Sample records for diameter system pressure

  1. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  2. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    PubMed

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  3. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... used at connections to machines of high-pressure hose lines of 1-inch inside diameter or larger, and between high-pressure hose lines of 1-inch inside diameter or larger, where a connection failure would... shall be equipped with automatic pressure-relief valves, pressure gages, and drain valves. (b) Repairs...

  4. Elimination of fuel pressure fluctuation and multi-injection fuel mass deviation of high pressure common-rail fuel injection system

    NASA Astrophysics Data System (ADS)

    Li, Pimao; Zhang, Youtong; Li, Tieshuan; Xie, Lizhe

    2015-03-01

    The influence of fuel pressure fluctuation on multi-injection fuel mass deviation has been studied a lot, but the fuel pressure fluctuation at injector inlet is still not eliminated efficiently. In this paper, a new type of hydraulic filter consisting of a damping hole and a chamber is developed for elimination of fuel pressure fluctuation and multi-injection fuel mass deviation. Linear model of the improved high pressure common-rail system(HPCRS) including injector, the pipe connecting common-rail with injector and the hydraulic filter is built. Fuel pressure fluctuation at injector inlet, on which frequency domain analysis is conducted through fast Fourier transformation, is acquired at different target pressure and different damping hole diameter experimentally. The linear model is validated and can predict the natural frequencies of the system. Influence of damping hole diameter on fuel pressure fluctuation is analyzed qualitatively based on the linear model, and it can be inferred that an optimal diameter of the damping hole for elimination of fuel pressure fluctuation exists. Fuel pressure fluctuation and fuel mass deviation under different damping hole diameters are measured experimentally, and it is testified that the amplitude of both fuel pressure fluctuation and fuel mass deviation decreases first and then increases with the increasing of damping hole diameter. The amplitude of main injection fuel mass deviation can be reduced by 73% at most under pilot-main injection mode, and the amplitude of post injection fuel mass deviation can be reduced by 92% at most under main-post injection mode. Fuel mass of a single injection increases with the increasing of the damping hole diameter. The hydraulic filter proposed by this research can be potentially used to eliminate fuel pressure fluctuation at injector inlet and improve the stability of HPCRS fuel injection.

  5. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be used at connections to machines of high-pressure hose lines of three-fourths of an inch inside diameter or larger, and between high-pressure hose lines of three-fourths of an inch inside diameter or larger, where a connection failure would create a hazard. For purposes of this paragraph, high-pressure...

  6. Size effects on miniature Stirling cycle cryocoolers

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqin; Chung, J. N.

    2005-08-01

    Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.

  7. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  8. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  9. Effect of high-pressure homogenization preparation on mean globule size and large-diameter tail of oil-in-water injectable emulsions.

    PubMed

    Peng, Jie; Dong, Wu-Jun; Li, Ling; Xu, Jia-Ming; Jin, Du-Jia; Xia, Xue-Jun; Liu, Yu-Ling

    2015-12-01

    The effect of different high pressure homogenization energy input parameters on mean diameter droplet size (MDS) and droplets with > 5 μm of lipid injectable emulsions were evaluated. All emulsions were prepared at different water bath temperatures or at different rotation speeds and rotor-stator system times, and using different homogenization pressures and numbers of high-pressure system recirculations. The MDS and polydispersity index (PI) value of the emulsions were determined using the dynamic light scattering (DLS) method, and large-diameter tail assessments were performed using the light-obscuration/single particle optical sensing (LO/SPOS) method. Using 1000 bar homogenization pressure and seven recirculations, the energy input parameters related to the rotor-stator system will not have an effect on the final particle size results. When rotor-stator system energy input parameters are fixed, homogenization pressure and recirculation will affect mean particle size and large diameter droplet. Particle size will decrease with increasing homogenization pressure from 400 bar to 1300 bar when homogenization recirculation is fixed; when the homogenization pressure is fixed at 1000 bar, the particle size of both MDS and percent of fat droplets exceeding 5 μm (PFAT 5 ) will decrease with increasing homogenization recirculations, MDS dropped to 173 nm after five cycles and maintained this level, volume-weighted PFAT 5 will drop to 0.038% after three cycles, so the "plateau" of MDS will come up later than that of PFAT 5 , and the optimal particle size is produced when both of them remained at plateau. Excess homogenization recirculation such as nine times under the 1000 bar may lead to PFAT 5 increase to 0.060% rather than a decrease; therefore, the high-pressure homogenization procedure is the key factor affecting the particle size distribution of emulsions. Varying storage conditions (4-25°C) also influenced particle size, especially the PFAT 5 . Copyright © 2015. Published by Elsevier B.V.

  10. 77 FR 27428 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and...

  11. 76 FR 66688 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and...

  12. 76 FR 47555 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... diameter seamless pipe is used primarily for line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam... Engineers (``ASME'') code stress levels. Alloy pipes made to ASTM A-335 standard must be used if...

  13. Flight evaluation of a pneumatic system for unsteady pressure measurements using conventional sensors

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Gilyard, Glenn B.

    1989-01-01

    A flight experiment was conducted to evaluate a pressure measurement system which uses pneumatic tubing and remotely located electronically scanned pressure transducer modules for in-flight unsteady aerodynamic studies. A parametric study of tubing length and diameter on the attenuation and lag of the measured signals was conducted. The hardware was found to operate satisfactorily at rates of up to 500 samples/sec per port in flight. The signal attenuation and lag due to tubing were shown to increase with tubing length, decrease with tubing diameter, and increase with altitude over the ranges tested. Measurable signal levels were obtained for even the longest tubing length tested, 4 ft, at frequencies up to 100 Hz. This instrumentation system approach provides a practical means of conducting detailed unsteady pressure surveys in flight.

  14. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... attempted until the pressure has been relieved from that part of the system to be repaired. (c) At no time... used at connections to machines of high-pressure hose lines of 1-inch inside diameter or larger, and...

  15. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... attempted until the pressure has been relieved from that part of the system to be repaired. (c) At no time... used at connections to machines of high-pressure hose lines of 1-inch inside diameter or larger, and...

  16. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOEpatents

    Lau, Louis K. S.

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  17. In vitro large diameter bowel anastomosis using a temperature controlled laser tissue soldering system and albumin stent.

    PubMed

    Spector, David; Rabi, Yaron; Vasserman, Irena; Hardy, Amos; Klausner, Joseph; Rabau, Micha; Katzir, Abraham

    2009-09-01

    In today's age of advancing surgical technology, there is a need for better and simpler methods of tissue bonding. The use of lasers for tissue welding or soldering is one of these sutureless methods. In 30 years of laser tissue bonding (LTB) research, published reports of cylindrical organ anastomosis were limited to small diameters. The tension resisted by the anastomosis, which is caused by the intraluminal pressure, is also proportional to the organ diameter. Therefore the anastomosis of large diameter organs requires significantly stronger mechanical strength. The aim of this study is to demonstrate such an anastomosis. In vitro anastomosis of porcine small bowel was performed by either LTB or sutures. Anastomosis in the laser group (number of samples, n = 15) included two main stages of soldering. The bowel edges were approximated over a solid albumin stent and heated with a temperature controlled GaAs laser system to 75 degrees C. This was followed by spreading liquid albumin on the anastomotic line and heating by the same system again to 75 degrees C. The control group (n = 5) was sutured anastomosis. All anastomoses were assessed by burst pressure measurement. The burst pressure of the laser group attained 170+/-40 mmHg which was significantly higher than that of the sutured group 83+/-37 mmHg (P < 0.001). This report describes the in vitro LTB anastomosis of a large diameter cylindrical organ. The immediate bond strength, as estimated by burst pressure measurements, was double compared to sutured anastomosis.

  18. Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures

    NASA Technical Reports Server (NTRS)

    Belles, Frank E; Simon, Dorothy M

    1951-01-01

    An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.

  19. Evaluation of Pressure Generated by Resistors From Different Positive Expiratory Pressure Devices.

    PubMed

    Fagevik Olsén, Monika; Carlsson, Maria; Olsén, Erik; Westerdahl, Elisabeth

    2015-10-01

    Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures. Copyright © 2015 by Daedalus Enterprises.

  20. Optimization of post-column reactor radius in capillary high performance liquid chromatography Effect of chromatographic column diameter and particle diameter

    PubMed Central

    Xu, Hongjuan; Weber, Stephen G.

    2006-01-01

    A post-column reactor consisting of a simple open tube (Capillary Taylor Reactor) affects the performance of a capillary LC in two ways: stealing pressure from the column and adding band spreading. The former is a problem for very small radius reactors, while the latter shows itself for large reactor diameters. We derived an equation that defines the observed number of theoretical plates (Nobs) taking into account the two effects stated above. Making some assumptions and asserting certain conditions led to a final equation with a limited number of variables, namely chromatographic column radius, reactor radius and chromatographic particle diameter. The assumptions and conditions are that the van Deemter equation applies, the mass transfer limitation is for intraparticle diffusion in spherical particles, the velocity is at the optimum, the analyte’s retention factor, k′, is zero, the post-column reactor is only long enough to allow complete mixing of reagents and analytes and the maximum operating pressure of the pumping system is used. Optimal ranges of the reactor radius (ar) are obtained by comparing the number of observed theoretical plates (and theoretical plates per time) with and without a reactor. Results show that the acceptable reactor radii depend on column diameter, particle diameter, and maximum available pressure. Optimal ranges of ar become narrower as column diameter increases, particle diameter decreases or the maximum pressure is decreased. When the available pressure is 4000 psi, a Capillary Taylor Reactor with 12 μm radius is suitable for all columns smaller than 150 μm (radius) packed with 2–5 μm particles. For 1 μm packing particles, only columns smaller than 42.5 μm (radius) can be used and the reactor radius needs to be 5 μm. PMID:16494886

  1. Flow-field characteristics of high-temperature annular buoyant jets and their development laws influenced by ventilation system.

    PubMed

    Wang, Yi; Huang, Yanqiu; Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to -5 Pa.

  2. Flow-Field Characteristics of High-Temperature Annular Buoyant Jets and Their Development Laws Influenced by Ventilation System

    PubMed Central

    Liu, Jiaping; Wang, Hai; Liu, Qiuhan

    2013-01-01

    The flow-field characteristics of high-temperature annular buoyant jets as well as the development laws influenced by ventilation system were studied using numerical methods to eliminate the pollutants effectively in this paper. The development laws of high-temperature annular buoyant jets were analyzed and compared with previous studies, including radial velocity distribution, axial velocity and temperature decay, reattachment position, cross-section diameter, volumetric flow rate, and velocity field characteristics with different pressures at the exhaust hood inlet. The results showed that when the ratio of outer diameter to inner diameter of the annulus was smaller than 5/2, the flow-field characteristics had significant difference compared to circular buoyant jets with the same outer diameter. For similar diameter ratios, reattachment in this paper occurred further downstream in contrast to previous study. Besides, the development laws of volumetric flow rate and cross-section diameter were given with different initial parameters. In addition, through analyzing air distribution characteristics under the coupling effect of high-temperature annular buoyant jets and ventilation system, it could be found that the position where maximum axial velocity occurred was changing gradually when the pressure at the exhaust hood inlet changed from 0 Pa to −5 Pa. PMID:24000278

  3. A Modular Habitation System for Human Planetary and Space Exploration

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott

    2015-01-01

    A small-diameter modular pressure vessel system is devised that can be applied to planetary surface and deep space human exploration missions. As one of the recommendations prepared for the NASA Human Spaceflight Architecture Team (HAT) Evolvable Mars Campaign (EMC), a compact modular system can provide a Mars-forward approach to a variety of missions and environments. Small cabins derived from the system can fit into the Space Launch System (SLS) Orion "trunk", or can be mounted with mobility systems to function as pressurized rovers, in-space taxis, ascent stage cabins, or propellant tanks. Larger volumes can be created using inflatable elements for long-duration deep space missions and planetary surface outposts. This paper discusses how a small-diameter modular system can address functional requirements, mass and volume constraints, and operational scenarios.

  4. Stenosis differentially affects subendocardial and subepicardial arterioles in vivo.

    PubMed

    Merkus, D; Vergroesen, I; Hiramatsu, O; Tachibana, H; Nakamoto, H; Toyota, E; Goto, M; Ogasawara, Y; Spaan, J A; Kajiya, F

    2001-04-01

    The presence of a coronary stenosis results primarily in subendocardial ischemia. Apart from the decrease in coronary perfusion pressure, a stenosis also decreases coronary flow pulsations. Applying a coronary perfusion system, we compared the autoregulatory response of subendocardial (n = 10) and subepicardial (n = 12) arterioles (<120 microm) after stepwise decreases in coronary arterial pressure from 100 to 70, 50, and 30 mmHg in vivo in dogs (n = 9). Pressure steps were performed with and without stenosis on the perfusion line. Maximal arteriolar diameter during the cardiac cycle was determined and normalized to its value at 100 mmHg. The initial decrease in diameter during reductions in pressure was significantly larger at the subendocardium. Diameters of subendocardial and subepicardial arterioles were similar 10--15 s after the decrease in pressure without stenosis. However, stenosis decreased the dilatory response of the subendocardial arterioles significantly. This decreased dilatory response was also evidenced by a lower coronary inflow at similar average pressure in the presence of a stenosis. Inhibition of nitric oxide production with N(G)-monomethyl-L-arginine abrogated the effect of the stenosis on flow. We conclude that the decrease in pressure caused by a stenosis in vivo results in a larger decrease in diameter of the subendocardial arterioles than in the subepicardial arterioles, and furthermore stenosis selectively decreases the dilatory response of subendocardial arterioles. These two findings expand our understanding of subendocardial vulnerability to ischemia.

  5. System Measures Pressures Aboard A Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.

    1994-01-01

    Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.

  6. Design and development of a large diameter high pressure fast acting propulsion valve and valve actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  7. Design and Development of a Large Diameter, High Pressure, Fast Acting Propulsion Valve and Valve Actuator

    NASA Technical Reports Server (NTRS)

    Srinivasan, K. V.

    1986-01-01

    This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.

  8. Experimental Verification of Steel Pipe Collapse under Vacuum Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Autrique, R.; Rodal, E.

    2016-11-01

    Steel pipes are used widely in hydroelectric systems and in pumping systems. Both systems are subject to hydraulic transient effects caused by changes in boundary conditions, such as sudden valve closures, pump failures, or accidents. Water column separation, and its associated vaporization pressure inside the pipe, can cause the collapse of thin walled steel pipes subject to atmospheric pressure, as happened during the well known Oigawa Power Plant accident in Japan, in 1950. The conditions under which thin walled pipes subject to external pressure can collapse have been studied mathematically since the second half of the XIX century, with classical authors Southwell and Von Mises obtaining definitive equations for long and short pipes in the second decade of the XX century, in which the fundamental variables are the diameter to thickness ratio D/t and the length to diameter ratio L/D. In this paper, the predicted critical D/t ratio for steel pipe collapse is verified experimentally, in a physical model able to reproduce hydraulic transients, generating vacuum pressures through rapid upstream valve closures.

  9. In situ measurement of particulate number density and size distribution from an aircraft

    NASA Technical Reports Server (NTRS)

    Briehl, D.

    1974-01-01

    Commercial particulate measuring instruments were flown aboard the NASA Convair 990. A condensation nuclei monitor was utilized to measure particles larger than approximately 0.003 micrometers in diameter. A specially designed pressurization system was used with this counter so that the sample could be fed into the monitor at cabin altitude pressure. A near-forward light scattering counter was used to measure the number and size distribution particles in the size range from 0.5 to 5 micrometers and greater in diameter.

  10. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H2O (˜10 Pa), a stability better than 1 cm H2O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  11. Differential in vivo urodynamic measurement in a single thin catheter based on two optical fiber pressure sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Tosi, Daniele; Leen, Gabriel; Lewis, Elfed; McGrath, Deirdre; Fusco, Ferdinando; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Mirone, Vincenzo

    2015-03-01

    Urodynamic analysis is the predominant method for evaluating dysfunctions in the lower urinary tract. The exam measures the pressure during the filling and voiding process of the bladder and is mainly interested in the contraction of the bladder muscles. The data arising out of these pressure measurements enables the urologist to arrive at a precise diagnosis and prescribe an adequate treatment. A technique based on two optical fiber pressure and temperature sensors with a resolution of better than 0.1 cm H₂O (∼10 Pa), a stability better than 1 cm H₂O/hour, and a diameter of 0.2 mm in a miniature catheter with a diameter of only 5 Fr (1.67 mm), was used. This technique was tested in vivo on four patients with a real-time urodynamic measurement system. The optical system presented showed a very good correlation to two commercially available medical reference sensors. Furthermore, the optical urodynamic system demonstrated a higher dynamic and better sensitivity to detect small obstructions than both pre-existing medical systems currently in use in the urodynamic field.

  12. Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1961-01-01

    Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.

  13. 77 FR 13079 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products, natural gas and other... high temperature service. They are intended for the low temperature and pressure conveyance of water...

  14. Characterization of swallow modulation in response to bolus volume in healthy subjects accounting for catheter diameter.

    PubMed

    Ferris, Lara; Schar, Mistyka; McCall, Lisa; Doeltgen, Sebastian; Scholten, Ingrid; Rommel, Nathalie; Cock, Charles; Omari, Taher

    2018-06-01

    Characterization of the pharyngeal swallow response to volume challenges is important for swallowing function assessment. The diameter of the pressure-impedance recording catheter may influence these results. In this study, we captured key physiological swallow measures in response to bolus volume utilizing recordings acquired by two catheters of different diameter. Ten healthy adults underwent repeat investigations with 8- and 10-Fr catheters. Liquid bolus swallows of volumes 2.5, 5, 10, 20, and 30 mL were recorded. Measures indicative of distension, contractility, and flow timing were assessed. Pressure-impedance recordings with pressure-flow analysis were used to capture key distension, contractility, and pressure-flow timing parameters. Larger bolus volumes increased upper esophageal sphincter distension diameter (P < .001) and distension pressures within the hypopharynx and upper esophageal sphincter (P < .05). Bolus flow timing measures were longer, particularly latency of bolus propulsion ahead of the pharyngeal stripping wave (P < .001). Use of a larger-diameter catheter produced higher occlusive pressures, namely upper esophageal sphincter basal pressure (P < .005) and upper esophageal sphincter postdeglutitive pressure peak (P < .001). The bolus volume swallowed changed measurements indicative of distension pressure, luminal diameter, and pressure-flow timing; this is physiologically consistent with swallow modulation to accommodate larger, faster-flowing boluses. Additionally, catheter diameter predominantly affects lumen occlusive pressures. Appropriate physiological interpretation of the pressure-impedance recordings of pharyngeal swallowing requires consideration of the effects of volume and catheter diameter. NA. Laryngoscope, 128:1328-1334, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids

    NASA Technical Reports Server (NTRS)

    Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob

    2017-01-01

    NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.

  16. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    NASA Astrophysics Data System (ADS)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  17. The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H

    1932-01-01

    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.

  18. Computational modeling of HHH therapy and impact of blood pressure and hematocrit.

    PubMed

    Robinson, Joe Sam; Walid, M Sami; Hyun, Sinjae; O'Connell, Robert; Menard, Chris; Bohleber, Brandi

    2010-01-01

    After an aneurysmal subarachnoid hemorrhage, cerebral microcirculatory changes occur as a result cerebral vasospasm. The objective of this study is to investigate, with a computational model, how various degrees of vasospasm are influenced by increasing the mean blood pressure and decreasing the blood viscosity. Using ANSYS CFX software, a computational model was constructed to simulate steady-state fully developed laminar blood flow through a rigid wall system consisting of the internal carotid artery (ICA), anterior cerebral artery, posterior cerebral artery, and middle cerebral artery (MCA). The MCA was selected for the site of a single acute vasospasm. Five severities of vasospasm were studied: 3 mm (normal), 2.5, 2, 1.5, and 1 mm. The ICA was assumed to have a constant inlet flow rate of 315 mL/min. The anterior cerebral artery and posterior cerebral artery were assumed to have constant outlet flow rates of 105 mL/min and 30 mL/min, respectively. The MCA was assumed to have a constant outlet pressure of 92 mL/min. Two different hematocrits, 45% and 32%, were simulated using the models. For a hematocrit of 45, the mean ICA inlet pressure required to pump blood through the system was 104 mm Hg for the 3-mm diameter MCA and 105, 108, 116, and 158 mm Hg for vasospasm diameters of 2.5, 2, 1.5, and 1 mm, respectively. For a hematocrit of 32, the mean ICA inlet pressure required was 102, 103, 105, 113, and 152 mm Hg, respectively. The MCA required a large increase in mean ICA inlet pressure for vasospasm diameters less than 1.5 mm, which suggests that for vasospasms more than 50% diameter reduction, the blood pressure must be increased dramatically. Decreasing the hematocrit had minimal impact on blood flow in a constricted vessel. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Computerized method and system for designing an aerodynamic focusing lens stack

    DOEpatents

    Gard, Eric [San Francisco, CA; Riot, Vincent [Oakland, CA; Coffee, Keith [Diablo Grande, CA; Woods, Bruce [Livermore, CA; Tobias, Herbert [Kensington, CA; Birch, Jim [Albany, CA; Weisgraber, Todd [Brentwood, CA

    2011-11-22

    A computerized method and system for designing an aerodynamic focusing lens stack, using input from a designer related to, for example, particle size range to be considered, characteristics of the gas to be flowed through the system, the upstream temperature and pressure at the top of a first focusing lens, the flow rate through the aerodynamic focusing lens stack equivalent at atmosphere pressure; and a Stokes number range. Based on the design parameters, the method and system determines the total number of focusing lenses and their respective orifice diameters required to focus the particle size range to be considered, by first calculating for the orifice diameter of the first focusing lens in the Stokes formula, and then using that value to determine, in iterative fashion, intermediate flow values which are themselves used to determine the orifice diameters of each succeeding focusing lens in the stack design, with the results being output to a designer. In addition, the Reynolds numbers associated with each focusing lens as well as exit nozzle size may also be determined to enhance the stack design.

  20. 78 FR 57455 - Pipeline Safety: Information Collection Activities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... ``. . . system-specific information, including pipe diameter, operating pressure, product transported, and...) must provide contact information and geospatial data on their pipeline system. This information should... Mapping System (NPMS) to support various regulatory programs, pipeline inspections, and authorized...

  1. Cerebral blood velocity and other cardiovascular responses to 2 days of head-down tilt

    NASA Technical Reports Server (NTRS)

    Frey, Mary A. B.; Mader, Thomas H.; Bagian, James P.; Charles, John B.; Meehan, Richard T.

    1993-01-01

    Spaceflight induces a cephalad redistribution of fluid volume and blood flow within the human body, and space motion sickness, which is a problem during the first few days of space flight, could be related to these changes in fluid status and in blood flow of the cerebrum and vestibular system. To evaluate possible changes in cerebral blood flow during simulated weightlessness, we measured blood velocity in the middle cerebral artery (MCA) along with retinal vascular diameters, intraocular pressure, impedance cardiography, and sphygmomanometry on nine men (26.2 +/- 6.6 yr) morning and evening for 2 days during continuous 10 deg head-down tilt (HDT). When subjects went from seated to head-down bed rest, their heart rate and retinal diameters decreased, and intraocular pressures increased. After 48 h of HDT, blood flow velocity in the MCA was decreased and thoracic impedance was increased, indicating less fluid in the thorax. Percent changes in blood flow velocities in the MCA after 48 h of HDT were inversely correlated with percent changes in retinal vascular diameters. Blood flow velocities in the MCA were inversely correlated (intersubject) with arterial pressures and retinal vascular diameters. Heart rate, stroke volume, cardiac output, systolic arterial pressure, and at times pulse pressure and blood flow velocities in the MCA were greater in the evening. Total peripheral resistance was higher in the morning. Although cerebral blood velocity is reduced after subjects are head down for 2 days, the inverse relationship with retinal vessel diameters, which have control analogous to that of cerebral vessels, indicates cerebral blood flow is not reduced.

  2. The effects of hindlimb unweighting on the capacitance of rat small mesenteric veins

    NASA Technical Reports Server (NTRS)

    Dunbar, S. L.; Berkowitz, D. E.; Brooks-Asplund, E. M.; Shoukas, A. A.

    2000-01-01

    Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.

  3. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  4. An 810 ft/sec soil impact test of a 2-foot diameter model nuclear reactor containment system

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A soil impact test was conducted on a 880-pound 2-foot diameter sphere model. The impact area consisted of back filled desert earth and rock. The impact generated a crater 5 feet in diameter by 5 feet deep. It buried itself a total of 15 feet - as measured to the bottom of the model. After impact the containment vessel was pressure checked. No leaks were detected nor cracks observed.

  5. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  6. Bedside Optic Nerve Sheath Diameter Assessment in the Identification of Increased Intracranial Pressure in Suspected Idiopathic Intracranial Hypertension.

    PubMed

    Irazuzta, Jose E; Brown, Martha E; Akhtar, Javed

    2016-01-01

    We determined whether the bedside assessment of the optic nerve sheath diameter could identify elevated intracranial pressure in individuals with suspected idiopathic intracranial hypertension. This was a single-center, prospective, rater-blinded study performed in a freestanding pediatric teaching hospital. Patients aged 12 to 18 years scheduled for an elective lumbar puncture with the suspicion of idiopathic intracranial hypertension were eligible to participate. Optic nerve sheath diameter was measured via ultrasonography before performing a sedated lumbar puncture for measuring cerebrospinal fluid opening pressure. Abnormal measurements were predefined as optic nerve sheath diameter ≥4.5 mm and a cerebrospinal fluid opening pressure greater than 20 cmH2O. Thirteen patients participated in the study, 10 of whom had elevated intracranial pressure. Optic nerve sheath diameter was able to predict or rule out elevated intracranial pressure in all patients. Noninvasive assessment of the optic nerve sheath diameter could help to identify patients with elevated intracranial pressure when idiopathic intracranial hypertension is suspected. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. 76 FR 20974 - Owyhee Hydro, LLC; of Preliminary Permit Application Accepted for Filing and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ...-foot-long, 15.5- foot diameter concrete-lined low-pressure tunnel; (4) a 5,870-foot- long, 15.5-foot-diameter concrete-lined pressure shaft; (5) a 1,815- foot-long, 18.6-foot-diameter concrete-lined tailrace... storage capacity of 8,235-acre-foot; (3) a 1,190-foot-long, 15.5-foot-diameter concrete-lined low-pressure...

  8. Application of reference-modified density functional theory: Temperature and pressure dependences of solvation free energy.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro

    2018-02-05

    Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Microfluidic strategy to investigate dynamics of small blood vessel function

    NASA Astrophysics Data System (ADS)

    Yasotharan, Sanjesh; Bolz, Steffen-Sebastian; Guenther, Axel

    2010-11-01

    Resistance arteries (RAs, 30-300 microns in diameter) that are located within the terminal part of the vascular tree regulate the laminar perfusion of tissue with blood, via the peripheral vascular resistance, and hence controls the systemic blood pressure. The structure of RAs is adapted to actively controlling flow resistance by dynamically changing their diameter, which is non-linearly dependent on the temporal variation of the transmural pressure, perfusion flow rate and spatiotemporal changes in the chemical environment. Increases in systemic blood pressure (hypertension) resulting from pathologic changes in the RA response represent the primary risk factor for cardiovascular diseases. We use a microfluidic strategy to investigate small blood vessels by quantifying structural variations within the arterial wall, RA outer contour and diameter over time. First, we document the artery response to vasomotor drugs that were homogeneously applied at step-wise increasing concentration. Second, we investigate the response in the presence of well-defined axial and circumferential heterogeneities. Artery per- and superfusion is discussed based on microscale PIV measurements of the fluid velocity on both sides of the arterial wall. Structural changes in the arterial wall are quantified using cross-correlation and proper orthogonal decomposition analyses of bright-field micrographs.

  10. A pressure-packer system for conducting rising head tests in water table wells

    USGS Publications Warehouse

    Levy, Benjamin S.; Pannell, Lawrence J.; Dadoly, John P.

    1993-01-01

    The pressure system developed for fully-saturated well screens has been modified for conducting rising head tests in water table wells installed in highly permeable aquifers. The pressure system consists of a compressed air source and 1 inch diameter PVC piping with a packer attached at the end. The pressure system was evaluated in a series of rising head tests conducted in a well at a Superfund site in New England. The well was tested with slugs and with the pressure system. Within each technique, estimates of hydraulic conductivity showed no difference. Comparison of hydraulic conductivity estimates between techniques (slug test vs. pressure test) showed differences due to stratigraphy. The interval tested using slug tests crossed two stratigraphic units; the pressure system tested only one of these units. We conclude that the pressure system may be used to characterize the vertical hydraulic conductivity distribution in a series of successive tests by changing the packer position and the screened interval tested.

  11. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    NASA Astrophysics Data System (ADS)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  12. 76 FR 62762 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products... Fahrenheit, at various American Society of Mechanical Engineers (``ASME'') code stress levels. Alloy pipes...

  13. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  14. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes.

    PubMed

    Iwai, Kosuke; Shih, Kuan Cheng; Lin, Xiao; Brubaker, Thomas A; Sochol, Ryan D; Lin, Liwei

    2014-10-07

    Point-of-care (POC) and disposable biomedical applications demand low-power microfluidic systems with pumping components that provide controlled pressure sources. Unfortunately, external pumps have hindered the implementation of such microfluidic systems due to limitations associated with portability and power requirements. Here, we propose and demonstrate a 'finger-powered' integrated pumping system as a modular element to provide pressure head for a variety of advanced microfluidic applications, including finger-powered on-chip microdroplet generation. By utilizing a human finger for the actuation force, electrical power sources that are typically needed to generate pressure head were obviated. Passive fluidic diodes were designed and implemented to enable distinct fluids from multiple inlet ports to be pumped using a single actuation source. Both multilayer soft lithography and injection molding processes were investigated for device fabrication and performance. Experimental results revealed that the pressure head generated from a human finger could be tuned based on the geometric characteristics of the pumping system, with a maximum observed pressure of 7.6 ± 0.1 kPa. In addition to the delivery of multiple, distinct fluids into microfluidic channels, we also employed the finger-powered pumping system to achieve the rapid formation of both water-in-oil droplets (106.9 ± 4.3 μm in diameter) and oil-in-water droplets (75.3 ± 12.6 μm in diameter) as well as the encapsulation of endothelial cells in droplets without using any external or electrical controllers.

  15. 77 FR 59374 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-851] Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe (Under 4\\1/2\\ Inches) From Japan: Rescission... antidumping order on certain small diameter carbon and alloy seamless standard, line and pressure pipe (under...

  16. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  17. A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Hill, Erik v. K.; Workman, Gary L.; Russell, Samuel S.

    1995-01-01

    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set.

  18. Effect of Dynamic Pressure on the Performance of Thermoacoustic Refrigerator with Aluminium (Al) Resonator

    NASA Astrophysics Data System (ADS)

    Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.

    2018-04-01

    In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.

  19. Parameter sensitivity analysis of a lumped-parameter model of a chain of lymphangions in series.

    PubMed

    Jamalian, Samira; Bertram, Christopher D; Richardson, William J; Moore, James E

    2013-12-01

    Any disruption of the lymphatic system due to trauma or injury can lead to edema. There is no effective cure for lymphedema, partly because predictive knowledge of lymphatic system reactions to interventions is lacking. A well-developed model of the system could greatly improve our understanding of its function. Lymphangions, defined as the vessel segment between two valves, are the individual pumping units. Based on our previous lumped-parameter model of a chain of lymphangions, this study aimed to identify the parameters that affect the system output the most using a sensitivity analysis. The system was highly sensitive to minimum valve resistance, such that variations in this parameter caused an order-of-magnitude change in time-average flow rate for certain values of imposed pressure difference. Average flow rate doubled when contraction frequency was increased within its physiological range. Optimum lymphangion length was found to be some 13-14.5 diameters. A peak of time-average flow rate occurred when transmural pressure was such that the pressure-diameter loop for active contractions was centered near maximum passive vessel compliance. Increasing the number of lymphangions in the chain improved the pumping in the presence of larger adverse pressure differences. For a given pressure difference, the optimal number of lymphangions increased with the total vessel length. These results indicate that further experiments to estimate valve resistance more accurately are necessary. The existence of an optimal value of transmural pressure may provide additional guidelines for increasing pumping in areas affected by edema.

  20. Air flow quality analysis of modenas engine exhaust system

    NASA Astrophysics Data System (ADS)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  1. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  2. Experimental study of geysers through a vent pipe connected to flowing sewers.

    PubMed

    Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E

    2017-04-01

    Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.

  3. Baro Ports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, E.F.

    1949-03-28

    An orifice-manifold systems were used for baro-switch pressure measurements during a bomb drop. The purpose of this report was to show that definite relations exist between manifold volume and correct orifice diameter.

  4. Experimental and clinical trial of measuring urinary velocity with the pitot tube and a transrectal ultrasound guided video urodynamic system.

    PubMed

    Tsujimoto, Yukio; Nose, Yorihito; Ohba, Kenkichi

    2003-01-01

    The pitot tube is a common device to measure flow velocity. If the pitot tube is used as an urodynamic catheter, urinary velocity and urethral pressure may be measured simultaneously. However, to our knowledge, urodynamic studies with the pitot tube have not been reported. We experimentally and clinically evaluated the feasibility of the pitot tube to measure urinary velocity with a transrectal ultrasound guided video urodynamic system. We carried out a basal experiment measuring flow velocity in model urethras of 4.5-8.0 mm in inner diameter with a 12-Fr pitot tube. In a clinical trial, 79 patients underwent transrectal ultrasound guided video urodynamic studies with the 12-Fr pitot tube. Urinary velocity was calculated from dynamic pressure (Pd) with the pitot tube formula and the correcting equation according to the results of the basal experiment. Velocity measured by the pitot tube was proportional to the average velocity in model urethras and the coefficients were determined by diameters of model urethras. We obtained a formula to calculate urinary velocity from the basal experiment. The urinary velocity could be obtained in 32 of 79 patients. Qmax was 8.1 +/- 4.3 mL/s (mean +/- SD; range, 18.4-1.3 mL/s), urethral diameter was 7.3 +/- 3.0 mm (mean +/- SD; range, 18.7-4.3 mm) and urinary velocity was 69.4 +/- 43.6 (mean +/- SD; range, 181.3-0 cm/s) at maximum flow rate. The correlation coefficient of Qmax measured by a flowmeter versus Qdv flow rate calculated with urethral diameter and velocity was 0.41 without significant difference. The use of the pitot tube as an urodynamic catheter to a transrectal ultrasound-guided video urodynamic system can measure urethral pressure, diameter and urinary velocity simultaneously. However, a thinner pitot tube and further clinical trials are needed to obtain more accurate results.

  5. Catalyzed Ignition of Bipropellants in Microtubes

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Boyarko, George A.; Sung, Chih-Jen

    2003-01-01

    This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations to more carefully characterize the measured heat transfer and pressure losses for validation purposes. Experimentally, we investigate the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter micro-tubes, with special emphases on ignition and extinction processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rises in resistively heated platinum and palladium micro-tubes are used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented.

  6. Integration of a capacitive pressure sensing system into the outer catheter wall for coronary artery FFR measurements

    NASA Astrophysics Data System (ADS)

    Stam, Frank; Kuisma, Heikki; Gao, Feng; Saarilahti, Jaakko; Gomes Martins, David; Kärkkäinen, Anu; Marrinan, Brendan; Pintal, Sebastian

    2017-05-01

    The deadliest disease in the world is coronary artery disease (CAD), which is related to a narrowing (stenosis) of blood vessels due to fatty deposits, plaque, on the arterial walls. The level of stenosis in the coronary arteries can be assessed by Fractional Flow Reserve (FFR) measurements. This involves determining the ratio between the maximum achievable blood flow in a diseased coronary artery and the theoretical maximum flow in a normal coronary artery. The blood flow is represented by a pressure drop, thus a pressure wire or pressure sensor integrated in a catheter can be used to calculate the ratio between the coronary pressure distal to the stenosis and the normal coronary pressure. A 2 Fr (0.67mm) outer diameter catheter was used, which required a high level of microelectronics miniaturisation to fit a pressure sensing system into the outer wall. The catheter has an eccentric guidewire lumen with a diameter of 0.43mm, which implies that the thickest catheter wall section provides less than 210 microns height for flex assembly integration consisting of two dies, a capacitive MEMS pressure sensor and an ASIC. In order to achieve this a very thin circuit flex was used, and the two chips were thinned down to 75 microns and flip chip mounted face down on the flex. Many challenges were involved in obtaining a flex layout that could wrap into a small tube without getting the dies damaged, while still maintaining enough flexibility for the catheter to navigate the arterial system.

  7. Cerebral Microvascular and Systemic Effects Following Intravenous Administration of the Perfluorocarbon Emulsion Perftoran

    PubMed Central

    Abutarboush, Rania; Saha, Biswajit K.; Mullah, Saad H.; Arnaud, Francoise G.; Haque, Ashraful; Aligbe, Chioma; Pappas, Georgina; Auker, Charles R.; McCarron, Richard M.; Moon-Massat, Paula F.; Scultetus, Anke H.

    2016-01-01

    Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 μm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50–100 μm) showed minor (~8–9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend. PMID:27869709

  8. Cerebral Microvascular and Systemic Effects Following Intravenous Administration of the Perfluorocarbon Emulsion Perftoran.

    PubMed

    Abutarboush, Rania; Saha, Biswajit K; Mullah, Saad H; Arnaud, Francoise G; Haque, Ashraful; Aligbe, Chioma; Pappas, Georgina; Auker, Charles R; McCarron, Richard M; Moon-Massat, Paula F; Scultetus, Anke H

    2016-11-18

    Oxygen-carrying perfluorocarbon (PFC) fluids have the potential to increase tissue oxygenation during hypoxic states and to reduce ischemic cell death. Regulatory approval of oxygen therapeutics was halted due to concerns over vasoconstrictive side effects. The goal of this study was to assess the potential vasoactive properties of Perftoran by measuring brain pial arteriolar diameters in a healthy rat model. Perftoran, crystalloid (saline) or colloid (Hextend) solutions were administered as four sequential 30 min intravenous (IV) infusions, thus allowing an evaluation of cumulative dose-dependent effects. There were no overall changes in diameters of small-sized (<50 μm) pial arterioles within the Perftoran group, while both saline and Hextend groups exhibited vasoconstriction. Medium-sized arterioles (50-100 μm) showed minor (~8-9%) vasoconstriction within saline and Hextend groups and only ~5% vasoconstriction within the Perftoran group. For small- and medium-sized pial arterioles, the mean percent change in vessel diameters was not different among the groups. Although there was a tendency for arterial blood pressures to increase with Perftoran, pressures were not different from the other two groups. These data show that Perftoran, when administered to healthy anesthetized rats, does not cause additional vasoconstriction in cerebral pial arterioles or increase systemic blood pressure compared with saline or Hextend.

  9. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers.

    PubMed

    Pittermann, Jarmila; Sperry, John

    2003-09-01

    We tested the hypotheses that freezing-induced embolism is related to conduit diameter, and that conifers and angiosperms with conduits of equivalent diameter will exhibit similar losses of hydraulic conductivity in response to freezing. We surveyed the freeze-thaw response of conifers with a broad range of tracheid diameters by subjecting wood segments (root, stem and trunk wood) to a freeze-thaw cycle at -0.5 MPa in a centrifuge. Embolism increased as mean tracheid diameter exceeded 30 microm. Tracheids with a critical diameter greater than 43 microm were calculated to embolize in response to freezing and thawing at a xylem pressure of -0.5 MPa. To confirm that freezing-induced embolism is a function of conduit air content, we air-saturated stems of Abies lasiocarpa (Hook.) Nutt. (mean conduit diameter 13.7 +/- 0.7 microm) by pressurizing them 1 to 60 times above atmospheric pressure, prior to freezing and thawing. The air saturation method simulated the effect of increased tracheid size because the degree of super-saturation is proportional to a tracheid volume holding an equivalent amount of dissolved air at ambient pressure. Embolism increased when the dissolved air content was equivalent to a mean tracheid diameter of 30 microm at ambient air pressure. Our centrifuge and air-saturation data show that conifers are as vulnerable to freeze-thaw embolism as angiosperms with equal conduit diameter. We suggest that the hydraulic conductivity of conifer wood is maximized by increasing tracheid diameters in locations where freezing is rare. Conversely, the narrowing of tracheid diameters protects against freezing-induced embolism in cold climates.

  10. CHARACTERIZATION OF FLOW-RESISTANT TUBES USED FOR SEMI-OCCLUDED VOCAL TRACT VOICE TRAINING AND THERAPY

    PubMed Central

    Smith, Simeon L.; Titze, Ingo R.

    2016-01-01

    Objectives To characterize the pressure-flow relationship of tubes used for semi-occluded vocal tract voice training/therapy, as well as to answer these major questions: (1) What is the relative importance of tube length to tube diameter? (2) What is the range of oral pressures achieved with tubes at phonation flow rates? (3) Does mouth configuration behind the tubes matter? Methods Plastic tubes of various diameters and lengths were mounted in line with an upstream pipe, and the pressure drop across each tube was measured at stepwise increments in flow rate. Basic flow theory and modified flow theory equations were used to describe the pressure-flow relationship of the tubes based on diameter and length. Additionally, the upstream pipe diameter was varied to explore how mouth shape affects tube resistance. Results The modified equation provided an excellent prediction of the pressure-flow relationship across all tube sizes (6% error compared to the experimental data). Variation in upstream pipe diameter yielded up to 10% deviation in pressure for tube sizes typically used in voice training/therapy. Conclusions Using the presented equations, resistance can be characterized for any tube based on diameter, length, and flow rate. With regard to the original questions, we found that: (1) For commonly used tubes, diameter is the critical variable for governing flow resistance; (2) For phonation flow rates, a range of tube dimensions produced pressures between 0 and 7.0 kPa; (3) The mouth pressure behind the lips will vary slightly with different mouth shapes, but this effect can be considered relatively insignificant. PMID:27133001

  11. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  12. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    PubMed

    Kamiya, Kouhei; Hori, Masaaki; Miyajima, Masakazu; Nakajima, Madoka; Suzuki, Yuriko; Kamagata, Koji; Suzuki, Michimasa; Arai, Hajime; Ohtomo, Kuni; Aoki, Shigeki

    2014-01-01

    Previous studies suggest that compression and stretching of the corticospinal tract (CST) potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH). Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI) analysis. Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter) and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001), whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  13. 78 FR 64475 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... line applications such as oil, gas, or water pipeline, or utility distribution systems. Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil products... stress levels. Alloy pipes made to ASTM A-335 standard must be used if temperatures and stress levels...

  14. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.

    PubMed

    Ganjiani, Sayed Hossein; Hossein Nezhad, Alireza

    2018-02-14

    A Nanofluidic Energy Absorption System (NEAS) is a novel nanofluidic system with a small volume and weight. In this system, the input mechanical energy is converted to surface tension energy during liquid infiltration in the nanotube. The NEAS is made of a mixture of nanoporous material particles in a functional liquid. In this work, the effects of the chiral vector of a carbon nanotube (CNT) on the performance characteristics of the NEAS are investigated by using molecular dynamics simulation. For this purpose, six CNTs with different diameters for each type of armchair, zigzag and chiral, and several chiral CNTs with different chiral vectors (different values of indices (m,n)) are selected and studied. The results show that in the chiral CNTs, the contact angle shows the hydrophobicity of the CNT, and infiltration pressure is reduced by increasing the values of m and n (increasing the CNT diameter). Contact angle and infiltration pressure are decreased by almost 1.4% and 9% at all diameters, as the type of CNT is changed from chiral to zigzag and then to armchair. Absorbed energy density and efficiency are also decreased by increasing m and n and by changing the type of CNT from chiral to zigzag and then to armchair.

  15. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.

    PubMed

    Wang, Shigang; Rosenthal, Tami; Kunselman, Allen R; Ündar, Akif

    2015-01-01

    The objective of this study is to evaluate three different diameters of arterial tubing and three diameters of arterial cannulae in terms of pressure drop, and hemodynamic energy delivery in simulated neonatal/pediatric cardiopulmonary bypass (CPB) circuits. The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator (Terumo Corporation, Tokyo, Japan), arterial tubing (1/4 in, 3/16 in, or 1/8 in × 150 cm), and a Medtronic Bio-Medicus arterial cannula (8, 10, or 12 Fr; Medtronic, Inc., Minneapolis, MN, USA). The pseudo patient's pressure was maintained at 50 mm Hg. The circuit was primed using lactated Ringer's solution and heparinized packed human red blood cells (hematocrit 30%). Trials were conducted at different flow rates and temperatures (35 and 28°C). Flow and pressure data were collected using a custom-based data acquisition system. Using 8 Fr arterial cannula at 500 mL/min, small diameter arterial tubing generated higher circuit pressure (294.6 ± 0.1 mm Hg [1/8 in], 213.5 ± 0.5 mm Hg [3/16 in], 208.4 ± 0.4 mm Hg [1/4 in] at 35°C) and arterial line pressure drop (158.3 ± 0.1 mm Hg [1/8 in], 79.6 ± 0.1 mm Hg [3/16 in], 62.1 ± 0.1 mm Hg [1/4 in] at 35°C). Using 10 Fr arterial cannula at 1000 mL/min, pre-oxygenator pressures were 266.8 ± 0.2 mm Hg (3/16 in) and 248.0 ± 0.3 mm Hg (1/4 in); arterial line pressure drops were 111.6 ± 0.0 mm Hg (3/16 in) and 74.0 ± 0.1 mm Hg (1/4 in) at 35°C. When using 12 Fr arterial cannula at 1500 mL/min, preoxygenator pressures reached 324.4 ± 0.3 mm Hg (3/16 in) and 302.5 ± 0.4 mm Hg (1/4 in); arterial line pressure drops were 154.0 ± 0.1 mm Hg (3/16 in) and 92.0 ± 0.2 mm Hg (1/4 in) at 35°C. Pressure drops across arterial line tubing were main CPB circuit pressure drops. High flow rate, hypothermia, small diameter arterial tubing. and arterial cannula created more hemodynamic energy at the preoxygenator site, but energy loss across CPB circuit also increased. Although small diameter (<1/4 in ID) arterial tubing may decrease total CPB priming volume, it also led to significantly higher circuit pressure, higher pressure drop, and more hemodynamic energy loss across CPB circuit. Larger diameter arterial cannula had less pressure drop and allowed more hemodynamic energy delivery to the patient. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. New intraocular pressure measurement method using reflected pneumatic pressure from cornea deformed by air puff of ring-type nozzle.

