controlled chamber at 20°C, 25°C, 30°C, 35°, and 37°C (25 total devices). A halographic measurement device was used to measure radial expansive force and normalized to the force at 37°C. Three 34-mm TAG devices were similarly deployed in a temperature-controlled water bath at each of the above temperatures. A laser micrometer was utilized to measure deployed diameter. Results A statistically significant decrease in expansive force at 20°C, 25°C, and 30°C of 65%, 46%, and 6%, respectively, was noted. A statistically significant decrease in radial diameter at 20°C and 25°C of 17% and 11%, respectively, was noted. Although a 9% difference was noted at 30°C, it was not significant. Conclusions The nitinol-based TAG device shows marked decreases in radial expansive force and deployed diameter at temperatures at or below 30°C. Surgeons should be aware of the potential implications of placing nitinol-based endoprostheses in hypothermic conditions. In addition, all health care providers should be aware of the changes that occur in nitinol-based endoprostheses during therapeutic hypothermia. PMID:22385821
Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans
NASA Astrophysics Data System (ADS)
Lassen, B. C.; Jacobs, C.; Kuhnigk, J.-M.; van Ginneken, B.; van Rikxoort, E. M.
2015-02-01
The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect the growth rate as soon as possible. However manual segmentation of a volume is time-consuming. Whereas there are several well evaluated methods for the segmentation of solid nodules, less work is done on subsolid nodules which actually show a higher malignancy rate than solid nodules. In this work we present a fast, semi-automatic method for segmentation of subsolid nodules. As minimal user interaction the method expects a user-drawn stroke on the largest diameter of the nodule. First, a threshold-based region growing is performed based on intensity analysis of the nodule region and surrounding parenchyma. In the next step the chest wall is removed by a combination of a connected component analyses and convex hull calculation. Finally, attached vessels are detached by morphological operations. The method was evaluated on all nodules of the publicly available LIDC/IDRI database that were manually segmented and rated as non-solid or part-solid by four radiologists (Dataset 1) and three radiologists (Dataset 2). For these 59 nodules the Jaccard index for the agreement of the proposed method with the manual reference segmentations was 0.52/0.50 (Dataset 1/Dataset 2) compared to an inter-observer agreement of the manual segmentations of 0.54/0.58 (Dataset 1/Dataset 2). Furthermore, the inter-observer agreement using the proposed method (i.e. different input strokes) was analyzed and gave a Jaccard index of 0.74/0.74 (Dataset 1/Dataset 2). The presented method provides satisfactory segmentation results with minimal observer effort in minimal time and can reduce the inter-observer variability for segmentation of subsolid nodules in clinical routine.
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.
2017-01-01
The ADEPT architecture represents a completely new approach for entry vehicle design using a high-performance carbon fabric to serve as the primary drag surface of the mechanically deployed decelerator and to protect the payload from hypersonic aerothermal heating during entry. The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7-m deployed diameter ADEPT sounding rocket flight experiment. The SR-1 sounding rocket flight experiment is a critical milestone in the technology maturation plan for ADEPT and will generate performance data on in-space deployment and aerodynamic stability.
Mechanical Technology Development on A 35-m Deployable Radar Antenna for Monitoring Hurricanes
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood
2006-01-01
The NEXRAD in Space project develops a novel instrument concept and the associated antenna technologies for a 35-GHz Doppler radar to monitor hurricanes, cyclones, and severe storms from a geostationary orbit. Mechanical challenges of this concept include a 35-m diameter lightweight in space deployable spherical reflector and a feeder scanning mechanism. The feasibility of using shape memory polymer material to develop the large deployable reflector has been investigated by this study. A spiral scanning mechanism concept has been developed and demonstrated by an engineering model.
A soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Agronin, Michael L.; Jandura, Louise
1990-01-01
Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.
Using NASA's Reference Architecture: Comparing Polar and Geostationary Data Processing Systems
NASA Technical Reports Server (NTRS)
Ullman, Richard; Burnett, Michael
2013-01-01
The JPSS and GOES-R programs are housed at NASA GSFC and jointly implemented by NASA and NOAA to NOAA requirements. NASA's role in the JPSS Ground System is to develop and deploy the system according to NOAA requirements. NASA's role in the GOES-R ground segment is to provide Systems Engineering expertise and oversight for NOAA's development and deployment of the system. NASA's Earth Science Data Systems Reference Architecture is a document developed by NASA's Earth Science Data Systems Standards Process Group that describes a NASA Earth Observing Mission Ground system as a generic abstraction. The authors work within the respective ground segment projects and are also separately contributors to the Reference Architecture document. Opinions expressed are the author's only and are not NOAA, NASA or the Ground Projects' official positions.
Turk, Marvee; Gupta, Vishal; Fischell, Tim A
2010-03-01
There have been reports of serious complications related to difficulty removing the deflated Taxus stent delivery balloon after stent deployment. The purpose of this study was to determine whether the Taxus SIBS polymer was "sticky" and associated with an increase in the force required to remove the stent delivery balloon after stent deployment, using a quantitative, ex-vivo model. Balloon-polymer-stent interactions during balloon withdrawal were measured with the Taxus Liberté, Liberté bare-metal stent (BMS; no polymer = control), the Cordis Cypher drug-eluting stent (DES; PEVA/PBMA polymer) and the BX Velocity (no polymer). We quantitatively measured the force required to remove the deflated stent delivery balloon from each of these stents in simulated vessels at 37 degrees C in a water bath. Balloon withdrawal forces were measured in straight (0 degree curve), mildly curved (20 degree curve) and moderately curved (40 degree curve) simulated vessel segments. The average peak force required to remove the deflated balloon catheter from the Taxus Liberté DES, the Liberté BMS, the Cypher DES, and the Bx Velocity BMS were similar in straight segments, but were much greater for the Taxus Liberté in the moderately curved segments (1.4 lbs vs. 0.11 lbs, 0.11 lbs and 0.12 lbs, respectively; p < 0.0001). The SIBS polymer of the Taxus Liberté DES appears to be "sticky" and is associated with high forces required to withdraw the deflated balloon from the deployed stent in curved segments. This withdrawal issue may help to explain the clinical complications that have been reported with this device.
Controlled tether extends satellite's orbital range
NASA Astrophysics Data System (ADS)
Wigotsky, V.
1984-06-01
A low orbit satellite tethered to the Space Shuttle Orbiter's cargo bay would be able to conduct upper atmosphere experiments without fear of orbit deterioration. NASA has in light of this initiated a Tethered Satellite System program aimed at the 1987 deployment of a 1,100-lb, 5 ft-diameter satellite to a distance of 6-12 miles from the Space Shuttle on a Kevlar tether. The distance of the fully developed system will be 62 miles, representing an altitude of 80 miles above the earth. Tether diameters under consideration are in the 0.065-0.1 inch range. The satellite control system will consist of a reel drive, a deployment boom, and a boom-mounted tether control, in order to vary tether tension during gravity gradient changes.
NASA Astrophysics Data System (ADS)
Salem, Mohamed Shaker; Sergelius, Philip; Corona, Rosa M.; Escrig, Juan; Görlitz, Detlef; Nielsch, Kornelius
2013-04-01
Magnetic properties of cylindrical Ni80Fe20 nanowires with modulated diameters are investigated theoretically as a function of their geometrical parameters and compared with those produced inside the pores of anodic alumina membranes by pulsed electrodeposition. We observe that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall. The system begins generating vortex domains in the nanowire ends and in the transition region between the two segments to minimize magnetostatic energy generated by surfaces perpendicular to the initial magnetization of the sample. Besides, we observed an increase of the coercivity for the sample with equal volumes in relation to the sample with equal lengths. Finally, the interaction field is stronger in the case of constant volume segments. These structures could be used to control the motions of magnetic domain walls. In this way, these nanowires with modulated diameters can be an alternative to store information or even perform logic functions.
NASA Astrophysics Data System (ADS)
Wang, Lei; Schnurr, Alena-Kathrin; Zidowitz, Stephan; Georgii, Joachim; Zhao, Yue; Razavi, Mohammad; Schwier, Michael; Hahn, Horst K.; Hansen, Christian
2016-03-01
Segmentation of hepatic arteries in multi-phase computed tomography (CT) images is indispensable in liver surgery planning. During image acquisition, the hepatic artery is enhanced by the injection of contrast agent. The enhanced signals are often not stably acquired due to non-optimal contrast timing. Other vascular structure, such as hepatic vein or portal vein, can be enhanced as well in the arterial phase, which can adversely affect the segmentation results. Furthermore, the arteries might suffer from partial volume effects due to their small diameter. To overcome these difficulties, we propose a framework for robust hepatic artery segmentation requiring a minimal amount of user interaction. First, an efficient multi-scale Hessian-based vesselness filter is applied on the artery phase CT image, aiming to enhance vessel structures with specified diameter range. Second, the vesselness response is processed using a Bayesian classifier to identify the most probable vessel structures. Considering the vesselness filter normally performs not ideally on the vessel bifurcations or the segments corrupted by noise, two vessel-reconnection techniques are proposed. The first technique uses a directional morphological operator to dilate vessel segments along their centerline directions, attempting to fill the gap between broken vascular segments. The second technique analyzes the connectivity of vessel segments and reconnects disconnected segments and branches. Finally, a 3D vessel tree is reconstructed. The algorithm has been evaluated using 18 CT images of the liver. To quantitatively measure the similarities between segmented and reference vessel trees, the skeleton coverage and mean symmetric distance are calculated to quantify the agreement between reference and segmented vessel skeletons, resulting in an average of 0:55+/-0:27 and 12:7+/-7:9 mm (mean standard deviation), respectively.
NASA Technical Reports Server (NTRS)
Ohl, R.
2016-01-01
NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the guider. The SIs are mounted to a composite metering structure. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as a suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, is evaluated using OSIM. This is an overview presentation to undergraduate students and other personnel at the University of Richmond, planned for 12 Oct, 2016. It uses material previously released by NASA on the Internet (e.g., via Flickr) or at engineering conferences (e.g., SPIE). This presentation provides an overview of the status of the project, with an emphasis on optics and measurement.
Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.
1993-01-01
An experiment conducted in the framework of a NASA In-Space Technology Experiments Program based on a concept of inflatable deployable structures is described. The concept utilizes very low inflation pressure to maintain the required geometry on orbit and gravity-induced deflection of the structure precludes any meaningful ground-based demonstrations of functions performance. The experiment is aimed at validating and characterizing the mechanical functional performance of a 14-m-diameter inflatable deployable reflector antenna structure in the orbital operational environment. Results of the experiment are expected to significantly reduce the user risk associated with using large space-deployable antennas by demonstrating the functional performance of a concept that meets the criteria for low-cost, lightweight, and highly reliable space-deployable structures.
Dynamic Wireless Power Transfer - Grid Impacts Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Tony; Meintz, Andrew; Gonder, Jeff
2015-12-04
This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.
Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard
2002-01-01
To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.
Wesselowski, S; Saunders, A B; Gordon, S G
2017-09-01
Deployment of the Amplatz Canine Duct Occluder (ACDO) is the preferred method for minimally invasive occlusion of patent ductus arteriosus (PDA) in dogs, with appropriate device sizing crucial to successful closure. Dogs of any body weight can be affected by PDA. To describe the range of ACDO sizes deployed in dogs of various body weights for improved procedural planning and inventory selection and to investigate for correlation between minimal ductal diameter (MDD) and body weight. A total of 152 dogs undergoing ACDO deployment between 2008 and 2016. Body weight, age, breed, sex, and MDD obtained by angiography (MDD-A), MDD obtained by transesophageal echocardiography (MDD-TEE), and ACDO size deployed were retrospectively evaluated. Correlation between body weight and ACDO size, MDD-A and MDD-TEE was poor, with R-squared values of 0.4, 0.36, and 0.3, respectively. Femoral artery diameter in the smallest population of dogs placed inherent limitations on the use of larger device sizes, with no limitations on the wide range of device sizes required as patient size increased. The most commonly used ACDO devices were size 3 through 6, representing 57% of the devices deployed within the entire study population. Patent ductus arteriosus anatomy varies on an individual basis, with poor correlation between MDD and body weight. Weight-based assumptions about expected ACDO device size for a given patient are not recommended. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Method for preparing spherical thermoplastic particles of uniform size
Day, J.R.
1975-11-17
Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.
Krutyeva, M; Pasini, S; Monkenbusch, M; Allgaier, J; Maiz, J; Mijangos, C; Hartmann-Azanza, B; Steinhart, M; Jalarvo, N; Richter, D
2017-05-28
We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.
NASA Astrophysics Data System (ADS)
Krutyeva, M.; Pasini, S.; Monkenbusch, M.; Allgaier, J.; Maiz, J.; Mijangos, C.; Hartmann-Azanza, B.; Steinhart, M.; Jalarvo, N.; Richter, D.
2017-05-01
We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, the corresponding polymer melt was measured under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where the segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Also the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.
Above-ground antineutrino detection for nuclear reactor monitoring
NASA Astrophysics Data System (ADS)
Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.
2015-01-01
Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].
LDR segmented mirror technology assessment study
NASA Technical Reports Server (NTRS)
Krim, M.; Russo, J.
1983-01-01
In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.
NASA Technical Reports Server (NTRS)
Brophy, John R. (Inventor)
1993-01-01
Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.
A dispersed fringe sensor prototype for the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Frostig, Danielle; McLeod, Brian A.; Kopon, Derek
2017-01-01
The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.
High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Tournier, Jean-Michel
2006-01-01
A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at ~ 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.
Nozzle insert for mixed mode fuel injector
Lawrence, Keith E [Peoria, IL
2006-11-21
A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.
Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.
Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H
2013-07-15
In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.
Intelligent video storage of visual evidences on site in fast deployment
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois
2004-07-01
In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.
Extreme Precision Antenna Reflector Study Results
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gilger, L. D.; Ard, K. E.
1985-01-01
Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated.
NASA Technical Reports Server (NTRS)
Bohon, Herman L.; Miserentino, Robert
1970-01-01
Deployment characteristics and steady-state performance data were obtained over the Mach number range from 2.2 to 4.4 and at angles of attack from 0 degrees to l0 degrees. All attached inflatable decelerator (AID) models deployed successfully and exhibited flutter-free performance after deployment. Shock loads commonly associated with inflation of parachutes during deployment were not experienced. Force and moment data and ram-air pressure data were obtained throughout the Mach number range and at angles of attack from 0 degrees to l0 degrees. The high drag coefficient of 1.14 was in good agreement with the value predicted by the theory used in the design and indicated other AID shapes may be designed on a rational basis with a high degree of confidence.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. -- During Crew Equipment Interface Test activities in the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn-Piper and Joseph Tanner look at equipment. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
NASA Astrophysics Data System (ADS)
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
Engineering design, stress and thermal analysis, and documentation for SATS program
NASA Technical Reports Server (NTRS)
1973-01-01
An in-depth analysis and mechanical design of the solar array stowage and deployment arrangements for use in Small Applications Technology Satellite spacecraft is presented. Alternate approaches for the major elements of work are developed and evaluated. Elements include array stowage and deployment arrangements, the spacecraft and array behavior in the spacecraft despin mode, and the design of the main hinge and segment hinge assemblies. Feasibility calculations are performed and the preferred approach is identified.
Shugman, Ibrahim M; Hee, Leia; Mussap, Christian J; Diu, Patrick; Lo, Sidney; Hopkins, Andrew P; Nguyen, Phong; Taylor, David; Rajaratnam, Rohan; Leung, Dominic; Thomas, Liza; Juergens, Craig P; French, John K
2013-04-01
During percutaneous coronary intervention (PCI) performed in the emergent setting of ST-segment elevation myocardial infarction (STEMI), uncertainty about patients' ability to comply with 12 months dual antiplatelet therapy after drug-eluting stenting is common, and thus, selective bare-metal stent (BMS) deployment could be an attractive strategy if this achieved low target vessel revascularization (TVR) rates in large infarct-related arteries (IRAs) (≥3.5 mm). To evaluate this hypothesis, among 1,282 patients with STEMI who underwent PCI during their initial hospitalization, we studied 1,059 patients (83%) who received BMS, of whom 512 (48%) had large IRAs ≥3.5 mm in diameter, 333 (31%) had IRAs 3 to 3.49 mm, and 214 (20%) had IRAs <3 mm. At 1 year, TVR rate in patients with BMS was 5.8% (2.2% with large BMS [≥3.5 mm], 9.2% with BMS 3-3.49 mm [intermediate], and 9.0% with BMS <3.0 mm [small], P < .001). The rates of death/reinfarction among patients with large BMS compared with intermediate BMS or small BMS were lower (6.6% vs 11.7% vs 9.0%, P = .042). Among patients who received BMS, the independent predictors of TVR at 1 year were the following: vessel diameter <3.5 mm (odds ratio [OR] 4.39 [95% CI 2.24-8.60], P < .001), proximal left anterior descending coronary artery lesions (OR 1.89 [95% CI 1.08-3.31], P = .027), hypertension (OR 2.01 [95% CI 1.17-3.438], P = .011), and prior PCI (OR 3.46 [95% CI 1.21-9.85], P = .02). The predictors of death/myocardial infarction at 1 year were pre-PCI cardiogenic shock (OR 8.16 [95% CI 4.16-16.01], P < .001), age ≥65 years (OR 2.63 [95% CI 1.58-4.39], P < .001), left anterior descending coronary artery culprit lesions (OR 1.95 [95% CI 1.19-3.21], P = .008), female gender (OR 1.93 [95% CI 1.12-3.32], P = .019), and American College of Cardiology/American Heart Association lesion classes B2 and C (OR 2.17 [95% CI 1.10-4.27], P = .026). Bare-metal stent deployment in STEMI patients with IRAs ≥3.5 mm was associated with low rates of TVR. Their use in this setting warrants comparison with second-generation drug-eluting stenting deployment in future randomized clinical trials. Copyright © 2013 Mosby, Inc. All rights reserved.
Starshade mechanical design for the Habitable Exoplanet imaging mission concept (HabEx)
NASA Astrophysics Data System (ADS)
Arya, Manan; Webb, David; McGown, James; Lisman, P. Douglas; Shaklan, Stuart; Bradford, S. Case; Steeves, John; Hilgemann, Evan; Trease, Brian; Thomson, Mark; Warwick, Steve; Freebury, Gregg; Gull, Jamie
2017-09-01
An external occulter for starlight suppression - a starshade - flying in formation with the Habitable Exoplanet Imaging Mission Concept (HabEx) space telescope could enable the direct imaging and spectrographic characterization of Earthlike exoplanets in the habitable zone. This starshade is flown between the telescope and the star, and suppresses stellar light sufficiently to allow the imaging of the faint reflected light of the planet. This paper presents a mechanical architecture for this occulter, which must stow in a 5 m-diameter launch fairing and then deploy to about a 80 m-diameter structure. The optical performance of the starshade requires that the edge profile is accurate and stable. The stowage and deployment of the starshade to meet these requirements present unique challenges that are addressed in this proposed architecture. The mechanical architecture consists of a number of petals attached to a deployable perimeter truss, which is connected to central hub using tensioned spokes. The petals are furled around the stowed perimeter truss for launch. Herein is described a mechanical design solution that supports an 80 m-class starshade for flight as part of HabEx.
NASA Astrophysics Data System (ADS)
Shi, Guohua; Wang, Fei; Li, Xiqi; Lu, Jing; Ding, Zhihua; Sun, Xinghuai; Jiang, Chunhui; Zhang, Yudong
2012-01-01
We have used anterior segment swept source optical coherence tomography to measure Schlemm's canal (SC) morphometric values in the living human eye. Fifty healthy volunteers with 100 normal eyes were measured in the nasal and temporal side. Comparison with the published SC morphometric values of histologic sections proves the reliability of our results. The statistical results show that there are no significant differences between nasal and temporal SC with respect to their diameter, perimeter, and area in our study (diameter: t=0.122, p=0.903; perimeter: t=-0.003, p=0.998; area: t=-1.169, p=0.244); further, no significant differences in SC morphometric values are found between oculus sinister and oculus dexter (diameter: t=0.943, p=0.35; perimeter: t=1.346, p=0.18; area: t=1.501, p=0.135).
Development of the fast steering secondary mirror assembly of GMT
NASA Astrophysics Data System (ADS)
Lee, Sungho; Cho, Myung K.; Park, Chan; Han, Jeong-Yeol; Jeong, Ueejeong; Yoon, Yang-noh; Song, Je Heon; Park, Byeong-Gon; Dribusch, Christoph; Park, Won Hyun; Jun, Youra; Yang, Ho-Soon; Moon, Il-Kwon; Oh, Chang Jin; Kim, Ho-Sang; Lee, Kyoung-Don; Bernier, Robert; Alongi, Chris; Rakich, Andrew; Gardner, Paul; Dettmann, Lee; Rosenthal, Wylie
2016-07-01
The Giant Magellan Telescope (GMT) will be featured with two Gregorian secondary mirrors, an adaptive secondary mirror (ASM) and a fast-steering secondary mirror (FSM). The FSM has an effective diameter of 3.2 m and built as seven 1.1 m diameter circular segments, which are conjugated 1:1 to the seven 8.4m segments of the primary. Each FSM segment contains a tip-tilt capability for fine co-alignment of the telescope sub-apertures and fast guiding to attenuate telescope wind shake and mount control jitter. This tip-tilt capability thus enhances performance of the telescope in the seeing limited observation mode. As the first stage of the FSM development, Phase 0 study was conducted to develop a program plan detailing the design and manufacturing process for the seven FSM segments. The FSM development plan has been matured through an internal review by the GMTO-KASI team in May 2016 and fully assessed by an external review in June 2016. In this paper, we present the technical aspects of the FSM development plan.
In Vivo Imaging of Human Cone Photoreceptor Inner Segments
Scoles, Drew; Sulai, Yusufu N.; Langlo, Christopher S.; Fishman, Gerald A.; Curcio, Christine A.; Carroll, Joseph; Dubra, Alfredo
2014-01-01
Purpose. An often overlooked prerequisite to cone photoreceptor gene therapy development is residual photoreceptor structure that can be rescued. While advances in adaptive optics (AO) retinal imaging have recently enabled direct visualization of individual cone and rod photoreceptors in the living human retina, these techniques largely detect strongly directionally-backscattered (waveguided) light from normal intact photoreceptors. This represents a major limitation in using existing AO imaging to quantify structure of remnant cones in degenerating retina. Methods. Photoreceptor inner segment structure was assessed with a novel AO scanning light ophthalmoscopy (AOSLO) differential phase technique, that we termed nonconfocal split-detector, in two healthy subjects and four subjects with achromatopsia. Ex vivo preparations of five healthy donor eyes were analyzed for comparison of inner segment diameter to that measured in vivo with split-detector AOSLO. Results. Nonconfocal split-detector AOSLO reveals the photoreceptor inner segment with or without the presence of a waveguiding outer segment. The diameter of inner segments measured in vivo is in good agreement with histology. A substantial number of foveal and parafoveal cone photoreceptors with apparently intact inner segments were identified in patients with the inherited disease achromatopsia. Conclusions. The application of nonconfocal split-detector to emerging human gene therapy trials will improve the potential of therapeutic success, by identifying patients with sufficient retained photoreceptor structure to benefit the most from intervention. Additionally, split-detector imaging may be useful for studies of other retinal degenerations such as AMD, retinitis pigmentosa, and choroideremia where the outer segment is lost before the remainder of the photoreceptor cell. PMID:24906859
Three-Dimensional Eyeball and Orbit Volume Modification After LeFort III Midface Distraction.
Smektala, Tomasz; Nysjö, Johan; Thor, Andreas; Homik, Aleksandra; Sporniak-Tutak, Katarzyna; Safranow, Krzysztof; Dowgierd, Krzysztof; Olszewski, Raphael
2015-07-01
The aim of our study was to evaluate orbital volume modification with LeFort III midface distraction in patients with craniosynostosis and its influence on eyeball volume and axial diameter modification. Orbital volume was assessed by the semiautomatic segmentation method based on deformable surface models and on 3-dimensional (3D) interaction with haptics. The eyeball volumes and diameters were automatically calculated after manual segmentation of computed tomographic scans with 3D slicer software. The mean, minimal, and maximal differences as well as the standard deviation and intraclass correlation coefficient (ICC) for intraobserver and interobserver measurements reliability were calculated. The Wilcoxon signed rank test was used to compare measured values before and after surgery. P < 0.05 was considered statistically significant. Intraobserver and interobserver ICC for haptic-aided semiautomatic orbital volume measurements were 0.98 and 0.99, respectively. The intraobserver and interobserver ICC values for manual segmentation of the eyeball volume were 0.87 and 0.86, respectively. The orbital volume increased significantly after surgery: 30.32% (mean, 5.96 mL) for the left orbit and 31.04% (mean, 6.31 mL) for the right orbit. The mean increase in eyeball volume was 12.3%. The mean increases in the eyeball axial dimensions were 7.3%, 9.3%, and 4.4% for the X-, Y-, and Z-axes, respectively. The Wilcoxon signed rank test showed that preoperative and postoperative eyeball volumes, as well as the diameters along the X- and Y-axes, were statistically significant. Midface distraction in patients with syndromic craniostenosis results in a significant increase (P < 0.05) in the orbit and eyeball volumes. The 2 methods (haptic-aided semiautomatic segmentation and manual 3D slicer segmentation) are reproducible techniques for orbit and eyeball volume measurements.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Preisser, John S.
1968-01-01
A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator (SPED-I) Program. The test parachute was deployed from an instrumented payload by means of a deployment mortar when the payload was at an altitude of 158,500 feet (48.2 kilometers), a Mach number of 2.72, and a free-stream dynamic pressure of 9.7 pounds per foot(exp 2) (465 newtons per meter(exp 2)). Suspension line stretch occurred 0.46 second after mortar firing and the resulting snatch force loading was -8.lg. The maximum acceleration experienced by the payload due to parachute opening was -27.2g at 0.50 second after the snatch force peak for a total elapsed time from mortar firing of 0.96 second. Canopy-shape variations occurred during the higher Mach number portion of the flight test (M greater than 1.4) and the payload was subjected to large amplitude oscillatory loads. A calculated average nominal axial-force coefficient ranged from about 0.25 immediately after the first canopy opening to about 0.50 as the canopy attained a steady inflated shape. One gore of the test parachute was damaged when the deployment bag with mortar lid passed through it from behind approximately 2 seconds after deployment was initiated. Although the canopy damage caused by the deployment bag penetration had no apparent effect on the functional capability of the test parachute, it may have affected parachute performance since the average effective drag coefficient of 0.48 was 9 percent less than that of a previously tested parachute of the same configuration.
[Microsurgical anatomy importance of A1-anterior communicating artery complex].
Monroy-Sosa, Alejandro; Pérez-Cruz, Julio César; Reyes-Soto, Gervith; Delgado-Hernández, Carlos; Macías-Duvignau, Mario Alberto; Delgado-Reyes, Luis
2013-01-01
The anterior cerebral artery originates from the bifurcation of the internal carotid artery lateral to the optic chiasm, then joins with its contralateral counterpart via the anterior communicating artery. A1-anterior communicating artery complex is the most frequent anatomical variants and is the major site of aneurysms between 30 to 37%. Know the anatomy microsurgical, variants anatomical and importance of complex precommunicating segment-artery anterior communicating in surgery neurological of the pathology vascular, mainly aneurysms, in Mexican population. The study was performed in 30 brains injected. Microanatomy was studied (length and diameter) of A1-anterior communicating artery complex and its variants. 60 segments A1, the average length of left side was 11.35 mm and 11.84 mm was right. The average diameter of left was 1.67 mm and the right was 1.64 mm. The average number of perforators on the left side was 7.9 and the right side was 7.5. Anterior communicating artery was found in 29 brains of the optic chiasm, its course depended on the length of the A1 segment. The average length of the segment was 2.84 mm, the average diameter was 1.41 mm and the average number of perforators was 3.27. A1-anterior communicating artery complex variants were found in 18 (60%) and the presence of two blister-like aneurysms. It is necessary to understand the A1-anterior communicating artery complex microanatomy of its variants to have a three-dimensional vision during aneurysm surgery.
A newly designed big cup nitinol stent for gastric outlet obstruction
Shi, Ding; Liao, Sheng-Hui; Geng, Jian-Ping
2010-01-01
AIM: To find out whether a newly designed big cup nitinol stent is suitable for treatment of patients with gastric outlet obstruction resulting from gastric cancer. METHODS: The new stent is composed of a proximal big cup segment (20 mm in length and 48-55 mm in diameter), a middle part (60 mm in length and 20 mm in diameter) covered by a polyethylene membrane and a distal sphericity (20 mm in length and 28 mm in diameter). Half of the proximal big cup segment is also covered by a polyethlene membrane, which is adjacent to the middle part of the stent. The stent is preloaded in a 6.0-mm-diameter introducer system. Thirteen patients with gastric outlet obstruction resulting from gastric cancer received the new stents under endoscopic and fluoroscopic guidance. RESULTS: Technical success was achieved in 12 of 13 (92.3%) patients. Among the 12 patients in whom endoscopic stent was placed successfully, the clinical success rate was 91.7% during a follow-up of average 6.5 mo. During the first month follow-up, the migration rate was 0%, recurrent obstruction 0% and gastric bleeding 8.3%. During the follow-up between 2-12 mo, no migration, recurrent obstruction and gastric bleeding occurred. CONCLUSION: The proximal big cup segment seems to be effective and promising for technical efficacy, clinical outcome, and preventing migration and tumor ingrowth and increasing the emptying rate of sinus ventriculi. PMID:20806440
Harris, C; Alcock, A; Trefan, L; Nuttall, D; Evans, S T; Maguire, S; Kemp, A M
2018-02-01
Bruising is a common abusive injury in children, and it is standard practice to image and measure them, yet there is no current standard for measuring bruise size consistently. We aim to identify the optimal method of measuring photographic images of bruises, including computerised measurement techniques. 24 children aged <11 years (mean age of 6.9, range 2.5-10 years) with a bruise were recruited from the community. Demographics and bruise details were recorded. Each bruise was measured in vivo using a paper measuring tape. Standardised conventional and cross polarized digital images were obtained. The diameter of bruise images were measured by three computer aided measurement techniques: Image J (segmentation with Simple Interactive Object Extraction (maximum Feret diameter), 'Circular Selection Tool' (Circle diameter), & the Photoshop 'ruler' software (Photoshop diameter)). Inter and intra-observer effects were determined by two individuals repeating 11 electronic measurements, and relevant Intraclass Correlation Coefficient's (ICC's) were used to establish reliability. Spearman's rank correlation was used to compare in vivo with computerised measurements; a comparison of measurement techniques across imaging modalities was conducted using Kolmogorov-Smirnov tests. Significance was set at p < 0.05 for all tests. Images were available for 38 bruises in vivo, with 48 bruises visible on cross polarized imaging and 46 on conventional imaging (some bruises interpreted as being single in vivo appeared to be multiple in digital images). Correlation coefficients were >0.5 for all techniques, with maximum Feret diameter and maximum Photoshop diameter on conventional images having the strongest correlation with in vivo measurements. There were significant differences between in vivo and computer-aided measurements, but none between different computer-aided measurement techniques. Overall, computer aided measurements appeared larger than in vivo. Inter- and intra-observer agreement was high for all maximum diameter measurements (ICC's > 0.7). Whilst there are minimal differences between measurements of images obtained, the most consistent results were obtained when conventional images, segmented by Image J Software, were measured with a Feret diameter. This is therefore proposed as a standard for future research, and forensic practice, with the proviso that all computer aided measurements appear larger than in vivo. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Deployable Soft Composite Structures.
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-02-19
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel.
Deployable Soft Composite Structures
Wang, Wei; Rodrigue, Hugo; Ahn, Sung-Hoon
2016-01-01
Deployable structure composed of smart materials based actuators can reconcile its inherently conflicting requirements of low mass, good shape adaptability, and high load-bearing capability. This work describes the fabrication of deployable structures using smart soft composite actuators combining a soft matrix with variable stiffness properties and hinge-like movement through a rigid skeleton. The hinge actuator has the advantage of being simple to fabricate, inexpensive, lightweight and simple to actuate. This basic actuator can then be used to form modules capable of different types of deformations, which can then be assembled into deployable structures. The design of deployable structures is based on three principles: design of basic hinge actuators, assembly of modules and assembly of modules into large-scale deployable structures. Various deployable structures such as a segmented triangular mast, a planar structure comprised of single-loop hexagonal modules and a ring structure comprised of single-loop quadrilateral modules were designed and fabricated to verify this approach. Finally, a prototype for a deployable mirror was developed by attaching a foldable reflective membrane to the designed ring structure and its functionality was tested by using it to reflect sunlight onto to a small-scale solar panel. PMID:26892762
Calculation and analysis of shear resistance of segment ring joint with shear pin
NASA Astrophysics Data System (ADS)
Wu, Shengzhi; Huang, Haibin; Wang, Mingnian; Xiao, Shihui; Liu, Dagang
2018-03-01
In order to get the effect of shear pins between segments on the shear resistance of segment girth joints. Take the Maliuzhou traffic tunnel project of Zhuhai which with super large diameter and Marine Composite strata as the research object, the longitudinal shear stiffness of tunnel shear considering the shear rigidity of shear pins was obtained through the finite element shear experiment of segment ring. By comparing the calculation results of shear pin and non shear pin between segment ring connections, the conclusion that shear pin setting can effectively decompose and transfer shear force and control the dislocation between segment ring blocks is obtained. The study can be used as reference for the design and construction of shield tunnel.
Lightweight Shield Against Space Debris
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.
1992-01-01
Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.
ARL Summer Student Research Symposium. Volume 1: Select Papers
2012-08-01
deploying Android smart phones and tablets on the battlefield, which may be a target for malware. In our research, we attempt to improve static...network. (a) The T1 and MRI images are (b) segmented into different material components. The segmented geometry is then used to create (c) a finite element...towards finding a method to detect mTBI non-invasively. One method in particular includes the use of a magnetic resonance image ( MRI )-based imaging
NASA Astrophysics Data System (ADS)
Kipnusu, Wycliffe K.; Elsayed, Mohamed; Krause-Rehberg, Reinhard; Kremer, Friedrich
2017-05-01
Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho-positronium annihilation lifetime spectroscopy.
Krutyeva, M.; Pasini, S.; Monkenbusch, M.; ...
2017-02-02
We investigated the effect of intermediate cylindrical confinement with locally repulsive walls on the segmental and entanglement dynamics of a polymer melt by quasielastic neutron scattering. As a reference, we measured the corresponding polymer melt under identical conditions. The locally repulsive confinement was realized by hydrophilic anodic alumina nanopores with a diameter of 20 nm. The end-to-end distance of the hydrophobic infiltrated polyethylene-alt-propylene was close to this diameter. In the case of hard wall repulsion with negligible local attraction, several simulations predicted an acceleration of segmental dynamics close to the wall. Other than in attractive or neutral systems, where themore » segmental dynamics is slowed down, we found that the segmental dynamics in the nanopores is identical to the local mobility in the bulk. Even under very careful scrutiny, we could not find any acceleration of the surface-near segmental motion. On the larger time scale, the neutron spin-echo experiment showed that the Rouse relaxation was not altered by confinement effects. Moreover, the entanglement dynamics was not affected. Thus at moderate confinement conditions, facilitated by locally repulsive walls, the dynamics remains as in the bulk melt, a result that is not so clear from simulations.« less
Dreizin, David; Bodanapally, Uttam K; Neerchal, Nagaraj; Tirada, Nikki; Patlas, Michael; Herskovits, Edward
2016-11-01
Manually segmented traumatic pelvic hematoma volumes are strongly predictive of active bleeding at conventional angiography, but the method is time intensive, limiting its clinical applicability. We compared volumetric analysis using semi-automated region growing segmentation to manual segmentation and diameter-based size estimates in patients with pelvic hematomas after blunt pelvic trauma. A 14-patient cohort was selected in an anonymous randomized fashion from a dataset of patients with pelvic binders at MDCT, collected retrospectively as part of a HIPAA-compliant IRB-approved study from January 2008 to December 2013. To evaluate intermethod differences, one reader (R1) performed three volume measurements using the manual technique and three volume measurements using the semi-automated technique. To evaluate interobserver differences for semi-automated segmentation, a second reader (R2) performed three semi-automated measurements. One-way analysis of variance was used to compare differences in mean volumes. Time effort was also compared. Correlation between the two methods as well as two shorthand appraisals (greatest diameter, and the ABC/2 method for estimating ellipsoid volumes) was assessed with Spearman's rho (r). Intraobserver variability was lower for semi-automated compared to manual segmentation, with standard deviations ranging between ±5-32 mL and ±17-84 mL, respectively (p = 0.0003). There was no significant difference in mean volumes between the two readers' semi-automated measurements (p = 0.83); however, means were lower for the semi-automated compared with the manual technique (manual: mean and SD 309.6 ± 139 mL; R1 semi-auto: 229.6 ± 88.2 mL, p = 0.004; R2 semi-auto: 243.79 ± 99.7 mL, p = 0.021). Despite differences in means, the correlation between the two methods was very strong and highly significant (r = 0.91, p < 0.001). Correlations with diameter-based methods were only moderate and nonsignificant. Mean semi-automated segmentation time effort was 2 min and 6 s and 2 min and 35 s for R1 and R2, respectively, vs. 22 min and 8 s for manual segmentation. Semi-automated pelvic hematoma volumes correlate strongly with manually segmented volumes. Since semi-automated segmentation can be performed reliably and efficiently, volumetric analysis of traumatic pelvic hematomas is potentially valuable at the point-of-care.