    PubMed

    Kim, Hyung Jin; Seo, Yeong Ho; Kim, Byeong Hee

    2017-01-01

    In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively. Performance evaluation is conducted using artificial eyes fabricated using polydimethylsiloxane with the specifications of human eyes. The IOP of the fabricated artificial eyes is adjusted to 10, 30, and 50 mm Hg, and the reflected pneumatic pressure is measured as a function of the distance between the ring-type nozzle and artificial eye. The measured reflected pneumatic pressure is high when the measurement distance is short and eye pressure is low. The cornea of an artificial eye is significantly deformed at a low IOP, and the applied pneumatic pressure is more concentrated in front of the ring-type nozzle because of the deformed cornea. Thus, the reflected pneumatic pressure at a low IOP has more inflows into the pressure sensor inserted inside the nozzle. The sensitivity of the output based on the IOP at measurement distances between 3-5 mm is -0.0027, -0.0022, -0.0018, -0.0015, and -0.0012. Sensitivity decreases as the measurement distance increases. In addition, the reflected pneumatic pressure owing to the misalignment at the measurement distances of 3-5 mm is not affected within a range of 0.5 mm. Therefore, the measurement range is acceptable up to a 1 mm diameter from the center of an artificial eye. However, the accuracy gradually decreases as the reflected pneumatic pressure from a misalignment of 1 mm or more decreases by 26% or more.

  17. New intraocular pressure measurement method using reflected pneumatic pressure from cornea deformed by air puff of ring-type nozzle

    PubMed Central

    Kim, Hyung Jin; Seo, Yeong Ho

    2017-01-01

    In this study, a non-contact type intraocular pressure (IOP) measuring system using reflected pneumatic pressure is proposed to overcome the disadvantages of existing measurement systems. A ring-type nozzle, a key component in the proposed system, is designed via computational fluid analysis. It predicts the reflected pneumatic pressure based on the nozzle exit angle and inner and outer diameters of the nozzle, which are 30°, 7 mm, and 9 mm, respectively. Performance evaluation is conducted using artificial eyes fabricated using polydimethylsiloxane with the specifications of human eyes. The IOP of the fabricated artificial eyes is adjusted to 10, 30, and 50 mm Hg, and the reflected pneumatic pressure is measured as a function of the distance between the ring-type nozzle and artificial eye. The measured reflected pneumatic pressure is high when the measurement distance is short and eye pressure is low. The cornea of an artificial eye is significantly deformed at a low IOP, and the applied pneumatic pressure is more concentrated in front of the ring-type nozzle because of the deformed cornea. Thus, the reflected pneumatic pressure at a low IOP has more inflows into the pressure sensor inserted inside the nozzle. The sensitivity of the output based on the IOP at measurement distances between 3–5 mm is -0.0027, -0.0022, -0.0018, -0.0015, and -0.0012. Sensitivity decreases as the measurement distance increases. In addition, the reflected pneumatic pressure owing to the misalignment at the measurement distances of 3–5 mm is not affected within a range of 0.5 mm. Therefore, the measurement range is acceptable up to a 1 mm diameter from the center of an artificial eye. However, the accuracy gradually decreases as the reflected pneumatic pressure from a misalignment of 1 mm or more decreases by 26% or more. PMID:29216189

  18. Quantifying the role that laboratory experiment sample scale has on observed material properties and mechanistic behaviors that cause well systems to fail

    NASA Astrophysics Data System (ADS)

    Huerta, N. J.; Fahrman, B.; Rod, K. A.; Fernandez, C. A.; Crandall, D.; Moore, J.

    2017-12-01

    Laboratory experiments provide a robust method to analyze well integrity. Experiments are relatively cheap, controlled, and repeatable. However, simplifying assumptions, apparatus limitations, and scaling are ubiquitous obstacles for translating results from the bench to the field. We focus on advancing the correlation between laboratory results and field conditions by characterizing how failure varies with specimen geometry using two experimental approaches. The first approach is designed to measure the shear bond strength between steel and cement in a down-scaled (< 3" diameter) well geometry. We use several cylindrical casing-cement-casing geometries that either mimic the scaling ratios found in the field or maximize the amount of metal and cement in the sample. We subject the samples to thermal shock cycles to simulate damage to the interfaces from operations. The bond was then measured via a push-out test. We found that not only did expected parameters, e.g. curing time, play a role in shear-bond strength but also that scaling of the geometry was important. The second approach is designed to observe failure of the well system due to pressure applied on the inside of a lab-scale (1.5" diameter) cylindrical casing-cement-rock geometry. The loading apparatus and sample are housed within an industrial X-ray CT scanner capable of imaging the system while under pressure. Radial tension cracks were observed in the cement after an applied internal pressure of 3000 psi and propagated through the cement and into the rock as pressure was increased. Based on our current suite of tests we find that the relationship between sample diameters and thicknesses is an important consideration when observing the strength and failure of well systems. The test results contribute to our knowledge of well system failure, evaluation and optimization of new cements, as well as the applicability of using scaled-down tests as a proxy for understanding field-scale conditions.

  19. 46 CFR 56.20-9 - Valve construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... closed. (b) Valves of Class I piping systems (for restrictions in other classes refer to sections on low temperature service), having diameters exceeding 2 inches must have bolted, pressure seal, or breech lock...

  20. Retinal vessel diameter and estimated cerebrospinal fluid pressure in arterial hypertension: the Beijing Eye Study.

    PubMed

    Jonas, Jost B; Wang, Ningli; Wang, Shuang; Wang, Ya Xing; You, Qi Sheng; Yang, Diya; Wei, Wen Bin; Xu, Liang

    2014-09-01

    Hypertensive retinal microvascular abnormalities include an increased retinal vein-to-artery diameter ratio. Because central retinal vein pressure depends on cerebrospinal fluid pressure (CSFP), we examined whether the retinal vein-to-artery diameter ratio and other retinal hypertensive signs are associated with CSFP. Participants of the population-based Beijing Eye Study (n = 1,574 subjects) underwent measurement of the temporal inferior and superior retinal artery and vein diameter. CSFP was calculated as 0.44 × body mass index (kg/m(2)) + 0.16 × diastolic blood pressure (mm Hg) - 0.18 × age (years) - 1.91. Larger retinal vein diameters and higher vein-to-artery diameter ratios were significantly associated with higher estimated CSFP (P = 0.001) in multivariable analysis. In contrast, temporal inferior retinal arterial diameter was marginally associated (P = 0.03) with estimated CSFP, and temporal superior artery diameter was not significantly associated (P = 0.10) with estimated CSFP; other microvascular abnormalities, such as arteriovenous crossing signs, were also not significantly associated with estimated CSFP. In a reverse manner, higher estimated CSFP as a dependent variable in the multivariable analysis was associated with wider retinal veins and higher vein-to-artery diameter ratio. In the same model, estimated CSFP was not significantly correlated with retinal artery diameters or other retinal microvascular abnormalities. Correspondingly, arterial hypertension was associated with retinal microvascular abnormalities such as arteriovenous crossing signs (P = 0.003), thinner temporal retinal arteries (P < 0.001), higher CSFP (P < 0.001), and wider retinal veins (P = 0.001) or, as a corollary, with a higher vein-to-artery diameter ratio in multivariable analysis. Wider retinal vein diameters are associated with higher estimated CSFP and vice versa. In arterial hypertension, an increased retinal vein-to-artery diameter ratio depends on elevated CSFP, which is correlated with blood pressure. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    DOE PAGES

    Wang, S. Z.; Zhu, K.; Huang, S.; ...

    2016-01-05

    As a new device, we designed plasma window to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managedmore » to generate arc discharge with argon gas experimentally. Our result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Furthermore, theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less

  2. Investigation of aluminum surface cleaning using cavitating fluid flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer ismore » placed closer to metal surface, but also at larger (120 mm) distances.« less

  3. 78 FR 41369 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Preliminary Results of..., line and pressure pipe (small diameter seamless pipe) from Romania. The period of review (POR) is... and Alloy Seamless Standard, Line and Pressure Pipe from Romania,'' dated concurrently with this...

  4. A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images.

    PubMed

    Gemignani, Vincenzo; Faita, Francesco; Ghiadoni, Lorenzo; Poggianti, Elisa; Demi, Marcello

    2007-03-01

    The measurement of the brachial artery diameter is frequently used in clinical studies for evaluating the flow-mediated dilation and, in conjunction with the blood pressure value, for assessing arterial stiffness. This paper presents a system for computing the brachial artery diameter in real-time by analyzing B-mode ultrasound images. The method is based on a robust edge detection algorithm which is used to automatically locate the two walls of the vessel. The measure of the diameter is obtained with subpixel precision and with a temporal resolution of 25 samples/s, so that the small dilations induced by the cardiac cycle can also be retrieved. The algorithm is implemented on a standalone video processing board which acquires the analog video signal from the ultrasound equipment. Results are shown in real-time on a graphical user interface. The system was tested both on synthetic ultrasound images and in clinical studies of flow-mediated dilation. Accuracy, robustness, and intra/inter observer variability of the method were evaluated.

  5. Sabot assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzorgi, Fariborz

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing frommore » the projectile upon the sabot assembly exiting the gun barrel.« less

  6. Optic Nerve Sheath Mechanics in VIIP Syndrome

    NASA Technical Reports Server (NTRS)

    Raykin, Julia; Forte, Taylor E.; Wang, Roy; Feola, Andrew; Samuels, Brian; Myers, Jerry; Nelson, Emily; Gleason, Rudy; Ethier, C. Ross

    2016-01-01

    Visual Impairment Intracranial Pressure (VIIP) syndrome is a major concern in current space medicine research. While the exact pathology of VIIP is not yet known, it is hypothesized that the microgravity-induced cephalad fluid shift increases intracranial pressure (ICP) and drives remodeling of the optic nerve sheath. To investigate this possibility, we are culturing optic nerve sheath dura mater samples under different pressures and investigating changes in tissue composition. To interpret results from this work, it is essential to first understand the biomechanical response of the optic nerve sheath dura mater to loading. Here, we investigated the effects of mechanical loading on the porcine optic nerve sheath.Porcine optic nerves (number: 6) were obtained immediately after death from a local abattoir. The optic nerve sheath (dura mater) was isolated from the optic nerve proper, leaving a hollow cylinder of connective tissue that was used for biomechanical characterization. We developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the dura mater during inflation and under fixed axial loading. To determine the effects of variations in ICP, the sample was inflated (0-60 millimeters Hg) and circumferential distension was simultaneously recorded. These tests were performed under variable axial loads (0.6 grams - 5.6 grams at increments of 1 gram) by attaching different weights to one end of the dura mater. Results and Conclusions: The samples demonstrated nonlinear behavior, similar to other soft connective tissue (Figure 1). Large increases in diameter were observed at lower transmural pressures (approximately 0 to 5 millimeters Hg), whereas only small diameter changes were observed at higher pressures. Particularly interesting was the existence of a cross-over point at a pressure of approximately 11 millimeters Hg. At this pressure, the same diameter is obtained for all axial loads applied to the tissue; i.e., as the axial load is varied, the diameter of the dura mater remains constant. This cross-over in the pressure-diameter curves occurred in all optic nerve sheaths that were tested, and may correspond with in vivo ICP levels for pigs. These data suggest that diameter of the dura mater of the optic nerve remains nearly constant in vivo despite being stretched axially. This may be a homeostatic mechanism aimed at maintaining target stresses/strains on the cells in the dura mater, and deviations from these stresses may play an important role in optic nerve sheath remodeling. Future studies will involve subjecting the dura mater to varying pressures and axial tensions for extended periods of time, while monitoring changes in the biomechanical properties. The data can then be used to study the effects of changes in ICP on the remodeling of the dura mater.

  7. Effect of restricted geometry on the superconducting properties of low-melting metals (Review Article)

    NASA Astrophysics Data System (ADS)

    Kumzerov, Yu. A.; Naberezhnov, A. A.

    2016-11-01

    This is a review of results from studies of the effect of artificially restricted geometry (the size effect) on the superconducting properties of nanoparticles of low-melting metals (Hg, Pb, Sn, In). Restricted geometrical conditions are created by embedding molten metals under high pressure into nanoporous matrices of two types: channel structures based on chrysotile asbestos and porous alkali-borosilicate glasses. Chrysotile asbestos is a system of parallel nanotubes with channel diameters ranging from 2 to 20 nm and an aspect ratio (channel length to diameter) of up to 107. The glasses are a random dendritic three-dimensional system of interconnected channels with a technologically controllable mean diameter of 2-30 nm. Temperature dependences of the resistance and heat capacity in the region of the superconducting transition and the dependences of the critical temperature on the mean pore diameter are obtained. The critical magnetic fields are also determined.

  8. Localized compliance of small airways in excised rat lungs using microfocal X-ray computed tomography.

    PubMed

    Sera, Toshihiro; Fujioka, Hideki; Yokota, Hideo; Makinouchi, Akitake; Himeno, Ryutaro; Schroter, Robert C; Tanishita, Kazuo

    2004-05-01

    Airway compliance is a key factor in understanding lung mechanics and is used as a clinical diagnostic index. Understanding such mechanics in small airways physiologically and clinically is critical. We have determined the "morphometric change" and "localized compliance" of small airways under "near"-physiological conditions; namely, the airways were embedded in parenchyma without dehydration and fixation. Previously, we developed a two-step method to visualize small airways in detail by staining the lung tissue with a radiopaque solution and then visualizing the tissue with a cone-beam microfocal X-ray computed tomography system (Sera et al. J Biomech 36: 1587-1594, 2003). In this study, we used this technique to analyze changes in diameter and length of the same small airways ( approximately 150 microm ID) and then evaluated the localized compliance as a function of airway generation (Z). For smaller (<300-microm-diameter) airways, diameter was 36% larger at end-tidal inspiration and 89% larger at total lung capacity; length was 18% larger at end-tidal inspiration and 43% larger at total lung capacity than at functional residual capacity. Diameter, especially at smaller airways, did not behave linearly with V(1/3) (where V is volume). With increasing lung pressure, diameter changed dramatically at a particular pressure and length changed approximately linearly during inflation and deflation. Percentage of airway volume for smaller airways did not behave linearly with that of lung volume. Smaller airways were generally more compliant than larger airways with increasing Z and exhibited hysteresis in their diameter behavior. Airways at higher Z deformed at a lower pressure than those at lower Z. These results indicated that smaller airways did not behave homogeneously.

  9. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  10. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  11. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  12. 40 CFR 204.55-3 - Configuration identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compressor stages. (3) Maximum pressure (psi). (4) Air intake system of compressor: (i) Number of filters; (ii) Type of filters. (5) The engine system: (i) Number of cylinders and configuration (L-6, V-8, V-12..., water cooled. (7) Fan: (i) Diameter; (ii) Maximum fan rpm. (8) The compressor enclosure: (i) Height...

  13. Pressure Decay Testing Methodology for Quantifying Leak Rates of Full-Scale Docking System Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Daniels, Christopher C.; Wasowski, Janice L.; Garafolo, Nicholas G.; Penney, Nicholas; Steinetz, Bruce M.

    2010-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit and the Moon. This system, called the Low Impact Docking System, is a mechanism designed to connect the Orion Crew Exploration Vehicle to the International Space Station, the lunar lander (Altair), and other future Constellation Project vehicles. NASA Glenn Research Center is playing a key role in developing the main interface seal for this docking system. This seal will be relatively large with an outside diameter in the range of 54 to 58 in. (137 to 147 cm). As part of this effort, a new test apparatus has been designed, fabricated, and installed to measure leak rates of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Using this test apparatus, a pressure decay testing and data processing methodology has been developed to quantify full-scale seal leak rates. Tests performed on untreated 54 in. diameter seals at room temperature in a fully compressed state resulted in leak rates lower than the requirement of less than 0.0025 lbm, air per day (0.0011 kg/day).

  14. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  15. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    NASA Astrophysics Data System (ADS)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  16. Atmospheric-pressure plasma jet system for silicon etching without fluorocarbon gas feed

    NASA Astrophysics Data System (ADS)

    Ohtsu, Yasunori; Nagamatsu, Kenta

    2018-01-01

    We developed an atmospheric-pressure plasma jet (APPJ) system with a tungsten rod electrode coated with C2F4 particles of approximately 0.3 µm diameter for the surface treatment of a silicon wafer. The APPJ was generated by dielectric barrier discharge with a driving frequency of 22 kHz using a He gas flow. The characteristics of the APPJ were examined under various experimental conditions. The plasma jet length increased proportionally to the electric field. It was found that the treatment area of the silicon wafer was approximately 1 mm in diameter. By atomic force microscopy analysis, minute irregularities with a maximum length of about 600 nm and part of a ring-shaped trench were observed. A Si etching rate of approximately 400 nm/min was attained at a low power of 6 W and a He flow rate of 1 L/min without introducing molecular gas including F atoms.

  17. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  18. 49 CFR 179.300-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....037 Where: d = inside diameter in inches; E = 1.0 welded joint efficiency; P = minimum required bursting pressure in psig; S = minimum tensile strength of plate material in p.s.i. as prescribed in § 179... −d 2) where: d = inside diameter in inches; D = outside diameter in inches; p = tank test pressure in...

  19. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  20. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  1. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  2. Sparger system for MMH-helium vents

    NASA Technical Reports Server (NTRS)

    Rakow, A.

    1983-01-01

    Based on a calculated vent flow rate and MMH concentration, a TI-59 program was run to determine total sparger hole area for a given sparger inlet pressure. Hole diameter is determined from a mass transfer analysis in the holding tank to achieve complete capture of MMH. In addition, based on oxidation kinetics and vapor pressure data, MMh atmospheric concentrations are determined 2 ft above the holding tank.

  3. Does Physical Fitness Buffer the Relationship between Psychosocial Stress, Retinal Vessel Diameters, and Blood Pressure among Primary Schoolchildren?

    PubMed Central

    Endes, Katharina; Herrmann, Christian; Colledge, Flora; Brand, Serge; Donath, Lars; Faude, Oliver; Pühse, Uwe; Hanssen, Henner; Zahner, Lukas

    2016-01-01

    Background. Strong evidence exists showing that psychosocial stress plays an important part in the development of cardiovascular diseases. Because physical inactivity is associated with less favourable retinal vessel diameter and blood pressure profiles, this study explores whether physical fitness is able to buffer the negative effects of psychosocial stress on retinal vessel diameters and blood pressure in young children. Methods. 325 primary schoolchildren (51% girls, Mage = 7.28 years) took part in this cross-sectional research project. Retinal arteriolar diameters, retinal venular diameters, arteriolar to venular ratio, and systolic and diastolic blood pressure were assessed in all children. Interactions terms between physical fitness (performance in the 20 m shuttle run test) and four indicators of psychosocial stress (parental reports of critical life events, family, peer and school stress) were tested in a series of hierarchical regression analyses. Results. Critical life events and family, peer, and school-related stress were only weakly associated with retinal vessel diameters and blood pressure. No support was found for a stress-buffering effect of physical fitness. Conclusion. More research is needed with different age groups to find out if and from what age physical fitness can protect against arteriolar vessel narrowing and the occurrence of other cardiovascular disease risk factors. PMID:27795958

  4. Development and characterization of hollow microprobe array as a potential tool for versatile and massively parallel manipulation of single cells.

    PubMed

    Nagai, Moeto; Oohara, Kiyotaka; Kato, Keita; Kawashima, Takahiro; Shibata, Takayuki

    2015-04-01

    Parallel manipulation of single cells is important for reconstructing in vivo cellular microenvironments and studying cell functions. To manipulate single cells and reconstruct their environments, development of a versatile manipulation tool is necessary. In this study, we developed an array of hollow probes using microelectromechanical systems fabrication technology and demonstrated the manipulation of single cells. We conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation. We etched a silicon wafer on both sides and formed through holes with stepped structures. The inner diameters of the holes were reduced by SiO2 deposition of plasma-enhanced chemical vapor deposition to trap cells on the tips. This fabrication process makes it possible to control the wall thickness, inner diameter, and outer diameter of the probes. With the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. We studied the capture, release, and survival rates of cells at different suction and release pressures and found that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system makes it possible to place cells in a well array and observe the adherence, spreading, culture, and death of the cells. This system has potential as a tool for massively parallel manipulation and for three-dimensional hetero cellular assays.

  5. Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats

    PubMed Central

    Abutarboush, Rania; Aligbe, Chioma; Pappas, Georgina; Saha, Biswajit; Arnaud, Francoise; Haque, Ashraful; Auker, Charles; McCarron, Richard; Scultetus, Anke; Moon-Massat, Paula

    2014-01-01

    The use of hemoglobin-based oxygen carriers (HBOC) as oxygen delivering therapies during hypoxic states has been hindered by vasoconstrictive side effects caused by depletion of nitric oxide (NO). OxyVita C is a promising oxygen-carrying solution that consists of a zero-linked hemoglobin polymer with a high molecular weight (~17 MDa). The large molecular weight is believed to prevent extravasation and limit NO scavenging and vasoconstriction. The aim of this study was to assess vasoactive effects of OxyVita C on systemic blood pressures and cerebral pial arteriole diameters. Anesthetized healthy rats received four intravenous (IV) infusions of an increasing dose of OxyVita C (2, 25, 50, 100 mg/kg) and hemodynamic parameters and pial arteriolar diameters were measured pre- and post-infusion. Normal saline was used as a volume-matched control. Systemic blood pressures increased (P ≤ 0.05) with increasing doses of OxyVita C, but not with saline. There was no vasoconstriction in small (<50 µm) and medium-sized (50–100 µm) pial arterioles in the OxyVita C group. In contrast, small and medium-sized pial arterioles vasoconstricted in the control group. Compared to saline, OxyVita C showed no cerebral vasoconstriction after any of the four doses evaluated in this rat model despite increases in blood pressure. PMID:25411852

  6. Microalgal cell disruption via ultrasonic nozzle spraying.

    PubMed

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  7. Innovative Method for Developing a Helium Pressurant Tank Suitable for the Upper Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    DeLay, Tom K.; Munafo, Paul (Technical Monitor)

    2001-01-01

    The AFRL USFE project is an experimental test bed for new propulsion technologies. It will utilize ambient temperature fuel and oxidizers (Kerosene and Hydrogen peroxide). The system is pressure fed, not pump fed, and will utilize a helium pressurant tank to drive the system. Mr. DeLay has developed a method for cost effectively producing a unique, large pressurant tank that is not commercially available. The pressure vessel is a layered composite structure with an electroformed metallic permeation barrier. The design/process is scalable and easily adaptable to different configurations with minimal cost in tooling development 1/3 scale tanks have already been fabricated and are scheduled for testing. The full-scale pressure vessel (50" diameter) design will be refined based on the performance of the sub-scale tank. The pressure vessels have been designed to operate at 6,000 psi. a PV/W of 1.92 million is anticipated.

  8. Theoretical and experimental investigation on magneto-hydrodynamics of plasma window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S. Z.; Zhu, K., E-mail: zhukun@pku.edu.cn; Huang, S.

    2016-01-15

    As a new device, plasma window has been designed to use plasma discharge to separate atmosphere from vacuum with high difference of pressure. It has many excellent properties, being able to be used as available passage for ion beam with negligible energy loss, also impervious to radiation damage and thermal damage. Normally beam focusing by accelerators is not that easy to achieve within channel of small cross section. 10 mm diameter plasma window's experimental realization could contribute to its further application in accelerator system. In this paper, 10 mm diameter 60 mm long plasma window has first been designed and managed to generatemore » arc discharge with argon gas experimentally. The result proves that it has the ability to separate at least 28.8 kPa (not the upper limit) from 360 Pa with 50 A direct current and 2.5 kW power supplied. Current increase leads to linear inlet pressure increase obviously, while it has less impact on outlet pressure and voltage, coming to the conclusion that the higher current of plasma discharge, the larger pressure difference it creates. Theoretical analysis of 10 mm diameter plasma window in axis symmetrical configuration using argon also has been provided, in which a numerical 2D FLUENT-based magneto-hydrodynamic simulation model is settled. It has a good agreement with experimental result on voltage and mass flow rate when inlet pressure is increased.« less

  9. 76 FR 7815 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-850] Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4\\1/2\\ Inches) From Japan: Extension of... administrative review of the antidumping duty order on certain large diameter carbon and alloy seamless standard...

  10. Abdominal drainage following cholecystectomy: high, low, or no suction?

    PubMed Central

    McCormack, T. T.; Abel, P. D.; Collins, C. D.

    1983-01-01

    A prospective trial to assess the effect of suction in an abdominal drain following cholecystectomy was carried out. Three types of closed drainage system were compared: a simple tube drain, a low negative pressure drain, and a high negative pressure drain: 120 consecutive patients undergoing cholecystectomy were randomly allocated to one of the three drainage groups. There was no significant difference in postoperative pyrexia, wound infection, chest infection, or hospital stay. This study failed to demonstrate any clinically useful difference between high negative pressure, low negative pressure, and static drainage system were compared: a simple tube drain, a low negative used, suction is not necessary and a simple tube drain (greater than 6 mm internal diameter) is the most effective form of drainage. PMID:6614773

  11. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  12. Concept definition study for an extremely large aerophysics range facility

    NASA Technical Reports Server (NTRS)

    Swift, Hallock F.

    1993-01-01

    A conceptual design of a very large aeroballistic range is presented, as are its operational characteristics and procedures. The proposed model launcher is a two-stage light-gas gun, having a launch tube diameter of 254 mm, and the capability of accelerating a 14 kg launch mass to 6.1 km/sec. The gun's 91.4 cm diameter piston is driven by pressurized helium. High pressures in the central breech are contained by a multiple disk arrangement. The blast tank and sabot separation tank are described, as are methods for arresting sabot segments. The conceptual design of the range itself includes a 3.3 m diameter test or flight chamber some 330 m in length. Provisions are made for testing of free flight models and tests in which the model is confined by a track system. Methods for model deceleration and recovery are described. Provisions required for future addition of advanced model launchers such as an electromagnetic launcher or ram accelerator are addressed. Siting and safety issues are also addressed.

  13. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  14. Research Update: Synthesis of sub-15-nm diameter silver nanowires through a water-based hydrothermal method: Fabrication of low-haze 2D conductive films

    NASA Astrophysics Data System (ADS)

    Jang, Hae-Won; Kim, Yong-Hoe; Lee, Ki-Wook; Kim, Yoon-Mi; Kim, Jin-Yeol

    2017-08-01

    We synthesized ultra-thin Ag nanowire (Ag NWs) with sub-15 nm diameters and aspect ratios of 1000 through a water-based high-pressure hydrothermal method in the presence of a tetrabutylammonium dichlorobromide organic salt and glucose reducing agent. In the crystal growth stage, the diameter of the NWs could be controlled by adjusting the pressure, and 15-nm diameter wires were obtained at a pressure of 190 psi. These 2D conductive Ag NW network films showed an excellent optical performance with low haze value of ≤1.0% and 94.5% transmittance at a low sheet resistance of 20 Ω/sq.

  15. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  16. High-pressure autoclave for multipurpose nuclear magnetic resonance measurements up to 10 MPa

    NASA Astrophysics Data System (ADS)

    Behr, W.; Haase, A.; Reichenauer, G.; Fricke, J.

    1999-05-01

    High-pressure nuclear magnetic resonance (NMR) is an established method in NMR spectroscopy: on-line coupling of high-performance liquid chromatography with NMR, for example, reveals structural information which cannot be obtained with any other method. However, applications has been focused solely on high-pressure NMR spectroscopy, even though high-pressure NMR imaging allows in situ studies of processes such as the fluid exchange in porous media. A versatile high-pressure autoclave for NMR imaging is described in this article. The autoclave allows measurements in any horizontal NMR imager using magnetic field coil systems with an inside diameter of more than 70 mm. Any sample with a diameter up to 28 mm and a length of about 200 mm can be investigated. The autoclave is constructed for operating pressures up to 10 MPa and is temperature controlled between 10 and 60 °C. The materials of the high-pressure cell which are the thermoplastic polyetheretherketon (PEEK) for the pressure tube and brass (63% Cu, 37% Zn) for the caps also permit investigations with aggressive fluids such as supercritical carbon dioxide. Inlet and outlet valves allow replacement of fluids and pressure variations in the autoclave during the NMR measurement. FLASH NMR images of the fluid exchange of methanol for liquid carbon dioxide in silica alcogels at 6.5 MPa are presented in order to demonstrate possible applications.

  17. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    NASA Astrophysics Data System (ADS)

    Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  18. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  19. Thermodynamic, Transport and Chemical Properties of Reference JP-8

    DTIC Science & Technology

    2006-06-01

    external diameter, 0.18 cm internal diameter) that are sealed on one end with a stainless steel plug welded by a clean tungsten-inert-gas ( TIG ) 15...tubing with an internal diameter of 0.02 cm, also TIG welded to the cell. Each cell and valve is capable of withstanding a pressure in excess of 105... process . Each cell is connected to a high-pressure high-temperature valve at the other end with a short length of 0.16 cm diameter 316 stainless steel

  20. Effect of collagen and elastin content on the burst pressure of human blood vessel seals formed with a bipolar tissue sealing system.

    PubMed

    Latimer, Cassandra A; Nelson, Meghan; Moore, Camille M; Martin, Kimberly E

    2014-01-01

    Bipolar devices are routinely used to seal blood vessels instead of sutures and clips. Recent work examining the impact of vascular proteins on bipolar seal performance found that collagen and elastin (CE) content within porcine arteries was a significant predictor of a vessel's burst pressure (VBPr). This study examined seal performance across a range of human blood vessels to investigate whether a similar relationship existed. In addition, we compared VBPr and CE content between porcine and human blood vessels. Our primary hypothesis is that higher collagen-to-elastin ratio will predict higher VBPr in human vasculature. In six cadavers, 185 blood vessels from nine anatomic locations were sealed using a bipolar electrosurgical system. A linear mixed model framework was used to evaluate the impact of vessel diameter and CE content on VBPr. The effect of CE ratio on VBPr is modified by vessel size, with CE ratio having larger influence on VBPr in smaller diameter vessels. Seal burst pressure of vessels 2-5 mm in diameter was significantly associated with their CE content. Comparison of average VBPr between species revealed porcine carotid and iliac arteries (440-670 mmHg) to be the best vessel types for predicting the seal strength of most human blood vessels (420-570 mmHg) examined. CE content significantly modified the seal strength of small to medium sized blood vessels but had limited impact on vessels >5 mm. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1931-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  2. Penetration and Duration of Fuel Sprays from a Pump Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1934-01-01

    High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.

  3. High-Subsonic Performance Characteristics and Boundary-Layer Investigations of a 12 deg 10-Inch-Inlet-Diameter Conical Diffuser

    DTIC Science & Technology

    1950-05-11

    available condition supersonic flow was obtained as far as K.5 inches downstream from the diffueer inlet with a maximum Mach number of M % 1.5...Boundary—layer total-pressure measurements were made with the rake shown in figure k. The tubes varied in size from 0.030-Inch outside diameter...at the wall to 0.050—inch outside diameter farther out. A static-pressure tube was mounted on the rake to measure static pressures at the same

  4. 78 FR 41366 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4 1/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4 \\1/2\\ Inches) From Japan: Preliminary... seamless standard, line, and pressure pipe (over 4 \\1/2\\ inches) (large diameter seamless pipe) from Japan.../exporters of subject merchandise, Canadian Natural Resources Limited (CNRL), JFE Steel Corporation (JFE...

  5. 77 FR 67336 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... products subject to the order are small diameter seamless carbon and alloy (other than stainless) steel... Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania: Final Results of Antidumping... alloy seamless standard, line and pressure pipe from Romania. The period of review is August 1, 2010...

  6. 75 FR 18153 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-09

    ... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan: Extension of Time Limit for... review of the antidumping duty order on certain large diameter carbon and alloy seamless standard, line... Carbon and Alloy Seamless Standard, Line and Pressure Pipe from Japan: Extension of Time Limit for...

  7. Pressure loss in elbow pipes of unplasticized polyvinyl chloride.

    PubMed

    Iwasaki, T; Ojima, J

    1996-01-01

    In the ductwork of local exhaust systems, 90 degrees elbow pipes (JIS K 6739) are commonly used to alter the direction of airflow; thus, are important components of polyvinyl chloride (PVC) ducts. Pressure loss in 90 degrees PVC elbow pipes was investigated by measuring static pressure, and the characteristics of airflow was determined. First, a linear decrease in static pressure was observed at points of the downstream side beyond a distance of 10 times the diameter (10d) from the flanged round opening of the smooth VU ducts (JIS K6741). The linear decrease was also observed at points of the downstream side located at distances of greater than 30d from the elbow pipe. Coefficients of loss in the PVC elbow pipes were found to be constant for the Reynolds numbers ranging from 3.38 x 10(4) to 5.96 x 10(5) for all diameters examined, and a chart of pressure loss was constructed with these coefficients. The coefficients of loss in PVC elbow pipes were not equivalent to those of metal stamped elbows for any R/d. However, the differences in the coefficients between the metal stamped elbow and the PVC elbow were smaller with larger R/d values.

  8. 76 FR 12727 - Black Canyon Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... Reservoir with a storage capacity of 9,700-acre-foot; (4) a 3,800-foot-long, 18.7-foot-diameter concrete-lined pressure shaft; (5) a 200-foot-long, 22.4-foot-diameter concrete-lined tailrace; (6) a 280-foot...,700-acre-foot; (4) a 800-foot-long, 20.4-foot-diameter unlined or concrete-lined low-pressure tunnel...

  9. Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels

    PubMed Central

    Jang, Hae Lin; Lee, Keunho; Kang, Chan Soon; Lee, Hye Kyoung; Ahn, Hyo-Yong; Jeong, Hui-Yun; Park, Sunghak; Kim, Seul Cham; Jin, Kyoungsuk; Park, Jimin; Yang, Tae-Youl; Kim, Jin Hong; Shin, Seon Ae; Han, Heung Nam; Oh, Kyu Hwan; Lee, Ho-Young; Lim, Jun; Hong, Kug Sun; Snead, Malcolm L.; Xu, Jimmy; Nam, Ki Tae

    2015-01-01

    Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gasses, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically-inspired, hierarchically-organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly-interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite ‘alive’. PMID:25827409

  10. Impact of multilayered compression bandages on sub-bandage interface pressure: a model.

    PubMed

    Al Khaburi, J; Nelson, E A; Hutchinson, J; Dehghani-Sanij, A A

    2011-03-01

    Multi-component medical compression bandages are widely used to treat venous leg ulcers. The sub-bandage interface pressures induced by individual components of the multi-component compression bandage systems are not always simply additive. Current models to explain compression bandage performance do not take account of the increase in leg circumference when each bandage is applied, and this may account for the difference between predicted and actual pressures. To calculate the interface pressure when a multi-component compression bandage system is applied to a leg. Use thick wall cylinder theory to estimate the sub-bandage pressure over the leg when a multi-component compression bandage is applied to a leg. A mathematical model was developed based on thick cylinder theory to include bandage thickness in the calculation of the interface pressure in multi-component compression systems. In multi-component compression systems, the interface pressure corresponds to the sum of the pressures applied by individual bandage layers. However, the change in the limb diameter caused by additional bandage layers should be considered in the calculation. Adding the interface pressure produced by single components without considering the bandage thickness will result in an overestimate of the overall interface pressure produced by the multi-component compression systems. At the ankle (circumference 25 cm) this error can be 19.2% or even more in the case of four components bandaging systems. Bandage thickness should be considered when calculating the pressure applied using multi-component compression systems.

  11. Paramecium swimming in capillary tube

    NASA Astrophysics Data System (ADS)

    Jana, Saikat; Um, Soong Ho; Jung, Sunghwan

    2012-04-01

    Swimming organisms in their natural habitat need to navigate through a wide range of geometries and chemical environments. Interaction with boundaries in such situations is ubiquitous and can significantly modify the swimming characteristics of the organism when compared to ideal laboratory conditions. We study the different patterns of ciliary locomotion in glass capillaries of varying diameter and characterize the effect of the solid boundaries on the velocities of the organism. Experimental observations show that Paramecium executes helical trajectories that slowly transition to straight lines as the diameter of the capillary tubes decreases. We predict the swimming velocity in capillaries by modeling the system as a confined cylinder propagating longitudinal metachronal waves that create a finite pressure gradient. Comparing with experiments, we find that such pressure gradient considerations are necessary for modeling finite sized ciliary organisms in restrictive geometries.

  12. Characterization of Esophageal Physiology Using Mechanical State Analysis.

    PubMed

    Leibbrandt, Richard E; Dinning, Phil G; Costa, Marcello; Cock, Charles; Wiklendt, Lukasz; Wang, Guangsong; Tack, Jan; van Beckevoort, Dirk; Rommel, Nathalie; Omari, Taher I

    2016-01-01

    The esophagus functions to transport swallowed fluids and food from the pharynx to the stomach. The esophageal muscles governing bolus transport comprise circular striated muscle of the proximal esophagus and circular smooth muscle of the distal esophagus. Longitudinal smooth muscle contraction provides a mechanical advantage to bolus transit during circular smooth muscle contraction. Esophageal striated muscle is directly controlled by neural circuits originating in the central nervous system, resulting in coordinated contractions. In contrast, the esophageal smooth muscle is controlled by enteric circuits modulated by extrinsic central neural connections resulting in neural relaxation and contraction. The esophageal muscles are modulated by sensory information arising from within the lumen. Contraction or relaxation, which changes the diameter of the lumen, alters the intraluminal pressure and ultimately inhibits or promotes flow of content. This relationship that exists between the changes in diameter and concurrent changes in intraluminal pressure has been used previously to identify the "mechanical states" of the circular muscle; that is when the muscles are passively or actively, relaxing or contracting. Detecting these changes in the mechanical state of the muscle has been difficult and as the current interpretation of esophageal motility is based largely upon pressure measurement (manometry), subtle changes in the muscle function during peristalsis can be missed. We hypothesized that quantification of mechanical states of the esophageal circular muscles and the pressure-diameter properties that define them, would allow objective characterization of the mechanisms that govern esophageal peristalsis. To achieve this we analyzed barium swallows captured by simultaneous videofluoroscopy and pressure with impedance recording. From these data we demonstrated that intraluminal impedance measurements could be used to determine changes in the internal diameter of the lumen comparable with measurements from videofluoroscopy. Our data indicated that identification of mechanical state of esophageal muscle was simple to apply and revealed patterns consistent with the known neural inputs activating the different muscles during swallowing.

  13. In vitro comparison of Günther Tulip and Celect filters: testing filtering efficiency and pressure drop.

    PubMed

    Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R

    2015-02-05

    In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Fluid-flow pressure measurements and thermo-fluid characterization of a single loop two-phase passive heat transfer device

    NASA Astrophysics Data System (ADS)

    Ilinca, A.; Mangini, D.; Mameli, M.; Fioriti, D.; Filippeschi, S.; Araneo, L.; Roth, N.; Marengo, M.

    2017-11-01

    A Novel Single Loop Pulsating Heat Pipe (SLPHP), with an inner diameter of 2 mm, filled up with two working fluids (Ethanol and FC-72, Filling Ratio of 60%), is tested in Bottom Heated mode varying the heating power and the orientation. The static confinement diameter for Ethanol and FC-72, respectively 3.4 mm and 1.7mm, is above and slightly under the inner diameter of the tube. This is important for a better understanding of the working principle of the device very close to the limit between the Loop Thermosyphon and Pulsating Heat Pipe working modes. With respect to previous SLPHP experiments found in the literature, such device is designed with two transparent inserts mounted between the evaporator and the condenser allowing direct fluid flow visualization. Two highly accurate pressure transducers permit local pressure measurements just at the edges of one of the transparent inserts. Additionally, three heating elements are controlled independently, so as to vary the heating distribution at the evaporator. It is found that peculiar heating distributions promote the slug/plug flow motion in a preferential direction, increasing the device overall performance. Pressure measurements point out that the pressure drop between the evaporator and the condenser are related to the flow pattern. Furthermore, at high heat inputs, the flow regimes recorded for the two fluids are very similar, stressing that, when the dynamic effects start to play a major role in the system, the device classification between Loop Thermosyphon and Pulsating Heat Pipe is not that sharp anymore.

  15. Experimental and Computational Study of the Hydrodynamics of Trickle Bed Flow Reactor Operating Under Different Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.

    2014-12-01

    Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.

  16. Correlation Between Corneal Button Size and Intraocular Pressure During Femtosecond Laser-Assisted Keratoplasty.

    PubMed

    Choi, Mihyun; Lee, Yong Eun; Whang, Woong-Joo; Yoo, Young-Sik; Na, Kyung-Sun; Joo, Choun-Ki

    2016-03-01

    To evaluate changes in intraocular pressure (IOP) in recipient and donor eyes during femtosecond laser-assisted keratoplasty (FLAK) and to assess for differences in the diameter of trephinated corneal buttons according to changes in pressure. Twenty porcine whole eyes (recipient model) and 20 porcine-corneoscleral rims (donor model) were prepared, and anterior chamber pressures were measured using a fiberoptic sensing device (Opsens, Quebec, Canada) during the femtosecond laser corneal cutting process. To determine the diameter of corneal buttons, 10 porcine whole eyes (recipient model) and 12 corneoscleral rims (donor model) of each baseline IOP were cut with the femtosecond laser programmed to the following pattern: "vertical side cut"; 1200 μm (depth), 8 mm (diameter). Digital photographs were obtained using microscopy and subsequently analyzed. The IOP (mean ± SD) for the recipient model was 10.2 (±0.9) mm Hg at baseline and ranged from 96.6 (±4.5) to ∼138.4 (±3.8) mm Hg during the corneal cutting process. This shows that the maximum IOP during FLAK increased 13.5 times compared with baseline. In the donor model, the mean pressure elevation from baseline artificial anterior chamber (AAC) pressure to corneal cutting was 15.8 (±5.4) mm Hg. This showed a positive correlation with baseline IOP [correlation coefficient (CC) = 0.827, P = 0.006]. As the baseline IOP in the recipient eye increased, trephinated corneal button size was reduced by up to 3.9% in diameter (CC = -0.945, P = 0.015). In addition, in donor eyes, the diameter was decreased by up to 11.7% as the baseline AAC pressure increased (CC = -0.934, P = 0.006). During the FLAK procedure, the IOP increases in both recipient and donor eyes. The diameter of the trephinated donor and recipient corneal buttons was decreased as the initial baseline IOP increased. Ophthalmic surgeons can determine the AAC pressure based on the baseline IOP in the recipient patient.

  17. An aerodynamic investigation of two 1.83-meter-diameter fan systems designed to drive a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Page, V. R.; Eckert, W. T.; Mort, K. W.

    1977-01-01

    An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.

  18. Hybrid propulsion technology program. Volume 2: Technology definition package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  19. Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj

    2012-01-01

    The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.

  20. Burning of CP Titanium (Grade 2) in Oxygen-Enriched Atmospheres

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Jeffers, Nathan; Gallus, Timothy D.

    2012-01-01

    The flammability in oxygen-enriched atmospheres of commercially pure (CP) titanium rods as a function of diameter and test gas pressure was determined. Test samples of varying diameters were ignited at the bottom and burned upward in 70% O2/balance N2 and in 99.5+% O2 at various pressures. The burning rate of each ignited sample was determined by observing the apparent regression rate of the melting interface (RRMI) of the burning samples. The burning rate or RRMI increased with decreasing test sample diameter and with increasing test gas pressure and oxygen concentration

  1. 77 FR 21734 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Romania: Extension of Time Limit for... diameter carbon and alloy seamless standard, line and pressure pipe from Romania for the period August 1... investigation based upon the allegation of the petitioner, U.S. Steel. See the memorandum to Susan Kuhbach dated...

  2. Effect of Viscosity on Fuel Leakage Between Lapped Plungers and Sleeves and on the Discharge from a Pump-Injection System

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1935-01-01

    Test data and analysis show that the rate of fuel leakage between a lapped plunger and sleeve varies directly with the density of the fuel, the diameter of the plunger, the pressure producing the leakage, and the cube of the mean clearance between the plunger and sleeve. The rate varies inversely as the length of the lapped fit and the viscosity of the fuel. With a mean clearance between the plunger and sleeve of 0.0001 inch the leakage amounts to approximately 0.2 percent of the fuel injected with gasoline and as low as 0.01 percent with diesel fuel oils. With this mean clearance an effective seal is obtained when the length of the lap is three times the diameter of the lap. The deformation of the sleeve and plunger under pressure is sufficient to change the rate of leakage appreciably from that which would be obtained if the clearance was constant under pressure.