Deployment of titanium thermal barrier for low-temperature carbon nanotube growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.Y.; Poa, C.H.P.; Henley, S.J.
2005-12-19
Chemical vapor-synthesized carbon nanotubes are typically grown at temperatures around 600 deg. C. We report on the deployment of a titanium layer to help elevate the constraints on the substrate temperature during plasma-assisted growth. The growth is possible through the lowering of the hydrocarbon content used in the deposition, with the only source of heat provided by the plasma. The nanotubes synthesized have a small diameter distribution, which deviates from the usual trend that the diameter is determined by the thickness of the catalyst film. Simple thermodynamic simulations also show that the quantity of heat, that can be distributed, ismore » determined by the thickness of the titanium layer. Despite the lower synthesis temperature, it is shown that this technique allows for high growth rates as well as better quality nanotubes.« less
Test progress on the electrostatic membrane reflector
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1981-01-01
An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.
Development and Prototyping of the PROSPECT Antineutrino Detector
NASA Astrophysics Data System (ADS)
Commeford, Kelley; Prospect Collaboration
2017-01-01
The PROSPECT experiment will make the most precise measurement of the 235U reactor antineutrino spectrum as well as search for sterile neutrinos using a segmented Li-loaded liquid scintillator neutrino detector. Several prototype detectors of increasing size, complexity, and fidelity have been constructed and tested as part of the PROSPECT detector development program. The challenges to overcome include the efficient rejection of cosmogenic background and collection of optical photons in a compact volume. Design choices regarding segment structure and layout, calibration source deployment, and optical collection methods are discussed. Results from the most recent multi-segment prototype, PROSPECT-50, will also be shown.
NASA Technical Reports Server (NTRS)
Grow, R. Bruce; Preisser, John S.
1971-01-01
A reefed 12.2-meter nominal-diameter (40-ft) disk-gap-band parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. A three-stage rocket was used to drive the instrumented payload to an altitude of 43.6 km (143,000 ft), a Mach number of 2.58, and a dynamic pressure of 972 N/m(exp 2) (20.3 lb/ft(exp 2)) where the parachute was deployed by means of a mortar. The parachute deployed satisfactorily and reached a partially inflated condition characterized by irregular variations in parachute projected area. A full, stable reefed inflation was achieved when the system had decelerated to a Mach number of about 1.5. The steady, reefed projected area was 49 percent of the steady, unreefed area and the average drag coefficient was 0.30. Disreefing occurred at a Mach number of 0.99 and a dynamic pressure of 81 N/m(exp 2) (1.7 lb/ft(exp 2)). The parachute maintained a steady inflated shape for the remainder of the deceleration portion of the flight and throughout descent. During descent, the average effective drag coefficient was 0.57. There was little, if any, coning motion, and the amplitude of planar oscillations was generally less than 10 degrees. The film also shows a wind tunnel test of a 1.7-meter-diameter parachute inflating at Mach number 2.0.
Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity
NASA Technical Reports Server (NTRS)
Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart
2010-01-01
We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.
André, Etienne; Boutonnet, Baptiste; Charles, Pauline; Martini, Cyril; Aguiar-Hualde, Juan-Manuel; Latil, Sylvain; Guérineau, Vincent; Hammad, Karim; Ray, Priyanka; Guillot, Régis; Huc, Vincent
2016-02-24
Short segments of zigzag single-walled carbon nanotubes (SWCNTs) were obtained from a calixarene scaffold by using a completely new, simple and expedited strategy that allowed fine-tuning of their diameters. This new approach also allows for functionalised short segments of zigzag SWCNTs to be obtained; a prerequisite towards their lengthening. These new SWCNT short segments/calixarene composites show interesting behaviour in solution. DFT analysis of these new compounds also suggests interesting photophysical behaviour. Along with the synthesis of various SWCNTs segments, this approach also constitutes a powerful tool for the construction of new, radially oriented π systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan
2006-01-01
This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1969-01-01
A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA supersonic high altitude parachute experiment (SHAPE) program. The test parachute (which included an experimental energy absorber in the attachment riser) was deployed from an instrumented payload by means of a deployment mortar when the payload was at a Mach number of 3.31 and a free-stream dynamic pressure of 10.6 pounds per square foot (508 newtons per square meter). The parachute deployed properly, the canopy inflating to a full-open condition at 1.03 seconds after mortar firing. The first full inflation of the canopy was immediately followed by a partial collapse with subsequent oscillations of the frontal area from about 30 to 75 percent of the full-open frontal area. After 1.07 seconds of operation, a large tear appeared in the cloth near the canopy apex. This tear was followed by two additional tears shortly thereafter. It was later determined that a section of the canopy cloth was severely weakened by the effects of aerodynamic heating. As a result of the damage to the disk area of the canopy, the parachute performance was significantly reduced; however, the parachute remained operationally intact throughout the flight test and the instrumented payload was recovered undamaged.
Hekim Yılmaz, Emine; Bulut, Mustafa Orhan; Küçük, Mehmet; Yücel, İlker Kemal; Erdem, Abdullah; Çelebi, Ahmet
2018-03-21
To report clinical and procedural characteristics of twelve patients who received a covered stent for the treatment of aortic coarctation and concurrent patent ductus arteriosus (PDA). A single center database was retrospectively evaluated to obtain data of patients with combined aortic coarctation and PDA. We selected patients in whom a covered stent was used for the treatment of both pathologies. The stent length was chosen so as to cover the entire length of the lesion from healthy to healthy tissue and also cover the ampulla of PDA. The median age of the patients was 15 (range, 6.5-35) years. The diameter of the coarctated segment increased from a median of 8.4 (range, 2.6-10.8) mm to 16 (range, 9-24) mm (p<0.005), whereas the pressure gradient decreased from a median of 43 (range, 10-71) mm Hg to 0 (range, 0-8) mm Hg (p<0.005). Fourteen covered stents were used for 12 patients. Following deployment, seven stents were flared with larger and low-pressure balloons because of the gap between the distal end of the stent and the poststenotic dilated segment of the aorta, which caused residual PDA shunts and/or instability of the stent. After the procedure, no residual PDA shunt was present in any patient. To the best of our knowledge, this study includes the largest series of patients reported in literature in whom covered CP stents were used for simultaneous percutaneous treatment of coarctation and PDA. The procedure was successful and stable results were obtained during follow-up in all cases.
Cho, Su-hee; Jo, Won-il; Jo, Ye-eun; Yang, Ku Hyun; Park, Jung Cheol
2017-01-01
Purpose To better understand the performance of four commercially available neurovascular stents in intracranial aneurysm embolization, the stents were compared in terms of their basic morphological and mechanical properties. Materials and Methods Four different types of stents that are currently being used for cerebral aneurysm embolization were prepared (two stents per type). Two were laser-cut stents (Neuroform and Enterprise) and two were braided from a single nitinol wire (LEO and LVIS stents). All were subjected to quantitative measurements of stent size, pore density, metal coverage, the force needed to load, push, and deploy the stent, radial force on deployment, surface roughness, and corrosion resistance. Results Compared to their nominal diameters, all stents had greater diameters after deployment. The length generally decreased after deployment. This was particularly marked in the braided stents. The braided stents also had higher pore densities than the laser-cut stents. Metal coverage was highest in the LEO stent (14%) and lowest in the Enterprise stent (5%). The LIVS stent had the highest microcatheter loading force (81.5 gf). The LEO stent had the highest passage force (55.0 gf) and deployment force (78.9 gf). The LVIS and LEO stents had the highest perpendicular (37.1 gf) and circumferential (178.4 gf) radial forces, respectively. The Enterprise stent had the roughest stent wire, followed by the LVIS, LEO, and Neuroform stents. Conclusion The four neurovascular stent types differed in terms of morphological and physical characteristics. An understanding of this diversity may help to decide which stent is most suitable for specific clinical situations. PMID:28316867
Profile models for estimating log end diameters in the Rocky Mountain Region
Raymond L. Czaplewski; Amy S. Brown; Raymond C. Walker
1989-01-01
The segmented polynomial stem profile model of Max and Burkhart was applied to seven tree species in the Rocky Mountain Region of the Forest Service. Errors were reduced over the entire data set by use of second-stage models that adjust for transformation bias and explained weak patterns in the residual diameter predictions.
Major Design Drivers for LEO Space Surveillance in Europe and Solution Concepts
NASA Astrophysics Data System (ADS)
Krag, Holger; Flohrer, Tim; Klinkrad, Heiner
Europe is preparing for the development of an autonomous system for space situational aware-ness. One important segment of this new system will be dedicated to surveillance and tracking of space objects in Earth orbits. First concept and capability analysis studies have led to a draft system proposal. This proposal foresees, in a first deployment step, a groundbased system consisting of radar sensors and a network of optical telescopes. These sensors will be designed to have the capability of building up and maintaining a catalogue of space objects. A number of related services will be provided, including collision avoidance and the prediction of uncontrolled reentry events. Currently, the user requirements are consolidated, defining the different services, and the related accuracy and timeliness of the derived products. In this consolidation process parameters like the lower diameter limit above which catalogue coverage is to be achieved, the degree of population coverage in various orbital regions and the accuracy of the orbit data maintained in the catalogue are important design drivers for the selection of number and location of the sensors, and the definition of the required sensor performance. Further, the required minimum time for the detection of a manoeuvre, a newly launched object or a fragmentation event, significantly determines the required surveillance performance. In the requirement consolidation process the performance to be specified has to be based on a careful analysis which takes into account accuracy constraints of the services to be provided, the technical feasibility, complexity and costs. User requirements can thus not be defined with-out understanding the consequences they would pose on the system design. This paper will outline the design definition process for the surveillance and tracking segment of the European space situational awareness system. The paper will focus on the low-Earth orbits (LEO). It will present the core user requirements and the definition of the derived services. The de-sired performance parameters will be explained together with presenting their rationale and justification. This will be followed by an identification of the resulting major design drivers. The influence of these drivers on the system design will be analysed, including limiting object diameter, population coverage, orbit maintenance accuracy, and the minimum time to detect events like manoeuvres or breakups. The underlying simulation and verification concept will be explained. Finally, a first compilation of performance parameters for the surveillance and tracking segment will be presented and discussed.
Do Indo-Asians have smaller coronary arteries?
Lip, G Y; Rathore, V S; Katira, R; Watson, R D; Singh, S P
1999-08-01
There is a widespread belief that coronary arteries are smaller in Indo-Asians. The aim of the present study was to compare the size of atheroma-free proximal and distal epicardial coronary arteries of Indo-Asians and Caucasians. We analysed normal coronary angiograms from 77 Caucasians and 39 Indo-Asians. The two groups were comparable for dominance of the coronary arteries. Indo-Asian patients had generally smaller coronary arteries, with a statistically significant difference in the mean diameters of the left main coronary artery, proximal, mid and left anterior descending, and proximal and distal right coronary artery segments. There was a non-significant trend towards smaller coronary artery segment diameters for the distal left anterior descending, proximal and distal circumflex, and obtuse marginal artery segments. However, after correction for body surface area, none of these differences in size were statistically significant. Thus, the smaller coronary arteries in Indo-Asian patients were explained by body size alone and were not due to ethnic origin per se. This finding nevertheless has important therapeutic implications, since smaller coronary arteries may give rise to technical difficulties during bypass graft and intervention procedures such as percutaneous transluminal coronary angioplasty, stents and atherectomy. On smaller arteries, atheroma may also give an impression of more severe disease than on larger diameter arteries.
Pauli, Eric M; Schomisch, Steve J; Furlan, Joseph P; Marks, Andrea S; Chak, Amitabh; Lash, Richard H; Ponsky, Jeffrey L; Marks, Jeffrey M
2012-12-01
Advanced esophageal dysplasia and early cancers have been treated traditionally with esophagectomy. Endoscopic esophageal mucosectomy (EEM) offers less-invasive therapy, but high-degree stricture formation limits its applicability. We hypothesized that placement of a biodegradable stent (BD-stent) immediately after circumferential EEM would prevent stricturing. Ten pigs (five unstented controls, five BD-stent) were utilized. Under anesthesia, a flexible endoscope with a band ligator and snare was used to incise the mucosa approximately 20 cm proximal to the lower esophageal sphincter. A 10-cm, circumferential, mucosal segment was dissected and excised by using snare electrocautery. In the stented group, an 18-×120-mm, self-expanding, woven polydioxanone stent (ELLA-CS, Hradec-Kralove) was deployed. Weekly esophagograms evaluated for percent reduction in esophageal diameter, stricture length, and proximal esophageal dilation. Animals were euthanized when the stricture exceeded 80% and were unable to gain weight (despite high-calorie liquid diet) or at 14 weeks. The control group rapidly developed esophageal strictures; no animal survived beyond the third week of evaluation. At 2 weeks post-EEM, the BD-stent group had a significant reduction in esophageal diameter (77.7 vs. 26.6%, p < 0.001) and degree of proximal dilation (175 vs. 131%, p = 0.04) compared with controls. Survival in the BD-stent group was significantly longer than in the control group (9.2 vs. 2.4 weeks, p = 0.01). However, all BD-stent animals ultimately developed clinically significant strictures (range, 4-14 weeks). Comparison between the maximum reduction in esophageal diameter and stricture length (immediately before euthanasia) demonstrated no differences between the groups. Circumferential EEM results in severe stricture formation and clinical deterioration within 3 weeks. BD-stent placement significantly delays the time of clinical deterioration from 2.4 to 9.2 weeks, but does not affect the maximum reduction in esophageal diameter or proximal esophageal dilatation. The timing of stricture formation in the BD-stent group correlated with the loss radial force and stent disintegration.
Proposed Navy Software Acquisition Improvement Strategy
2009-03-16
Production and Deployment Operations and Support PRR IOC FOC OTRR DoD/ASN/RDA Policies Call for Gov’t SMEs to Define System Req’s, Support Milestone Reviews...of the SW; but with Gov’t Software SME oversight and insight W o A B C 12 Statement A: Approved for Public Release; Distribution is Unlimited 12...Comp, Segment levels is not sufficient to ensure & meet OA goalsSegment Level CSCIs CSCs Level of De SW CSCI 2 SW CSCI 1 SW CSCI ### Gov’t SW SMEs
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist Joseph Tanner (center) works a piece of equipment during Crew Equipment Interface Test activities in the Space Station Processing Facility. On the right is Mission Specialist Heidemarie Stefanyshyn-Piper. The mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array set 2A and 4A. Launch on Space Shuttle Endeavour is scheduled for May 23, 2003.
DeepInfer: open-source deep learning deployment toolkit for image-guided therapy
NASA Astrophysics Data System (ADS)
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-03-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research work ows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy.
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A; Kapur, Tina; Wells, William M; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-02-11
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.
DeepInfer: Open-Source Deep Learning Deployment Toolkit for Image-Guided Therapy
Mehrtash, Alireza; Pesteie, Mehran; Hetherington, Jorden; Behringer, Peter A.; Kapur, Tina; Wells, William M.; Rohling, Robert; Fedorov, Andriy; Abolmaesumi, Purang
2017-01-01
Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose “DeepInfer” – an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections. PMID:28615794
Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans
2011-01-01
Previous studies have demonstrated morphological and biomechanical remodeling in the intestine proximal to an obstruction. The present study aimed to obtain stress and strain thresholds to initiate contraction and the maximal contraction stress and strain in partially obstructed guinea pig jejunal segments. Partial obstruction and sham operations were surgically created in mid-jejunum of male guinea pigs. The animals survived 2, 4, 7, and 14 days, respectively. Animals not being operated on served as normal controls. The segments were used for no-load state, zero-stress state and distension analyses. The segment was inflated to 10 cmH2O pressure in an organ bath containing 37°C Krebs solution and the outer diameter change was monitored. The stress and strain at the contraction threshold and at maximum contraction were computed from the diameter, pressure and the zero-stress state data. Young’s modulus was determined at the contraction threshold. The muscle layer thickness in obstructed intestinal segments increased up to 300%. Compared with sham-obstructed and normal groups, the contraction stress threshold, the maximum contraction stress and the Young’s modulus at the contraction threshold increased whereas the strain threshold and maximum contraction strain decreased after 7 days obstruction (P<0.05 and 0.01). In conclusion, in the partially obstructed intestinal segments, a larger distension force was needed to evoke contraction likely due to tissue remodeling. Higher contraction stresses were produced and the contraction deformation (strain) became smaller. PMID:21632056
Code of Federal Regulations, 2011 CFR
2011-07-01
... Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) COST RECOVERY REGULATIONS, COMMUNICATIONS.... Business unit means any segment of an organization for which cost data are routinely accumulated by the... accumulation system, is one of the final accumulation points. Installed or deployed means that, on a specific...
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2013-06-01
A Fast Steering Mirror (FSM) is going to be produced as a secondary mirror of the Giant Magellan Telescope (GMT). FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m. It also contains tip-tilt actuators which would compensate wind effect and structure jitter. An FSM prototype (FSMP) has been developed, which consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The main purpose of the FSMP development is to achieve key technologies, such as fabrication of highly aspheric off-axis mirror and tip-tilt actuation. The development has been conducted by a consortium of five institutions in Korea and USA, and led by Korea Astronomy and Space Science Institute. The mirror was light-weighted and grinding of the front surface was finished. Polishing is in progress with computer generated hologram tests. The tip-tilt test-bed has been manufactured and assembled. Frequency tests are being performed and optical tilt set-up is arranged for visual demonstration. In this paper, we present progress of the prototype development, and future works.
Semi-automatic 3D lung nodule segmentation in CT using dynamic programming
NASA Astrophysics Data System (ADS)
Sargent, Dustin; Park, Sun Young
2017-02-01
We present a method for semi-automatic segmentation of lung nodules in chest CT that can be extended to general lesion segmentation in multiple modalities. Most semi-automatic algorithms for lesion segmentation or similar tasks use region-growing or edge-based contour finding methods such as level-set. However, lung nodules and other lesions are often connected to surrounding tissues, which makes these algorithms prone to growing the nodule boundary into the surrounding tissue. To solve this problem, we apply a 3D extension of the 2D edge linking method with dynamic programming to find a closed surface in a spherical representation of the nodule ROI. The algorithm requires a user to draw a maximal diameter across the nodule in the slice in which the nodule cross section is the largest. We report the lesion volume estimation accuracy of our algorithm on the FDA lung phantom dataset, and the RECIST diameter estimation accuracy on the lung nodule dataset from the SPIE 2016 lung nodule classification challenge. The phantom results in particular demonstrate that our algorithm has the potential to mitigate the disparity in measurements performed by different radiologists on the same lesions, which could improve the accuracy of disease progression tracking.
Enzyme-triggered cargo release from methionine sulfoxide containing copolypeptide vesicles.
Rodriguez, April R; Kramer, Jessica R; Deming, Timothy J
2013-10-14
We have developed a facile, scalable method for preparation of enzyme-responsive copolypeptide vesicles that requires no protecting groups or expensive components. We designed amphiphilic copolypeptides containing segments of water-soluble methionine sulfoxide, M(O), residues that were prepared by synthesis of a fully hydrophobic precursor diblock copolypeptide, poly(l-methionine)65-b-poly(L-leucine0.5-stat-L-phenylalanine0.5)20, M65(L0.5/F0.5)20, followed by its direct oxidation in water to give the amphiphilic M(O) derivative, M(O)65(L0.5/F0.5)20. Assembly of M(O)65(L0.5/F0.5)20 in water gave vesicles with average diameters of a few micrometers that could then be extruded to nanoscale diameters. The M(O) segments in the vesicles were found to be substrates for reductase enzymes, which regenerated hydrophobic M segments and resulted in a change in supramolecular morphology that caused vesicle disruption and release of cargos.
The James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey;
2007-01-01
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.
Reinstein, Dan Z; Lovisolo, Carlo F; Archer, Timothy J; Gobbe, Marine
2013-01-01
To compare vault height predictability of Implantable Collamer Lens (ICL; Staar Surgical) sizing using a sulcus diameter-based formula or the manufacturer-recommended white-to-white-based method. In 50 myopic eyes, ICL size was calculated using both a formula including sulcus diameter and the traditional formula based on white-to-white diameter. Sulcus diameter was measured using Artemis 2 very high-frequency (VHF) digital ultrasound (ArcScan Inc). Implantation was based on the sulcus diameter derived size. Actual postoperative vault height achieved was measured by VHF digital ultrasound scanning. Circle segment trigonometry was used to calculate the vault height that would have resulted had lens sizing been based on the white-to-white formula. The same lens size would have been used in 60% of eyes, a smaller lens would have been used in 34% of eyes and a larger lens in 6% of eyes had lens sizing been based on the white-to-white formula. Mean vault for eyes with lenses sized using the sulcus diameter formula was 0.37±0.16 mm (range: 0.08 to 0.92 mm), with 2% <0.09 mm, the recognized low-vault height for risk of cataract. Circle segment trigonometry predicted that the vault height would have been 0.24±0.28 mm (range: -0.31 to 0.92 mm), with 26% <0.09 mm had lens sizing been based on the white-to-white formula. Significantly better predictability of postoperative vault height was achieved by including sulcus diameter into the ICL sizing formula compared with using the traditional white-to-white-based formula. Copyright 2013, SLACK Incorporated.
Compatible taper equation for loblolly pine
J. P. McClure; R. L. Czaplewski
1986-01-01
Cao's compatible, segmented polynomial taper equation (Q. V. Cao, H. E. Burkhart, and T. A. Max. For. Sci. 26: 71-80. 1980) is fitted to a large loblolly pine data set from the southeastern United States. Equations are presented that predict diameter at a given height, height to a given top diameter, and volume below a given position on the main stem. All...
Stem Profile for Southern Equations for Southern Tree Species
Alexander Clark; Ray A. Souter; Bryce E. Schlaegel
1991-01-01
Form-class segmented-profile equations for 58 southern tree species and species groups are presented.The profile equations are based on taper data for 13,469 trees sampled in natural stands in many locations across the South.The profile equations predict diameter at any given height, height to give diameter, and volume between two heights.Equation coefficients for use...
Performance of 26 Meter Diameter Ringsail Parachute in a Simulated Martian Environment
NASA Technical Reports Server (NTRS)
Whitlock, Charles H.; Bendura, Richard J.; Cotrane, Lucille C.
1967-01-01
Inflation, drag, and stability characteristics of an 85.3-foot (26-meter) nominal diameter ringsail parachute deployed at a Mach number of 1.15 and at an altitude of 132,600 feet (40.42 kilometers) were obtained from the first flight test of the Planetary Entry Parachute Program. After deployment, the parachute inflated to the reefed condition. However, the canopy was unstable and produced low drag in the reefed condition. Upon disreefing and opening to full inflation, a slight instability in the canopy mouth was observed initially. After a short time, the fluctuations diminished and a stable configuration was attained. Results indicate a loss in drag during the fluctuation period prior to stable inflation. During descent, stability characteristics of the system were such that the average pitch-yaw angle from the local vertical was less than 10 degrees. Rolling motion between the payload and parachute canopy quickly damped to small amplitude.
Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft
NASA Astrophysics Data System (ADS)
Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin
2017-01-01
Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.
Absolute measurements of large mirrors
NASA Astrophysics Data System (ADS)
Su, Peng
The ability to produce mirrors for large astronomical telescopes is limited by the accuracy of the systems used to test the surfaces of such mirrors. Typically the mirror surfaces are measured by comparing their actual shapes to a precision master, which may be created using combinations of mirrors, lenses, and holograms. The work presented here develops several optical testing techniques that do not rely on a large or expensive precision, master reference surface. In a sense these techniques provide absolute optical testing. The Giant Magellan Telescope (GMT) has been designed with a 350 m 2 collecting area provided by a 25 m diameter primary mirror made out from seven circular independent mirror segments. These segments create an equivalent f/0.7 paraboloidal primary mirror consisting of a central segment and six outer segments. Each of the outer segments is 8.4 m in diameter and has an off-axis aspheric shape departing 14.5 mm from the best-fitting sphere. Much of the work in this dissertation is motivated by the need to measure the surfaces or such large mirrors accurately, without relying on a large or expensive precision reference surface. One method for absolute testing describing in this dissertation uses multiple measurements relative to a reference surface that is located in different positions with respect to the test surface of interest. The test measurements are performed with an algorithm that is based on the maximum likelihood (ML) method. Some methodologies for measuring large flat surfaces in the 2 m diameter range and for measuring the GMT primary mirror segments were specifically developed. For example, the optical figure of a 1.6-m flat mirror was determined to 2 nm rms accuracy using multiple 1-meter sub-aperture measurements. The optical figure of the reference surface used in the 1-meter sub-aperture measurements was also determined to the 2 nm level. The optical test methodology for a 1.7-m off axis parabola was evaluated by moving several times the mirror under test in relation to the test system. The result was a separation of errors in the optical test system to those errors from the mirror under test. This method proved to be accurate to 12nm rms. Another absolute measurement technique discussed in this dissertation utilizes the property of a paraboloidal surface of reflecting rays parallel to its optical axis, to its focal point. We have developed a scanning pentaprism technique that exploits this geometry to measure off-axis paraboloidal mirrors such as the GMT segments. This technique was demonstrated on a 1.7 m diameter prototype and proved to have a precision of about 50 nm rms.
Aortic Elongation and Stanford B Dissection: The Tübingen Aortic Pathoanatomy (TAIPAN) Project.
Lescan, M; Veseli, K; Oikonomou, A; Walker, T; Lausberg, H; Blumenstock, G; Bamberg, F; Schlensak, C; Krüger, T
2017-08-01
Aortic elongation has not yet been considered as a potential risk factor for Stanford type B dissection (TBD). The role of both aortic elongation and dilatation in patients with TBD was evaluated. The aortic morphology of a healthy control group (n = 236) and patients with TBD (n = 96) was retrospectively examined using three dimensional computed tomography imaging. Curved multiplanar reformats were used to examine aortic diameters at defined landmarks and aortic segment lengths. Diameters at all landmarks were significantly larger in the TBD group. The greatest diameter difference (56%) was measured in dissected descending aortas (p < .001). The segment with the most considerable difference between the study groups with regard to elongation was the non-dissected aortic arch of patients with TBD (36%; p < .001). Elongation in the aortic arch was accompanied by a diameter increase of 21% (p < .001). In receiver-operating curve analysis, the area under the curve was .85 for the diameter and .86 for the length of the aortic arch. In addition to dilatation, aortic arch elongation is associated with the development of TBD. The diameter and length of the non-dissected aortic arch may be predictive for TBD and may possibly be used for risk assessment in the future. This study provides the basis for further prospective evaluation of these parameters. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
The Adaptable, Deployable Entry and Placement Technology (ADEPT)
NASA Technical Reports Server (NTRS)
Wercinski, Paul
2017-01-01
The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7 meter deployed diameter ADEPT sounding rocket flight experiment named, SR-1. Launch is planned for August 2017. The test will utilize the NASA Flight Opportunities Program sounding rocket platform provided by UP Aerospace to launch SR-1 to an apogee over 100 km and achieve re-entry conditions with a peak velocity near Mach 3. The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.
The 15-meter diameter mechanically scanned deployable antenna
NASA Technical Reports Server (NTRS)
Coyner, J. V.; Herbert, J. J.; Bachtell, E. E.
1982-01-01
A preliminary design with structural model data and thermal-performance estimates of a 15-meter mechanically scanned deployable antenna (MSDA) that could be launched onboard a Shuttle Orbiter to provide radiometric brightness temperature maps of the Earth and oceans in selected bands over a frequency range from 1.4 to 11 GHz is provided. The study objectives were met through the design of a unique, integrated, offset feed mast and reflector design that uses the deployable box-truss structure as a building block. The performance of this system is summarized. The all graphite-epoxy, 4.57-meter prototype cube that was completed in 1981 and is proposed for this reflector and feed mast design is presented.
Novel large deployable antenna backing structure concepts for foldable reflectors
NASA Astrophysics Data System (ADS)
Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.
2013-12-01
This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.
Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors
NASA Astrophysics Data System (ADS)
Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio
2013-09-01
The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.
NASA Astrophysics Data System (ADS)
de Siqueira, A. F.; Cabrera, F. C.; Pagamisse, A.; Job, A. E.
2014-12-01
This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around 47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.
Applied anatomy of small branches of the portal vein in transverse groove of hepatic hilum.
Yan, Pei-ning; Tan, Wei-feng; Yang, Xin-wei; Zhang, Chuan-sen; Jiang, Xiao-qing
2014-12-01
The objective of this study was to provide the morphological details on small branches of the portal vein in transverse groove of hepatic hilum. According to the surgery significance, the small branches of portal vein in transverse groove of hepatic hilum were named as "Short hepatic portal veins (SHPVs)". SHPVs were minutely dissected in 30 adult cadaveric livers. The number, diameter, length, origin points, and entering liver sites of SHPVs were explored and measured. There were 181 SHPVs in 30 liver specimens, including 46% (83/181) from the left portal vein, 31% (56/181) from the bifurcation, and 23% (42/181) from the right portal vein. At the entering liver sites of SHPVs, 22% (40/181) supplied for segment IV, 9% (17/181) for segment V, 4% (7/181) for segment VI, 23% (41/181) for segment VII, and 42% (76/181) for segment I (caudate lobe). There were 6.0 ± 2.4 branches per liver specimen with range 3-12. The mean diameter of SHPVs was 2.25 ± 0.89 mm. The average length of SHPVs was 4.86 ± 2.12 mm. SHPVs widely existed in each liver specimen. The detailed anatomical study of SHPVs could be useful to avoid damaging the short portal branches during hepatic operations, such as isolated or combined caudate lobectomy.
Choi, Yeon-Ju; Son, Wonsoo; Park, Ki-Su
2016-01-01
Objective This study used the intradural procedural time to assess the overall technical difficulty involved in surgically clipping an unruptured middle cerebral artery (MCA) aneurysm via a pterional or superciliary approach. The clinical and radiological variables affecting the intradural procedural time were investigated, and the intradural procedural time compared between a superciliary keyhole approach and a pterional approach. Methods During a 5.5-year period, patients with a single MCA aneurysm were enrolled in this retrospective study. The selection criteria for a superciliary keyhole approach included : 1) maximum diameter of the unruptured MCA aneurysm <15 mm, 2) neck diameter of the MCA aneurysm <10 mm, and 3) aneurysm location involving the sphenoidal or horizontal segment of MCA (M1) segment and MCA bifurcation, excluding aneurysms distal to the MCA genu. Meanwhile, the control comparison group included patients with the same selection criteria as for a superciliary approach, yet who preferred a pterional approach to avoid a postoperative facial wound or due to preoperative skin trouble in the supraorbital area. To determine the variables affecting the intradural procedural time, a multiple regression analysis was performed using such data as the patient age and gender, maximum aneurysm diameter, aneurysm neck diameter, and length of the pre-aneurysm M1 segment. In addition, the intradural procedural times were compared between the superciliary and pterional patient groups, along with the other variables. Results A total of 160 patients underwent a superciliary (n=124) or pterional (n=36) approach for an unruptured MCA aneurysm. In the multiple regression analysis, an increase in the diameter of the aneurysm neck (p<0.001) was identified as a statistically significant factor increasing the intradural procedural time. A Pearson correlation analysis also showed a positive correlation (r=0.340) between the neck diameter and the intradural procedural time. When comparing the superciliary and pterional groups, no statistically significant between-group difference was found in terms of the intradural procedural time reflecting the technical difficulty (mean±standard deviation : 29.8±13.0 min versus 27.7±9.6 min). Conclusion A superciliary keyhole approach can be a useful alternative to a pterional approach for an unruptured MCA aneurysm with a maximum diameter <15 mm and neck diameter <10 mm, representing no more of a technical challenge. For both surgical approaches, the technical difficulty increases along with the neck diameter of the MCA aneurysm. PMID:27847568
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.
2010-09-01
The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less
Underwater electro-optical system for mine identification
NASA Astrophysics Data System (ADS)
Strand, Michael P.
1995-06-01
The Electro-Optic Identification (EOID) Sensors project is developing a Laser Visual Iidentification Sensor (LVIS) for identification of proud, partially buried, and moored mines in shallow water/very shallow water. LVIS will be deployed in small diameter underwater vehicles, including unmanned underwater vehicles (UUVs). Since the mission is mine identification, LVIS must: a) deliver high quality images in turbid coastal waters, while b) being compatible with the size and power constraints imposed by the intended deployment platforms. This project is sponsored by the Office of Naval Research, as a part of the AOA Mine Reconnaissance/Hunter program. High quality images which retain target detail and contrast are required for mine identification. LVIS will be designed to produce images of minelike contacts (MLC) of sufficient quality to allow identification while operating in turbid coastal waters from a small diameter UUV. Technology goals for the first generation LVIS are a) identification range up to 40 feet for proud, partially buried, and moored MLCs under coastal water conditions; b) day/night operation from a UUV operating at speeds up to 4 knots; c) power consumption less than 500 watts, with 275 watts being typical; and d) packaged within a 32-inch long portion of a 21-inch diameter vehicle section.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.
1970-01-01
A 40-foot-nominal-diameter (12.2-meter) modified ringsail parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. The 41-pound (18.6-kg) test parachute system was deployed from a 239.5-pound (108.6-kg) instrumented payload by means of a deployment mortar when the payload was at an altitude of 171,400 feet (52.3 km), a Mach number of 2.95, and a free-stream dynamic pressure of 9.2 lb/sq ft (440 N/m(exp 2)). The parachute deployed properly, suspension line stretch occurring 0.54 second after mortar firing with a resulting snatch-force loading of 932 pounds (4146 newtons). The maximum loading due to parachute opening was 5162 pounds (22 962 newtons) at 1.29 seconds after mortar firing. The first near full inflation of the canopy at 1.25 seconds after mortar firing was followed immediately by a partial collapse and subsequent oscillations of frontal area until the system had decelerated to a Mach number of about 1.5. The parachute then attained a shape that provided full drag area. During the supersonic part of the test, the average axial-force coefficient varied from a minimum of about 0.24 at a Mach number of 2.7 to a maximum of 0.54 at a Mach number of 1.1. During descent under subsonic conditions, the average effective drag coefficient was 0.62 and parachute-payload oscillation angles averaged about &loo with excursions to +/-20 degrees. The recovered parachute was found to have slight damage in the vent area caused by the attached deployment bag and mortar lid.
FPGA-Based Networked Phasemeter for a Heterodyne Interferometer
NASA Technical Reports Server (NTRS)
Rao, Shanti
2009-01-01
A document discusses a component of a laser metrology system designed to measure displacements along the line of sight with precision on the order of a tenth the diameter of an atom. This component, the phasemeter, measures the relative phase of two electrical signals and transfers that information to a computer. Because the metrology system measures the differences between two optical paths, the phasemeter has two inputs, called measure and reference. The reference signal is nominally a perfect square wave with a 50- percent duty cycle (though only rising edges are used). As the metrology system detects motion, the difference between the reference and measure signal phases is proportional to the displacement of the motion. The phasemeter, therefore, counts the elapsed time between rising edges in the two signals, and converts the time into an estimate of phase delay. The hardware consists of a circuit board that plugs into a COTS (commercial, off-the- shelf) Spartan-III FPGA (field-programmable gate array) evaluation board. It has two BNC inputs, (reference and measure), a CMOS logic chip to buffer the inputs, and an Ethernet jack for transmitting reduced-data to a PC. Two extra BNC connectors can be attached for future expandability, such as external synchronization. Each phasemeter handles one metrology channel. A bank of six phasemeters (and two zero-crossing detector cards) with an Ethernet switch can monitor the rigid body motion of an object. This device is smaller and cheaper than existing zero-crossing phasemeters. Also, because it uses Ethernet for communication with a computer, instead of a VME bridge, it is much easier to use. The phasemeter is a key part of the Precision Deployable Apertures and Structures strategic R&D effort to design large, deployable, segmented space telescopes.