  3. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  4. An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.

    PubMed

    Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin

    2015-08-01

    This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.

  5. Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

    NASA Astrophysics Data System (ADS)

    McKenna, J.; Patel, J.; Mitra, S.; Soin, N.; Švrček, V.; Maguire, P.; Mariotti, D.

    2011-11-01

    Two different atmospheric pressure microplasma systems are discussed and used for the synthesis and surface engineering of a range of nanomaterials. Specifically a gas-phase approach from vaporized tetramethylsilane has been used to synthesize silicon carbide nanoparticles with diameters below 10 nm. A different microplasma system that interfaces with a liquid solution has then been used for the synthesis of surfactant-free electrically stabilized gold nanoparticles with varying size. A similar microplasma-liquid system has been finally successfully used to tailor surface properties of silicon nanoparticles and to reduce graphene oxide into graphene. The synthesis and surface engineering mechanisms are also discussed.

  6. Development and Testing of the Europa Mission's Venturi Flow Meter

    NASA Technical Reports Server (NTRS)

    Diaz, C. E.; McKim, S. A.

    2017-01-01

    NASA's Marshall Space Flight Center (MSFC), in collaboration with NASA's Goddard Space Flight Center (GSFC), Fox Valve Development Corp. and Oxford Lasers, is developing a set of venturi flow meters for use on the Europa Mission's propulsion subsystem. The requirement for the venturi flow meters' throat diameters is approximately 0.040". An early risk reduction activity conducted by MSFC revealed that a venturi flow meter produced by FOX with a throat diameter near 0.040" had much higher pressure loss than venturi flow meters with larger throat diameters and venturis of similar throat diameter size but with no pressure taps (i.e. venturis with a throat length to diameter ratio of zero). In response, a series of venturi flow meters was fabricated and flow tested to gain insight into pressure recovery as it is affected by pressure port diameter, throat length and diffuser angle in an effort to improve the performance of a venturi flow meter. This presentation provides a summary of the venturi flow meter development activity including: a description of the test's objectives, a detailed description of each venturi configuration, a description of the manufacturing processes of the venturis, and observations from the test data. A summary of the current development activities will also be given, as well as the current development path forward. Ultimately, the knowledge gained through the fabrication and testing of these venturis provides guidance to design a flight venturi flow meters with pressure recoveries that is acceptable for the Europa flight application.

  7. Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study

    NASA Technical Reports Server (NTRS)

    Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.

    1982-01-01

    Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.

  8. The quantitative evaluation of intracranial pressure by optic nerve sheath diameter/eye diameter CT measurement.

    PubMed

    Bekerman, Inessa; Sigal, Tal; Kimiagar, Itzhak; Ben Ely, Anna; Vaiman, Michael

    2016-12-01

    The changes of the optic nerve sheath diameter (ONSD) have been used to assess changes of the intracranial pressure for 20 years. The aim of this research was to further quantify the technique of measuring the ONSD for this purpose. Retrospective study of computed tomographic (CT) data of 1766 adult patients with intracranial hypotension (n=134) or hypertension (n=1632) were analyzed. The eyeball transverse diameter (ETD) and ONSD were obtained bilaterally, and the ONSD/ETD ratio was calculated. The ratio was used to calculate the normal ONSD for patients and to estimate the intracranial pressure of the patients before and after the onset of the pathology. Correlation analysis was performed with invasively measured intracranial pressure, the presence or absence of papilledema, sex, and age. In hypotension cases, the ONSD by CT was 3.4±0.7 mm (P=.03 against normative 4.4±0.8 mm). In cases with hypertension, the diameter was 6.9±1.3 (P=.02, with a cutoff value ˃5.5 mm). The ONSD/ETD ratio was 0.29±0.04 against 0.19±0.02 in healthy adults (P=.01). The ONSD and the ONSD/ETD ratio can indicate low intracranial pressure, but quantification is impossible at intracranial pressure less than 13 mm Hg. In elevated intracranial pressure, the ONSD and the ratio provide readings that correspond to readings in millimeters of mercury. The ONSD method, reinforced with additional calculations, may help to indicate a raised intracranial pressure, evaluate its severity quantitatively, and establish quantitative goals for treatment of intracranial hypertension, but the limitations of the method are to be taken into account. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  10. Overall Heat Transfer Coefficients for a Horizontal Cylinder in a Fluidized Bed.

    DTIC Science & Technology

    1984-04-01

    The distribution system is composed of 2 in. PVC pipe and fittings arranged in a convenient air-tight geometry. Pressure regulators, pressure gauges...uniform fluidization. After i£ A_ 4 passing through the beads, the air is exhausted to the outside by means of galvanized duct work. Fluidized Bed...design is the matching with the copper cylinder of outer diameters, the fastening with recessed set screws , their length and the material selection. In

  11. Friction loss in straight pipes of unplasticized polyvinyl chloride.

    PubMed

    Iwasaki, T; Ojima, J

    1996-01-01

    In order to design proper ductwork for a local exhaust system, airflow characteristics were investigated in straight pipes of unplasticized polyvinyl chloride (PVC). A linear decrease in static pressure was observed downstream at points from the opening of the VU pipes (JIS K 6741) located at distances greater than 10 times the pipe diameter, for velocities ranging between 10.18-36.91 m/s. Roughness inside pipes with small diameters was found to be 0.0042-0.0056 mm and the friction factor was calculated on the basis of Colebrook's equation for an airflow transition zone. An extended friction chart was then constructed on the basis of the roughness value and the friction factor. This chart can be applied when designing a local exhaust system with the ducts of diameters ranging from 40 to 900 mm. The friction loss of the PVC pipe was found to be approximately 2/3 of that of a galvanized steel pipe.

  12. Novel experimental model of pressure overload hypertrophy in rats.

    PubMed

    Molina, Ezequiel J; Gupta, Dipin; Palma, Jon; Torres, Denise; Gaughan, John P; Houser, Steven; Macha, Mahender

    2009-05-15

    We studied a novel animal model of pressure overload hypertrophy in transition to heart failure following ascending aortic constriction. We sought to assess chronologic changes in hemodynamic parameters, echocardiographic signs of left ventricular (LV) remodeling, exercise tolerance, and profiles of systemic and local inflammation. A cohort of Sprague Dawley rats underwent aortic constriction proximal to the innominate artery and were followed by echocardiography. A group of animals were euthanized 20 wk after aortic constriction, before any detectable decline in fractional shortening (normal fractional shortening (FS) or control group; n = 6). When additional animals reached an absolute 25% decline in fractional shortening, they were randomized to be euthanized on d 0 (25% downward arrow FS group; n = 5), or d 21 (>25% downward arrow FS group; n = 6). Hemodynamic and echocardiographic assessment, swim testing to exhaustion, and measurement of systemic and local inflammatory markers was performed at each time interval. An absolute decline of 25% in FS after aortic constriction was observed between 24 and 28 wk for most animals. The transition from compensated to decompensated hypertrophy was associated with markedly decreased dP/dt(max) and dP/dt(min), increased LV end-systolic diameter and LV end-diastolic diameter, stabilization of LV free wall diameter, decreased exercise performance and up-regulation in expression of interleukin-1, interleukin-6, tumor necrosis factor-alpha, and atrial natriuretic peptide. All animals developed heart failure. This study demonstrates that proximal aortic constriction in young rats represents an excellent experimental model of pressure overload hypertrophy that may be useful for testing the efficacy of novel therapies for the treatment of heart failure.

  13. Evaluating the risk of eye injuries: intraocular pressure during high speed projectile impacts.

    PubMed

    Duma, Stefan M; Bisplinghoff, Jill A; Senge, Danielle M; McNally, Craig; Alphonse, Vanessa D

    2012-01-01

    To evaluate the risk of eye injuries by determining intraocular pressure during high speed projectile impacts. A pneumatic cannon was used to impact eyes with a variety of projectiles at multiple velocities. Intraocular pressure was measured with a small pressure sensor inserted through the optic nerve. A total of 36 tests were performed on 12 porcine eyes with a range of velocities between 6.2 m/s and 66.5 m/s. Projectiles selected for the test series included a 6.35  mm diameter metal ball, a 9.25  mm diameter aluminum rod, and an 11.16  mm diameter aluminum rod. Experiments were designed with velocities in the range of projectile consumer products such as toy guns. A range of intraocular pressures ranged between 2017 mmHg to 26,426 mmHg (39 psi-511 psi). Four of the 36 impacts resulted in globe rupture. Intraocular pressures dramatically above normal physiological pressure were observed for high speed projectile impacts. These pressure data provide critical insight to chronic ocular injuries and long-term complications such as glaucoma and cataracts.

  14. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procarione, J.A.

    This research concerns the development of two models - a mine and a haulage shaft for ventilation studies. The model mine for instructional study of pressures and quantities was designed and built of 12-inch diameter furnace duct. It consists of a north and south sections in the hallway ceiling space in the third floor of the W.C. Browning Building. A fan section, consisting of three fans in Room 314, is attached to it. Both fan and duct sections may be operated singly, in parallel, and in series with each other. A blowing or exhausting mode allows a total of thirty-twomore » combinations. Through a system of air flow measurement stations, solenoid valves, and relays, pressures and velocities may be determined with a micromanometer or a pressure transducer whose output is processed by a computer. A control panel, made up of switches, permits the selection of the various fan-duct combinations and measurements. The 120 foot model shaft is for the study of shock losses when two skips are moving in an airflow within its confines. Air is directed from a fan downward through the 10 inch diameter aluminum shaft installed inside the former rubbish chute of the Browning Building. For data collection from which shock losses may be determined, sixteen strategically located measuring stations connect to pressure transducers. Voltage outputs from the transducers are sampled and processed by the computer in Room 314. In addition to the pressure readings, the skip speed and the air temperature in the model are also recorded by the computer system for later use in data reduction. Provisions are made for changing skip sizes and speeds as well as shaft wall roughness. With one skip size and speed and with smooth shaft walls, data was collected and processed to prove proper operation of the complete system.« less

  16. Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine.

    PubMed

    Luo, E C; Ling, H; Dai, W; Yu, G Y

    2006-12-22

    In this paper, an experimental study of the effect of the resonator shape on the performance of a traveling-wave thermoacoustic engine is presented. Two different resonators were tested in the thermoacoustic-Stirling heat. One resonator is an iso-diameter one, and the other is a tapered one. To have a reasonable comparison reference, we keep the same traveling-wave loop, the same resonant frequency and the same operating pressure. The experiment showed that the resonator shape has significant influence on the global performance of the thermoacoustic-Stirling heat engine. The tapered resonator gives much better performance than the iso-diameter resonator. The tapered resonator system achieved a maximum pressure ratio of about 1.3, a maximum net acoustical power output of about 450 W and a highest thermoacoustic efficiency of about 25%.

  17. Characterization of the Dynamic Pressure Response of Fuels in Microchannels

    NASA Astrophysics Data System (ADS)

    Haendler, Brenda; Pisano, Albert; Liepmann, Dorian

    2004-11-01

    In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.

  18. Alleviation of pressure pulse effects for trains entering tunnels. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Dayman, B., Jr.; Hammitt, A. G.; Holway, H. P.; Tucker, C. E., Jr.; Vardy, A. E.

    1979-01-01

    The degree to which it is possible to attenuate the effects of pressure pulses on the passengers in trains entering tunnels by modifying the normally abrupt portal of a constant-diameter single track tunnel was investigated. Although the suggested modifications to the tunnel entrance portal may not appreciably decrease the magnitude of the pressure rise, they are very effective in reducing the discomfort to the human ear by substantially decreasing the rate of pressure rise to that which the normal ear can accommodate. Qualitative comparison was made of this portal modification approach with other approaches: decreasing the train speed or sealing the cars. The optimum approach, which is dependent upon the conditions and requirements of each particular rail system, is likely to be the portal modification one for a rapid rail mass transit system.

  19. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    NASA Astrophysics Data System (ADS)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  20. Experimental investigation of passive thermodynamic vent system (TVS) with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Bae, Junhyuk; Yoo, Junghyun; Jin, Lingxue; Jeong, Sangkwon

    2018-01-01

    Thermodynamic vent system (TVS) is an attractive technology to maintain an allowable pressure level of a cryogenic propellant storage in a spacecraft under micro-gravity condition. There are two types of TVS; active or passive. In this paper, the passive TVS which does not utilize a cryogenic liquid circulation pump is experimentally investigated with liquid nitrogen and numerically analyzed by thermodynamic and heat transfer model. A cylindrical copper tank, which is 198 mm in inner diameter and 216 mm in height, is utilized to suppress a thermal-stratification effect of inside cryogenic fluid. A coil heat exchanger, which is 3 m in length and 6.35 mm in outer diameter, and a fixed size orifice of which diameter is 0.4 mm are fabricated to remove heat from the stored fluid to the vented flow. Each vent process is initiated at 140 kPa and ended at 120 kPa with liquid nitrogen fill levels which are 30%, 50% and 70%, respectively. In the numerical model, the fluid in the tank is assumed to be homogeneous saturated liquid-vapor. Mass and energy balance equations with heat transfer conditions suggested in this research are considered to calculate the transient pressure variation in the tank and the amount of heat transfer across the heat exchanger. We achieve the average heat rejection rate of more than 9 W by TVS and conclude that the passive TVS operates satisfactorily. In addition, the prediction model is verified by experimental results. Although the model has limitation in providing accurate results, it can surely predict the tendency of pressure and temperature changes in the tank. Furthermore, the model can suggest how we can improve the heat exchanger design to enhance an overall efficiency of passive TVS. Moreover, the performance of passive TVS is compared with other cryogenic vent systems (direct vent system and active TVS) by suggested performance indicator.

  1. Experimental Pressure Distributions on Axisymmetric Cowls at Mach Numbers From 0.60 to 0.92

    NASA Technical Reports Server (NTRS)

    Re, Richard J.

    2006-01-01

    Pressure distributions on four nacelle cowl models of the same length and highlight area but different geometries external to the highlight are compared. The diameter ratio (ratio of highlight diameter to maximum diameter) of the four cowls was 0.854 and the length ratio (ratio of cowl length to maximum diameter) was 0.439. The cowls had the same internal geometry from the highlight to the throat with a contraction ratio (ratio of highlight area to throat area) of 1.250. Data for two other cowls which had a diameter ratio of 0.880, a length ratio of 0.400 and a contraction ratio 1.250 are also included. All the cowls had rows of static pressure orifices on the top and bottom surfaces. Mass-flow ratio was varied between 0.27 and 0.93. Some data were obtained between angles of attack from -2.1deg and 4.1deg. The test was conducted in the Langley 16-Foot Transonic Tunnel.

  2. Oxidation at through-hole defects in fused slurry silicide coated columbium alloys FS-85 and Cb-752

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1973-01-01

    Metal recession and interstitial contamination at 0.08-centimeter-diameter through-hole intentional defects in fused slurry silicide coated FS-85 and Cb-752 columbium alloys were studied to determine the tolerance of these materials to coating defects. Five external pressure reentry simulation exposures to 1320 C and 4.7 x 1,000 N/sq m (maximum pressure) resulted in a consumed metal zone having about twice the initial defect diameter for both alloys with an interstitial contamination zone extending about three to four initial defect diameters. Self-healing occurred in the 1.33 x 10 N/sq m, 1320 C exposures and to a lesser extent in internal pressure reentry cycles to 1320 C and 1.33 x 100 N/sq m (maximum pressure).

  3. Polymer Claw: Instant Underwater Adhesive

    DTIC Science & Technology

    2012-08-27

    technology is the use of pressure sensitive microcapsules , which release reactive amine crosslinkers into an adhesive putty when pressed against the surface...CLEANING AGENT RHEOLOGY 3 3.3 PRESSURE-ACTIVATED ADHESIVE 5 3.3.1 PROCESSING IMPROVEMENTS 5 3.3.2 MICROCAPSULE DIAMETER 5 3.3.3 MICROCAPSULE /RESIN...to attain a reasonable shelf life (- l wk.). The microcapsule diameter has been halved in order to improve mixing in the pressure-activated

  4. Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Morris, Steven; Eagle, Ethan; Wooldridge, Margaret

    2012-10-01

    Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.

  5. Pressure scaled water impact test of a 12.5 inch diameter model of the Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A total of 59 tail first drops were made. Model entry conditions simulated full scale vertical velocities of approximately 75 to 110 ft/sec with horizontal velocities up to 45 ft/sec and impact angles to + or - 10 deg. These tests were conducted at scaled atmospheric pressures (1.26 psia or 65 mm.Hg). The model, test program, test facility, test equipment, instrumentation system, data reduction procedures, and test results are described.

  6. An experimental investigation of the effect of walls on gas-liquid flows through fixed particle beds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Marcia A.; Cote, Raymond O.; Torczynski, John Robert

    The effect of particle diameter on downward co-current gas-liquid flow through a fixed bed of particles confined within a cylindrical column is investigated. Several hydrodynamic regimes that depend strongly on the properties of the gas stream, the liquid stream, and the packed particle bed are known to exist within these systems. This experimental study focuses on characterizing the effect of wall confinement on these hydrodynamic regimes as the diameter d of the spherical particles becomes comparable to the column diameter D (or D/d becomes order-unity). The packed bed consists of polished, solid, spherical, monodisperse particles (beads) with mean diameter inmore » the range of 0.64-2.54 cm. These diameters yield D/d values between 15 and 3.75, so this range overlaps and extends the previously investigated range for two-phase flow, Measurements of the pressure drop across the bed and across the pulses are obtained for varying gas and liquid flow rates.« less

  7. Effect of the Reservoir Volume on the Discharge Pressures in the Injection System of the N.A.C.A. Spray Photography Equipment

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Lee, D W

    1932-01-01

    Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.

  8. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    NASA Astrophysics Data System (ADS)

    Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.

  9. Characteristics of air-water upward intermittent flows with surfactant additive in a pipeline-riser system

    NASA Astrophysics Data System (ADS)

    Gao, Meng-chen; Xu, Jing-yu

    2018-04-01

    The effect of the surfactant additive on the upward intermittent flows in a pipeline-riser system is studied experimentally, in a 3 m long horizontal pipe connected to a Perspex pipe of 2.0 m long and 25 mm in diameter, inclined to the horizontal plane by 7°, followed by the vertical PVC riser of 3.5 m high and 25 mm in diameter, operating at the atmospheric end pressure. Based on the analysis of the pressure signal and the visual observation of the riser, it is shown that the additive of surfactant to the carrying liquid makes bubbles smaller in size but much larger in number in the upward intermittent flows. In addition, the additive of surfactant to a two-phase flow does not have a significant impact on the in-situ gas fraction, the pressure drop and the frequency of the liquid slug, but it reduces significantly the velocity of the liquid slug. When the superficial liquid velocity is set, an exponential relationship between the dimensionless velocity of the liquid slug and the Webber number can be obtained. These results might be used for estimating the characteristic parameters of the upward intermittent flow based upon the input operating conditions.

  10. Design and evaluation of candidate pressure ports for the HYFLITE experiment

    NASA Technical Reports Server (NTRS)

    Teter, John E., Jr.; Cleckner, Craig S.; Vontheumer, Alfred E.

    1994-01-01

    A concept for placing a pressure transducer directly in a shuttle type tile was developed at Langley Research Center. A 5 inch long quartz with a .020 inch inner diameter provides the thermal isolation necessary to allow 2800 F surface pressure measurements to be taken by pressure transducer rated at 250 F. The assembly is potted in place with RTV 560 in a piece of FRCI-12 thermal protection system insulation tile. The integrity of the thermal protection system is maintained even with the intrusion of the pressure port assembly and the pressure port does not disrupt the air flow across the lifting body. Approximately 200 of these pressure ports are to be used in each of the Hypersonic Flight Experiment (HYFLITE) flight tests. Initial vibroacoustic and aerothermal testing of the pressure port designs have been completed at Langley Research vibration laboratory and the 20 MWatt 2 x 9 turbulent duct facility at Ames Research Center. The performance of the pressure ports were found to be well within the required design limits for all cases. In addition, a failure mode in which the entire pressure port assembly was removed proved to be a begin case.

  11. Combustion of a Polymer (PMMA) Sphere in Microgravity

    NASA Technical Reports Server (NTRS)

    Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.

    1999-01-01

    A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.

  12. 75 FR 11119 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Carbon and Alloy Seamless Standard, Line, and Pressure Pipe From Japan: Extension of Time Limit for... review of the antidumping duty order on certain large diameter carbon and alloy seamless standard, line... manufacturers/exporters: JFE Steel Corporation; Nippon Steel Corporation; NKK Tubes; and Sumitomo Metal...

  13. Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins

    NASA Astrophysics Data System (ADS)

    Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.

    2018-03-01

    The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.

  14. Mode I Fracture Toughness of Rock - Intrinsic Property or Pressure-Dependent?

    NASA Astrophysics Data System (ADS)

    Stoeckhert, F.; Brenne, S.; Molenda, M.; Alber, M.

    2016-12-01

    The mode I fracture toughness of rock is usually regarded as an intrinsic material parameter independent of pressure. However, most fracture toughness laboratory tests are conducted only at ambient pressure. To investigate fracture toughness of rock under elevated pressures, sleeve fracturing laboratory experiments were conducted with various rock types and a new numerical method was developed for the evaluation of these experiments. The sleeve fracturing experiments involve rock cores with central axial boreholes that are placed in a Hoek triaxial pressure cell to apply an isostatic confining pressure. A polymere tube is pressurized inside these hollow rock cylinders until they fail by tensile fracturing. Numerical simulations incorporating fracture mechanical models are used to obtain a relation between tensile fracture propagation and injection pressure. These simulations indicate that the magnitude of the injection pressure at specimen failure is only depending on the fracture toughness of the tested material, the specimen dimensions and the magnitude of external loading. The latter two are known parameters in the experiments. Thus, the fracture toughness can be calculated from the injection pressure recorded at specimen breakdown. All specimens had a borehole diameter to outer diameter ratio of about 1:10 with outer diameters of 40 and 62 mm. The length of the specimens was about two times the diameter. Maximum external loading was 7.5 MPa corresponding to maximum injection pressures at specimen breakdown of about 100 MPa. The sample set tested in this work includes Permian and Carboniferous sandstones, Jurassic limestones, Triassic marble, Permian volcanic rocks and Devonian slate from Central Europe. The fracture toughness values determined from the sleeve fracturing experiments without confinement using the new numerical method were found to be in good agreement with those from Chevron bend testing according to the ISRM suggested methods. At elevated confining pressures, the results indicate a significant positive correlation between fracture toughness and confining pressure for most tested rock types.

  15. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  16. Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.

    1999-05-01

    Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.

  17. Analysis of a domestic refrigerator cycle with an ejector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasek, M.L.; Radermacher, R.

    1995-08-01

    In this paper, an improved cooling cycle for a conventional domestic refrigerator-freezer utilizing an ejector for vapor precompression is analyzed using an idealized model Its energy efficiency is compared to that of the conventional refrigerator-freezer system. Emphasis is placed on off-design conditions. The ejector-enhanced refrigeration cycle consists of two evaporators that operate at different pressure and temperature levels. The ejector combines the vapor flows exiting the two evaporators into one at an intermediate pressure level The ejector cycle gives an increase of up to 12.4% in the coefficient of performance (COP) compared to that of a standard refrigerator-freezer refrigeration cycle.more » The analysis includes calculations on the optimum throat diameters of the ejector. The investigation on the off-design performance of the ejector cycle shows little dependency of energy consumption on constant ejector throat diameters.« less

  18. Gap Test Calibrations and Their Scaling

    NASA Astrophysics Data System (ADS)

    Sandusky, Harold

    2011-06-01

    Common tests for measuring the threshold for shock initiation are the NOL large scale gap test (LSGT) with a 50.8-mm diameter donor/gap and the expanded large scale gap test (ELSGT) with a 95.3-mm diameter donor/gap. Despite the same specifications for the explosive donor and polymethyl methacrylate (PMMA) gap in both tests, calibration of shock pressure in the gap versus distance from the donor scales by a factor of 1.75, not the 1.875 difference in their sizes. Recently reported model calculations suggest that the scaling discrepancy results from the viscoelastic properties of PMMA in combination with different methods for obtaining shock pressure. This is supported by the consistent scaling of these donors when calibrated in water-filled aquariums. Calibrations with water gaps will be provided and compared with PMMA gaps. Scaling for other donor systems will also be provided. Shock initiation data with water gaps will be reviewed.

  19. Technological study on reducing blast-hole rate during laser cutting oil pipe

    NASA Astrophysics Data System (ADS)

    Deng, Qiansong; Yang, Weihong; Tang, Xiahui; Peng, Hao; Qin, Yingxiong

    2012-03-01

    In this paper, a laser cutting technology for the oil pipes with the thickness of 10mm, the diameter of 142mm and the material of N80 has been developed, in order to reduce the high hole-blast rate in processing. Experiments are taken on the Rofin DC025 slab CO2 laser cutting system and a set of flexible fixtures. The reasons of forming blast-hole have been analyzed, and the influences of technique parameters on blast-hole rate have been studied, such as laser power, pulse frequency, laser delay, focus position and oxygen pressure. The results show that the blast-hole rate can be controlled lower than 5% at the conditions of laser power 1500W, laser delay 5s, pulse frequency 180Hz, the oxygen pressure 0.6 kg/cm2, focus length 190mm, nozzle diameter 1.5mm.

  20. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.

    PubMed

    Miyake, Fuyu; Suga, Rika; Akiyama, Takahiro; Namba, Fumihiko

    2018-04-06

    Neonates, particularly premature babies, are often managed with endotracheal intubation and subsequent mechanical ventilation to maintain adequate pulmonary gas exchange. There is no consensus on the standard length of endotracheal tube. Although a short tube reduces resistance and respiratory dead space, it is believed to increase the risk of accidental extubation. There are not entirely coherent data regarding the effect of endotracheal tube length on work of breathing in infants. The aim of this study was to evaluate the impact of neonatal endotracheal tube diameter and length on the work of breathing using an infant in vitro lung model. We assessed the work of breathing index and mechanical ventilation settings with various endotracheal tube diameters and lengths using the JTR100 in vitro infant lung model. The basic parameters of the model were breathing frequency of 20 per minutes, inspiratory-expiratory ratio of 1:3, and positive end-expiratory pressure of 5 cmH 2 O. In addition, the diaphragm driving pressure to maintain the set tidal volume was measured as the work of breathing index. The JTR100 was connected to the Babylog 8000plus through the endotracheal tube. Finally, we monitored the peak inspiratory pressure generated during assist-control volume guarantee mode with a targeted tidal volume of 10-30 mL. The diaphragm driving pressure using a 2.0-mm inner diameter tube was twice as high as that using a 4.0-mm inner diameter tube. To maintain the targeted tidal volume, a shorter tube reduced both the diaphragm driving pressure and ventilator-generated peak inspiratory pressure. The difference in the generated peak inspiratory pressure between the shortest and longest tubes was 5 cmH 2 O. In our infant lung model, a shorter tube resulted in a lower work of breathing and lower ventilator-generated peak inspiratory pressure. © 2018 John Wiley & Sons Ltd.

  1. Results of test IA137 in the NASA/ARC 14 foot transonic wind tunnel of the 0.07 scale external tank forebody (model 68-T) to determine auxiliary aerodynamic data system feasibility

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1976-01-01

    Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.

  2. Thermal behavior of heat-pipe-assisted alkali-metal thermoelectric converters

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Su; Lee, Wook-Hyun; Chi, Ri-Guang; Chung, Won-Sik; Lee, Kye-Bock; Rhi, Seok-Ho; Jeong, Seon-Yong; Park, Jong-Chan

    2017-11-01

    The alkali-metal thermal-to-electric converter (AMTEC) changes thermal energy directly into electrical energy using alkali metals, such as sodium and potassium, as the working fluid. The AMTEC system primarily consists of beta-alumina solid electrolyte (BASE) tubes, low and high-pressure chambers, an evaporator, and a condenser and work through continuous sodium circulation, similar to conventional heat pipes. When the sodium ions pass through the BASE tubes with ion conductivity, this ion transfer generates electricity. The efficiency of the AMTEC directly depends on the temperature difference between the top and bottom of the system. The optimum design of components of the AMTEC, including the condenser, evaporator, BASE tubes, and artery wick, can improve power output and efficiency. Here, a radiation shield was installed in the low-pressure chamber of the AMTEC and was investigated experimentally and numerically to determine an optimum design for preventing radiation heat loss through the condenser and the wall of AMTEC container. A computational fluid dynamics (CFD) simulation was carried out to decide the optimum size of the low-pressure chamber. The most suitable height and diameter of the chamber were 270 mm and 180 mm, respectively, with eight BASE tubes, which were 150 mm high, 25 mm in diameter, and 105 mm in concentric diameter. Increasing the temperature ratio ( T Cond /T B ) led to high power output. The minimum dimensionless value (0.4611) for temperature ( T Cond /T B ) appeared when the radiation shield was made of 500-mesh nickel. Simulation results for the best position and shape for the radiation shield, revealed that maximum power was generated when a stainless steel shield was installed in between the BASE tubes and condenser.

  3. Investigation of focused and unfocused transducer beam patterns in moderately nonlinear absorbing media

    NASA Astrophysics Data System (ADS)

    Kharin, Nikolay A.

    2001-05-01

    The novel solution of the KZK equation for acoustic pressure of the second harmonic in slightly focused beam of a circular transducer was obtained in a closed form for moderately nonlinear absorbing media (Gol'dberg numbers ~ 1). The solution is based on the method of slowly changing wave profile in combination with the method of successive approximations. Two pairs of transducers (Valpey-Fisher Corp.) Were compared to investigate the influence of focusing on the applicability of the moderate nonlinearity approach. The first pair was of 0.25' diameter and the second was of 0.5' diameter. Both pairs has one transducer with flat surface and the other geometrically focused at 4'. The central frequency for all transducers was 5 MHz. Measurements were undertaken in the blood-mimicking solution of water and glycerine. The results demonstrated that for slightly focused transducers with circular apertures, the moderate nonlinearity approach is still valid, as it was proved for flat sources with the same source level, despite the higher pressures in the focal region. The peak pressure for the weakly focused system occurs at a shorter range than focal length.

  4. Retinal arteriolar remodeling evaluated with adaptive optics camera: Relationship with blood pressure levels.

    PubMed

    Gallo, A; Mattina, A; Rosenbaum, D; Koch, E; Paques, M; Girerd, X

    2016-06-01

    To research a retinal arterioles wall-to-lumen ratio or lumen diameter cut-off that would discriminate hypertensive from normal subjects using adaptive optics camera. One thousand and five hundred subjects were consecutively recruited and Adaptive Optics Camera rtx1™ (Imagine-Eyes, Orsay, France) was used to measure wall thickness, internal diameter, to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. Sitting office blood pressure was measured once, just before retinal measurements and office blood pressure was defined as systolic blood pressure>=140mmHg and diastolic blood pressure>=90mmHg. ROC curves were constructed to determine cut-off values for retinal parameters to diagnose office hypertension. In another population of 276 subjects office BP, retinal arterioles evaluation and home blood pressure monitoring were obtained. The applicability of retinal WLR or diameter cut-off values were compared in patients with controlled, masked, white-coat and sustained hypertension. In 1500 patients, a WLR>0.31 discriminated office hypertensive subjects with a 0.57 sensitivity and 0.71 specificity. Lumen diameter<78.2μm discriminated office hypertension with a 0.73 sensitivity and a 0.52 specificity. In the other 276 patients, WLR was higher in sustained hypertension vs normotensive patients (0.330±0.06 vs 0.292±0.05; P<0.001) and diameter was narrower in masked hypertensive vs normotensive subjects (73.0±11.2 vs 78.5±11.6μm; P<0.005). A WLR higher than 0.31 is in favour of office arterial hypertension; a diameter under<78μm may indicate a masked hypertension. Retinal arterioles analysis through adaptive optics camera may help the diagnosis of arterial hypertension, in particular in case of masked hypertension. Copyright © 2016. Published by Elsevier SAS.

  5. Hood entry coefficients of compound exhaust hoods.

    PubMed

    Figueroa, Crescente E

    2011-12-01

    A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SP(h)) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SP(h) method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a "compound coefficient of entry" has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a "compound coefficient of entry" and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or "fish-tail" types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.

  6. A flexible, highly sensitive catheter for high resolution manometry based on in-fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Bueley, Christopher; Wild, Peter M.

    2013-09-01

    This work presents a fibre optic-based flexible catheter for high resolution manometry (HRM), with sensing pods located at a pitch of 10 mm and an overall diameter of 2.8 mm. In-fibre Bragg gratings act as the sensing elements within these sensing pods. Hydrodynamic pressure resolution of 0.2 mmHg is demonstrated in conjunction with insensitivity to occlusion pressure. This result is significant in the context of HRM where independent measurement of hydrodynamic pressure is clinically relevant. The sensing system is compact, robust and flexible. Crosstalk between individual sensors is characterized and a compensation scheme is developed and validated.

  7. Instrumentation used for hydraulic testing of potential water-bearing formations at the Waste Isolation Pilot Plant site in southeastern New Mexico

    USGS Publications Warehouse

    Basler, J.A.

    1983-01-01

    Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)

  8. Thrust Measurements of an Underexpanded Orifice in the Transitional Regime

    NASA Astrophysics Data System (ADS)

    Ketsdever, Andrew D.

    2003-05-01

    The popularity of micropropulsion system development has led to renewed interest in the determination of propulsive properties of orifice flows since micronozzle expansions may suffer high viscous losses at low pressure operation. The mass flow and relative thrust for an under expanded orifice is measured as a function of orifice stagnation pressure from 0.1 to 3.5 Torr. Nitrogen, argon, and helium propellant gases are passed through a 1.0 mm diameter orifice with a wall thickness of 0.015 mm . Near-free molecule, transitional and continuum flow regimes are studied. The relative thrust is determined by a novel thrust stand designed primarily for low operating pressure, micropropulsion systems. It is shown that the thrust indications obtained from the stand are a function of the facility background pressure, and corrections are made to determine the indicated thrust for a zero background pressure with nitrogen as propellant. Highly repeatable (within 1 %) indicated thrust measurements are obtained in the thrust range from 5 to 500 μN.

  9. Altitude Wind Tunnel at the NACA’s Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-06-21

    Two men on top of the Altitude Wind Tunnel (AWT) at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The tunnel was a massive rectangular structure, which for years provided one of the highest vantage points on the laboratory. The tunnel was 263 feet long on the north and south legs and 121 feet long on the east and west sides. The larger west end of the tunnel, seen here, was 51 feet in diameter. The east side of the tunnel was 31 feet in diameter at the southeast corner and 27 feet in diameter at the northeast. The throat section, which connected the northwest corner to the test section, narrowed sharply from 51 to 20 feet in diameter. The AWT’s altitude simulation required temperature and pressure fluctuations that made the design of the shell more difficult than other tunnels. The simultaneous decrease in both pressure and temperature inside the facility produced uneven stress loads, particularly on the support rings. The steel used in the primary tunnel structure was one inch thick to ensure that the shell did not collapse as the internal air pressure was dropped to simulate high altitudes. It was a massive amount of steel considering the World War II shortages. The shell was covered with several inches of fiberglass insulation to retain the refrigerated air and a thinner outer steel layer to protect the insulation against the weather. A unique system of rollers was used between the shell and its support piers. These rollers allowed for movement as the shell expanded or contracted during the altitude simulations. Certain sections would move as much as five inches during operation.

  10. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    NASA Astrophysics Data System (ADS)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  11. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1985-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  12. Liquid fuel spray processes in high-pressure gas flow

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Atomization of single liquid jets injected downstream in high pressure and high velocity airflow was investigated to determine the effect of airstream pressure on mean drop size as measured with a scanning radiometer. For aerodynamic - wave breakup of liquid jets, the ratio of orifice diameter D sub o to measured mean drop diameter D sub m which is assumed equal to D sub 32 or Sauter mean diameter, was correlated with the product of the Weber and Reynolds numbers WeRe and the dimensionless group G1/square root of c, where G is the gravitational acceleration, 1 the mean free molecular path, and square root of C the root mean square velocity, as follows; D sub o/D sub 32 = 1.2 (WeRe) to the 0.4 (G1/square root of c) to the 0.15 for values of WeRe 1 million and an airstream pressure range of 0.10 to 2.10 MPa.

  13. Refrigeration system oil measurement and sampling device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.A.

    1989-09-19

    This patent describes a sampling device for use with a refrigeration system having a refrigerant and oil entrained therein. It comprises: an elongated reservoir having a stepped bore therein for receiving refrigerant and oil carried thereby. The reservoir comprising a large bore diameter upper section having an index marking the fill level of the reservoir and a small bore diameter lower section having graduation marks for oil level measurement. The upper and lower sections comprising transparent material to allow observation of the contents, first valve means for coupling the reservoir to the refrigeration system to admit liquid refrigerant to themore » reservoir, second valve means for selectively coupling the reservoir to the low pressure side of the refrigeration system or to a vacuum line to evacuate vaporized refrigerant from the reservoir, and means for supplying heat to the refrigerant in the bore to facilitate vaporization of the refrigerant.« less

  14. A parametric investigation on a solar dish-Stirling system

    NASA Astrophysics Data System (ADS)

    Gholamalizadeh, Ehsan; Chung, Jae Dong

    2018-06-01

    The aim of this study is to analyze the performance of a solar dish-Stirling system. A mathematical model for the overall thermal efficiency of the solar-powered high-temperature-differential dish-Stirling engine is described. This model takes into account pressure losses due to fluid friction which is internal to the engine, mechanical friction between the moving parts, actual heat transfer includes the effects of both internal and external irreversibilities of the cycle and finite regeneration processes time. Validation was done through comparison with the actual power output of the "EuroDish" system. Moreover, the effects of dish diameter and working fluid on the performance of the system were studied. An increase of about 7.2% was observed for the power output using hydrogen as the working fluid rather than helium. Also, the focal distance for any diameter of dish was calculated.

  15. Confinement by carbon nanotubes drastically alters the boiling and critical behavior of water droplets.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2012-03-27

    Vapor pressure grows rapidly above the boiling temperature, and past the critical point liquid droplets disintegrate. Our atomistic simulations show that this sequence of events is reversed inside carbon nanotubes (CNT). Droplets disintegrate first and at low temperature, while pressure remains low. The droplet disintegration temperature is independent of the CNT diameter. In contrast, depending on CNT diameter, a temperature that is much higher than the bulk boiling temperature is required to raise the internal pressure. The control over pressure by CNT size can be useful for therapeutic drug delivery. © 2012 American Chemical Society

  16. Imaging of high-pressure fuel sprays in the near-nozzle region with supercontinuum illumination

    NASA Astrophysics Data System (ADS)

    Zheng, Yipeng; Si, Jinhai; Tan, Wenjiang; Wang, Mingxin; Yang, Bo; Hou, Xun

    2018-04-01

    We employ a supercontinuum (SC) illumination to image the high-pressure fuel sprays in the near-nozzle region. The effect of speckles in the images is significantly mitigated using the SC illumination to improve the identifiability of the microstructures in the spray. The microstructures in the near-nozzle region, i.e., lobes, holes, ligaments, and bridges, are clearly imaged for different fuel pressures and nozzle orifice diameters. The shadowgraphs captured in the experiments also show the spray cone angle of spray is strongly dependent on the injection pressures and nozzle orifice diameters.

  17. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a

  18. An optimized microstructure to minimizing in-plane and through-plane pressure drops of fibrous materials: Counter-intuitive reduction of gas diffusion layer permeability with porosity

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2018-05-01

    The present study experimentally investigates the realistic functionality of in-plane and through-plane pressure drops of layered fibrous media with porosity, fiber diameter, fiber spacing, fiber-fiber angles and fiber-flow angles. The study also reveals that pressure drop may increase with porosity and fiber diameter under specific circumstances. This counter-intuitive point narrows down the validity range of widely-used permeability-porosity-diameter models or correlations. It is found that, for fibrous materials, the most important parameter that impacts the in-plane pressure drop is not their porosities but the number of fibers extended in the flow direction. It is also concluded that in-plane pressure drop is highly dependent upon the flow direction (fiber-flow angles), especially at lower porosities. Contrary to in-plane pressure drop, through-plane pressure drop is a weak function of fiber-fiber angles but is strongly impacted by fiber spacing, especially at lower porosities. At a given porosity, low through-plane pressure drops occur if fiber spacing does not change practically from one layer to another. Through-plane pressure drop also, insignificantly, increases with the intersecting angles between fibers. An optimized microstructure of fibrous media resulting in minimal in-plane and through-plane pressure drops is also offered for the first time in this work.

  19. Changes of propagation light in optical fiber submicron wires

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Łukowski, A.; Jaroszewicz, L. R.

    2013-05-01

    At the moment technology allows to miniaturize measurement system to several micrometers. Application of an optical fiber taper in such system needs to manufacture a new one with diameters below single micrometers which is very difficult and expensive. Another way to obtain this level of diameters is the process of tapering from the existing fibers. In the paper, experimental results of propagation light from a supercontinnum sources of the wavelength generates the wavelength of 350-2000 nm, in different optical fiber submicron wires made from tapers manufactured from single mode fibers are presented. Biconical optical fibers' tapers were manufactured in low pressure gas burner technique. There are presented spectral characteristics of a propagated beam. For the test, there was manufactured an optical fiber submicron wires with a different length of waist region with a diameter near one micrometer. We put to the test a taper made from a standard telecommunication fiber SMF-28 with a cutoff wavelength equal to 1260.

  20. Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine.

    PubMed Central

    Greaves, J L; Wilson, C G; Birmingham, A T; Richardson, M C; Bentley, P H

    1992-01-01

    1. A gamma scintigraphic study has been carried out on the precorneal residence and pharmacodynamic action of a radiolabelled New Ophthalmic Delivery System (NODS) containing pilocarpine nitrate in 12 healthy volunteers. 2. The NODS was radiolabelled with the soluble marker technetium-99m labelled diethylenetriaminepentaacetic acid, to mark the release characteristics of soluble drugs contained within the matrix. 3. The relationship between the precorneal residence time of the marker and the duration of drug effect on intraocular pressure and pupil diameter was monitored. Results obtained following administration of the NODS were compared with those obtained after administration of a 25 microliters drop of a 2% w/v pilocarpine nitrate solution. Each formulation was administered to one eye only, the other eye acting as a control. 4. Dissolution of the radiolabel from the NODS in vivo showed considerable intersubject variation with half-times of dissolution ranging from 46 s to 833 s (mean +/- s.d. -280 +/- 217 s), the mean (+/- s.d.) half-time of clearance of the radiolabel from the NODS and corneal region of interest was 406 +/- 214 s whereas the radiolabelled solution had a mean (+/- s.d.) ocular surface residence time of 2.9 +/- 1.5 s. 5. Pupil diameter and intraocular pressure were measured for 5 h post-administration of the NODS and the solution. After both treatments pupil diameter was significantly constricted in the test eye when compared with the control eye (P less than 0.001; Student's paired t-test). Pupil diameter was constricted by 52% after administration of the NODS and by 35% after administration of the solution.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:1389932

  1. Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine.

    PubMed

    Greaves, J L; Wilson, C G; Birmingham, A T; Richardson, M C; Bentley, P H

    1992-06-01

    1. A gamma scintigraphic study has been carried out on the precorneal residence and pharmacodynamic action of a radiolabelled New Ophthalmic Delivery System (NODS) containing pilocarpine nitrate in 12 healthy volunteers. 2. The NODS was radiolabelled with the soluble marker technetium-99m labelled diethylenetriaminepentaacetic acid, to mark the release characteristics of soluble drugs contained within the matrix. 3. The relationship between the precorneal residence time of the marker and the duration of drug effect on intraocular pressure and pupil diameter was monitored. Results obtained following administration of the NODS were compared with those obtained after administration of a 25 microliters drop of a 2% w/v pilocarpine nitrate solution. Each formulation was administered to one eye only, the other eye acting as a control. 4. Dissolution of the radiolabel from the NODS in vivo showed considerable intersubject variation with half-times of dissolution ranging from 46 s to 833 s (mean +/- s.d. -280 +/- 217 s), the mean (+/- s.d.) half-time of clearance of the radiolabel from the NODS and corneal region of interest was 406 +/- 214 s whereas the radiolabelled solution had a mean (+/- s.d.) ocular surface residence time of 2.9 +/- 1.5 s. 5. Pupil diameter and intraocular pressure were measured for 5 h post-administration of the NODS and the solution. After both treatments pupil diameter was significantly constricted in the test eye when compared with the control eye (P less than 0.001; Student's paired t-test). Pupil diameter was constricted by 52% after administration of the NODS and by 35% after administration of the solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Ultrasonic wave based pressure measurement in small diameter pipeline.

    PubMed

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Amphibious Vehicle Propulsion System Design Report

    DTIC Science & Technology

    1988-07-08

    Motor Speed, 215.3 Hz) ........................................ 2-34 cImp 21L(5)4101t LIST OF FIGURES (cont’d) FIGURE TITLE PAGE 25 Speed Torque Curves...Mechanical Interface Data The bearings requLre 230 cc/minute (.061 JPM) at .5 to 1.5 psi of MIL-L-7808 oil. The drive end oil outlet line only needs to be...AND EXHAUST BACK PRESSURE MUST NOT EXCEED 6.0" H2 0 SPLINE DATA NUMBER OF TEETH 24 PITCH 20/30 PITCH PRESSURE ANGLE 300 MAJOR DIAMETER 1.262"/1.267

  4. Three-dimensional multi-physics coupled simulation of ignition transient in a dual pulse solid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Yingkun; Chen, Xiong; Xu, Jinsheng; Zhou, Changsheng; Musa, Omer

    2018-05-01

    In this paper, numerical investigation of ignition transient in a dual pulse solid rocket motor has been conducted. An in-house code has been developed in order to solve multi-physics governing equations, including unsteady compressible flow, heat conduction and structural dynamic. The simplified numerical models for solid propellant ignition and combustion have been added. The conventional serial staggered algorithm is adopted to simulate the fluid structure interaction problems in a loosely-coupled manner. The accuracy of the coupling procedure is validated by the behavior of a cantilever panel subjected to a shock wave. Then, the detailed flow field development, flame propagation characteristics, pressure evolution in the combustion chamber, and the structural response of metal diaphragm are analyzed carefully. The burst-time and burst-pressure of the metal diaphragm are also obtained. The individual effects of the igniter's mass flow rate, metal diaphragm thickness and diameter on the ignition transient have been systemically compared. The numerical results show that the evolution of the flow field in the combustion chamber, the temperature distribution on the propellant surface and the pressure loading on the metal diaphragm surface present a strong three-dimensional behavior during the initial ignition stage. The rupture of metal diaphragm is not only related to the magnitude of pressure loading on the diaphragm surface, but also to the history of pressure loading. The metal diaphragm thickness and diameter have a significant effect on the burst-time and burst-pressure of metal diaphragm.

  5. Design and Test of a Liquid Oxygen / Liquid Methane Thruster with Cold Helium Pressurization Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.

    2015-01-01

    A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.

  6. NASA/Navy lift/cruise fan. Phase 1: Design summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The initial design of the LCF459 lift/cruise fan system is documented. The LCF459 is a 1.5 meter diameter turbotip lift/cruise fan whose design point pressure ratio is 1.32 at a tip speed of 353 meters per second. The gas source for the tip turbine is the YJ97-GE-100 engine.

  7. Impregnation of bio-oil from small diameter pine into wood for moisture resistance

    Treesearch

    Thomas J. Robinson; Brian K. Via; Oladiran Fasina; Sushil Adhikari; Emily Carter

    2011-01-01

    Wood pyrolysis oil consists of hundreds of complex compounds, many of which are phenolic-based and exhibit hydrophobic properties. Southern yellow pine was impregnated with a pyrolysis oil-based penetrant using both a high pressure and vacuum impregnation systems, with no significant differences in retention levels. Penetrant concentrations ranging from 5-50% pyrolysis...

  8. Hydrodynamic comparison of the Penumbra system and commonly available syringes in forced-suction thrombectomy.

    PubMed

    Simon, Scott Douglas; Grey, Casey Paul

    2014-04-01

    The Penumbra system uses a coaxial separator and continuous extracorporeal suction to remove a clot from a cerebral artery. Forced-suction thrombectomy (FST) involves aspirating clots through the same reperfusion catheter using only a syringe, decreasing the procedure time and supplies needed. To evaluate multiple combinations of catheters and syringes to determine the optimal pairing for use in FST. Tests were performed using both the Penumbra system and syringes to aspirate water through Penumbra 0.041 inch (041), 4Max, 0.054 inch (054) and 5Max reperfusion catheters and a shuttle sheath. Dynamic pressure and flow at the catheter tip were calculated from the fill times for each system. Static pressure and force for each aspiration source were determined with a vacuum gauge. All syringes provided significantly higher dynamic pressure at the catheter tip than the Penumbra system (p<0.001). Increasing syringe volume significantly increased static pressure (p<0.001). Both flow and aspiration force significantly increased with catheter size (p<0.001). Cases are presented to demonstrate the clinical value of the laboratory principles. Maximizing static and dynamic pressure when performing FST is achieved by aspirating with a syringe possessing both the largest volume and the largest inlet diameter available. Maximizing aspiration force and flow rate is achieved by using the largest catheter possible.

  9. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Alex M.; Gülder, Ömer L.

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminarmore » diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.« less

  10. Engineering and Design: Indoor Radon Prevention and Mitigation

    DTIC Science & Technology

    1993-09-15

    slabs on grade, capillary water barrier below floor slabs on grade, dampproofing or waterproofing and protection board on below grade walls, sealants in...will be lapped 12 inches and sealed with adhesives or pressure sensitive tape and sealed at foundation walls with mastic. Capillary water barrier will...Systems, Letter Codes B, C, and D. Sub- slab suction systems consist of 4 inch diameter perforated PVC pipe laid in the capillary water barrier below floor

  11. Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.

    2005-01-01

    An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.

  12. The effect of closed system suction on airway pressures when using the Servo 300 ventilator.

    PubMed

    Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M

    2001-12-01

    To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.

  13. Left ventricular function during lower body negative pressure

    NASA Technical Reports Server (NTRS)

    Ahmad, M.; Blomqvist, C. G.; Mullins, C. B.; Willerson, J. T.

    1977-01-01

    The response of the human left ventricle to lower body negative pressure (LBNP) and the relation between left ventricular function and hemodynamic response were investigated. Ventricular function curves relating stroke volume to end-diastolic volume were obtained in 12 normal men. Volume data were derived from echocardiographic measurements of left ventricular end-systolic and end-diastolic diameters at rest and during lower body negative pressure (LBNP) at minus 40 mm Hg. End-diastolic volume decreased by 19% and stroke volume by 22%. There were no significant changes in heart rate, arterial blood pressure, or end-systolic volume. Thus, moderate levels of LBNP significantly reduce preload and stroke volume without affecting contractile state. The absence of significant changes in heart rate and arterial blood pressure in the presence of a significant reduction in stroke volume is consistent with an increase in systemic peripheral resistance mediated by low-pressure baroreceptors.

  14. Experimental wake survey behind a 140 deg-included-angle cone at angles of attack of 0 deg and 5 deg, Mach numbers from 1.60 to 3.95, and longitudinal stations varying from 1.0 to 8.39 body diameters

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Campbell, J. F.

    1971-01-01

    The flow properties in the wake of a 140 deg-included-angle cone at Mach numbers from 1.60 to 3.95 and at angles of attack of 0 deg and 5 deg are discussed. The wake flow properties are calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.0 to 8.39 body diameters and at lateral stations varying from -0.42 to 3.0 body diameters. These measurements show a consistent trend throughout the range of Mach number and longitudinal distance and an increase in dynamic pressure with increasing longitudinal station.

  15. Experimental wake survey behind Viking 1975 entry vehicle at angles of attack of 0 deg and 5 deg, Mach numbers from 1.60 to 3.95, and longitudinal stations from 1.0 to 8.39 body diameters

    NASA Technical Reports Server (NTRS)

    Brown, C. A., Jr.; Campbell, J. F.; Tudor, D. H.

    1971-01-01

    An investigation was conducted to obtain flow properties in the wake of the Viking '75 entry vehicle at Mach numbers from 1.60 to 3.95 and at angles of attack of 0 deg and 5 deg. The wake flow properties were calculated from total and static pressures measured with a pressure rake at longitudinal stations varying from 1.0 to 8.39 body diameters and lateral stations varying from -0.42 to 3.0 body diameters. These measurements showed a a consistent trend throughout the range of Mach numbers and longitudinal distances and an increase in dynamic pressure with increasing downstream position.

  16. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  17. Homogeneous alignment of liquid crystalline dendrimers confined in a slit-pore. A simulation study.

    PubMed

    Workineh, Zerihun G; Vanakaras, Alexandros G

    2016-03-23

    In this work we present results from isobaric-isothermal (NPT) Monte Carlo simulation studies of model liquid crystalline dendrimer (LCDr) systems confined in a slit-pore made of two parallel flat walls. The dendrimers are modelled as a collection of spherical and ellipsoidal particles corresponding to the junction points of the dendritic core and to the mesogenic units respectively. Assuming planar uniform (unidirectional) soft anchoring of the mesogenic units on the substrates we investigate the conformational and alignment properties of the LCDr system at different thermodynamic state points. Tractable coarse grained force fields have been used from our previous work. At low pressures the interior of the pore is almost empty, since almost all LCDrs are anchored to the substrates forming two-dimensional smectic-like structures with the mesogens aligned along the aligning direction of the substrates. As the pressure grows the LCDrs occupy the whole pore. However, even at low temperatures, the smectic organization does not transmit in the interior of the pore and is preserved for distances of 2-3 mesogenic diameters from the walls. For this reason, the global orientational order decreases with increasing pressure (density). In the vicinity (2-3 mesogenic diameters) of the pore walls, mesogenic units preserve the smectic structure whose layers are separated by layers of spherical beads. In this region individual LCDrs possess a rod like shape.

  18. Homogeneous alignment of liquid crystalline dendrimers confined in a slit-pore. A simulation study

    NASA Astrophysics Data System (ADS)

    Workineh, Zerihun G.; Vanakaras, Alexandros G.

    2016-03-01

    In this work we present results from isobaric-isothermal (NPT) Monte Carlo simulation studies of model liquid crystalline dendrimer (LCDr) systems confined in a slit-pore made of two parallel flat walls. The dendrimers are modelled as a collection of spherical and ellipsoidal particles corresponding to the junction points of the dendritic core and to the mesogenic units respectively. Assuming planar uniform (unidirectional) soft anchoring of the mesogenic units on the substrates we investigate the conformational and alignment properties of the LCDr system at different thermodynamic state points. Tractable coarse grained force fields have been used from our previous work. At low pressures the interior of the pore is almost empty, since almost all LCDrs are anchored to the substrates forming two-dimensional smectic-like structures with the mesogens aligned along the aligning direction of the substrates. As the pressure grows the LCDrs occupy the whole pore. However, even at low temperatures, the smectic organization does not transmit in the interior of the pore and is preserved for distances of 2-3 mesogenic diameters from the walls. For this reason, the global orientational order decreases with increasing pressure (density). In the vicinity (2-3 mesogenic diameters) of the pore walls, mesogenic units preserve the smectic structure whose layers are separated by layers of spherical beads. In this region individual LCDrs possess a rod like shape.

  19. Impact of the severity of end-stage liver disease in cardiac structure and function.

    PubMed

    Silvestre, Odilson Marcos; Bacal, Fernando; de Souza Ramos, Danusa; Andrade, Jose L; Furtado, Meive; Pugliese, Vincenzo; Belleti, Elisangela; Andraus, Wellington; Carrilho, Flair José; Carneiro D'Albuquerque, Luiz Augusto; Queiroz Farias, Alberto

    2013-01-01

    The impact of end-stage liver disease (ESLD) in cardiac remodeling of patients with cirrhosis is unknown. Our aim was to correlate the severity of ESLD with morphologic and functional heart changes. 184 patients underwent a protocol providing data on the severity of ESLD and undergoing echocardiography to assess the diameters of the left atrium and right ventricle; the systolic and diastolic diameters of the left ventricle, interventricular septum, and posterior wall of the left ventricle; systolic pulmonary artery pressure; ejection fraction; and diastolic function. Severity of ESLD was assessed by the Model for End-Stage Liver Disease (MELD) score. Left-atrial diameter (r = 0.323; IC 95% 0.190-0.455; p < 0.001), left-ventricular diastolic diameter (r = 0.177; IC 95% 0.033-0.320; p = 0.01) and systolic pulmonary artery pressure (r = 0.185; IC 95% 0.036-0.335; p = 0.02) significantly correlated with MELD score. Patients with MELD ≥ 16 had significantly higher left-atrial diameter and systolic pulmonary artery pressure, compared with patients with MELD scores < 16 points. Changes in cardiac structure and function correlate with the severity of ESLD.

  20. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    PubMed Central

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important to the accuracy of the inverse analysis procedure and can be used to differentiate the observed transient behaviour caused by changes in wall thickness from that caused by other known faults such as leaks. Further application of the method to real pipelines is discussed.

  1. Promoted combustion of nine structural metals in high-pressure gaseous oxygen - A comparison of ranking methods

    NASA Technical Reports Server (NTRS)

    Steinberg, Theodore A.; Rucker, Michelle A.; Beeson, Harold D.

    1989-01-01

    The 316, 321, 440C, and 17-4 PH stainless steels, as well as Inconel 600, Inconel 718, Waspaloy, Monel 400, and Al 2219, have been evaluated for relative nonflammability in a high-pressure oxygen environment with a view to the comparative advantages of four different flammability-ranking methods. The effects of changes in test pressure, sample diameter, promoter type, and sample configuration on ranking method results are evaluated; ranking methods employing velocity as the primary ranking criterion are limited by diameter effects, while those which use extinguishing pressure are nonselective for metals with similar flammabilities.

  2. Adaptation of mesenteric lymphatic vessels to prolonged changes in transmural pressure.

    PubMed

    Dongaonkar, R M; Nguyen, T L; Quick, C M; Hardy, J; Laine, G A; Wilson, E; Stewart, R H

    2013-07-15

    In vitro studies have revealed that acute increases in transmural pressure increase lymphatic vessel contractile function. However, adaptive responses to prolonged changes in transmural pressure in vivo have not been reported. Therefore, we developed a novel bovine mesenteric lymphatic partial constriction model to test the hypothesis that lymphatic vessels exposed to higher transmural pressures adapt functionally to become stronger pumps than vessels exposed to lower transmural pressures. Postnodal mesenteric lymphatic vessels were partially constricted for 3 days. On postoperative day 3, constricted vessels were isolated, and divided into upstream (UP) and downstream (DN) segment groups, and instrumented in an isolated bath. Although there were no differences between the passive diameters of the two groups, both diastolic diameter and systolic diameter were significantly larger in the UP group than in the DN group. The pump index of the UP group was also higher than that in the DN group. In conclusion, this is the first work to report how lymphatic vessels adapt to prolonged changes in transmural pressure in vivo. Our results suggest that vessel segments upstream of the constriction adapt to become both better fluid conduits and lymphatic pumps than downstream segments.

  3. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom segment and is trapped by the flange on the top dome segment when these components are bolted together with high-strength bolts. The pressure dome has several unique features. It is made (to ASME Pressure Vessel guidelines) in a high-strength aluminum alloy with the strength of stainless steel and the weight benefits of aluminum. The flange of the upper dome portion contains specially machined flats for mounting the dome, and other flats dedicated to the special feedthroughs for electrical connections. A pressure dome can be increased in length to house larger stacks (more cells) of the same diameter with the simple addition of a cylindrical segment. To aid in dome assembly, two stainless steel rings are employed. One is used beneath the heads of the high-strength bolts in lieu of individual hardened washers, and another is used instead of individual nuts. Like electrolyzers could be operated at low or high pressures simply by operating the electrolyzer outside or inside a pressurized dome.

  4. Chronic binge alcohol consumption during pregnancy alters rat maternal uterine artery pressure response.

    PubMed

    Naik, Vishal D; Lunde-Young, Emilie R; Davis-Anderson, Katie L; Orzabal, Marcus; Ivanov, Ivan; Ramadoss, Jayanth

    2016-11-01

    We aimed to investigate pressure-dependent maternal uterine artery responses and vessel remodeling following gestational binge alcohol exposure. Two groups of pregnant rats were used: the alcohol group (28.5% wt/v, 6.0 g/kg, once-daily orogastric gavage in a binge paradigm between gestational day (GD) 5-19) and pair-fed controls (isocalorically matched). On GD20, excised, pressurized primary uterine arteries were studied following equilibration (60 mm Hg) using dual chamber arteriograph. The uterine artery diameter stabilized at 20 mm Hg, showed passive distension at 40 mm Hg, and redeveloped tone at 60 mm Hg. An alcohol effect (P = 0.0025) was observed on the percent constriction of vessel diameter with greater pressure-dependent myogenic constriction. Similar alcohol effect was noted with lumen diameter response (P = 0.0020). The percent change in media:lumen ratio was higher in the alcohol group (P < 0.0001). Thus, gestational alcohol affects pressure-induced uterine artery reactivity, inward-hypotrophic remodeling, and adaptations critical for nutrient delivery to the fetus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Numerical simulation on the powder propellant pickup characteristics of feeding system at high pressure

    NASA Astrophysics Data System (ADS)

    Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei

    2017-10-01

    A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.

  6. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  7. Integrated heat exchanger design for a cryogenic storage tank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindricalmore » tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.« less

  8. Energy balance during underwater implosion of ductile metallic cylinders.

    PubMed

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  9. Process and continuous apparatus for chemical conversion of materials

    DOEpatents

    Rugg, Barry; Stanton, Robert

    1983-01-01

    A process and apparatus for the acid hydrolysis of waste cellulose to glucose of the type wherein waste cellulose is continuously fed into an inlet port of a twin screw extruder, water is continuously fed into reaction zone in the extruder, downstream of the inlet port, the cellulose is continuously reacted with water in the presence of an acid catalyst at elevated temperature and pressure in the reaction zone while being continuously conveyed to an outlet port of the extruder having a given diameter and the reacted cellulose is discharged from the extruder while the elevated temperature and pressure in the reaction zone is maintained. The elevated pressure is maintained by forming a dynamic seal zone at the upstream end of the reaction and continuously discharging the reacted material downstream of the outlet port at a predetermined volume rate of flow to maintain the pressure by passing the discharge through an orifice pipe having a smaller diameter than the given diameter of the outlet port.

  10. Combustion chamber and thermal vapor stream producing apparatus and method

    DOEpatents

    Sperry, John S.; Krajicek, Richard W.; Cradeur, Robert R.

    1978-01-01

    A new and improved method and apparatus for burning a hydrocarbon fuel for producing a high pressure thermal vapor stream comprising steam and combustion gases for injecting into a subterranean formation for the recovery of liquefiable minerals therefrom, wherein a high pressure combustion chamber having multiple refractory lined combustion zones of varying diameters is provided for burning a hydrocarbon fuel and pressurized air in predetermined ratios injected into the chamber for producing hot combustion gases essentially free of oxidizing components and solid carbonaceous particles. The combustion zones are formed by zones of increasing diameters up a final zone of decreasing diameter to provide expansion zones which cause turbulence through controlled thorough mixing of the air and fuel to facilitate complete combustion. The high pressure air and fuel is injected into the first of the multiple zones where ignition occurs with a portion of the air injected at or near the point of ignition to further provide turbulence and more complete combustion.

  11. Measurement and analysis of a small nozzle plume in vacuum

    NASA Technical Reports Server (NTRS)

    Penko, P. F.; Boyd, I. D.; Meissner, D. L.; Dewitt, K. J.

    1993-01-01

    Pitot pressures and flow angles are measured in the plume of a nozzle flowing nitrogen and exhausting to a vacuum. Total pressures are measured with Pitot tubes sized for specific regions of the plume and flow angles measured with a conical probe. The measurement area for total pressure extends 480 mm (16 exit diameters) downstream of the nozzle exit plane and radially to 60 mm (1.9 exit diameters) off the plume axis. The measurement area for flow angle extends to 160 mm (5 exit diameters) downstream and radially to 60 mm. The measurements are compared to results from a numerical simulation of the flow that is based on kinetic theory and uses the direct-simulation Monte Carlo (DSMC) method. Comparisons of computed results from the DSMC method with measurements of flow angle display good agreement in the far-field of the plume and improve with increasing distance from the exit plane. Pitot pressures computed from the DSMC method are in reasonably good agreement with experimental results over the entire measurement area.

  12. Orthogonal optimization of a water hydraulic pilot-operated pressure-reducing valve

    NASA Astrophysics Data System (ADS)

    Mao, Xuyao; Wu, Chao; Li, Bin; Wu, Di

    2017-12-01

    In order to optimize the comprehensive characteristics of a water hydraulic pilot-operated pressure-reducing valve, numerical orthogonal experimental design was adopted. Six parameters of the valve, containing diameters of damping plugs, volume of spring chamber, half cone angle of main spool, half cone angle of pilot spool, mass of main spool and diameter of main spool, were selected as the orthogonal factors, and each factor has five different levels. An index of flowrate stability, pressure stability and pressure overstrike stability (iFPOS) was used to judge the merit of each orthogonal attempt. Embedded orthogonal process turned up and a final optimal combination of these parameters was obtained after totally 50 numerical orthogonal experiments. iFPOS could be low to a fairly low value which meant that the valve could have much better stabilities. During the optimization, it was also found the diameters of damping plugs and main spool played important roles in stability characteristics of the valve.

  13. Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in low-viscosity magmas

    USGS Publications Warehouse

    James, M.R.; Lane, S.J.; Chouet, B.A.

    2006-01-01

    Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.

  14. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407

  15. The mechanisms of the SAMS experiment flown on Nimbus 7 with particular reference to the 2 axis scanning mirror. [infrared radiometer for stratospheric and mesospheric investigations

    NASA Technical Reports Server (NTRS)

    Hadley, H.

    1980-01-01

    The stratospheric and mesospheric sounder (SAMS) experiment on Nimbus 7 includes a 2 axis scanning mirror and 7 pressure modulator cells. The SAMS experiment is a limb sounding instrument to measure the temperature profile and minor constituents of the atmosphere. The limb scan requires small mirror steps over a 3 deg range, while the scan in azimuth is in larger steps over a 15 deg range. The mirror is plane, 20 cm in diameter, and of zero expansion glass-ceramic. It is supported on two tilt tables, fitted one on the other, with the axes at right angles. The angle of tilt is adjusted by means of recirculating ball screws which are ion plated with lead for lubrication and driven by stepper motors. The seven gas filled cells are each pressure modulated by a 3 cm diameter, 0.3 cm stroke piston which is supported by diaphragm springs and driven electromagnetically at the system's mechanical resonant frequency. The mean pressure of the filling gas, which is the atmospheric constituent being measured, is changed by varying the temperature of a suitable molecular sieve.

  16. Mixing and transient interface condensation of a liquid hydrogen tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Nyland, T. W.

    1993-01-01

    Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.

  17. Temporary morphological changes in plus disease induced during contact digital imaging

    PubMed Central

    Zepeda-Romero, L C; Martinez-Perez, M E; Ruiz-Velasco, S; Ramirez-Ortiz, M A; Gutierrez-Padilla, J A

    2011-01-01

    Objective To compare and quantify the retinal vascular changes induced by non-intentional pressure contact by digital handheld camera during retinopathy of prematurity (ROP) imaging by means of a computer-based image analysis system, Retinal Image multiScale Analysis. Methods A set of 10 wide-angle retinal pairs of photographs per patient, who underwent routine ROP examinations, was measured. Vascular trees were matched between ‘compression artifact' (absence of the vascular column at the optic nerve) and ‘not compression artifact' conditions. Parameters were analyzed using a two-level linear model for each individual parameter for arterioles and venules separately: integrated curvature (IC), diameter (d), and tortuosity index (TI). Results Images affected with compression artifact showed significant vascular d (P<0.01) changes in both arteries and veins, as well as in artery IC (P<0.05). Vascular TI remained unchanged in both groups. Conclusions Non-adverted corneal pressure with the RetCam lens could compress and decrease intra-arterial diameter or even collapse retinal vessels. Careful attention to technique is essential to avoid absence of the arterial blood column at the optic nerve head that is indicative of increased pressure during imaging. PMID:21760627

  18. Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device.

    PubMed

    Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J

    2016-12-20

    Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.

  19. DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi

    2018-06-01

    Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.

  20. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers.

    PubMed

    Lee, H W; Schmidt, M A; Russell, R F; Joly, N Y; Tyagi, H K; Uebel, P; Russell, P St J

    2011-06-20

    We report a novel splicing-based pressure-assisted melt-filling technique for creating metallic nanowires in hollow channels in microstructured silica fibers. Wires with diameters as small as 120 nm (typical aspect ration 50:1) could be realized at a filling pressure of 300 bar. As an example we investigate a conventional single-mode step-index fiber with a parallel gold nanowire (wire diameter 510 nm) running next to the core. Optical transmission spectra show dips at wavelengths where guided surface plasmon modes on the nanowire phase match to the glass core mode. By monitoring the side-scattered light at narrow breaks in the nanowire, the loss could be estimated. Values as low as 0.7 dB/mm were measured at resonance, corresponding to those of an ultra-long-range eigenmode of the glass-core/nanowire system. By thermal treatment the hollow channel could be collapsed controllably, permitting creation of a conical gold nanowire, the optical properties of which could be monitored by side-scattering. The reproducibility of the technique and the high optical quality of the wires suggest applications in fields such as nonlinear plasmonics, near-field scanning optical microscope tips, cylindrical polarizers, optical sensing and telecommunications.

  1. Retinal Arterioles in Hypo-, Normo-, and Hypertensive Subjects Measured Using Adaptive Optics.

    PubMed

    Hillard, Jacob G; Gast, Thomas J; Chui, Toco Y P; Sapir, Dan; Burns, Stephen A

    2016-08-01

    Small artery and arteriolar walls thicken due to elevated blood pressure. Vascular wall thickness show a correlation with hypertensive subject history and risk for stroke and cardiovascular events. The inner and outer diameter of retinal arterioles from less than 10 to over 150 μm were measured using a multiply scattered light adaptive optics scanning laser ophthalmoscope (AOSLO). These measurements were made on three populations, one with habitual blood pressures less than 100/70 mm Hg, one with normal blood pressures without medication, and one with managed essential hypertension. The wall to lumen ratio was largest for the smallest arterioles for all three populations. Data from the hypotensive group had a linear relationship between outer and inner diameters ( r 2 = 0.99) suggesting a similar wall structure in individuals prior to elevated blood pressures. Hypertensive subjects fell below the 95% confidence limits for the hypotensive relationship and had larger wall to lumen ratios and the normotensive group results fell between the other two groups. High-resolution retinal imaging of subjects with essential hypertension showed a significant decrease in vessel inner diameter for a given outer diameter, and increases in wall to lumen ratio and wall cross-sectional areas over the entire range of vessel diameters and suggests that correcting for vessel size may improve the ability to identify significant vascular changes. High-resolution imaging allows precise measurement of vasculature and by comparing results across risk populations may allow improved identification of individuals undergoing hypertensive arterial wall remodeling.

  2. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part II: Nonlinear Theory and Extended Aerodynamics

    NASA Technical Reports Server (NTRS)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2015-01-01

    Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential elastic supports were neglected, but resulted in more complex behavior when the supports were included. The nominal flutter dynamic pressure of the 3.7-meter configuration was significantly lower than that of the 3-meter, and it was found that two sets of natural modes coalesce to flutter modes near the same dynamic pressure. This resulted in a significant drop in the limit cycle frequencies at higher dynamic pressures, where the flutter mode with the lower frequency becomes more critical. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with Piston Theory alone. The maximum dynamic pressure predicted by aerodynamic simulations of a proposed 3.7-meter HIAD vehicle was still lower than any of the calculated flutter dynamic pressures, suggesting that aeroelastic effects for this vehicle are of little concern.

  3. Design of a resistojet for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Garza, Jose; Reisman, Jill; Tapia, Jose; Wright, Anthony

    1993-01-01

    In the mid 1990's, NASA will begin assembly of Space Station Freedom, a permanent outpost in a low-earth orbit. For the station to remain in that orbit, an altitude control system must be developed to resist the effects of atmospheric drag. One system being considered by NASA is called a resistojet, and it uses highly pressurized waste gases heated by electrical resistance to provide thrust on the order of 1 Newton. An additional function of the resistojet is to vent waste gases used by the station and its inhabitants. This report focuses on resolving the issues of system performance, flow and heater control, and materials selection and designing test procedures to resolve, by experimentation, any remaining issues. The conceptual model of the resistojet consists of a shell wrapped by a resistive coil with gases flowing internally through the tube with additional components such as regulators, transducers, and thermocouples. For system performance, the major parameters were calculated from the desired thrust range, the pressure within the resistojet and the cold flow mode of operation; waste gases were analyzed at 100 percent capacity and between 58.95 kPa and 552 kPa. The design team found that any ventilation under all conditions would produce thrust, and therefore, it was decided to limit the design of the ventilation function. The design team proceeded with a simplified model to determine the nozzle throat diameter and chamber diameter.

  4. Effect of Stepwise Pressure Change on Porosity Evolution during Directional Solidification in Small Cylindrical Channels

    NASA Technical Reports Server (NTRS)

    Grugel, R.N.; Lee, C.P.; Cox, M.C.; Blandford, B.T.; Anilkumar, A.V.

    2008-01-01

    Controlled directional solidification experiments were performed in capillary channels, using nitrogen-saturated succinonitrile, to examine the effect of an in-situ stepwise processing pressure increase on an isolated pore evolution. Two experiments were performed using different processing pressure input profiles. The results indicate that a processing pressure increase has a transient effect on pore growth geometry characterized by an initial phase of decreasing pore diameter, followed by a recovery phase of increasing pore diameter. The experimental results also show that processing pressure can be used as a control parameter to either increase or terminate porosity formation. A theoretical model is introduced which indicates that the pore formation process is limited by the diffusion of solute-gas through the melt, and that the observed response toa pressure increase is attributed to the re-equilibration of solute concentration in the melt associated with the increased melt pressure.

  5. Modeling the dynamics of pressure propagation and diameter variation in tree sapwood.

    PubMed

    Perämäki, Martti; Vesala, Timo; Nikinmaa, Eero

    2005-09-01

    A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyytiälä, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.

  6. Performance Characterization of the Production Facility Prototype Helium Flow System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less

  7. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ju, L. Y.; Hao, H. X.

    2014-01-01

    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  8. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  9. Pretest analysis document for Test S-NH-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owca, W.A.

    This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY3601 code for Semiscale MOD-2C Test S-NH-1. The test will simulate the shear of a small diameter penetration of a cold leg, equivalent to 0.5% of the cold leg flow area. The high pressure injection system is assumed to be inoperative throughout the transient. The recovery procedure consists of latching open both steam generator ADV's while feeding with auxiliary feedwater, and accumulator operation. Recovery will be initiated upon a peak cladding temperature of 811 K (1000/sup 0/F). The test will be terminated when primary pressure has been reduced to themore » low pressure injection system setpoint of 1.38 MPa (200 psia). The calculated results indicate that the test objectives can be achieved and the proposed test scenario poses no threat to personnel or to plant integrity. 12 figs.« less

  10. Wall mounted heat exchanger characterization. [cryogenic propellant tanks

    NASA Technical Reports Server (NTRS)

    Bullard, B. R.

    1975-01-01

    Analytical models are presented for describing the heat and mass transfer and the energy distribution in the contents of a cryogenic propellant tank, under varying gravity levels. These models are used to analytically evaluate the effectiveness of a wall heat exchanger as a means of controlling the pressure in the tank during flight and during fill operations. Pressure and temperature histories are presented for tanks varying in size from 4 to 22.5 feet in diameter and gravity levels from 0-1. Results from the subscale test program, utilizing both non-cryogenic and cryogenic fluid, designed to evaluate a tank wall heat exchanger are described and compared with the analytical models. Both the model and test results indicate that a passive tank wall heat exchanger can effectively control tank pressure. However, the weight of such a system is considerably higher than that of an active mixer system.

  11. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.

    In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less

  12. Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen

    DOE PAGES

    Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.

    2016-03-24

    In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less

  13. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles.

    PubMed

    Boutsioukis, C; Lambrianidis, T; Kastrinakis, E; Bekiaroglou, P

    2007-07-01

    To monitor ex vivo intra-canal irrigation with three endodontic needles (25, 27 and 30 gauge) and compare them in terms of irrigant flow rate, intra-barrel pressure, duration of irrigation and volume of irrigant delivered. A testing system was constructed to allow measurement of selected variables with pressure and displacement transducers during ex vivo intra-canal irrigation with a syringe and three different needles (groups A, B, C) into a prepared root canal. Ten specialist endodontists performed the irrigation procedure. Each operator performed ten procedures with each needle. Data recorded by the transducers were analysed using Friedman's test, Wilcoxon Signed Rank test, Mann-Whitney U-test and Kendall's T(b) test. The level of significance was set to 95%. Significant differences were detected among the three needles for most variables. Duration of delivery and flow rates significantly decreased as the needle diameter increased, whilst pressure increased up to 400-550 kPa. Gender of the operator had a significant impact on the results. Experience of the operators (years) were negatively correlated to volume of irrigant (all groups), to the duration of delivery (groups A, B) and to the average flow rate (group A). Finer diameter needles require increased effort to deliver the irrigant and result in higher intra-barrel pressure. The syringe and needles used tolerated the pressure developed. Irrigant flow rate should be considered as a factor directly influencing flow beyond the needle. Wide variations of flow rate were observed among operators. Syringe irrigation appears difficult to standardize and control.

  14. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOEpatents

    Gray, Joe W.; Alger, Terry W.; Lord, David E.

    1982-01-01

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system, a nozzle with an orifice having a small ratio of length to diameter, and mechanism for vibrating the nozzle along its axis at high frequencies. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separate low pressure reservoirs are transferred into separate high pressure buffer reservoirs through a valve arrangement which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected to high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  15. Feasibility of granular bed filtration of an aerosol of ultrafine metallic particles including a pressure drop regeneration system.

    PubMed

    Bémer, D; Wingert, L; Morele, Y; Subra, I

    2015-09-01

    A process for filtering an aerosol of ultrafine metallic particles (UFP) has been designed and tested, based on the principle of a multistage granular bed. The filtration system comprised a succession of granular beds of varying thickness composed of glass beads of different diameters. This system allows the pressure drop to be regenerated during filtration ("on-line" mode) using a vibrating probe. Tests monitoring the pressure drop were conducted on a "10-L/min" low airflow rate device and on a "100-m(3)/hr" prototype. Granular bed unclogging is automated on the latter. The cyclic operation and filtration performances are similar to that of filter medium-based industrial dust collectors. Filtration of ultrafine metallic particles generated by different industrial processes such as arc welding, metal cutting, or spraying constitutes a difficult problem due to the high filter clogging properties of these particles and to the high temperatures generally encountered. Granular beds represent an advantageous means of filtering these aerosols with difficult properties.

  16. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  17. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  18. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  19. Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Margaret Stautberg

    2015-12-01

    To design an ultrasonic sensor to measure the attenuation and density of a slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ~12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of PZT5A epoxied to it. Themore » Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 cm and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.« less

  20. Design of ultrasonic attenuation sensor with focused transmitter for density measurements of a slurry in a large steel pipeline.

    PubMed

    Greenwood, Margaret Stautberg

    2015-12-01

    To design an ultrasonic sensor to measure the attenuation and density of slurry carried by a large steel pipeline (diameter up to 70 cm) is the goal of this research. The pitch-catch attenuation sensor, placed in a small section of the pipeline, contains a send unit with a focused transducer that focuses the ultrasound to a small region of the receive unit on the opposite wall. The focused transducer consists of a section of a sphere (base ∼12 cm) on the outer side of the send unit and a 500 kHz piezoelectric shell of lead zirconate titanate epoxied to it. The Rayleigh surface integral is used to calculate the pressure in steel and in water (slurry). An incremental method to plot the paths of ultrasonic rays shows that the rays focus where expected. Further, there is a region where the parallel rays are perpendicular to the wall of the receive unit. Designs for pipeline diameters of 25 and 71 cm show that the pressure in water at the receive transducer is about 17 times that for a pitch-catch system using 5 cm diameter disk transducers. The enhanced signal increases the sensitivity of the measurements and improves the signal-to-noise ratio.

  1. Displacer Diameter Effect in Displacer Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Zhu, Shaowei

    2017-12-01

    Gas driving displacer pulse tube refrigerators are one of the work recovery type of pulse tube refrigerators whose theoretical efficiency is the same as Stirling refrigerators'. Its cooling power is from the displacement of the displacer. Displace diameter, rod diameter and pressure drop of the regenerator influence the displacement, which are investigated by numerical simulation. It is shown that the displacement ratio of the displacer over the piston is almost not affected by the displacer diameter at the same rod diameter ratio, or displacer with different diameters almost has the same performance.

  2. Blade Tip Pressure Measurements Using Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Wong, Oliver D.; Watkins, Anthony Neal; Goodman, Kyle Z.; Crafton, James; Forlines, Alan; Goss, Larry; Gregory, James W.; Juliano, Thomas J.

    2012-01-01

    This paper discusses the application of pressure sensitive paint using laser-based excitation for measurement of the upper surface pressure distribution on the tips of rotor blades in hover and simulated forward flight. The testing was conducted in the Rotor Test Cell and the 14- by 22-ft Subsonic Tunnel at the NASA Langley Research Center on the General Rotor Model System (GRMS) test stand. The Mach-scaled rotor contained three chordwise rows of dynamic pressure transducers for comparison with PSP measurements. The rotor had an 11 ft 1 in. diameter, 5.45 in. main chord and a swept, tapered tip. Three thrust conditions were examined in hover, C(sub T) = 0.004, 0.006 and 0.008. In forward flight, an additional thrust condition, C(sub T) = 0.010 was also examined. All four thrust conditions in forward flight were conducted at an advance ratio of 0.35.

  3. Management of colon stents based on Bernoulli's principle.

    PubMed

    Uno, Yoshiharu

    2017-03-01

    The colonic self-expanding metal stent (SEMS) has been widely used for "bridge to surgery" and palliative therapy. However, if the spread of SEMS is insufficient, not only can a decompression effect not be obtained but also perforation and obstructive colitis can occur. The mechanism of occurrence of obstructive colitis and perforation was investigated by flow dynamics. Bernoulli's principle was applied, assuming that the cause of inflammation and perforation represented the pressure difference in the proximal lumen and stent. The variables considered were proximal lumen diameter, stent lumen diameter, flow rate into the proximal lumen, and fluid density. To model the right colon, the proximal lumen diameter was set at 50 mm. To model the left-side colon, the proximal lumen diameter was set at 30 mm. For both the right colon model and the left-side colon model, the difference in pressure between the proximal lumen and the stent was less than 20 mmHg, when the diameter of the stent lumen was 14 mm or more. Both the right colon model and the left-side colon model were 30 mmHg or more at 200 mL s -1 when the stent lumen was 10 mm or less. Even with an inflow rate of 90-110 mL s -1 , the pressure was 140 mmHg when the stent lumen diameter was 5 mm. In theory, in order to maintain the effectiveness of SEMS, it is necessary to keep the diameter of the stent lumen at 14 mm or more.

  4. FCI experiments in the corium/water system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtiniemi, I.; Hohmann, H.; Magallon, D.

    The KROTOS fuel coolant interaction (FCI) tests aim at providing benchmark data to examine the effect of fuel/coolant initial conditions and mixing on explosion energetics. Experiments, fundamental in nature, are performed in well-controlled geometries and are complementary to the FARO large scale tests. Recently, a new test series was started using 3 kg of prototypical core material (80 w/o UO{sub 2}, 20 w/o ZrO{sub 2}) which was poured into a water column of {le} 1.25 m in height (95 mm and 200 mm in diameter) under 0.1 MPa ambient pressure. Four tests have been performed in the test section ofmore » 95 mm in diameter (ID) with different subcooling levels (10-80K) and with and without an external trigger. Additionally, one test has been performed with a test section of 200 mm in diameter (ID) and with an external trigger. No spontaneous or triggered energetic FCIs (steam explosions) have been observed in these corium tests. This is in sharp contrast with the steam explosions observed in the previously reported Al{sub 2}O{sub 3} test series which had the same initial conditions of ambient pressure and subcooling. The post-test analysis of the corium experiments indicated that strong vaporisation at the melt/water contact led to a partial expulsion of the melt from the test section into the pressure vessel. In order to avoid this and to obtain a good penetration and premixing os the corium melt, an additional test has been performed with a larger diameter test section. In all the UO{sub 2}-ZrO{sub 2} tests an efficient quenching process (0.7-1.2 MW/kg-melt) with total fuel fragmentation (mass mean diameter 1.4-2.5 mm) was observed. Results from Al{sub 2}O{sub 3} tests under the same initial conditions are also presented for further confirmation of the observed differences in behaviour between Al{sub 2}O{sub 3} and UO{sub 2}-ZrO{sub 2} melts.« less

  5. Microhole Coiled Tubing Bottom Hole Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Don Macune

    2008-06-30

    The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less

  6. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  7. Meeting today's requirements for large thermal vacuum test facilities

    NASA Technical Reports Server (NTRS)

    Corinth, R. L.; Rouse, J. A.

    1986-01-01

    The Lockheed Thermal Vacuum Facility at Sunnyvale, California, completed in late 1986, one of the largest multi-program facilities constructed to date is described. The horizontal 12.2 m diameter by 24.4 m long chamber has removable heads at each end and houses a thermal shroud providing a test volume 10.4 m diameter by 24.4 m long. The chamber and thermal shroud are configured to permit the insertion of a 6.1 m wide by 24.4 m long vibration isolated optical bench. The pumpimg system incorporates an internal cryopumping array, turbomolecular pumps and cryopumps to handle multi-program needs and ranges of gas loads. The high vacuum system is capable of achieving clean, dry and empty pressures below 1.3 times 10 to the minus 6 power Pa (10 to the minus 8 power torr.)

  8. Data book for 12.5-inch diameter SRB thermal model water flotation test - 14.7 psia, series P024

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Tests were conducted to determine how thermal conditions affect space shuttle solid rocket booster (SRB) flotation. Acceleration, pressure, and temperature data were recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.

  9. Systems and methods for determining strength of cylindrical structures by internal pressure loading

    DOEpatents

    DeTeresa, Steven John; Groves, Scott Eric; Sanchez, Roberto Joseph; Andrade, William Andrew

    2015-08-04

    In one embodiment, an apparatus, includes: a mandrel; an expansion cylinder, comprising: opposite first and second ends; an inner circumferential surface extending between the ends and characterized by an inner diameter, the inner circumferential surface defining a hollow cavity; an outer circumferential surface extending between the ends and characterized by an outer diameter that is greater than the inner diameter; and a plurality of slots extending from the inner circumferential surface to the outer circumferential surface and latitudinally oriented between the ends; and one or more base plates configured to engage one of the ends of the expansion cylinder. In another embodiment, a method includes: arranging an expansion cylinder inside a test cylinder; arranging a mandrel inside the expansion cylinder; applying a force to the mandrel for exerting a radial force on the expansion cylinder; and detecting one or more indicia of structural failure of the test cylinder.

  10. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  11. Composite propulsion feedlines for cryogenic space vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Laintz, D. J.; Phillips, J. M.

    1973-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.

  12. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  13. Parameter setting and analysis of a dynamic tubular SOFC model

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Fang, Ruixian; Khan, Jamil A.; Dougal, Roger A.

    An improved one-dimensional dynamic model of a tubular SOFC stack capable of system simulation in the virtual test bed (VTB) simulation environment is presented in this paper. This model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The modeling of an external reformer is also included in this study. A detailed parametric analysis of working conditions and cell configuration of the solid oxide fuel cell (SOFC) stack is the main focus of this paper. The following operating parameters are investigated: pressure ratio, temperature, mass flow rate, external reforming degree and stream to carbon (S/C) ratio. The cell geometric parameters studied include cell diameter and cell length. Elevated operating pressure improves the cell performance. Whereas, higher operating temperature decreases both the Nernst potential and the irreversible losses, resulting in an initial increase then a decrease in cell efficiency. It was found that a higher S/C ratio yields a lower H 2 concentration and partial pressure, which has a negative effect on the Nernst potential. Increased cell diameter is found to increase the power due to a larger activation area at the same time and due to longer current path length there is an increase in the ohmic loss. Increased length of the cell has the undesired affect of an increased pressure drop.

  14. Wall pressure measurements of flooding in vertical countercurrent annular air–water flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choutapalli, I., Vierow, K.

    2010-01-01

    An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less

  15. An experimental study of high-pressure droplet combustion

    NASA Technical Reports Server (NTRS)

    Norton, Chris M.; Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    The results are presented of an experimental study on suspended n-heptane droplet combustion in air for reduced pressures up to P(r) = 2.305. Transition to fully transient heat-up through the critical state is demonstrated above a threshold pressure corresponding to P(r) of roughly 1.4. A silhouette imaging technique resolves the droplet surface for reduced pressures up to about P(r) roughly 0.63, but soot formation conceals the surface at higher pressures. Images of the soot plumes do not show any sudden change in behavior indicative of critical transition. Mean burning rate constants are computed from the d-squared variation law using measured effective droplet diameters at ignition and measured burn times, and corrected burning times are computed for an effective initial droplet diameter. The results show that the burning rates increase as the fuel critical pressure is approached and decrease as the pressure exceeds the fuel critical pressure. Corrected burning times show inverse behavior.

  16. Hybrid propulsion technology program. Volume 1: Conceptional design package

    NASA Technical Reports Server (NTRS)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  17. Pressure mapping and performance of the compression bandage/garment for venous leg ulcer treatment.

    PubMed

    Ghosh, S; Mukhopadhyay, A; Sikka, M; Nagla, K S

    2008-08-01

    A study has been conducted on the commercially available compression bandages as regards their performance with time. Pressure mapping of these bandages has been done using a fabricated pressure-measuring device on a mannequin leg to see the effect on pressure due to creep, fabric friction and angle of bandaging. The results show that the creep behavior, frictional behavior and the angle of bandaging have a significant effect on the pressure profile generated by the bandages during application. The regression analysis shows that the surface friction restricts the slippage in a multilayer system. Also the diameters of the limb and the amount of stretch given to the bandage during application have definite impact on the bandage pressure. In case of compression garments, washing improves the pressure generated but not to the extent of the pressure of a virgin garment. Comparing the two compression materials i.e. bandage and garment, it is found that the presence of higher percentage of elastomeric material and a highly close construction in case of garment provides better holding power and a more homogeneous pressure distribution.