Aerial Deployment and Inflation System for Mars Helium Balloons
NASA Technical Reports Server (NTRS)
Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.
2009-01-01
A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.
[CT study on the development of facial nerve canal in children].
Li, J M; Xu, W B; Zhong, J W; Wu, H Y; Dai, W C
2016-10-07
Objective: To assess the characteristics of facial nerve canal between normal anatomy and dysplasia of children in different ages. Methods: A total of 492 health ears were divided into six groups, neonatal group (<1 m , n =42), infancy group(1 m-1 y, n =106), toddler group(1-3 y, n =102), preschool group (3-6 y, n =100), school group(6-10 y, n =60)and adolescent group (10-14 y, n =82). The length and diameter of facial nerve canal and that angles of first and second genu were measured with CT in each group. Results: ①The lengths of facial nerve canal in neonatal and infancy group were shorter than other four groups, especially in the mastoid segments of facial nerve canal. The lengths of mastoid segments in neonatal, infancy, toddler, preschool, school and adolescent groups were 5.03±0.84, 6.25±1.40, 8.34±1.38, 9.70±1.34, 10.84±1.41 and 12.17±1.83 mm, with P <0.05, respectively. After school age, the lengths of labyrinthine and tympanic segment grew slowly or developed completely ( P >0.05). ② The diameter of labyrinth and tympanic segment in neonatal group were narrower than other five groups ( P <0.05), but no significant difference among them in other groups ( P >0.05). ③The dysplasia of facial nerve canal were occurred on 978 locations. Among them, the percentage of dehiscence, aberrance, partially expanding and bifurcation were 72.9%(713/978), 5.1%(50/978), 18.9%(185/978) and 3.1%(30/978) respectively. The percentage of dehiscence in geniculate fossa segment was decreased significantly with age (neonatal group 85.7%(36/42), infancy group 59.4%(63/106), toddler group 39.2%(40/102), preschool group 33%(33/100), school group 30%(18/60)and adolescent group 26.8%(22/82), with P <0.05). Except the dehiscence of geniculate fossa and mastoid segment, there was no significant difference in the occurrence rate of the other variants ( P >O.05). Conclusions: The growth of length and dehiscence in labyrinth segment of facial nerve canal are significant in difference ages. The changes of diameter and angles of first and second genu in facial nerve canal, and the rate of other dysplasia are individual.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, R. A.
1988-01-01
A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.
Objective characterization of airway dimensions using image processing.
Pepper, Victoria K; Francom, Christian; Best, Cameron A; Onwuka, Ekene; King, Nakesha; Heuer, Eric; Mahler, Nathan; Grischkan, Jonathan; Breuer, Christopher K; Chiang, Tendy
2016-12-01
With the evolution of medical and surgical management for pediatric airway disorders, the development of easily translated techniques of measuring airway dimensions can improve the quantification of outcomes of these interventions. We have developed a technique that improves the ability to characterize endoscopic airway dimensions using common bronchoscopic equipment and an open-source image-processing platform. We validated our technique of Endoscopic Airway Measurement (EAM) using optical instruments in simulation tracheas. We then evaluated EAM in a large animal model (Ovis aries, n = 5), comparing tracheal dimensions obtained with EAM to measurements obtained via 3-D fluoroscopic reconstruction. The animal then underwent resection of the measured segment, and direct measurement of this segment was performed and compared to radiographic measurements and those obtained using EAM. The simulation tracheas had a direct measurement of 13.6, 18.5, and 24.2 mm in diameter. The mean difference of diameter in simulation tracheas between direct measurements and measurements obtained using EAM was 0.70 ± 0.57 mm. The excised ovine tracheas had an average diameter of 18.54 ± 0.68 mm. The percent difference in diameter obtained from EAM and from 3-D fluoroscopic reconstruction when compared to measurement of the excised tracheal segment was 4.98 ± 2.43% and 10.74 ± 4.07% respectively. Comparison of these three measurements (EAM, measurement of resected trachea, 3-D fluoroscopic reconstruction) with repeated measures ANOVA demonstrated no statistical significance. Endoscopic airway measurement (EAM) provides equivalent measurements of the airway with the improved versatility of measuring non-circular and multi-level dimensions. Using optical bronchoscopic instruments and open-source image-processing software, our data supports preclinical and clinical translation of an accessible technique to provide objective quantification of airway diameter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (center) and Heidemarie Stefanyshyn-Piper (right) look at the inside of the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Joseph Tanner (left) and Heidemarie Stefanyshyn-Piper (right) look over the Japanese Experiment Module (JEM) Pressurized Module located in the Space Station Processing Facility. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialist Heidemarie Stefanyshyn-Piper (left) gets ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, STS-115 Mission Specialists Heidemarie Stefanyshyn- Piper (left) and Joseph Tanner (center) get ready to check out the Japanese Experiment Module (JEM) Pressurized Module. Known as Kibo, the JEM consists of six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The STS-115 mission will deliver the second port truss segment, the P3/P4 Truss, to attach to the first port truss segment, the P1 Truss, as well as deploy solar array sets 2A and 4A.. The crew is scheduled to activate and check out the Solar Alpha Rotary Joint (SARJ) and deploy the P4 Truss radiator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less
Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M
2014-02-01
To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.
Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.
2014-01-01
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648
Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars
NASA Astrophysics Data System (ADS)
Bran, C.; Ivanov, Yu P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M.
2017-03-01
Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
The collateral network concept: a reassessment of the anatomy of spinal cord perfusion.
Etz, Christian D; Kari, Fabian A; Mueller, Christoph S; Silovitz, Daniel; Brenner, Robert M; Lin, Hung-Mo; Griepp, Randall B
2011-04-01
Prevention of paraplegia after repair of thoracoabdominal aortic aneurysm requires understanding the anatomy and physiology of the spinal cord blood supply. Recent laboratory studies and clinical observations suggest that a robust collateral network must exist to explain preservation of spinal cord perfusion when segmental vessels are interrupted. An anatomic study was undertaken. Twelve juvenile Yorkshire pigs underwent aortic cannulation and infusion of a low-viscosity acrylic resin at physiologic pressures. After curing of the resin and digestion of all organic tissue, the anatomy of the blood supply to the spinal cord was studied grossly and with light and electron microscopy. All vascular structures at least 8 μm in diameter were preserved. Thoracic and lumbar segmental arteries give rise not only to the anterior spinal artery but to an extensive paraspinous network feeding the erector spinae, iliopsoas, and associated muscles. The anterior spinal artery, mean diameter 134 ± 20 μm, is connected at multiple points to repetitive circular epidural arteries with mean diameters of 150 ± 26 μm. The capacity of the paraspinous muscular network is 25-fold the capacity of the circular epidural arterial network and anterior spinal artery combined. Extensive arterial collateralization is apparent between the intraspinal and paraspinous networks, and within each network. Only 75% of all segmental arteries provide direct anterior spinal artery-supplying branches. The anterior spinal artery is only one component of an extensive paraspinous and intraspinal collateral vascular network. This network provides an anatomic explanation of the physiological resiliency of spinal cord perfusion when segmental arteries are sacrificed during thoracoabdominal aortic aneurysm repair. Copyright © 2011 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie
2015-01-01
This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM.
Wang, Shousen; Ying, Jianbin; Wei, Liangfeng; Li, Shiqing; Jing, Junjie
2015-01-01
Objective: This study is to investigate the compensatory intracranial venous pathways in parasagittal meningiomas (PSM) patients by virtual reality technology. Methods: A total of 48 PSM patients (tumor group) and 20 patients with trigeminal neuralgia and hemifacial spasm but without intracranial venous diseases (control group) were enrolled. All patients underwent 3D CE-MRV examination. The 3D reconstructed images by virtual reality technology were used for assessment of diameter and number of intracranial veins, tumor location, venous sinus invasion degree and collateral circulation formation. Results: Diameter of bridging veins in posterior 1/3 superior sagittal sinus (SSS) in tumor group was significantly smaller than that of the control group (P < 0.05). For tumors located in mid 1/3 SSS, diameter of bridging veins and vein of Labbé (VL) in posterior 1/3 SSS decreased significantly (P < 0.05). For tumors located in posterior 1/3 SSS, bridging vein number and transverse sinus (TS) diameter significantly decreased while superficial Sylvian vein (SSV) diameter increased significantly (P < 0.05). Compared with tumor in posterior 1/3 SSS subgroup, number of bridging veins in the tumor in mid 1/3 SSS subgroup increased significantly (P < 0.05). Compared with control group, only the bridging vein number in anterior 1/3 SSS segment in invasion Type 3-4 tumor subgroup decreased significantly (P < 0.05). Diameter of TS and bridging veins in posterior 1/3 SSS segment in sinus invasion Type 5-6 tumor subgroup decreased significantly (P < 0.05). Compared with control group, only the diameter of VL and TS of collateral circulation Grade 1 tumor subgroup decreased significantly (P < 0.05) while in Grade 3 tumor subgroup, TS diameter decreased and SSV diameter increased significantly (P < 0.05). Conclusions: The intracranial blood flow is mainly drained through SSV drainage after SSS occlusion by PSM. PMID:26550184
Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
Demonstration of Innovative Sewer System Inspection Technology: SL-RAT
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
The X-beam as a deployable boom for the space station
NASA Technical Reports Server (NTRS)
Adams, Louis R.
1988-01-01
Extension of antennas and thrust modules from the primary structure of the space station will require deployable beams of high stiffness and strength, as well as low mass and package volume. A square boom cross section is desirable for interface reasons. These requirements and others are satisfied by the X-beam. The X-beam folds by simple geometry, using single-degree-of-freedom hinges at simple angles, with no strain during deployment. Strut members are of large diameter with unidirectional graphite fibers for maximum beam performance. Fittings are aluminum with phosphor bronze bushings so that compliance is low and joint lifetime is high. The several beam types required for different applications on the space station will use the same basic design, with changes in strut cross section where necessary. Deployment is by a BI-STEM which pushes the beam out; retraction is by cables which cause initial folding and pull the beam in.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.
NASA Astrophysics Data System (ADS)
Ribeiro, R. A.; Bud'ko, S. L.; Petrovic, C.; Canfield, P. C.
2002-11-01
We present a study of the effects of non-stoichiometry, boron purity, wire diameter and post-synthesis treatment (etching and Mg distilling) on the temperature dependent resistance and resistivity of sintered MgB 2 pellets and wire segments. Whereas the residual resistivity ratio (RRR) varies between RRR≈4 to RRR⩾20 for different boron purity, it is only moderately affected by non-stoichiometry (from 20% Mg deficiency to 20% Mg excess) and is apparently independent of wire diameter and presence of Mg metal traces on the wire surface. The obtained set of data indicates that RRR values in excess of 20 and residual resistivities as low as ρ 0≈0.4 μΩ cm are intrinsic material properties of high purity MgB 2.
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle
Huang, Kuo-Yi; Ye, Yu-Ting
2015-01-01
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%. PMID:26131678
A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle.
Huang, Kuo-Yi; Ye, Yu-Ting
2015-06-29
In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI) algorithm. The gray level co-occurrence matrix (GLCM) was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy), color features (mean and variance of gray level) and geometric features (distance variance, mean diameter and diameter ratio) were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.
Prototype Development of the GMT Fast Steering Mirror
NASA Astrophysics Data System (ADS)
Kim, Young-Soo; Koh, J.; Jung, H.; Jung, H.; Cho, M. K.; Park, W.; Yang, H.; Kim, H.; Lee, K.; Ahn, H.; Park, B.
2014-01-01
A Fast Steering Mirror (FSM) is going to be provided as the secondary of the Giant Magellan Telescope (GMT) for the first light observations. FSM is 3.2 m in diameter and the focal ratio is 0.65. It is composed of seven circular segments which match with the primary mirror segments. Each segment contains a light-weighted mirror whose diameter is 1.1 m, and each mirror is activated by three tip-tilt actuators which compensate image degradations caused by winds and structure jitter. An FSM prototype (FSMP) has been developed to achieve the key technologies, fabrication of highly aspheric off-axis mirror and precise tip-tilt actuation. It consists of a full-size off-axis mirror segment and a tip-tilt test-bed. The development has been conducted by Korea Astronomy and Space Science Institute together with four other institutions in Korea and USA. The mirror was light-weighted by digging about a hundred holes at the backside, and the front surface has been polished. The result of computer generated hologram measurements showed the surface error of 11.7 nm rms. The tip-tilt test-bed has been manufactured and assembled. Tip-tilt range and resolution tests complied the requirements, and the attenuation test results also satisfied the performance requirements. In this paper, we present the successful developments of the prototype.
A figure control sensor for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Bartman, R.; Dubovitsky, S.
1988-01-01
A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.
File-Based Operations and CFDP On-Board Implementation
NASA Astrophysics Data System (ADS)
Herrera Alzu, Ignacio; Peran Mazon, Francisco; Gonzalo Palomo, Alfonso
2014-08-01
Since several years ago, there is an increasing interest among the space agencies, ESA in particular, in deploying File-based Operations (FbO) for Space missions. This aims at simplifying, from the Ground Segment's perspective, the access to the Space Segment and ultimately the overall operations. This is particularly important for deep Space missions, where the Ground-Space interaction can become too complex to handle just with traditional packet-based services. The use of a robust protocol for transferring files between Ground and Space is a key for the FbO approach, and the CCSDS File Delivery Protocol (CFDP) is nowadays the main candidate for doing this job. Both Ground and Space Segments need to be adapted for FbO, being the Ground Segment naturally closer to this concept. This paper focusses on the Space Segment. The main implications related to FbO/CFDP, the possible on-board implementations and the foreseen operations are described. The case of Euclid, the first ESA mission to be file-based operated with CFDP, is also analysed.
Transforming a Liability Into An Asset-Creating a Market for CO2-based Products
NASA Astrophysics Data System (ADS)
David, B. J.
2016-12-01
This session will discuss converting CO2 from a liability into an asset. It will specifically discuss how at least 25 products can be created using CO2 as a feedstock and deployed in the market at large scale. Focus will be on products that can both achieve scale from a market standpoint as well as climate significance in use of CO2 as a feedstock. The session will describe the market drivers supporting and inhibiting commercial deployment of CO2-based products. It will list key barriers and risks in the various CO2-based product segments. These barriers/risks could occur across technology, policy, institutional, economic, and other dimensions. The means to mitigate each barrier and the likelihood for such means to be deployed will be discussed.
Design of a Shape Memory Alloy deployment hinge for reflector facets
NASA Technical Reports Server (NTRS)
Anders, W. S.; Rogers, C. A.
1991-01-01
A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.
LDR: A submillimeter great observatory
NASA Astrophysics Data System (ADS)
Wilson, Robert
1990-12-01
The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.
GEOS-20 m cable boom mechanism
NASA Technical Reports Server (NTRS)
Schmidt, B. K.; Suttner, K.
1977-01-01
The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.
Development and Characterization of 6Li-doped Liquid Scintillator Detectors for PROSPECT
NASA Astrophysics Data System (ADS)
Gaison, Jeremy; Prospect Collaboration
2016-09-01
PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, is a phased reactor antineutrino experiment designed to search for eV-scale sterile neutrinos via short-baseline neutrino oscillations and to make a precision measurement of the 235U reactor antineutrino spectrum. A multi-ton, optically segmented detector will be deployed at Oak Ridge National Laboratory's (ORNL) High Flux Isotope Reactor (HFIR) to measure the reactor spectrum at baselines ranging from 7-12m. A two-segment detector prototype with 50 liters of active liquid scintillator target has been built to verify the detector design and to benchmark its performance. In this presentation, we will summarize the performance of this detector prototype and describe the optical and energy calibration of the segmented PROSPECT detectors.
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth G.; Etemad, Shar; Seery, Bernard D.; Thronson, Harley; Burdick, Gary M.; Coulter, Dan; Goullioud, Renaud; Green, Joseph J.; Liu, Fengchuan; Ess, Kim;
2012-01-01
The next generation large aperture UV/Optical space telescope will need a diameter substantially larger than even that of JWST in order to address some of the most compelling unanswered scientific quests. These quests include understanding the earliest phases of the Universe and detecting life on exo-planets by studying spectra of their atmospheres. Such 8-16 meter telescopes face severe challenges in terms of cost and complexity and are unlikely to be affordable unless a new paradigm is adopted for their design and construction. The conventional approach is to use monolithic or preassembled segmented mirrors requiring complicated and risky deployments and relying on future heavy-lift vehicles, large fairings and complex geometry. The new paradigm is to launch component modules on relatively small vehicles and then perform in-orbit robotic assembly of those modules. The Optical Testbed and Integration on ISS eXperiment (OpTIIX) is designed to demonstrate, at low cost by leveraging the infrastructure provided by ISS, telescope assembly technologies and end-to-end optical system technologies. The use of ISS as a testbed permits the concentration of resources on reducing the technical risks associated with robotically integrating the components. These include laser metrology and wavefront sensing and control (WFS&C) systems, an imaging instrument, lightweight, low-cost deformable primary mirror segments and the secondary mirror. These elements are then aligned to a diffraction-limited optical system in space. The capability to assemble the optical system and remove and replace components via the existing ISS robotic systems like the Special Purpose Dexterous Manipulator (SPDM), or by the ISS flight crew, allows for future experimentation, as well as repair.
Ozcinar, Evren; Cakici, Mehmet; Korun, Oktay; Han, Unsal; Kiziltepe, Ugursay
2017-03-01
The aim of this study was to evaluate the heat induced damage at the saphenofemoral junction level according to histopathological changes after radiofrequency or 1,470 nm radial tip laser ablation. Varicose vein segments of 6-10 mm in diameter were exposed to radiofrequency (Closure Fast catheter, 7 cm heat segment, one cycle, 15 seconds, 10 Watt, 120 °C) or laser ablation (1,470 nm radial tip, continuous wave, vein diameter: 6 cm/8 cm/10 cm-power: 10 Watt-pullback speed: 2.2 mm/s, 1.7 mm/s, 1.3 mm/s-LEED: 45J/cm, 60J/cm, 75J/cm-EFE 25J/cm 2 , respectively). Approximate 2 cm segments of the vein were left untreated, then histopathological examinations of the untouched segments (5 slices: level 1 - furthest segment, level 2 - nearest segment) for heat induced damage were performed. A total damage scoring system was established, including the presence of endothelial swelling, intimal thickening, cellular vacuolisation in the muscle layer, oedema in the tunica media, and extent of necrosis. At level 1, the furthest segment of the specimen, there was no significant difference between the laser and control group, while the total damage score of the radiofrequency group was significantly higher than the control group (p < 0.01). Radiofrequency group had higher total damage score compared to the laser group at level 1 (p < 0.01), 2 (p < 0.01), and 5 (p < 0.01); while no significant difference was observed at level 3 (p = 0.46) and 4 (p = 0.13). Significant heat induced damage may be seen even if the 2 cm segment of the vessel is left unablated. Radiofrequency ablation seems to cause more histological damage than laser ablation in this ex vivo study. Further in vivo studies are necessary, in order to validate these findings.
Welter, S; Stöcker, C; Dicken, V; Kühl, H; Krass, S; Stamatis, G
2012-03-01
Segmental resection in stage I non-small cell lung cancer (NSCLC) has been well described and is considered to have similar survival rates as lobectomy but with increased rates of local tumour recurrence due to inadequate parenchymal margins. In consequence, today segmentectomy is only performed when the tumour is smaller than 2 cm. Three-dimensional reconstructions from 11 thin-slice CT scans of bronchopulmonary segments were generated, and virtual spherical tumours were placed over the segments, respecting all segmental borders. As a next step, virtual parenchymal safety margins of 2 cm and 3 cm were subtracted and the size of the remaining tumour calculated. The maximum tumour diameters with a 30-mm parenchymal safety margin ranged from 26.1 mm in right-sided segments 7 + 8 to 59.8 mm in the left apical segments 1-3. Using a three-dimensional reconstruction of lung CT scans, we demonstrated that segmentectomy or resection of segmental groups should be feasible with adequate margins, even for larger tumours in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Large eccentric laser angioplasty catheter
NASA Astrophysics Data System (ADS)
Taylor, Kevin D.; Reiser, Christopher
1997-05-01
In response to recent demand for increased debulking of large diameter coronary vascular segments, a large eccentric catheter for excimer laser coronary angioplasty has been developed. The outer tip diameter is 2.0 mm and incorporates approximately 300 fibers of 50 micron diameter in a monorail- type percutaneous catheter. The basic function of the device is to ablate a coronary atherosclerotic lesion with 308 nm excimer laser pulses, while passing the tip of the catheter through the lesion. By employing multiple passes through the lesion, rotating the catheter 90 degrees after each pass, we expect to create luminal diameters close to 3 mm with this device. Design characteristics, in-vitro testing, and initial clinical experience is presented.
Computational design analysis for deployment of cardiovascular stents
NASA Astrophysics Data System (ADS)
Tammareddi, Sriram; Sun, Guangyong; Li, Qing
2010-06-01
Cardiovascular disease has become a major global healthcare problem. As one of the relatively new medical devices, stents offer a minimally-invasive surgical strategy to improve the quality of life for numerous cardiovascular disease patients. One of the key associative issues has been to understand the effect of stent structures on its deployment behaviour. This paper aims to develop a computational model for exploring the biomechanical responses to the change in stent geometrical parameters, namely the strut thickness and cross-link width of the Palmaz-Schatz stent. Explicit 3D dynamic finite element analysis was carried out to explore the sensitivity of these geometrical parameters on deployment performance, such as dog-boning, fore-shortening, and stent deformation over the load cycle. It has been found that an increase in stent thickness causes a sizeable rise in the load required to deform the stent to its target diameter, whilst reducing maximum dog-boning in the stent. An increase in the cross-link width showed that no change in the load is required to deform the stent to its target diameter, and there is no apparent correlation with dog-boning but an increased fore-shortening with increasing cross-link width. The computational modelling and analysis presented herein proves an effective way to refine or optimise the design of stent structures.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Murrow, Harold N.; Preisser, John S.
1967-01-01
A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.
Drive system for the retraction/extension of variable diameter rotor systems
NASA Technical Reports Server (NTRS)
Gmirya, Yuriy (Inventor)
2003-01-01
A drive system for a variable diameter rotor (VDR) system includes a plurality of rotor blade assemblies with inner and outer rotor blade segments. The outer blade segment being telescopically mounted to the inner blade segment. The VDR retraction/extension system includes a drive housing mounted at the root of each blade. The housing supports a spool assembly, a harmonic gear set and an electric motor. The spool assembly includes a pair of counter rotating spools each of which drive a respective cable which extends through the interior of the inboard rotor blade section and around a pulley mounted to the outboard rotor blade section. In operation, the electric motor drives the harmonic gear set which rotates the counter rotating spools. Rotation of the spools causes the cables to be wound onto or off their respective spool consequently effecting retraction/extension of the pulley and the attached outboard rotor blade section relative the inboard rotor blade section. As each blade drive system is independently driven by a separate electrical motor, each independent VDR blade assembly is independently positionable.
Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation
NASA Astrophysics Data System (ADS)
Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan
2013-08-01
Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.
Conditioning a segmented stem profile model for two diameter measurements
Raymond L. Czaplewski; Joe P. Mcclure
1988-01-01
The stem profile model of Max and Burkhart (1976) is conditioned for dbh and a second upper stem measurement. This model was applied to a loblolly pine data set using diameter outside bark at 5.3m (i.e., height of 17.3 foot Girard form class) as the second upper stem measurement, and then compared to the original, unconditioned model. Variance of residuals was reduced...
Raoufi, Mohammad; Schönherr, Holger
2014-02-18
We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.
Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations
2006-09-15
S115-E-06184 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.
Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations
2006-09-15
S115-E-06186 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.
Deployment of the P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations
2006-09-14
S115-E-05996 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday and the deployment of the arrays set the stage for future expansion of the station.
Adaptive geodesic transform for segmentation of vertebrae on CT images
NASA Astrophysics Data System (ADS)
Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang
2014-03-01
Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.
Zwierzak, Iwona; Cosentino, Daria; Narracott, Andrew J; Bonhoeffer, Philipp; Diaz, Vanessa; Fenner, John W; Schievano, Silvia
2014-12-01
To quantify variability of in vitro and in vivo measurement of 3D device geometry using 3D and biplanar imaging. Comparison of stent reconstruction is reported for in vitro coronary stent deployment (using micro-CT and optical stereo-photogrammetry) and in vivo pulmonary valve stent deformation (using 4DCT and biplanar fluoroscopy). Coronary stent strut length and inter-strut angle were compared in the fully deployed configuration. Local (inter-strut angle) and global (dog-boning ratio) measures of stent deformation were reported during stent deployment. Pulmonary valve stent geometry was assessed throughout the cardiac cycle by reconstruction of stent geometry and measurement of stent diameter. Good agreement was obtained between methods for assessment of coronary stent geometry with maximum disagreement of +/- 0.03 mm (length) and +/- 3 degrees (angle). The stent underwent large, non-uniform, local deformations during balloon inflation, which did not always correlate with changes in stent diameter. Three-dimensional reconstruction of the pulmonary valve stent was feasible for all frames of the fluoroscopy and for 4DCT images, with good correlation between the diameters calculated from the two methods. The largest compression of the stent during the cardiac cycle was 6.98% measured from fluoroscopy and 7.92% from 4DCT, both in the most distal ring. Quantitative assessment of stent geometry reconstructed from biplanar imaging methods in vitro and in vivo has shown good agreement with geometry reconstructed from 3D techniques. As a result of their short image acquisition time, biplanar methods may have significant advantages in the measurement of dynamic 3D stent deformation.
Personalised Information Services Using a Hybrid Recommendation Method Based on Usage Frequency
ERIC Educational Resources Information Center
Kim, Yong; Chung, Min Gyo
2008-01-01
Purpose: This paper seeks to describe a personal recommendation service (PRS) involving an innovative hybrid recommendation method suitable for deployment in a large-scale multimedia user environment. Design/methodology/approach: The proposed hybrid method partitions content and user into segments and executes association rule mining,…
DOT National Transportation Integrated Search
2017-06-13
MnDOT has already deployed an extensive infrastructure for Active Traffic Management (ATM) on I-35W and I-94 with plans to expand on other segments of the Twin Cities freeway network. The ATM system includes intelligent lane control signals (ILCS) sp...
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, Ares I-X upper stage simulator segments are lined up. Their protective blue shrink-wrapped covers used for shipping are being removed, as seen on the segments at left and in the back. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
Replication of self-centering optical fiber alignment structures using hot embossing
NASA Astrophysics Data System (ADS)
Ebraert, Evert; Wissmann, Markus; Barié, Nicole; Guttmann, Markus; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen
2016-04-01
With the demand for broadband connectivity on the rise due to various services like video-on-demand and cloud computing becoming more popular, the need for better connectivity infrastructure is high. The only future- proof option to supply this infrastructure is to deploy "fiber to the home" (FTTH) networks. One of the main difficulties with the deployment of FTTH is the vast amount of single-mode fiber (SMF) connections that need to be made. Hence there is a strong need for components which enable high performance, robust and easy-to- use SMF connectors. Since large-scale deployment is the goal, these components should be mass-producible at low cost. We discuss a rapid prototyping process on the basis of hot embossing replication of a self-centering alignment system (SCAS) based on three micro-springs, which can position a SMF independently of its diameter. This is beneficial since there is a fabrication tolerance of up to +/-1 μm on a standard G.652 SMF's diameter that can lead to losses if the outer diameter is used as a reference for alignment. The SCAS is first prototyped with deep proton writing (DPW) in polymethylmethacrylate (PMMA) after which it is glued to a copper substrate with an adhesive. Using an electroforming process, a nickel block is grown over the PMMA prototype followed by mechanical finishing to fabricate a structured nickel mould insert. Even though the mould insert shows non- ideal and rounded features it is used to create PMMA replicas of the SCAS by means of hot embossing. The SCAS possesses a central opening in which a bare SMF can be clamped, which is designed with a diameter of 121 μm. PMMA replicas are dimensionally characterized using a multisensor coordinate measurement machine and show a central opening diameter of 128.3 +/- 2.8 μm. This should be compared to the central opening diameter of the DPW prototype used for mould formation which was measured to be 120.5 μm. This shows that the electroforming and subsequent replication process is possible for complex micro-scale components and could be accurate after optimisation. We characterized the sidewall roughness of PMMA replicas using a non- contact optical profiler, resulting in a root-mean-square roughness of 48 nm over an area of 63.7 μm×47.8 μm. This low sidewall roughness is especially important in the replication of high aspect ratio structures to facilitate demoulding since the sidewalls cause the most friction with the mould insert.
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, these Ares I-X upper stage simulator segments have shed their protective blue shrink-wrapped covers used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, these Ares I-X upper stage simulator segments have shed their protective blue shrink-wrapped covers used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, these Ares I-X upper stage simulator segments have shed their protective blue shrink-wrapped covers used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
New Antenna Deployment, Pointing and Supporting Mechanism
NASA Technical Reports Server (NTRS)
Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.
1996-01-01
On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
The morphology and electrical geometry of rat jaw-elevator motoneurones.
Moore, J A; Appenteng, K
1991-01-01
1. The aim of this work was to quantify both the morphology and electrical geometry of the dendritic trees of jaw-elevator motoneurones. To do this we have made intracellular recordings from identified motoneurones in anaesthetized rats, determined their membrane properties and then filled them with horseradish peroxidase by ionophoretic ejection. Four neurones were subsequently fully reconstructed and the lengths and diameters of all the dendritic segments measured. 2. The mean soma diameter was 25 microns and values of mean dendritic length for individual cells ranged from 514 to 773 microns. Dendrites branched on average 9.1 times to produce 10.2 end-terminations. Dendritic segments could be represented as constant diameter cylinders between branch points. Values of dendritic surface area ranged from 1.08 to 2.52 x 10(5) microns 2 and values of dendritic to total surface area from 98 to 99%. 3. At branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was exactly 1.0. Therefore the individual branch points could be collapsed into a single cylinder. Furthermore for an individual dendrite the diameter of this cylinder remained constant with increasing electrical distance from the soma. Thus individual dendrites can be represented electrically as cylinders of constant diameter. 4. However dendrites of a given neurone terminated at different electrical distances from the soma. The equivalent-cylinder diameter of the combined dendritic tree remained constant over the proximal half and then showed a pronounced reduction over the distal half. The reduction in equivalent diameter could be ascribed to the termination of dendrites at differing electrical distances from the soma. Therefore the complete dendritic tree of these motoneurones is best represented as a cylinder over the proximal half of their electrical length but as a cone over the distal half. PMID:1804966
Demonstration of Innovative Sewer System Inspection Technology SewerBatt
The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...
U.S. EPA Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems
The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...
Development of the 15 meter diameter hoop column antenna
NASA Technical Reports Server (NTRS)
1986-01-01
The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.
Heuslein, Joshua L.; Meisner, Joshua K.; Li, Xuanyue; Song, Ji; Vincentelli, Helena; Leiphart, Ryan J.; Ames, Elizabeth G.; Price, Richard J.
2015-01-01
Objective Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of flow direction reversal, occurring in numerous collateral artery segments after femoral artery ligation (FAL), is unknown. Our objective was to determine if flow direction reversal in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis. Approach and Results Collateral segments experiencing flow reversal after FAL in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post-FAL) remodeling. Genome-wide transcriptional analyses on HUVECs exposed to flow reversal conditions mimicking those occurring in-vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (NFκB, VEGF, FGF2, TGFβ) and arteriogenic canonical pathways (PKA, PDE, MAPK). Augmented expression of key pro-arteriogenic molecules (KLF2, ICAM-1, eNOS) was also verified by qRT-PCR, leading us to test whether ICAM-1 and/or eNOS regulate amplified arteriogenesis in flow-reversed collateral segments in-vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after FAL in ICAM-1−/− mice; however, eNOS−/− mice showed no such differences. Conclusions Flow reversal leads to a broad amplification of pro-arteriogenic endothelial signaling and a sustained ICAM-1-dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by flow reversal may lead to more effective and durable therapeutic options for arterial occlusive diseases. PMID:26338297
Zhang, Yuyang; Xing, Zhen; She, Dejun; Huang, Nan; Cao, Dairong
The aim of this study was to prospectively evaluate the repeatability of non-contrast-enhanced lower-extremity magnetic resonance angiography using the flow-spoiled fresh blood imaging (FS-FBI). Forty-three healthy volunteers and 15 patients with lower-extremity arterial stenosis were recruited in this study and were examined by FS-FBI. Digital subtraction angiography was performed within a week after the FS-FBI in the patient group. Repeatability was assessed by the following parameters: grading of image quality, diameter and area of major arteries, and grading of stenosis of lower-extremity arteries. Two experienced radiologists blinded for patient data independently evaluated the FS-FBI and digital subtraction angiography images. Intraclass correlation coefficients (ICCs), sensitivity, and specificity were used for statistical analysis. The grading of image quality of most data was satisfactory. The ICCs for the first and second measures were 0.792 and 0.884 in the femoral segment and 0.803 and 0.796 in the tibiofibular segment for healthy volunteer group, 0.873 and 1.000 in the femoral segment, and 0.737 and 0.737 in the tibiofibular segment for the patient group. Intraobserver and interobserver agreements on diameter and area of arteries were excellent, with ICCs mostly greater than 0.75 in the volunteer group. For stenosis grading analysis, intraobserver ICCs range from 0.784 to 0.862 and from 0.778 to 0.854, respectively. Flow-spoiled fresh blood imaging yielded a mean sensitivity and specificity to detect arterial stenosis or occlusion of 90% and 80% for femoral segment and 86.7% and 93.3% for tibiofibular segment at least. Lower-extremity angiography with FS-FBI is a reliable and reproducible screening tool for lower-extremity atherosclerotic disease, especially for patients with impaired renal function.
Alp, Murat; Cucinotta, Francis A.
2017-01-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (>100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. PMID:28554507
NASA Astrophysics Data System (ADS)
Alp, Murat; Cucinotta, Francis A.
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100 μm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3He and 12C particles at energies corresponding to a distance of 1 cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch.
Alp, Murat; Cucinotta, Francis A
2017-05-01
Changes to cognition, including memory, following radiation exposure are a concern for cosmic ray exposures to astronauts and in Hadron therapy with proton and heavy ion beams. The purpose of the present work is to develop computational methods to evaluate microscopic energy deposition (ED) in volumes representative of neuron cell structures, including segments of dendrites and spines, using a stochastic track structure model. A challenge for biophysical models of neuronal damage is the large sizes (> 100µm) and variability in volumes of possible dendritic segments and pre-synaptic elements (spines and filopodia). We consider cylindrical and spherical microscopic volumes of varying geometric parameters and aspect ratios from 0.5 to 5 irradiated by protons, and 3 He and 12 C particles at energies corresponding to a distance of 1cm to the Bragg peak, which represent particles of interest in Hadron therapy as well as space radiation exposure. We investigate the optimal axis length of dendritic segments to evaluate microscopic ED and hit probabilities along the dendritic branches at a given macroscopic dose. Because of large computation times to analyze ED in volumes of varying sizes, we developed an analytical method to find the mean primary dose in spheres that can guide numerical methods to find the primary dose distribution for cylinders. Considering cylindrical segments of varying aspect ratio at constant volume, we assess the chord length distribution, mean number of hits and ED profiles by primary particles and secondary electrons (δ-rays). For biophysical modeling applications, segments on dendritic branches are proposed to have equal diameters and axes lengths along the varying diameter of a dendritic branch. Copyright © 2017. Published by Elsevier Ltd.
The ESA/MBB unfurlable mesh antenna development for mobile services
NASA Astrophysics Data System (ADS)
Kellermeier, H.; Vorbrugg, H.; Pontoppidan, K.; Eaton, D. C. G.