  18. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  19. Combustion of solid carbon rods in zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Spuckler, C. M.; Kohl, F. J.; Miller, R. A.; Stearns, C. A.; Dewitt, K. J.

    1979-01-01

    In order to investigate the mechanism of carbon combustion, spectroscopic carbon rods were resistance ignited and burned in an oxygen environment in normal and zero gravity. Direct mass spectrometric sampling was used in the normal gravity tests to obtain concentration profiles of CO2, CO, and O2 as a function of distance from the carbon surface. The experimental concentrations were compared to those predicted by a stagnant film model. Zero gravity droptower tests were conducted in order to assess the effect of convection on the normal gravity combustion process. The ratio of flame diameter to rod diameter as a function of time for oxygen pressures of 5, 10, 15, and 20 psia was obtained for three different diameter rods. It was found that this ratio was inversely proportional to both the oxygen pressure and the rod diameter.

  20. Utility of computed tomography in assessment of pulmonary hypertension secondary to biomass smoke exposure

    PubMed Central

    Sertogullarindan, Bunyamin; Bora, Aydin; Yavuz, Alpaslan; Ekin, Selami; Gunbatar, Hulya; Arisoy, Ahmet; Avcu, Serhat; Ozbay, Bulent

    2014-01-01

    Background The aim of this study was to investigate the feasibility of main pulmonary artery diameter quantification by thoracic computerized tomography (CT) in the diagnosis of pulmonary hypertension seconder to biomass smoke exposure. Material/Methods One hundred and four women subjects with biomass smoke exposure and 20 healthy women subjects were enrolled in the prospective study. The correlation between echocardiographic estimation of systolic pulmonary artery pressure and the main pulmonary artery diameter of the cases were studied. Results The main pulmonary artery diameter was 26.9±5.1 in the control subjects and 37.1±6.4 in subjects with biomass smoke exposure. This difference was statistically significant (p<0.001). The systolic pulmonary artery pressure was 22.7±12.4 in the control subjects and 57.3±22 in subjects with biomass smoke exposure. This difference was statistically significant (p<0.001). Systolic pulmonary artery pressure was significantly correlated with the main pulmonary artery diameter (r=0.614, p<0.01). A receiver operating characteristic (ROC) curve analysis showed that a value of 29 mm of the main pulmonary artery diameter differentiated between pulmonary hypertension and non-pulmonary hypertension patients. The sensitivity of the measurement to diagnose pulmonary hypertension was 91% and specificity was 80%. Conclusions Our results indicate that main pulmonary artery diameter measurements by SCT may suggest presence of pulmonary hypertension in biomass smoke exposed women. PMID:24618994

  1. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  2. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  3. Arterial pressure transfer characteristics: effects of travel time.

    PubMed

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos

    2007-02-01

    We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained.

  4. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.

  5. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  6. Structural Analysis of Pressurized Small Diameter Lines in a Random Vibration Environment

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Ridnour, Andrew; Brethen, Mark

    2011-01-01

    The pressurization and propellant feed lines for the Ares 1 Upper Stage Reaction and Roll Control Systems (ReCS and RoCS) were required to be in a high g-load random vibration flight environment. The lines connected the system components and were filled with both liquid hydrazine and gaseous helium. They are considered small and varied between one fourth to one inch in diameter. The random vibration of the lines was considered to be base excitation through the mating components and mounting hardware. It was found that reducing the amount of support structure for the lines added flexibility to the system and improved the line stresses from random vibration, but caused higher stresses from the static g-loads. The locations and number of brackets were optimized by analyzing the mode shapes of the lines causing high stresses. The use of brackets that only constrain motion in the direction of concern further reduced the stresses in the lines. Finite element analysis was used to perform the analysis. The lines were pre-stressed by temperature and internal pressure with fluid and insulation included as non-structural mass. Base excitation was added to the model using Power Spectral Density (PSD) data for the expected flight loads. The random vibration and static g-load cases were combined to obtain the total stress in the lines. This approach advances the state of the art in line analysis by using FEA to predict the stresses in the lines and to optimize the entire system based on the expected flight environment. Adding flexibility to lines has been used in piping system for temperature loads, but in flight environments flexibility has been limited for the static stresses. Adding flexibility to the system in a flight environment by reducing brackets has the benefit of reducing stresses and weight

  7. Neutron Radiography of Fluid Flow for Geothermal Energy Research

    NASA Astrophysics Data System (ADS)

    Bingham, P.; Polsky, Y.; Anovitz, L.; Carmichael, J.; Bilheux, H.; Jacobsen, D.; Hussey, D.

    Enhanced geothermal systems seek to expand the potential for geothermal energy by engineering heat exchange systems within the earth. A neutron radiography imaging method has been developed for the study of fluid flow through rock under environmental conditions found in enhanced geothermal energy systems. For this method, a pressure vessel suitable for neutron radiography was designed and fabricated, modifications to imaging instrument setups were tested, multiple contrast agents were tested, and algorithms developed for tracking of flow. The method has shown success for tracking of single phase flow through a manufactured crack in a 3.81 cm (1.5 inch) diameter core within a pressure vessel capable of confinement up to 69 MPa (10,000 psi) using a particle tracking approach with bubbles of fluorocarbon-based fluid as the ;particles; and imaging with 10 ms exposures.

  8. Determinants of elevated pulse pressure in middle-aged and older subjects with uncomplicated systolic hypertension: the role of proximal aortic diameter and the aortic pressure-flow relationship.

    PubMed

    Mitchell, Gary F; Lacourcière, Yves; Ouellet, Jean-Pascal; Izzo, Joseph L; Neutel, Joel; Kerwin, Linda J; Block, Alan J; Pfeffer, Marc A

    2003-09-30

    Elevated pulse pressure (PP) is associated with increased cardiovascular risk and is thought to be secondary to elastin fragmentation with secondary collagen deposition and stiffening of the aortic wall, leading to a dilated, noncompliant vasculature. By use of calibrated tonometry and pulsed Doppler, arterial stiffness and pulsatile hemodynamics were assessed in 128 subjects with uncomplicated systolic hypertension (supine systolic pressure > or =140 mm Hg off medication) and 30 normotensive control subjects of comparable age and gender. Pulse-wave velocity was assessed from tonometry and body surface measurements. Characteristic impedance (Zc) was calculated from the ratio of change in carotid pressure and aortic flow in early systole. Effective aortic diameter was assessed by use of the water hammer equation. Hypertensives were heavier (P<0.001) and had higher PP (P<0.001), which was attributable primarily to higher Zc (P<0.001), especially in women. Pulse-wave velocity was higher in hypertensives (P=0.001); however, this difference was not significant after adjustment for differences in mean arterial pressure (MAP) (P>0.153), whereas increased Zc remained highly significant (P<0.001). Increased Zc in women and in hypertensive men was attributable to decreased effective aortic diameter, with no difference in wall stiffness at comparable MAP and body weight. Elevated PP in systolic hypertension was independent of MAP and was attributable primarily to elevated Zc and reduced effective diameter of the proximal aorta. These findings are not consistent with the hypothesis of secondary aortic degeneration, dilation, and wall stiffening but rather suggest that aortic function may play an active role in the pathophysiology of systolic hypertension.

  9. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy.

    PubMed

    Sasaki, Tsugihisa; Sounou, Tsutomu; Tsuji, Hideki; Sugiyama, Kazuhisa

    2017-01-01

    To facilitate the analysis of lacrimal conditions, we utilized high-definition dacryoendoscopy (HDD) and undertook observations with a pressure-controlled air-insufflation system. We report the safety and performance of HDD. In this retrospective, non-randomized clinical trial, 46 patients (14 males and 32 females; age range 39-91 years; mean age ± SD 70.3±12.0 years) who had lacrimal disorders were examined with HDD and conventional dacryoendoscopy (CD). The high-definition dacryoendoscope had 15,000 picture element image fibers and an advanced objective lens. Its outer diameter was 0.9-1.2 mm. Air insufflation was controlled at 0-20 kPa with a digital manometer-based pressure-controlled air-insufflation system to evaluate the quality of the image. The HDD had an air/saline irrigation channel between the outer sheath (outer diameter =1.2 mm) and the metal inner sheath of the endoscope. We used it and the CD in air, saline, and diluted milk saline with and without manual irrigation to quantitatively evaluate the effect of air pressure and saline irrigation on image quality. In vivo, the most significant improvement in image quality was demonstrated with air-insufflated (5-15 kPa) HDD, as compared with saline-irrigated HDD and saline-irrigated CD. No emphysema or damage was noted under observation with HDD. In vitro, no significant difference was demonstrated between air-insufflated HDD and saline-irrigated HDD. In vitro, the image quality of air-insufflated HDD was significantly improved as compared with that of saline-irrigated CD. Pressure-controlled (5-15 kPa) air-insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD.

  10. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  11. Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Berger, Jeffrey W.; Bochow, Thomas W.; Kim, Rosa Y.; D'Amico, Donald J.

    1996-05-01

    Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm2), while temperature rise, bubble size, and pressure depends on total pulse energy. Further, we show that mechanical injury should be minimized by delivering low pulse energy, through small diameter probe tips, at high repetition rates. These results allow for optimization strategies relevant to achieving vitreoretinal surgical goals while minimizing the potential for unintentional injury.

  12. A possible formation mechanism of rampart-like ejecta pattern in a laboratory

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.

    2011-12-01

    The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m/s. Eventually, we have succeeded to capture the formation of the rampart-like ridges with high-speed video camera. Our experiments clarify that the rampart-like ridges are formed by the thin, radial ejecta flow that originates around the crater rim, other than the sedimentation of ejecta decelerated by the ambient atmosphere. A wake of the projectile going through the atmosphere might be responsible for the crater rim collapsed, which results in initiating the radial ejecta flow. Additionally, it is found that erodible surface (i.e. a particle layer in this case) is essential to produce the rampart-like ridges.

  13. The behavior of nanothermite reaction based on Bi2O3/Al

    NASA Astrophysics Data System (ADS)

    Wang, L.; Luss, D.; Martirosyan, K. S.

    2011-10-01

    We studied the impact of aluminum particle size and the thickness of surrounding alumina layer on the dynamic pressure discharge of nanothermite reactions in the Bi2O3/Al system. A pressure discharge from 9 to 13 MPa was generated using as-synthesized Bi2O3 nano-particles produced by combustion synthesis and Al nanoparticles with size from 3 μm to 100 nm. The maximum reaction temperature was measured to be ˜2700 °C. The estimated activation energy of the reaction was 45 kJ/mol. A very large (several orders of magnitude) difference existed between the rate of the pressure pulse release by nanothermite reactions and by thermite reactions with large aluminum particles. The maximum observed pressurization rate was 3200 GPa/s. The time needed to reach the peak pressure was 0.01 ms and 100 ms for aluminum particles with diameter of 100 nm and 70 microns, respectively. The discharge pressure was a monotonic decreasing function of the thickness of the surrounding alumina layer.

  14. Conical diffuser for fuel cells

    NASA Technical Reports Server (NTRS)

    Craft, D. W.

    1976-01-01

    Diffuser is inserted into inlet manifold, producing smooth transition of flow from pipe diameter to manifold diameter. Expected pressure gradient and resulting cell-to-cell temperature gradient are reduced. Outlet manifold has nozzle insert that reduces exit losses.

  15. Tissue perfusion during normovolemic hemodilution investigated by a hydraulic model of the cardiovascular system.

    PubMed

    Mirhashemi, S; Messmer, K; Intaglietta, M

    1987-01-01

    Normovolemic hemodilution on a whole body basis is studied by means of a steady flow, hydraulic analogue simulation of the cardiovascular system, based on the Casson's model and current hemodynamic and rheological data. The vasculature is divided into serially connected compartments whose hydraulic resistance is characterized by the average diameter, length, number of vessels, and the corresponding rheological properties of blood formulated by Dintenfass (1971) and Lipowsky et al. (1980). This model computes the pressure distributions in all compartments, where the calculated venous pressure modulates the cardiac function according to the Starling mechanism for cardiac performance. The alterations of flow induced by the action of the heart are added to the effects due to changes in peripheral vascular resistance as a result of hematocrit variation. This model shows that when the response of heart to the changes of venous pressure is impaired, the maximum oxygen carrying capacity occurs at 40% hematocrit (H) where it is 1% higher than normal hematocrit (H = 44%). The normal cardiac response to the changes of venous pressure, causes the maximum oxygen carrying capacity to occur at 32% H where it is 12% greater than that at normal hematocrit. Mean arteriolar pressure and capillary pressure increase while venular pressure is slightly reduced during normovolemic hemodilution.

  16. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].

    PubMed

    Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng

    2018-03-01

    To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.

  17. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.

    1992-01-01

    In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.

  18. Pressure-sensing performance of upright cylinders in a Mach 10 boundary-layer

    NASA Technical Reports Server (NTRS)

    Johnson, Steven; Murphy, Kelly

    1994-01-01

    An experimental research program to provide basic knowledge of the pressure-sensing performance of upright, flushported cylinders in a hypersonic boundary layer is described. Three upright cylinders of 0.25-, 0.5- and l.0-in. diameters and a conventional rake were placed in the test section sidewall boundary layer of the 31 Inch Mach 10 Wind Tunnel at NASA Langley Research Center, Hampton, Virginia. Boundary-layer pressures from these cylinders were compared to those measured with a conventional rake. A boundary-layer thickness-to-cylinder-diameter ratio of 8 proved sufficient to accurately measure an overall pressure profile and ascertain the boundary-layer thickness. Effects of Reynolds number, flow angularity, and shock wave impingement on pressure measurement were also investigated. Although Reynolds number effects were negligible at the conditions studied, flow angularity above 10 deg significantly affects the measured pressures. Shock wave impingement was used to investigate orifice-to-orifice pressure crosstalk. No crosstalk was measured. The lower pressure measured above the oblique shock wave impingement showed no influence of the higher pressure generated at the lower port locations.

  19. Data on a single oral dose of camu camu (Myrciaria dubia) pericarp extract on flow-mediated vasodilation and blood pressure in young adult humans.

    PubMed

    Miyashita, Tadayoshi; Koizumi, Ryosuke; Myoda, Takao; Sagane, Yoshimasa; Niwa, Koichi; Watanabe, Toshihiro; Minami, Kazuhiro

    2018-02-01

    This data article describes the flow-mediated vasodilation (FMD) responses, represented by changes in arterial diameter, and blood pressure changes in young adults after a single oral dose of camu camu ( Myrciaria dubia ) pericarp extract or placebo (cross-over design). Ten healthy men and 10 healthy women participated in this study. Ultrasonic diagnostic equipment was used to monitor arterial diameter changes, indicative of FMD, for 110 s after the administration of the camu camu extract or placebo. In addition, the systolic and diastolic blood pressure values were recorded.

  20. Data book for 12.5-inch diameter SRB thermal model water flotation test; 1.29 psia, series P022

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation at a scaled pressure of 1.29 psia are presented. Included are acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB. Nineteen valid tests were conducted. These thermal tests indicated the following basic differences relative to the ambient temperature and pressure model tests: (1) more water was taken on board during penetration and (2) model flotation/sinking was temperature sensitive.

  1. Data book for 12.5-inch diameter SRB thermal model water flotation test: 14.7 psia, series P020

    NASA Technical Reports Server (NTRS)

    Allums, S. L.

    1974-01-01

    Data acquired from the initial series of tests conducted to determine how thermal conditions affect SRB (Space Shuttle Solid Rocket Booster) flotation are presented. Acceleration, pressure, and temperature data recorded from initial water impact to final flotation position using a 12.5-inch diameter thermal model of the SRB at ambient pressure are included. The model was 136.9 inches long and weighed 117.3 lbm. The tests indicated the following differences from ambient temperature tests: (1) significant negative static pressures can occur during penetration; (2) maximum penetration is increased; and (3) final flotation is in the spar buoy mode.

  2. Performance data of the new free-piston shock tunnel T5 at GALCIT

    NASA Technical Reports Server (NTRS)

    Hornung, H.; Sturtevant, B.; Belanger, J.; Sanderson, S.; Brouillette, M.; Jenkins, M.

    1992-01-01

    A new free piston shock tunnel has been constructed at the Graduate Aeronautical Laboratories at Caltec. Compression tube length is 30 m and diameter 300 mm. Shock tube length is 12 m and diameter 90 mm. Piston mass is 150 kg and maximum diaphragm burst pressure is 130 MPa. Special features of this facility are that the pressure in the driver gas is monitored throughout the compression process until well after diaphragm rupture, and that the diaphragm burst pressure can be measured dynamically. An analysis of initial performance data including transient behavior of the flow over models is presented.

  3. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system.

    PubMed

    Ajrash, Mohammed J; Zanganeh, Jafar; Moghtaderi, Behdad

    2017-10-05

    There has been a surge of interest from the extractive industries in the application of mechanical means to the mitigation of flame deflagration. To verify the implementation and performance of passive and active mitigation protection, a comprehensive experimental investigation has been conducted on a large scale detonation tube, 30m long and 0.5m in diameter, with two mitigation valves (passive and active) and a burst panel venting system. The valves were used alternately to mitigate the flame deflagration of methane in concentrations ranging from 1.25% to 7.5%. The experimental work revealed that locating the passive mitigation valve at 22m distance from the ignition source mitigates the flame by fully isolating the tube. However, closing the valve structure in the axial direction generated another pressure wave upstream, which was approximately the same value as for the original pressure wave upstream. In the case of the active mitigation system, the system perfectly isolated upstream from downstream with no further pressure wave generation. When the vent was located at 6.5m from the ignition source, the total pressure was reduced by 0.48bar. Due to the counter flow of the reflected pressure wave the flame was extinguished at 12.5m from the ignition source. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Sublingual Nitroglycerin Administration in Coronary Computed Tomography Angiography: a Systematic Review.

    PubMed

    Takx, Richard A P; Suchá, Dominika; Park, Jakob; Leiner, Tim; Hoffmann, Udo

    2015-12-01

    To systematically investigate the literature for the influence of sublingual nitroglycerin administration on coronary diameter, the number of evaluable segments, image quality, heart rate and blood pressure, and diagnostic accuracy of coronary computed tomography (CT) angiography. A systematic search was performed in PubMed, EMBASE and Web of Science. The studies were evaluated for the effect of sublingual nitroglycerin on coronary artery diameter, evaluable segments, objective and subjective image quality, systemic physiological effects and diagnostic accuracy. Due to the heterogeneous reporting of outcome measures, a narrative synthesis was applied. Of the 217 studies identified, nine met the inclusion criteria: seven reported on the effect of nitroglycerin on coronary artery diameter, six on evaluable segments, four on image quality, five on systemic physiological effects and two on diagnostic accuracy. Sublingual nitroglycerin administration resulted in an improved evaluation of more coronary segments, in particular, in smaller coronary branches, better image quality and improved diagnostic accuracy. Side effects were mild and were alleviated without medical intervention. Sublingual nitroglycerin improves the coronary diameter, the number of assessable segments, image quality and diagnostic accuracy of coronary CT angiography without major side effects or systemic physiological changes. • Sublingual nitroglycerin administration results in significant coronary artery dilatation. • Nitroglycerin increases the number of evaluable coronary branches. • Image quality is improved the most in smaller coronary branches. • Nitroglycerin increases the diagnostic accuracy of coronary CT angiography. • Most side effects are mild and do not require medical intervention.

  5. Preston Probe Calibrations at High Reynolds Number

    NASA Technical Reports Server (NTRS)

    Smits, Alexander J.

    1998-01-01

    The overall goal of the research effort is to study the performance of two Preston probes designed by NASA Langley Research Center across an unprecedented range of Reynolds number (based on friction velocity and probe diameter), and perform an accurate calibration over the same Reynolds number range. Using the Superpipe facility in Princeton, two rounds of experiments were performed. In each round of experiments for each Reynolds number, the pressure gradient, static pressure from the Preston probes and the total pressure from the Preston probes were measured. In the first round, 3 Preston probes having outer diameters of 0.058 inches, 0.083 inches and 0.203 inches were tested over a large range of pipe Reynolds numbers. Two data reduction methods were employed: first, the static pressure measured on the Preston probe was used to calculate P (modified Preston probe configuration), and secondly, the static pressure measured at the reference pressure tap was used to calculate P (un-modified Preston probe configuration). For both methods, the static pressure was adjusted to correspond with the static pressure at the Preston probe tip using the pressure gradient. The measurements for Preston probes with diameters of 0.058 inches, and 0.083 inches respectively were performed in the test pipe before it was polished a second time. Therefore, the measurements at high pipe Reynolds numbers may have been affected by roughness. In the second round of experiments the 0.058 inches and 0.083 inches diameter, un-modified probes were tested after the pipe was polished and prepared to ensure that the surface was smooth. The average velocity was estimated by assuming that the connection between the centerline velocity and the average velocity was known, and by using a Pitot tube to measure the centerline velocity. A preliminary error estimate suggests that it is possible to introduce a 1% to 2% error in estimating the average velocity using this approach. The evidence on the errors attending the second data set is somewhat circumstantial, and the measurements have not been repeated using a better approach, it seems probable that the correlation given applies to un-modified Preston probes over the range 6.4 less than x* less than 11.3.

  6. Obesity and overweight associated with increased carotid diameter and decreased arterial function in young otherwise healthy men.

    PubMed

    Kappus, Rebecca M; Fahs, Christopher A; Smith, Denise; Horn, Gavin P; Agiovlasitis, Stomatis; Rossow, Lindy; Jae, Sae Y; Heffernan, Kevin S; Fernhall, Bo

    2014-04-01

    Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk.

  7. Obesity and Overweight Associated With Increased Carotid Diameter and Decreased Arterial Function in Young Otherwise Healthy Men

    PubMed Central

    2014-01-01

    BACKGROUND Obesity is linked to cardiovascular disease, stroke, increased mortality and vascular remodeling. Although increased arterial diameter is associated with multiple cardiovascular risk factors and obesity, it is unknown whether lumen enlargement is accompanied by unfavorable vascular changes in young and otherwise healthy obese individuals. The purpose of this study was to compare carotid and brachial artery diameter, blood pressure, arterial stiffness, and endothelial function in young, apparently healthy, normal-weight, overweight, and obese male subjects. METHODS One hundred sixty-five male subjects (27.39±0.59 years) were divided into 3 groups (normal weight, overweight, and obese) according to body mass index. Subjects underwent cardiovascular measurements to determine arterial diameter, function, and stiffness. RESULTS After adjusting for age, the obese group had significantly greater brachial, carotid, and aortic pressures, brachial pulse wave velocity, carotid intima media thickness, and carotid arterial diameter compared with both the overweight and normal-weight groups. CONCLUSIONS Obesity is associated with a much worse arterial profile, as an increased carotid lumen size was accompanied by higher blood pressure, greater arterial stiffness, and greater carotid intima media thickness in obese compared with overweight or normal-weight individuals. These data suggest that although obesity may be a factor in arterial remodeling, such remodeling is also accompanied by other hemodynamic and arterial changes consistent with reduced arterial function and increased cardiovascular risk. PMID:24048148

  8. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1991-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm and 25.4 mm diameter hemispheres, a sharp corner, and a 6.3 mm diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm and 25.4 mm diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  9. Numerical and experimental simulation of the mechanical behavior of super-pressure balloon subsystems

    NASA Astrophysics Data System (ADS)

    Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.

    2004-01-01

    Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.

  10. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOEpatents

    Gray, J.W.; Alger, T.W.; Lord, D.E.

    1978-11-26

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  11. Simplified Analysis of Airspike Heat Flux Into Lightcraft Thermal Management System

    NASA Astrophysics Data System (ADS)

    Head, Dean R.; Seo, Junghwa; Cassenti, Brice N.; Myrabo, Leik N.

    2005-04-01

    An approximate method is presented for estimating the airspike heat flux into a 9-meter diameter lightcraft, integrated over its flight to low Earth orbit. The super-pressure lightcraft's exotic twin-hull, sandwich structure is assumed to be fabricated from SiC/SiC thin-film ceramic matrix composites of semiconductor grade purity, giving superior structural properties while being transparent to 35-GHz microwave radiation. The vehicle's MHD slipstream accelerator engine is energized by an annular microwave power beam — converted on-board into DC electric power by two concentric, water-cooled microwave rectenna arrays. The vehicle's airspike is created by a central 3-m diameter laser beam that sustains a laser-supported detonation wave at a distance of 10-m ahead of the craft; the LSD wave propagates up the beam with a velocity that matches the lightcraft's flight speed. The simplified analysis, which is based on aerodynamic heating during re-entry, shows that helium flowing at a velocity of 10 m/s through the lightcraft's double-hull is sufficient to keep the outer, 0.13-mm thick SiC skin safely under its maximum service temperature. The interior helium pressurant that maintains the structural integrity of this exotic pressure-airship, increases in temperature by only 25 K during the flight to LEO.

  12. Flight Tests of a 40-Foot Nominal Diameter Modified Ringsail Parachute Deployed at Mach 1.64 and Dynamic Pressure of 9.1 Pounds Per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Murrow, Harold N.; Preisser, John S.

    1967-01-01

    A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.

  13. Impact of posterior urethral diameter/external urethral sphincter diameter as a new tool to predict detrusor pressure in the voiding phase.

    PubMed

    Kon, Masafumi; Mitsui, Takahiko; Kitta, Takeya; Moriya, Kimihiko; Shinohara, Nobuo; Takeda, Masayuki; Nonomura, Katsuya

    2018-02-01

    We measured posterior urethra diameter (PUD) and external urethral sphincter diameter (EUSD), which can also be measured by voiding cystourethrography (VCUG) and investigated the relationship between PUD/EUSD and detrusor pressure (Pdet) during voiding by videourodynamics (VUDS). Sixty-three children, who were 3 years old or less and underwent VUDS, were enrolled in the present study. We measured PUD and EUSD in addition to detrusor pressure at the time of the widest EUS during voiding (Pdet-voiding) by VUDS, and PUD/EUSD was investigated compared to Pdet-voiding. Seventy-eight VUDS were performed in 63 patients, and the median age at VUDS was 10.2 months. These studies revealed a significant correlation between PUD/EUSD and Pdet-voiding (r = 0.641, p < 0.001). However, a significant correlation was not observed between PUD/EUSD and age (r = 0.180). We defined Pdet-voiding of more than 80 cmH 2 O as a high voiding pressure, and a PUD/EUSD of 2.4 was a good predictor for the cutoff value for high voiding pressure. Pdet-voiding was significantly higher in children with a PUD/EUSD of ≥ 2.4 (p < 0.001). In 19 children who had neurological diseases, a significant correlation was found between PUD/EUSD and Pdet-voiding (r = 0.842, p < 0.001), and a PUD/EUSD of 2.4 was a useful cutoff value for high voiding pressure. PUD/EUSD is a valuable tool to predict high voiding pressure in pediatric patients. A PUD/EUSD of ≥ 2.4 in VCUG indicates the need to perform more invasive tests, such as VUDS, in pediatric patients aged 3 and under with neuropathic diseases.

  14. Rapid infrared laser sealing and cutting of porcine renal vessels, ex vivo

    NASA Astrophysics Data System (ADS)

    Giglio, Nicholas C.; Hutchens, Thomas C.; Perkins, William C.; Latimer, Cassandra; Ward, Arlen; Nau, William H.; Fried, Nathaniel M.

    2014-03-01

    Suture ligation with subsequent cutting of blood vessels to maintain hemostasis during surgery is time consuming and skill intensive. Energy-based, electrosurgical and ultrasonic devices are often used to replace sutures and mechanical clips to provide rapid hemostasis, and decrease surgical time. Some of these devices may create undesirably large collateral zones of thermal damage and tissue necrosis, or require separate mechanical blades for cutting. Infrared lasers are currently being explored as alternative energy sources for vessel sealing applications. In a previous study, a 1470-nm laser was used to seal vessels of 1-6 mm in diameter in 5 s, yielding burst pressures of ~ 500 mmHg. The purpose of this study was to provide faster sealing, incorporate transection of the sealed vessels, and increase the burst pressure. A 110-Watt, 1470-nm laser beam was transmitted through a fiber and beam shaping optics, producing a linear beam 3.0 mm by 9.5 mm for sealing, and 1.1 mm by 9.6 mm for cutting (FWHM). A twostep process sealed then transected ex vivo porcine renal vessels (1-8.5 mm diameter) in a bench top setup. Seal and cut times were 1.0 s each. A standard burst pressure system measured resulting seal strength, and gross and histologic thermal damage measurements were also recorded. All blood vessels tested (n = 30) were sealed and cut, with total irradiation times of 2.0 s, mean burst pressures > 1000 mmHg (compared to normal systolic blood pressure of 120 mmHg), and combined seal/collateral thermal coagulation zones of 2-3 mm. The results of this study demonstrated that an optical-based system is capable of precisely sealing and cutting a wide range of porcine renal vessel sizes, and with further development, may provide an alternative to radiofrequency and ultrasound-based vessel sealing devices.

  15. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1039:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  16. Boundary layer development as a function of chamber pressure in the NASA Lewis 1030:1 area ratio rocket nozzle

    NASA Technical Reports Server (NTRS)

    Smith, Tamara A.

    1988-01-01

    Through the use of theoretical predictions of fluid properties and experimental heat transfer and thrust measurements, the zones of laminar, transitional, and turbulent boundary layer flow were defined for the NASA Lewis 1030:1 area ratio rocket nozzle. Tests were performed on the nozzle at chamber pressures from 350 to 100 psia. For these conditions, the throat diameter Reynolds numbers varied from 300,000 to 1 million. The propellants used were gaseous hydrogen and gaseous oxygen. Thrust measurements and nozzle outer wall temperature measurements were taken during the 3-sec test runs. Comparison of experimental heat transfer and thrust data with the corresponding predictions from the Two-Dimensional Kinetics (TDK) nozzle analysis program indicated laminar flow in the nozzle at a throat diameter Reynolds number of 320,000 or chamber pressure of 360 psia. Comparison of experimental and predicted heat transfer data indicated transitional flow up to and including a chamber pressure of 1000 psia. Predicted values of the axisymmetric acceleration parameter within the convergent and divergent nozzle were consistent with the above results. Based upon an extrapolation of the heat transfer data and predicted distributions of the axisymmetric acceleration parameter, transitional flow was predicted up to a throat diameter Reynolds number of 220,000 or 2600-psia chamber pressure. Above 2600-psia chamber pressure, fully developed turbulent flow was predicted.

  17. Method for fabricating thin californium-containing radioactive source wires

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-08-22

    A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.

  18. Aero-acoustic design and test of a multiple splitter exhaust noise suppressor for a 0.914m diameter lift fan

    NASA Technical Reports Server (NTRS)

    Stimpert, D. L.

    1973-01-01

    A lift fan exhaust suppression system to meet future VTOL aircraft noise goals was designed and tested. The test vehicle was a 1.3 pressure ratio, 36 inch (91.44 cm) diameter lift fan with two chord rotor to stator spacing. A two splitter fan exhaust suppression system thirty inches (76.2 cm) long achieved 10 PNdB exhaust suppression in the aft quadrant compared to a design value of 20 PNdB. It was found that a broadband noise floor limited the realizable suppression. An analytical investigation of broadband noise generated by flow over the treatment surfaces provided very good agreement with the measured suppression levels and noise floor sound power levels. A fan thrust decrement of 22% was measured for the fully suppressed configuration of which 11.1% was attributed to the exhaust suppression hardware.

  19. Thrust generation experiments on microwave rocket with a beam concentrator for long distance wireless power feeding

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2018-04-01

    Experiments using a 1 MW-class gyrotron were conducted to examine a beamed energy propulsion rocket, a microwave rocket with a beam concentrator for long-distance wireless power feeding. The incident beam is transmitted from a beam transmission mirror system. The beam transmission mirror system expands the incident beam diameter to 240 mm to extend the Rayleigh length. The beam concentrator receives the beam and guides it into a 56-mm-diameter cylindrical thruster tube. Plasma ignition and ionization front propagation in the thruster were observed through an acrylic window using a fast-framing camera. Atmospheric air was used as a propellant. Thrust generation was achieved with the beam concentrator. The maximum thrust impulse was estimated as 71 mN s/pulse from a pressure history at the thrust wall at the input energy of 638 J/pulse. The corresponding momentum coupling coefficient, Cm was inferred as 204 N/MW.

  20. A new approach to the CZ crystal growth weighing control

    NASA Astrophysics Data System (ADS)

    Kasimkin, P. V.; Moskovskih, V. A.; Vasiliev, Y. V.; Shlegel, V. N.; Yuferev, V. S.; Vasiliev, M. G.; Zhdankov, V. N.

    2014-03-01

    The aim of a new approach was to improve the robustness of the weighing control of CZ growth especially for semiconductors, for which the “anomalous“ behavior of the apparent weight provokes instability of the servo-loop. In the described method, the periodic reciprocating measuring motion of small amplitude is superposed on the uniform pull-rod movement. The cross-sectional area is determined from the weight sensor responses that are modulated mainly by the forces of hydrostatic pressure. By the example of germanium crystal growth, it is shown that in the control system, based on such a way of the diameter measuring, a simple PI control law provides a good close loop system's stability and dynamics for the materials with the “anomalous” behavior of a weighing signal. The effect of a meniscus on the modulation measuring of a crystal diameter is also discussed.

  1. Flooding Experiments and Modeling for Improved Reactor Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solmos, M.; Hogan, K. J.; Vierow, K.

    2008-09-14

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less

  2. PIONEER VENUS 2 MULTI-PROBE PARACHUTE TESTS IN VAB PRIOR TO ATTACHING PRESSURE VESSEL

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A parachute system, designed to carry an instrument-laden probe down through the dense atmosphere of torrid, cloud-shrouded Venus, was tested in KSC's Vehicle Assembly Building. The tests are in preparation for a Pioneer multi-probe mission to Venus scheduled for launch from KSC in 1978. Full-scale (12-foot diameter) parachutes with simulated pressure vessels weighing up to 45 pounds were dropped from heights of up to 450 feet tot he floor of the VAB where the impact was cushioned by a honeycomb cardboard impact arrestor. The VAB offers an ideal, wind-free testing facility at no additional construction cost and was used for similar tests of the parachute system for the twin Viking spacecraft scheduled for launch toward Mars in August.

  3. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study

    PubMed Central

    Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C. M.; Segers, Patrick; Schaeffter, Tobias

    2017-01-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R2 = 0.94) but underestimated wave reflection (correlation: 0.75, R2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. PMID:28576835

  4. Relative contributions from the ventricle and arterial tree to arterial pressure and its amplification: an experimental study.

    PubMed

    Gaddum, Nicholas; Alastruey, Jordi; Chowienczyk, Phil; Rutten, Marcel C M; Segers, Patrick; Schaeffter, Tobias

    2017-09-01

    Arterial pressure is an important diagnostic parameter for cardiovascular disease. However, relative contributions of individual ventricular and arterial parameters in generating and augmenting pressure are not understood. Using a novel experimental arterial model, our aim was to characterize individual parameter contributions to arterial pressure and its amplification. A piston-driven ventricle provided programmable stroke profiles into various silicone arterial trees and a bovine aorta. Inotropy was varied in the ventricle, and arterial parameters modulated included wall thickness, taper and diameter, the presence of bifurcation, and a native aorta (bovine) versus silicone. Wave reflection at bifurcations was measured and compared with theory, varying parent-to-child tube diameter ratios, and branch angles. Intravascular pressure-tip wires and ultrasonic flow probes measured pressure and flow. Increasing ventricular inotropy independently augmented pressure amplification from 17% to 61% between the lower and higher systolic gradient stroke profiles in the silicone arterial network and from 10% to 32% in the bovine aorta. Amplification increased with presence of a bifurcation, decreasing wall thickness and vessel taper. Pulse pressure increased with increasing wall thickness (stiffness) and taper angle and decreasing diameter. Theoretical predictions of wave transmission through bifurcations werre similar to measurements (correlation: 0.91, R 2 = 0.94) but underestimated wave reflection (correlation: 0.75, R 2 = 0.94), indicating energy losses during mechanical wave reflection. This study offers the first comprehensive investigation of contributors to hypertensive pressure and its propagation throughout the arterial tree. Importantly, ventricular inotropy plays a crucial role in the amplification of peripheral pressure wave, which offers opportunity for noninvasive assessment of ventricular health. NEW & NOTEWORTHY The present study distinguishes contributions from cardiac and arterial parameters to elevated blood pressure and pressure amplification. Most importantly, it offers the first evidence that ventricular inotropy, an indicator of ventricular function, is an independent determinant of pressure amplification and could be measured with such established devices such as the SphygmoCor. Copyright © 2017 the American Physiological Society.

  5. Initiation and Activation of Faults in Dry and Wet Rock by Fluid Injection

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Mayr, S.; Shapiro, S. A.; Dresen, G.

    2008-12-01

    We studied fracturing of rock samples induced by water injection in axial compression tests on cylindrical specimens of Flechtingen sandstone and Aue granite of 50 mm diameter and 105-125 mm length. Samples were intact solid rock cylinders and cylinders with central boreholes of 5 mm diameter and 52 mm length or through-boreholes of 2.5 mm diameter. To monitor acoustic emissions (AE) and ultrasonic velocities, twelve P-wave and six polarized S-wave sensors were glued to the cylindrical surface of the rock. Full waveforms were stored in a 12 channel transient recording system (PROEKEL, Germany). Polarity of AE first motion was used to discriminate source types associated with tensile, shear and pore-collapse cracking. To monitor strain, two pairs of orthogonally oriented strain-gages were glued onto the specimen surface. Samples were deformed in two consecutive loading steps: 1) Initial triaxial loading was performed at 20-50 MPa confining pressure on dry (under vacuum) or fully saturated samples until the yield point was reached. 2) In a second stage distilled water was injected into the samples with pore pressure increasing up to 20 MPa. For saturated samples the pore pressure was increased in steps and in periodic pulses. Injection of water into dry porous sandstone resulted in propagation of an AE hypocenter cloud closely linked to propagation of the water front. Position of the migrating water front was estimated from ultrasonic velocity measurements and measurements of the injected water volume. Propagation rate of AE-induced cloud parallel to bedding was higher than perpendicular to bedding, possibly related to permeability anisotropy. Nucleation of a brittle shear fault occurred at a critical pore pressure level with a nucleation patch located at the central borehole. Micro-structural analysis of fractured samples shows excellent agreement between location of AE hypocenters and macroscopic faults.

  6. Viewport concept for space station modules

    NASA Technical Reports Server (NTRS)

    Douglas, F., III

    1986-01-01

    The generic design of a 20-in. diameter viewport for the space station modules is discussed. It should possess the capabilities of meteoroid/debris protection (with no metallic cover), redundancies in its meteoroid/debris protection, and pressure sealing systems. In addition, it should provide ease of change out for maintenance or repair. The design does not take into account the bumper-shield effect of the outermost panes in the meteoroid/debris analysis.

  7. Fabrication of micro T-shaped tubular components by hydroforming process

    NASA Astrophysics Data System (ADS)

    Manabe, Ken-ichi; Itai, Kenta; Tada, Kazuo

    2017-10-01

    This paper deals with a T-shape micro tube hydroforming (MTHF) process for 500 µm outer diameter copper microtube. The MTHF experiments were carried out using a MTHF system utilizing ultrahigh pressure. The fundamental micro hydroforming characteristics as well as forming limits are examined experimentally and numerically. From the results, a process window diagram for micro T-shape hydroforming process is created, and a suitable "success" region is revealed.

  8. Wind tunnel investigation of three axisymmetric cowls of different lengths at Mach numbers from 0.60 to 0.92

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Abeyounis, William K.

    1993-01-01

    Pressure distributions on three inlets having different cowl lengths were obtained in the Langley 16-Foot Transonic Tunnel. The cowl diameter ratio (highlight diameter to maximum diameter) was 0.85 and the cowl length ratios (cowl length to maximum diameter) were 0.337, 0.439, and 0.547. The cowls had identical nondimensionalized (with respect to cowl length) external geometry and identical internal geometry. The internal contraction ratio (highlight area to throat area) was 1.250. The inlets had longitudinal rows of static pressure orifices on the top and bottom (external) surfaces and on the contraction (internal) and diffuser surfaces. The afterbody was cylindrical in shape, and its diameter was equal to the maximum diameter of the cowl. Depending on the cowl configuration and free-stream Mach number, the mass-flow ratio varied between 0.27 and 0.87 during the tests. Angle of attack varied from 0 to 4.1 deg at selected Mach numbers and mass-flow ratios, and the Reynolds number varied with the Mach number from 3.2x10(exp 6) to 4.2x10(exp 6) per foot.

  9. Two-dimensional preparative liquid chromatography system for preparative separation of minor amount components from complicated natural products.

    PubMed

    Qiu, Ying-Kun; Chen, Fang-Fang; Zhang, Ling-Ling; Yan, Xia; Chen, Lin; Fang, Mei-Juan; Wu, Zhen

    2014-04-11

    An on-line comprehensive two-dimensional preparative liquid chromatography system was developed for preparative separation of minor amount components from complicated natural products. Medium-pressure liquid chromatograph (MPLC) was applied as the first dimension and preparative HPLC as the second one, in conjunction with trapping column and makeup pump. The performance of the trapping column was evaluated, in terms of column size, dilution ratio and diameter-height ratio, as well as system pressure from the view of medium pressure liquid chromatograph. Satisfactory trapping efficiency can be achieved using a commercially available 15 mm × 30 mm i.d. ODS pre-column. The instrument operation and the performance of this MPLC×preparative HPLC system were illustrated by gram-scale isolation of crude macro-porous resin enriched water extract of Rheum hotaoense. Automated multi-step preparative separation of 25 compounds, whose structures were identified by MS, (1)H NMR and even by less-sensitive (13)C NMR, could be achieved in a short period of time using this system, exhibiting great advantages in analytical efficiency and sample treatment capacity compared with conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Apparatus for Leak Testing Pressurized Hoses

    NASA Technical Reports Server (NTRS)

    Underwood, Steve D. (Inventor); Garrison, Steve G. (Inventor); Gant, Bobby D. (Inventor); Palmer, John R. (Inventor)

    2015-01-01

    A hose-attaching apparatus for leak-testing a pressurized hose may include a hose-attaching member. A bore may extend through the hose-attaching member. An internal annular cavity may extend coaxially around the bore. At least one of a detector probe hole and a detector probe may be connected to the internal annular cavity. At least a portion of the bore may have a diameter which is at least one of substantially equal to and less than a diameter of a hose to be leak-tested.

  11. Intermittent, moderate-intensity aerobic exercise for only eight weeks reduces arterial stiffness: evaluation by measurement of stiffness parameter and pressure-strain elastic modulus by use of ultrasonic echo tracking.

    PubMed

    Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko

    2013-04-01

    Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.

  12. Hemodynamics

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  13. [Endoscopic manometry in the common bile duct].

    PubMed

    Brandstätter, G; Kratochvil, P; Stupnicki, T; Zenker, G; Justich, E; Resch, M

    1982-09-17

    Reproducible results were obtained by endoscopic transpapillary pressure measurements with the help of a constantly perfused catheter. Manometric measurements were performed in 51 patients without any premedication. 14 patients with a normal biliary system were compared with 17 patients after cholecystectomy, 14 patients with stones in the common bile duct and 6 patients after papillotomy. Although there were significant differences in the diameter of the common bile duct in the four groups, only the papillotomized patients demonstrated a distinct change of the pressure in the bile duct. In these patients almost no pressure gradient existed between the biliary ducts and the duodenum. On the other hand, there was an increase in intraluminal pressure in the 2 patients with papillary stenosis. Endoscopic manometric measurements in the common bile duct are indicated to obtain reliable data on stenosis of the papilla duodeni, insufficient papillotomy or recurrent stenosis.

  14. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively, 3D scan time of 500 micros was achieved with a trapezoidal scan profile, generating five new slices per sweep at 1000 Hz scan rate. The system was applied to 3 wt.% and 6 wt.% HPC methanol gelled droplet combustion in 1 atm, and at room temperature. The system had sufficient spatial and temporal resolution to provide a more complete picture of the complex asymmetrical and random flame structure of the gelled droplet combustion. However, the technique had limited capabilities for resolving the impinging jet spray combustion flow field. For the ammonium perchlorate (AP)/ hydroxyl-terminated polybutadiene (HTPB) combustion study with 3D OH PLIF, 40 wt.% coarse AP crystal (400 microm), 40 wt.% fine AP crystal (20 microm), and 20 wt.% HTPB binder formulation with pellet diameter of 6.35 mm was used. The scan rate was reduced to 250 Hz, resulting in 20 images generated per scan, 500 scans per second, and 2 ms scan time, with 1.5 mm scan distance. The test pressure ranged from 3.4 - 6.1 atm of nitrogen, with test temperature at room condition. The results from 3D OH PLIF of AP/HTPB combustion showed a diffusion flame structure, with a lack of OH in the middle of the flame. This is the first time a direct observation of the diffusion flame and the OH structure have been made at elevated pressure. The preliminary results show a good agreement with the BDP model, with a second order increase in the diffusion flame height with increased coarse crystal diameter. Although the scan of 3D OH PLIF is non-instantaneous, no other systems in the literature can scan reacting flow field at such a high 3D repetition rate. Since the identification of the transient flame patterns is facilitated by the ability to visualize the flame front at multiple planes, the 3D OH PLIF technique offers great promise as a diagnostic for dynamic combustion events.