Mobile services via satellite in the 800-900 MHz frequency range have recently been studied by SPAR Aerospace Ltd in the M-SAT phase B using various unfurlable offset reflector concepts between 9 and 5 m aperture diameters for 6-, 4- and 2-beam coverage. For a 2-beam coverage of Canada and U.S.A. two offset antennas each of 5 m aperture diameter are required. The MBB offset unfurlable mesh antenna (UMA) developed since 1983 under an ESA contract is one of the attractive candidates: The design concept chosen uses foldable radial ribs of carbon fibre which deploy a gold plated molybdenum mesh on adjustable stand-offs. This concept is applicable for offset aperture diameters up to 12 m since the carbon fibre ribs are double folded and provide for a high package density when stowed at the spacecraft during launch. The electrical analysis performed by TICRA/Copenhagen was assisted by electrical measurements on mesh samples, verifying that main charactertics as ohmic resistance, transmission loss and passive intermodulation products (PIMP) lie within the required tolerances if the mesh is pretensioned to a certain configuration. For on-orbit testing and retrieval by the Shuttle the reflector shows a unique design feature of retractability by the reversable deployment sequence.
Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program
NASA Astrophysics Data System (ADS)
Hassell, Frank R.; Groark, Frank M.
1995-10-01
Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.
Degradation of Endeavour Crater, Mars
NASA Technical Reports Server (NTRS)
Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.
2015-01-01
The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz
2009-05-01
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, Sebastian, E-mail: skos@gmx.d; Huegli, Rolf; Hofmann, Eugen
The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. Themore » guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Matt; Hamilton, Chris
This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal tomore » liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.« less
Wavefront control of large optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.
1990-01-01
Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.
Construction of Prototype Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.
NASA Astrophysics Data System (ADS)
Cecil, Gerald N.; Moffett, A. J.; Cui, Y.; Eckert, K. D.; McBride, J.; Kannappan, S.; Keller, K.; Barlow, B. N.; Dunlap, B.; Bland-Hawthorn, J.
2010-01-01
The Goodman Imager-Spectrograph on the 4.1m SOAR telescope has operated on Cerro Pachon, Chile with volume-phase holographic gratings in long-slit mode since its commissioning in 2008. Recently, UNC graduate students played key roles to implement robust upgrades for multi-object spectroscopy that will soon be available to US astronomers through the NOAO time share on SOAR: • Multislits over 3x5 arcmin, generated on PCB solder stencils with exceptional sharpness compared to conventional laser cuts, initially to survey globular clusters for pulsating hot sub-dwarfs • An image slicer to obtain 3 simultaneous parallel spectra 70-arcsec long, 1- or 2-arcsec wide, spanning 320-750 nm to map stellar and gaseous emission and mass over the 1500 galaxies in the RESOLVE survey underway on SOAR • Four integral field units, each composed of 5-arcsec diameter, fused bundles of 0.5-arcsec diameter thin-clad optical fiber, independently deployed over a 10x5 arcmin field targeted by an EMCCD also used for Lucky Imaging. Initially will study aperture effects in single fiber surveys, extragalactic globular clusters, and demonstrate technology prior to deployment on larger telescopes • New wheels supporting a large set of existing narrow-band and Sloan filters • A trombone-style atmospheric dispersion compensator that corrects the full 12-arcmin diameter science field down to 30 deg elevation. Working in UNC's Goodman Laboratory for Astronomical Instrumentation, students employed SolidWorks and ZEMAX to design parts for in-house CAM on CNC machines and a 3D printer. All motors are controlled by LabVIEW as is the SOAR TCS. The deployable IFU axes are controlled by Quicksilver Controls Inc. intelligent servos and $80 model robot (Firgelli Corp.) actuators driven by a PIC-microcontroller and a student designed custom PCB. Upgrades and students were supported by $200K from SOAR Corporation, Research Corporation, NSF, and UNC competitive funds, and NC NASA Space Grant, Sigma Xi, and NASA fellowships.
Variable diameter wind turbine rotor blades
Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.
2005-12-06
A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.
1991-11-01
Septernbei 1980 I urbuleiit IBoundar La~ers Experiments, I Iteor) and Modelliiig AGARI) CP-27 l.January 1980 Aerod~naiic Chlaracteristics of Controls...Aircraft, Vol. 17, No 1, January 1980 . 1.2 C. W. Peterson, D E. Waye, L. R. Rollstin, and I. T. Holt, "Desigi and Performance of a Parachute for...diameter lifting ribbon parachute for deployment at 300 to 800 knots at low altitude for a 2400-lb store. In the 1980s he developed a 46.3-ft-diameter
Treatment of Post-Stent Gastroesophageal Reflux by Anti-Reflux Z-Stent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, Roger Philip; Kew, Jacqueline; Byrne, Peter D.
2000-11-15
Severe symptoms of heartburn and retrosternal pain consistent with gastro-esophageal reflux (GER) developed in a patient following placement of a conventional self-expanding 16-24-mm-diameter x 12-cm-long esophageal stent across the gastroesophageal junction to treat an obstructing esophageal carcinoma. A second 18-mm-diameter x 10-cm-long esophageal stent with anti-reflux valve was deployed coaxially and reduced symptomatic GER immediately. Improvement was sustained at 4-month follow-up. An anti-reflux stent can be successfully used to treat significant symptomatic GER after conventional stenting.
Local X-ray Computed Tomography Imaging for Mineralogical and Pore Characterization
NASA Astrophysics Data System (ADS)
Mills, G.; Willson, C. S.
2015-12-01
Sample size, material properties and image resolution are all tradeoffs that must be considered when imaging porous media samples with X-ray computed tomography. In many natural and engineered samples, pore and throat sizes span several orders of magnitude and are often correlated with the material composition. Local tomography is a nondestructive technique that images a subvolume, within a larger specimen, at high resolution and uses low-resolution tomography data from the larger specimen to reduce reconstruction error. The high-resolution, subvolume data can be used to extract important fine-scale properties but, due to the additional noise associated with the truncated dataset, it makes segmentation of different materials and mineral phases a challenge. The low-resolution data of a larger specimen is typically of much higher-quality making material characterization much easier. In addition, the imaging of a larger domain, allows for mm-scale bulk properties and heterogeneities to be determined. In this research, a 7 mm diameter and ~15 mm in length sandstone core was scanned twice. The first scan was performed to cover the entire diameter and length of the specimen at an image voxel resolution of 4.1 μm. The second scan was performed on a subvolume, ~1.3 mm in length and ~2.1 mm in diameter, at an image voxel resolution of 1.08 μm. After image processing and segmentation, the pore network structure and mineralogical features were extracted from the low-resolution dataset. Due to the noise in the truncated high-resolution dataset, several image processing approaches were applied prior to image segmentation and extraction of the pore network structure and mineralogy. Results from the different truncated tomography segmented data sets are compared to each other to evaluate the potential of each approach in identifying the different solid phases from the original 16 bit data set. The truncated tomography segmented data sets were also compared to the whole-core tomography segmented data set in two ways: (1) assessment of the porosity and pore size distribution at different scales; and (2) comparison of the mineralogical composition and distribution. Finally, registration of the two datasets will be used to show how the pore structure and mineralogy details at the two scales can be used to supplement each other.
Developing suitable methods for effective characterization of electrical properties of root segments
NASA Astrophysics Data System (ADS)
Ehosioke, Solomon; Phalempin, Maxime; Garré, Sarah; Kemna, Andreas; Huisman, Sander; Javaux, Mathieu; Nguyen, Frédéric
2017-04-01
The root system represents the hidden half of the plant which plays a key role in food production and therefore needs to be well understood. Root system characterization has been a great challenge because the roots are buried in the soil. This coupled with the subsurface heterogeneity and the transient nature of the biogeochemical processes that occur in the root zone makes it difficult to access and monitor the root system over time. The traditional method of point sampling (root excavation, monoliths, minirhizotron etc.) for root investigation does not account for the transient nature and spatial variability of the root zone, and it often disturbs the natural system under investigation. The quest to overcome these challenges has led to an increase in the application of geophysical methods. Recent studies have shown a correlation between bulk electrical resistivity and root mass density, but an understanding of the contribution of the individual segments of the root system to that bulk signal is still missing. This study is an attempt to understand the electrical properties of roots at the segment scale (1-5cm) for more effective characterization of electrical signal of the full root architecture. The target plants were grown in three different media (pot soil, hydroponics and a mixture of sand, perlite and vermiculite). Resistance measurements were carried out on a single segment of each study plant using a voltmeter while the diameter was measured using a digital calliper. The axial resistance was calculated using the measured resistance and the geometric parameters. This procedure was repeated for each plant replica over a period of 75 days which enabled us to study the effects of age, growth media, diameter and length on the electrical response of the root segments of the selected plants. The growth medium was found to have a significant effect on the root electrical response, while the effect of root diameter on their electrical response was found to vary among the plants. More work is still required to further validate these results and also to develop better systems to study the electrical behaviour of root segments. Findings from our review entitled "an overview of the geophysical approach to root investigation", suggest that SIP and EIT geophysical methods could be very useful for root investigations, thus more work is in progress to develop these systems for assessing the root electrical response at various scales.
FraudBuster: Reducing Fraud in an Auto Insurance Market.
Nagrecha, Saurabh; Johnson, Reid A; Chawla, Nitesh V
2018-03-01
Nonstandard insurers suffer from a peculiar variant of fraud wherein an overwhelming majority of claims have the semblance of fraud. We show that state-of-the-art fraud detection performs poorly when deployed at underwriting. Our proposed framework "FraudBuster" represents a new paradigm in predicting segments of fraud at underwriting in an interpretable and regulation compliant manner. We show that the most actionable and generalizable profile of fraud is represented by market segments with high confidence of fraud and high loss ratio. We show how these segments can be reported in terms of their constituent policy traits, expected loss ratios, support, and confidence of fraud. Overall, our predictive models successfully identify fraud with an area under the precision-recall curve of 0.63 and an f-1 score of 0.769.
A 1.375-approximation algorithm for sorting by transpositions.
Elias, Isaac; Hartman, Tzvika
2006-01-01
Sorting permutations by transpositions is an important problem in genome rearrangements. A transposition is a rearrangement operation in which a segment is cut out of the permutation and pasted in a different location. The complexity of this problem is still open and it has been a 10-year-old open problem to improve the best known 1.5-approximation algorithm. In this paper, we provide a 1.375-approximation algorithm for sorting by transpositions. The algorithm is based on a new upper bound on the diameter of 3-permutations. In addition, we present some new results regarding the transposition diameter: we improve the lower bound for the transposition diameter of the symmetric group and determine the exact transposition diameter of simple permutations.
Zhang, Peng; Shang, Qingli; Ma, Jingxue; Hao, Yuhua; Ye, Cunxi
2017-03-20
To determine the correlation between the preoperative basal diameter of macular hole, the postoperative area of high autofluorescence (AF) in macula, and visual acuity in full-thickness macular hole. Forty-nine patients with full-thickness macular hole who underwent vitrectomy and C3F8 filling were reviewed. The preoperative diameter of macular hole, the 6 months postoperative area of high AF in macula if it existed, the length of inner segment/outer segment (IS/OS) defect, and visual acuity were obtained. The correlation between them was determined. At postoperative 6 months, the rate of high AF in macula was 63.3%. There were statistical differences between with and without high AF groups in postoperative best-corrected visual acuity (BCVA) (t = -2.751, p = 0.008), preoperative basal diameter of macular hole (t = -4.946, p = 0.00001), and postoperative length of IS/OS defect (t = -8.351, p<0.00001). Simple linear regression analysis showed high positive correlations between preoperative basal diameter of macular hole and area of high AF (p<0.00001, r = 0.893), postoperative length of IS/OS defect and area of high fundus AF (FAF) (p<0.00001, r = 0.779), and negative correlations between area of high AF and postoperative BCVA (p = 0.037, r = 0.375). There was low correlation between diameter of macular hole and postoperative BCVA (p = 0.112). The preoperative basal diameter of macular hole and postoperative length of IS/OS defect decides the postoperative area of high AF in macula to some degree, and the postoperative area of high AF in macula can be an evaluating indicator for poor macular function recovery.
CFRP composite optical telescope assembly for the 1 m ULTRA project
NASA Astrophysics Data System (ADS)
Martin, Robert N.; Romeo, Robert C.
2006-06-01
The focus of the ULTRA Project is to develop and test Ultra-Lightweight Technology for Research applications in Astronomy. The ULTRA project is a collaborative effort involving the private firm Composite Mirror Applications, Inc (CMA) and 3 universities: University of Kansas, San Diego State University, and Dartmouth College. Funding for ULTRA is predominately from a NSF three year MRI program grant to CMA and KU with additional support from CMA, KU and SDSU. The goal of the ULTRA program is to demonstrate that a viable alternative exists to traditional glass mirror and steel telescope technology by designing, fabricating and testing a research telescope constructed from carbon fiber reinforced plastic (CFRP) materials. In particular, a 1m diameter, Cassegrain telescope optics set and optical tube assembly (OTA) are being designed and fabricated by CMA. The completed telescope will be deployed at SDSU's Mt Laguna Observatory in a refurbished structure (new dome and mount provided via KU and SDSU). We expect that a successful completion and testing of this project will lead to future use of CFRP technology in larger telescopes and segmented telescopes. This paper describes the OTA (optical tube assembly) that has been developed for the ULTRA project. The mirror technology is described in another paper in this conference. A poster describes the ULTRA project overview in more detail.
LI, WENHUI; DAI, ZHENYU; YAO, LIZHENG; LUO, JIANJUN; YAN, ZHIPING
2015-01-01
The aim of the present study was to investigate the efficacy and safety of stenting combined with radioactive iodine-125 seed strands following chemoembolization for the treatment of patients with hepatocellular carcinoma and inferior vena cava (IVC) obstruction. A retrospective analysis was conducted of 52 hepatocellular carcinoma patients with IVC obstruction. All patients received chemoembolization of tumor-supplying arteries and IVC stents, and 18 patients additionally received iodine-125 seed strands, which were fixed to the stents. Improvement of IVC obstruction and the tumor response rates were compared between the two groups with a median follow-up time of 2.5 months. In both groups the stents were successfully deployed. At the 2-month post-procedural follow-up, the mean diameter of the IVC obstruction site, the mean pressure difference between the distal IVC obstructive segment and the right atrium as well as the obstruction scoring did not differ significantly between the two groups. By contrast, the tumor response rate of the iodine-125 seed strand group was 94.4%, whereas for the group without iodine-125 seed strands it was 35.3% (P<0.001). The combination of stent and iodine-125 seed strands was effective and safe for the treatment of hepatocellular carcinoma with IVC obstruction. PMID:26622424
Repair of tracheomalacia with inflammatory defect and mediastinitis.
Sandu, Kishore; Monnier, Yan; Hurni, Michel; Bernath, Marc-Andre; Monnier, Philippe; Wang, Yabo; Ris, Hans-Beat
2011-01-01
We describe a novel repair of an anterior inflammatory tracheal defect with mediastinitis, which occurred after external tracheal suspension of localized intrathoracic tracheomalacia. The malacic tracheal segment of 4-cm length containing the inflammatory tracheal defect was noncircumferentially resected. A temporary endotracheal silicone stent was introduced, and the trachea was closed by a pedicled pectoralis muscle flap reinforced with an embedded rib segment. Retrieval of the stent 5 months postoperatively resulted in a re-epithelialized, persistently stable, noncollapsible tracheal segment that showed the same diameter and configuration as the nonreconstructed part of the trachea. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
ICTV Virus Taxonomy Profile: Chrysoviridae.
Ghabrial, Said A; Castón, José R; Coutts, Robert H A; Hillman, Bradley I; Jiang, Daohong; Kim, Dae-Hyun; Moriyama, Hiromitsu; Ictv Report Consortium
2018-01-01
The Chrysoviridae is a family of small, isometric, non-enveloped viruses (40 nm in diameter) with segmented dsRNA genomes (typically four segments). The genome segments are individually encapsidated and together comprise 11.5-12.8 kbp. The single genus Chrysovirus includes nine species. Chrysoviruses lack an extracellular phase to their life cycle; they are transmitted via intracellular routes within an individual during hyphal growth, in asexual or sexual spores, or between individuals via hyphal anastomosis. There are no known natural vectors for chrysoviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Chrysoviridae, which is available at www.ictv.global/report/chrysoviridae.
NASA Technical Reports Server (NTRS)
Blumrich, J. F. (Inventor)
1974-01-01
The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.
Line fiducial material and thickness considerations for ultrasound calibration
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.
2015-03-01
Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower echogenicity are more accurately segmented in comparison to highly reflective thin phantoms. This improvement in segmentation accuracy leads to a lower fiducial localization error, which ultimately results in low target registration error. This would have a profound effect on calibration procedures and the feasibility of different calibration procedures in the context of image-guided procedures.
Deployable reflector design for Ku-band operation
NASA Technical Reports Server (NTRS)
Tankersley, B. C.
1974-01-01
A project was conducted to extend the deployable antenna technology state-of-the art through the design, analysis, construction, and testing of a lightweight, high surface tolerance, 12.5 foot diameter reflector for Ku-band operation. The applicability of the reflector design to the Tracking and Data Relay Satellite (TDRS) program was one requirement to be met. A documentary of the total program is presented. The performance requirements used to guide and constrain the design are discussed. The radio frequency, structural/dynamic, and thermal performance results are reported. Appendices are used to provide test data and detailed fabrication drawings of the reflector.
Large space deployable antenna systems
NASA Technical Reports Server (NTRS)
1978-01-01
The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.
Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge
NASA Astrophysics Data System (ADS)
Saville, D. A.
2005-11-01
We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.
The GEOS-20 m Cable Boom Mechanism
NASA Technical Reports Server (NTRS)
Schmidt, G. K.; Suttner, K.
1977-01-01
The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.
Conceptual design studies for large free-flying solar-reflector spacecraft
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.; Knapp, K. P. W.
1981-01-01
The 1 km diameter reflecting film surface is supported by a lightweight structure which may be automatically deployed after launch in the Space Shuttle. A twin rotor, control moment gyroscope, with deployable rotors, is included as a primary control actuator. The vehicle has a total specific mass of less than 12 g/sq m including allowances for all required subsystems. The structural elements were sized to accommodate the loads of a typical SOLARES type mission where a swam of these free flying satellites is employed to concentrate sunlight on a number of energy conversion stations on the ground.
Estimation procedure of the efficiency of the heat network segment
NASA Astrophysics Data System (ADS)
Polivoda, F. A.; Sokolovskii, R. I.; Vladimirov, M. A.; Shcherbakov, V. P.; Shatrov, L. A.
2017-07-01
An extensive city heat network contains many segments, and each segment operates with different efficiency of heat energy transfer. This work proposes an original technical approach; it involves the evaluation of the energy efficiency function of the heat network segment and interpreting of two hyperbolic functions in the form of the transcendental equation. In point of fact, the problem of the efficiency change of the heat network depending on the ambient temperature was studied. Criteria dependences used for evaluation of the set segment efficiency of the heat network and finding of the parameters for the most optimal control of the heat supply process of the remote users were inferred with the help of the functional analysis methods. Generally, the efficiency function of the heat network segment is interpreted by the multidimensional surface, which allows illustrating it graphically. It was shown that the solution of the inverse problem is possible as well. Required consumption of the heating agent and its temperature may be found by the set segment efficient and ambient temperature; requirements to heat insulation and pipe diameters may be formulated as well. Calculation results were received in a strict analytical form, which allows investigating the found functional dependences for availability of the extremums (maximums) under the set external parameters. A conclusion was made that it is expedient to apply this calculation procedure in two practically important cases: for the already made (built) network, when the change of the heat agent consumption and temperatures in the pipe is only possible, and for the projecting (under construction) network, when introduction of changes into the material parameters of the network is possible. This procedure allows clarifying diameter and length of the pipes, types of insulation, etc. Length of the pipes may be considered as the independent parameter for calculations; optimization of this parameter is made in accordance with other, economical, criteria for the specific project.
On the Emergence of New Computer Technologies
ERIC Educational Resources Information Center
Asaolu, Olumuyiwa Sunday
2006-01-01
This work presents a review of the development and application of computers. It traces the highlights of emergent computing technologies shaping our world. Recent trends in hardware and software deployment are chronicled as well as their impact on various segments of the society. The expectations for the future are also discussed along with…
Deliberate and Crisis Action Planning and Execution Segments Increment 2A (DCAPES Inc 2A)
2016-03-01
Document DAE - Defense Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full...Jun 2009 DT/OT Completion Jan 2015 Jan 2015 FDD Aug 2015 Oct 2015 FD TBD Oct 2015 Memo DCAPES is a National Security System. Acronyms and
Experimental characterization of deployable trusses and joints
NASA Technical Reports Server (NTRS)
Ikegami, R.; Church, S. M.; Keinholz, D. A.; Fowler, B. L.
1987-01-01
The structural dynamic properties of trusses are strongly affected by the characteristics of joints connecting the individual beam elements. Joints are particularly significant in that they are often the source of nonlinearities and energy dissipation. While the joints themselves may be physically simple, direct measurement is often necessary to obtain a mathematical description suitable for inclusion in a system model. Force state mapping is a flexible, practical test method for obtaining such a description, particularly when significant nonlinear effects are present. It involves measurement of the relationship, nonlinear or linear, between force transmitted through a joint and the relative displacement and velocity across it. An apparatus and procedure for force state mapping are described. Results are presented from tests of joints used in a lightweight, composite, deployable truss built by the Boeing Aerospace Company. The results from the joint tests are used to develop a model of a full 4-bay truss segment. The truss segment was statically and dynamically tested. The results of the truss tests are presented and compared with the analytical predictions from the model.
al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude
2015-12-01
This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images.
Vortex nozzle for segmenting and transporting metal chips from turning operations
Bieg, L.F.
1993-04-20
Apparatus for collecting, segmenting and conveying metal chips from machining operations utilizes a compressed gas driven vortex nozzle for receiving the chip and twisting it to cause the chip to segment through the application of torsional forces to the chip. The vortex nozzle is open ended and generally tubular in shape with a converging inlet end, a constant diameter throat section and a diverging exhaust end. Compressed gas is discharged through angled vortex ports in the nozzle throat section to create vortex flow in the nozzle and through an annular inlet at the entrance to the converging inlet end to create suction at the nozzle inlet and cause ambient air to enter the nozzle. The vortex flow in the nozzle causes the metal chip to segment and the segments thus formed to pass out of the discharge end of the nozzle where they are collected, cleaned and compacted as needed.
Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng
2018-05-01
The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.
Segmented lasing tube for high temperature laser assembly
Sawicki, Richard H.; Alger, Terry W.; Finucane, Raymond G.; Hall, Jerome P.
1996-01-01
A high temperature laser assembly capable of withstanding operating temperatures in excess of 1500.degree. C. is described comprising a segmented cylindrical ceramic lasing tube having a plurality of cylindrical ceramic lasing tube segments of the same inner and outer diameters non-rigidly joined together in axial alignment; insulation of uniform thickness surround the walls of the ceramic lasing tube; a ceramic casing, preferably of quartz, surrounding the insulation; and a fluid cooled metal jacket surrounds the ceramic casing. In a preferred embodiment, the inner surface of each of the ceramic lasing tube segments are provided with a pair of oppositely spaced grooves in the wall thereof parallel to the center axis of the segmented cylindrical ceramic lasing tube, and both of the grooves and the center axis of the segmented cylindrical ceramic lasing tube lie in a common plane, with the grooves in each ceramic lasing tube segment in circumferential alignment with the grooves in the adjoining ceramic lasing tube segments; and one or more ceramic plates, all lying in a common plane to one another and with the central axis of the segmented ceramic lasing tube, are received in the grooves to provide additional wall area in the segmented ceramic lasing tube for collision and return to ground state of metastable metal atoms within the segmented ceramic lasing tube.
Nakamine, Sakari; Sakai, Hiroshi; Arakaki, Yoshikuni; Yonahara, Michiko; Kaiya, Tadayoshi
2018-01-01
To study the effect of the internal fixation lamp on anterior chamber width measured by anterior segment optical coherence tomography. In a prospective cross sectional observational study, consecutive 22 right eyes of 22 patients (4 men and 18 women) with suspected primary angle closure underwent swept source domain anterior segment optical coherence tomography (AS-OCT), (CASIA SS-1000, Tomey, Nagoya, Japan). Anterior chamber parameters of angle opening distance (AOD), trabecular-iris angle (TIA), angle recess area (ARA) at 500 or 750 µm from scleral spur and pupil diameter were measured by AS-OCT in a three-dimensional mode in 4 quadrants (superior, inferior, temporal and nasal) in dark room setting both with and without internal fixation lamp. Anterior segment parameters of AOD 500 in superior, inferior and temporal quadrants, AOD 750 at superior and nasal, TIA 500 at superior, and inferior and TIA 750 at superior and nasal, and ARA 500 or 750 at superior and inferior with internal fixation lamp were greater and the pupil diameter was significantly (all P < 0.05, paired t test) smaller than when measured without fixation lamp. Internal fixation lamp of the anterior segment OCT makes the pupil constrict and angle wider. When using AS-OCT with usual setting with internal fixation lamp on with eyes in which the anterior chamber angle is narrow but open, it is recommended that the internal fixation lamp be turned off to ensure a clear indication as to whether the angle is open or closed in the dark.
NASA Astrophysics Data System (ADS)
Roland, E. C.; Walton, M. A. L.; Ruppert, N. A.; Gulick, S. P. S.; Christeson, G. L.; Haeussler, P. J.
2014-12-01
In January 2013, a Mw 7.5 earthquake ruptured a segment of the Queen Charlotte Fault offshore the town of Craig in southeast Alaska. The region of the fault that slipped during the Craig earthquake is adjacent to and possibly overlapping with the northern extent of the 1949 M 8.1 Queen Charlotte earthquake rupture (Canada's largest recorded earthquake), and is just south of the rupture area of the 1972 M 7.6 earthquake near Sitka, Alaska. Here we present aftershock locations and focal mechanisms for events that occurred four months following the mainshock using data recorded on an Ocean Bottom Seismometer (OBS) array that was deployed offshore of Prince of Wales Island. This array consisted of 9 short period instruments surrounding the fault segment, and recorded hundreds of aftershocks during the months of April and May, 2013. In addition to highlighting the primary mainshock rupture plane, aftershocks also appear to be occurring along secondary fault structures adjacent to the main fault trace, illuminating complicated structure, particularly toward the northern extent of the Craig rupture. Focal mechanisms for the larger events recorded during the OBS deployment show both near-vertical strike slip motion consistent with the mainshock mechanism, as well as events with varying strike and a component of normal faulting. Although fault structure along this northern segment of the QCF appears to be considerably simpler than to the south, where a higher degree of oblique convergence leads to sub-parallel compressional deformation structures, secondary faulting structures apparent in legacy seismic reflection data near the Craig rupture may be consistent with the observed seismicity patterns. In combination, these data may help to characterize structural heterogeneity along the northern segment of the Queen Charlotte Fault that contributes to rupture segmentation during large strike slip events.
Patch-based automatic retinal vessel segmentation in global and local structural context.
Cao, Shuoying; Bharath, Anil A; Parker, Kim H; Ng, Jeffrey
2012-01-01
In this paper, we extend our published work [1] and propose an automated system to segment retinal vessel bed in digital fundus images with enough adaptability to analyze images from fluorescein angiography. This approach takes into account both the global and local context and enables both vessel segmentation and microvascular centreline extraction. These tools should allow researchers and clinicians to estimate and assess vessel diameter, capillary blood volume and microvascular topology for early stage disease detection, monitoring and treatment. Global vessel bed segmentation is achieved by combining phase-invariant orientation fields with neighbourhood pixel intensities in a patch-based feature vector for supervised learning. This approach is evaluated against benchmarks on the DRIVE database [2]. Local microvascular centrelines within Regions-of-Interest (ROIs) are segmented by linking the phase-invariant orientation measures with phase-selective local structure features. Our global and local structural segmentation can be used to assess both pathological structural alterations and microemboli occurrence in non-invasive clinical settings in a longitudinal study.
Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H
2013-04-01
Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.
Huo, Yuankai; Xu, Zhoubing; Bao, Shunxing; Bermudez, Camilo; Plassard, Andrew J.; Liu, Jiaqi; Yao, Yuang; Assad, Albert; Abramson, Richard G.; Landman, Bennett A.
2018-01-01
Spleen volume estimation using automated image segmentation technique may be used to detect splenomegaly (abnormally enlarged spleen) on Magnetic Resonance Imaging (MRI) scans. In recent years, Deep Convolutional Neural Networks (DCNN) segmentation methods have demonstrated advantages for abdominal organ segmentation. However, variations in both size and shape of the spleen on MRI images may result in large false positive and false negative labeling when deploying DCNN based methods. In this paper, we propose the Splenomegaly Segmentation Network (SSNet) to address spatial variations when segmenting extraordinarily large spleens. SSNet was designed based on the framework of image-to-image conditional generative adversarial networks (cGAN). Specifically, the Global Convolutional Network (GCN) was used as the generator to reduce false negatives, while the Markovian discriminator (PatchGAN) was used to alleviate false positives. A cohort of clinically acquired 3D MRI scans (both T1 weighted and T2 weighted) from patients with splenomegaly were used to train and test the networks. The experimental results demonstrated that a mean Dice coefficient of 0.9260 and a median Dice coefficient of 0.9262 using SSNet on independently tested MRI volumes of patients with splenomegaly.
Progress in composite structure and space construction systems technology
NASA Technical Reports Server (NTRS)
Bodle, J. B.; Jenkins, L. M.
1981-01-01
The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, workers from NASA's Glenn Research Center remove the blue shrink-wrapped covers on these Ares I-X upper stage simulator segments. The protective covers were used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, workers from NASA's Glenn Research Center remove the blue shrink-wrapped covers on these Ares I-X upper stage simulator segments. The protective covers were used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, workers from NASA's Glenn Research Center remove the blue shrink-wrapped covers on these Ares I-X upper stage simulator segments. The protective covers were used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
2008-11-06
CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building high bay 4 at NASA's Kennedy Space Center in Florida, workers from NASA's Glenn Research Center remove the blue shrink-wrapped covers on these Ares I-X upper stage simulator segments. The protective covers were used for shipping. The upper stage simulator will be used in the test flight identified as Ares I-X in 2009. The segments will simulate the mass and the outer mold line and will be more than 100 feet of the total vehicle height of 327 feet. The simulator comprises 11 segments that are approximately 18 feet in diameter. Most of the segments will be approximately 10 feet high, ranging in weight from 18,000 to 60,000 pounds, for a total of approximately 450,000 pounds. Photo credit: NASA/Troy Cryder
Abdominal aortic aneurysm neck remodeling after open aneurysm repair.
Falkensammer, Juergen; Oldenburg, W Andrew; Biebl, Matthias; Hugl, Beate; Hakaim, Albert G; Crook, Julia E; Berland, Todd L; Paz-Fumagalli, Ricardo
2007-05-01
Proximal endovascular aortic graft fixation and maintenance of hemostatic seal depends on the long-term stability of the aortic neck. Previous investigations of aortic neck dilation mostly focused on the infrarenal aortic diameter. Fenestrated and branched stent grafts facilitate suprarenal graft fixation and may thereby improve the long-term integrity of the aortic attachment site. For these devices, the natural history of the suprarenal aortic segment is also of interest. We investigated the natural history of the supra- and infrarenal aortic segment after open abdominal aortic aneurysm (AAA) repair. For this retrospective analysis, we reviewed the preoperative and the initial postoperative as well as the most recent CT series that were obtained from 52 patients undergoing conventional repair of an infrarenal abdominal aortic aneurysm between January 1998 and December 2002. Measurements were performed using electronic calipers on a "split screen", allowing direct comparison of subsequent CT series at corresponding levels along the vessel. Main outcome measures were changes in postoperative measures of the supra- and infrarenal aortic diameters. The first postoperative exam was at a mean (+/-SD) of 7.0 +/- 3.5 months, and the final exams were at 44.4 +/- 21 months. Over this time period, the estimated rate of change in suprarenal diameter was 0.18 mm/ y with 95% confidence interval (CI) from 0.08 to 0.27. The estimated rate of change for the infrarenal diameter was 0.16 (95% CI: 0.05 to 0.27). A clinically relevant diameter increase of >or=3 mm was observed in seven patients (13%). There was evidence of larger diameter increases associated with larger AAA diameters (P = .003 and <.001 for suprarenal and infrarenal diameters), an inverted funnel shape (P = .002 and <.001), and marginal evidence of association with a history of inguinal hernia (P = .043 and .066). Although there is statistically significant evidence of increases in the supra- and infrarenal aortic diameters after conventional AAA repair, mean annual increases tended to be small and clinically relevant increases of 3 mm or more were observed in only a small proportion of cases.
Multivariable Parametric Cost Model for Ground Optical Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2005-01-01
A parametric cost model for ground-based telescopes is developed using multivariable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction-limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature are examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e., multi-telescope phased-array systems). Additionally, single variable models Based on aperture diameter are derived.
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-01-01
This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates. PMID:22969369
Pilot Study for OCT Guided Design and Fit of a Prosthetic Device for Treatment of Corneal Disease.
Le, Hong-Gam T; Tang, Maolong; Ridges, Ryan; Huang, David; Jacobs, Deborah S
2012-01-01
Purpose. To assess optical coherence tomography (OCT) for guiding design and fit of a prosthetic device for corneal disease. Methods. A prototype time domain OCT scanner was used to image the anterior segment of patients fitted with large diameter (18.5-20 mm) prosthetic devices for corneal disease. OCT images were processed and analyzed to characterize corneal diameter, corneal sagittal height, scleral sagittal height, scleral toricity, and alignment of device. Within-subject variance of OCT-measured parameters was evaluated. OCT-measured parameters were compared with device parameters for each eye fitted. OCT image correspondence with ocular alignment and clinical fit was assessed. Results. Six eyes in 5 patients were studied. OCT measurement of corneal diameter (coefficient of variation, CV = 0.76%), cornea sagittal height (CV = 2.06%), and scleral sagittal height (CV = 3.39%) is highly repeatable within each subject. OCT image-derived measurements reveal strong correlation between corneal sagittal height and device corneal height (r = 0.975) and modest correlation between scleral and on-eye device toricity (r = 0.581). Qualitative assessment of a fitted device on OCT montages reveals correspondence with slit lamp images and clinical assessment of fit. Conclusions. OCT imaging of the anterior segment is suitable for custom design and fit of large diameter (18.5-20 mm) prosthetic devices used in the treatment of corneal disease.
Allam, Riham S. H. M.; Ahmed, Rania A.
2015-01-01
Purpose. To study features of the lower punctum in normal subjects using spectral domain anterior segment optical coherence tomography (SD AS-OCT). Methods. Observational cross-sectional study that included 147 punctae (76 subjects). Punctae were evaluated clinically for appearance, position, and size. AS-OCT was used to evaluate the punctal shape, contents, and junction with the vertical canaliculus. Inner and outer diameters as well as depth were measured. Results. 24 males and 52 females (mean age 44 ± 14.35 y) were included. Lower punctum was perceived by OCT to be an area with an outer diameter (mean 412.16 ± 163 μm), inner diameter (mean 233.67 ± 138.73 μm), and depth (mean 251.7 ± 126.58 μm). The OCT measured outer punctum diameter was significantly less than that measured clinically (P: 0.000). Seven major shapes were identified. The junction with the vertical canaliculus was detectable in 44%. Fluid was detected in 34%, one of which had an air bubble; however, 63% of punctae showed no contents and 4% had debris. Conclusions. AS-OCT can be a useful tool in understanding the anatomy of the punctum and distal lacrimal system as well as tear drainage physiology. Measuring the punctum size may play a role in plugs fitting. PMID:26090219
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooker, J.N.
This report describes an investigation of energy consumption and efficiency of oil pipelines in the US in 1978. It is based on a simulation of the actual movement of oil on a very detailed representation of the pipeline network, and it uses engineering equations to calculate the energy that pipeline pumps must have exerted on the oil to move it in this manner. The efficiencies of pumps and drivers are estimated so as to arrive at the amount of energy consumed at pumping stations. The throughput in each pipeline segment is estimated by distributing each pipeline company's reported oil movementsmore » over its segments in proportions predicted by regression equations that show typical throughput and throughput capacity as functions of pipe diameter. The form of the equations is justified by a generalized cost-engineering study of pipelining, and their parameters are estimated using new techniques developed for the purpose. A simplified model of flow scheduling is chosen on the basis of actual energy use data obtained from a few companies. The study yields energy consumption and intensiveness estimates for crude oil trunk lines, crude oil gathering lines and oil products lines, for the nation as well as by state and by pipe diameter. It characterizes the efficiency of typical pipelines of various diameters operating at capacity. Ancillary results include estimates of oil movements by state and by diameter and approximate pipeline capacity utilization nationwide.« less
Teixidó, Mercè; Font, Davinia; Pallejà, Tomàs; Tresanchez, Marcel; Nogués, Miquel; Palacín, Jordi
2012-01-01
This work proposes the detection of red peaches in orchard images based on the definition of different linear color models in the RGB vector color space. The classification and segmentation of the pixels of the image is then performed by comparing the color distance from each pixel to the different previously defined linear color models. The methodology proposed has been tested with images obtained in a real orchard under natural light. The peach variety in the orchard was the paraguayo (Prunus persica var. platycarpa) peach with red skin. The segmentation results showed that the area of the red peaches in the images was detected with an average error of 11.6%; 19.7% in the case of bright illumination; 8.2% in the case of low illumination; 8.6% for occlusion up to 33%; 12.2% in the case of occlusion between 34 and 66%; and 23% for occlusion above 66%. Finally, a methodology was proposed to estimate the diameter of the fruits based on an ellipsoidal fitting. A first diameter was obtained by using all the contour pixels and a second diameter was obtained by rejecting some pixels of the contour. This approach enables a rough estimate of the fruit occlusion percentage range by comparing the two diameter estimates.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Preisser, John S.
1968-01-01
A 40-foot (12.2 meter) nominal-diameter disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator Program (SPED-I). The test parachute was ejected by a deployment mortar from an instrumented payload at an altitude of 140,000 feet (42.5 kilometers). The payload was at a Mach number of 1.91 and the dynamic pressure was 11.6 pounds per square foot (555 newtons per square meter) at the time the parachute deployment mortar was fired. The parachute reached suspension line stretch in 0.43 second with a resultant snatch force loading of 1990 pounds (8850 newtons). The maximum parachute opening load of 6500 pounds (28,910 newtons) came 0.61 second later at a total elapsed time from mortar firing of 1.04 seconds. The first full inflation occurred at 1.12 seconds and stable inflation was achieved at approximately 1.60 seconds. The parachute had an average axial-force coefficient of 0.53 during the deceleration period. During the steady-state descent portion of the flight test, the average effective drag coefficient was also 0.53 and pitch-yaw oscillations of the canopy averaged less than 10 degrees in the altitude region above 100,000 feet (30.5 meters).
NASA Technical Reports Server (NTRS)
Preisser, John S.; Eckstrom, Clinton V.; Murrow, Harold N.
1967-01-01
A 31.2-foot (9.51 meter) nominal diameter (reference area 764 ft(exp 2) (71.0 m(exp 2)) ringsail parachute modified to provide 15-percent geometric porosity was flight tested while attached to a 201-pound mass (91.2 kilogram) instrumented payload as part of the rocket launch portion of the NASA Planetary Entry Parachute Program (PEPP). The parachute deployment was initiated by the firing of a mortar at a Mach number of 1.39 and a dynamic pressure of 11.0 lb/ft(exp 2) (527 newtons/m(exp 2)) at an altitude of 122,500 feet (37.3 kilometers). The parachute deployed to suspension-line stretch (snatch force) in 0.35 second, and 0.12 second later the drag force increase associated with parachute inflation began. The parachute inflated in 0.24 second to the full-open condition for a total elapsed opening time of 0.71 second. The maximum opening load of 3970 pounds (17,700 newtons) came at the time the parachute was just fully opened. During the deceleration period, the parachute exhibited an average drag coefficient of 0.52 and oscillations of the parachute canopy were less than 5 degrees. During the steady-state terminal descent portion of the test period, the average effective drag coefficient (based on vertical descent velocity) was 0.52.
NASA Astrophysics Data System (ADS)
Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Sugiura, Toshihiko; Tanabe, Nobuhiro; Kusumoto, Masahiko; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 lowdose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening.
Development of surface metrology for the Giant Magellan Telescope primary mirror
NASA Astrophysics Data System (ADS)
Burge, J. H.; Davison, W.; Martin, H. M.; Zhao, C.
2008-07-01
The Giant Magellan Telescope achieves 25 meter aperture and modest length using an f/0.7 primary mirror made from 8.4 meter diameter segments. The systems that will be used for measuring the aspheric optical surfaces of these mirrors are in the final phase of development. This paper discusses the overall metrology plan and shows details for the development of the principal test system - a system that uses mirrors and holograms to provide a null interferometric test of the surface. This system provides a full aperture interferometric measurement of the off-axis segments by compensating the 14.5 mm aspheric departure with a tilted 3.8-m diameter powered mirror, a 77 cm tilted mirror, and a computer generated hologram. The interferometric measurements are corroborated with a scanning slope measurement from a scanning pentaprism system and a direct measurement system based on a laser tracker.
Comparison of different ligature materials used for T-tube esophageal exclusion.
Lee, Y C; Luh, S P; Tsai, C C; Hsu, H C; Chu, S H
1992-03-01
Four different ligature materials--plain catgut, chromic catgut, dexon and silk--were used for ligature of the distal arm during T-tube exclusion of the cervical esophagus in 12 dogs. Ligature by plain catgut was maintained for only a short period, but the duration of esophageal occlusion with the other three ligature materials was around 10 days. Ligated esophageal segments were examined grossly and histologically two months after the procedure. The diameter of the esophageal lumen in the ligated segments had become smaller compared with the neighboring normal esophageal lumen. The most prominent histologic changes were atrophy and fibrosis of the muscle coat, vessel congestion and inflammatory cell infiltration in the ligated segments. These tissue reactions were more severe in the chromic catgut and silk ligatures. Among the 11 evaluable dogs, four had symptoms of dysphagia after removal of the T-tube. All four dogs had a sinus discharge and granuloma formation at the T-tube esophagostoma. The diameter of the esophageal lumen was more constricted in dogs with dysphagia. Among the four ligature materials, dexon had the advantages of a long duration of occlusion, less tissue fibrosis and little sequel of esophageal stenosis, making it the most suitable for ligature during esophageal exclusion.
Optimizing Soft Tissue Management and Spacer Design in Segmental Bone Defects
2016-12-01
proximal and distal bone segments. 3. Debride 10 grams of tibialis anterior and gastrocnemius muscles. 4. Place an interlocking intramedullary nail ...using a custom spacer to maintain 5-cm defect length. 5. Place a pre-molded 5 cm long x 2 cm diameter PMMA spacer around the nail in the defect. 6...tibia. 3. Open the IM surrounding the PMMA spacer using a “bomb bay door opening”. 4. Remove the spacer without damaging the membrane or nail . 5
NASA Astrophysics Data System (ADS)
Lestari Widaningrum, Dyah
2014-03-01
This research aims to investigate the importance of take-out food packaging attributes, using conjoint analysis and QFD approach among consumers of take-out food products in Jakarta, Indonesia. The conjoint results indicate that perception about packaging material (such as paper, plastic, and polystyrene foam) plays the most important role overall in consumer perception. The clustering results that there is strong segmentation in which take-out food packaging material consumer consider most important. Some consumers are mostly oriented toward the colour of packaging, while another segment of customers concerns on packaging shape and packaging information. Segmentation variables based on packaging response can provide very useful information to maximize image of products through the package's impact. The results of House of Quality development described that Conjoint Analysis - QFD is a useful combination of the two methodologies in product development, market segmentation, and the trade off between customers' requirements in the early stages of HOQ process
Enterprise Deployment Through PulseRider To Treat Anterior Communicating Artery Aneurysm Recurrence.
Valente, Iacopo; Limbucci, Nicola; Nappini, Sergio; Rosi, Andrea; Laiso, Antonio; Mangiafico, Salvatore
2018-02-01
PulseRider (Pulsar Vascular, Los Gatos, California, USA) is a new endovascular device designed to treat wide-neck bifurcation intracranial aneurysms. Deployment of a stent through a PulseRider to treat an aneurysm's recurrence has never been described before. We report the case of a 55-year-old man who underwent coiling of an 8-mm anterior communicating artery aneurysm with assistance of a PulseRider neck reconstruction device. The 6-month digital subtraction angiography control showed aneurysm recurrence, so we deployed an Enterprise 2 closed-cell stent (Codman, Miami Lakes, Florida, USA) in the A1-A2 segment passing across the previously implanted PulseRider. Enterprise correctly expanded and allowed for adequate coiling of the aneurysm. An Enterprise stent can be safely opened through a PulseRider in order to treat aneurysm recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.
Pulmonary artery segmentation and quantification in sickle cell associated pulmonary hypertension
NASA Astrophysics Data System (ADS)
Linguraru, Marius George; Mukherjee, Nisha; Van Uitert, Robert L.; Summers, Ronald M.; Gladwin, Mark T.; Machado, Roberto F.; Wood, Bradford J.
2008-03-01
Pulmonary arterial hypertension is a known complication associated with sickle-cell disease; roughly 75% of sickle cell disease-afflicted patients have pulmonary arterial hypertension at the time of death. This prospective study investigates the potential of image analysis to act as a surrogate for presence and extent of disease, and whether the size change of the pulmonary arteries of sickle cell patients could be linked to sickle-cell associated pulmonary hypertension. Pulmonary CT-Angiography scans from sickle-cell patients were obtained and retrospectively analyzed. Randomly selected pulmonary CT-Angiography studies from patients without sickle-cell anemia were used as negative controls. First, images were smoothed using anisotropic diffusion. Then, a combination of fast marching and geodesic active contours level sets were employed to segment the pulmonary artery. An algorithm based on fast marching methods was used to compute the centerline of the segmented arteries. From the centerline, the diameters at the pulmonary trunk and first branch of the pulmonary arteries were measured automatically. Arterial diameters were normalized to the width of the thoracic cavity, patient weight and body surface. Results show that the pulmonary trunk and first right and left pulmonary arterial branches at the pulmonary trunk junction are significantly larger in diameter with increased blood flow in sickle-cell anemia patients as compared to controls (p values of 0.0278 for trunk and 0.0007 for branches). CT with image processing shows great potential as a surrogate indicator of pulmonary hemodynamics or response to therapy, which could be an important tool for drug discovery and noninvasive clinical surveillance.
Mo, Shelley; Krawitz, Brian; Efstathiadis, Eleni; Geyman, Lawrence; Weitz, Rishard; Chui, Toco Y P; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B
2016-07-01
To compare the use of optical coherence tomography angiography (OCTA) and adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA) for characterizing the foveal microvasculature in healthy and vasculopathic eyes. Four healthy controls and 11 vasculopathic patients (4 diabetic retinopathy, 4 retinal vein occlusion, and 3 sickle cell retinopathy) were imaged with OCTA and AOSLO FA. Foveal perfusion maps were semiautomatically skeletonized for quantitative analysis, which included foveal avascular zone (FAZ) metrics (area, perimeter, acircularity index) and vessel density in three concentric annular regions of interest. On each set of OCTA and AOSLO FA images, matching vessel segments were used for lumen diameter measurement. Qualitative image comparisons were performed by visual identification of microaneurysms, vessel loops, leakage, and vessel segments. Adaptive optics scanning light ophthalmoscope FA and OCTA showed no statistically significant differences in FAZ perimeter, acircularity index, and vessel densities. Foveal avascular zone area, however, showed a small but statistically significant difference of 1.8% (P = 0.004). Lumen diameter was significantly larger on OCTA (mean difference 5.7 μm, P < 0.001). Microaneurysms, fine structure of vessel loops, leakage, and some vessel segments were visible on AOSLO FA but not OCTA, while blood vessels obscured by leakage were visible only on OCTA. Optical coherence tomography angiography is comparable to AOSLO FA at imaging the foveal microvasculature except for differences in FAZ area, lumen diameter, and some qualitative features. These results, together with its ease of use, short acquisition time, and avoidance of potentially phototoxic blue light, support OCTA as a tool for monitoring ocular pathology and detecting early disease.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist Patrick Forrester completes his suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
Multivariable Parametric Cost Model for Ground Optical: Telescope Assembly
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes; Reese, Gayle; Byberg, Alicia
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis of both engineering and performance parameters. While diameter continues to be the dominant cost driver, diffraction limited wavelength is found to be a secondary driver. Other parameters such as radius of curvature were examined. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter were derived.
NASA Astrophysics Data System (ADS)
Afonso Dias, Nuno; Afilhado, Alexandra; Schnürle, Philippe; Gallais, Flora; Soares, José; Fuck, Reinhardt; Cupertino, José; Viana, Adriano; Moulin, Maryline; Aslanian, Daniel; Matias, Luís; Evain, Mikael; Loureiro, Afonso
2017-04-01
The deep crustal structure of the North-East equatorial Brazilian margin, was investigated during the MAGIC (Margins of brAzil, Ghana and Ivory Coast) joint project, conducted in 2012. The main goal set to understand the fundamental processes leading to the thinning and finally breakup of the continental crust, in a context of a Pull-apart system with two strike-slip borders. The offshore Barreirinhas Basin, was probed by a set of 5 intersecting deep seismic wide-angle profiles, with the deployment of short-period OBS's from IFREMER and land stations from the Brazilian pool. The experiment was devoted to obtain the 2D structure along the directions of flow lines, parallel to margin segmentation and margin segmentation, from tomography and forward modeling. The OBS's deployed recorded also lateral shooting along some profiles, allowing a 3D tomography inversion complementing the results of 2D modeling. Due to the large variation of the water column thickness, heterogeneous crustal structure and Moho depth, several approaches were tested to generate initial input models, to set the grid parameterization and inversion parameters. The assessment of the 3D model was performed by standard synthetic tests and comparison with the obtained 2D forward models. The results evidence a NW-SE segmentation of the margin, following the opening direction of this pull-apart basin, and N-S segmentation that marks the passage between Basins II-III. The signature of the segmentation is evident in the tomograms, where the shallowing of the basement from Basin II towards the oceanic domain is well marked by a NW-SE velocity gradient. Both 2D forward modeling and 3D tomographic inversion indicate a N-S segmentation in the proto-oceanic and oceanic domains, at least at the shallow mantle level. In the southern area the mantle is much faster than on the north. In all profiles crossing Basin II, a deep layer with velocities of 7-4-7.6 km/s generates both refracted as well as reflected phases from its boundaries, in agreement with the 3D model, which indicate a much more gradual transition of crustal velocities to mantle-velocities, than in the remaining segments. The intersection of Basins II, III and proto-oceanic crust is well marked by the absence of seismic energy propagation at deep crust to mantle levels, with no lateral arrival being recorded. Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Formation of nanogaps in InAs nanowires by selectively etching embedded InP segments.
Schukfeh, M I; Storm, K; Hansen, A; Thelander, C; Hinze, P; Beyer, A; Weimann, T; Samuelson, L; Tornow, M
2014-11-21
We present a method to fabricate nanometer scale gaps within InAs nanowires by selectively etching InAs/InP heterostructure nanowires. We used vapor-liquid-solid grown InAs nanowires with embedded InP segments of 10-60 nm length and developed an etching recipe to selectively remove the InP segment. A photo-assisted wet etching process in a mixture of acetic acid and hydrobromic acid gave high selectivity, with accurate removal of InP segments down to 20 nm, leaving the InAs wire largely unattacked, as verified using scanning electron and transmission electron microscopy. The obtained nanogaps in InAs wires have potential as semiconducting electrodes to investigate electronic transport in nanoscale objects. We demonstrate this functionality by dielectrophoretically trapping 30 nm diameter gold nanoparticles into the gap.
Rohlffs, Fiona; Tsilimparis, Nikolaos; Saleptsis, Vasilis; Diener, Holger; Debus, E Sebastian; Kölbel, Tilo
2017-02-01
To investigate the amount of gas released from Zenith thoracic stent-grafts using standard saline flushing vs the carbon dioxide flushing technique. In an experimental bench setting, 20 thoracic stent-grafts were separated into 2 groups of 10 endografts. One group of grafts was flushed with 60 mL saline and the other group was flushed with carbon dioxide for 5 minutes followed by 60 mL saline. All grafts were deployed into a water-filled container with a curved plastic pipe; the deployment was recorded and released gas was measured using a calibrated setup. Gas was released from all grafts in both study groups during endograft deployment. The average amount of released gas per graft was significantly lower in the study group with carbon dioxide flushing (0.79 vs 0.51 mL, p=0.005). Thoracic endografts release significant amounts of air during deployment if flushed according to the instructions for use. Application of carbon dioxide for the flushing of thoracic stent-grafts prior to standard saline flush significantly reduces the amount of gas released during deployment. The additional use of carbon dioxide should be considered as a standard flush technique for aortic stent-grafts, especially in those implanted in proximal aortic segments, to reduce the risk of air embolism and stroke.
Metering Wheel-Wire Track Wire Boom Deployment Mechanism
NASA Technical Reports Server (NTRS)
Granoff, Mark S.
2014-01-01
The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.
NASA Astrophysics Data System (ADS)
West, S. C.; Burge, J. H.; Cuerden, B.; Davison, W.; Hagen, J.; Martin, H. M.; Tuell, M. T.; Zhao, C.; Zobrist, T.
2010-07-01
The Giant Magellan Telescope has a 25 meter f/0.7 near-parabolic primary mirror constructed from seven 8.4 meter diameter segments. Several aspects of the interferometric optical test used to guide polishing of the six off-axis segments go beyond the demonstrated state of the art in optical testing. The null corrector is created from two obliquelyilluminated spherical mirrors combined with a computer-generated hologram (the measurement hologram). The larger mirror is 3.75 m in diameter and is supported at the top of a test tower, 23.5 m above the GMT segment. Its size rules out a direct validation of the wavefront produced by the null corrector. We can, however, use a reference hologram placed at an intermediate focus between the two spherical mirrors to measure the wavefront produced by the measurement hologram and the first mirror. This reference hologram is aligned to match the wavefront and thereby becomes the alignment reference for the rest of the system. The position and orientation of the reference hologram, the 3.75 m mirror and the GMT segment are measured with a dedicated laser tracker, leading to an alignment accuracy of about 100 microns over the 24 m dimensions of the test. In addition to the interferometer that measures the GMT segment, a separate interferometer at the center of curvature of the 3.75 m sphere monitors its figure simultaneously with the GMT measurement, allowing active correction and compensation for residual errors. We describe the details of the design, alignment, and use of this unique off-axis optical test.
de Hoop, Bartjan; Gietema, Hester; van Ginneken, Bram; Zanen, Pieter; Groenewegen, Gerard; Prokop, Mathias
2009-04-01
We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules >or=8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages.
NASA Astrophysics Data System (ADS)
Sauvage, Marc; Amiaux, Jérome; Austin, James; Bello, Mara; Bianucci, Giovanni; Chesné, Simon; Citterio, Oberto; Collette, Christophe; Correia, Sébastien; Durand, Gilles A.; Molinari, Sergio; Pareschi, Giovanni; Penfornis, Yann; Sironi, Giorgia; Valsecchi, Giuseppe; Verpoort, Sven; Wittrock, Ulrich
2016-07-01
Astronomy is driven by the quest for higher sensitivity and improved angular resolution in order to detect fainter or smaller objects. The far-infrared to submillimeter domain is a unique probe of the cold and obscured Universe, harboring for instance the precious signatures of key elements such as water. Space observations are mandatory given the blocking effect of our atmosphere. However the methods we have relied on so far to develop increasingly larger telescopes are now reaching a hard limit, with the JWST illustrating this in more than one way (e.g. it will be launched by one of the most powerful rocket, it requires the largest existing facility on Earth to be qualified). With the Thinned Aperture Light Collector (TALC) project, a concept of a deployable 20 m annular telescope, we propose to break out of this deadlock by developing novel technologies for space telescopes, which are disruptive in three aspects: • An innovative deployable mirror whose topology, based on stacking rather than folding, leads to an optimum ratio of collecting area over volume, and creates a telescope with an eight times larger collecting area and three times higher angular resolution compared to JWST from the same pre-deployed volume; • An ultra-light weight segmented primary mirror, based on electrodeposited Nickel, Composite and Honeycomb stacks, built with a replica process to control costs and mitigate the industrial risks; • An active optics control layer based on piezo-electric layers incorporated into the mirror rear shell allowing control of the shape by internal stress rather than by reaction on a structure. We present in this paper the roadmap we have built to bring these three disruptive technologies to technology readiness level 3. We will achieve this goal through design and realization of representative elements: segments of mirrors for optical quality verification, active optics implemented on representative mirror stacks to characterize the shape correction capabilities, and mechanical models for validation of the deployment concept. Accompanying these developments, a strong system activity will ensure that the ultimate goal of having an integrated system can be met, especially in terms of (a) scalability toward a larger structure, and (b) verification philosophy.
End-to-end commissioning demonstration of the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Acton, D. Scott; Towell, Timothy; Schwenker, John; Shields, Duncan; Sabatke, Erin; Contos, Adam R.; Hansen, Karl; Shi, Fang; Dean, Bruce; Smith, Scott
2007-09-01
The one-meter Testbed Telescope (TBT) has been developed at Ball Aerospace to facilitate the design and implementation of the wavefront sensing and control (WFSC) capabilities of the James Webb Space Telescope (JWST). We have recently conducted an "end-to-end" demonstration of the flight commissioning process on the TBT. This demonstration started with the Primary Mirror (PM) segments and the Secondary Mirror (SM) in random positions, traceable to the worst-case flight deployment conditions. The commissioning process detected and corrected the deployment errors, resulting in diffraction-limited performance across the entire science FOV. This paper will describe the commissioning demonstration and the WFSC algorithms used at each step in the process.
Meteorological buoy measurements in the Iceland Sea, 2007-2009
NASA Astrophysics Data System (ADS)
Nína Petersen, Guðrún
2017-10-01
The Icelandic Meteorological Office (IMO) conducted meteorological buoy measurements in the central Iceland Sea in the time period 2007-2009, specifically in the northern Dreki area on the southern segment of the Jan Mayen Ridge. Due to difficulties in deployment and operations, in situ measurements in this region are sparse. Here the buoy, deployment and measurements are described with the aim of giving a future user of the data set information that is as comprehensive as possible. The data set has been quality-checked, suspect data removed and the data set made publicly available from PANGAEA Data Publisher (https://doi.org/10.1594/PANGAEA.876206).
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
Zhang, Yuyang; Xing, Zhen; She, Dejun; Huang, Nan; Cao, Dairong
2018-01-01
Purpose The aim of this study was to prospectively evaluate the repeatability of non–contrast-enhanced lower-extremity magnetic resonance angiography using the flow-spoiled fresh blood imaging (FS-FBI). Methods Forty-three healthy volunteers and 15 patients with lower-extremity arterial stenosis were recruited in this study and were examined by FS-FBI. Digital subtraction angiography was performed within a week after the FS-FBI in the patient group. Repeatability was assessed by the following parameters: grading of image quality, diameter and area of major arteries, and grading of stenosis of lower-extremity arteries. Two experienced radiologists blinded for patient data independently evaluated the FS-FBI and digital subtraction angiography images. Intraclass correlation coefficients (ICCs), sensitivity, and specificity were used for statistical analysis. Results The grading of image quality of most data was satisfactory. The ICCs for the first and second measures were 0.792 and 0.884 in the femoral segment and 0.803 and 0.796 in the tibiofibular segment for healthy volunteer group, 0.873 and 1.000 in the femoral segment, and 0.737 and 0.737 in the tibiofibular segment for the patient group. Intraobserver and interobserver agreements on diameter and area of arteries were excellent, with ICCs mostly greater than 0.75 in the volunteer group. For stenosis grading analysis, intraobserver ICCs range from 0.784 to 0.862 and from 0.778 to 0.854, respectively. Flow-spoiled fresh blood imaging yielded a mean sensitivity and specificity to detect arterial stenosis or occlusion of 90% and 80% for femoral segment and 86.7% and 93.3% for tibiofibular segment at least. Conclusions Lower-extremity angiography with FS-FBI is a reliable and reproducible screening tool for lower-extremity atherosclerotic disease, especially for patients with impaired renal function. PMID:28787351
Gender differences of airway dimensions in anatomically matched sites on CT in smokers.
Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A; Washko, George; Murphy, James R; Wilson, Carla; Hokanson, John E; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P; Copdgene Investigators
2011-08-01
There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm(2) for segmental bronchial lumen area, 10.4 vs 12.5 mm(2) for subsegmental bronchi, 6.5 vs 7.7 mm(2) for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation.
Rodrigues, É O; Morais, F F C; Morais, N A O S; Conci, L S; Neto, L V; Conci, A
2016-01-01
The deposits of fat on the surroundings of the heart are correlated to several health risk factors such as atherosclerosis, carotid stiffness, coronary artery calcification, atrial fibrillation and many others. These deposits vary unrelated to obesity, which reinforces its direct segmentation for further quantification. However, manual segmentation of these fats has not been widely deployed in clinical practice due to the required human workload and consequential high cost of physicians and technicians. In this work, we propose a unified method for an autonomous segmentation and quantification of two types of cardiac fats. The segmented fats are termed epicardial and mediastinal, and stand apart from each other by the pericardium. Much effort was devoted to achieve minimal user intervention. The proposed methodology mainly comprises registration and classification algorithms to perform the desired segmentation. We compare the performance of several classification algorithms on this task, including neural networks, probabilistic models and decision tree algorithms. Experimental results of the proposed methodology have shown that the mean accuracy regarding both epicardial and mediastinal fats is 98.5% (99.5% if the features are normalized), with a mean true positive rate of 98.0%. In average, the Dice similarity index was equal to 97.6%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2011-01-01
Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.
The Structure Of The Gaia Deployable Sunshield Assembly
NASA Astrophysics Data System (ADS)
Pereira, Carlos; Urgoiti, Eduardo; Pinto, Inaki
2012-07-01
GAIA is an ESA mission with launch date in 2013. Its main objective is to map the stars. After launch it will unfold a 10.2 m diameter sunshield .The structure of this shield consists of twelve 3.5 meter long composite trusses which act as scaffold to two multilayer insulation blankets. Due to thermal stability constraints the planarity of the shield must be better than 1.0 mm. The trusses are therefore lightweight structures capable of withstanding the launch loads and once deployed, the thermal environment of the spacecraft with a minimum of distortion. This paper details: • The material selection for the composite structure • Validation of the chosen materials and truss layout • The modification of manufacturing process in order to lightweight the structure • The extensive structural and thermal stability testing The sunshield has been delivered to the satellite prime after successful mechanical, thermal and deployment tests.
Translocation of 40 nm diameter nanowires through the intestinal epithelium of Daphnia magna
Mattsson, Karin; Adolfsson, Karl; Ekvall, Mikael T.; Borgström, Magnus T.; Linse, Sara; Hansson, Lars-Anders; Cedervall, Tommy; Prinz, Christelle N.
2016-01-01
Abstract Nanowires (NWs) have unique electrical and optical properties of value for many applications including lighting, sensing, and energy harnessing. Consumer products containing NWs increase the risk of NWs being released in the environment, especially into aquatic ecosystems through sewage systems. Daphnia magna is a common, cosmopolitan freshwater organism sensitive to toxicity tests and represents a likely entry point for nanoparticles into food webs of aquatic ecosystems. Here we have evaluated the effect of NW diameter on the gut penetrance of NWs in Daphnia magna. The animals were exposed to NWs of two diameters (40 and 80 nm) and similar length (3.6 and 3.8 μm, respectively) suspended in water. In order to locate the NWs in Daphnia, the NWs were designed to comprise one inherently fluorescent segment of gallium indium phosphide (GaInP) flanked by a gallium phosphide (GaP) segment. Daphnia mortality was assessed directly after 24 h of exposure and 7 days after exposure. Translocation of NWs across the intestinal epithelium was investigated using confocal fluorescence microscopy directly after 24 h of exposure and was observed in 89% of Daphnia exposed to 40 nm NWs and in 11% of Daphnia exposed to 80 nm NWs. A high degree of fragmentation was observed for NWs of both diameters after ingestion by the Daphnia, although 40 nm NWs were fragmented to a greater extent, which could possibly facilitate translocation across the intestinal epithelium. Our results show that the feeding behavior of animals may enhance the ability of NWs to penetrate biological barriers and that penetrance is governed by the NW diameter. PMID:27181920
NASA Astrophysics Data System (ADS)
Shirazi Tehrani, A.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.
2016-07-01
Arrays of multilayered Ni/Cu nanowires (NWs) with variable segment sizes were fabricated into anodic aluminum oxide templates using a pulsed electrodeposition method in a single bath for designated potential pulse times. Increasing the pulse time between 0.125 and 2 s in the electrodeposition of Ni enabled the formation of segments with thicknesses ranging from 25 to 280 nm and 10-110 nm in 42 and 65 nm diameter NWs, respectively, leading to disk-shaped, rod-shaped and/or near wire-shaped geometries. Using hysteresis loop measurements at room temperature, the axial and perpendicular magnetic properties were investigated. Regardless of the segment geometry, the axial coercivity and squareness significantly increased with increasing Ni segment thickness, in agreement with a decrease in calculated demagnetizing factors along the NW length. On the contrary, the perpendicular magnetic properties were found to be independent of the pulse times, indicating a competition between the intrawire interactions and the shape demagnetizing field.
Geometric design and mechanical behavior of a deployable cylinder with Miura origami
NASA Astrophysics Data System (ADS)
Cai, Jianguo; Deng, Xiaowei; Feng, Jian; Zhou, Ya
2015-12-01
The folding and deployment of a cylinder with Miura origami patterns are studied in this paper. First, the geometric formulation of the design problem is discussed. Then the loading case of the axial strains and corresponding external nodal loads applied on the vertices of the top polygon during the motion is investigated analytically. The influence of the angle between the diagonal and horizontal fold lines α and β and the number of Miura origami elements n on the dynamic behavior of the basic segment is also discussed. Then the dynamic behavior is analyzed using numerical simulations. Finally, the deployment process of a cylinder with multi-stories is discussed. The numerical results agree well with the analytical predictions. The results show that the range of motion, i.e. the maximal displacement of top nodes, will also increase with the increase of angles α and β. This cylinder, with a smaller n, may have a bistable behavior. When n is larger, the influence of n on the axial strains and external nodal loads is slight. The numerical results agree well with the analytical predictions. Moreover, the deployment of the cylinder with multi-stories is non-uniform, which deploys from the upper story to the lower story.
Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly
NASA Technical Reports Server (NTRS)
Merle, Cormic; Wick, Eric; Hayden, Joseph
2011-01-01
This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective instruments on nearly the same path. A fifth beamlet, acting as a differential reference, reflects off a ring mirror attached to the objective and null and returns to the ADM. The spacings between the ring mirror, objective, and null are known through manufacturing tolerances as well as through an in situ null wavefront alignment of the interferometer test beam with a reflective hologram located near the caustic of the null. Since total path length between the ring mirror and PM segments is highly deterministic, any ADM-measured departures from the predicted path length can be attributed to either spacing error or radius error in the PM. It is estimated that the path length measurement between the ring mirror and a PM segment is accurate to better than 100 m. The unique features of this invention include the differential distance measuring capability and its integration into an existing cryogenic and vacuum compatible interferometric optical test.
A small-diameter NMR logging tool for groundwater investigations
Walsh, David; Turner, Peter; Grunewald, Elliot; Zhang, Hong; Butler, James J.; Reboulet, Ed; Knobbe, Steve; Christy, Tom; Lane, John W.; Johnson, Carole D.; Munday, Tim; Fitzpatrick, Andrew
2013-01-01
A small-diameter nuclear magnetic resonance (NMR) logging tool has been developed and field tested at various sites in the United States and Australia. A novel design approach has produced relatively inexpensive, small-diameter probes that can be run in open or PVC-cased boreholes as small as 2 inches in diameter. The complete system, including surface electronics and various downhole probes, has been successfully tested in small-diameter monitoring wells in a range of hydrogeological settings. A variant of the probe that can be deployed by a direct-push machine has also been developed and tested in the field. The new NMR logging tool provides reliable, direct, and high-resolution information that is of importance for groundwater studies. Specifically, the technology provides direct measurement of total water content (total porosity in the saturated zone or moisture content in the unsaturated zone), and estimates of relative pore-size distribution (bound vs. mobile water content) and hydraulic conductivity. The NMR measurements show good agreement with ancillary data from lithologic logs, geophysical logs, and hydrogeologic measurements, and provide valuable information for groundwater investigations.
The Future of Additive Manufacturing in Air Force Acquisition
2017-03-22
manufacturing data - Designing and deploying a virtual aircraft fleet for future conflict - Space-based satellite production for defense capabilities via...changing system design via lower production costs, enhanced performance possibilities, and rapid replenishment. In the Technology Maturation and Risk... manufacturing as well as major cost savings via reduction of required materials, unique tooling, specialized production plans, and segments of the
What Alumni Value from New Product Development Education: A Longitudinal Study
ERIC Educational Resources Information Center
Cobb, Corie L.; Hey, Jonathan; Agogino, Alice M.; Beckman, Sara L.; Kim, Sohyeong
2016-01-01
We present a longitudinal study of what graduates take away from a cross-disciplinary graduate-level New Product Development (NPD) course at UC Berkeley over a 15-year period from 1996-2010. We designed and deployed a longitudinal survey and interviewed a segment of our NPD alumni population to better understand how well our course prepared these…
2007-02-01
JSC2007-E-06523 (February 2007) --- Computer-generated artist's rendering of the International Space Station after Space Shuttle Atlantis' (STS-117/13A) undocking and departure. The image shows the addition of the second and third starboard truss segments (S3/S4) with Photovoltaic Radiator (PVR) and the deployed third set of solar arrays. P6 starboard solar array wing and one radiator are retracted.
James Webb Space Telescope: Large Deployable Cryogenic Telescope in Space
NASA Technical Reports Server (NTRS)
Lightsey, Paul A.; Atkinson, Charles; Clampin, Mark; Feinberg, Lee D.
2012-01-01
The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-micron wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described
Aalaei, Shima; Rajabi Naraki, Zahra; Nematollahi, Fatemeh; Beyabanaki, Elaheh; Shahrokhi Rad, Afsaneh
2017-01-01
Background. Screw-retained restorations are favored in some clinical situations such as limited inter-occlusal spaces. This study was designed to compare stresses developed in the peri-implant bone in two different types of screw-retained restorations (segmented vs. non-segmented abutment) using a finite element model. Methods. An implant, 4.1 mm in diameter and 10 mm in length, was placed in the first molar site of a mandibular model with 1 mm of cortical bone on the buccal and lingual sides. Segmented and non-segmented screw abutments with their crowns were placed on the simulated implant in each model. After loading (100 N, axial and 45° non-axial), von Mises stress was recorded using ANSYS software, version 12.0.1. Results. The maximum stresses in the non-segmented abutment screw were less than those of segmented abutment (87 vs. 100, and 375 vs. 430 MPa under axial and non-axial loading, respectively). The maximum stresses in the peri-implant bone for the model with segmented abutment were less than those of non-segmented ones (21 vs. 24 MPa, and 31 vs. 126 MPa under vertical and angular loading, respectively). In addition, the micro-strain of peri-implant bone for the segmented abutment restoration was less than that of non-segmented abutment. Conclusion. Under axial and non-axial loadings, non-segmented abutment showed less stress concentration in the screw, while there was less stress and strain in the peri-implant bone in the segmented abutment. PMID:29184629
Moyers, S.M.
1975-12-16
A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.
1998-09-16
A team of engineers at Marshall Space Flight Center (MSFC) has designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket that produces lower thrust but has better thrust efficiency than the chemical combustion engines. This segmented array of mirrors is the solar concentrator test stand at MSFC for firing the thermal propulsion engines. The 144 mirrors are combined to form an 18-foot diameter array concentrator. The mirror segments are aluminum hexagons that have the reflective surface cut into it by a diamond turning machine, which is developed by MSFC Space Optics Manufacturing Technology Center.
Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.
2016-05-15
A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.