  15. The effects of turbulence on droplet drag and secondary droplet breakup

    NASA Technical Reports Server (NTRS)

    Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.

    1994-01-01

    The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.

  16. Variabilities detected by acoustic emission from filament-wound Aramid fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.

  17. Formation and characterization of simulated small droplet icing clouds

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1986-01-01

    Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.

  18. Design and performance of vacuum system for high heat flux test facility

    NASA Astrophysics Data System (ADS)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  19. Filament-reinforced metal composite pressure vessel evaluation and performance demonstration

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1976-01-01

    Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.

  20. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles.

    PubMed

    Hwang, Sung Hoon; Shahsavari, Rouzbeh

    2018-01-10

    Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.

  1. Vortex Ring Interaction With a Coaxially Aligned Cylinderical Rod

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Rajmanoharan, P.; Koochesfahani, Manoochehr

    1998-11-01

    We present results of experiments of a fully developed vortex ring interacting with a cylinderical rod, having a rounded nose, placed coaxially in line with the motion of the ring. The pressure field of the translating ring causes unsteady boundary layer separation and results in the formation of one or more ( secondary ) vortex rings, that subsequently interact. The nature and strength of the interaction depends on the ratio of the cylinder diameter to the ring diameter. For the larger diameter cylinders the vortex ring travels a few ring diameters before it breaks up. For the smaller diameter cylinders the vortex ring speed decreases slowly and, simultaneously, its diameter increases.

  2. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways?

    PubMed

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2015-07-01

    Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction. Copyright © 2015 the American Physiological Society.

  3. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    NASA Technical Reports Server (NTRS)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  4. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  5. In Vitro Measurement of Tissue Integrity during Saccular Aneurysm Embolizations for Simulator-Based Training

    PubMed Central

    Tercero, C.; Ikeda, S.; Ooe, K.; Fukuda, T.; Arai, F.; Negoro, M.; Takahashi, I.; Kwon, G.

    2012-01-01

    Summary In the domain of endovascular neurosurgery, the measurement of tissue integrity is needed for simulator-based training and for the development of new intravascular instruments and treatment techniques. In vitro evaluation of tissue manipulation can be achieved using photoelastic stress analysis and vasculature modeling with photoelastic materials. In this research we constructed two types of vasculature models of saccular aneurysms for differentiation of embolization techniques according to the respect for tissue integrity measurements based on the stress within the blood vessel model wall. In an aneurysm model with 5 mm dome diameter, embolization using MicroPlex 10 (Complex 1D, with 4 mm diameter loops), a maximum area of 3.97 mm2 with stress above 1 kPa was measured. This area increased to 5.50 mm2 when the dome was touched deliberately with the release mechanism of the coil, and to 4.87 mm2 for an embolization using Micrusphere, (Spherical 18 Platinum Coil). In a similar way trans-cell stent-assisted coil embolization was also compared to human blood pressure simulation using a model of a wide-necked saccular aneurysm with 7 mm diameter. The area with stress above 1kPa was below 1 mm2 for the pressure simulation and maximized at 3.79 mm2 during the trans-cell insertion of the micro-catheter and at 8.92 mm2 during the embolization. The presented results show that this measurement system is useful for identifying techniques compromising tissue integrity, comparing and studying coils and embolization techniques for a specific vasculature morphology and comparing their natural stress variations such as that produced by blood pressure. PMID:23217635

  6. Toward in situ monitoring of water contamination by nitroenergetic compounds.

    PubMed

    Johnson, Brandy J; Leska, Iwona A; Medina, Alejandro; Dyson, Norris F; Nasir, Mansoor; Melde, Brian J; Taft, Jenna R; Charles, Paul T

    2012-11-06

    We have previously described the application of novel porous organosilicate materials to the preconcentration of nitroenergetic targets from aqueous solution prior to HPLC analysis. The performance of the sorbents and the advantages of these types of materials over commercially available solid phase extraction sorbents have been demonstrated. Here, the development of systems for application of those sorbents to in situ monitoring is described. Considerations such as column pressure, particulate filtration, and component durability are discussed. The diameter of selected column housings, the sorbent bed depth, and the frits utilized significantly impact the utility of the sorbent columns in the prototype system. The impact of and necessity for improvements in the morphological characteristics of the sorbents as they relate to reduction in column pressure are detailed. The results of experiments utilizing a prototype system are presented. Data demonstrating feasibility for use of the sorbents in preconcentration prior to ion mobility spectrometry is also presented.

  7. Excited argon 1s5 production in micro-hollow cathode discharges for use as potential rare gas laser sources

    NASA Astrophysics Data System (ADS)

    Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.

  8. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  9. Interferometers adaptations to lidars

    NASA Technical Reports Server (NTRS)

    Porteneuve, J.

    1992-01-01

    To perform daytime measurements of the density and temperature by Rayleigh lidar, it is necessary to select the wavelength with a very narrow spectral system. This filter is composed by an interference filter and a Fabry Perot etalon. The Fabry Perot etalon is the more performent compound, and it is necessary to build a specific optic around it. The image of the entrance pupil or the field diaphragm is at the infinite and the other diaphragm is on the etalon. The optical quality of the optical system is linked to the spectral resolution of the system to optimize the reduction of the field of view. The resolution is given by the formula: R = 8(xD/Fd)exp 2 where R = lambda/delta(lambda), x = diameter of the field diaphragm, D = diameter of the reception mirror, F = focal length of the telescope, and d = useful diameter of the etalon. In the Doppler Rayleigh lidars, the PF interferometer is the main part of the experiment and the exact spectral adaptation is the most critical problem. In the spectral adaptation of interferometers, the transmittance of the system will be acceptable if the etalon is exactly adjusted to the wavelength of the laser. It is necessary to work with a monomode laser, and adjust the shift to the bandpass of the interferometer. We are working with an interferometer built with molecular optical contact. This interferometer is put in a special pressure closed chamber.

  10. Pretest analysis document for Test S-NH-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streit, J.E.; Owca, W.A.

    This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY3601 code for Semiscale MOD-2C Test S-NH-2. The test will simulate the transient that results from the shear in a small diameter penetration of a cold leg, equivalent to 2.1% of the cold leg flow area. The high pressure injection system is assumed to be inoperative throughout the transient. The recovery procedure consists of latching open both steam generator atmospheric dump valves, supplying both steam generators with auxiliary feedwater system is assumed to be partially inoperative so the auxiliary feedwater flow is degraded. Recovery will be initiated upon a peakmore » cladding temperature of 811/sup 0/K (1000/sup 0/F). The test will be terminated when primary pressure has been reduced to the low pressure injection system setpoint of 1.38 MPa (200 psia). The calculated results indicate that the test objectives can be achieved and the proposed test scenario poses no threat to personnel or to plant integrity. 7 refs., 16 figs., 2 tabs.« less

  11. Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat

    NASA Technical Reports Server (NTRS)

    Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.

    2014-01-01

    NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.

  12. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  13. Condensation heat transfer and pressure drop of R-410A in flat aluminum multi-port tubes

    NASA Astrophysics Data System (ADS)

    Kim, Nae-Hyun

    2018-02-01

    Brazed heat exchangers with aluminum flat multi-port tubes are being used as condensers of residential air-conditioners. In this study, R-410A condensation tests were conducted in four multi-port tubes having a range of hydraulic diameter (0.78 ≤ Dh ≤ 0.95 mm). The test range covered the mass flux from 100 to 400 kg/m2 s and the heat flux at 3 kW/m2, which are typical operating conditions of residential air conditioners. Results showed that both the heat transfer coefficient and the pressure drop increased as the hydraulic diameter decreased. The effect of hydraulic diameter on condensation heat transfer was much larger than the predictions of existing correlations for the range of investigation. Comparison of the data with the correlations showed that some macro-channel tube correlations and mini-channel tube correlations reasonably predicted the heat transfer coefficient. However, macro-channel correlations highly overpredicted the pressure drop data.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu

    The interaction between microwave and large area plasma is crucially important for space communication. Gas pressure, input power, and plasma volume are critical to both the microwave electromagnetic wave phase shift and electron density. This paper presents a novel type of large coaxial gridded hollow cathode plasma having a 50 cm diameter and a 40 cm thickness. Microwave characteristics are studied using a microwave measurement system that includes two broadband antennae in the range from 2 GHz to 18 GHz. The phase shift under varying gas pressure and input power is shown. In addition, the electron density n{sub e}, whichmore » varies from 1.2 × 10{sup 16} m{sup −3} to 8.7 × 10{sup 16} m{sup −3} under different discharge conditions, is diagnosed by the microwave system. The measured results accord well with those acquired by Langmuir Probe measurement and show that the microwave properties in the large volume hollow cathode discharge significantly depend on the input power and gas pressure.« less

  15. Helium Evolution from the Transfer of Helium Saturated Propellant in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich N.

    2000-01-01

    Helium evolution from the transfer of helium saturated propellant in space is quantified to determine its impact from creating a two-phase mixture in the transfer line. The transfer line is approximately 1/2 inch in diameter and 2400 inches in length comprised of the Fluid Interconnect System (FICS), the Orbiter Propellant Transfer System (OPTS) and the International Space Station (ISS) Propulsion Module (ISSPM). The propellant transfer rate is approximately two to three gallons per minute, and the supply tank pressure is maintained at approximately 250 psig.

  16. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring

    PubMed Central

    2014-01-01

    Objective To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. Methods In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. Results In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. Conclusion The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice. PMID:25130267

  17. Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring.

    PubMed

    Vaiman, Michael; Gottlieb, Paul; Bekerman, Inessa

    2014-08-17

    To find correlations between diameters of the optic nerve sheath (ONSD), the eyeball, and the optic canal that might be important for intracranial pressure monitoring. In a prospective cohort study, the CT data of consecutive 400 adults (18+) with healthy eyes and optic nerves and absence of neurological diseases were collected and analyzed. When the CT scans were obtained, the diameters of the optic nerve sheath, the eyeball, and the optic canal were measured and statistically analyzed. The data obtained from the left and from the right eyeballs and optic nerves were compared. The correlation analysis was performed within these variables, with the gender, and the age. In healthy persons, the ONSD varies from 3.65 mm to 5.17 mm in different locations within the intraorbital space with no significant difference between sexes and age groups. There is a strong correlation between the eyeball transverse diameter (ETD) and ONSD that can be presented as ONSD/ETD index. In healthy subjects, the ONSD/ETD index equals 0.19. The calculation of an index when ONSD is divided by the ETD of the eyeball presents precise normative database for ONSD intracranial pressure measurement technique. When the ONSD is measured for intracranial pressure monitoring, the most stable results can be obtained if the diameter is measured 10 mm from the globe. These data might serve as a normative database at emergency departments and in general neurological practice.

  18. Effect of Tritium-Induced Damage on Plastic Targets from High-Density DT Permeation

    DOE PAGES

    Wittman, M. D.; Bonino, M. J.; Edgell, D. H.; ...

    2017-11-28

    Direct-drive inertial fusion experiments conducted at the Laboratory for Laser Energetics implode 860-μm-diam, 8-μm-thick glow-discharge polymer (GDP) capsules that have a solid, uniform, 60- to 80-μm-thick layer of an equimolar mixture of deuterium and tritium (DT) on their interior. The DT is permeated through the capsule’s wall up to pressures of 1000 atm in small pressure steps to prevent buckling; this occurs over many hours. The capsule is then cooled, the DT is solidified, and the uniform layer is formed using thermal gradients produced by heat deposited from beta decay of the tritium. Thermal contraction of the capsule from coolingmore » is expected to be ~1% of the diameter. Capsules permeated with DT do not exhibit this contraction and retain their room-temperature diameter after cooling. Sources of error in the imaging system were explored, and a systematic 3 μm over measurement of the diameter was revealed and corrected. However, both GDP capsules permeated with only deuterium and polystyrene capsules permeated with DT do exhibit thermal contraction. The highly cross-linked GDP shell is under compressive stress after fabrication and experiences bond breakage when exposed to high-density DT during permeation. It is speculated that some of this compressive stress is relieved during bond cleavage and the capsule’s wall swells, which counteracts contraction during cooling. In addition, mass spectrometry of the DT gas in the permeation system has revealed the presence of hydrocarbons and other carbon-containing species that increase with time, confirming the radio-degradation of the polymer.« less

  19. Effect of Tritium-Induced Damage on Plastic Targets from High-Density DT Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittman, M. D.; Bonino, M. J.; Edgell, D. H.

    Direct-drive inertial fusion experiments conducted at the Laboratory for Laser Energetics implode 860-μm-diam, 8-μm-thick glow-discharge polymer (GDP) capsules that have a solid, uniform, 60- to 80-μm-thick layer of an equimolar mixture of deuterium and tritium (DT) on their interior. The DT is permeated through the capsule’s wall up to pressures of 1000 atm in small pressure steps to prevent buckling; this occurs over many hours. The capsule is then cooled, the DT is solidified, and the uniform layer is formed using thermal gradients produced by heat deposited from beta decay of the tritium. Thermal contraction of the capsule from coolingmore » is expected to be ~1% of the diameter. Capsules permeated with DT do not exhibit this contraction and retain their room-temperature diameter after cooling. Sources of error in the imaging system were explored, and a systematic 3 μm over measurement of the diameter was revealed and corrected. However, both GDP capsules permeated with only deuterium and polystyrene capsules permeated with DT do exhibit thermal contraction. The highly cross-linked GDP shell is under compressive stress after fabrication and experiences bond breakage when exposed to high-density DT during permeation. It is speculated that some of this compressive stress is relieved during bond cleavage and the capsule’s wall swells, which counteracts contraction during cooling. In addition, mass spectrometry of the DT gas in the permeation system has revealed the presence of hydrocarbons and other carbon-containing species that increase with time, confirming the radio-degradation of the polymer.« less

  20. Particle Collection Efficiency of a Lens-Liquid Filtration System

    NASA Astrophysics Data System (ADS)

    Wong, Ross Y. M.; Ng, Moses L. F.; Chao, Christopher Y. H.; Li, Z. G.

    2011-09-01

    Clinical and epidemiological studies have shown that indoor air quality has substantial impact on the health of building occupants [1]. Possible sources of indoor air contamination include hazardous gases as well as particulate matters (PMs) [2]. Experimental studies show that the size distribution of PMs in indoor air ranges from tens of nanometers to a few hundreds of micrometers [3]. Vacuum cleaners can be used as a major tool to collect PMs from floor/carpets, which are the main sources of indoor PMs. However, the particle collection efficiency of typical cyclonic filters in the vacuums drops significantly for particles of diameter below 10 μm. In this work, we propose a lens-liquid filtration system (see Figure 1), where the flow channel is formed by a liquid free surface and a planar plate with fin/lens structures. Computational fluid dynamics simulations are performed by using FLUENT to optimize the structure of the proposed system toward high particle collection efficiency and satisfactory pressure drop. Numerical simulations show that the system can collect 250 nm diameter particles with collection efficiency of 50%.

  1. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  2. The Miniaturization and Reproducibility of the Cylinder Expansion Test

    NASA Astrophysics Data System (ADS)

    Rumchik, Chad; Nep, Rachel; Butler, George; Lindsay, C. Michael

    2011-06-01

    The cylinder expansion test (aka Cylex) is a standard way to measure the Gurney energy and determine the JWL coefficients of an explosive and has been utilized by the explosives community for many years. More recently, early time shock information has been found to be useful in examining the early pressure time history during the expansion of the cylinder. Work in the area of nanoenergetics has prompted Air Force researchers to develop a miniaturized version of the Cylex test, for materials with a sufficiently small critical diameter, to reduce the cost and quantity of material required for the test. This paper will cover the development of the half inch diameter miniaturized Cylex test as well as the results of a measurement systems analysis performed on the miniaturized test and the one inch diameter standard Cylex test using nitromethane sensitized with EDA as the explosive. Both tests yielded the same Gurney values with similar levels of variability - approximately 2%. 96ABW-2011-0072

  3. a Compact, Rf-Driven Pulsed Ion Source for Intense Neutron Generation

    NASA Astrophysics Data System (ADS)

    Perkins, L. T.; Celata, C. M.; Lee, Y.; Leung, K. N.; Picard, D. S.; Vilaithong, R.; Williams, M. D.; Wutte, D.

    1997-05-01

    Lawrence Berkeley National Laboratory is currently developing a compact, sealed-accelerator-tube neutron generator capable of producing a neutron flux in the range of 109 to 1010 D-T neutrons per second. The ion source, a miniaturized variation of earlier 2 MHz radio-frequency (rf)-driven multicusp ion sources, is designed to fit within a #197# 5 cm diameter borehole. Typical operating parameters include repetition rates up to 100 pps, with pulse widths between 10 and 80 us and source pressures as low as #197# 5 mTorr. In this configuration, peak extractable hydrogen current exceeding 35 mA from a 2 mm diameter aperture together with H1+ yields over 94% have been achieved. The required rf impedance matching network has been miniaturized to #197# 5 cm diameter. The accelerator column is a triode design using the IGUN ion optics codes and allows for electron suppression. Results from the testing of the integrated matching network-ion source-accelerator system will be presented.

  4. Catalyzed Combustion of Bipropellants for Micro-Spacecraft Propulsion

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Sung, Chih-Jen; Boyarko, George A.

    2003-01-01

    This paper addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kilograms with attitude control estimated to be in the 10 milli-Newton thrust class. These combustors are anticipated to be manufactured using Micro Electrical Mechanical Systems (MEMS) technology and are expected to have diameters approaching the quenching diameter of the propellants. Combustors of this size are expected to benefit significantly from surface catalysis processes. Miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials and their simplicity in geometry can be used in fundamental simulations for validation purposes. Experimentally, we investigated the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter microtubes, with special emphases on ignition processes in fuel rich gaseous hydrogen and gaseous oxygen. Flame thickness and reaction zone thickness calculations predict that the diameters of our test apparatus are below the quenching diameter of the propellants in sub-atmospheric tests. Temperature and pressure rise in resistively heated platinum and palladium microtubes was used as an indication of exothermic reactions. Specific data on mass flow versus preheat temperature required to achieve ignition are presented. With a plug flow model, the experimental conditions were simulated with detailed gas-phase chemistry, thermodynamic properties, and surface kinetics. Computational results generally support the experimental findings, but suggest an experimental mapping of the exit temperature and composition is needed.

  5. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad

    2013-04-01

    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  6. Pediatric Patients with High Pulmonary Arterial Pressure in Congenital Heart Disease Have Increased Tracheal Diameters Measured by Computed Tomography.

    PubMed

    Ohashi, Nobuko; Imai, Hidekazu; Seino, Yutaka; Baba, Hiroshi

    2017-12-06

    Determination of the appropriate tracheal tube size using formulas based on age or height often is inaccurate in pediatric patients with congenital heart disease (CHD), particularly in those with high pulmonary arterial pressure (PAP). Here, the authors compared tracheal diameters between pediatric patients with CHD with high PAP and low PAP. Retrospective clinical study. Hospital. Pediatric patients, from birth to 6 months of age, requiring general anesthesia and tracheal intubation who underwent computed tomography were included. Patients with mean pulmonary artery pressure >25 mmHg were allocated to the high PAP group, and the remaining patients were allocated to the low PAP group. The primary outcome was the tracheal diameter at the cricoid cartilage level, and the secondary goal was to observe whether the size of the tracheal tube was appropriate compared with that obtained using predictable formulas based on age or height. The mean tracheal diameter was significantly larger in the high PAP group than in the low PAP group (p < 0.01). Pediatric patients with high PAP required a larger tracheal tube size than predicted by formulas based on age or height (p = 0.04 for age and height). Pediatric patients with high PAP had larger tracheal diameters than those with low PAP and required larger tracheal tubes compared with the size predicted using formulas based on age or height. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Pressure dependence of the radial mode frequency in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Venkateswaran, Uma; Masica, D.; Sumanasekara, G.; Eklund, P.

    2003-03-01

    Recently, an analytical expression for the radial breathing mode frequency, ω_R, was derived by considering the oscillations of a thin hollow cylinder.[1] Using this result and the experimental pressure-dependence of the elastic and lattice constants of graphite, we show that the pressure derivative of ωR depends inversely on the nanotube diameter, D. Since ωR also depends inversely on D, the above result implies that the logarithmic pressure derivative of ω_R, i.e., dlnω_R/dP should be independent of D. We have performed high-pressure Raman scattering experiments on HiPCO-SWNT bundles using different laser excitations, thereby probing the radial modes from different diameter tubes. These measurements show an increase in dlnω_R/dP with increasing D. This difference between the predictions and experiments suggests that the main contribution to ω_R's pressure dependence in SWNT bundles stems from the tube-tube interactions within the bundle and from pressure-induced distortions to the tube cross-section. [1] G.D. Mahan, Phys. Rev. B 65, 235402 (2002).

  8. Self-organized pattern on the surface of a metal anode in low-pressure DC discharge

    NASA Astrophysics Data System (ADS)

    Yaqi, YANG; Weiguo, LI

    2018-03-01

    Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.

  9. Non-invasive determination of instantaneous brachial blood flow using the oscillometric method.

    PubMed

    Liu, Shing-Hong; Wang, Jia-Jung; Cheng, Da-Chuan

    2009-08-01

    The oscillometric method has been widely used to measure arterial systolic and diastolic blood pressures, but its potential for arterial blood flow measurements still remains to be explored. The aim of this study was to non-invasively determine arterial blood flow using an oscillometric blood flow measurement system. The system consists of a pneumatic elastic cuff, an air-pumping motor, a releaser valve, a pressure transducer, and an airflow meter. To build a non-linear cuff model, we measured airflow pumped into the pneumatic cuff and cuff pressure using an airflow meter and pressure transducer during the inflation period, respectively. During the deflation period, only the pressure transducer was used to record cuff pressure. Based on the cuff model, the oscillometric blood flow waveform was obtained by integrating the oscillometric pressure waveform. We compared arterial blood flow derived from the maximum amplitude of the oscillometric blood flow waveform with Doppler-measured blood flow calculated with the diameters and blood velocities of the brachial arteries in 32 subjects who underwent diagnostic evaluations for peripheral arterial embolism. A linear correlation coefficient of r = 0.716 was found between the oscillometry- and Doppler-based blood flow measurements in the 32 subjects. These results suggest that blood flow passing through the brachial artery can be quantified non-invasively using the oscillometric approach after appropriate calibration.

  10. Relationship between Slivering Point and Gas Generation Rules of 19-Perforation TEGDN Propellants with Different Length/Outside Diameter Ratios and Perforation Diameters

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenggang; Xu, Fuming

    2018-04-01

    In order to investigate the relationship between the slivering point and burning progressivity, a set of 19-perforation propellants containing triethylene glycol dinitrate (TEGDN) with different lengths/outside diameter ratios and perforation diameters was prepared and tested in a closed vessel. The mass fraction of burnt propellant was derived from the recorded pressure-time history of 19-perforation TEGDN propellants in the closed vessel according to the gas state equation and the form function of tested propellants. Based on the form function calculation and the mass fraction of burnt propellant, instantaneous burning surface area and the burning rate were obtained. The influence of length/outside diameter ratios and perforation diameters on the progressive combustion performance is studied through the dynamic vivacity method. With an increase in the length/outsider diameter, the slivering point occurs earlier and the slivering process lasts longer. Further, the burning progressivity of surface area can be improved. For propellants with same length/outside diameter ratio, with a decreasing of perforation diameter, the slivering point lags behind and the burning progressivity becomes greater. The slivering point corresponds to the instantaneous burning area, which is related to the form function and total burning process as well. However, the total burning progressivity of propellant is a very comprehensive result of propellant under multiple actions, including the mass fraction of burnt propellant, grain size and burning rate at different pressure regions. The correlation between them can boost a better understanding on the interaction between grain size, slivering burning process and burning progressivity.

  11. Construction and characterization of a single stage dual diaphragm gas gun

    NASA Astrophysics Data System (ADS)

    Helminiak, Nathaniel Steven

    In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.

  12. Factors influencing the effective spray cone angle of pressure-swirl atomizers

    NASA Astrophysics Data System (ADS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1992-01-01

    The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.

  13. Evaluation of the Zeiss retinal vessel analyser

    PubMed Central

    Polak, K.; Dorner, G.; Kiss, B.; Polska, E.; Findl, O.; Rainer, G.; Eichler, H.; Schmetterer, L.

    2000-01-01

    AIM—To investigate the reproducibility and sensitivity of the Zeiss retinal vessel analyser, a new method for the online determination of retinal vessel diameters in healthy subjects.
METHODS—Two model drugs were administered, a peripheral vasoconstrictor (the α receptor agonist phenylephrine) and a peripheral vasodilator (the nitric oxide donor sodium nitroprusside) in stepwise increasing doses. Nine healthy young subjects were studied in a placebo controlled double masked three way crossover design. Subjects received intravenous infusions of either placebo or stepwise increasing doses of phenylephrine (0.5, 1, or 2 µg/kg/min) or sodium nitroprusside (0.5, 1, or 2 µg/kg/min). Retinal vessel diameters were measured with the new Zeiss retinal vessel analyser. Retinal leucocyte velocity, flow, and density were measured with the blue field entoptic technique. The reproducibility of measurements was assessed with coefficients of variation and intraclass correlation coefficients.
RESULTS—Placebo and phenylephrine did not influence retinal haemodynamics, although the α receptor antagonist significantly increased blood pressure. Sodium nitroprusside induced a significant increase in retinal venous and arterial diameters (p<0.001 each), leucocyte density (p=0.001), and leucocyte flow (p=0.024) despite lowering blood pressure to a significant degree. For venous and arterial vessel size measurements short term coefficients of variation were 1.3% and 2.6% and intraclass correlation coefficients were 0.98 and 0.96, respectively. The sensitivity was between 3% and 5% for retinal veins and 5% and 7% for retinal arteries.
CONCLUSIONS—These data indicate that the Zeiss retinal vessel analyser is an accurate system for the assessment of retinal diameters in healthy subjects. In addition, nitric oxide appears to have a strong influence on retinal vascular tone.

 PMID:11049956

  14. Carotid Arterial Wall Dynamics During Gravity Changes on Partial-g Parabolic Flights

    NASA Astrophysics Data System (ADS)

    Leguy, C. A. D.; Beck, P.; Gauger, P.; Beck, L. E. J.; Limper, U.

    2014-10-01

    The investigation of systemic blood pressure (BP) responses under partial-g conditions is of particular importance with respect to post-space-flight orthostatic intolerance. In this study, changes in vessel diameter and wall distension of the common carotid artery (CCA) were assessed under graded gravity. Measurements were performed on 8 healthy subjects in standing position under lunar (0.16 g), Martian (0.38 g), 1.0 g and hypergravity (1.8 g) during partial-g parabolic flights. Data are reported as means ± SE estimated by linear mixed effects modeling. The CCA diameter was significantly enlarged under Martian and lunar-g (6.55 ± 0.2 and 6.54 ± 0.2 mm; p < 0.001 each) with respect to 1.0 g (6.39 ± 0.2 mm). The CCA distension showed significant enlargement under Martian-g (622 ± 91 μm) with respect to 1.0 g (603 ± 82 μm; p < 0.05). Furthermore, the distension was significantly lower under hyper-g with respect to 1.0 g (550 ± 88 μm; p < 0.001). These results show that rapid changes of gravitational stress induce significant modifications of hemodynamic parameters reflected in the CCA vessel wall diameter and distension. The increased vessel wall diameter under partial-g is likely due to the rise in mean BP at the CCA level caused by the absence of hydrostatic pressure and may trigger the baroreflex to maintain homeostatis. We can assume that the increase in distension during the partial-g phase originates from a larger stroke volume and enhanced BP reflections. Furthermore, this study demonstrates the reliability of functional high resolution vascular ultrasound technique during parabolic flights.

  15. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  16. Experimental study of operation performance for hydrocarbon fuel pump with low specific speed

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Yang, Jun; Jin, Xuan

    2017-10-01

    In this paper, a small flow rate hydrocarbon turbine pump was used to pressurize the fuel supply system of scramjet engine. Some experiments were carried out to investigate the characteristics of turbine pump driven by nitrogen or combustion gas under different operating conditions. A experimental database with regard to the curves of the rotational speed, mass flow rate and net head with regard to centrifugal pump were plotted. These curves were represented as functions of the pressure and temperature at turbine inlet/outlet and the throttle diameter at downstream of centrifugal pump. A sensitivity study has been carried out based on design of experiments. The experimental was employed to analyze net head of centrifugal and throttle characteristics. The research results can accumulate foundations for the close loop control system of turbine pump.

  17. Preparation for Testing a Multi-Bay Box Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn

    2015-01-01

    The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.

  18. Orbital cerebrospinal fluid space in glaucoma: the Beijing intracranial and intraocular pressure (iCOP) study.

    PubMed

    Wang, Ningli; Xie, Xiaobin; Yang, Diya; Xian, Junfang; Li, Yong; Ren, Ruojin; Peng, Xiaoxia; Jonas, Jost B; Weinreb, Robert N

    2012-10-01

    Low cerebrospinal fluid pressure (CSF-P) may be involved in the pathogenesis of glaucoma. We measured the optic nerve subarachnoid space width (ONSASW) as a surrogate for orbital CSF-P in patients with primary open-angle glaucoma (POAG) with normal and high pressure and a control group. Prospective observational study. The study included 39 patients with POAG; 21 patients had normal pressure (intraocular pressure [IOP] 21 mmHg), and 18 patients had high pressure (IOP >21 mmHg); 21 subjects formed the control group. By using magnetic resonance imaging (MRI) with fat-suppressed fast recovery fast spin echo (FRFSE) T2-weighted sequence, we determined the ONSASW at 3, 9, and 15 mm posterior to the globe. The ONSASW and optic nerve diameter. At all 3 measurement locations of 3, 9, and 15 mm, the ONSASW was significantly (P<0.001, P<0.001, and P = 0.003, respectively) narrower in the normal-pressure group (0.67±0.16, 0.55±0.09, and 0.51±0.12 mm, respectively) than in the high-pressure group (0.93±0.21, 0.70±0.12, and 0.62±0.11 mm, respectively) or the control group (0.87±0.15, 0.67±0.07, and 0.61±0.07 mm, respectively). The high-pressure and control groups did not vary significantly at 3, 9, and 15 mm (P = 0.31, P = 0.39, and P = 0.44, respectively). At all 3 measurement locations, ONSASW was narrower in the normal-pressure group compared with the high-pressure and control groups after adjustment for optic nerve diameter (P<0.01). Correspondingly, the width of the optic nerve subarachnoid space measured at 3, 9, and 15 mm behind the globe, respectively, was significantly (all P<0.05) associated with IOP after adjustment for optic nerve diameter and visual field defect. The narrower orbital optic nerve subarachnoid space in patients with POAG with normal pressure compared with high pressure suggests a lower orbital CSF-P in patients with POAG with normal pressure. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Tokamak blanket design study, final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steelmore » is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.« less

  20. Analysis of intra-aortic balloon pump model with ovine myocardial infarction.

    PubMed

    Abdolrazaghi, Mona; Navidbakhsh, Mahdi; Hassani, Kamran; Rabbani, Shahram; Ahmadi, Hossein

    2009-12-01

    In this study, we have tried to model the effects of intra-aortic balloon pump (IABP) on myocardial infarction (MI) using the standardized data of MI in sheep which was obtained by ligation of the left anterior descending coronary artery. Mathematical model of whole cardiovascular system was presented in accordance to the arterial tree. The lumped parameter model was primarily obtained for a rigid vessel regarding the vessel diameter. In this study, the proper lumped model of every vessel was obtained by incorporating the rigid vessel lumped model into the capacitance as a compliance of the vessel. Intra-aortic balloon pump was modeled with the hemodynamic parameters of the aorta. It was assumed that balloon pump inflates at the beginning of the diastole and deflates near the beginning of the next systole. During balloon pumping, the vessel diameter variation function counter pulsates sinusoidally with the same period of the cardiac cycle. End systolic pressure and end diastolic pressure decreases along with hemodynamic flow optimized through systemic arteries due to balloon pumping in diastole. It has been shown that the blood flow in subclavian artery increases as well. Moreover, the cardiac work keeps low, which prone to lower oxygen consumption. The results of modeling are in good agreement with IABP documentation. The presented model is a useful tool for studying of the cardiovascular system pathology and the presented modeling data are in good agreement with the experimental ones.

  1. The Effects of Bougie Diameters on Tissue Oxygen Levels After Sleeve Gastrectomy: A Randomized Experimental Trial

    PubMed

    Konca, Can; Yılmaz, Ali Abbas; Çelik, Süleyman Utku; Kayılıoğlu, Selami Ilgaz; Paşaoğlu, Özge Tuğçe; Ceylan, Halil Arda; Genç, Volkan

    2018-05-29

    Staple-line leak is the most frightening complication of laparoscopic sleeve gastrectomy and several predisposing factors such as using improper staple sizes regardless of gastric wall thickness, narrower bougie diameter and ischemia of the staple line are asserted. To evaluate the effects of different bougie diameters on tissue oxygen partial pressure at the esophagogastric junction after sleeve gastrectomy. A randomized and controlled animal experiment with 1:1:1:1 allocation ratio. Thirty-two male Wistar Albino rats were randomly divided into 4 groups of 8 each. While 12-Fr bougies were used in groups 1 and 3, 8-Fr bougies were used in groups 2 and 4. Fibrin sealant application was also carried out around the gastrectomy line after sleeve gastrectomy in groups 3 and 4. Burst pressure of gastrectomy line, tissue oxygen partial pressure and hydroxyproline levels at the esophagogastric junction were measured and compared among groups. Mortality was detected in 2 out of 32 rats (6.25%) and one of them was in group 2 and the cause of this mortality was gastric leak. Gastric leak was detected in 2 out of 32 rats (6.25%). There was no significant difference in terms of burst pressures, tissue oxygen partial pressure and tissue hydroxyproline levels among the 4 groups. The use of narrower bougie along with fibrin sealant has not had a negative effect on tissue perfusion and wound healing.

  2. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Wang, Ming; Yang, Chundi

    2009-10-01

    This paper presents a miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only fusion splicing, cleaving, and wet chemical etching. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost. It may also find uses in medical applications.

  3. A miniature extrinsic fiber Fabry-Perot pressure sensor based on fiber etching

    NASA Astrophysics Data System (ADS)

    Ge, Yixian; Zhou, Junping; Wang, Tingting

    2011-11-01

    A miniature fiber optic pressure sensor based on Fabry-Perot interference fabricated on the tip of a single mode (SM) fiber is presented. The sensor measures only 125μm in diameter. A Fabry-Perot cavity and a thin silica diaphragm are fabricated by simple techniques involving only cleaving, wet chemical etching and fusion splicing. Interference pattern of the sensor is analyzed and issues in sensor design are discussed. The overall chemical reaction of the fiber wet etching is specifically represented. Pressure testing system is carried out. By tracing a peak point in the interference spectrum, the gap length of the sensor can be demodulated. Experimental results show the sensor has a good linearity. The sensor is made entirely of fused silica, whose structure has good stability, cabinet, simple for fabrication and low cost.

  4. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  5. Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound.

    PubMed

    Hoshi, T; Takahashi, M; Iwamoto, T; Shinoda, H

    2010-01-01

    This paper describes a tactile display which provides unrestricted tactile feedback in air without any mechanical contact. It controls ultrasound and produces a stress field in a 3D space. The principle is based on a nonlinear phenomenon of ultrasound: Acoustic radiation pressure. The fabricated prototype consists of 324 airborne ultrasound transducers, and the phase and intensity of each transducer are controlled individually to generate a focal point. The DC output force at the focal point is 16 mN and the diameter of the focal point is 20 mm. The prototype produces vibrations up to 1 kHz. An interaction system including the prototype is also introduced, which enables users to see and touch virtual objects.

  6. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  7. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  8. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    NASA Astrophysics Data System (ADS)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  9. Pressure distribution on the roof of a model low-rise building tested in a boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Goliber, Matthew Robert

    With three of the largest metropolitan areas in the United States along the Gulf coast (Houston, Tampa, and New Orleans), residential populations ever increasing due to the subtropical climate, and insured land value along the coast from Texas to the Florida panhandle greater than $500 billion, hurricane related knowledge is as important now as ever before. This thesis focuses on model low-rise building wind tunnel tests done in connection with full-scale low-rise building tests. Mainly, pressure data collection equipment and methods used in the wind tunnel are compared to pressure data collection equipment and methods used in the field. Although the focus of this report is on the testing of models in the wind tunnel, the low-rise building in the field is located in Pensacola, Florida. It has a wall length of 48 feet, a width of 32 feet, a height of 10 feet, and a gable roof with a pitch of 1:3 and 68 pressure ports strategically placed on the surface of the roof. Built by Forest Products Laboratory (FPL) in 2002, the importance of the test structure has been realized as it has been subjected to numerous hurricanes. In fact, the validity of the field data is so important that the following thesis was necessary. The first model tested in the Bill James Wind Tunnel for this research was a rectangular box. It was through the testing of this box that much of the basic wind tunnel and pressure data collection knowledge was gathered. Knowledge gained from Model 1 tests was as basic as how to: mount pressure tubes on a model, use a pressure transducer, operate the wind tunnel, utilize the pitot tube and reference pressure, and measure wind velocity. Model 1 tests also showed the importance of precise construction to produce precise pressure coefficients. Model 2 was tested in the AABL Wind Tunnel at Iowa State University. This second model was a 22 inch cube which contained a total of 11 rows of pressure ports on its front and top faces. The purpose of Model 2 was to validate the tube length, tube diameter, port diameter, and pressure transducer used in the field. Also, Model 2 was used to study the effects of surface roughness on pressure readings. A partial roof and wall of the low-rise building in the field was used as the third model. Similar to the second model, Model 3 was tested in the AABL Wind Tunnel. Initially, the objectives of the third model were to validate the pressure port protection device (PPPD) being used in the field and test the possibility of interpolating between pressure ports. But in the end, Model 3 was best used to validate the inconsistencies of the full-scale PPPD, validate the transducers used in the field, and prove the importance of scaling either all or none of the model. Fourthly, Model 4 was a 1:16 model of the low-rise building itself. Based on the three previous model tests, Model 4 was instrumented with 202 pressure transducers to better understand: (1) the pressure distribution on the roof of the structure, (2) the affects of the fundamental test variables such as tube length, tube diameter, port diameter, transducer type, and surface roughness, (3) the affects of a scaled PPPD, (4) the importance of wind angle of attack, and (5) the possibility of measuring pressure data and load data simultaneously. In the end, the combination of all four model tests proved to be helpful in understanding the pressure data gathered on the roof of the low-rise building in the field. The two main recommendations for the field structure are for reevaluation of the PPPD design and slight redistribution of the pressure ports. The wind tunnel model tests show a need for these two modifications in order to gather more accurate field pressure data. Other than these two adjustments, the model tests show that the remaining data gathering system is currently accurate.

  10. Compact streak camera for the shock study of solids by using the high-pressure gas gun

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Mori, Yasuhito

    1993-01-01

    For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.

  11. [Recording of ventricular pressure by conventional catheter manometer systems. Efficiency of several combinations of conventional catheters, modern transducers and catheter-flush systems (author's transl)].

    PubMed

    Hellige, G

    1976-01-01

    The experimentally in vitro determined dynamic response characteristics of 38 catheter manometer systems were uniform in the worst case to 5 c.p.s. and optimally to 26 c.p.s. Accordingly, some systems are only satisfactory for ordinary pressure recording in cardiac rest, while better systems record dp/dt correct up to moderate inotropic stimulation of the heart. In the frequency range of uniform response (amplitude error less +/- 5%) the phase distortion is also negligible. In clinical application the investigator is often restricted to special type of cardiac catheter. In this case a low compliant transducer yields superior results. In all examined systems the combination with MSD 10 transducers is best, whereas the combination with P 23 Db transducers leads to minimal results. An inadequate system for recording ventricular pressure pulses leads in most cases to overestimations of dp/dtmax. The use of low frequency pass filters to attenuate higher frequency artefacts is, under clinical conditions, not suitable for extending the range of uniform frequency response. The dynamic response of 14 catheter manometer systems with two types of continuous self flush units was determined. The use of the P 37 flush unit in combination with small internal diameter catheters leads to serious error in ordinary pressure recording, due to amplitude distortion of the lower harmonics. The frequency response characteristics of the combination of an Intraflow flush system and MSD 10 transducer was similar to the non-flushing P 23 Db transducer feature.

  12. 30 CFR 250.1003 - Installation, testing, and repair requirements for DOI pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a)(1) Pipelines greater than 8-5/8 inches in diameter and installed in water depths of less than 200... shall be pressure tested with water at a stabilized pressure of at least 1.25 times the MAOP for at... pressure tested with water or processed natural gas at a minimum stabilized pressure of at least 1.25 times...

  13. Cuff for Blood-Vessel Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Shimizu, M.

    1982-01-01

    Pressure within blood vessel is measured by new cufflike device without penetration of vessel. Device continuously monitors blood pressure for up to 6 months or longer without harming vessel. Is especially useful for vessels smaller than 4 or 5 millimeters in diameter. Invasive methods damage vessel wall, disturb blood flow, and cause clotting. They do not always give reliable pressure measurements over prolonged periods.

  14. Altitude-chamber performance of British Rolls-Royce Nene II engine III : 18.00-inch-diameter jet nozzle

    NASA Technical Reports Server (NTRS)

    Grey, Ralph E; Brightwell, Virginia L; Barson, Zelmar; NACA

    1950-01-01

    An altitude-chamber investigation of British Rolls-Royce Nene II turbojet engine was conducted over range of altitudes from sea level to 65,000 feet and ram pressure ratios from 1.10 to 3.50, using an 18.00-inch-diameter jet nozzle. The 18.00-inch-diameter jet nozzle gave slightly lower values of net-thrust specific fuel consumption than either the 18.41- or the standard 18.75-inch-diameter jet nozzles at high flight speeds. At low flight speeds, the 18.41-inch-diameter jet nozzle gave the lowest value of net-thrust specific fuel consumption.

  15. Design of Tools for Press-countersinking or Dimpling 0.040-inch-thick-24S-T Sheet

    NASA Technical Reports Server (NTRS)

    Templin, R L; Fogwell, J W

    1942-01-01

    A set of dimpling tools was designed for 0.040-inch 24S-T sheet and flush-type rivets 1/8 inch in diameter with 100 degree countersunk heads. The dimples produced under different conditions of pressure, sheet thickness, and drill diameter are presented as cross-sectional photographs magnified 20 times. The most satisfactory values for the dimpling tools were found to be: maximum punch diameter, 0.231 inch; maximum die diameter, 0.223 inch; maximum mandrel diameter, 0.128 inch; dimple angle, 100 degree; punch springback angle, 1 1/2 degree; and die springback angle, 2 degree.

  16. Determination of relative phase permeabilities in stochastic model of pore channel distribution by diameter

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Y.; Shabarov, A.; Shatalov, A.; Puldas, L.

    2018-05-01

    The problem of the pore space description and the calculation of relative phase permeabilities (RPP) for two-phase filtration is considered. A technique for constructing a pore-network structure for constant and variable channel diameters is proposed. A description of the design model of RPP based on the capillary pressure curves is presented taking into account the variability of diameters along the length of pore channels. By the example of the calculation analysis for the core samples of the Urnenskoye and Verkhnechonskoye deposits, the possibilities of calculating RPP are shown when using the stochastic distribution of pores by diameters and medium-flow diameters.

  17. Dynamics of large-diameter water pipes in hydroelectric power plants

    NASA Astrophysics Data System (ADS)

    Pavić, G.; Chevillotte, F.; Heraud, J.

    2017-04-01

    An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.

  18. Hemodynamic, pulmonary vascular, and myocardial abnormalities secondary to pharmacologic constriction of the fetal ductus arteriosus. A possible mechanism for persistent pulmonary hypertension and transient tricuspid insufficiency in the newborn infant.

    PubMed

    Levin, D L; Mills, L J; Weinberg, A G

    1979-08-01

    The prostaglandin synthetase inhibitor indomethacin was given orally or intravenously to pregnant ewes. This resulted in a significant rise in the fetal pulmonary-to-systemic arterial mean blood pressure difference across the ductus arteriosus, presumably secondary to constriction of the ductus arteriosus. In five experiments the pressure difference could be promptly but temporarily reversed by the administration of prostaglandin E1 (PGE1) into the fetal inferior vena cava. Fetal lungs from study and control animals were fixed by perfusion at measured pulmonary arterial mean blood pressure, and fifth-generation resistance vessels were studied. The medial width/external diameter ratio was significantly increased in the study vs the control lungs due to increased smooth muscle and decreased external diameter. In addition, study fetuses had acute degenerative myocardial changes in the tricuspid valve papillary muscles, the right ventricular free wall and the interventricular septum. Similar changes were not seen in control fetuses. Indomethacin administration during pregnancy causes constriction of the fetal ductus arteriosus, fetal pulmonary arterial hypertension, and right ventricular damage. If severe, this may cause rapid fetal death. If less severe, in the newborn infant, this mechanism may be one cause of persistent pulmonary hypertension due to vasoconstriction and increased pulmonary arterial smooth muscle and/or tricuspid insufficiency due to papillary muscle infarction.