NASA Astrophysics Data System (ADS)
Krämer, Susanne; Ditt, Hendrik; Biermann, Christina; Lell, Michael; Keller, Jörg
2009-02-01
The rupture of an intracranial aneurysm has dramatic consequences for the patient. Hence early detection of unruptured aneurysms is of paramount importance. Bone-subtraction computed tomography angiography (BSCTA) has proven to be a powerful tool for detection of aneurysms in particular those located close to the skull base. Most aneurysms though are chance findings in BSCTA scans performed for other reasons. Therefore it is highly desirable to have techniques operating on standard BSCTA scans available which assist radiologists and surgeons in evaluation of intracranial aneurysms. In this paper we present a semi-automatic method for segmentation and assessment of intracranial aneurysms. The only user-interaction required is placement of a marker into the vascular malformation. Termination ensues automatically as soon as the segmentation reaches the vessels which feed the aneurysm. The algorithm is derived from an adaptive region-growing which employs a growth gradient as criterion for termination. Based on this segmentation values of high clinical and prognostic significance, such as volume, minimum and maximum diameter as well as surface of the aneurysm, are calculated automatically. the segmentation itself as well as the calculated diameters are visualised. Further segmentation of the adjoining vessels provides the means for visualisation of the topographical situation of vascular structures associated to the aneurysm. A stereolithographic mesh (STL) can be derived from the surface of the segmented volume. STL together with parameters like the resiliency of vascular wall tissue provide for an accurate wall model of the aneurysm and its associated vascular structures. Consequently the haemodynamic situation in the aneurysm itself and close to it can be assessed by flow modelling. Significant values of haemodynamics such as pressure onto the vascular wall, wall shear stress or pathlines of the blood flow can be computed. Additionally a dynamic flow model can be generated. Thus the presented method supports a better understanding of the clinical situation and assists the evaluation of therapeutic options. Furthermore it contributes to future research addressing intervention planning and prognostic assessment of intracranial aneurysms.
NASA Astrophysics Data System (ADS)
Alboabidallah, Ahmed; Martin, John; Lavender, Samantha; Abbott, Victor
2017-09-01
Terrestrial Laser Scanning (TLS) processing for biomass mapping involves large data volumes, and often includes relatively slow 3D object fitting steps that increase the processing time. This study aimed to test new features that can speed up the overall processing time. A new type of 3D voxel is used, where the horizontal layers are parallel to the Digital Terrain Model. This voxel type allows procedures to extract tree diameters using just one layer, but still gives direct tree-height estimations. Layer intersection is used to emphasize the trunks as upright standing objects, which are detected in the spatially segmented intersection of the breast-height voxels and then extended upwards and downwards. The diameters were calculated by fitting elliptical cylinders to the laser points in the detected trunk segments. Non-trunk segments, used in sub-tree- structures, were found using the parent-child relationships between successive layers. The branches were reconstructed by skeletonizing each sub-tree branch, and the biomass was distributed statistically amongst the weighted skeletons. The procedure was applied to nine plots within the UK. The average correlation coefficients between reconstructed and directly measured tree diameters, heights and branches were R2 = 0.92, 0.97 and 0.59 compared to 0.91, 0.95, and 0.63 when cylindrical fitting was used. The average time to apply the method reduced from 5hrs:18mins per plot, for the conventional methods, to 2hrs:24mins when the same hardware and software libraries were used with the 3D voxels. These results indicate that this 3D voxel method can produce, much more quickly, results of a similar accuracy that would improve efficiency if applied to projects with large volume TLS datasets.
Invernizzi, Alessandro; Giardini, Piero; Cigada, Mario; Viola, Francesco; Staurenghi, Giovanni
2015-07-01
We analyzed by swept-source anterior segment optical coherence tomography (SS-ASOCT) the three-dimensional iris morphology in a Caucasian population, and correlated the findings with iris color, iris sectors, subject age, and sex. One eye each from consecutive healthy emmetropic (refractive spherical equivalent ± 3 diopters) volunteers were selected for the study. The enrolled eye underwent standardized anterior segment photography to assess iris color. Iris images were assessed by SS-ASOCT for volume, thickness, width, and pupil size. Sectoral variations of morphometric data among the superior, nasal, inferior, and temporal sectors were recorded. A total of 135 eyes from 57 males and 78 females, age 49 ± 17 years, fulfilled the inclusion criteria. All iris morphometric parameters varied significantly among the different sectors (all P < 0.0001). Iris total volume and thickness were significantly correlated with increasingly darker pigmentation (P < 0.0001, P = 0.0384, respectively). Neither width nor pupil diameter was influenced by iris color. Age did not affect iris volume or thickness; iris width increased and pupil diameter decreased with age (rs = 0.52, rs = -0.58, respectively). There was no effect of sex on iris volume, thickness, or pupil diameter; iris width was significantly greater in males (P = 0.007). Morphology of the iris varied by iris sector, and iris color was associated with differences in iris volume and thickness. Morphological parameter variations associated with iris color, sector, age, and sex can be used to identify pathological changes in suspect eyes. To be effective in clinical settings, construction of iris morphological databases for different ethnic and racial populations is essential.
Distraction induced enterogenesis: a unique mouse model using polyethylene glycol.
Okawada, Manabu; Maria, Haytham Mustafa; Teitelbaum, Daniel H
2011-09-01
Recent studies have demonstrated that the small intestine can be lengthened by applying mechanical forces to the bowel lumen-distraction-induced enterogenesis. However, the mechanisms which account for this growth are unknown, and might be best examined using a mouse model. The purpose of this study is to establish the feasibility of developing distractive-induced small bowel growth in mouse. Twelve-week old C57BL/6J mice had a jejunal segment taken out of continuity, and distended with polyethylene glycol (PEG: 3350 KDa); this group was compared with a control group without stretching. Segment length and diameter were measured intra-operatively and after 5 d. Villus height, crypt depth, and muscle thickness in the isolated segment were assessed. Rate of epithelial cell proliferation (5-bromo-2-deoxyuridine: BrdU incorporation) in crypts were also examined. The mucosal mRNA expression of targeted factors was performed to investigate potential mechanisms which might lead to distraction-induced enterogenesis. At harvest, the PEG-stretched group showed a significant increase in length and diameter versus controls. Villus height, crypt depth, and muscular layer thickness increased in the PEG group. The PEG group also showed significantly increased rates of epithelial cell proliferation versus controls. Real-time PCR showed a trend toward higher β-catenin and c-myc mRNA expression in the PEG-stretched group; however, this difference was not statistically significant. Radial distraction-induced enterogenesis with PEG is a viable method for increasing small intestinal length and diameter. This model may provide a new method for studying the mechanisms leading to distraction-induced enterogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.
Seyhan Karatepe, Arzu; Menteş, Jale; Erakgün, E Tansu; Afrashi, Filiz; Nalçacı, Serhad; Akkın, Cezmi; Ateş, Yeşim
2018-04-01
To determine the qualitative and quantitative vitreoretinal interface characteristics with spectral domain optical coherence tomography (SD-OCT) in eyes with macular hole (MH) and investigate their relation with best corrected visual acuity (BCVA) and MH duration. Sixty-one eyes of 46 consecutive patients diagnosed with idiopathic MH were included in the study. The mean age of the patients was 66.7±7.5 (51-79) years. Complete ophthalmologic examination and SD-OCT examination were performed in all eyes and MH stages were determined according to SD-OCT findings. Qualitative characteristics of the vitreoretinal interface were investigated, including vitreomacular traction, vitreopapillary traction, maculopapillary traction, vitreoschisis, intraretinal cyst, presence of epiretinal membrane, and the integrity of the photoreceptor inner segment-outer segment junction (IS/OS) and external limiting membrane (ELM). In addition, MH diameter, MH base diameter (MHBD), ELM defect diameter, IS/OS defect diameter, and MH height were quantitatively measured and the MH index was calculated. Out of 61 eyes, 9.8% were classified as stage 1a, 19.7% as stage 1b, 18% as stage 2, 23% as stage 3, and 29.5% as stage 4. Mean BCVA was 0.28±0.24 (1 mps-1.0) Snellen and MH duration was 10.08±18.6 (1-108) months. The most common interface characteristics associated with MH were determined as intraretinal cyst (91.8%), IS/OS defect (78.7%) and ELM defect (63.9%). Duration and stage of MH were inversely proportional to BCVA but directly proportional to the presence and diameter of IS/OS and ELM defects. BCVA was significantly lower in eyes with IS/OS and ELM defects (p<0.0001; p<0.0001 Mann-Whitney U test). We determined that the most important factors affecting BCVA in cases with idiopathic MH were MH stage, MH duration, MHBD, and the presence and diameter of IS/OS and ELM defects, which suggests that these parameters should be considered while making decisions about prognosis and treatment.
Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators
NASA Technical Reports Server (NTRS)
Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.
2000-01-01
The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.
Staggering Inflation To Stabilize Attitude of a Solar Sail
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; West, John
2007-01-01
A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.
Electrohydrodynamic Printing and Manufacturing
NASA Technical Reports Server (NTRS)
Aksay, Ilhan A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Saville, Dudley A. (Inventor); Chen, Chuan-hua (Inventor)
2014-01-01
An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.
The Next Generation Space Telescope (NGST): Science and technology
NASA Technical Reports Server (NTRS)
Mather, John C.; Seery, Bernard D.; Stockman, Hervey S.; Bely, Pierre, Y.
1997-01-01
The scientific requirements and implications for the instruments and telescope design for the Next Generation Space Telescope (NGST) are described. A candidate concept is a deployable, 8 m diameter telescope, optimized for the near infrared region, but featuring instruments capable of observing up to 30 micrometers. The observatory is radiatively cooled to approximately 30 K.
Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis
NASA Technical Reports Server (NTRS)
Clifford, Courtenay B.; Hengel, John E.
2009-01-01
The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no observed drogue chute failures, Jeffreys Prior was used to calculate a reliability of R =.998. Based on these results, it is concluded that the LMP and drogue parachutes on the Shuttle SRB are suited to their mission and changes made over their life have improved the reliability of the parachute.
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Hasan, Istabrak; Heinemann, Friedhelm; Schwegmann, Monika; Keilig, Ludger; Stark, Helmut; Bourauel, Christoph
2017-02-01
Small diameter (mini) dental implants have become more popular in recent years as alternatives to classical implant treatment in clinical cases with critical bony situations. However, an in-depth scientific analysis of the mechanical and biomechanical effects of small diameter implants has not yet been published. The aim of the present study was to investigate experimentally different commercial mini implants by measuring their displacements under immediate loading. Twelve commercially available mini implants were measured. Implants were inserted into porcine mandibular segments and loaded by means of a predefined displacement of 0.5 mm of the loading system. The implants were loaded at an angle of 30° to the implant long axis using the self-developed biomechanical hexapod measurement system. Implant displacements were registered. The experimental results were compared to the numerical ones from a previous study. Measured implant displacements were within the range of 39-194 μm. A large variation in the displacements was obtained among the different implant systems due to the different designs and thread profiles. Comparing experimental and numerical results, the displacements that were obtained numerically were within the range of 79-347 μm. The different commercial mini implants showed acceptable primary stability and could be loaded immediately after their insertion.
Zheng, Qian-Yin; Xu, Wen; Liang, Guan-Lu; Wu, Jing; Shi, Jun-Ting
2016-01-01
To investigate the correlation between the preoperative biometric parameters of the anterior segment and the vault after implantable Collamer lens (ICL) implantation via this retrospective study. Retrospective clinical study. A total of 78 eyes from 41 patients who underwent ICL implantation surgery were included in this study. Preoperative biometric parameters, including white-to-white (WTW) diameter, central corneal thickness, keratometer, pupil diameter, anterior chamber depth, sulcus-to-sulcus diameter, anterior chamber area (ACA) and central curvature radius of the anterior surface of the lens (Lenscur), were measured. Lenscur and ACA were measured with Rhinoceros 5.0 software on the image scanned with ultrasound biomicroscopy (UBM). The vault was assessed by UBM 3 months after surgery. Multiple stepwise regression analysis was employed to identify the variables that were correlated with the vault. The results showed that the vault was correlated with 3 variables: ACA (22.4 ± 4.25 mm2), WTW (11.36 ± 0.29 mm) and Lenscur (9.15 ± 1.21 mm). The regressive equation was: vault (mm) = 1.785 + 0.017 × ACA + 0.051 × Lenscur - 0.203 × WTW. Biometric parameters of the anterior segment (ACA, WTW and Lenscur) can predict the vault after ICL implantation using a new regression equation. © 2016 The Author(s) Published by S. Karger AG, Basel.
A review on fracture prevention of stent in femoropopliteal artery
NASA Astrophysics Data System (ADS)
Atan, Bainun Akmal Mohd; Ismail, Al Emran; Taib, Ishkrizat; Lazim, Zulfaqih
2017-01-01
Heavily calcific lesions, total occlusions, tortuous blood vessels, variable lengths of arteries, various dynamic loads and deformations in the femoropopliteal (FP) arterial segment make stenosis treatments are complicated. The dynamic forces in FP artery including bending, torsion and radial compression may lead to stent fracture (SF) and eventually to in-stent restenosis (ISR). Stent design specifically geometrical configurations are a major factor need to be improved to optimize stent expansion and flexibility both bending and torsion during stent deployment into the diseased FP artery. Previous studies discovered the influence of various stent geometrical designs resulted different structural behaviour. Optimizing stent design can improve stent performances: flexibility and radial strength to prevent SF in FP arterial segment
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan
2007-01-01
This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist John "Danny" Olivas signals go for launch as he completes suitup by donning his helmet. The launch of Space Shuttle Atlantis is scheduled for 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Atlantis is poised for flight at liftoff from Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Billows of smoke surround the mobile launcher platform on Launch Pad 39A as Space Shuttle Atlantis lifts off on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- STS-117 Mission Specialist James Reilly is helped with his helmet as he completes suitup for launch of Space Shuttle Atlantis at 7:38 p.m. EDT from Launch Pad 39A. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
1972-01-01
A baseline for a space shuttle configuration utilizing four parallel-burn 120-in. diameter SRMS is presented. Topics discussed include parachute system sequence, recovery system development profile, parachute container, and segment and closure recovery operations. A cost analysis for recovery of the SRM stage is presented. It is concluded that from the standpoint of minimum cost and development, parachutes are the best means of achieving SRM recovery. Major SRM components can be reused safely.
Ground-Based Telescope Parametric Cost Model
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Rowell, Ginger Holmes
2004-01-01
A parametric cost model for ground-based telescopes is developed using multi-variable statistical analysis, The model includes both engineering and performance parameters. While diameter continues to be the dominant cost driver, other significant factors include primary mirror radius of curvature and diffraction limited wavelength. The model includes an explicit factor for primary mirror segmentation and/or duplication (i.e.. multi-telescope phased-array systems). Additionally, single variable models based on aperture diameter are derived. This analysis indicates that recent mirror technology advances have indeed reduced the historical telescope cost curve.
Design and development of a hard tube flexible radiator system
NASA Technical Reports Server (NTRS)
Hixon, C. W.
1980-01-01
The construction and operational characteristics of an extended life flexible radiator panel is described. The radiator panel consists of a flexible fin laminate and stainless steel flow tubes designed for a 90 percent probability of surviving 5 years in an Earth orbit micrometeoroid environment. The radiator panel rejects 1.1 kW sub t of heat into an environmental sink temperature of 0 F. Total area is 170 square feet and the panel extends 25 feet in the fully deployed position. When retracted the panel rolls onto a 11.5 inch diameter by 52 inch long storage drum, for a final stored diameter of 22 inches.
Automated detection of neovascularization for proliferative diabetic retinopathy screening.
Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K
2016-08-01
Neovascularization is the primary manifestation of proliferative diabetic retinopathy (PDR) that can lead to acquired blindness. This paper presents a novel method that classifies neovascularizations in the 1-optic disc (OD) diameter region (NVD) and elsewhere (NVE) separately to achieve low false positive rates of neovascularization classification. First, the OD region and blood vessels are extracted. Next, the major blood vessel segments in the 1-OD diameter region are classified for NVD, and minor blood vessel segments elsewhere are classified for NVE. For NVD and NVE classifications, optimal region-based feature sets of 10 and 6 features, respectively, are used. The proposed method achieves classification sensitivity, specificity and accuracy for NVD and NVE of 74%, 98.2%, 87.6%, and 61%, 97.5%, 92.1%, respectively. Also, the proposed method achieves 86.4% sensitivity and 76% specificity for screening images with PDR from public and local data sets. Thus, the proposed NVD and NVE detection methods can play a key role in automated screening and prioritization of patients with diabetic retinopathy.
Lens-free all-fiber probe with an optimized output beam for optical coherence tomography.
Ding, Zhihua; Qiu, Jianrong; Shen, Yi; Chen, Zhiyan; Bao, Wen
2017-07-15
A high-efficiency lensless all-fiber probe for optical coherence tomography (OCT) is presented. The probe is composed of a segment of large-core multimode fiber (MMF), a segment of tapered MMF, and a length of single-mode fiber (SMF). A controllable output beam can be designed by a simple adjustment of its probe structure parameters (PSPs), instead of the selection of fibers with different optical parameters. A side-view probe with a diameter of 340 μm and a rigid length of 6.37 mm was fabricated, which provides an effective imaging range of ∼0.6 mm with a full width at half-maximum beam diameter of less than 30 μm. The insertion loss of the probe was measured to be 0.81 dB, ensuring a high sensitivity of 102.25 dB. Satisfactory images were obtained by the probe-based OCT system, demonstrating the feasibility of the probe for endoscopic OCT applications.
The IXV Ground Segment design, implementation and operations
NASA Astrophysics Data System (ADS)
Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.
NASA Technical Reports Server (NTRS)
Partridge, James D.
2002-01-01
'NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges.' This effort addresses the challenge of implementing an algorithm for aligning the segments of the primary mirror during the initial deployment that was designed by Philip Olivier and members of SOMTC (Space Optics Manufacturing Technology Center). The implementation was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately, hardware/software aspect concerning SIBOA and an extended time period for algorithm development prevented testing before the end of the study period. Properties of the digital camera were studied and understood, resulting in the current ability of selecting optimal settings regarding saturation. The study was successful in manually capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. Currently the system is ready for testing.
NASA Technical Reports Server (NTRS)
Hollenbach, D. (Editor)
1983-01-01
The scientific rationale for the large deployable reflector (LDR) and the overall technological requirements are discussed. The main scientific objectives include studies of the origins of planets, stars and galaxies, and of the ultimate fate of the universe. The envisioned studies require a telescope with a diameter of at least 20 m, diffraction-limited to wavelengths as short as 30-50 micron. In addition, light-bucket operation with 1 arcsec spatial resolution in the 2-4 microns wavelength region would be useful in studies of high-redshifted galaxies. Such a telescope would provide a large increase in spectroscopic sensitivity and spatial resolving power compared with existing or planned infrared telescopes.
NASA Astrophysics Data System (ADS)
Busby, R. W.; Woodward, R.; Aderhold, K.; Frassetto, A.
2017-12-01
The Alaska Transportable Array deployment is completely installed, totaling 280 stations, with 194 new stations and 86 existing stations, 28 of those upgraded with new sensor emplacement. We briefly summarize the deployment of this seismic network, describe the added meteorological instruments and soil temperature gauges, and review our expectations for operation and demobilization. Curation of data from the contiguous Lower-48 States deployment of Transportable Array (>1800 stations, 2004-2015) has continued with the few gaps in real-time data replaced by locally archived files as well as minor adjustments in metadata. We highlight station digests that provide more detail on the components and settings of individual stations, documentation of standard procedures used throughout the deployment and other resources available online. In cooperation with IRIS DMC, a copy of the complete TA archive for the Lower-48 period has been transferred to a local disk to experiment with data access and software workflows that utilize most or all of the seismic timeseries, in contrast to event segments. Assembling such large datasets reliably - from field stations to a well managed data archive to a user's workspace - is complex. Sharing a curated and defined data volume with researchers is a potentially straightforward way to make data intensive analyses less difficult. We note that data collection within the Lower-48 continues with 160 stations of the N4 network operating at increased sample rates (100 sps) as part of the CEUSN, as operational support transitions from NSF to USGS.
Morphometry of A1 segment of the anterior cerebral artery and its clinical importance.
Krishnamurthy, A; Nayak, S R; Bagoji, I B; D'Costa, S; Pai, M M; Jiji, P J; Kumar, C G; Rai, R
2010-01-01
Anterior cerebral artery, one of the terminal branches of the internal carotid artery is an important vessel taking part in the formation of circle of Willis. It supplies a large part of the medial surface of the cerebral hemisphere containing the areas of motor and somatosensory cortices of the lower limb. Aim of this study was the morphometry of A1 segment of the anterior cerebral artery. 93 formalin fixed brain specimen of either sex and of Indian origin were studied. The mean length, mean external diameter and the anomalies present in A1 segment of the vessel were studied in detail and photographed. The mean length of A1 segment of the vessel was 14.49+/-0.28 mm and 14.22+/-0.22 mm on right and left side respectively. The mean external diameter of the vessel on right and left side was 2.12+/-0.07 mm and 2.32+/-0.06 mm respectively. Narrowing, aneurysm formation, buttonhole formation and median anterior cerebral artery were the anomalies seen with an occurrence of 15.05%, 5.37%, 3.22% and 12.9%, respectively. The above anomalies did not have any sex or side predilection. Knowledge of morphometry of the vessel will be of use to neurosurgeons while performing the shunt operation, in assessing the feasibility of such operations and in the choice of patients. From this study we infer that the morphometry of anterior cerebral artery varies in different population and that the neurosurgeons operating should have a thorough knowledge of the possible variations.
Fully automated calculation of cardiothoracic ratio in digital chest radiographs
NASA Astrophysics Data System (ADS)
Cong, Lin; Jiang, Luan; Chen, Gang; Li, Qiang
2017-03-01
The calculation of Cardiothoracic Ratio (CTR) in digital chest radiographs would be useful for cardiac anomaly assessment and heart enlargement related disease indication. The purpose of this study was to develop and evaluate a fully automated scheme for calculation of CTR in digital chest radiographs. Our automated method consisted of three steps, i.e., lung region localization, lung segmentation, and CTR calculation. We manually annotated the lung boundary with 84 points in 100 digital chest radiographs, and calculated an average lung model for the subsequent work. Firstly, in order to localize the lung region, generalized Hough transform was employed to identify the upper, lower, and outer boundaries of lung by use of Sobel gradient information. The average lung model was aligned to the localized lung region to obtain the initial lung outline. Secondly, we separately applied dynamic programming method to detect the upper, lower, outer and inner boundaries of lungs, and then linked the four boundaries to segment the lungs. Based on the identified outer boundaries of left lung and right lung, we corrected the center and the declination of the original radiography. Finally, CTR was calculated as a ratio of the transverse diameter of the heart to the internal diameter of the chest, based on the segmented lungs. The preliminary results on 106 digital chest radiographs showed that the proposed method could obtain accurate segmentation of lung based on subjective observation, and achieved sensitivity of 88.9% (40 of 45 abnormalities), and specificity of 100% (i.e. 61 of 61 normal) for the identification of heart enlargements.
Hribernik, Marija; Trotovšek, Blaž
2014-04-01
The aim of this study is to present the anatomical data about intrahepatic venous anastomoses found in normal human livers. The focus is on the middle hepatic vein (MHV) anastomoses, because their existence or non-existence could be of crucial importance in tumour resections as well as in split or living donor liver transplantations. The frequency of livers with intrahepatic venous anastomoses was determined on 164 corrosion casts and the diameter of each anastomosis was measured. Additionally, the type of connection and the position within the liver (liver segment) was determined for each MHV anastomosis. Intrahepatic venous anastomoses were found in 46 % (75/164), whereas MHV anastomoses were found in 28 % (44/164) of liver casts. Most commonly (39/44), MHV had anastomotic connections with the right hepatic vein (RHV), and also with the inferior RHV, the left hepatic vein and the short subhepatic vein. In more than three quarters of liver casts, MHV-RHV anastomoses were found in liver segment 8; in 45 % of cases, there was more than one anastomosis in this liver segment. The diameter of MHV-RHV anastomoses found in segment 8 was ≥1 mm in 90.6 % of cases. As MHV anastomoses were present in more than a quarter of all examined liver casts, we believe that detailed anatomical data presented in this article, together with up to date radiologic technics which enable even 3D reconstruction of venous anastomoses in the liver, could contribute to the clinician's decisions when planning surgical procedures.
Quantification of pulmonary vessel diameter in low-dose CT images
NASA Astrophysics Data System (ADS)
Rudyanto, Rina D.; Ortiz de Solórzano, Carlos; Muñoz-Barrutia, Arrate
2015-03-01
Accurate quantification of vessel diameter in low-dose Computer Tomography (CT) images is important to study pulmonary diseases, in particular for the diagnosis of vascular diseases and the characterization of morphological vascular remodeling in Chronic Obstructive Pulmonary Disease (COPD). In this study, we objectively compare several vessel diameter estimation methods using a physical phantom. Five solid tubes of differing diameters (from 0.898 to 3.980 mm) were embedded in foam, simulating vessels in the lungs. To measure the diameters, we first extracted the vessels using either of two approaches: vessel enhancement using multi-scale Hessian matrix computation, or explicitly segmenting them using intensity threshold. We implemented six methods to quantify the diameter: three estimating diameter as a function of scale used to calculate the Hessian matrix; two calculating equivalent diameter from the crosssection area obtained by thresholding the intensity and vesselness response, respectively; and finally, estimating the diameter of the object using the Full Width Half Maximum (FWHM). We find that the accuracy of frequently used methods estimating vessel diameter from the multi-scale vesselness filter depends on the range and the number of scales used. Moreover, these methods still yield a significant error margin on the challenging estimation of the smallest diameter (on the order or below the size of the CT point spread function). Obviously, the performance of the thresholding-based methods depends on the value of the threshold. Finally, we observe that a simple adaptive thresholding approach can achieve a robust and accurate estimation of the smallest vessels diameter.
Kutscher, Beth
2013-04-15
Washington is in the mood for a corporate tax overhaul, but not every segment of healthcare will like the result. One proposed change cracks down on opportunities for companies to shift profits on intellectual property to countries with lower tax rates---a tactic frequently deployed by the pharmaceutical industry. Providers and insurers would be winners under the proposals.
2014-01-01
system UAV unmanned aircraft vehicle UCI User -Computer Interface UCS UAS control segment Abbreviations xxix UGS unmanned ground system UGV unmanned ...made substantial progress in the deployment of more capable sensors, unmanned aircraft systems (UAS), and other unmanned systems (UxS). Innovative...progress in fielding more, and more capable unmanned aircraft systems (UAS) to meet the needs of warfighters
Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images
Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.
2014-01-01
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods, which used inappropriate large valued parameters. Results also confirm that the proposed method and its variants achieve high detection accuracies ( 98 mean F-measure) irrespective of the large variations of filter parameters and noise levels. PMID:25020042
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Kortes, N.; Zelzer, S.
2011-02-15
The purpose of this study was to evaluate the effect of renal artery embolization with small and narrowly calibrated microparticles on the coagulation diameter, volume, and shape of radiofrequency ablations (RFAs) in porcine kidneys. Forty-eight RFAs were performed in 24 kidneys of 12 pigs. In 6 animals, bilateral renal artery embolization was performed with small and narrowly calibrated microparticles. Upper and lower kidney poles were ablated with identical system parameters. Applying three-dimensional segmentation software, RFAs were segmented on registered 2 mm-thin macroscopic slices. Length, depth, width, volume{sub s}egmented, and volume{sub c}alculated were determined to describe the size of the RFAs.more » To evaluate the shape of the RFAs, depth-to-width ratio (perfect symmetry-to-lesion length was indicated by a ratio of 1), sphericity ratio (perfect sphere was indicated by a sphericity ratio of 1), eccentricity (perfect sphere was indicated by an eccentricity of 0), and circularity (perfect circle was indicated by a circularity of 1) were determined. Embolized compared with nonembolized RFAs showed significantly greater depth (23.4 {+-} 3.6 vs. 17.2 {+-} 1.8 mm; p < 0.001) and width (20.1 {+-} 2.9 vs. 12.6 {+-} 3.7 mm; p < 0.001); significantly larger volume{sub s}egmented (8.6 {+-} 3.2 vs. 3.0 {+-} 0.7 ml; p < 0.001) and volume{sub c}alculated (8.4 {+-} 3.0 ml vs. 3.3 {+-} 1.1 ml; p < 0.001); significantly lower depth-to-width (1.17 {+-} 0.10 vs. 1.48 {+-} 0.44; p < 0.05), sphericity (1.55 {+-} 0.44 vs. 1.96 {+-} 0.43; p < 0.01), and eccentricity (0.84 {+-} 0.61 vs. 1.73 {+-} 0.91; p < 0.01) ratios; and significantly greater circularity (0.62 {+-} 0.14 vs. 0.45 {+-} 0.16; p < 0.01). Renal artery embolization with small and narrowly calibrated microparticles affected the coagulation diameter, volume, and shape of RFAs in porcine kidneys. Embolized RFAs were significantly larger and more spherical compared with nonembolized RFAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, T; Ding, H; Lipinski, J
2015-06-15
Purpose: To develop a physics-based model for accurate quantification of the cross-sectional area (CSA) of coronary arteries in CT angiography by measuring the integrated density to account for the partial volume effect. Methods: In this technique the integrated density of the object as compared with its local background is measured to account for the partial volume effect. Normal vessels were simulated as circles with diameters in the range of 0.1–3mm. Diseased vessels were simulated as 2, 3, and 4mm diameter vessels with 10–90% area stenosis, created by inserting circular plaques. A simplified two material model was used with the lumenmore » as 8mg/ml Iodine and background as lipid. The contrast-to-noise ratio between lumen and background was approximately 26. Linear fits to the known CSA were calculated. The precision and accuracy of the measurement were quantified using the root-mean-square fit deviations (RMSD) and errors to the known CSA (RMSE). Results compared to manual segmentation of the vessel lumen. To assess the impact of random variations, coefficients of variation (CV) from 10 simulations for each vessel were computed to determine reliability. Measurements with CVs less than 10% were considered reliable. Results: For normal vessels, the precision and accuracy of the integrated density technique were 0.12mm{sup 2} and 0.28mm{sup 2}, respectively. The corresponding results for manual segmentation were 0.27mm{sup 2} and 0.43mm{sup 2}. For diseased vessels, the precision and accuracy of the integrated density technique were 0.14mm{sup 2} and 0.19mm{sup 2}. Corresponding results for manual segmentation were 0.42mm{sup 2} and 0.71mm{sup 2}. Reliable CSAs were obtained for normal vessels with diameters larger than 1 mm and for diseased vessels with area as low as 1.26mm2. Conclusion: The CSA based on integrated density showed improved precision and accuracy as compared with manual segmentation in simulation. These results indicate the potential of using integrated density to quantify CSA of coronary arteries in CT angiography.« less
First Results from UAS Deployed Ocean Sensor Systems during the 2013 MIZOPEX Campaign
NASA Astrophysics Data System (ADS)
Palo, S. E.; Weibel, D.; Lawrence, D.; LoDolce, G.; Bradley, A. C.; Adler, J.; Maslanik, J. A.; Walker, G.
2013-12-01
The Marginal Ice Zone Observations and Processes Experiment (MIZOPEX), is an Arctic field campaign which occurred during summer 2013. The goals of the project are to understand how warming of the marginal ice zone affects sea ice melt and if this warming has been over or underestimated by satellite measurements. To achieve these goals calibrated physical measurements, both remote and in-situ, of the marginal ice zone over scales of square kilometers with a resolution of square meters is required. This will be accomplished with a suite of unmanned aerial vehicles (UAVs) equipped with both remote sensing and in-situ instruments, air deployed microbuoys, and ship deployed buoys. In this talk we will present details about the air deployed microbouys (ADMB) and self-deployed surface sondes (SDSS) developed at the University of Colorado. Both the ADMB and SDSS share a common measurement suite with the capability to measure water temperature at three distinct depths and provide position information via GPS. The ADMB is 90 grams, 1.3 inches in diameter, 4.25 inches long and is designed for deployment from the InSitu ScanEagle platform. The designed and experimentally verified operational lifetime is 10 days, however this can be extended with additional batteries.. While the ADMB are deployed from the ScanEagle, the SDSS are vectorable and can be remotely and precisely positioned. Lab performance results, calibration results and initial results from the ADMB and SDSS that were deployed during the MIZOPEX mission will be presented. These results include day-in-the-life tests, antenna pattern analysis, range tests, temperature measurement accuracy and initial scientific results from the campaign.
Comprehensive Studies on the Seismic Gap between the Wenchuan and Lushan Earthquakes
NASA Astrophysics Data System (ADS)
Liang, C.
2016-12-01
An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.
Stress and structure analysis of the Seismic Gap between the Wenchuan and Lushan Earthquakes
NASA Astrophysics Data System (ADS)
Liang, Chuntao
2017-04-01
An array of 20 short-period and 15 broadband seismometers were deployed to monitor the seismic gap between the 2008 Ms8.0 Wenchuan earthquake and the 2013 Ms7.0 Lushan earthquake. The Wenchuan earthquake ruptured from epicenter at (31.01°N, 103.42°E) largely northeastward while the Lushan earthquake ruptured from epicenter at (30.3°N, 103.0°E) largely southwestward. The region between the two earthquakes has recorded very few aftershocks and cataloged seismicity before and after the two big earthquakes compared to neighboring segments. As one small segment of the 500KM long Longmen Shan fault system, its absence of seismicity draws hot debate on whether a big one is still in brewing or steady creeping is in control of the strain energy release. The dense array is deployed primarily aimed to detect events that are much smaller than cataloged events and to determine if the segment is experiencing constantly creeping. The preliminary findings include: (1) source mechanisms show that the seismic gap appears to be a transitional zone between north and south segment. The events to the south are primarily thrust while events to north have more or less striking-slip components. This is also the case for both Lushan and Wenchuan earthquake; (2) The receiver function analysis shows that the Moho beneath the seismic Gap is less defined than its adjacent region with relatively weaker Ps conversion phases; (3) Both receiver function and ambient noise tomography show that the velocities in the upper crust is relatively lower in the Gap region than surrounding regions; (4) significant number of small earthquakes are located near surface in the gap region. Further examinations should be conducted before we can make a sounding conclusion on what mechanism is in control of the seismicity in this region.
Automatically monitoring driftwood in large rivers: preliminary results
NASA Astrophysics Data System (ADS)
Piegay, H.; Lemaire, P.; MacVicar, B.; Mouquet-Noppe, C.; Tougne, L.
2014-12-01
Driftwood in rivers impact sediment transport, riverine habitat and human infrastructures. Quantifying it, in particular large woods on fairly large rivers where it can move easily, would allow us to improve our knowledge on fluvial transport processes. There are several means of studying this phenomenon, amongst which RFID sensors tracking, photo and video monitoring. In this abstract, we are interested in the latter, being easier and cheaper to deploy. However, video monitoring of driftwood generates a huge amount of images and manually labeling it is tedious. It is essential to automate such a monitoring process, which is a difficult task in the field of computer vision, and more specifically automatic video analysis. Detecting foreground into dynamic background remains an open problem to date. We installed a video camera at the riverside of a gauging station on the Ain River, a 3500 km² Piedmont River in France. Several floods were manually annotated by a human operator. We developed software that automatically extracts and characterizes wood blocks within a video stream. This algorithm is based upon a statistical model and combines static, dynamic and spatial data. Segmented wood objects are further described with the help of a skeleton-based approach that helps us to automatically determine its shape, diameter and length. The first detailed comparisons between manual annotations and automatically extracted data show that we can fairly well detect large wood until a given size (approximately 120 cm in length or 15 cm in diameter) whereas smaller ones are difficult to detect and tend to be missed by either the human operator, either the algorithm. Detection is fairly accurate in high flow conditions where the water channel is usually brown because of suspended sediment transport. In low flow context, our algorithm still needs improvement to reduce the number of false positive so as to better distinguish shadow or turbulence structures from wood pieces.
Pathological and immunohistochemical study of lethal primary brain stem injuries
2012-01-01
Background Many of the deaths that occur shortly after injury or in hospitals are caused by mild trauma. Slight morphological changes are often found in the brain stems of these patients during autopsy. The purpose of this study is to investigate the histopathological changes involved in primary brain stem injuries (PBSI) and their diagnostic significance. Methods A total of 65 patients who had died of PBSI and other conditions were randomly selected. They were divided into 2 groups, an injury group (25 cases) and a control group (20 cases). Slides of each patient’s midbrain, pons, and medulla oblongata were prepared and stained with HE, argentaffin, and immunohistochemical agents (GFAP, NF, amyloid-ß, MBP). Under low power (×100) and NF staining, the diameter of the thickest longitudinal axon was measured at its widest point. Ten such diameters were collected for each part of the brain (midbrain, pons, and medulla oblongata). Data were recorded and analyzed statistically. Results Brain stem contusions, astrocyte activity, edema, and pathological changes in the neurons were visibly different in the injury and control groups (P < 0.05). Characteristic changes occurred in the neural axons, axon diameter varied from axon to axon and even over different segments of one axon, and several pathological phenomena were observed. These included segmental thickening and curving, wave-like processing, disarrangement, and irregular swelling. A few axons ruptured and intumesced into retraction balls. Immunohistochemical MBP staining showed enlargement and curving of spaces between the myelin sheaths and axons in certain areas. The myelin sheaths lining the surfaces of the axons were in some cases incomplete and even exfoliated, and segmentation disappeared. These pathological changes increased in severity over time (P < 0.05). Conclusions These histopathological changes may prove beneficial to the pathological diagnosis of PBSI during autopsy. The measurement of axon diameters provides a referent quantitative index for the diagnosis of the specific causes of death involved in PBSI. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1345298818712204 PMID:22613041
Gender Differences of Airway Dimensions in Anatomically Matched Sites on CT in Smokers
Kim, Yu-Il; Schroeder, Joyce; Lynch, David; Newell, John; Make, Barry; Friedlander, Adam; Estépar, Raúl San José; Hanania, Nicola A.; Washko, George; Murphy, James R.; Wilson, Carla; Hokanson, John E.; Zach, Jordan; Butterfield, Kiel; Bowler, Russell P.
2013-01-01
Rationale and Objectives There are limited data on, and controversies regarding gender differences in the airway dimensions of smokers. Multi-detector CT (MDCT) images were analyzed to examine whether gender could explain differences in airway dimensions of anatomically matched airways in smokers. Materials and Methods We used VIDA imaging software to analyze MDCT scans from 2047 smokers (M:F, 1021:1026) from the COPDGene® cohort. The airway dimensions were analyzed from segmental to subsubsegmental bronchi. We compared the differences of luminal area, inner diameter, wall thickness, wall area percentage (WA%) for each airway between men and women, and multiple linear regression including covariates (age, gender, body sizes, and other relevant confounding factors) was used to determine the predictors of each airway dimensions. Results Lumen area, internal diameter and wall thickness were smaller for women than men in all measured airway (18.4 vs 22.5 mm2 for segmental bronchial lumen area, 10.4 vs 12.5 mm2 for subsegmental bronchi, 6.5 vs 7.7 mm2 for subsubsegmental bronchi, respectively p < 0.001). However, women had greater WA% in subsegmental and subsubsegmental bronchi. In multivariate regression, gender remained one of the most significant predictors of WA%, lumen area, inner diameter and wall thickness. Conclusion Women smokers have higher WA%, but lower luminal area, internal diameter and airway thickness in anatomically matched airways as measured by CT scan than do male smokers. This difference may explain, in part, gender differences in the prevalence of COPD and airflow limitation. PMID:21756032
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meng; Zhao, Jian; Li, Zhenjiang, E-mail: zhenjiangli@qust.edu.cn
Herein, bamboo-like 3C-SiC nanowires have been successfully fabricated on homogeneous 6H-SiC substrate by a simple chemical vapor reaction (CVR) approach. The obtained 3C-SiC nanostructure with periodical fluctuating diameter, is composed of two alternating structure units, the typical normal-sized stem segment with perfect crystallinity and obvious projecting nodes segment having high-density stacking faults. The formation of the interesting morphology is significantly subjected to the peculiar growth condition provided by the homogeneous substrate as well as the varying growth elastic energy. Furthermore, the photoluminescence (PL) performance measured on the bamboo-like SiC nanowire shows an intensive emission peaks centered at 451 nm andmore » 467 nm, which has been expected to make a positive progress toward the optical application of the SiC-based one-dimensional (1D) nanostructures, such as light emission diode (LED). - Graphical abstract: Based on the synergistic growth mechanism from homogeneous substrate and elastic energy, bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. The blue-violet light emission properties of the bamboo-like nanowires have also been investigated for exploring their peculiar optical application. - Highlights: • Bamboo-like 3C-SiC nanowires with periodically fluctuating diameter have been synthesized on 6H-SiC. • A synergistic growth mechanism from homogeneous substrate and elastic energy has been proposed firstly. • The blue-violet light emission properties of the products displayed peculiar optical application.« less
Deep learning for medical image segmentation - using the IBM TrueNorth neurosynaptic system
NASA Astrophysics Data System (ADS)
Moran, Steven; Gaonkar, Bilwaj; Whitehead, William; Wolk, Aidan; Macyszyn, Luke; Iyer, Subramanian S.
2018-03-01
Deep convolutional neural networks have found success in semantic image segmentation tasks in computer vision and medical imaging. These algorithms are executed on conventional von Neumann processor architectures or GPUs. This is suboptimal. Neuromorphic processors that replicate the structure of the brain are better-suited to train and execute deep learning models for image segmentation by relying on massively-parallel processing. However, given that they closely emulate the human brain, on-chip hardware and digital memory limitations also constrain them. Adapting deep learning models to execute image segmentation tasks on such chips, requires specialized training and validation. In this work, we demonstrate for the first-time, spinal image segmentation performed using a deep learning network implemented on neuromorphic hardware of the IBM TrueNorth Neurosynaptic System and validate the performance of our network by comparing it to human-generated segmentations of spinal vertebrae and disks. To achieve this on neuromorphic hardware, the training model constrains the coefficients of individual neurons to {-1,0,1} using the Energy Efficient Deep Neuromorphic (EEDN)1 networks training algorithm. Given the 1 million neurons and 256 million synapses, the scale and size of the neural network implemented by the IBM TrueNorth allows us to execute the requisite mapping between segmented images and non-uniform intensity MR images >20 times faster than on a GPU-accelerated network and using <0.1 W. This speed and efficiency implies that a trained neuromorphic chip can be deployed in intra-operative environments where real-time medical image segmentation is necessary.
Anatomic Patterns of Renal Arterial Sympathetic Innervation: New Aspects for Renal Denervation.
Imnadze, Guram; Balzer, Stefan; Meyer, Baerbel; Neumann, Joerg; Krech, Rainer Horst; Thale, Joachim; Franz, Norbert; Warnecke, Henning; Awad, Khaled; Hayek, Salim S; Devireddy, Chandan
2016-12-01
Initial studies of catheter-based renal arterial sympathetic denervation to lower blood pressure in resistant hypertensive patients renewed interest in the sympathetic nervous system's role in the pathogenesis of hypertension. However, the SYMPLICITY HTN-3 study failed to meet its prespecified blood pressure lowering efficacy endpoint. To date, only a limited number of studies have described the microanatomy of renal nerves, of which, only two involve humans. Renal arteries were harvested from 15 cadavers from the Klinikum Osnabruck and Schuchtermann Klinik, Bad Rothenfelde. Each artery was divided longitudinally in equal thirds (proximal, middle, and distal), with each section then divided into equal superior, inferior, anterior, and posterior quadrants, which were then stained. Segments containing no renal nerves were given a score value = 0, 1-2 nerves with diameter <300 µm a score = 1; 3-4 nerves or nerve diameter 300-599 µm a score = 2, and >4 nerves or nerve diameter ≥600 µm a score = 3. A total of 22 renal arteries (9 right-sided, 13 left-sided) were suitable for examination. Overall, 691 sections of 5 mm thickness were prepared. Right renal arteries had significantly higher mean innervation grade (1.56 ± 0.85) compared to left renal arteries (1.09 ± 0.87) (P < 0.001). Medial (1.30 ± 0.59) and distal (1.39 ± 0.62) innervation was higher than the proximal (1.17 ± 0.55) segments (p < 0.001). When divided in quadrants, the anterior (1.52 ± 0.96) and superior (1.71 ± 0.89) segments were more innervated compared to posterior (0.96 ± 0.72) and inferior (0.90 ± 0.68) segments (P < 0.001). That the right renal artery has significantly higher innervation scores than the left. The anterior and superior quadrants of the renal arteries scored higher in innervation than the posterior and inferior quadrants did. The distal third of the renal arteries are more innervated than the more proximal segments. These findings warrant further evaluation of the spatial innervation patterns of the renal artery in order to understand how it may enhance catheter-based renal arterial denervation procedural strategy and outcomes. The SYMPLICITY HTN-3 study dealt a blow to the idea of the catheter-based renal arterial sympathetic denervation. We investigated the location and patterns of periarterial renal nerves in cadaveric human renal arteries. To quantify the density of the renal nerves we created a novel innervation score. On average the right renal arteries were significantly more densely innervated than the left renal arteries, the anterior and superior segments were significantly more innervated compared to the posterior and inferior segments, absolute innervation scores in the proximal third of the left or right renal arteries were always lower when compared to distal segments. These findings may enhance catheter-based renal arterial denervation procedural strategy and outcomes. © 2016, Wiley Periodicals, Inc.
Stacked Buoyant Payload Launcher
2013-05-14
unit, the signal ejector , or through the escape hatch lockout trunk. Each of these deployment methods has disadvantages. [0005] Torpedo tubes are... ejector tube can accommodate payloads approximately three inches in diameter. Thus, payload size is extremely limited. The escape hatch lockout trunk...signal ejector tube. Additionally, the system 10 can launch multiple payloads during one launch sequence, or can provide multiple launches at
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... Stent. The ZILVER-PTX Stent is a self-expanding nitinol stent coated on its outer surface with the... millimeter. The ZILVER-PTX Stent is available in diameters ranging from 5 to 10 millimeters (mm) and lengths... deployment, the ZILVER-PTX Stent expands to establish and maintain patency in the stented region. The...
50 CFR 635.21 - Gear operation and deployment restrictions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... design must shield the barb of the hook and prevent it from re-engaging during the removal process. One... removal process. It must be no larger than 15/16 inch (3.33 cm) outside diameter. It may not have any... (stretched when wet) and must have at least 24-count thread throughout the net. (B) Inspection of purse seine...
Performance of a 16.6 Meter Diameter Cross Parachute in a Simulated Martian Environment
NASA Technical Reports Server (NTRS)
Lundstrom, Reginald R.; Darnell, Wayne L.; Coltrane, Lucille C.
1968-01-01
Inflation and drag characteristics of a 54.4-foot (16.6 meter) nominal-diameter cross parachute, deployed at a Mach number of 1.65 and a dynamic pressure of 12.68 lb/sq f t (607.1 N/m(exp2)), were obtained from the fourth balloon-launched flight test of the Planetary Entry Parachute Program (PEPP). After deployment, the parachute quickly inflated to a full condition, partially collapsed, and then gradually reinflated while undergoing rapid oscillations between over-inflation and under-inflation. The oscillations began while the parachute was still at supersonic speeds and continued to low subsonic speeds well below an altitude of 90,000 feet (27.4 km). These canopy instabilities produced large cyclic variations in the parachute's drag coefficient. The average value of drag coefficient was about 0.8 to 0.9 at subsonic speeds and slightly lower at supersonic speeds. These drag coefficient values were based on the actual fabric surface area of the parachute canopy. The parachute sustained minor damage consisting of two canopy tears and abrasions and tears on the riser line. It is believed that this damage did not produce a significant change in the performance of the parachute.
NASA Astrophysics Data System (ADS)
Iroume, A.; Mao, L.; Andreoli, A.; Ulloa, H.
2013-12-01
In Chile, besides an anecdotal reference to in-stream wood by Vidal Gormaz (1875), the first report on LW is the one by Andreoli et al. (2007). Since then, more abundant research has developed, focusing mainly on morphologic and hydraulic functions (Comiti et al., 2008; Mao et al., 2008, 2010; Iroumé at al., 2010, 2011; Ulloa et al., 2011), and also on the ecology of low order channels (Vera et al., 2012). Large wood storage, longitudinal distribution and mobility have been studied for several periods in channel segments of four mountain catchments (Pichún, El Toro, Tres Arroyos and Vuelta de Zorra) in southern Chile. The surveyed segments were divided into individual reaches, and the length of each reach was calculated using a laser distance meter and mean individual reach bankfull width and depth were obtained by averaging measurements in cross-sections. All wood pieces found within the bankfull channel more than 10 cm in diameter and 1 m in length were measured and their position was referenced to natural elements and to numbered wooden stakes indicating every reach limit. Several of these wood elements were tagged to study LW mobilization. A 1.54 km-long segment divided into 17 individual reaches was first surveyed in the Tres Arroyos during March-April 2005, and then re-surveyed in November 2008 when the study segment was extended to a total length of 2.07 km with the addition of 5 new individual reaches. Pichún, El Toro and Vuelta de Zorra were first surveyed from November 2008 to February 2009. The length of the channel segments is 1.0 (12 reaches), 2.2 (17 reaches) and 1.56 km (16 reaches) for Pichún, El Toro and Vuelta de Zorra, respectively. These segments have been re-surveyed after every winter rainy season to study LW recruitment and mobility. Using the area of the bankfull channel as reference, total LW volume was 54 m3/ha in Pichún, 202 m3/ha in El Toro, 1449 m3/ha for Tres Arroyos and 109 m3/ha for Vuelta de Zorra. The LW travel distance and travel distance/piece diameter ratio decreased with increasing piece length/mean bankfull ratio. LW mobility (in %, i.e. the ratio between mobilized tagged wood elements and the total number of tagged LW) was significantly higher in periods where maximum water level exceeded channel bankfull height. However, LW diameter, length and travel distance showed no significant variation between periods with flows exceeding and with flows less than bankfull stage. These results contribute to understand the complexity of LW mobilization processes, and can be used to consider wood transport along with peak discharge in designing bridges and culverts in large wood dominated mountain channels. This research is undertaken through Fondecyt Project 1110609.
Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe
2018-04-01
Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter <1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Classification of microscopy images of Langerhans islets
NASA Astrophysics Data System (ADS)
Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára
2014-03-01
Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.
Tiley, J S; Viswanathan, G B; Shiveley, A; Tschopp, M; Srinivasan, R; Banerjee, R; Fraser, H L
2010-08-01
Precipitates of the ordered L1(2) gamma' phase (dispersed in the face-centered cubic or FCC gamma matrix) were imaged in Rene 88 DT, a commercial multicomponent Ni-based superalloy, using energy-filtered transmission electron microscopy (EFTEM). Imaging was performed using the Cr, Co, Ni, Ti and Al elemental L-absorption edges in the energy loss spectrum. Manual and automated segmentation procedures were utilized for identification of precipitate boundaries and measurement of precipitate sizes. The automated region growing technique for precipitate identification in images was determined to measure accurately precipitate diameters. In addition, the region growing technique provided a repeatable method for optimizing segmentation techniques for varying EFTEM conditions. (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers monitor the movement of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment as it is lowered toward an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a Vehicle Assembly Building (VAB) high bay, workers check the alignment of a Solid Rocket Booster (SRB) aft center segment which has been lowered onto an aft segment already secured to a Mobile Launch Platform. These segments are part of the right SRB for the Space Shuttle Return to Flight mission, STS-114. Two SRBs are stacked on a Mobile Launch Platform for each Shuttle flight and later joined by an External Tank. The twin 149-foot tall, 12-foot diameter SRBs provide the main propulsion system during launch. They operate in parallel with the Space Shuttle main engines for the first two minutes of flight and jettison away from the orbiter with help from the Booster Separation Motors, about 26.3 nautical miles above the Earths surface.
Segmented nanowires displaying locally controllable properties
Sutter, Eli Anguelova; Sutter, Peter Werner
2013-03-05
Vapor-liquid-solid growth of nanowires is tailored to achieve complex one-dimensional material geometries using phase diagrams determined for nanoscale materials. Segmented one-dimensional nanowires having constant composition display locally variable electronic band structures that are determined by the diameter of the nanowires. The unique electrical and optical properties of the segmented nanowires are exploited to form electronic and optoelectronic devices. Using gold-germanium as a model system, in situ transmission electron microscopy establishes, for nanometer-sized Au--Ge alloy drops at the tips of Ge nanowires (NWs), the parts of the phase diagram that determine their temperature-dependent equilibrium composition. The nanoscale phase diagram is then used to determine the exchange of material between the NW and the drop. The phase diagram for the nanoscale drop deviates significantly from that of the bulk alloy.
NASA Astrophysics Data System (ADS)
Noble, Jack H.; Warren, Frank M.; Labadie, Robert F.; Dawant, Benoit M.
2008-03-01
In cochlear implant surgery, an electrode array is permanently implanted in the cochlea to stimulate the auditory nerve and allow deaf people to hear. A minimally invasive surgical technique has recently been proposed--percutaneous cochlear access--in which a single hole is drilled from the skull surface to the cochlea. For the method to be feasible, a safe and effective drilling trajectory must be determined using a pre-operative CT. Segmentation of the structures of the ear would improve trajectory planning safety and efficiency and enable the possibility of automated planning. Two important structures of the ear, the facial nerve and chorda tympani, present difficulties in intensity based segmentation due to their diameter (as small as 1.0 and 0.4 mm) and adjacent inter-patient variable structures of similar intensity in CT imagery. A multipart, model-based segmentation algorithm is presented in this paper that accomplishes automatic segmentation of the facial nerve and chorda tympani. Segmentation results are presented for 14 test ears and are compared to manually segmented surfaces. The results show that mean error in structure wall localization is 0.2 and 0.3 mm for the facial nerve and chorda, proving the method we propose is robust and accurate.
2013-01-01
Highly hexagonally ordered hard anodic aluminum oxide membranes, which have been modified by a thin cover layer of SiO2 deposited by atomic layer deposition method, were used as templates for the synthesis of electrodeposited magnetic Co-Ni nanowire arrays having diameters of around 180 to 200 nm and made of tens of segments with alternating compositions of Co54Ni46 and Co85Ni15. Each Co-Ni single segment has a mean length of around 290 nm for the Co54Ni46 alloy, whereas the length of the Co85Ni15 segments was around 430 nm. The composition and crystalline structure of each Co-Ni nanowire segment were determined by transmission electron microscopy and selected area electron diffraction techniques. The employed single-bath electrochemical nanowire growth method allows for tuning both the composition and crystalline structure of each individual Co-Ni segment. The room temperature magnetic behavior of the multisegmented Co-Ni nanowire arrays is also studied and correlated with their structural and morphological properties. PMID:23735184
Ceramic turbine stator vane and shroud support
Glenn, Robert G.
1981-01-01
A support system for supporting the stationary ceramic vanes and ceramic outer shrouds which define the motive fluid gas path in a gas turbine engine is shown. Each individual segment of the ceramic component whether a vane or shroud segment has an integral radially outwardly projecting stem portion. The stem is enclosed in a split collet member of a high-temperature alloy material having a cavity configured to interlock with the stem portion. The generally cylindrical external surface of the collet engages a mating internal cylindrical surface of an aperture through a supporting arcuate ring segment with mating camming surfaces on the two facing cylindrical surfaces such that radially outward movement of the collet relative to the ring causes the internal cavity of the collet to be reduced in diameter to tightly engage the ceramic stem disposed therein. A portion of the collet extends outwardly through the ring segment opposite the ceramic piece and is threaded for receiving a nut and a compression washer for retaining the collet in the ring segment under a continuous biasing force urging the collet radially outwardly.
Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial.
Mulder, H J; Schalij, M J; Kauer, B; Visser, R F; van Dijkman, P R; Jukema, J W; Zwinderman, A H; Bruschke, A V
2001-11-01
To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. A double blind, randomised, placebo controlled, multicentre study. Four hospitals in the Netherlands. 63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group.
The Amplatz canine duct occluder: a novel device for patent ductus arteriosus occlusion.
Nguyenba, Thaibinh P; Tobias, Anthony H
2007-11-01
The Amplatz canine duct occluder (ACDO) is a nitinol mesh device with a short waist that separates a flat distal disc from a cupped proximal disc. The device is designed to conform to the morphology of the canine patent ductus arteriosus (PDA). PDA dimensions are determined by angiography, and a guiding catheter is advanced into the main pulmonary artery via the aorta and PDA. An ACDO with a waist diameter approximately twice the angiographic minimal ductal diameter (MDD) is advanced via the catheter using an attached delivery cable until the flat distal disc deploys within the main pulmonary artery. The partially deployed ACDO, guiding catheter, and delivery cable are retracted until the distal disc engages the pulmonic ostium of the PDA. With the delivery cable stabilized, the catheter is retracted to deploy the waist across the pulmonic ostium and cupped proximal disc within the ductal ampulla. Tension on the delivery cable is released, and correct ACDO positioning and stability are confirmed by observing that the device assumes its native shape, back-and-forth maneuvering of the delivery cable, and a small contrast injection made through the guiding catheter. The delivery cable is detached and removed with the guiding catheter. To assess for any residual ductal flow, an angiogram is performed at the conclusion of the procedure, followed by Doppler echocardiography at 1 day and 3 months post-procedure. PDA occlusion in dogs with the ACDO is straightforward and extremely effective across a wide range of body weights, somatotypes, MDDs, and ductal morphologies.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
NASA Technical Reports Server (NTRS)
Eckstrom, Clinton V.; Preisser, John S.
1967-01-01
A 30-foot (9.1 meter) nominal-diameter disk-gap-band parachute (reference area 707 sq ft (65.7 m(exp 2)) was flight tested with a 200-pound (90.7 kg) instrumented payload as part of the NASA Planetary Entry Parachute Program. A deployment mortar ejected the test parachute when the payload was at a Mach number of 1.56 and a dynamic pressure of 11.4 lb/sq ft (546 newtons per m 2 ) at an altitude of 127,500 feet (38.86 km). The parachute reached suspension line stretch in 0.37 second resulting in a snatch force loading of 1270 pounds (5650 N). Canopy inflation began 0.10 second after line stretch. A delay in the opening process occurred and was apparently due to a momentary interference of the glass-fiber shroud used in packing the parachute bag in the mortar. Continuous canopy inflation began 0.73 second after initiation of deployment and 0.21 second later full inflation was attained for a total elapsed time from mortar fire of 0.94 second. The maximum opening load of 3915 pounds (17,400 newtons) occurred at the time the canopy was first fully opened. The parachute exhibited an average drag coefficient of 0.52 during the deceleration period and pitch-yaw oscillations of the canopy were less than 5 degrees. During the steady-state descent portion of the test period, the average effective drag coefficient was about 0.47 (based on vertical descent velocity and total system weight).
NASA Astrophysics Data System (ADS)
Zakaria, M. S.; Zairi, S.; Misbah, M. N.; Saifizi, M.; Rakawi, Izzudin
2018-03-01
This paper presents performance evaluation of nozzle shapes on microscale channel by employing different types of NACA airfoils profile and conventional profile. The deploying nozzle used are NACA 0012, NACA 0021 and NACA 0024 airfoils while for conventional convergence-divergence nozzle diameter ratio (d2 / d1) in the range from 1/4 to 3/4 are applied. These nozzles are assembled on rectangular cross sectional microscale channel which has designated constant fluid flow velocity at the channel inlet. This study revealed reduction on diameter ratio increased dramatically fluid velocity but further reduction on diameter ratio exposed fluid flow to fluctuate which slightly slowing down the fluid velocity. Nevertheless, curved NACA profiles are favourable for convergence – divergence nozzle in microscale channel as it significantly improved flow characteristics by enhancing fluid velocity and resultant kinetic energy as compared to conventional profile.
Okur, A; Kantarci, M; Karaca, L; Yildiz, S; Sade, R; Pirimoglu, B; Keles, M; Avci, A; Çankaya, E; Schmitt, P
2016-03-01
To assess the efficiency of a novel quiescent-interval single-shot (QISS) technique for non-contrast-enhanced magnetic resonance angiography (MRA) of haemodialysis fistulas. QISS MRA and colour Doppler ultrasound (CDU) images were obtained from 22 haemodialysis patients with end-stage renal disease (ESRD). A radiologist with extensive experience in vascular imaging initially assessed the fistulas using CDU. Two observers analysed each QISS MRA data set in terms of image quality, using a five-point scale ranging from 0 (non-diagnostic) to 4 (excellent), and lumen diameters of all segments were measured. One hundred vascular segments were analysed for QISS MRA. Two anastomosis segments were considered non-diagnostic. None of the arterial or venous segments were evaluated as non-diagnostic. The image quality was poorer for the anastomosis level compared to the other segments (p<0.001 for arterial segments, and p<0.05 for venous segments), while no significant difference was determined for other vascular segments. QISS MRA has the potential to provide valuable complementary information to CDU regarding the imaging of haemodialysis fistulas. In addition, QISS non-enhanced MRA represents an alternative for assessment of haemodialysis fistulas, in which the administration of iodinated or gadolinium-based contrast agents is contraindicated. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Wang, Jou-Kou; Wu, Mei-Hwan; Lin, Ming-Tai; Chiu, Shuenn-Nan; Chen, Chun-An; Chiu, Hsin-Hui
2010-02-01
There are difficulties in transcatheter closure of patent ductus arteriosus (PDA) in infants. The 46 infants (mean age 6.2+/-2.7 months; mean body weight 6.3+/-1.6 kg) who underwent PDA closure using the Amplatzer duct occluder (ADO). The indication for using an ADO was a ductus diameter > or =2.5 or 3 mm. Device diameter selected was 1-3 mm larger than ductal diameter. The mean systolic pulmonary artery pressure was 40.9+/-18.2 mmHg. The mean Qp/Qs ratio was 3.1+/-1.2. The mean ductus diameter was 3.3+/-0.8 mm. ADO was successfully deployed in 45 patients. Failure occurred in 1 case. The mean diameter of device used was 5.4+/-1.1 mm. No severe complications occurred. At the 1-month echocardiographic follow-up, a small residual shunt was present in 4 of 45 patients and had disappeared in all 4 patients at the 3-month follow-up. One patient developed a moderate degree of left ventricular outflow tract obstruction 2.3 years after the procedure. Transcatheter closure of PDA in infants using the ADO is a safe and effective method.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Photographers crowd around the countdown clock and flag post near the NASA News Center to capture the successful on-time launch of Space Shuttle Atlantis from Launch Pad 39A at 7:38:04 p.m. EDT on mission STS-117. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Jim Grossmann
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Twin columns of fire rocket the Space Shuttle Atlantis into the sky above Kennedy Space Center. Liftoff of Atlantis on mission STS-117 to the International Space Station from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Chris Lynch
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Branches and leaves frame Space Shuttle Atlantis as it lifts off Launch Pad 39A on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Sandra Joseph, Robert Murray and Tom Farrar
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing smoke and fire, Space Shuttle Atlantis roars into the sky past the U.S. flag on its journey to the International Space Station on mission STS-117. Liftoff was on-time at 7:38:04 p.m. EDT . The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing fire, Space Shuttle Atlantis roars toward the sky on mission STS-117. Below it can be seen the lighting mast atop the fixed service structure. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Reuters.
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Trailing fire and smoke, Space Shuttle Atlantis races into the sky toward a rendezvous with the International Space Station on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo credit: NASA/Ken Thornsley
Lu, Jun-Xia; Bayro, Marvin J.; Tycko, Robert
2016-01-01
We present the results of solid state nuclear magnetic resonance (NMR) experiments on HIV-1 capsid protein (CA) assemblies with three different morphologies, namely wild-type CA (WT-CA) tubes with 35–60 nm diameters, planar sheets formed by the Arg18-Leu mutant (R18L-CA), and R18L-CA spheres with 20–100 nm diameters. The experiments are intended to elucidate molecular structural variations that underlie these variations in CA assembly morphology. We find that multidimensional solid state NMR spectra of 15N,13C-labeled CA assemblies are remarkably similar for the three morphologies, with only small differences in 15N and 13C chemical shifts, no significant differences in NMR line widths, and few differences in the number of detectable NMR cross-peaks. Thus, the pronounced differences in morphology do not involve major differences in the conformations and identities of structurally ordered protein segments. Instead, morphological variations are attributable to variations in conformational distributions within disordered segments, which do not contribute to the solid state NMR spectra. Variations in solid state NMR signals from certain amino acid side chains are also observed, suggesting differences in the intermolecular dimerization interface between curved and planar CA lattices, as well as possible differences in intramolecular helix-helix packing. PMID:27129282
Lipecz, Agnes; Tsorbatzoglou, Alexis; Hassan, Ziad; Berta, Andras; Modis, Laszlo; Nemeth, Gabor
2017-05-11
To analyze the effect of the accommodation on the anterior segment data (corneal and anterior chamber parameters) induced by short-time reading in a healthy, nonpresbyopic adult patient group. Images of both eyes of nonpresbyopic volunteers were captured with a Scheimpflug device (Pentacam HR) in a nonaccommodative state. Fifteen minutes of reading followed and through fixation of the built-in target of Pentacam HR further accommodation was achieved and new images were captured by the device. Anterior segment parameters were observed and the differences were analyzed. Fifty-two healthy eyes of 26 subjects (range 20.04-28.58 years) were analyzed. No significant differences were observed in the keratometric values before and after the accommodative task (p = 0.35). A statistically significant difference was measured in the 5.0-mm-diameter and the 7.0-mm-diameter corneal volume (p = 0.01 and p = 0.03) between accommodation states. Corneal aberrometric data did not change significantly during short-term accommodation. Significant differences were observed between nonaccommodative and accommodative states of the eyes for all measured anterior chamber parameters. Among the parameters of the cornea, only corneal volume changed during the short-term accommodation process, showing some fine changes with accommodation of the cornea in young, emmetropic patients. The position of the pupil and the anterior chamber parameters were observed to change with accommodation as captured by a Scheimpflug device.
High-resolution deployable telescope for satellite applications
NASA Astrophysics Data System (ADS)
Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto
2004-02-01
CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.
Planer, David; Mehran, Roxana; Ohman, E Magnus; White, Harvey D; Newman, Jonathan D; Xu, Ke; Stone, Gregg W
2014-06-01
Troponin elevation is a risk factor for mortality in patients with non-ST-segment-elevation acute coronary syndromes. However, the prognosis of patients with troponin elevation and nonobstructive coronary artery disease (CAD) is unknown. Our objective was therefore to evaluate the impact of nonobstructive CAD in patients with non-ST-segment-elevation acute coronary syndromes and troponin elevation enrolled in the Acute Catheterization and Urgent Intervention Triage Strategy (ACUITY) trial. In the ACUITY trial, 3-vessel quantitative coronary angiography was performed in a formal substudy of 6921 patients presenting with non-ST-segment-elevation acute coronary syndromes. Patients with elevated admission troponin levels were stratified by the presence or absence of obstructive CAD (any lesion with quantitative diameter stenosis >50%). Propensity score matching was performed to adjust for baseline characteristics. Of 2442 patients with elevated troponin, 197 (8.8%) had nonobstructive CAD. Maximum diameter stenosis was 87.4 (73.2, 100.0) versus 22.6 (19.2, 25.7; P<0.0001) in patients with versus without obstructive CAD, respectively. Propensity matching yielded 117 patients with nonobstructive CAD and 331 patients with obstructive CAD, with no significant baseline differences between groups. In the matched cohort, overall 1-year mortality was significantly higher in patients with nonobstructive CAD (5.2% versus 1.6%; hazard ratio [95% confidence interval]=3.44 [1.05, 11.28]; P=0.04), driven by greater noncardiac mortality. Conversely, recurrent myocardial infarction and unplanned revascularization rates were significantly higher in patients with obstructive CAD. Patients with non-ST-segment-elevation acute coronary syndromes and elevated troponin levels but without obstructive CAD, while having low rates of subsequent myocardial infarction and unplanned revascularization, are still at considerable risk for 1-year mortality from noncardiac causes. http://www.clinicaltrials.gov. Unique identifier: NCT00093158. © 2014 American Heart Association, Inc.
Feasibility and scalability of spring parameters in distraction enterogenesis in a murine model.
Huynh, Nhan; Dubrovsky, Genia; Rouch, Joshua D; Scott, Andrew; Stelzner, Matthias; Shekherdimian, Shant; Dunn, James C Y
2017-07-01
Distraction enterogenesis has been investigated as a novel treatment for short bowel syndrome (SBS). With variable intestinal sizes, it is critical to determine safe, translatable spring characteristics in differently sized animal models before clinical use. Nitinol springs have been shown to lengthen intestines in rats and pigs. Here, we show spring-mediated intestinal lengthening is scalable and feasible in a murine model. A 10-mm nitinol spring was compressed to 3 mm and placed in a 5-mm intestinal segment isolated from continuity in mice. A noncompressed spring placed in a similar fashion served as a control. Spring parameters were proportionally extrapolated from previous spring parameters to accommodate the smaller size of murine intestines. After 2-3 wk, the intestinal segments were examined for size and histology. Experimental group with spring constants, k = 0.2-1.4 N/m, showed intestinal lengthening from 5.0 ± 0.6 mm to 9.5 ± 0.8 mm (P < 0.0001), whereas control segments lengthened from 5.3 ± 0.5 mm to 6.4 ± 1.0 mm (P < 0.02). Diameter increased similarly in both groups. Isolated segment perforation was noted when k ≥ 0.8 N/m. Histologically, lengthened segments had increased muscularis thickness and crypt depth in comparison to normal intestine. Nitinol springs with k ≤ 0.4 N/m can safely yield nearly 2-fold distraction enterogenesis in length and diameter in a scalable mouse model. Not only does this study derive the safe ranges and translatable spring characteristics in a scalable murine model for patients with short bowel syndrome, it also demonstrates the feasibility of spring-mediated intestinal lengthening in a mouse, which can be used to study underlying mechanisms in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
An engineering array for the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory
NASA Astrophysics Data System (ADS)
Longo, Megan; Mostafa, Miguel
2012-03-01
The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is currently being deployed at 4100 m in Sierra Negra, Mexico. The HAWC observatory will have 300 Water Cherenkov Detectors (WCDs). Each WCD will be instrumented with 4 upward facing baffled photo multiplier tubes (PMTs) anchored to the bottom of a 5 m deep by 7.3 m diameter steel container with a multilayer hermetic plastic bag containing 200,000 liters of purified water. An engineering array of 6 WCDs was deployed in Summer 2011 at the HAWC site and has been operational since then. This array serves to validate the design and construction methods for the HAWC observatory. It has also been collecting data which allows for the development of data collection and analysis tools. Here we will describe the deployment of the engineering array, the lessons learned from this experience and the implications for HAWC, as well as give an introduction into data collection and initial analysis being done, which will be presented jointly.
NASA Technical Reports Server (NTRS)
Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.
1994-01-01
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.
NASA Astrophysics Data System (ADS)
Wiedmann, Ingrid; Reigstad, Marit; Marquardt, Miriam; Vader, Anna; Gabrielsen, Tove M.
2018-02-01
In our original publication the particle volume flux was by mistake standardized to area A = sediment trap diameter2 ∗ pi instead of A = sediment trap radius2 ∗ pi (A being the opening of the sediment trap). In addition, the particle flux data from Spring II (30 m and 60 m) and Spring III (20 m) were standardized twice to deployment time, instead of to the deployment time and the sediment trap opening. These mistakes do not affect our conclusions, but we would like to present here the correct numbers for the result section 3.4, discussion section 4.3 and a revised Fig. 5.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj
2012-01-01
System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Gellert, R.; Ming, D. W.; Morris, R. V.; Schroeder, C.; Yen, A. S.; Farrand, W. H.; Arvidson, R. E.; Franklin, B. J.; Grant, J. A.;
2015-01-01
Mars Exploration Rover Opportunity has been exploring Meridiani Planum since January 2004, and has completed 4227% of its primary mission. Opportunity has been investigating the geology of the rim of 22 km diameter Endeavour crater, first on the Cape York segment and now on Cape Tribulation. The outcrops are divided York; (ii) the Shoemaker fm, impact breccias representing ejecta from the crater; into three formations: (i) the lower Matijevic fm, a pre-impact lithology on Cape and (iii) the upper Grasberg fm, a post-impact deposit that drapes the lower portions of the eroded rim segments. On the Cape Tribulation segment Opportunity has been studying the rocks on Murray Ridge, with a brief sojourn to Wdowiak Ridge west of the rim segment. team member Thomas Wdowiak, who died in 2013.) One region of Murray Ridge has distinctive CRISM spectral characteristics indicating the presence of a small concentration of aluminous smectite based on a 2.2 micron Al-OH combination band (hereafter, the Al-OH region).