  19. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  20. Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane

    NASA Astrophysics Data System (ADS)

    Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.

    2015-09-01

    Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.

  1. Design factors of femur fracture fixation plates made of shape memory alloy based on the Taguchi method by finite element analysis.

    PubMed

    Ko, Cheolwoong; Yang, Mikyung; Byun, Taemin; Lee, Sang-Wook

    2018-05-01

    This study proposed a way to design femur fracture fixation plates made of shape memory alloy based on computed tomography (CT) images of Korean cadaveric femurs. To this end, 3 major design factors of femur fracture fixation plates (circumference angle, thickness, and inner diameter) were selected based on the contact pressure when a femur fracture fixation plate was applied to a cylinder model using the Taguchi method. Then, the effects of the design factors were analyzed. It was shown that the design factors were statistically significant at a level of p = 0.05 concerning the inner diameter and the thickness. The factors affecting the contact pressure were inner diameter, thickness, and circumference angle, in that order. Particularly, in the condition of Case 9 (inner diameter 27 mm, thickness 2.4 mm, and circumference angle 270°), the max. average contact pressure was 21.721 MPa, while the min. average contact pressure was 3.118 MPa in Case 10 (inner diameter 29 mm, thickness 2.0 mm, and circumference angle 210°). When the femur fracture fixation plate was applied to the cylinder model, the displacement due to external sliding and pulling forces was analyzed. As a result, the displacement in the sliding condition was at max. 3.75 times greater than that in the pulling condition, which indicated that the cohesion strength between the femur fracture fixation plate and the cylinder model was likely to be greater in the pulling condition. When a human femur model was applied, the max. average contact pressure was 10.76 MPa, which was lower than the yield strength of a human femur (108 MPa). In addition, the analysis of the rib behaviors of the femur fracture fixation plate in relation to the recovery effect of the shape memory alloy showed that the rib behaviors varied depending on the arbitrarily curved shapes of the femur sections. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  3. Pressor response to intravenous tyramine is a marker of cardiac, but not vascular, adrenergic function

    NASA Technical Reports Server (NTRS)

    Meck, Janice V.; Martin, David S.; D'Aunno, Dominick S.; Waters, Wendy W.

    2003-01-01

    Intravenous injections of the indirect sympathetic amine, tyramine, are used as a test of peripheral adrenergic function. The authors measured the time course of increases in ejection fraction, heart rate, systolic and diastolic pressure, popliteal artery flow, and greater saphenous vein diameter before and after an injection of 4.0 mg/m(2) body surface area of tyramine in normal human subjects. The tyramine caused moderate, significant increases in systolic pressure and significant decreases in total peripheral resistance. The earliest changes were a 30% increase in ejection fraction and a 16% increase in systolic pressure, followed by a 60% increase in popliteal artery flow and a later 11% increase in greater saphenous vein diameter. There were no changes in diastolic pressure or heart rate. These results suggest that pressor responses during tyramine injections are primarily due to an inotropic response that increases cardiac output and pressure and causes a reflex decrease in vascular resistance. Thus, tyramine pressor tests are a measure of cardiac, but not vascular, sympathetic function.

  4. Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics

    NASA Astrophysics Data System (ADS)

    Renfer, Adrian; Tiwari, Manish K.; Brunschwiler, Thomas; Michel, Bruno; Poulikakos, Dimos

    2011-09-01

    Hydrodynamics in microcavities with cylindrical micropin fin arrays simulating a single layer of a water-cooled electronic chip stack is investigated experimentally. Both inline and staggered pin arrangements are investigated using pressure drop and microparticle image velocimetry (μPIV) measurements. The pressure drop across the cavity shows a flow transition at pin diameter-based Reynolds numbers ( Re d ) ~200. Instantaneous μPIV, performed using a pH-controlled high seeding density of tracer microspheres, helps visualize vortex structure unreported till date in microscale geometries. The post-transition flow field shows vortex shedding and flow impingement onto the pins explaining the pressure drop increase. The flow fluctuations start at the chip outlet and shift upstream with increasing Re d . No fluctuations are observed for a cavity with pin height-to-diameter ratio h/ d = 1 up to Re d ~330; however, its pressure drop was higher than for a cavity with h/d = 2 due to pronounced influence of cavity walls.

  5. Rotary and High-Pressure Nozzle Spray Plume Droplet Analysis For Aerially Applied Mosquito Adulticides: Laser Diffraction Characterization.

    PubMed

    Hornby, Jonathan A; Robinson, Jim; Sterling, Milton

    2017-03-01

    The droplet spectrum of a mosquito adulticide spray plume determines its ability to drift through the target area, impinge on the mosquito, deliver a toxic dose, and the risk of environmental contamination. This paper provides data on droplet spectra produced from 6 nozzles in a high-pressure nozzle spray system and 5 rotary nozzle systems for common mosquito adulticides. Spray plume spectra were measured by laser diffraction. High-pressure nozzles were evaluated at pressures ranging from 500 psi to 6,000 psi. Rotary nozzles were evaluated at rotational speeds ranging from 500 rpm to 24,000 rpm. Measurements were made at wind speeds of 129 km/h (80 mph) to 225 km/h (140 mph). Adulticides included were Fyfanon ® , Aqua-Reslin ® , Dibrom ® , Duet ® , Permanone ® , and the inert mineral oil, Orchex ® 796. High-pressure nozzles produced spray plumes within the US Environmental Protection Agency (EPA) label requirements for all configurations tested except for one at a wind speed of 225 km/h, BETE ® MW125. Air speed had no significant effect on the spray plume volume median diameter (Dv (0.5) ) at the speeds tested with Fyfanon ® . The spray plume 90% drop volume diameter (Dv (0.9) ) significantly decreased, 13% at the higher wind speed of 225 km/h. Drop size was inversely related to pressure. Dilution of the product formulations increased the Dv (0.5) of the spray plume but it did not exceed the label requirements. For the PJ15 nozzle, orientation of the nozzle into the wind of up to 135° showed a significant increase in Dv (0.5) at 500 psi, 750 psi, and 1,500 psi. The Dv (0.5) varied <5 μm over the 3 angles examined for any specific pressure. Rotary nozzles produced spray plumes within the EPA label requirements for all test configurations examined. Air speed had no significant effect on Dv (0.5) or Dv (0.9) of the plume at speeds tested with Fyfanon for the ASC A20 nozzle. The rotary AU5000 nozzle using Orchex 796 produced plumes of larger drops in all configurations than any of the rotary nozzles of similar configurations using active ingredient formulations and within EPA label requirements.

  6. Pressurized planar electrochromatography, high-performance thin-layer chromatography and high-performance liquid chromatography--comparison of performance.

    PubMed

    Płocharz, Paweł; Klimek-Turek, Anna; Dzido, Tadeusz H

    2010-07-16

    Kinetic performance, measured by plate height, of High-Performance Thin-Layer Chromatography (HPTLC), High-Performance Liquid Chromatography (HPLC) and Pressurized Planar Electrochromatography (PPEC) was compared for the systems with adsorbent of the HPTLC RP18W plate from Merck as the stationary phase and the mobile phase composed of acetonitrile and buffer solution. The HPLC column was packed with the adsorbent, which was scrapped from the chromatographic plate mentioned. An additional HPLC column was also packed with adsorbent of 5 microm particle diameter, C18 type silica based (LiChrosorb RP-18 from Merck). The dependence of plate height of both HPLC and PPEC separating systems on flow velocity of the mobile phase and on migration distance of the mobile phase in TLC system was presented applying test solute (prednisolone succinate). The highest performance, amongst systems investigated, was obtained for the PPEC system. The separation efficiency of the systems investigated in the paper was additionally confirmed by the separation of test component mixture composed of six hormones. 2010 Elsevier B.V. All rights reserved.

  7. Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process

    NASA Astrophysics Data System (ADS)

    Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh

    2016-07-01

    Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.

  8. Characteristics of the mach disk in the underexpanded jet in which the back pressure continuously changes with time

    NASA Astrophysics Data System (ADS)

    Irie, T.; Yasunobu, T.; Kashimura, H.; Setoguchi, T.

    2003-05-01

    When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation. The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.

  9. Use of the Abdominal Aortic Tourniquet for Hemorrhage Control

    DTIC Science & Technology

    2013-10-01

    simulate an epidural hematoma) using a bone drill to access the epidural space via a craniotomy and then use a small bladder and fill with fluid. We would...external pressure transducer and CSF drainage system. The catheter will be sutured in place and a nonocclusive dressing applied. The catheter will...diameter in relation to ICP. Craniotomy . A midline incision from the level of lateral canthi to 4-7cm past the external occipital protuberance will be

  10. Droplet Diameter and Size Distribution of JP-4 Fuel Injected into a Subsonic Airstream

    DTIC Science & Technology

    1975-04-01

    Pressure TF1 /2 Fuel Temperatures WFL1/2 Low-Range Flow Rate WFM1/2 Mid-Range Flow Rate WFH1/2 High-Range Flow Rate Metering Orifices Manual...Millivolt Tables Plenum Tempera- ture, TP1, •F — ±0.27"F 100 — + 1.8*F ±2.3"F -10 to 70* F Data Acquisition System f f Fuel Supply TF1 — TF2

  11. Preparation of giant myelin vesicles and proteoliposomes to register ionic channels.

    PubMed

    Regueiro, P; Monreal, J; Díaz, R S; Sierra, F

    1996-11-01

    Myelin vesicles, reconstituted liposomes with proteolipid protein (PLP), the main protein component of myelin, and electrophysiological patch-clamp are potentially powerful tools to study the role of myelin in functional ionic channels. However, technical difficulties in the vesiculation of myelin and the small size of the vesicles obtained do not permit the application of micropipettes for current recordings. From a suspension of purified myelin we have prepared oligolamellar vesicles (mean diameter of 144 nm) using the so-called French pressure system. From this preparation we obtained giant myelin vesicles approximately 10 microns in mean diameter, using a dehydration-rehydration procedure. Qualitative analysis of proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed no significant loss of any component in these vesicles due to pressure, in comparison with non-vesiculated myelin. A way of preparing giant liposomes of approximately 80-100 microns and proteoliposomes of approximately 30 microns in mean diameter, using the same dehydration-rehydration procedure, is also reported. Reconstitution of purified PLP in giant liposomes was confirmed by fluorescent labeling of PLP and by fluorescence microscopy. The current recordings from these vesicles prove the validity of these methods and provide significant evidence of the existence of ionic channels in myelin membranes and the possibility that PLP functions as a channel. The physiological significance and characterization of these channels remain yet unresolved. These results have a special significance for elucidating the molecular role of myelin in the regulation of neural activity and in the brain ion microenvironment.

  12. High Altitude Flight Test of a Reefed 12.2 Meter Diameter Disk-Gap-Band Parachute with Deployment at Mach Number of 2.58

    NASA Technical Reports Server (NTRS)

    Grow, R. Bruce; Preisser, John S.

    1971-01-01

    A reefed 12.2-meter nominal-diameter (40-ft) disk-gap-band parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. A three-stage rocket was used to drive the instrumented payload to an altitude of 43.6 km (143,000 ft), a Mach number of 2.58, and a dynamic pressure of 972 N/m(exp 2) (20.3 lb/ft(exp 2)) where the parachute was deployed by means of a mortar. The parachute deployed satisfactorily and reached a partially inflated condition characterized by irregular variations in parachute projected area. A full, stable reefed inflation was achieved when the system had decelerated to a Mach number of about 1.5. The steady, reefed projected area was 49 percent of the steady, unreefed area and the average drag coefficient was 0.30. Disreefing occurred at a Mach number of 0.99 and a dynamic pressure of 81 N/m(exp 2) (1.7 lb/ft(exp 2)). The parachute maintained a steady inflated shape for the remainder of the deceleration portion of the flight and throughout descent. During descent, the average effective drag coefficient was 0.57. There was little, if any, coning motion, and the amplitude of planar oscillations was generally less than 10 degrees. The film also shows a wind tunnel test of a 1.7-meter-diameter parachute inflating at Mach number 2.0.

  13. Renal artery stenosis in children: therapeutic percutaneous balloon and stent angioplasty.

    PubMed

    Colyer, Jessica H; Ratnayaka, Kanishka; Slack, Michael C; Kanter, Joshua P

    2014-06-01

    Renal artery stenosis (RAS) accounts for 10 % of cases of systemic hypertension in children. Initial management involves anti-hypertensive therapy. Percutaneous interventions are documented for the treatment of RAS in the adult population. In children, case reports suggest benefit. This is a retrospective analysis of consecutive patients referred for catheterization for RAS between 2002 and 2010 at a single institution. Recorded variables included: age, weight, systemic blood pressure, minimal luminal diameter, interventional devices, antihypertensive medications, contrast volume, and complications. Twelve patients (median age 8.2, IQR 6-12.4 years); median weight 42.8 kg, IQR: 25-47.4 kg) were referred for renal artery catheterization and underwent percutaneous intervention. Overall, minimal luminal diameter (MLD) increased by 1.2 ± 0.9 mm for all patients (p < 0.05) and by 1.3 ± 0.9 mm for post-renal transplant patients (p < 0.05). Only stent angioplasty patients demonstrated significant improved blood pressure (p < 0.05). One patient had stent thrombosis requiring re-intervention with repeat balloon angioplasty. This retrospective analysis suggests that percutaneous intervention might play a role in the management of RAS, with an improvement in MLD in children with RAS. Transcatheter intervention is technically feasible with low morbidity. A prospective, longitudinal study is warranted to compare standard medical therapy with percutaneous interventions.

  14. Massive aspiration past the tracheal tube cuff caused by closed tracheal suction system.

    PubMed

    Dave, Mital H; Frotzler, Angela; Madjdpour, Caveh; Koepfer, Nelly; Weiss, Markus

    2011-01-01

    Aspiration past the tracheal tube cuff has been recognized to be a risk factor for the development of ventilator-associated pneumonia (VAP). This study investigated the effect of closed tracheal suctioning on aspiration of fluid past the tracheal tube cuff in an in vitro benchtop model. High-volume low pressure tube cuffs of 7.5 mm internal diameter (ID) were placed in a 22 mm ID artificial trachea connected to a test lung. Positive pressure ventilation (PPV) with 15 cm H₂O peak inspiratory pressure and 5 cm H₂O positive end-expiratory pressure (PEEP) was used. A closed tracheal suction system (CTSS) catheter (size 14Fr) was attached to the tracheal tube and suction was performed for 5, 10, 15, or 20 seconds under 200 or 300 cm H₂O suction pressures. Amount of fluid (mL) aspirated along the tube cuff and the airway pressure changes were recorded for each suction procedure. Fluid aspiration during different suction conditions was compared using Kruskal-Wallis and Mann-Whitney test (Bonferroni correction [α = .01]). During 10, 15, and 20 seconds suction, airway pressure consistently dropped down to -8 to -13 cm H₂O (P < .001) from the preset level. Fluid aspiration was never observed under PPV + PEEP but occurred always during suctioning. Aspiration along the tube cuff was higher with -300 cm H₂O than with -200 cm H₂O suction pressure (P < .001) and was much more during 15 and 20 seconds suction time as compared to 5 seconds (P < .001). Massive aspiration of fluid occurs along the tracheal tube cuff during suction with the closed tracheal suction system. © SAGE Publications 2011.

  15. Determining temperature limits of drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thuren, J.B.; Chenevert, M.E.; Huang, W.T.W.

    A capillary three tube viscometer has been designed which allows the measurement of rheological properties of time dependent non-Newtonian fluids in laminar flow at high temperture and pressure. The objective of this investigation is to determine the temperature stability of clay-water suspensions containing various drilling fluid additives. The additives studied consisted of viscosifiers, filtrate reducers, and chemical thinners. The temperature range studied is from room temperature to 550{sup 0}F. The system pressure is consistently maintained above the vapor pressure. The Bentonite and water standardized base mud used is equivalent to a 25 ppB fluid. Stabilization of the base mud ismore » necessary to obtain steady state laminar flow conditions and to obtain reliable temperature thinning effects with each temperature interval under investigation. Generally the temperature levels are maintained for one hour until 550{sup 0}F is attained. The last interval is then maintained until system fluid degradation occurs. Rheological measurements are obtained from differential pressure transducers located in a three diameter tube test section and externally at ambient conditions from a Baroid Rotational Viscometer. The power law model for non-Newtonian fluids is used to correlate the data.« less

  16. Simulations of the modified gap experiment

    NASA Astrophysics Data System (ADS)

    Sutherland, Gerrit T.; Benjamin, Richard; Kooker, Douglas

    2017-01-01

    Modified gap experiment (test) hydrocode simulations predict the trends seen in experimental excess free surface velocity versus input pressure curves for explosives with both large and modest failure diameters. Simulations were conducted for explosive "A", an explosive with a large failure diameter, and for cast TNT, which has a modest failure diameter. Using the best available reactive rate models, the simulations predicted sustained ignition thresholds similar to experiment. This is a threshold where detonation is likely given a long enough run distance. For input pressures greater than the sustained ignition threshold pressure, the simulations predicted too little velocity for explosive "A" and too much velocity for TNT. It was found that a better comparison of experiment and simulation requires additional experimental data for both explosives. It was observed that the choice of reactive rate model for cast TNT can lead to large differences in the predicted modified gap experiment result. The cause of the difference is that the same data was not used to parameterize both models; one set of data was more shock reactive than the other.

  17. Characterisation of aerosol combustible mixtures generated using condensation process

    NASA Astrophysics Data System (ADS)

    Saat, Aminuddin; Dutta, Nilabza; Wahid, Mazlan A.

    2012-06-01

    An accidental release of a liquid flammable substance might be formed as an aerosol (droplet and vapour mixture). This phenomenon might be due to high pressure sprays, pressurised liquid leaks and through condensation when hot vapour is rapidly cooled. Such phenomena require a fundamental investigation of mixture characterisation prior to any subsequent process such as evaporation and combustion. This paper describes characterisation study of droplet and vapour mixtures generated in a fan stirred vessel using condensation technique. Aerosol of isooctane mixtures were generated by expansion from initially a premixed gaseous fuel-air mixture. The distribution of droplets within the mixture was characterised using laser diagnostics. Nearly monosized droplet clouds were generated and the droplet diameter was defined as a function of expansion time. The effect of changes in pressure, temperature, fuel-air fraction and expansion ratio on droplet diameter was evaluated. It is shown that aerosol generation by expansion was influenced by the initial pressure and temperature, equivalence ratio and expansion rates. All these parameters affected the onset of condensation which in turn affected the variation in droplet diameter.

  18. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation.

    PubMed

    Gasser, T C; Nchimi, A; Swedenborg, J; Roy, J; Sakalihasan, N; Böckler, D; Hyhlik-Dürr, A

    2014-03-01

    To translate the individual abdominal aortic aneurysm (AAA) patient's biomechanical rupture risk profile to risk-equivalent diameters, and to retrospectively test their predictability in ruptured and non-ruptured aneurysms. Biomechanical parameters of ruptured and non-ruptured AAAs were retrospectively evaluated in a multicenter study. General patient data and high resolution computer tomography angiography (CTA) images from 203 non-ruptured and 40 ruptured aneurysmal infrarenal aortas. Three-dimensional AAA geometries were semi-automatically derived from CTA images. Finite element (FE) models were used to predict peak wall stress (PWS) and peak wall rupture index (PWRI) according to the individual anatomy, gender, blood pressure, intra-luminal thrombus (ILT) morphology, and relative aneurysm expansion. Average PWS diameter and PWRI diameter responses were evaluated, which allowed for the PWS equivalent and PWRI equivalent diameters for any individual aneurysm to be defined. PWS increased linearly and PWRI exponentially with respect to maximum AAA diameter. A size-adjusted analysis showed that PWS equivalent and PWRI equivalent diameters were increased by 7.5 mm (p = .013) and 14.0 mm (p < .001) in ruptured cases when compared to non-ruptured controls, respectively. In non-ruptured cases the PWRI equivalent diameters were increased by 13.2 mm (p < .001) in females when compared with males. Biomechanical parameters like PWS and PWRI allow for a highly individualized analysis by integrating factors that influence the risk of AAA rupture like geometry (degree of asymmetry, ILT morphology, etc.) and patient characteristics (gender, family history, blood pressure, etc.). PWRI and the reported annual risk of rupture increase similarly with the diameter. PWRI equivalent diameter expresses the PWRI through the diameter of the average AAA that has the same PWRI, i.e. is at the same biomechanical risk of rupture. Consequently, PWRI equivalent diameter facilitates a straightforward interpretation of biomechanical analysis and connects to diameter-based guidelines for AAA repair indication. PWRI equivalent diameter reflects an additional diagnostic parameter that may provide more accurate clinical data for AAA repair indication. Copyright © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  19. An ultrasound-based liquid pressure measurement method in small diameter pipelines considering the installation and temperature.

    PubMed

    Li, Xue; Song, Zhengxiang

    2015-04-09

    Liquid pressure is a key parameter for detecting and judging faults in hydraulic mechanisms, but traditional measurement methods have many deficiencies. An effective non-intrusive method using an ultrasound-based technique to measure liquid pressure in small diameter (less than 15 mm) pipelines is presented in this paper. The proposed method is based on the principle that the transmission speed of an ultrasonic wave in a Kneser liquid correlates with liquid pressure. Liquid pressure was calculated using the variation of ultrasonic propagation time in a liquid under different pressures: 0 Pa and X Pa. In this research the time difference was obtained by an electrical processing approach and was accurately measured to the nanosecond level through a high-resolution time measurement module. Because installation differences and liquid temperatures could influence the measurement accuracy, a special type of circuit called automatic gain control (AGC) circuit and a new back propagation network (BPN) model accounting for liquid temperature were employed to improve the measurement results. The corresponding pressure values were finally obtained by utilizing the relationship between time difference, transient temperature and liquid pressure. An experimental pressure measurement platform was built and the experimental results confirm that the proposed method has good measurement accuracy.

  20. Scaling behavior of columnar structure during physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Meese, W. J.; Lu, T.-M.

    2018-02-01

    The statistical effects of different conditions in physical vapor deposition, such as sputter deposition, have on thin film morphology has long been the subject of interest. One notable effect is that of column development due to differential chamber pressure in the well-known empirical model called the Thornton's Structure Zone Model. The model is qualitative in nature and theoretical understanding with quantitative predictions of the morphology is still lacking due, in part, to the absence of a quantitative description of the incident flux distribution on the growth front. In this work, we propose an incident Gaussian flux model developed from a series of binary hard-sphere collisions and simulate its effects using Monte Carlo methods and a solid-on-solid growth scheme. We also propose an approximate cosine-power distribution for faster Monte Carlo sampling. With this model, it is observed that higher chamber pressures widen the average deposition angle, and similarly increase the growth of column diameters (or lateral correlation length) and the column-to-column separation (film surface wavelength). We treat both the column diameter and the surface wavelength as power laws. It is seen that both the column diameter exponent and the wavelength exponent are very sensitive to changes in pressure for low pressures (0.13 Pa to 0.80 Pa); meanwhile, both exponents saturate for higher pressures (0.80 Pa to 6.7 Pa) around a value of 0.6. These predictions will serve as guides to future experiments for quantitative description of the film morphology under a wide range of vapor pressure.

  1. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    NASA Astrophysics Data System (ADS)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  2. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    PubMed

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  3. A Heat Transfer Investigation of Liquid and Two-Phase Methane

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan

    2010-01-01

    A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.

  4. Electrostatic Charging of Polymers by Particle Impact at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)

    2001-01-01

    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.

  5. Subsonic-transonic stall flutter study

    NASA Technical Reports Server (NTRS)

    Stardter, H.

    1979-01-01

    The objective of the Subsonic/Transonic Stall Flutter Program was to obtain detailed measurements of both the steady and unsteady flow field surrounding a rotor and the mechanical state of the rotor while it was operating in both steady and flutter modes to provide a basis for future analysis and for development of theories describing the flutter phenomenon. The program revealed that while all blades flutter at the same frequency, they do not flutter at the same amplitude, and their interblade phase angles are not equal. Such a pattern represents the superposition of a number of rotating nodal diameter patterns, each characterized by a different amplitude and different phase indexing, but each rotating at a speed that results in the same flutter frequency as seen in the rotor system. Review of the steady pressure contours indicated that flutter may alter the blade passage pressure distribution. The unsteady pressure amplitude contour maps reveal regions of high unsteady pressure amplitudes near the leading edge, lower amplitudes near the trailing.

  6. Research on pressure sensors for biomedical instruments

    NASA Technical Reports Server (NTRS)

    Angell, J. B.

    1975-01-01

    The development of a piezo-resistive pressure transducer is discussed suitable for recording pressures typically encountered in biomedical applications. The pressure transducer consists of a thin silicon diaphragm containing four strain-sensitive resistors, and is fabricated using silicon monolithic integrated-circuit technology. The pressure transducers can be as small as 0.7 mm outer diameter, and are, as a result, suitable for mounting at the tip of a catheter. Pressure-induced stress in the diaphragm is sensed by the resistors, which are interconnected to form a Wheatstone bridge.

  7. Self-monitoring high voltage transmission line suspension insulator

    DOEpatents

    Stemler, Gary E.; Scott, Donald N.

    1981-01-01

    A high voltage transmission line suspension insulator (18 or 22) which monitors its own dielectric integrity. A dielectric rod (10) has one larger diameter end fitting attachable to a transmission line and another larger diameter end fitting attachable to a support tower. The rod is enclosed in a dielectric tube (14) which is hermetically sealed to the rod's end fittings such that a liquidtight space (20) is formed between the rod and the tube. A pressurized dielectric liquid is placed within that space. A discoloring dye placed within this space is used to detect the loss of the pressurized liquid.

  8. Thrust and pumping characteristics of cylindrical ejectors using afterburning turbojet gas generator

    NASA Technical Reports Server (NTRS)

    Samanich, N. E.; Huntley, S. C.

    1969-01-01

    Static tests of cylindrical ejectors having ejector to primary diameter ratios from 1.1 to 1.6 and ejector length to primary nozzle diameter ratios from 0.9 to 2.1 are reported. Power setting of the J85-13 turbojet engine was varied from part power to maximum afterburning. Corrected secondary weight flow ratio was varied from 0.02 to 0.08 over a range of exhaust nozzle pressure ratios from 2.0 to 9.0. Secondary flow temperature rise and pressure drop characteristics through the nacelle secondary flow passage were also obtained.

  9. Buckling tests of two 4.6-meter-diameter, magnesium ring-stiffened conical shells loaded under external pressure

    NASA Technical Reports Server (NTRS)

    Anderson, J. K.; DAVIS R. C.

    1973-01-01

    Two ring-stiffened magnesium conical shells with a 120 deg apex angle and a 4.6-meter diameter were loaded to failure by a uniform external pressure. The cones differed from one another only in the number of internal stiffening rings. Test specimen details, test procedure, and test results are discussed. Both buckling and prebuckling data are compared with appropriate theoretical predictions. Measured strains in skin and rings agreed well with theoretical predictions. Extensive imperfection measurements were made and reported on both cones in the as fabricated condition.

  10. Investigation of Some Wake Vortex Characteristics of an Inclined Ogive-Cylinder Body at Mach Number 2

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H; Perkins, Edward W

    1958-01-01

    For a body consisting of a fineness-ratio-3 ogival nose tangent to a cylindrical afterbody 7.3 diameters long, pitot-pressure distributions in the flow field, pressure distributions over the body, and downwash distributions along a line through the vortex centers have been measured for angles of attack to 20 degrees. The Reynolds numbers, based on body diameter, were 0.15 x 10 to the 6th power and 0.44 x 10 to the 6th power. Comparisons of computed and measured vortex paths and downwash distributions are made. (author)

  11. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  12. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  13. STS-98 Onboard Photograph-U.S. Laboratory, Destiny

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  14. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  17. Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  18. Apparatus and method for increasing the diameter of metal alloy wires within a molten metal pool

    DOEpatents

    Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

    2002-01-29

    In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

  19. The preparation of liposomes using compressed carbon dioxide: strategies, important considerations and comparison with conventional techniques.

    PubMed

    Bridson, R H; Santos, R C D; Al-Duri, B; McAllister, S M; Robertson, J; Alpar, H O

    2006-06-01

    Numerous strategies are currently available for preparing liposomes, although no single method is ideal in every respect. Two methods for producing liposomes using compressed carbon dioxide in either its liquid or supercritical state were therefore investigated as possible alternatives to the conventional techniques currently used. The first technique used modified compressed carbon dioxide as a solvent system. The way in which changes in pressure, temperature, apparatus geometry and solvent flow rate affected the size distributions of the formulations was examined. In general, liposomes in the nano-size range with an average diameter of 200 nm could be produced, although some micron-sized vesicles were also present. Liposomes were characterized according to their hydrophobic drug-loading capacity and encapsulated aqueous volumes. The latter were found to be higher than in conventional techniques such as high-pressure homogenization. The second method used compressed carbon dioxide as an anti-solvent to promote uniform precipitation of phospholipids from concentrated ethanolic solutions. Finely divided solvent-free phospholipid powders of saturated lipids could be prepared that were subsequently hydrated to produce liposomes with mean volume diameters of around 5 microm.

  20. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  1. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  2. A hybrid chip based on aerodynamics and electrostatics for the size-dependent classification of ultrafine and nano particles.

    PubMed

    Kim, Yong-Ho; Park, Dongho; Hwang, Jungho; Kim, Yong-Jun

    2009-09-21

    Conventional virtual impactors experience a large pressure drop when they classify particles according to size, in particular ultrafine particles smaller than 100 nm in diameter. Therefore, most virtual impactors have been used to classify particles larger than 100 nm. Their cut-off diameters are also fixed by the geometry of their flow channels. In the proposed virtual impactor, particles smaller than 100 nm are accelerated by applying DC potentials to an integrated electrode pair. By the electrical acceleration, the large pressure drop could be significantly decreased and new cut-off diameters smaller than 100 nm could be successfully added. The geometric cut-off diameter (GCD) of the proposed virtual impactor was designed to be 1.0 microm. Performances including the GCD and wall loss were examined by classifying dioctyl sebacate of 100 to 600 nm in size and carbon particles of 0.6 to 10 microm in size. The GCD was measured to be 0.95 microm, and the wall loss was highest at 1.1 microm. To add new cut-off diameters, monodisperse NaCl particles ranging from 15 to 70 nm were classified using the proposed virtual impactor with applying a DC potential of 0.25 to 3.0 kV. In this range of the potential, the new cut-off diameters ranging from 15 to 35 nm was added.

  3. Pop tests of storable biopropellant liquid apogee engine

    NASA Astrophysics Data System (ADS)

    Kuroda, Yukio; Tadano, Makoto; Sato, Masahiro; Kusaka, Kazuo; Kobayashi, Hideyuki; Iihara, Sigeyasu; Ban, Hiroyuki

    1994-10-01

    A pressure-fed, blowdown, hydrazine/NTO apogee propulsion system had been selected for the ETS-6. One of the problems encountered during the development of the engine was the occurrence of pops (popping) at the higher operating chamber pressures. Pops are irregular high amplitude pressure pulses. It is generally agreed that pops is a liquid spray/gas two-phase explosion triggered by a local explosion near the jet impingement region. The effects of operating parameters on pops observed in the development tests of the apogee engine for the ETS-6 were inconsistent with those reported earlier for single impingement injectors; pops with the apogee engine injectors was more likely to occur at higher chamber pressures, higher injection velocities, and higher propellant temperatures. Pops data were correlated fairly well in chamber pressures (bar-P(sub c)) vs. fuel Reynolds number (R(sub ef)) plane. However, the range of operating parameters for the above correlation were very narrow since they were obtained during injector screening tests for a particular application to the apogee engine. It was also felt that the above correlation was too simplistic to capture any effect of design parameters of multi-element injectors. In the present study, the demarcation between pops and the pops-free region was determined in broader operating ranges and design parameters. The range of bar-P(sub c) and R(sub ef) was extended by exchanging graphite nozzle throat inserts with different throat diameters. The injectors were carefully selected to obtain effects, if any, of (1) film cooling fraction, (2) secondary mixing, and (3) number of elements and/or fuel orifice diameters. It was found that there was a threshold fuel Reynolds number below which no pops were observed at any chamber pressures and that the pops region curve in the bar-P(sub c)-R(sub ef) plane had two branches: upper branches and lower branches.

  4. Comparative in vitro flow study of 3 different Ex-PRESS miniature glaucoma device models.

    PubMed

    Estermann, Stephan; Yuttitham, Kanokwan; Chen, Julie A; Lee, On-Tat; Stamper, Robert L

    2013-03-01

    To determine the flow characteristics of the 3 different models of the Ex-PRESS miniature glaucoma device in a controlled laboratory study. The 3 different Ex-PRESS models (P-50, R-50, and P-200; Optonol Ltd; now Alcon Lab) were tested using a gravity-driven flow test. Three samples of each of the 3 Ex-PRESS models were subjected to a constant gravitational force of fluid at 5 different pressure levels (5 to 25 mm Hg). Four measurements per sample were taken at each pressure level. The main outcome measure was flow rate (Q) (µL/min). Resistance (R) was calculated by dividing pressure (P) by the measured flow (Q). The flow rate was primarily pressure dependent. The P-200 model (internal diameter 200 µm) showed a statistically significant higher flow rate and lower resistance compared with both the P-50 and R-50 models (internal diameter 50 µm) (P<0.0001). The P-50 and R-50 models demonstrated similar flow rates (P=0.08) despite their difference in tube length (2.64 vs. 2.94 mm). The 3 models of the Ex-PRESS mini shunt behaved in vitro as simple flow resistors by creating a relatively constant resistance to flow. Tube diameter was the only parameter with significant impact on flow and resistance. All models demonstrated flow rates per unit of pressure much higher than the outflow facility of a healthy human eye.

  5. Pneu-Scan - A novel, lightweight two-axis telemetry tracking system

    NASA Astrophysics Data System (ADS)

    Sullivan, A.

    The development of Pneu-Scan, a conically scanning tracking antenna feed for telemetry applications, is described. Pneu-Scan has the advantage of being pneumatically driven, thereby eliminating the need for a heavy electric drive motor. Air from the dehydrator/pressurizer system is used to drive the Pneu-Scan pedestal at a scan speed which is proportional to the continuously varying pressure. The S-band tracking feed of the Pneu-Scan is less than five inches in diameter and is considerably lighter than single-channel monopulse (SCM) feeds. Aperture blocking of Pneu-Scan is more than two times smaller than conventional SCM designs. The antenna reflector of the Pneu-Scan system is a lightweight 5-foot graphite-epoxy parabolical reflector positioned by an elevator-over-azimuth pedestal. The elevation assembly is surrounded by an inflatable rotodome which rotates with azimuth. The rotating sphere was designed to have a minimum wind-induced torque, thereby minimizing the required drive power. The weight of the entire system is less than 135 pounds. The principle characteristics of the Pneu-Scan system are summarized in a table.

  6. Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.

  7. Diameter Versus Mass in the Development of the Orion Life Support Umbilical: A Case Study in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Jordan, Nicole; Falconi, Eric; Barido, Richard; Lewis, John

    2009-01-01

    Systems engineering could also be called the art of compromise. At its heart, systems engineering seeks to find that solution which maximizes the utility of the system, usually compromising the performance of each individual subsystem. While seemingly straightforward, systems engineering methodology is complicated when the utility to be maximized is unclear and the costs to each individual subsystem are not - or not easily - quantifiable. In this paper, we explore one such systems engineering problem within the Constellation Program as a case study in applied systems engineering. During suited operations, astronauts within Orion will be connected to an umbilical to receive and return breathing gas. The pressure drop associated with this umbilical must be overcome by the Orion vehicle. A smaller umbilical, which is desirable for crew operations, means a higher pressure drop, resulting in additional mass and power for the vehicle. We outline the technical considerations in the development of this integrated system and discuss the method by which we reached the ultimate solution. This paper, while just one example of the kind of problem solving that happens every day, offers insight into what happens when the theories of systems engineering are put into practice.

  8. Tailoring sphere density for high pressure physical property measurements on liquids

    NASA Astrophysics Data System (ADS)

    Secco, R. A.; Tucker, R. F.; Balog, S. P.; Rutter, M. D.

    2001-04-01

    We present a new method of tailoring the density of a sphere for use as a probe in high pressure-temperature physical property experiments on liquids. The method consists of a composite sphere made of an inner, high density, metallic, spherical core and an exterior, low density, refractory, spherical shell or mantle. Micromechanical techniques are used to fabricate the composite sphere. We describe a relatively simple mechanical device that can grind hemispherical recesses as small as 200 μm in diameter in sapphire and as small as 500 μm in diameter in ruby hemispheres. Examples of composite spheres made with a Pt or WC core and Al2O3 shell used in metallic liquids pressurized to 16 GPa and 1900 K are shown.

  9. Research on stability of nozzle-floating plate institution

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Tao, Jiayue; Yi, Jiajing; Chen, Shijing

    2016-01-01

    In this paper, air hammer instability of nozzle-floating plate institution in gas lubricated force sensor were studied. Through establishment of the theoretical model for the analysis of the nozzle-floating plate institution stability, combined with air hammer stability judgment theorems, we had some simulation research on the radius of the nozzle, the radius of the pressure chamber, pressure chamber depth, orifice radius and the relationship between air supply pressure and bearing capacity, in order to explore the instability mechanism of nozzle-floating plate institution. For conducting experimental observations for the stability of two groups nozzle-floating plate institution, which have typical structural parameters conducted experimental observations. We set up a special experimental device, verify the correctness of the theoretical study and simulation results. This paper shows that in the nozzle-floating plate institution, increasing the nozzle diameter, reduced pressure chamber radius, reducing the depth of the pressure chamber and increase the supply orifice radius, and other measures is conducive to system stability. Results of this study have important implications for research and design of gas lubricated force sensor.

  10. High pressure studies using two-stage diamond micro-anvils grown by chemical vapor deposition

    DOE PAGES

    Vohra, Yogesh K.; Samudrala, Gopi K.; Moore, Samuel L.; ...

    2015-06-10

    Ultra-high static pressures have been achieved in the laboratory using a two-stage micro-ball nanodiamond anvils as well as a two-stage micro-paired diamond anvils machined using a focused ion-beam system. The two-stage diamond anvils’ designs implemented thus far suffer from a limitation of one diamond anvil sliding past another anvil at extreme conditions. We describe a new method of fabricating two-stage diamond micro-anvils using a tungsten mask on a standard diamond anvil followed by microwave plasma chemical vapor deposition (CVD) homoepitaxial diamond growth. A prototype two stage diamond anvil with 300 μm culet and with a CVD diamond second stage ofmore » 50 μm in diameter was fabricated. We have carried out preliminary high pressure X-ray diffraction studies on a sample of rare-earth metal lutetium sample with a copper pressure standard to 86 GPa. Furthermore, the micro-anvil grown by CVD remained intact during indentation of gasket as well as on decompression from the highest pressure of 86 GPa.« less

  11. Catalyzed Combustion In Micro-Propulsion Devices: Project Status

    NASA Technical Reports Server (NTRS)

    Sung, C. J.; Schneider, S. J.

    2003-01-01

    In recent years, there has been a tendency toward shrinking the size of spacecraft. New classes of spacecraft called micro-spacecraft have been defined by their mass, power, and size ranges. Spacecraft in the range of 20 to 100 kg represent the class most likely to be utilized by most small sat users in the near future. There are also efforts to develop 10 to 20 kg class spacecraft for use in satellite constellations. More ambitious efforts will be to develop spacecraft less than 10 kg, in which MEMS fabrication technology is required. These new micro-spacecraft will require new micro-propulsion technology. Although micro-propulsion includes electric propulsion approaches, the focus of this proposed program is micro-chemical propulsion which requires the development of microcombustors. As combustors are scaled down, the surface to volume ratio increases. The heat release rate in the combustor scales with volume, while heat loss rate scales with surface area. Consequently, heat loss eventually dominates over heat release when the combustor size becomes smaller, thereby leading to flame quenching. The limitations imposed on chamber length and diameter has an immediate impact on the degree of miniaturization of a micro-combustor. Before micro-combustors can be realized, such a difficulty must be overcome. One viable combustion alternative is to take advantage of surface catalysis. Micro-chemical propulsion for small spacecraft can be used for primary thrust, orbit insertion, trajectory-control, and attitude control. Grouping micro-propulsion devices in arrays will allow their use for larger thrust applications. By using an array composed of hundreds or thousands of micro-thruster units, a particular configuration can be arranged to be best suited for a specific application. Moreover, different thruster sizes would provide for a range of thrust levels (from N s to mN s) within the same array. Several thrusters could be fired simultaneously for thrust levels higher than the basic units, or in a rapid sequence in order to provide gradual but steady low-g acceleration. These arrays of micro-propulsion systems would offer unprecedented flexibility and redundancy for satellite propulsion and reaction control for launch vehicles. A high-pressure bi-propellant micro-rocket engine is already being developed using MEMS technology. High pressure turbopumps and valves are to be incorporated onto the rocket chip . High pressure combustion of methane and O2 in a micro-combustor has been demonstrated without catalysis, but ignition was established with a spark. This combustor has rectangular dimensions of 1.5 mm by 8 mm (hydraulic diameter 3.9 mm) and a length of 4.5 mm and was operated at 1250 kPa with plans to operate it at 12.7 MPa. These high operating pressures enable the combustion process in these devices, but these pressures are not practical for pressure fed satellite propulsion systems. Note that the use of these propellants requires an ignition system and that the use of a spark would impose a size limitation to this micro-propulsion device because the spark unit cannot be shrunk proportionately with the thruster. Results presented in this paper consist of an experimental evaluation of the minimum catalyst temperature for initiating/supporting combustion in sub-millimeter diameter tubes. The tubes are resistively heated and reactive premixed gases are passed through the tubes. Tube temperature and inlet pressure are monitored for an indication of exothermic reactions and composition changes in the gases.

  12. Propagation of atmospheric-pressure ionization waves along the tapered tube

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao

    2018-02-01

    Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.

  13. Minimally invasive sinus augmentation using ultrasonic piezoelectric vibration and hydraulic pressure: a multicenter retrospective study.

    PubMed

    Kim, Ji-Min; Sohn, Dong-Seok; Heo, Jeong-Uk; Park, Jun-Sub; Jung, Heui-Seung; Moon, Jee-Won; Lee, Ju-Hyoung; Park, In-Sook

    2012-12-01

    The purpose of this study was to evaluate the success rate of implants and vertical bone gain of edentulous posterior maxilla using ultrasonic piezoelectric vibration and hydraulic pressure, namely the hydrodynamic piezoelectric internal sinus elevation (HPISE) technique through a crestal approach. A total of 250 maxillary sinuses were augmented using HPISE and 353 implants (averaging 11.8 mm in length and 4.5 mm in diameter), with 12 different systems, were placed simultaneously with or without additional bone grafting. Plain radiograms and cone beam computed tomograms were taken in all patients to evaluate sinus augmentation. Membrane perforation was recorded at 10 of the 353 implant sites. The perforation rate was 2.83%. The total success rate of implantation was 97.2% after an average of 69.3 weeks of loading. The crestally approached sinus augmentation using ultrasonic piezoelectric vibration and hydraulic pressure is an additional method of maxillary sinus augmentation.

  14. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  15. Calibration of HYPULSE for hypervelocity air flows corresponding to flight Mach numbers 13.5, 15, and 17

    NASA Technical Reports Server (NTRS)

    Calleja, John; Tamagno, Jose

    1993-01-01

    A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.

  16. 77 FR 46385 - Certain Small Diameter Seamless Carbon and Alloy Standard, Line, and Pressure Pipe From Germany...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-03

    ...: Seamless pressure pipes are intended for the conveyance of water, steam, petrochemicals, chemicals, oil... Mechanical Engineers (ASME) code stress levels. Alloy pipes made to ASTM standard A-335 must be used if temperatures and stress levels exceed those allowed for A-106 and the ASME codes. Seamless pressure pipes sold...

  17. Preparation of stable food-grade double emulsions with a hybrid premix membrane emulsification system.

    PubMed

    Eisinaite, Viktorija; Juraite, Dovile; Schroën, Karin; Leskauskaite, Daiva

    2016-09-01

    In this study we demonstrate that food-grade double emulsions can be successfully prepared using a hybrid premix emulsification system. A coarse emulsion containing beetroot juice as inner water phase, sunflower oil as oil phase and 0.5% or 1.0% whey protein isolate solution as outer water phase was prepared using a rotor stator system. This emulsion was further refined, using a bed of glass beads (diameter 71μm), through which the emulsion was pushed at different applied pressure (200-500kPa) and number of passes (1-5). All applied pressures lead to much smaller droplets while the juice remained encapsulated (>98%). The viscosity of the emulsions increased due to swelling of the internal water phase, and this implies that it is possible to encapsulate the components efficiently at relatively low internal water phase fraction at which the emulsions can be handled easily, while allowing them to obtain their final viscosity later. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Review of Full-Scale Docking Seal Testing Capabilities

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.; Steinetz, Bruce M.