A Review of ETM-03 (A Five Segment Shuttle RSRM Configuration) Ballistic Performance
NASA Technical Reports Server (NTRS)
McMillin, J. E.; Furfaro, J. A.
2004-01-01
Marshall Space Flight Center and ATK Thiokol Propulsion worked together on the engineering design of a five-segment Engineering Test Motor (ETM-03), the world's largest segmented solid rocket motor. The data from ETM-03's static test have helped to provide a better understanding of the Reusable Solid Rocket Motor's (RSRM's) margins and the techniques and models used to simulate solid rocket motor performance. The enhanced performance of ETM-03 was achieved primarily by the addition of a RSRM center segment. Added motor performance was also achieved with a nozzle throat diameter increase and the incorporation of an Extended Aft Exit Cone (EAEC). Performance parameters such as web time, action time, head-end pressure, web time average pressure, maximum thrust, mass flow rate, centerline Mach number, pressure and thrust integrals were all increased over RSRM. In some cases, the performance increases were substantial. Overall, the measured data were exceptionally close to the pretest predictions.
SRM attrition rate study of the aft motor case segments due to water impact cavity collapse loading
NASA Technical Reports Server (NTRS)
Crockett, C. D.
1976-01-01
The attrition assessment of the aft segments of Solid Rocket Motor due to water impact requires the establishment of a correlation between loading occurrences and structural capability. Each discrete load case, as identified by the water impact velocities and angle, varies longitudinally and radially in magnitude and distribution of the external pressure. The distributions are further required to be shifted forward or aft one-fourth the vehicle diameter to assure minimization of the effect of test instrumentation location for the load determinations. The asymmetrical load distributions result in large geometric nonlinearities in structural response. The critical structural response is progressive buckling of the case. Discrete stiffeners have been added to these aft segments to aid in gaining maximum structural capability for minimum weight addition for resisting these loads. This report presents the development of the attrition assessment of the aft segments and includes the rationale for eliminating all assessable conservatisms from this assessment.
NASA Astrophysics Data System (ADS)
Stork, A. L.; Stuart, G. W.; Henderson, C. M.; Keir, D.; Hammond, J. O. S.
2013-04-01
The Afar Depression, Ethiopia, offers unique opportunities to study the transition from continental rifting to oceanic spreading because the process is occurring onland. Using traveltime tomography and data from a temporary seismic deployment, we describe the first regional study of uppermost mantle P-wave velocities (VPn). We find two separate low VPn zones (as low as 7.2 km s-1) beneath regions of localized thinned crust in northern Afar, indicating the existence of high temperatures and, potentially, partial melt. The zones are beneath and off-axis from, contemporary crustal magma intrusions in active magmatic segments, the Dabbahu-Manda-Hararo and Erta'Ale segments. This suggests that these intrusions can be fed by off-axis delivery of melt in the uppermost mantle and that discrete areas of mantle upwelling and partial melting, thought to characterize segmentation of the uppermost mantle at seafloor spreading centres, are initiated during the final stages of break-up.
Dominguez-Rodriguez, A; Juarez-Prera, R A; Rodríguez, S; Abreu-Gonzalez, P; Avanzas, P
2016-05-01
Evaluate whether the meterological parameters affecting revenues in patients with ST-segment and non-ST-segment elevation ACS. A prospective cohort study was carried out. Coronary Care Unit of Hospital Universitario de Canarias We studies a total of 307 consecutive patients with a diagnosis of ST-segment and non-ST-segment elevation ACS. We analyze the average concentrations of particulate smaller than 10 and 2.5μm diameter, particulate black carbon, the concentrations of gaseous pollutants and meteorological parameters (wind speed, temperature, relative humidity and atmospheric pressure) that were exposed patients from one day up to 7 days prior to admission. None. Demographic, clinical, atmospheric particles, concentrations of gaseous pollutants and meterological parameters. A total of 138 (45%) patients were classified as ST-segment and 169 (55%) as non-ST-segment elevation ACS. No statistically significant differences in exposure to atmospheric particles in both groups. Regarding meteorological data, we did not find statistically significant differences, except for higher atmospheric pressure in ST-segment elevation ACS (999.6±2.6 vs. 998.8±2.5 mbar, P=.008). Multivariate analysis showed that atmospheric pressure was significant predictor of ST-segment elevation ACS presentation (OR: 1.14, 95% CI: 1.04-1.24, P=.004). In the patients who suffer ACS, the presence of higher number of atmospheric pressure during the week before the event increase the risk that the ST-segment elevation ACS. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans
NASA Astrophysics Data System (ADS)
Reda, Fitsum A.; Noble, Jack H.; Rivas, Alejandro; Labadie, Robert F.; Dawant, Benoit M.
2011-03-01
In image-guided cochlear implant surgery an electrode array is implanted in the cochlea to treat hearing loss. Access to the cochlea is achieved by drilling from the outer skull to the cochlea through the facial recess, a region bounded by the facial nerve and the chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The effectiveness of traditional segmentation approaches to achieve this is severely limited because the facial nerve and chorda are small structures (~1 mm and ~0.3 mm in diameter, respectively) and exhibit poor image contrast. We have recently proposed a technique to achieve this task in adult patients, which relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work we use the same method to segment pediatric scans. We show that substantial differences exist between the anatomy of children and the anatomy of adults, which lead to poor segmentation results when an adult model is used to segment a pediatric volume. We have built a new model for pediatric cases and we have applied it to ten scans. A leave-one-out validation experiment was conducted in which manually segmented structures were compared to automatically segmented structures. The maximum segmentation error was 1 mm. This result indicates that accurate segmentation of the facial nerve and chorda in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.
Deployable aerospace PV array based on amorphous silicon alloys
NASA Technical Reports Server (NTRS)
Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey
1989-01-01
The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.
Deployable aerospace PV array based on amorphous silicon alloys
NASA Astrophysics Data System (ADS)
Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey
1989-04-01
The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.
Ochenjele, George; Ho, Bryant; Switaj, Paul J; Fuchs, Daniel; Goyal, Nitin; Kadakia, Anish R
2015-03-01
Jones fractures occur in the relatively avascular metadiaphyseal junction of the fifth metatarsal (MT), which predisposes these fractures to delayed union and nonunion. Operative treatment with intramedullary (IM) screw fixation is recommended in certain cases. Incorrect screw selection can lead to refractures, nonunion, and cortical blowout fractures. A better understanding of the anatomy of the fifth MT could aid in preoperative planning, guide screw size selection, and minimize complications. We retrospectively identified foot computed tomographic (CT) scans of 119 patients that met inclusion criteria. Using interactive 3-dimensional (3-D) models, the following measurements were calculated: MT length, "straight segment length" (distance from the base of the MT to the shaft curvature), and canal diameter. The diaphysis had a lateroplantar curvature where the medullary canal began to taper. The average straight segment length was 52 mm, and corresponded to 68% of the overall length of the MT from its proximal end. The medullary canal cross-section was elliptical rather than circular, with widest width in the sagittal plane and narrowest in coronal plane. The average coronal canal diameter at the isthmus was 5.0 mm. A coronal diameter greater than 4.5 mm at the isthmus was present in 81% of males and 74% of females. To our knowledge, this is the first anatomic description of the fifth metatarsal based on 3-D imaging. Excessive screw length could be avoided by keeping screw length less than 68% of the length of the fifth metatarsal. A greater than 4.5 mm diameter screw might be needed to provide adequate fixation for most study patients since the isthmus of the medullary canal for most were greater than 4.5 mm. Our results provide an improved understanding of the fifth metatarsal anatomy to guide screw diameter and length selection to maximize screw fixation and minimize complications. © The Author(s) 2014.
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader. PMID:26914328
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader.
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
Solid Surface Wetting and the Deployment of Drops in Microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Depew, J.
1994-01-01
The complete or partial deployment of liquid samples in low gravity is primarily influenced by the interfacial properties of the specific liquid and solid materials used because the overwhelming bias of the Earth gravitational acceleration is removed. This study addresses the engineering aspects of injecting and deploying drops of prescribed volume into an acoustic positioning chamber in microgravity. The specific problems of interest are the design, testing, and implementation of injector tips to be used in a simuttaneously retracting dual-injector system used in the Drop Physics Module microgravity experiment facility. Prior to release, the liquid to be deployed must be retained within a restricted area at the very end of the injectors even under dynamic stimuli due to continuous injection flow as well as to the stepped motion of the injectors, and the final released drop must have a well determined volume as well as negligible residual linear or angular momentum from the deployment process. The outcome of Earthbased short-duration low gravity experiments had been the selection of two types of injector tips which were flown as back-up parts and were successfully utilized during the USML-1 Spacelab mission. The combination of a larger contact surface, liquid pinning with a sharp edge, and selective coating of strategic tip surfaces with a non-wetting compound has allowed a significant increase in the success rate of deployment of simple and compound drops of aqueous solutions of glycerol and silicone oil. The diameter of the samples studied in the Drop Physics Module ranged between 0.3 and 2.7 cm. The tests conducted onsrbit with a manually operated small device have allowed the calibration of the volume deployed for a few drop sizes. The design for improved tips to be used during the next USML flight is based on these results.
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey
2007-01-01
An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.
Segmented Hoop as a Physical Pendulum
NASA Astrophysics Data System (ADS)
Layton, William; Rodriguez, Nuria
2013-10-01
An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is segmented horizontally (as illustrated in Fig. 1) into smaller pieces that are symmetrical about the point of suspension, each smaller segment will also have the same period. Constructing such a demonstration can be difficult, but thanks to a suggestion from a fellow physics teacher a dissectible hula hoop can be purchased that serves well in this demonstration.2 A setup that has been repeated many times at various physics teacher meetings in Southern California is illustrated below.
NASA's mobile satellite communications program; ground and space segment technologies
NASA Technical Reports Server (NTRS)
Naderi, F.; Weber, W. J.; Knouse, G. H.
1984-01-01
This paper describes the Mobile Satellite Communications Program of the United States National Aeronautics and Space Administration (NASA). The program's objectives are to facilitate the deployment of the first generation commercial mobile satellite by the private sector, and to technologically enable future generations by developing advanced and high risk ground and space segment technologies. These technologies are aimed at mitigating severe shortages of spectrum, orbital slot, and spacecraft EIRP which are expected to plague the high capacity mobile satellite systems of the future. After a brief introduction of the concept of mobile satellite systems and their expected evolution, this paper outlines the critical ground and space segment technologies. Next, the Mobile Satellite Experiment (MSAT-X) is described. MSAT-X is the framework through which NASA will develop advanced ground segment technologies. An approach is outlined for the development of conformal vehicle antennas, spectrum and power-efficient speech codecs, and modulation techniques for use in the non-linear faded channels and efficient multiple access schemes. Finally, the paper concludes with a description of the current and planned NASA activities aimed at developing complex large multibeam spacecraft antennas needed for future generation mobile satellite systems.
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
Apparatus and method for plasma processing of SRF cavities
NASA Astrophysics Data System (ADS)
Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.
2016-05-01
An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
1999-04-20
NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.
NASA Technical Reports Server (NTRS)
1972-01-01
The baseline for a space shuttle configuration utilizing two parallel-burn, 156-in.-diameter SRMs with three segments and techroll seal movable nozzles is presented. The concept and general economic benefits of SRM recovery are equally valid for the series-burn SRMs, provided that those SRMs are also designed for the same strength, stiffness, segmentation, and interchangeability as the present design, and that those SRMs are also recovered as individual units. Feasibility studies were initiated to investigate SRM recoverability. These studies were based upon recovery of the SRM boosters for the Titan 3C. Ground rules precluded SRM modification that required significant changes in motor qualification or schedule. Even with this restriction, the study determined that the recoverable booster concept was completely feasible, both technically and economically. Parachute recovery has been selected as the best method, principally because it can accomplish the task with a minimum development cost and time to achieve operational recovery status. This system affords the highest probability for achieving large cost reductions.
Integrated segmentation of cellular structures
NASA Astrophysics Data System (ADS)
Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo
2011-03-01
Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.
Overview and Summary of Advanced UVOIR Mirror Technology Development (AMTD) Project
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2014-01-01
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: center dotLarge-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented telescopes require larger and stiffer mirrors. center dotSupport System: Large-aperture mirrors require large support systems to ensure that they survive launch, deploy on orbit, and maintain a stable, undistorted shape. center dotMid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. center dotSegment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. center dotSegment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. center dotIntegrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. Because we cannot predict the future, AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements
Advanced UVOIR Mirror Technology Development (AMTD) for Very Large Space Telescopes
NASA Technical Reports Server (NTRS)
Postman, Marc; Soummer, Remi; Sivramakrishnan, Annand; Macintosh, Bruce; Guyon, Olivier; Krist, John; Stahl, H. Philip; Smith, W. Scott; Mosier, Gary; Kirk, Charles;
2013-01-01
ASTRO2010 Decadal Survey stated that an advanced large-aperture ultraviolet, optical, near-infrared (UVOIR) telescope is required to enable the next generation of compelling astrophysics and exoplanet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. AMTD is the start of a multiyear effort to develop, demonstrate and mature critical technologies to TRL-6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. AMTD builds on the state of art (SOA) defined by over 30 years of monolithic & segmented ground & space-telescope mirror technology to mature six key technologies: (1) Large-Aperture, Low Areal Density, High Stiffness Mirror Substrates: Both (4 to 8 m) monolithic and (8 to 16 m) segmented primary mirrors require larger, thicker, and stiffer substrates. (2) Support System: Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error: Very smooth mirror is critical for producing high-quality point spread function (PSF) for high contrast imaging. (4) Segment Edges: The quality of segment edges impacts PSF for high-contrast imaging applications, contributes to stray light noise, and affects total collecting aperture. (5) Segment to Segment Gap Phasing: Segment phasing is critical for producing high-quality temporally-stable PSF. (6) Integrated Model Validation: On-orbit performance is driven by mechanical & thermal stability. Compliance cannot be 100% tested, but relies on modeling. AMTD is pursuing multiple design paths to provide the science community with options to enable either large aperture monolithic or segmented mirrors with clear engineering metrics traceable to science requirements.
Tokuda, Takahiro; Yamawaki, Masahiro; Takahara, Mitsuyohi; Mori, Shinsuke; Makino, Kenji; Honda, Yosuke; Takafuji, Hiroya; Takama, Takuro; Tsutsumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Hirano, Keisuke; Ito, Yoshiaki
2016-03-18
Peri-stent contrast staining (PSS) after metallic drug-eluting stent deployment is associated with target lesion revascularization and very late stent thrombosis. However, the type of PSS that influences the clinical outcomes is unknown. Therefore, we aimed to reveal which PSS type was influencing clinical outcomes. This study included 5580 de novo lesions of 4405 patients who were implanted with a first- or second-generation drug-eluting stent and who were evaluated using follow-up angiography within 12 months after stent implantation. We compared the clinical outcomes of patients divided into focal PSS and segmental PSS groups for 6 years after stent implantation. Total PSS was observed in 97 lesions (2.2%), of which 42 and 55 lesions were focal and segmental PSS, respectively. Baseline characteristics were similar between groups, except for intraoperative chronic total occlusion (segmental PSS=47.3% versus focal PSS=11.9%, P=0.0001). The incidence of segmental PSS tended to be higher in patients with a first-generation drug-eluting stent (83.6% versus 16.4%, P=0.05). The cumulative incidence of stent thrombosis in the 6 years of segmental PSS group was significantly higher than that of the focal PSS group (13.9% versus 0%, P=0.04). The cumulative incidence of overall target lesion revascularization for restenosis, excluding target lesion revascularization procedures for stent thrombosis, was significantly higher in the segmental PSS group (38.0% versus 0%, P=0.01). The incidence of segmental PSS tended to be higher in patients with a first-generation drug-eluting stent and appeared to be significantly associated with target lesion revascularization and stent thrombosis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Mexican Infrared-Optical New Technology Telescope: The TIM project
NASA Astrophysics Data System (ADS)
Salas, L.
1998-11-01
The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a percent of a 99\\% reflectivity primary mirror. The width of the segments was decided to be 7.5 cm, similar to keck's, noting also that the self weight deflections of this segment are sligthly inferior (more rigid) than the NTT mirror as defined by Willson et al. Due to this increased rigidity, and to a more homogeneous distribution, while the NTT mirror is supported in 78 points, the Keck segments are supported by 36. We have decreased this number of support points to 19 in our design, but using extended actuators (airbags) that distribute the support force and that together support most of the area of the segment. The current design allows also the inclusion of wind buffeting actuators, and position actuators at the edges of each segment. Position control of each segment is accomplished by electromechanical and piezo actuators, that thanks to the force actuators, only have to act on a reduced portion of the weigth of each segment. The hard points can be located at the edge of the segment and provide common reference for neighboor segments as well. The telescope structure is being designed by finite element analysis. It is an alt-az mount with cassegrain focus instruments only. The structure is being designed as a high stiffnes, low weigth tubular structure. The upper tube is a two tier design with eigen-frequencies larger than 12.9 Htz. The elevation ring is also being designed as a tubular structure obtaining so far eigen-frecuencies of 12.6. In the combined structure the first eigenfrequency goes down to 8 Hz, but it is a rigid rotation about the elevation axis, and so it is not structural. The second eigenfrequency is a bending of the secondary structure at 8.5 hz, and other designs of the secondary vanes are being sttudied to increment this frequency. The third eigenfrequency is the first real eigen-frequency of the structure and occurs at 13hz. Maximum deflections by gravity are 2.2 mm for the telescope tube at horizon while at zenith its only of 0.7mm. The total weigth of the structure, optics and a few instruments is expected to be around 80 tons. More information can be obtained at our web site: http://hussongs.astrosen.unam.mx/~tim/
Fast and robust shape diameter function.
Chen, Shuangmin; Liu, Taijun; Shu, Zhenyu; Xin, Shiqing; He, Ying; Tu, Changhe
2018-01-01
The shape diameter function (SDF) is a scalar function defined on a closed manifold surface, measuring the neighborhood diameter of the object at each point. Due to its pose oblivious property, SDF is widely used in shape analysis, segmentation and retrieval. However, computing SDF is computationally expensive since one has to place an inverted cone at each point and then average the penetration distances for a number of rays inside the cone. Furthermore, the shape diameters are highly sensitive to local geometric features as well as the normal vectors, hence diminishing their applications to real-world meshes which often contain rich geometric details and/or various types of defects, such as noise and gaps. In order to increase the robustness of SDF and promote it to a wide range of 3D models, we define SDF by offsetting the input object a little bit. This seemingly minor change brings three significant benefits: First, it allows us to compute SDF in a robust manner since the offset surface is able to give reliable normal vectors. Second, it runs many times faster since at each point we only need to compute the penetration distance along a single direction, rather than tens of directions. Third, our method does not require watertight surfaces as the input-it supports both point clouds and meshes with noise and gaps. Extensive experimental results show that the offset-surface based SDF is robust to noise and insensitive to geometric details, and it also runs about 10 times faster than the existing method. We also exhibit its usefulness using two typical applications including shape retrieval and shape segmentation, and observe a significant improvement over the existing SDF.
Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.
Pittermann, Jarmila; Sperry, John
2003-09-01
We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.
Pravastatin and endothelium dependent vasomotion after coronary angioplasty: the PREFACE trial
Mulder, H; Schalij, M; Kauer, B; Visser, R; van Dijkman, P R M; Jukema, J; Zwinderman, A; Bruschke, A
2001-01-01
OBJECTIVE—To test the hypothesis that the 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor pravastatin ameliorates endothelium mediated responses of dilated coronary segments: the PREFACE (pravastatin related effects following angioplasty on coronary endothelium) trial. DESIGN—A double blind, randomised, placebo controlled, multicentre study. SETTING—Four hospitals in the Netherlands. PATIENTS—63 non-smoking, non-hypercholesterolaemic patients scheduled for elective balloon angioplasty (pravastatin 34, placebo 29). INTERVENTIONS—The effects of three months of pravastatin treatment (40 mg daily) on endothelium dependent vasomotor function were studied. Balloon angioplasty was undertaken one month after randomisation, and coronary vasomotor function tests using acetylcholine were performed two months after balloon angioplasty. The angiograms were analysed quantitatively. MAIN OUTCOME MEASURES—The efficacy measure was the acetylcholine induced change in mean arterial diameter, determined in the dilated segment and in an angiographically normal segment of an adjacent non-manipulated coronary artery. RESULTS—Increasing acetylcholine doses produced vasoconstriction in the dilated segments (p = 0.004) but not in the normal segments. Pravastatin did not affect the vascular response to acetylcholine in either the dilated segments (p = 0.09) or the non-dilated sites. Endothelium dependent vasomotion in normal segments was correlated with that in dilated segments (r = 0.47, p < 0.001). There were fewer procedure related events in the pravastatin group than in the placebo group (p < 0.05). CONCLUSIONS—Endothelium dependent vasomotion in normal segments is correlated with that in dilated segments. A significant beneficial effect of pravastatin on endothelial function could not be shown, but in the dilated segments there was a trend towards a beneficial treatment effect in the pravastatin group. Keywords: angioplasty; endothelium; acetylcholine; pravastatin PMID:11602546
Wang, Yue; Zhang, Juan; Huang, Gang; Yao, Xinhua; Shao, Qingyi
2014-12-01
Rapid developments of the silicon electronics industry have close to the physical limits and nanotube materials are the ideal materials to replace silicon for the preparation of next generation electronic devices. Boron-carbon-nitrogen nanotubes (BCNNT) can be formed by joining carbon nanotube (CNT) and boron nitride nanotube (BNNT) segments, and BC2N nanotubes have been widely and deeply studied. Here, we employed first-principles calculations based on density function theory (DFT) to study the structure, stability, and electronic properties of ultra thin (4 Å diameter) BC2N nanotubes. Our results showed that the cross sections of BC2N nanotubes can transform from round to oval when CNT and BNNT segments are parallel to the tube axis. It results when the curvature of BNNT segments become larger than CNT segments. Further, we found the stability of BC2N nanotubes is sensitive to the number of B-N bonds, and the phase segregation of BNNT and CNT segments is energetically favored. We also obtained that all (3,3) BC2N nanotubes are semiconductor, whereas (5,0) BC2N nanotubes are conductor when CNT and BNNT segments are perpendicular to the tube axis; and semiconductor when CNT and BNNT segments are parallel to the tube axis. These electronic properties are abnormal when compared to the relative big ones.
Automatic detection of cardiac cycle and measurement of the mitral annulus diameter in 4D TEE images
NASA Astrophysics Data System (ADS)
Graser, Bastian; Hien, Maximilian; Rauch, Helmut; Meinzer, Hans-Peter; Heimann, Tobias
2012-02-01
Mitral regurgitation is a wide spread problem. For successful surgical treatment quantification of the mitral annulus, especially its diameter, is essential. Time resolved 3D transesophageal echocardiography (TEE) is suitable for this task. Yet, manual measurement in four dimensions is extremely time consuming, which confirms the need for automatic quantification methods. The method we propose is capable of automatically detecting the cardiac cycle (systole or diastole) for each time step and measuring the mitral annulus diameter. This is done using total variation noise filtering, the graph cut segmentation algorithm and morphological operators. An evaluation took place using expert measurements on 4D TEE data of 13 patients. The cardiac cycle was detected correctly on 78% of all images and the mitral annulus diameter was measured with an average error of 3.08 mm. Its full automatic processing makes the method easy to use in the clinical workflow and it provides the surgeon with helpful information.
NASA Astrophysics Data System (ADS)
Goclon, Jakub; Panczyk, Tomasz; Winkler, Krzysztof
2018-03-01
Considering the varied applications of hybrid polymer/carbon nanotube composites and the constant progress in the synthesis methods of such materials, we report a theoretical study of interfacial layer formation between pristine single-wall carbon nanotubes (SWCNTs) and polyurethane (PU) using molecular dynamic simulations. We vary the SWCNT diameter and the number of PU chains to examine various PU-SWCNT interaction patterns. Our simulations indicate the important role of intra-chain forces in PU. No regular polymeric structures could be identified on the carbon nanotube surface during the simulations. We find that increasing the SWCNT diameter results in stronger polymer binding. However, higher surface loadings of PU lead to stronger interpenetration by the polymeric segments; this effect is more apparent for SWCNTs with small diameters. Our core finding is that the attached PU binds most strongly to the carbon nanotubes with the largest diameters. Polymer dynamics reveal the loose distribution of PU chains in these systems.
Innovative Acoustic Sensor Technologies for Leak Detection in Challenging Pipe Types
2016-12-30
consuming field surveys using sounders (listening sticks) that relied heavily upon operator skill or noise correlators that were tuned for finding leaks...installation and setup cost • Annual service fee Periodic Inspection Deployed in a “lift and shift” survey using acoustic cross- correlation ...the correlator , a zero reading is displayed and one of the sensors can be placed to evaluate the next pipe segment in the field survey . Table 2
A System for Mailpiece ZIP Code Assignment through Contextual Analysis. Phase 2
1991-03-01
Segmentation Address Block Interpretation Automatic Feature Generation Word Recognition Feature Detection Word Verification Optical Character Recognition Directory...in the Phase III effort. 1.1 Motivation The United States Postal Service (USPS) deploys large numbers of optical character recognition (OCR) machines...4):208-218, November 1986. [2] Gronmeyer, L. K., Ruffin, B. W., Lybanon, M. A., Neely, P. L., and Pierce, S. E. An Overview of Optical Character Recognition (OCR
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Smoke and steam billow across Launch Pad 39A as Space Shuttle Atlantis, trailing columns of fire from the solid rocket boosters, hurtles into the sky on mission STS-117 to the International Space Station. Liftoff was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
2007-06-08
KENNEDY SPACE CENTER, FLA. -- Viewed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis is a small tip on the trailing column of fire and smoke after launching on mission STS-117. Liftoff from Launch Pad 39A was on-time at 7:38:04 p.m. EDT. The shuttle is delivering a new segment to the starboard side of the International Space Station's backbone, known as the truss. Three spacewalks are planned to install the S3/S4 truss segment, deploy a set of solar arrays and prepare them for operation. STS-117 is the 118th space shuttle flight, the 21st flight to the station, the 28th flight for Atlantis and the first of four flights planned for 2007. Photo courtesy of Nikon/Scott Andrews
Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.
2010-01-01
A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.
Diabatic modification of potential vorticity in extratropical cyclones
NASA Astrophysics Data System (ADS)
Chagnon, J.
2012-12-01
Representation of diabatic processes and their impact on extratropical cyclones is a likely source of skill degradation in operational numerical weather prediction systems. This investigation examines the source, structure, and magnitude of diabatic potential vorticity (PV) anomalies generated by small-scale and parameterized processes in both mesoscale and global model simulations of extratropical cyclones in the North Atlantic. Simulations of several cold season extratropical storms have been performed using the Met Office Unified Model. Several cases simulated were drawn from the DIAbatic influences on Mesoscale structures in ExTratropical cyclones (DIAMET) observational campaign during which the National Environmental Research Council (NERC) Facility for Airborne Atmospheric Measurement (FAAM) BAE-146 aircraft was deployed. The influence of specific modelled processes was quantified using a set of tracers, each of which represents a history of the PV contributed by a specific segment of the model (e.g., boundary-layer scheme, cloud microphysics, convection scheme , radiation, etc.). This presentation will highlight several differences and similarities in high and low resolution simulations. For example, in high resolution simulations, tropopause folds are sharpened by a tripolar PV anomaly arising from the convection, boundary-layer, and microphysics schemes; this structure is not present in coarser global model simulations. However, a dipole of PV straddling the tropopause is diagnosed in both coarse- and fine-resolution simulations. The PV dipole, which is strongly influenced by long-wave radiative cooling, increases the gradient of PV near the tropopause and therefore modifies the characteristics Rossby wave propagation and moist baroclinic wave growth.
Space technology for directly imaging and characterizing exo-Earths
NASA Astrophysics Data System (ADS)
Crill, Brendan P.; Siegler, Nicholas
2017-09-01
The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 10-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. We describe in this paper a roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. Two of these studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.
A Possible Technology Development Path to Direct Imaging of Exo-Earths from Space
NASA Astrophysics Data System (ADS)
Siegler, Nicholas
2018-01-01
We describe a possible roadmap to achieving the technological capability to search for biosignatures on an Earth-like exoplanet from a future space telescope. The detection of Earth-like exoplanets in the habitable zone of their stars, and their spectroscopic characterization in a search for biosignatures, requires starlight suppression that exceeds the current best ground-based performance by orders of magnitude. The required planet/star brightness ratio of order 1e-10 at visible wavelengths can be obtained by blocking stellar photons with an occulter, either externally (a starshade) or internally (a coronagraph) to the telescope system, and managing diffracted starlight, so as to directly image the exoplanet in reflected starlight. Coronagraph instruments require advancement in telescope aperture (either monolithic or segmented), aperture obscurations (obscured by secondary mirror and its support struts), and wavefront error sensitivity (e.g. line-of-sight jitter, telescope vibration, polarization). The starshade, which has never been used in a science application, benefits a mission by being decoupled from the telescope, allowing a loosening of telescope stability requirements. In doing so, it transfers the difficult technology from the telescope system to a large deployable structure (tens of meters to greater than ~ 100 m in diameter) that must be positioned precisely at a distance of tens of thousands of kilometers from the telescope. Two ongoing mission concept studies, HabEx and LUVOIR, include the direct imaging of Earth-sized habitable exoplanets as a central science theme.
Design Concepts for the Generation-X Mission
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Dailey, D.; Danner, R.; Shropshire, D.; Pearson, D.
2009-09-01
The Generation-X mission, proposed by Roger Brissenden at SAO, is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 time period. As currently conceived Gen-X would be a follow-on to the International X-ray Observatory (IXO), with a collecting area ≥ 50 m^2, 60-m focal length and 0.1 arc-second spatial resolution, which would be launched in ˜2030 with an Ares V Cargo Launch Vehicle to an L2 orbit. Our design concept assumes an Ares V with a 10-m diameter, 1,400 m^3 volume fairing (or an equivalent launch vehicle) will be developed for NASA's exploration program. The key features of this design include a 16-m diameter deployable x-ray mirror provides a collecting area of 136 m^2; a 60-m deployable optical bench which utilizes a Tensegrity structure to achieve high stiffness with low mass; and adaptive grazing incidence optics. Gen-X's combination of large collecting area and high spatial resolution will provide 4 to 5 orders of magnitude greater sensitivity than IXO, enabling scientists to study the formation and growth of the first black holes at z ≈ 8-15 with 0.1 to 10 keV fluxes of ≈ 10-20 erg cm^{-2}s^{-1}.
Design Concepts for the Generation-X Mission
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Dailey, D.; Danner, R.; Pearson, D.; Shropshire, D.
2010-03-01
The Generation-X mission, proposed by Roger Brissenden at SAO, is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 time period. As currently conceived Gen-X would be a follow-on to the International X-ray Observatory (IXO), with a collecting area ≥ 50 m2, 60-m focal length and 0.1 arc-second spatial resolution, which would be launched in 2030 with an Ares V Cargo Launch Vehicle to an L2 orbit. Our design concept assumes an Ares V with a 10-m diameter, 1,400 m3 volume fairing (or an equivalent launch vehicle) will be developed for NASA's exploration program. The key features of this design include a 16-m diameter deployable x-ray mirror provides a collecting area of 136 m2 a 60-m deployable optical bench which utilizes a Tensegrity structure to achieve high stiffness with low mass; and adaptive grazing incidence optics. Gen-X's combination of large collecting area and high spatial resolution will provide 4 to 5 orders of magnitude greater sensitivity than IXO, enabling scientists to study the formation and growth of the first black holes at z ≈ 8-15 with 0.1 to 10 keV fluxes of ≈ 10-20 erg cm-2s-1.
What limits the achievable areal densities of large aperture space telescopes?
NASA Astrophysics Data System (ADS)
Peterson, Lee D.; Hinkle, Jason D.
2005-08-01
This paper examines requirements trades involving areal density for large space telescope mirrors. A segmented mirror architecture is used to define a quantitative example that leads to relevant insight about the trades. In this architecture, the mirror consists of segments of non-structural optical elements held in place by a structural truss that rests behind the segments. An analysis is presented of the driving design requirements for typical on-orbit loads and ground-test loads. It is shown that the driving on-orbit load would be the resonance of the lowest mode of the mirror by a reaction wheel static unbalance. The driving ground-test load would be dynamics due to ground-induced random vibration. Two general conclusions are derived from these results. First, the areal density that can be allocated to the segments depends on the depth allocated to the structure. More depth in the structure allows the allocation of more mass to the segments. This, however, leads to large structural depth that might be a significant development challenge. Second, the requirement for ground-test-ability results in an order of magnitude or more depth in the structure than is required by the on-orbit loads. This leads to the proposition that avoiding ground test as a driving requirement should be a fundamental technology on par with the provision of deployable depth. Both are important structural challenges for these future systems.
Simulation study of poled low-water ionomers with different architectures
NASA Astrophysics Data System (ADS)
Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut
2011-11-01
The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.
Qualification flight tests of the Viking decelerator system.
NASA Technical Reports Server (NTRS)
Moog, R. D.; Bendura, R. J.; Timmons, J. D.; Lau, R. A.
1973-01-01
The Balloon Launched Decelerator Test (BLDT) series conducted at White Sands Missile Range (WSMR) during July and August of 1972 flight qualified the NASA Viking '75 decelerator system at conditions bracketing those expected for Mars. This paper discusses the decelerator system design requiremnts, compares the test results with prior work, and discusses significant considerations leading to successful qualification in earth's atmosphere. The Viking decelerator system consists of a single-stage mortar-deployed 53-foot nominal diameter disk-gap-band parachute. Full-scale parachutes were deployed behind a full-scale simulated Viking vehicle at Mach numbers from 0.47 to 2.18 and dynamic pressures from 6.9 to 14.6 psf. Analyses show that the system is qualified with sufficient margin to perform successfully for the Viking mission.
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1973-01-01
Mortars are used as one method for ejecting parachutes into the airstream to decelerate spacecraft and aircraft pilot escape modules and to effect spin recovery of the aircraft. An approach to design of mortars in the class that can accommodate parachutes in the 20- to 55-foot-diameter size is presented. Parachute deployment considerations are discussed. Comments are made on the design of a power unit, mortar tube, cover, and sabot. Propellant selection and breech characteristics and size are discussed. A method of estimating hardware weights and reaction load is presented. In addition, some aspects of erodible orifices are given as well as comments concerning ambient effects on performance. This paper collates data and experience from design and flight qualification of four mortar systems, and provides pertinent estimations that should be of interest on programs considering parachute deployment.
Chihara, Hideo; Ishii, Akira; Kikuchi, Takayuki; Ikeda, Hiroyuki; Arai, Daisuke; Miyamoto, Susumu
2017-10-01
Enterprise VRD, a stent frequently used to assist coil embolization of cerebral aneurysms, has been upgraded to reduce the risk of incomplete stent apposition (ISA), a known risk factor for thromboembolic complications. To compare the performances of Enterprise VRD and Enterprise VRD2 in curved vessels, and to investigate a deployment method that takes advantage of the features of Enterprise VRD2 to achieve better vessel wall apposition. A silicone vascular model connected to a temperature-adjustable perfusion circuit was used. First, Enterprise VRD and Enterprise VRD2 were deployed under fluoroscopy and then ISA was evaluated as the stent cross-sectional area ratio at the curved segment of the vessel. For the measurements, each stent was deployed in vessels with different angles of curvature. Second, the incidence of ISA after insertion of Enterprise VRD2 by the 'pushing over outer curve technique', in which stents are deployed along the outer curve of vessels with continuous wire advancement, was compared with 'Heller's push and pull technique'. For all stents, the cross-sectional area ratio decreased with acute curvature of the vessel. Comparisons of the two stents showed that Enterprise VRD2 was better than Enterprise VRD in maintaining a greater cross-sectional area ratio in curved vessels. In addition, kinking with an acute curvature was also minimized with Enterprise VRD2. Furthermore, ISA was reduced using our technique with Enterprise VRD2. Enterprise VRD2 is superior to Enterprise VRD in reducing ISA in curved vessels and can alter ISA according to the deployment technique used. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.