    2008-01-01

    NASA is developing a new docking system to support future space exploration missions to low-Earth orbit, the Moon, and Mars. This mechanism, called the Low Impact Docking System (LIDS), is designed to connect pressurized space vehicles and structures including the Crew Exploration Vehicle, International Space Station, and lunar lander. NASA Glenn Research Center (GRC) is playing a key role in developing the main interface seal for this new docking system. These seals will be approximately 147 cm (58 in.) in diameter. To evaluate the performance of the seals under simulated operating conditions, NASA GRC is developing two new test rigs: a non-actuated version that will be used to measure seal leak rates and an actuated test rig that will be able to measure both seal leak rates and loads. Both test rigs will be able to evaluate the seals under seal-on-seal or seal-on-plate configurations at temperatures from -50 to 50 C (-58 to 122 F) under operational and pre-flight checkout pressure gradients in both aligned and misaligned conditions.

  19. Reduction of Orifice-Induced Pressure Errors

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.

    1987-01-01

    Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.

  20. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels Updated January 2014

    NASA Technical Reports Server (NTRS)

    Skow, Miles G.

    2014-01-01

    This three year project (FY12-14) will design and demonstrate the ability of new Magnetic Stress Gages for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap.

  1. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  2. 2D temperature field measurement in a direct-injection engine using LIF technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  3. Design optimisation of a nanofluid injection system for LOCA events in a nuclear power plant

    NASA Astrophysics Data System (ADS)

    Călimănescu, I.; Stan, L. C.; Velcea, D. D.

    2016-08-01

    The safety issues inside a Nuclear Power Plant (NPP) are encompassing their capacity to ensure the heat sink, meaning the capacity of the systems to release the heat from the rector to the environment. The nanofluids having good heat transfer properties, are recommended to be used in such applications. The paper is solving the following scenario: considering the Safety Injection tank and the Nanofluid injection Tank, and considering the Nanofluid injection Tank filled with a 10% alumina-water nanofluid, how can we select the best design of the connecting point between the pipes of the SIT and the Nanofluid Tank and the pressures inside of any of these tanks in order to have the biggest density of nanoparticles leaving the tanks toward the cold leg. In conclusion the biggest influence over the rate of disposal of the nanofluid inside ECCS is that of the pressure inside the SIT followed in order by the injection pipe diameter and the pressure inside the nanofluid tank. The optimum balance of these three design parameters may be reached following the procedure shown in this paper.

  4. A minimally invasive in-fiber Bragg grating sensor for intervertebral disc pressure measurements

    NASA Astrophysics Data System (ADS)

    Dennison, Christopher R.; Wild, Peter M.; Wilson, David R.; Cripton, Peter A.

    2008-08-01

    We present an in-fiber Bragg grating (FBG) based intervertebral disc (IVD) pressure sensor that has pressure sensitivity seven times greater than that of a bare fiber, and a major diameter and sensing area of only 400 µm and 0.03 mm2, respectively. This is the only optical, the smallest and the most mechanically compliant disc pressure sensor reported in the literature. This is also an improvement over other FBG pressure sensors that achieve increased sensitivity through mechanical amplification schemes, usually resulting in major diameters and sensing lengths of many millimeters. Sensor sensitivity is predicted using numerical models, and the predicted sensitivity is verified through experimental calibrations. The sensor is validated by conducting IVD pressure measurements in porcine discs and comparing the FBG measurements to those obtained using the current standard sensor for IVD pressure. The predicted sensitivity of the FBG sensor matched with that measured experimentally. IVD pressure measurements showed excellent repeatability and agreement with those obtained from the standard sensor. Unlike the current larger sensors, the FBG sensor could be used in discs with small disc height (i.e. cervical or degenerated discs). Therefore, there is potential to conduct new measurements that could lead to new understanding of the biomechanics.

  5. Five-Hole Flow Angle Probe Calibration for the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Gonsalez, Jose C.; Arrington, E. Allen

    1999-01-01

    A spring 1997 test section calibration program is scheduled for the NASA Glenn Research Center Icing Research Tunnel following the installation of new water injecting spray bars. A set of new five-hole flow angle pressure probes was fabricated to properly calibrate the test section for total pressure, static pressure, and flow angle. The probes have nine pressure ports: five total pressure ports on a hemispherical head and four static pressure ports located 14.7 diameters downstream of the head. The probes were calibrated in the NASA Glenn 3.5-in.-diameter free-jet calibration facility. After completing calibration data acquisition for two probes, two data prediction models were evaluated. Prediction errors from a linear discrete model proved to be no worse than those from a full third-order multiple regression model. The linear discrete model only required calibration data acquisition according to an abridged test matrix, thus saving considerable time and financial resources over the multiple regression model that required calibration data acquisition according to a more extensive test matrix. Uncertainties in calibration coefficients and predicted values of flow angle, total pressure, static pressure. Mach number. and velocity were examined. These uncertainties consider the instrumentation that will be available in the Icing Research Tunnel for future test section calibration testing.

  6. Toward individually tunable compound eyes with transparent graphene electrode.

    PubMed

    Shahini, Ali; Jin, Hai; Zhou, Zhixian; Zhao, Yang; Chen, Pai-Yen; Hua, Jing; Cheng, Mark Ming-Cheng

    2017-06-08

    We present tunable compound eyes made of ionic liquid lenses, of which both curvatures (R 1 and R 2 in the lensmaker's equation) can be individually changed using electrowetting on dielectric (EWOD) and applied pressure. Flexible graphene is used as a transparent electrode and is integrated on a flexible polydimethylsiloxane (PDMS)/parylene hybrid substrate. Graphene electrodes allow a large lens aperture diameter of between 2.4 mm and 2.74 mm. Spherical aberration analysis is performed using COMSOL to investigate the optical property of the lens under applied voltage and pressure. The final lens system shows a resolution of 645.1 line pair per millimeter. A prototype of a tunable lens array is proposed for the application of a compound eye.

  7. Effect of body repositioning after venous air embolism. An echocardiographic study

    NASA Technical Reports Server (NTRS)

    Geissler, H. J.; Allen, S. J.; Mehlhorn, U.; Davis, K. L.; Morris, W. P.; Butler, B. D.

    1997-01-01

    BACKGROUND: Current therapy for massive venous air embolism (VAE) may include the use of the left lateral recumbent (LLR) position, although its effectiveness has been questioned. This study used transesophageal echocardiography to evaluate the effect of body repositioning on intracardiac air and acute cardiac dimension changes. METHODS: Eighteen anesthetized dogs in the supine position received a venous air injection of 2.5 ml/kg at a rate of 5 ml/ s. After 1 min the dogs were repositioned into either the LLR, LLR 10 degrees head down (LLR-10 degrees), right lateral recumbence, or remained in the supine position. RESULTS: Repositioning after VAE resulted in relocation of intracardiac air to nondependent areas of the right heart. Peak right ventricular (RV) diameter increase and mean arterial pressure decrease were greater in the repositioned animals compared with those in the supine position (P < 0.05). Right ventricular diameter and mean arterial pressure showed an inverse correlation (r = 0.81). Peak left atrial diameter decrease was greater in the LLR and LLR-10 degrees positions compared with the supine position (P < 0.05). Repositioning did not influence peak pulmonary artery pressure increase, and no correlation was found between RV diameter and pulmonary artery pressure. All animals showed electrocardiogram and echocardiographic changes reconcilable with myocardial ischemia. CONCLUSIONS: In dogs, body repositioning after VAE provided no benefit in hemodynamic performance or cardiac dimension changes, although relocation of intracardiac air was demonstrated. Right ventricular air did not appear to result in significant RV outflow obstruction, as pulmonary artery pressure increased uniformly in all groups and was not influenced by the relocation of intracardiac air. The combination of increased RV afterload and arterial hypotension, possibly with subsequent RV ischemia rather than RV outflow obstruction by an airlock appeared to be the primary mechanism for cardiac dysfunction after VAE.

  8. Interfacial Studies of Whisker and Coated Fiber Reinforced Ceramic Matrix Composites

    DTIC Science & Technology

    1990-05-31

    well as BN coated small diameter (ɘ.7jtm) ARCO whiskers. Tha carbon coated TWS- 400C whiskers were received as-coated from Textron, Inc., Lowell, MA...under negative pressure by means of a Nilfisk filtering system equipped with a Hepa filter. With the health hazards of small whiskers being of utmost...Both of these platelet types were analyzed in the scanning Auger multiprobe (SAM) and found to be very close to stoichiometric SiC with a small amount

  9. 24th International Symposium on Ballistics

    DTIC Science & Technology

    2008-09-26

    production Samples dimensions were 0.3x0.05 m. Test set up Gas gun 5.5 mm diameter steel spheres and sabot Velocity measuring  systems High speed rate...Oilwell perforators – small caliber shaped charges – create the pathway for oil or gas to flow from the reservoir rock into the wellbore  Deep, clean ...overburden, tectonic) – Pore fluid pressure – Pore fluid type ( liquid vs. gas ) Background  Geomechanics considerations: – In-situ stresses (“total

  10. Vapor condensation on liquid surface due to laminar jet-induced mixing: The effects of system parameters

    NASA Technical Reports Server (NTRS)

    Lin, Chin-Shun; Hasan, Mohammad M.

    1989-01-01

    The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.

  11. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  12. Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering

    DOE PAGES

    Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...

    2017-03-16

    Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less

  13. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  14. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure

    PubMed Central

    Scallan, Joshua P; Wolpers, John H; Davis, Michael J

    2013-01-01

    Collecting lymphatic vessels generate pressure to transport lymph downstream to the subclavian vein against a significant pressure head. To investigate their response to elevated downstream pressure, collecting lymphatic vessels containing one valve (incomplete lymphangion) or two valves (complete lymphangion) were isolated from the rat mesentery and tied to glass cannulae capable of independent pressure control. Downstream pressure was selectively raised to various levels, either stepwise or ramp-wise, while keeping upstream pressure constant. Diameter and valve positions were tracked under video microscopy, while intralymphangion pressure was measured concurrently with a servo-null micropipette. Surprisingly, a potent lymphatic constriction occurred in response to the downstream pressure gradient due to (1) a pressure-dependent myogenic constriction and (2) a frequency-dependent decrease in diastolic diameter. The myogenic index of the lymphatic constriction (−3.3 ± 0.6, in mmHg) was greater than that of arterioles or collecting lymphatic vessels exposed to uniform increases in pressure (i.e. upstream and downstream pressures raised together). Additionally, the constriction was transmitted to the upstream lymphatic vessel segment even though it was protected from changes in pressure by a closed intraluminal valve; the conducted constriction was blocked by loading only the pressurized half of the vessel with either ML-7 (0.5 mm) to block contraction, or cromakalim (3 μm) to hyperpolarize the downstream muscle layer. Finally, we provide evidence that the lymphatic constriction is important to maintain normal intraluminal valve closure during each contraction cycle in the face of an adverse pressure gradient, which probably protects the lymphatic capillaries from lymph backflow. PMID:23045335

  15. Comparison of predicted and measured low-speed performance of two 51 centimeter-diameter inlets at incidence angle

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.

  16. Left Atrial Pressure Monitoring With an Implantable Wireless Pressure Sensor After Implantation of a Left Ventricular Assist Device

    PubMed Central

    Baranowski, Jacek; Delshad, Baz; Ahn, Henrik

    2017-01-01

    After implantation of a continuous-flow left ventricular assist device (LVAD), left atrial pressure (LAP) monitoring allows for the precise management of intravascular volume, inotropic therapy, and pump speed. In this case series of 4 LVAD recipients, we report the first clinical use of this wireless pressure sensor for the long-term monitoring of LAP during LVAD support. A wireless microelectromechanical system pressure sensor (Titan, ISS Inc., Ypsilanti, MI) was placed in the left atrium in four patients at the time of LVAD implantation. Titan sensor LAP was measured in all four patients on the intensive care unit and in three patients at home. Ramped speed tests were performed using LAP and echocardiography in three patients. The left ventricular end-diastolic diameter (cm), flow (L/min), power consumption (W), and blood pressure (mm Hg) were measured at each step. Measurements were performed over 36, 84, 137, and 180 days, respectively. The three discharged patients had equipment at home and were able to perform daily recordings. There were significant correlations between sensor pressure and pump speed, LV and LA size and pulmonary capillary wedge pressure, respectively (r = 0.92–0.99, p < 0.05). There was no device failure, and there were no adverse consequences of its use. PMID:27676410

  17. Mechanisms of Laser-Induced Dissection and Transport of Histologic Specimens

    PubMed Central

    Vogel, Alfred; Lorenz, Kathrin; Horneffer, Verena; Hüttmann, Gereon; von Smolinski, Dorthe; Gebert, Andreas

    2007-01-01

    Rapid contact- and contamination-free procurement of histologic material for proteomic and genomic analysis can be achieved by laser microdissection of the sample of interest followed by laser-induced transport (laser pressure catapulting). The dynamics of laser microdissection and laser pressure catapulting of histologic samples of 80 μm diameter was investigated by means of time-resolved photography. The working mechanism of microdissection was found to be plasma-mediated ablation initiated by linear absorption. Catapulting was driven by plasma formation when tightly focused pulses were used, and by photothermal ablation at the bottom of the sample when defocused pulses producing laser spot diameters larger than 35 μm were used. With focused pulses, driving pressures of several hundred MPa accelerated the specimen to initial velocities of 100–300 m/s before they were rapidly slowed down by air friction. When the laser spot was increased to a size comparable to or larger than the sample diameter, both driving pressure and flight velocity decreased considerably. Based on a characterization of the thermal and optical properties of the histologic specimens and supporting materials used, we calculated the evolution of the heat distribution in the sample. Selected catapulted samples were examined by scanning electron microscopy or analyzed by real-time reverse-transcriptase polymerase chain reaction. We found that catapulting of dissected samples results in little collateral damage when the laser pulses are either tightly focused or when the laser spot size is comparable to the specimen size. By contrast, moderate defocusing with spot sizes up to one-third of the specimen diameter may involve significant heat and ultraviolet exposure. Potential side effects are maximal when samples are catapulted directly from a glass slide without a supporting polymer foil. PMID:17766336

  18. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system

    NASA Astrophysics Data System (ADS)

    Hirtl, Rene; Schmid, Gernot

    2013-09-01

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.

  19. The pressure field of imploding lightbulbs

    NASA Astrophysics Data System (ADS)

    Czechanowski, M.; Ikeda, C.; Duncan, J. H.

    2015-03-01

    The implosion of A19 incandescent lightbulbs in a high-pressure water environment is studied in a 1.77-m-diameter steel tank. Underwater blast sensors are used to measure the dynamic pressure field near the lightbulbs and the implosions are photographed with a high-speed movie camera at a frame rate of 24,000 pps. The movie camera and the pressure signal recording system are synchronized to enable correlation of features in the movie frames with those in the pressure records. It is found that the gross dimensions and weight of the bulbs are very similar from one bulb to another, but the ambient water pressure at which a given bulb implodes (, called the implosion pressure) varies from 6.29 to 11.98 atmospheres, probably due to inconsistencies in the glass wall thickness and perhaps other detailed characteristics of the bulbs. The dynamic pressures (the local pressure minus , as measured by the sensors) first drop during the implosion and then reach a strong positive peak at about the time that the bulb reaches minimum volume. The peak dynamic pressure varies from 3.61 to 28.66 atmospheres. In order to explore the physics of the implosion process, the dynamic pressure signals are compared to calculations of the pressure field generated by the collapse of a spherical bubble in a weakly compressible liquid. The wide range of implosion pressures is used in combination with the calculations to explore the effect of the relative liquid compressibility and the bulb itself on the dynamic pressure field.

  20. Carotid intima-media thickness and elastic properties of aortas in normotensive children of hypertensive parents.

    PubMed

    Yildirim, Ali; Kosger, Pelin; Ozdemir, Gokmen; Sahin, Fezan Mutlu; Ucar, Birsen; Kilic, Zubeyir

    2015-09-01

    A significant correlation between hypertension history and high blood pressure has been observed with regard to age, race and gender. Investigating carotid intima-media thickness and aortic stiffness prior to the development of hypertension in children of hypertensive parents enabled us to evaluate these patients for subclinical atherosclerosis. We compared carotid intima-media thickness, aortic strain, distensibility, stiffness indices and elastic modulus in 67 normotensive children whose parents had a diagnosis of essential hypertension and 39 normotensive children with no parental history of hypertension. Although there were no significant differences between the two groups in terms of systolic blood pressure, diastolic blood pressure, average blood pressure and pulse pressure (P>0.05), systolic blood pressures were higher among patients 15 years and older in the study group. No significant differences were noted between the control and study groups regarding interventricular septal thickness, left-ventricular posterior wall thickness, left-ventricular systolic and diastolic diameter and aortic annulus diameter (P>0.05). The left atrium diameter was larger in the study group compared with that in the control group, mainly because of the values of the 15-year-old and older children (P=0.01). The mean, maximum and minimum values of carotid intima-media thickness were significantly different in the study group compared with the control group among all age groups (P<0.001, P<0.001, P=0.006, respectively). Aortic systolic and diastolic diameters were larger in normotensive children of hypertensive parents compared with the control group (P=0.014, P=0.001, respectively). Although there were no differences between the study and control groups regarding aortic strain, aortic distensibility, elastic modulus and stiffness indices (P>0.05), aortic distensibility was lower, and aortic stiffness indices were higher among children 15 years and older in the study group. An increase in the carotid intima-media thickness in all age groups and a decrease in aortic elastic properties in 15-year-old and older children of hypertensive parents may indicate subclinical atherosclerosis in these apparently healthy children.

  1. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to predict the behaviour of the fabricated devices. A total of 480 simulations, varying material dimensions (piezoelectric ring ID, glass disc diameter, glass thickness) and drive frequency indicated that the emitted acoustic profile varies nonlinearly with these parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. James C. McGroddy Prize Talk: Development and Applications of Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Inoue, Akihisa

    2009-03-01

    We realized, through detailed amorphous material investigations in the 1980's, that a number of metallic glassy alloys of multi-component La-, Mg- and Zr-based systems exhibit a large supercooled-liquid region prior to crystallization. The stabilization phenomenon of these supercooled liquid should enable us to fabricate, by slow cooling processes, bulk metallic glasses (BMGs) with critical diameters larger than several millimeters. Caltech's group also succeeded the fabrication of BMG in Zr-based alloy system in 1993. Since then, much attention has been paid to BMGs because of their novel characteristics in basic science and engineering aspects and new materials science and engineering fields have emerged for BMGs. Based on knowledge obtained thus far, we have successfully developed new BMGs with technologically-important transition metals, such as Zr-, Ti-, Fe-, Co-, Ni- and Cu-based alloys. Currently, the maximum diameter for glass formation reaches 30 mm for Zr- and Cu-based systems, 12 mm for Ti-based system, 18 mm for Fe-Co-based system and 20 mm for Ni-based system, even employing the copper mold casting technique. These large size BMGs possess nearly the same fundamental properties as those of the BMGs with smaller diameters. BMGs with diameters above 10 mm can be formed in Zr-Al-Ni-Cu system with Zr compositions higher than 65 at% and they exhibit excellent properties, such as high Poisson's ratio, high ductility, high fracture toughness, high fatigue strength and high stability of mechanical properties to annealing-induced embrittlement. The new Ti-based BMGs without allergic and toxic elements should exhibit good compatibility to bio-tissues. Applications of BMGs in Fe-, Co-, Ti- and Zr-based systems have advanced many devices including the following; choke coil, power inductor, electro magnetic shielding, magnetic and position sensors, micro-geared motor, pressure sensor, Coriolis flowmeter, surface coating layer, precise polishing medium, magnetic and structural parts in electric magnetic control-type spring drive watches, medical operation instruments and so forth. A. Inoue, Acta Mater., 48(2000), 279-306.

  3. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics.

    PubMed

    Rosenbaum, David; Mattina, Alessandro; Koch, Edouard; Rossant, Florence; Gallo, Antonio; Kachenoura, Nadjia; Paques, Michel; Redheuil, Alban; Girerd, Xavier

    2016-06-01

    In humans, adaptive optics camera enables precise large-scale noninvasive retinal microcirculation evaluation to assess ageing, blood pressure and antihypertensive treatments respective roles on retinal arterioles anatomy. We used adaptive optics camera rtx1 (Imagine-Eyes, Orsay, France) to measure wall thickness, internal diameter and to calculate wall-to-lumen ratio (WLR) and wall cross-sectional area of retinal arterioles. This assessment was repeated within a short period in two subgroups of hypertensive individuals without or with a drug-induced blood pressure drop. In 1000 individuals, mean wall thickness, lumen diameter and WLR were 23.2 ± 3.9, 78.0 ± 10.9 and 0.300 ± 0.054 μm, respectively. Blood pressure and age both independently increased WLR by thickening arterial wall. In opposite, hypertension narrowed lumen in younger as compared to older individuals (73.2 ± 9.0 vs. 81.7 ± 10.2 μm; P < 0.001), whereas age exerted no influence on lumen diameter. Short-term blood pressure drop (-29.3 ± 17.3/-14.4 ± 10.0 mmHg) induced a WLR decrease (-6.0 ± 8.0%) because of lumen dilatation (+4.4 ± 5.9%) without wall thickness changes. By contrast, no modifications were observed in individuals with stable blood pressure. In treated and controlled hypertensives under monotherapy WLR normalization was observed because of combined wall decrease and lumen dilatation independently of antihypertensive pharmacological classes. In multivariate analysis, hypertension drug regimen was not an independent predictor of any retinal anatomical indices. Retinal arteriolar remodeling comprised blood pressure and age-driven wall thickening as well as blood pressure-triggered lumen narrowing in younger individuals. Remodeling reversal observed in controlled hypertensives seems to include short-term functional and long-term structural changes.

  4. Reversible Morphological Control of Tubulin-Encapsulating Giant Liposomes by Hydrostatic Pressure.

    PubMed

    Hayashi, Masahito; Nishiyama, Masayoshi; Kazayama, Yuki; Toyota, Taro; Harada, Yoshie; Takiguchi, Kingo

    2016-04-19

    Liposomes encapsulating cytoskeletons have drawn much recent attention to develop an artificial cell-like chemical-machinery; however, as far as we know, there has been no report showing isothermally reversible morphological changes of liposomes containing cytoskeletons because the sets of various regulatory factors, that is, their interacting proteins, are required to control the state of every reaction system of cytoskeletons. Here we focused on hydrostatic pressure to control the polymerization state of microtubules (MTs) within cell-sized giant liposomes (diameters ∼10 μm). MT is the cytoskeleton formed by the polymerization of tubulin, and cytoskeletal systems consisting of MTs are very dynamic and play many important roles in living cells, such as the morphogenesis of nerve cells and formation of the spindle apparatus during mitosis. Using real-time imaging with a high-pressure microscope, we examined the effects of hydrostatic pressure on the morphology of tubulin-encapsulating giant liposomes. At ambient pressure (0.1 MPa), many liposomes formed protrusions due to tubulin polymerization within them. When high pressure (60 MPa) was applied, the protrusions shrank within several tens of seconds. This process was repeatedly inducible (around three times), and after the pressure was released, the protrusions regenerated within several minutes. These deformation rates of the liposomes are close to the velocities of migrating or shape-changing living cells rather than the shortening and elongation rates of the single MTs, which have been previously measured. These results demonstrate that the elongation and shortening of protrusions of giant liposomes is repeatedly controllable by regulating the polymerization state of MTs within them by applying and releasing hydrostatic pressure.

  5. The impact analysis of the connecting pipe length and diameter on the operation of a piston hybrid power machine of positive displacement with gas suction capacity

    NASA Astrophysics Data System (ADS)

    Shcherba, V. E.; Grigoriev, A. V.; Averyanov, G. S.; Surikov, V. I.; Vedruchenko, V. P.; Galdin, N. S.; Trukhanova, D. A.

    2017-08-01

    The article analyzes the impact of the connecting liquid pipe length and diameter on consumables and power characteristics of the piston hybrid power machine with gas suction capacity. The following operating characteristics of the machine were constructed and analyzed: the average height of the liquid column in the jacket space; instantaneous velocity and height of the liquid column in the jacket space; the relative height of the liquid column in the jacket space; volumetric efficiency; indicator isothermal efficiency; flowrate in the pump section; relative pressure losses during suction; relative flowrate. The dependence of the instantaneous pressure in the work space and the suction space of the compressor section on the rotation angle of the crankshaft is determined for different values of the length and diameter of the connecting pipeline.

  6. An experimental investigation of the cooling channel geometry effects on the internal forced convection of liquid methane

    NASA Astrophysics Data System (ADS)

    Trejo, Adrian

    Rocket engine fuel alternatives have been an area of discussion for use in high performance engines and deep spaceflight missions. In particular, LCH4 has showed promise as an alternative option in regeneratively cooled rocket engines due to its non-toxic nature, similar storage temperatures to liquid oxygen, and its potential as an in situ resource. However, data pertaining to the heat transfer characteristics of LCH4 is limited. For this reason, a High Heat Transfer Test Facility (HHTTF) at the University of Texas at El Paso's (UTEP) Center for Space Exploration Technology and Research has been developed for the purpose of flowing LCH4 through several heated tube geometry designs subjected to a constant heat flux. In addition, a Methane Condensing Unit (MCU) is integrated to the system setup to supply LCH4 to the test facility. Through the use of temperature and pressure measurements, this experiment will serve not only to study the heat transfer characteristics of LCH4; it serves as a method of simulating the cooling channels of a regeneratively cooled rocket engine at a subscale level. The cross sections for the cooling channels investigated are a 1.8 mm x 1.8 mm square channel, 1.8 mm x 4.1 mm rectangular channel, 3.2 mm and 6.34 mm inside diameter channel, and a 1.8 mm x 14.2 mm high aspect ratio cooling channel (HARCC). The test facility is currently designed for test pressures between 1.03 MPa to 2.06 MPa and heat fluxes up to 5 MW/m2. Results show that at the given test pressures, the Reynolds number reaches up to 140,000 for smaller cooling channels (3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangle) while larger cooling channel geometries (6.35 mm diameter and HARCC) reached Reynolds number around 70,000. Nusselt numbers reached as high as 320 and 265 for a 3.2 mm diameter tube and 1.8 mm x 4.1 mm rectangular channel respectively. For cooling channel geometries with 6.35 mm diameter and HARCC geometry, Nusselt numbers reached 136 (excluding an outlier) and 106 respectively. Heat transfer predictions applied to the data yielded theoretical correlations within 40% of the experimental data. However, typical theoretical values fall within 10%-15% of the experimental values showing agreeable correlations and supporting theories stated in the present study.

  7. Pulse Pressure and Carotid Artery Doppler Velocimetry as Indicators of Maternal Volume Status: A Prospective Cohort Study.

    PubMed

    Lappen, Justin R; Myers, Stephen A; Bolden, Norman; Shaman, Ziad; Angirekula, Venkata; Chien, Edward K

    2018-03-01

    Narrow pulse pressure has been demonstrated to indicate low central volume status. In critically ill patients, volume status can be qualitatively evaluated using Doppler velocimetry to assess hemodynamic changes in the carotid artery in response to autotransfusion with passive leg raise (PLR). Neither parameter has been prospectively evaluated in an obstetric population. The objective of this study was to determine if pulse pressure could predict the response to autotransfusion using carotid artery Doppler in healthy intrapartum women. We hypothesized that the carotid artery Doppler response to PLR would be greater in women with a narrow pulse pressure, indicating relative hypovolemia. Intrapartum women with singleton gestations ≥35 weeks without acute or chronic medical conditions were recruited to this prospective cohort study. Participants were grouped by admission pulse pressure as <45 mm Hg(narrow) or ≥50 mm Hg(normal). Maternal carotid artery Doppler assessment was then performed in all patients before and after PLR using a standard technique where carotid blood flow (mL/min) = π × (carotid artery diameter/2) × (velocity time integral) x (60 seconds). The velocity time integral was calculated from the Doppler waveform. The primary outcome was the change in the carotid Doppler parameters (carotid artery diameter, velocity time integral, and carotid blood flow) after PLR. Outcomes were compared between study groups with univariable and multivariable analyses with adjustment for potential confounding factors. Thirty-three women consented to participation, including 18 in the narrow and 15 in the normal pulse pressure groups (mean and standard deviation initial pulse pressure, 38.3 ± 4.4 vs 57.3 ± 4.1 mm Hg). The 2 groups demonstrated similar characteristics except for initial pulse pressure, systolic and diastolic blood pressure, and race. In response to PLR, the narrow pulse pressure group had a significantly greater increase in carotid artery diameter (0.08 vs 0.02 cm; standardized difference, 2.0; 95% confidence interval [CI], 1.16-2.84), carotid blood flow (79.4 vs 16.0 mL/min; standardized difference, 2.23; 95% CI, 1.36-3.10), and percent change in carotid blood flow (47.5% vs 8.7%; standardized difference, 2.52; 95% CI, 1.60-3.43) compared with the normal pulse pressure group. In multivariable analysis with adjustment for potential confounding factors, women with narrow admission pulse pressure had a significantly larger carotid diameter (0.66 vs 0.62 cm; P < .0001) and greater carotid flow (246.7 vs 219.3 cm/s; P = .001) after PLR compared to women with a normal pulse pressure. Initial pulse pressure was strongly correlated with the change in carotid flow after PLR (r2 = 0.60; P < .0001). The hemodynamic response of the carotid artery to autotransfusion after PLR is significantly greater in women with narrow pulse pressure. Pulse pressure correlates with the physiological response to autotransfusion and provides a qualitative indication of intravascular volume in term and near-term pregnant women.

  8. Sealing vessels up to 7 mm in diameter solely with ultrasonic technology.

    PubMed

    Timm, Richard W; Asher, Ryan M; Tellio, Karalyn R; Welling, Alissa L; Clymer, Jeffrey W; Amaral, Joseph F

    2014-01-01

    Ultrasonic energy is a mainstay in the armamentarium of surgeons, providing multifunctionality, precision, and control when dissecting and sealing vessels up to 5 mm in diameter. Historically, the inability to seal vessels in the 5-7 mm range has been perceived as an inherent limitation of ultrasonic technology. The purpose of this study was to evaluate sealing of vessels up to 7 mm in diameter with an ultrasonic device that modulates energy delivery during the sealing period. In ex vivo benchtop and in vivo acute and survival preclinical models, a new ultrasonic device, Harmonic ACE(®)+7 Shears (Harmonic 7), was compared with advanced bipolar devices in sealing vessels 1-7 mm in diameter with respect of burst pressure, seal reliability, and seal durability. Lateral thermal damage and transection time were also evaluated. Ex vivo tests of Harmonic 7 demonstrated significantly greater median burst pressures than an advanced bipolar device both for vessels <5 mm in diameter (1,078 mmHg and 836 mmHg, respectively, P=0.046) and for those in the range of 5-7 mm (1,419 mmHg and 591 mmHg, P<0.001). In vivo tests in porcine and caprine models demonstrated similar rates of hemostasis between Harmonic 7 and advanced bipolar devices, with high success rates at initial transection and seal durability of 100% after a 30-day survival period. Sealing 5-7 mm vessels is not a limitation of the type of energy used but of how energy is delivered to tissue. These studies document the ability of ultrasonic energy alone to reliably seal large vessels 5-7 mm in diameter, with significantly greater burst pressure observed in in vitro studies than those observed with an advanced bipolar technology when energy delivery is modulated during the sealing cycle. Furthermore, the seals created in 5-7 mm vessels are shown to be reliable and durable in in vivo preclinical studies.

  9. Room temperature synthesis and optical properties of small diameter (5 nm) ZnO nanorod arrays.

    PubMed

    Cho, Seungho; Jang, Ji-Wook; Lee, Jae Sung; Lee, Kun-Hong

    2010-10-01

    We report a simple wet-chemical synthesis of ∼5 nm diameter ZnO nanorod arrays at room temperature (20 °C) and normal atmospheric pressure (1 atm) and their optical properties. They were single crystalline in nature, and grew in the [001] direction. These small diameter ZnO nanorod arrays can also be synthesized at 0 °C. Control experiments were also conducted. On the basis of the results, we propose a mechanism for the spontaneous growth of the small diameter ZnO structures. The optical properties of the 5 nm diameter ZnO nanorod arrays synthesized using this method were probed by UV-Visible diffuse reflectance spectroscopy. A clear blue-shift, relative to the absorption band from 50 nm diameter ZnO nanorod arrays, was attributed to the quantum confinement effects caused by the small nanocrystal size in the 5 nm diameter ZnO nanorods.

  10. U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    NASA Astrophysics Data System (ADS)

    Nannipieri, P.; Anichini, M.; Barsocchi, L.; Becatti, G.; Buoni, L.; Celi, F.; Catarsi, A.; Di Giorgio, P.; Fattibene, P.; Ferrato, E.; Guardati, P.; Mancini, E.; Meoni, G.; Nesti, F.; Piacquadio, S.; Pratelli, E.; Quadrelli, L.; Viglione, A. S.; Zanaboni, F.; Mameli, M.; Baronti, F.; Fanucci, L.; Marcuccio, S.; Bartoli, C.; Di Marco, P.; Bianco, N.; Marengo, M.; Filippeschi, S.

    2017-01-01

    U-PHOS Project aims at analysing and characterising the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device where the heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. Since, in milli-gravity conditions, buoyancy forces become less intense, the PHP diameter may be increased still maintaining the slug/plug typical flow pattern. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a large diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign.

  11. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  12. Autoregulation and tubuloglomerular feedback in juxtamedullary glomerular arterioles.

    PubMed

    Casellas, D; Moore, L C

    1990-03-01

    Videometric measurements of changes in vessel lumen diameters were made to investigate autoregulatory and tubuloglomerular feedback (TGF) responses of early efferent arterioles (EA), mid-to-late afferent arterioles (MAA), and terminal, juxtaglomerular afferent arterioles (JAA) in rat juxtamedullary nephrons in vitro. High-contrast shadow-cast images of blood-perfused arterioles at the glomerular vascular pole were obtained with incident illumination and long-working-distance objectives fitted to a compound microscope. In response to an increase in blood perfusion pressure from 60 to 140 mmHg, strong autoregulatory vasoconstriction was observed in the MAA and JAA, with respective reductions in mean luminal diameter of 23 +/- 4 and 40 +/- 4% (mean +/- SE); EA diameter was unchanged. In response to TGF excitation by direct microinjection of Ringer solution into the cortical thick ascending limb segment near the macula densa, JAA luminal diameter decreased by 34 +/- 5%. The TGF responses were completely inhibited by the addition of 0.1 mM furosemide to the tubular injectate. Calcium channel blockade achieved by adding 1 microM nimodipine to the superfusate had no effect on early EA diameter but produced a blood pressure-dependent JAA and MAA vasodilation and complete inhibition of autoregulatory responses. These results provide direct evidence that the distal afferent arteriole in juxtamedullary nephrons is a major effector site for both renal autoregulation and tubuloglomerular feedback.

  13. New Large Diameter RF Complex Plasma Device

    NASA Astrophysics Data System (ADS)

    Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus

    2016-10-01

    The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.

  14. Performance of a sand filter in removal of micro-algae from seawater in aquaculture production systems.

    PubMed

    Sabiri, N E; Castaing, J B; Massé, A; Jaouen, P

    2012-01-01

    In this study, a sand filter was used to remove micro-algae from seawater feeding aquaculture ponds. A lab-scale sand filter was used to filter 30,000 cells/mL of Heterocapsa triquetra suspension, a non-toxic micro-alga that has morphological and dimensional (15-20 microm) similarities with Alexandrium sp., one of the smallest toxic micro-algae in seawater. Removal efficiency and capture mechanisms for a fixed superficial velocity (3.5 m/h) were evaluated in relation to size distribution and mean diameter of the sand. Various sands (average diameter ranging between 200 microm and 600 microm) were characterized and used as porous media. The structural parameters of the fixed beds were evaluated for each medium using experimental measurements of pressure drop as a function of superficial velocity over a range of Reynolds numbers covering Darcy's regime and the inertial regime. For a filtration cycle of six hours, the best efficiency (E = 90%) was obtained with the following sand characteristics: sieved sand with a range of grain diameter of 100 and 300 microm and a mean grain diameter equal to 256 microm. Results obtained show the influence of the size distribution of sand on the quality of retention of the micro-algae studied.

  15. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  16. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility.

    PubMed

    Catto, Valentina; Farè, Silvia; Cattaneo, Irene; Figliuzzi, Marina; Alessandrino, Antonio; Freddi, Giuliano; Remuzzi, Andrea; Tanzi, Maria Cristina

    2015-09-01

    To overcome the drawbacks of autologous grafts currently used in clinical practice, vascular tissue engineering represents an alternative approach for the replacement of small diameter blood vessels. In the present work, the production and characterization of small diameter tubular matrices (inner diameter (ID)=4.5 and 1.5 mm), obtained by electrospinning (ES) of Bombyx mori silk fibroin (SF), have been considered. ES-SF tubular scaffolds with ID=1.5 mm are original, and can be used as vascular grafts in pediatrics or in hand microsurgery. Axial and circumferential tensile tests on ES-SF tubes showed appropriate properties for the specific application. The burst pressure and the compliance of ES-SF tubes were estimated using the Laplace's law. Specifically, the estimated burst pressure was higher than the physiological pressures and the estimated compliance was similar or higher than that of native rat aorta and Goretex® prosthesis. Enzymatic in vitro degradation tests demonstrated a decrease of order and crystallinity of the SF outer surface as a consequence of the enzyme activity. The in vitro cytocompatibility of the ES-SF tubes was confirmed by the adhesion and growth of primary porcine smooth muscle cells. The in vivo subcutaneous implant into the rat dorsal tissue indicated that ES-SF matrices caused a mild host reaction. Thus, the results of this investigation, in which comprehensive morphological and mechanical aspects, in vitro degradation and in vitro and in vivo biocompatibility were considered, indicate the potential suitability of these ES-SF tubular matrices as scaffolds for the regeneration of small diameter blood vessels. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ascending aortic curvature as an independent risk factor for type A dissection, and ascending aortic aneurysm formation: a mathematical model.

    PubMed

    Poullis, Michael P; Warwick, Richard; Oo, Aung; Poole, Robert J

    2008-06-01

    To develop a mathematical model to demonstrate that ascending aortic curvature is an independent risk factor for type A dissections, in addition to hypertension, bicuspid aortic valve, aneurysm of ascending aorta, and intrinsic aortic tissue abnormalities, like Marfan's syndrome. A steady state one-dimensional flow analysis was performed, utilising Newton's third law of motion. Five different clinical scenarios were evaluated: (1) effect of aortic curvature; (2) effect of beta-blockers, (3) effect of patient size, (4) forces on a Marfan's aorta, and (5) site of entry flap in aortic dissection. Aortic curvature increases the forces exerted on the ascending aorta by a factor of over 10-fold. Aortic curvature can cause patients with a systolic blood pressure of 8 0mmHg to have greater forces exerted on their aorta despite smaller diameters and lower cardiac outputs, than patients with systolic blood pressures of 120 mmHg. In normal diameter aortas, beta-blockers have minimal effect compared with aortic curvature. Aortic curvature may help to explain why normal diameter aortas can dissect, and also that the point of the entry tear may be potentially predictable. Aortic curvature has major effects on the forces exerted on the aorta in patients with Marfan's syndrome. Aortic curvature is relatively more important that aortic diameter, blood pressure, cardiac output, beta-blocker use, and patient size with regard to the force acting on the aortic wall. This may explain why some patients with normal diameter ascending aortas with or without Marfan's syndrome develop type A dissections and aneurysms. Aortic curvature may also help to explain the site of entry tear in acute type A dissection. Further clinical study is needed to validate this study's finding.

  18. Retinal vessel oxygen saturation in a healthy young Chinese population.

    PubMed

    Yang, Wei; Fu, Yue; Dong, Yanmin; Lin, Leilei; Huang, Xia; Li, Yujie; Lin, Xiaofeng; Gao, Qianying

    2016-06-01

    To measure retinal vessel oxygen saturation in a healthy young Chinese population and to determine the effects of multiple factors (gender, age, dioptre, vessel diameter and ocular perfusion pressure - OPP) on retinal oxygen saturation. A total of 126 healthy Chinese individuals aged from 19 to 30 were included in this study. A retinal oximeter (Oxymap T1) was used to measure retinal vessel oxygen saturation by retinal imaging at two different wavelengths. The mean retinal vessel oxygen saturation (Sat_O2 ) of arterioles, venules and arteriovenous (AV) difference overall and in four separate quadrants were measured. Intra-ocular pressure, blood pressure, finger pulse oximetry value, vessel diameter and dioptre were also measured. The correlations between OPP and dioptre, OPP and vessel diameter, and dioptre and vessel diameter were analysed. And the effects of multiple factors on the retinal oxygen saturation were analysed. The mean oxygen saturation was 93.2 ± 6.3% in the retinal arterioles, 60.4 ± 5.3% in venules and 32.9 ± 6.4% in AV difference. The temporal quadrants had lower measurements of arteriolar and venular oxygen saturation and AV difference compared with nasal quadrants (p < 0.001). The oxygen saturation of the arterioles, venules and AV difference were unaffected by any unique factor. Arteriolar and venular retinal oxygen saturation correlated negatively with the product of dioptre and OPP. Arteriolar retinal oxygen saturation correlated positively with the product of dioptre and vessel diameter. This study provided a normal reference of Sat_O2 in healthy young Chinese individuals. It was a reflection of the normal state of retinal oxygen metabolism affected by several factors. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  19. Postural stability is altered by the stimulation of pain but not warm receptors in humans.

    PubMed

    Blouin, Jean-Sébastien; Corbeil, Philippe; Teasdale, Normand

    2003-10-17

    It is now recognized that large diameter myelinated afferents provide the primary source of lower limb proprioceptive information for maintaining an upright standing position. Small diameter afferents transmitting noxious stimuli, however, can also influence motor behaviors. Despite the possible influence of pain on motor behaviors, the effects of pain on the postural control system have not been well documented. Two cutaneous heat stimulations (experiment 1: non-noxious 40 degrees C; experiment 2: noxious 45 degrees C) were applied bilaterally on the calves of the subject with two thermal grills to stimulate A delta and C warm receptors and nociceptors in order to examine their effects on postural stability. The non-noxious stimulation induced a gentle sensation of warmth and the noxious stimulation induced a perception of heat pain (visual analogue scores of 0 and 46 mm, respectively). For both experiments, ten healthy young adults were tested with and without heat stimulations of the lower limbs while standing upright on a force platform with eyes open, eyes closed and eyes closed with tendon co-vibration of tibialis anterior and triceps surae muscles. The center of pressure displacements were analyzed to examine how both stimulations affected the regulation of quiet standing and if the effects were exacerbated when vision was removed or ankle proprioception perturbed. The stimulation of the warm receptors (40 degrees C) did not induce any postural deterioration. With pain (45 degrees C), subjects showed a significant increase in standard deviation, range and mean velocity of postural oscillations as well as standard deviation of the center of pressure velocity. The effects of heat pain were exacerbated when subjects had both their eyes closed and ankle tendons vibrated (increased standard deviation of the center of pressure velocity and mean velocity of the center of pressure). A non-noxious stimulation (40 degrees C) of the small diameter afferents is not a sufficiently intense sensory stimulation to alter the control of posture. A painful stimulation (45 degrees C) of the skin thermoreceptors, however, yielded a deterioration of the postural control system. The observed deteriorating effects of the combined stimulation of nociceptors and Ia afferents (when ankle tendons were vibrated) could result from the convergence of these afferents at the spinal level. This could certainly lead to the hypothesis that individuals suffering from lower limb pain present alterations of the postural control mechanisms; especially populations already at risk of falling (for example, frail elderly) or populations suffering from concomitant lower limb pain and sensory deficits (for example, diabetic polyneuropathy).

  20. The Advanced Control of Triboelectrically Charged Fuel Using Electric Fields Under High Pressure

    NASA Astrophysics Data System (ADS)

    Rolle, Alzarrio

    This research provides preliminary results of electrospraying in elevated surrounding pressures of 40, 50 and 60 psi. Investigations were correspondingly detailed regarding the process of designing and acquiring a manufactured custom pressure chamber for experimental analysis. SolidWorks was used to model and simulate multiple design iterations based on Finite Element Analysis (FEA) and manufacturability cost. The pressure vessel has an internal diameter of 5.50" with a length of 22.5", a top lid capable of detaching from the body with five ¼" NPT treaded holes and a 1" NPT plug with a 0.52" thru hole counter sunk 0.600" at a depth of 0.58". The working pressure of this chamber is 3 MPa (435 psi) at a temperature of 300ºF (149ºC). The fuel system transporting 87 octane ascertained results of 0.034, 0.035 and 0.038 for the average mass per injection of the corresponding pressures at 40, 50 and 60 psi respectively. The R-squared values were 0.992, 0.9943 and 0.9961 with 40 psi as the bottommost value and 60 psi at the utmost value. The average net charge density values per injection were 1.265, 1.286 and 1.368 along with the standard deviations of 0.019, 0.004 and 0.004 for the consequent pressures of 40, 50 and 60 psi were calculated respectively. From this data, the experiments conducted at 60 psi ascertained both the maximum prevailing accumulation of mass as well as the greatest net electric charge density. The COMSOL Multiphysics simulations produced a particle diameter distribution of values with a large concentration between 9.5 and 11 mum. Whereas, the Rayleigh limit distribution for the charge on a droplet values were commonly between 1.2 and 1.6 x 10-13 C. A contraction on the particle trajectories were observed when all three pressures were compared without an electric field and with the presence of a 10kV electric field. The tightening of the particle trajectories were intensified when the electric field was amplified to 20kV. However, there appears to be no substantial change between the pressure of 40, 50 and 60 psi when compared to simulations executed at atmospheric pressure.

Top